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Dynamic network flows model transportation. A dynamic network consists of
a graph with capacities and transit times on its edges. Flow moves through a
dynamic network over time. Edge capacities restrict the rate of flow and edge
transit times determine how long each unit of flow spends traversing the network.
Dynamic network flows have been studied extensively for decades.

This thesis introduces the first polynomial algorithms to solve several important
dynamic network flow problems. We solve them by computing chain-decomposable
flows, a new class of structured dynamic flows.

We solve the quickest transshipment problem. An instance of this problem
consists of a dynamic network with several sources and sinks. Each source has a
specified supply and each sink a specified demand of flow. The goal is to move the
appropriate amount of flow out of each source and into each sink within the least
overall time. Previously, this problem could only be solved efficiently in the special
case of a single source and single sink.

Our quickest transshipment algorithm depends on efficient solutions to the dy-
namic transshipment problem and the lexicographically maximum dynamic flow
problem. The former is a version of the quickest transshipment problem in which

the time bound is specified. The latter is a maximum flow problem in a dynamic



network with prioritized sources and sinks; the goal is to maximize the amount of
flow leaving each high-priority subset of sources and sinks.

We also consider the universally maximum dynamic flow problem. A universally
maximum dynamic flow sends flow between a source and sink so that the sink
receives flow as quickly as possible; subject to that, the source releases flow as
late as possible. We describe the first polynomial algorithm to approximate a
universally maximum dynamic flow within a factor of (1 + €), for any ¢ > 0. We
also describe the first polynomial algorithm to compute the value of a universally

maximum dynamic flow at a single specified moment of time.
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Preface

It was a dark and stormy night. Jack lay motionless in his cabin — motionless
except for his stomach, which was gyrating in his gut like a mad carnival ride. Jack
wanted to stop the ride and get off. Maybe that lamb curry had been too rare.

“Mmm.” Rachel snuggled comfortably against Jack; she was half asleep. Jack
envied her cast-iron stomach. He also knew it was the only reason she could stand
his cooking.

The full moon shone through the porthole. Jack could not enjoy the view,
though. A real landlubber, Jack. How did he ever let Rachel talk him into this
cruise? Rachel loved adventure, nature, the outdoors; she read about the Arctic
Whale Watch in a travel magazine. Jack must have downed one too many daiquiris
the night she asked him about it. Sure, why not spend a week cruising the waves
of the North Atlantic?

No one was watching any whales now. Not even Captain Dirk Crandall, who
leaned hard against his wheel to brace himself in the tumultuous sea. Even on
duty, Dirk knocked back Jack Daniels like a drowning man gulps air. He said it
calmed his nerves. Calm nerves might serve in a calm sea, but tonight Dirk’s bleary
gaze could not comprehend the frothy waves crashing against the hull. His vessel,
the stately Combitanic, groaned under his fogged command.

The surging sea roused Rachel. She kissed Jack gently and drew imaginary
patterns on his rugged torso. “Oh, man, I'm gonna lose it,” Jack muttered as he

bolted from their bunk to the bathroom.
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Rachel had her own second thoughts about taking Jack on the whale watch.
Jack’s nerdy charm complemented his lean, athletic physique, but this trip was
bringing out the milquetoast in him. All he wanted to do was lie in bed with a
clear path to the toilet. He was driving Rachel totally stir crazy.

Rachel slipped into her white silk dressing gown and slipped out of the cabin.
The ship crashed and groaned against the sea; almost all of her passengers were
quietly hiding in their rooms. Rachel climbed her way toward the observation deck
but made a wrong turn. Suddenly she found herself on the bridge. The full moon
framed a silhouette manning the helm. Rachel was shocked to recognize the pair of
broad shoulders beneath a frayed peacoat; massive hands emerged from the woolen
sleeves and clamped firmly on the wheel.

“Dirk,” Rachel said softly. Her breathy voice betrayed a rare moment of vulner-
ability. The captain spun around and moonbeams lit all he needed to see: flowing
raven tresses tumbling over a shapely and sinewy female form.

“Rachel,” he replied, “you’ve come a long way to find me here.” The haze of
alcohol hanging over Dirk did not soften his chiseled features, nor could it entirely
mask the impression of power he projected.

“No, I...” Rachel found herself speechless in Dirk’s presence. Could she ever
forgive him? Years ago, Rachel thought not and hoped that time would quench
the fire that Dirk had lit in her soul. She had to get over him. Dirk thought that
distance and whiskey would erase Rachel, and the awful consequences of his violent
temper, from his memory.

The Combitanic rocked in the storm. Rachel’s mind spun as she lost her balance
and fell into Dirk’s brawny embrace. She could not resist as he pulled her close to
him. His kiss filled her with a wondrous white light. “Oh, Dirk,” she whispered.

Suddenly, a shot rang out. And another and another. Rivets popped in the
bowels of the ship, as she crashed against an iceberg. Cold seawater poured through

a rip in the hull opened by the hard ice. Two levels above the water, Jack under-
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stood what was happening; he retrieved his papers and left his cabin.

Dirk lay half-conscious at the helm. The impact had taken him off his feet and
his head landed hard on the deck. “Get up!” Rachel sobbed over him. She could
not budge him. Emergency lights and bells awakened the passengers in the decks
below, but Rachel hardly noticed that the ship was sinking. She knelt beside Dirk.
Dirk saw her dimly; his vision was receding into a dark tunnel. Rachel reached
out for him. He felt her arms around him and struggled to hang on to her. “I love
you. I'm sorry,” he said. “I forgive you,” she said. Time stood still.

Seemingly moments later, Jack entered the bridge. He hauled both of them to
their feet. “There’s no time, let’s go!” he commanded. “The ship is about to go
under. If we take the corridor to the left and go down the stairs, we should just
make it to the last three seats on the only lifeboat left.”

“Honey, how did you...”

“I don’t have time to explain. Now go!”

Jack shoved them out of the bridge and followed them to the final lifeboat. He
handed Rachel a life jacket and helped her aboard the dingy. He reached overhead
to get another life jacket for Dirk.

Behind him, Dirk growled with horrible rage, “She’s MINE.” Dirk lunged at
Jack with both hands ready to rend him limb from limb. He pinned Jack face-
down again the railing, strangling him with an unbreakable grip.

“STOP!” Rachel ordered. Her quivering hands aimed a loaded flare gun between
Dirk’s eyes. “Please, Dirk. Don’t make me do this. Control yourself.”

“Who is this wimp?” Dirk bellowed. “Nobody! You deserve a real man.” With
one hand still clamped around Jack’s neck, Dirk reached underneath his coat.
Rachel saw the glint of a blade in his hand and she pulled the trigger.

Dirk’s head lit up the night sky, and his piercing screams raged like the wind. He
staggered back and collapsed to the deck. Rachel pulled Jack aboard the lifeboat

and released its ties as flames licked the last remains of the Combitanic. The ship
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shuddered and rolled over, slowly.

“Thanks,” Jack croaked. He coughed until he could speak again. “I had the
perfect rescue planned. It wasn’t supposed to end like this.”

Rachel watched as the Combitanic disappeared from view. She felt a part of her
go with it. Suddenly, she noticed a whole flotilla of lifeboats, filled with grateful
survivors, dimly lit by the final flames of the wreck. A quick head count revealed
that everyone could have been saved.

“Jack, this is amazing! The ship must have sunk within minutes. How did
everyone evacuate so quickly?”

“I've been reading about dynamic network flows,” Jack replied. “Rescuing the
passengers of the Combitanic was just an instance of the quickest transshipment
problem. Once I felt the impact of the iceberg, I knew what everyone had to do.”

“Oooh, you are so masterful.” Rachel melted into Jack’s arms. “I want to know
your secrets. Please tell me more.”

“Well, it’s a long story...”
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Chapter 1

Introduction

Modern society depends on transportation. Goods move from producers to con-
sumers. People commute, shop, and travel. Information speeds through an elec-
tronic web connecting homes, schools, and offices around the world. Our lives are
filled with decisions about what should go where next and how. For its pervasive
role in society, transportation deserves study. Understanding transportation bet-
ter can lead to greater efficiency — translating into lower costs for transportation
providers and better service for their customers.

Interest in transportation spawned the field of network flows during the 1940s
and 50s. A network consists of nodes and edges. Each node corresponds to a
factory, warehouse, computer, or some other location of production, consumption,
or consolidation. Each edge connects a pair of nodes, corresponding to roads,
cables, or other channels. Commodities flow from node to node, transported by
the edges of the network. Each edge has a capacity that restricts the amount it
can transport.

Network flows have many applications other than transportation modeling.
Scheduling, personnel assignment, DNA sequencing, and open pit mining are just
a tiny sample of the applications that have been posed as network flow problems.

For a more complete list, see the textbook of Ahuja et al [2].



The study of network flows developed simultaneously with that of linear pro-
gramming (and optimization in general). Network flow problems are specially
structured linear programs and may be solved as such. They also yield to special-
purpose combinatorial algorithms, however, and these have received most atten-
tion from interested researchers ever since Ford and Fulkerson championed this
approach in their landmark text on network flows [16]. The structure of network
flow problems leads to solution techniques that are computationally more efficient
(both theoretically and practically) than those known to solve linear programs.

The computer science and operations research communities have pursued ever
more efficient network flow algorithms for the last four decades. A vast body of
literature lies in their wake, but it contains a curious omission. Despite the natural
connection between network flows and transportation, most research in network
flow theory has ignored the first question asked by any child in the back seat of a
car: “Are we there yet?” The parents who endure this persistent line of questioning
undoubtedly consider time before deciding where to go next and how.

Ford and Fulkerson were well aware of the importance of time in transportation,
and they incorporated it into their network flow model. They generalized the
standard definition of a network to include transit times between nodes, resulting
in a dynamic network. Each edge yz in a dynamic network models a pipeline from
node y to node z. The capacity of edge yz corresponds to the cross-section of
the pipeline; it restricts the amount of flow can enter edge yz per unit time. The
transit time of edge yz corresponds to the length of the pipeline; it determines
how much time passes while flow moves from y to z along edge yz. A dynamic
flow moves over time through a dynamic network; it is an extension of traditional
network flow, mapping (edge,time) pairs to flow values, rather than edges to flow
values.

Since Ford and Fulkerson, dynamic network flows have been studied extensively

by the operations research community. The survey articles of Aronson [4] and



Powell et al [47] summarize much of the progress made. Research in this area
has focused on both theoretical questions of mathematical modeling and practical
concerns of algorithm implementation; it has not, however, paid much attention
to algorithmic theory. In particular, very little is known about the computational
complexity of dynamic network flow problems.

In this thesis, we study dynamic network flows and focus on the development
of theoretically efficient algorithms. Our work bridges a gap between the study of
traditional network flows and that of dynamic network flows. Like most researchers
of traditional network flows, we strive for the best possible asymptotic bounds
on worst-case algorithm performance. However, our algorithms solve dynamic
problems based on a more realistic model typically considered by researchers of
transportation. Most of our algorithms are the first efficient techniques known for

their respective problems. Initial versions of our results appeared in [27] and [28].

Polynomial vs Pseudopolynomial Algorithms. Any dynamic network flow
algorithm must somehow represent dynamic flow on an edge as that flow changes
with time. The standard technique is to consider discrete steps of time and make
a copy of the original network for every time step from time zero until the time
horizon T', after which there is no flow left in the network. This process results in
a time-expanded network. All algorithms based on time-expanded networks have
running times depending polynomially on 7'; such algorithms are pseudopolynomial.

Most of the algorithms in this thesis have true polynomial running times; they
depend polynomially on log7’, not on 7. We achieve this breakthrough by elimi-
nating the time-expanded network. Rather than computing the flow on each edge
at every individual time step, our algorithms produce solutions characterized by
long time intervals for each edge during which its flow remains constant. We do
not explicitly compute these intervals; they are a by-product of chain-decomposable
flows, a well-structured class of dynamic flows that we define in Chapter 4. All of

our algorithms compute chain-decomposable flows.



Our polynomial algorithms may represent not only a theoretical breakthrough
but also a technique with practical significance. Dynamic network flows are of-
ten used to model continuous-time problems in the real world. A more accurate
model relies on finer granularity, implying more time steps before the dynamic
flow is finished (with each step representing less real time). The performance of a
pseudopolynomial algorithm degrades linearly (or worse) with the improvement of
model granularity; this restricts the accuracy that can be achieved by the model.
The performance of a polynomial algorithm, however, degrades logarithmically
(or better) with finer model granularity, and so may allow much more accurate

modeling than traditional techniques.

Universally Maximum Dynamic Flows. Ford and Fulkerson [16] focused
their attention on the most basic of all dynamic network flow problems, the maxi-
mum dynamic flow problem. An instance of this problem is a time horizon 7" and
a dynamic network with one source and one sink; a solution is a feasible dynamic
flow that sends as much as possible from the source to the sink within time 7.
Ford and Fulkerson discovered an ingenious polynomial algorithm for this problem
from which all the algorithms of this thesis descend.

Gale [18], Wilkinson [54], and Minieka [40] considered a variant of the maximum
dynamic flow problem in which the sink must receive as much flow as possible by
every intermediate time step up to and including 7'. In addition, flow should leave
the source as late as possible. We call such a flow a universally mazximum dynamic
flow. The existence of such flows is not obvious, but was proved by Gale [18].
Later, Wilkinson [54] and Minieka [40] independently described pseudopolynomial
algorithms to compute these flows.

In Chapter 5, we reexamine the almost identical algorithms of Wilkinson and
Minieka and describe an equally similar algorithm based on chain-decomposable
flows. Our perspective leads to the first polynomial algorithm to compute the value

of a universally maximum dynamic flow on any edge at any single time step (i.e.,



a time-step snapshot of the full solution). We also describe the first polynomial
algorithm to approximate a universally maximum dynamic flow within a factor of
(1+¢), for any € > 0. The algorithm runs in polynomial time with respect to e~

and the input network.

Quickest Flows. Another variant of the maximum dynamic flow problem is the
quickest flow problem, in which we are given a flow value v and must find a feasible
dynamic flow that sends v units of flow from the source to the sink within the
least possible time. The quickest flow problem can be reduced to the maximum
dynamic flow problem by binary search. Burkard et al [7] studied this problem and
described more efficient solution techniques.

The evacuation problem is a multi-source generalization of the quickest flow
problem: we are given a supply value for each source and asked to find a feasible
dynamic flow that sends the specified amount from each source to the sink in the
least overall time. In a traditional network without transit times, the evacuation
problem reduces trivially to a single-source flow problem (by using a supersource).
In the dynamic setting, however, the evacuation problem is much more complicated
than the quickest flow problem. It is more useful also: the evacuation problem was
originally formulated as a practical model for building evacuation. The evacuation
problem has been studied by several groups [5,8,10,11,26,31]. All of them avoided
the bad news that the only technique known to compute optimal solutions required
exponential time and space.

In Chapters 6-8 we describe the first (strongly) polynomial algorithm for the
quickest transshipment problem, a generalization of the evacuation problem which
allows multiple sinks in addition to multiple sources. Previously, no polynomial
algorithm was known even for the evacuation problem with just two sources. Our
algorithm not only solves the quickest transshipment problem but also computes

an integral flow when given integral data.



Network Scheduling. Although the evacuation and quickest transshipment
problems are easy to motivate by disaster contingency plans, they have applications
in other settings as well. Consider a set of computers on a network; each machine
has some queue of unit-size jobs waiting to execute. A job can either run locally or
go into the network for remote execution. Each link of the network is characterized
by a capacity and transit time. The problem of executing these jobs so that the
last job executes as soon as possible reduces easily to the integral quickest trans-
shipment problem. By applying our quickest transshipment algorithm, we obtain
the first polynomial algorithm for scheduling unit-size jobs on a network. Other
groups have obtained polynomial algorithms for unit-job network scheduling, but
only for very special cases. Deng et al [13] considered networks with unit transit
times and no capacities. Fizzano and Stein [15] considered ring networks with unit
transit times and unit capacities. Our algorithm handles general networks with

arbitrary non-negative integer capacities and transit times.

Outline of Thesis. We define basic terminology and notation in Chapter 2. In
Chapter 3, we formally introduce the dynamic network flow problems of this thesis
and survey research related to them. Chapter 4 presents chain-decomposable flows;
these are a well-structured class of dynamic flows used by all the algorithms of this
thesis; they are a generalization of temporally repeated flows as described by Ford
and Fulkerson [16].

Our algorithmic results begin in Chapter 5, where we discuss universally maxi-
mum dynamic flows. In Chapter 6 we consider lexicographically maximum dynamic
flows; these are a multi-terminal generalization of maximum dynamic flows. Our
results culminate in Chapters 7 and 8; we show that lexicographically maximum
dynamic flows can be used to solve the dynamic transshipment problem, a version
of the quickest transshipment problem in which the time horizon is specified; this
leads to our quickest transshipment algorithm. We conclude with some observa-

tions and open problems in Chapter 9.



Chapter 2

Definitions

A directed graph is a set of edges E associated with a set of nodes V; each edge in
E is an ordered pair of nodes yz in V. An (s,t)-path in a directed graph (V, E)
is an ordered set of edges P = (Yoy1, Y1Y2, Y23, - - - » Yk—_1Yx) Such that each y; is
distinct, s = yg, and t = yg. If yxyo is also an edge and k& > 1, then appending yxyo
to P creates a cycle. A forestis a graph that contains no cycle, even when each
edge may be used forward or backward. An (s,t)-cutis a partition of the node set
V into two parts, C' and V' \ C, such that C contains s but not ¢; we also say “cut”
to refer to the set of edges that have one endpoint in C' and the other in V'\ C.
A dynamic network N' = (V,E,u,,S) consists of a directed graph (V,E)
with a non-negative integral' capacity Uy, and integral transit time 7, associated
with each edge yz in F, and a special subset of nodes S called terminals. The
maximum capacity is denoted by U and the maximum transit time by 7.,. We also
refer to transit times as length and cost. A terminal is either a source or a sink;
the set of sources is denoted by ST and the set of sinks by S~. We distinguish
edges with positive capacity by including them also in set E*. For simplicity, we
make the following assumptions. £ is symmetric: if yz € F then zy € E; and

7 is antisymmetric: if yz € E then 7, = —7,,. There are no parallel edges or

1We restrict ourselves to integral capacities merely for simplicity. We could also allow rational-
or real-valued capacities.



zero-length cycles in E. E™ contains no opposite edges, and edges in ET have

non-negative transit time. Sources have no entering edges in Et, and sinks have

no leaving edges in E*. We use k to denote |S|; likewise, n = |V| and m = |E|.
Suppose s is a source and ¢ is a sink in network N. A dynamic (s,t)-flow is a

function f,.(f) on E x N that satisfies the following constraints:

Vyz e E, 0 eN:  fo(0+7.) = —fy(0) (2.1)
(4
Vye V\{s,t}, 0eN: > > f.(0) <0 (2.2)
§'=02€V

where we use the notation that fy.(6) = 0 for all @ if neither yz nor zy is in E,
and fy.(0) = 0 for all yz if # < 0. Equation (2.1) is an antisymmetry constraint,
inequality (2.2) is a relaxed conservation constraint that allows each non-terminal
node to store a non-negative amount of holdover flow as temporary inventory.
(Usually we do not need holdover flow. See the remark at the end of this chapter.)
If dynamic flow f is only defined up to some time horizon T' (or if it is zero for all
time after T') then f is a finite-horizon dynamic flow. Dynamic flow f with time

horizon T is feasible if it satisfies capacity constraints
Vyz € E, § eN: fy,(0) < uy, (2.3)

and if there is no holdover flow remaining at non-terminal nodes after time 7"

T
VeV (st Y fu(0) = 0. (2.4)

6=0z€V

In the absence of any time horizon, f is an infinite-horizon flow. An infinite-
horizon dynamic flow is feasible if it satisfies all capacity constraints. Notice that
by the antisymmetry constraint (2.1) for an edge yz in EY, the capacity constraint
fey(0 + 7yz) < uyy tequires that fy.(0) > 0.

Given any time bound € and node y, the value of f at y is the net dynamic
flow out of y for all time up to 6:

0
|fy|0 = Z nyz(al)

§'=0z2€eV



We usually consider the value of f only at terminals. Without reference to a
particular terminal, |f|s is the net dynamic flow into the sink: —|f¢|g. (This
slightly awkward definition has the advantage that it ignores flow still in transit;
the net flow out of the source |fs|g counts flow still in the network at time 6.) The

throughput of f on edge yz is the total flow into yz for all time up to 6:

0
|fyz|€ = Z fyz(el)'
6'=0

In the absence of any time bound, |f,| and |fy.| are the corresponding infinite
sums. Dynamic flows with many sources and sinks are defined analogously. For
multi-terminal networks, we denote the net flow out of a subset of terminals A C S
by [F(A)lg-

We often associate a multi-terminal network N with a supply vector in RS
denoted by v. We assume that v,, > 0 for every source s; in St and vs; < 0 for
every sink s; in S~. For any subset of terminals A C S, we denote the total supply
of A by v(A). We assume that the total supply of all terminals is zero. We say
that supply vector v is satisfied by dynamic flow f with horizon T if |fs;|7 = vs;
for every terminal s; in S.

We refer to flows and circulations in A in the traditional sense as static flows and
circulations. A static (s,t)-flow is a function f,, on E that satisfies antisymmetry
constraints f,, = — f,, for every edge yz, and conservation constraints }°, f,. =0
for every node y # s,t, where we use the notation that f,, = 0if yz ¢ E. A
static circulation is defined analogously, except it must satisfy the conservation
constraints at all nodes. Static flow or circulation f is feasible if it also satisfies
capacity constraints f,, < u,, for every edge yz. The residual network of static
flow f subject to capacity i is defined as N ¢ = (V, E, @f,7,5), where the residual

capacity function is @

by = Uyz — fy=- We also use the notation J\ff when the

capacities are clear from context. An edge with zero residual capacity is saturated.
The value of a static (s,t)-flow f is |f| = 2, fyz. Multi-source multi-sink static

flows are defined analogously.
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a) b) Time Steps

holdover edges

Figure 2.1: Dynamic Network with Transit Times & Time-Expanded Network

A dynamic flow f with time horizon 7' is equivalent to a static flow in the time-
expanded network N (T) = (V(T), E(T),uT, 7T, S(T)). Each node y in V has T+1
copies in V(T'), denoted y(0),...,y(T"). Each edge yz in E has T'— |7,,| + 1 copies
in E(T'), each with capacity uy,, denoted y(0)z(0 + 7,) for any time 6 such that
both y(#) and 2(6 + 7;) are in V(T'). In addition, £(T") contains a holdover edge
y(8)y(0+1) with infinite capacity for each node y and time 0 < § < 7. An infinite-
horizon dynamic flow is equivalent to a static flow in the infinite time-expanded

network A/ (x), defined analogously to N(T).

Example: Figure 2.1(a) depicts a dynamic network N. Each edge is labeled
with its transit time. The capacities are not indicated; we assume unit capaci-
ties. Figure 2.1(b) shows the time-expanded network A/(5) associated with this
dynamic network. Every edge again has unit capacity, except for the infinite-

capacity holdover edges.

Unfortunately, the terminology of dynamic network flows is not consistent
throughout the literature. Notably, Orlin [42,43,44] refers to our dynamic networks

as static networks, and to our time-expanded networks as dynamic networks.

Remark on Holdover Flow. We have defined dynamic flows to allow each node

to hold an arbitrary non-negative amount of flow. Conservation constraint (2.2)
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expresses this capability formally; so do the holdover edges in the time-expanded
network. In a real-world network, however, nodes may have very little capacity
to hold inventory, and so we may want to tighten constraint (2.2) to equality (or
eliminate holdover edges) at non-terminal nodes. Although this is a valid concern,
the feasibility of holdover flow does not matter for almost all of the problems
described in this thesis: our algorithms solve problems that allow holdover flow but
the solutions we find do not actually use holdover flow. There are no exceptions

to this rule until we discuss mortal edges in Chapter 8.






Chapter 3

Research Survey

3.1 Static Network Flows

Traditional static network flows have been studied extensively since Ford and Fulk-
erson’s seminal textbook [16]. The literature on this field is enormous, and most
of it is related only tangentially to the results of this thesis. An excellent reference
is Ahuja et al [2].

We are particularly interested in one topic of static network flow theory: the
minimum-cost flow problem has important applications to dynamic network flows.
This problem requires as input a network A/ and a supply vector v. A solution is a
feasible (static) flow in network A that satisfies supply v (if such a flow exists) with
the additional constraint that 3°,, 73, f,» is minimum over all such flows. Ahuja et
al survey the current state of the art for this much-studied problem in [2].

Most of the algorithms in this thesis solve minimum-cost flow problems re-
peatedly and so rely on efficient minimum-cost flow algorithms as important sub-
routines. We are not concerned here with the internals of minimum-cost flow
algorithms, however, and so we treat them all as a black box. We use MCF
to denote the time of a single minimum-cost flow computation; this time has
been bounded within O(nmlog(n?/m)log(n7,)) by Goldberg and Tarjan [21],
O(nm(loglog U)log(n7,)) by Ahuja et al [1], and O((mlogn)(m + nlogn)) by

13
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Ortlin [45]. Note that the last algorithm is strongly polynomial.

Our results depend not only on the existence of efficient minimum-cost flow
algorithms but also on some basic properties of minimum-cost flows themselves.
In the rest of this section, we review properties of minimum-cost flows that are
useful in the development of our dynamic flow algorithms; we rely mostly on well-

known results of Ford and Fulkerson [16].

Theorem 3.1.1 (Ford and Fulkerson [16]) Static flow f in network A is minimum-

cost if and only if the residual network Ay has no negative-cost positive-capacity cycles.

Consider a minimum-cost static flow f in network A/. For any nodes y, z in
the network, let d¢(y,z) be the length of a shortest (y,z)-path in the residual
network A%, or infinity if no such path exists. Note that Theorem 3.1.1 implies
that function dy is well-defined.

Lemma 3.1.2 (Ford and Fulkerson [16]) If f is a minimum-cost static flow, then

for every edge yz:

max{0,d¢(s, z) — 7y — df(s,y)}H(uyz — fyz) = 0.

Proof: Suppose df(s, z) — 7y, —df(s,y) > 0. Then flow f must saturate edge yz;
otherwise, there is an (s, z)-path through y that is shorter than d¢(s,z). m

Uniqueness. Some of our dynamic flow algorithms depend on their minimum-
cost flow subroutines to compute a unique minimum-cost flow for each feasible
combination of network N and supply vector v. In Chapter 2, we define our net-
works to have no zero-length cycles; Lemma 3.1.3 implies that any minimum-cost
flow algorithm will compute a unique solution given such a network. Lemma 3.1.4
then shows that we lose no generality by assuming networks without zero-length
cycles, because we can perturb any cost function lexicographically to guarantee

the same property.
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Lemma 3.1.3 Suppose static flow f satisfies supply v in network A'. Then f is the
unique minimum-cost flow satisfying v in A if and only if every positive-capacity cycle

in the residual network N} has positive cost.

Proof: Suppose every positive-capacity cycle in N 7 has positive cost; then Theo-
rem 3.1.1 implies that f is a minimum-cost flow. If there were another minimum-
cost flow f' # f satisfying v in NV, then f' — f must consist of zero-cost residual
cycles in Ny.

Suppose f is the unique minimum-cost flow satisfying v in A/; then Theorem
3.1.1 implies that every positive-capacity cycle in Ny has non-negative cost. In
fact, each of these cycles must have positive cost, or else we can produce another
minimum-cost flow different than f by augmenting along a zero-cost residual cycle.

Lemma 3.1.4 Let AV be a network with node set V, edge set E, and edge cost
function 7. Order the edges of E = {e1,...,en} and assign each edge e; a vector cost
Te; = (7e;,2%). For any feasible supply v, there is a unique flow f that satisfies supply
v for lexicographically minimum cost with respect to 7; flow f is also minimum-cost
with respect to 7. Furthermore, if network N has no negative-cost positive-capacity

cycles, then the zero flow is the unique minimum-cost circulation in this network.

Proof: It is clear that any flow that is lexicographically minimum-cost with
respect to 7 is also minimum-cost with respect to 7. It is equally clear that there
are no zero-length cycles in A/ with respect to 7. Combined with the assumption
that there are no negative-cost positive-capacity cycles in A, the uniqueness of f

follows from Lemma 3.1.3. &

Monotonicity. Ford and Fulkerson [16] originally solved the minimum-cost (s, t)-
flow problem with the shortest augmenting path algorithm. Starting with the zero

flow, this algorithm repeatedly finds a shortest (s,¢)-path in the current residual
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network and then augments the flow along that path. Ford and Fulkerson showed
that after each augmentation, the current flow is minimum-cost and the shortest
residual path lengths from s and to ¢ do not decrease. The correctness of our
dynamic flow algorithms depends crucially on the slightly more general Lemma

3.1.6.

Lemma 3.1.5 (Ford and Fulkerson [16]) Suppose f is a minimum-cost static flow
and nodes s,t are two terminals in network A/. Let static flow g augment f along a
shortest (s,t)-path in residual network Ay. Then (1) f + g is a minimum-cost static

flow in network V', and (2) for any node y in the network, d¢(s,y) < d(s44)(s,y) and
dr(y,t) < d(f1g)(%,1).

Lemma 3.1.6 Suppose f is a minimum-cost static flow and nodes s,¢ are two ter-
minals in network A. Let g be a minimum-cost static (s,t)-flow in residual network

Nj. Then (1) f+ g is a minimum-cost static flow in network \/, and (2) for any node
y in the network, df(s,y) < d(s44)(s,9) and df(y,t) < d(544)(y,1).

Proof: Suppose, for a contradiction, that g is a minimum-cost static (s,t)-flow
in N} such that either (1) or (2) is false, and that |g| is minimum over all such
flows. (Note that Lemma 3.1.5 implies that |g| > 1.) Let ¢’ be the minimum-
cost (|g| — 1)-value flow in Ny; the lemma holds for ¢’. Let unit-value static flow
g" augment f + ¢’ along the shortest (s,?)-path in residual network N;,y). By
Lemma 3.1.5, both conditions (1) and (2) hold for static flow ¢’ + ¢”; but since
g + ¢" = g, this contradicts our assumption that condition (1) or (2) is violated.

3.2 Dynamic Network Flows

Aronson [4] and Powell et al [47] survey the field of dynamic network flows compre-
hensively. Many results in this area relate only tangentially to this thesis. Below,

we survey the results most closely related to our work.
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Maximum Dynamic Flows. In the mazimum dynamic flow problem, we are
given a time horizon T and a dynamic network A with a single source s and a sin-
gle sink ¢; we seek to maximize the value of a feasible dynamic (s, t)-flow with time
horizon T'. Ford and Fulkerson [16] focused their efforts in dynamic flows on formu-
lating and solving this problem. They discovered a surprisingly simple polynomial
algorithm using temporally repeated flows, a well-structured subclass of dynamic
flows. We refer to temporally repeated flows as standard chain-decomposable flows,
a simple type of chain-decomposable flows. We define all these terms and discuss

the maximum dynamic flow problem more fully in Chapter 4.

Universally Maximum Dynamic Flows. Shortly after Ford and Fulkerson
solved the maximum dynamic flow problem, Gale [18] considered a more compli-
cated variant. In the earliest arrival flow problem, we seek a single feasible dynamic
(s,t)-low with specified time horizon 7' that maximizes the total amount of flow
reaching the sink by every time step up to and including 7. Note that it is not at all
clear that such a flow can generally exist. In fact, Gale proved only that such flows
do always exist; he conjectured but did not prove an algorithm to compute such
flows. Following Gale, Wilkinson [54] and Minieka [40] independently confirmed
his conjecture. Minieka also considered the latest departure flow problem, in which
we seek a feasible dynamic (s,t)-flow with time horizon T' that maximizes the total
amount of flow departing from the source after every time step (subject to the
constraint that the flow is finished by time 7). Minieka showed that a single flow
can have both an earliest arrival and a latest departure schedule, and he proved
that the very algorithm conjectured by Gale and confirmed by himself and Wilkin-
son actually solves both the earliest arrival and latest departure flow problems
simultaneously. We call such a flow a universally maximum dynamic flow. Our
terminology conflicts with the traditional nomenclature, in which earliest arrival
flows are equivalent to universally maximum dynamic flows, and jointly source-

and sink- optimal flows are called earliest arrival latest departure flows. We review



18

and extend Wilkinson’s and Minieka’s results in Chapter 5.

Lexicographically Maximum Dynamic Flows. The lexicographically mazi-
mum dynamic flow problem is a multi-terminal extension of the maximum dynamic
flow problem. We are given a time horizon 7' and a dynamic network A with an
ordered set of terminals S = {sq,...,sg—1}; we seek a feasible dynamic flow that
lexicographically maximizes the amount of flow leaving each terminal in the given
order. Note that the terminal set includes both sources and sinks. Maximizing the
amount of flow leaving a terminal is equivalent to minimizing the amount of flow
entering a terminal.

All previous research on this problem has focused on static network flows.
Minieka [40] studied lex max static flows with the goal of solving the universally
maximum dynamic flow problem, which can be viewed as a special lex max flow
problem in a time-expanded network. Minieka discussed only the special case in
which all sources are ranked higher than all sinks. Megiddo [37] studied lex max
static flows in single-source multi-sink networks, but his problem was somewhat
different than ours. Not only did he assume the source to be ranked first, but he
also assumed no pre-specified ordering of the sinks. He sought a maximum flow
out of the source that would maximize the minimum amount of flow entering any
sink, any pair of sinks, etc. Intuitively, a solution to this problem is a maximally
balanced flow. Gallo et al [19] described a parameterized maximum flow algorithm
for which both Minieka’s and Megiddo’s problems are special cases; the algorithm
of Gallo et al solves these problems and a host of others in the time required for one
preflow-push max-flow computation of Goldberg and Tarjan [20]. All algorithms
for lex max static flows apply to lex max dynamic flows via the exponentially large
time-expanded network. In Chapter 6, we describe the first polynomial algorithm

for the lex max dynamic flow problem.
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Quickest Flows. Another variant of the maximum dynamic flow problem is to
minimize the time horizon given a flow value, rather than maximizing the flow
value given a time horizon. In the quickest flow problem, we are given a flow
amount v and we seek the minimum time 7" so that there is a feasible dynamic
(s,t)-flow with time horizon 7" and value v. Burkard et al [7] introduced this
problem. Once the minimum time 7" is known, the problem is almost identical to
the maximum dynamic flow problem (complicated by the fact that a maximum
dynamic flow in time 7" may have value greater than v). The minimum time 7" can
easily be determined by binary search, yielding a simple polynomial algorithm for
the quickest flow problem. Burkard et al also described more complicated search
algorithms with better worst-case bounds than binary search, as well as strongly
polynomial algorithms. In contrast, Kagaris et al [32] devised a continuous-time
version of the problem that is NP-complete.

In the quickest path problem, we seek a quickest flow that uses only one path.
The quickest path problem can be solved in polynomial time, as discovered by
Chen and Chin [9], Rosen et al [51], and Hung and Chen [29]. These results were
recently improved by Kagaris et al [32]. Burkard et al [6] also described how to
compute the quickest flow using A disjoint paths, for fixed h.

The evacuation problem is a multi-source single-sink version of the quickest
flow problem. Given a dynamic network A and supply vector v, the problem is to
find a feasible dynamic flow that satisfies supply v in the minimum overall time,
if such a flow exists. Berlin [5] and Chalmet et al [8] studied this problem as a
means of modeling emergency evacuation from buildings. Jarvis and Ratliff [31]
proved that three different optimality criteria can be achieved simultaneously: (1)
an earliest arrival schedule that maximizes the total flow into the sink by every
time step, (2) overall minimization of the time required to evacuate the network,
and (3) minimization of the average time for all flow to reach the sink. Hamacher

and Tufecki [26] showed how to prevent unnecessary movement within a building
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while optimizing evacuation time. They also described how to evacuate a building
divided into prioritized zones; a solution must evacuate the highest priority zone as
quickly as possible, then the next highest zone as quickly as possible, etc. Choi et al
[10] studied evacuation given flow-dependent exit capacities; see also [11]. Most of
the results above rely on time-expanded networks and so involve pseudopolynomial
algorithms; some more efficient techniques are considered but these results fall short
of general optimality.

Hajek and Ogier [23] considered a continuous-time version of the evacuation
problem in the special case when all transit times are zero. They obtained a
polynomial algorithm by reducing this problem to £ maximum flow computations.
Their solution is a sequence of stationary dynamic flows, in which the flow on each
edge is the same from one moment of time to the next.

In this thesis, we consider a multi-source and multi-sink version of the quickest
flow problem: the quickest transshipment problem. We are given a dynamic net-
work N and supply vector v. We seek a feasible dynamic flow with the minimum
possible time horizon that satisfies supply v, if such a flow exists. The quickest
transshipment problem is closely related to the dynamic transshipment problem,
in which the time horizon T is specified and the goal is to move the appropriate
amount of flow through the network within that time, if possible. We describe the
first polynomial algorithms for the dynamic transshipment problem in Chapter 7

and for the quickest transshipment problem in Chapter 8.

Dynamic Dynamic Network Flows. Although flows in dynamic networks do
change with time, we generally assume that dynamic networks themselves do not
change with time: edge capacities and transit times are constant. There are some
results for networks with time-varying edge characteristics, however. Minieka [41]
studied the maximum dynamic flow problem where each edge may be specified
with a time when it is added to the network or a time when it is deleted from

the network; his model prohibits holdover flow. Halpern [24] further generalized
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the maximum dynamic flow problem to allow time-varying edge capacities and
prohibition of holdover flow on specified nodes during specified time intervals.
Although neither Minieka nor Halpern used time-expanded networks, they proved
nothing stronger than the correctness and finiteness of their algorithms. In both
cases, the advantage over a simple time-expanded approach depends on having only
a small list of network changes to manage. In Chapter 8, we give a polynomial
algorithm for the dynamic transshipment problem in a network built entirely of
mortal edges, each of which can admit flow only during its own specified time

interval; our solution uses holdover flow.

Network Scheduling. In the unit-size-job network scheduling problem, we are
given a set of computers on a network; each machine has some queue of unit-size
jobs waiting to execute; a job can either run locally or go into the network for
remote execution. Each link of the network is characterized by a capacity and
transit time. The objective is to schedule job execution so that the last job finishes
as soon as possible. Deng et al [13] described a polynomial algorithm for the special
case of this problem when the links have unit transit times and no capacities. Their
algorithm uses a time-expanded network, but they obtained a polynomial bound on
the time horizon by reducing problems with (exponentially) many jobs to problems
with a small (polynomial) number of jobs. Fizzano and Stein [15] considered the
very special case of this problem given ring networks with unit transit times and
unit capacities; they obtained a particularly efficient polynomial algorithm. In
Chapter 8, we reduce the general unit-size-job network scheduling problem to the
quickest transshipment problem and so obtain the first polynomial algorithm for
the general problem.

Even the general unit-size-job network scheduling problem is a special case
in the field of network scheduling. There are many more complicated problems
in this area; they are all closely related to well-studied problems in parallel ma-

chine scheduling. The difference between network scheduling and parallel machine
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scheduling is that parallel machine scheduling assumes instantaneous communi-
cation between different machines, while network scheduling allows links between
machines to be restricted by transit times and/or capacities. Thus, every network
scheduling problem is a generalization of some parallel machine scheduling problem
(of which there are many, see Lawler et al [36]).

Scheduling becomes much more challenging when the jobs are not all unit size.
Phillips et al [46] studied the problem of scheduling jobs on a network of iden-
tical machines connected by uncapacitated links with arbitrary transit times; an
optimal schedule completes the last job as soon as possible. They gave a polyno-
mial algorithm to compute a schedule that is no more than twice as long as an
optimal schedule, and they proved that this ratio cannot be improved to less than
4/3 unless P=NP. Other network scheduling problems, hardness results, approxi-
mation algorithms, and computational results are discussed in the Ph.D. thesis of

Veltman [53].

Infinite-Horizon Dynamic Flows. All of the dynamic network flow problems
we have surveyed so far have finite time horizons. Finite-horizon optimization
problems are harder in some sense than infinite-horizon optimization problems.
As long as an infinite-horizon dynamic flow is asymptotically optimal, any finite
interval of time steps can be suboptimal and the overall flow is still optimal. An
optimal finite-horizon dynamic flow, however, cannot be sub-optimal for a single
time step. In many finite-horizon dynamic flow problems, the most complicated
time steps to schedule are the first few and the last few; the intervening time can
often be described by a stationary dynamic flow. In the case of an infinite-horizon
dynamic flow problem, the solution has no end and the beginning is inconsequential;
thus, stationary flows can often solve infinite-horizon problems. Because stationary
flows are so well-structured, they can often be computed by efficient static network
flow algorithms.

Orlin formulated and solved two infinite-horizon dynamic flow problems. In
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[42] he discussed the mazimum-throughput dynamic flow problem. In this paper,
the throughput of a flow at time 6 is the total amount of flow in transit at time 6
— flow that has started in some edge by time # but has not reached the end of
the edge yet. Orlin showed that there is always a dynamic flow with maximum
throughput that is stationary, and that such a stationary flow can be computed via
one minimum-cost (static) network flow problem. He also showed how his result
is a generalization of Ford and Fulkerson’s maximum dynamic flow algorithm.

In a further generalization, Orlin [43] considered the minimum convez cost
dynamic network flow problem. In this problem, each edge has a convex cost
function ¢ in addition to a capacity u and transit time 7. The goal is to find
a feasible infinite-horizon dynamic flow f with minimum average cost per time
step and zero throughput (using throughput in the same sense as [42]). Here
again, Orlin proved that the problem can be solved by a stationary flow, albeit a
fractional one; he also showed how to round the fractional stationary solution into

a periodic integral one.

Minimum-Cost Dynamic Flows. In the finite-horizon case, adding an edge
cost function to a dynamic network quickly leads to NP-hard problems. Klinz and
Woeginger [34] proved hardness results for some minimum-cost dynamic flow prob-
lems and discussed a greedy algorithm that works in some special cases. Hamacher
[25] discussed efficient algorithms for minimum-cost dynamic flow problems in a

flawed paper that nevertheless motivated some of the important ideas of Chapter 4.

Continuous-Time Flows. Continuous time is a natural extension of our dy-
namic network flow model, and has been considered by a number of researchers.
Except for Kagaris et al [32], however, all continuous-time models we know of as-
sume that all transit times are zero; the result is like a static network flow that
evolves continuously over time. Hajek and Ogier [23] studied the evacuation prob-

lem in this setting; they obtained a polynomial algorithm that reduces the problem
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to k maximum (static) flow problems. More generally, Anderson and Philpott [3]
considered a minimum-cost dynamic network flow problem and obtained a contin-
uous zero-transit-time dynamic network version of the traditional network simplex
algorithm. Even more generally, Pullan [48] studied continuous linear programs,
in which finite collections of variables and constraints are replaced by relations
between bounded, measurable, and/or continuous functions; these are also called
infinite linear programs. Pullan described a class of continuous linear programs
for which a strong duality result holds and also described approximation and im-
provement step algorithms for these problems. Our survey has only touched upon
continuous linear programming; we do not attempt an exhaustive survey ourselves

because of the tangential nature of this topic to our thesis.

Periodic Networks. Time-expanded networks are a one-dimensional subclass
of periodic networks. A k-dimensional periodic network is the natural expansion of
a dynamic network with k-dimensional vector transit times. The general study of
periodic networks is not particularly relevant to dynamic network flows; however,
these two areas do share a common concern for finding algorithms that are efficient
with respect to a small implicit representation of a large but repetitive network.
Orlin [44] studied connectivity and colorability properties of infinite time-expanded
networks A/ (%), giving polynomial algorithms to test these properties using the un-
derlying dynamic network A/. Iwano and Steiglitz [30], Kosaraju and Sullivan [35],
and Cohen and Megiddo [12] all studied algorithms to detect cycles in periodic

networks.



Chapter 4

Chain-Decomposable Flows

The dynamic network flow problems in this thesis are equivalent to easy static
flow problems in time-expanded networks. However, because the size of a time-
expanded network A/ (7T") depends exponentially on log 7', a time-expanded network
takes exponentially more space than its underlying dynamic network and time
horizon (N,T) when T is large. Thus, time-expanded networks do not generally
lead to efficient algorithms for dynamic network flow problems.

Ford and Fulkerson [16] introduced temporally repeated flows to represent some
repetitive dynamic flows efficiently. Here we introduce chain-decomposable flows to
allow efficient representation of a considerably larger class of dynamic flows. We
refer to temporally repeated flows as standard chain-decomposable flows; they are
a simple subclass of chain-decomposable flows. All the algorithms of this thesis

compute chain-decomposable flows.

4.1 Standard Chain-Decomposable Flows

A chain flow vy = (v, P) is a static flow of positive value v along path (or cycle) P
in a network N' = (V, E,u,7,S). We denote the length of the chain flow by 7(7);
it is equal to the total length of path P. If P includes node y, then 7,(7) is the
length of P from its first node to node y. If path P includes edge yz, then we say
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that v uses yz. Given time horizon 7' no less than 7(7), any chain flow 7 induces
a dynamic flow by sending v units of flow along path P every time step from time
zero till time 7" — 7(7). The last v units of flow finally reach the end of P at time
T.

A chain flow is proper if it starts and ends in the terminal set S. Let ' =
{71,-..,7} be a set of proper chain flows. We say that I' is a chain decomposition
of static flow f if Ele v; = f, and that I' is a standard chain decomposition of f
if all chain flows in I' use edges in the same direction as f does. If I" is a standard
chain decomposition of f, every chain flow in T' is no longer than time horizon 7',
and f is feasible, then T" induces a feasible dynamic flow, obtained by summing
the dynamic flows induced by each chain flow in I'. A dynamic flow computed
in this manner is called a standard chain-decomposable flow, and we denote it by
[T]T. In the absence of any time horizon, I' induces an infinite-horizon standard
chain-decomposable flow [I'] by repeating each chain flow endlessly.

We denote by I'y, the subset of chain flows in I' that use directed edge yz. We
say that chain flow v in I' touches edge yz if v € I'y, UI';y, and that the y-induced

]T

T . .
flow [{7}]" covers yz at time 0 if [{7} yz(0) # 0. In the infinite-horizon case, note

that if [{7}] covers yz at time 6, then [{7}] also covers yz at all times after 6.

Example: Consider the network of Figure 2.1(a) with time horizon T = 5.
Figure 4.1(a) shows a maximum static flow in this network, decomposed into two
chain flows. Figures 4.1(b,c) show the dynamic flow induced by these chain flows

— first in a time-expanded network and then in a sequence of time-step snapshots.

4.2 Maximum Dynamic Flows

Standard chain-decomposable flows are a very simple class of dynamic flows. In-
teresting dynamic flow problems cannot necessarily be solved by standard chain-

decomposable flows. Ford and Fulkerson [16] showed, however, that standard
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Figure 4.1: Standard Chain-Decomposable Flow

chain-decomposable flows do suffice to solve the maximum dynamic flow problem.
We review their results in this section.

Consider a standard chain decomposition I' of static flow f. Ford and Fulkerson
observed that the value of [[]7 depends only on f and is independent of the choice

of standard chain decomposition I'.

Lemma 4.2.1 (Ford and Fulkerson [16]) Suppose I' is a standard chain decomposi-
tion of flow f, and that every chain flow in " is no longer than 7. Then
L =@+ DIl = 3 7yefye
yz€ET
Proof: Each chain flow v in ' contributes || units of flow from time 0 till time
T — 7(7); therefore, the total dynamic flow value is

S (T+1—=71(7) ]l

el

which easily reduces to the desired formula. m
Lemma 4.2.1 suggests an algorithm to find a standard chain-decomposable flow

of maximum value. Given a dynamic network N with source s, sink ¢, and time
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horizon 7', add an artificial return edge ts to the network with infinite capacity
and length —(7'+1). Let f be a minimum-cost (static) circulation in this network.
Notice that f maximizes the formula of Lemma 4.2.1, so that any standard chain
decomposition of f induces a maximum standard chain-decomposable flow.

We generalize the above construction to multi-terminal networks as follows:
Let A be a dynamic network with source set S, sink set S~, and time horizon
T. Add a superterminal ¢ to the network, connected to each source s; by an
infinite-capacity zero-transit-time edge v¥s; and connected to each sink s; by an
infinite-capacity edge s;9 with transit time —(7'+1). We call the result an extended
network, and we denote it by N7. When discussing an extended network N7, we
implicitly include the artificial edges in edge set E (or E7T); if we wish to exclude
artificial edges, we use the notation E \ ¢ (or E1 \ ¢).

We have just proved the following corollary to Lemma 4.2.1:

Corollary 4.2.2 (Ford and Fulkerson [16]) Finding a maximum standard chain-
decomposable flow in dynamic network N with time horizon T' reduces to finding a

minimum-cost (static) circulation in extended network AT,

The following theorem shows that standard chain-decomposable flows are suf-
ficient to solve the general maximum dynamic flow problem. This result crowns

Ford and Fulkerson’s work on dynamic flows:

Theorem 4.2.3 (Ford and Fulkerson [16]) For any dynamic network and time hori-

zon, a maximum standard chain-decomposable flow is also a maximum dynamic flow.

Proof: Given network A and time horizon T, let f be a minimum-cost circulation
in extended network N7, and T' be a standard chain decomposition of f. We
assume that f is non-zero, since otherwise it is clear that the maximum dynamic
flow is zero and the theorem is an easy consequence of Theorem 3.1.1. Consider
the cut C' = {y(0) : 0 > ds(s,y)} in infinite time-expanded network N(x). It is

easy to see that C separates source s(0) from sink ¢(7") and that [[']7 is a feasible



29

dynamic flow with time horizon T; we show that [[']7 saturates cut C' by deriving
the capacity of C' and comparing it to Lemma 4.2.1. This proves the theorem.

Suppose edge y(0)z(0") crosses C; then y(f) € C and 2(0') ¢ C. (The other
direction is considered as opposite edge z(6')y(#).) The definition of C implies
that y(6)z(0') is either a non-holdover edge with capacity u,, or a reverse holdover
edge with zero capacity. If y(6)z(¢') is not a holdover edge, then §' = § + 7, and
y(60)2(0") crosses C for every 6 : ds(s,y) < 0 < dg(s,z) — 7y,. Thus, the total
capacity of cut C'is

> max{0,ds(s, z) — 7y — df(s,y) buys.

yzeET

By applying Lemma 3.1.2 to edges yz and zy, the above formula reduces to

Z (df(s,2) — d(s,y)) fyz — Z Tyzfyz-

yz€ET yz€EET
Finally, note that d¢(s,s) = 0 and d¢(s,t) = T + 1. (The second equality depends
on our assumption that f is non-zero.) These facts plus flow conservation imply
that the capacity of cut C is (7' + 1)|f| — X, .em+ Tyzfyz, so that Lemma 4.2.1

completes the theorem. W

4.3 Chain-Decomposable Flows

Ford and Fulkerson used standard chain-decomposable flows to reduce the max-
imum dynamic flow problem in network A to a simple static flow problem in
extended network N7. One would hope for similar results in other dynamic flow
problems; unfortunately, standard chain-decomposable flows are not enough. Just
about every problem except maximum dynamic flow fails to yield to Ford and Fulk-
erson’s efficient technique. Most research in this area resorts to time-expanded
networks. Notable exceptions to this rule are the infinite-horizon dynamic flow

problems of Orlin [42,43] and zero-transit-time evacuation problem of Hajek and
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Ogier [23] (which use stationary flows), and the quickest flow problem of Burkard
et al [7] (which uses standard chain-decomposable flows).

Here we introduce chain-decomposable flows. Chain-decomposable flows ex-
tend the foundations of standard chain-decomposable flows only slightly; but the
resulting extension supports considerably more range to solve interesting dynamic
flow problems that previously were handled only with time-expanded networks.
Our extension relies on a generalized notion of chain decomposition. Recall that
every chain flow in a standard chain decomposition of flow f must use edges in
the same direction as f does. The chain flows in a non-standard chain decom-
position may use oppositely directed flows on edges. Chain-decomposable flows
are induced by non-standard chain decompositions in exactly the same manner as
standard chain-decomposable flows are induced by standard chain decompositions,

but our generalization does introduce some complications.

Time Travel. A chain flow in a non-standard chain decomposition may use a
residual edge with negative transit time. Luckily, network flow is simpler than
most things one can imagine going back in time, and this simplicity allows some
intuition to explain how the time travel works. Consider an edge yz with positive
transit time 7,,; symmetry implies that there is also an edge zy with negative
transit time —7,,. A unit of flow sent from y at time 0 reaches z at time 6 + 7,;
on the other hand, one negative unit of flow sent from z at time 0 + 7, reaches y
at time 6. These are two different ways of describing exactly the same event. In
both cases y loses one unit of flow at time 6 and z gains a unit of flow at time
¢ + 7y., and the residual capacity of edge yz behaves the same way from either
perspective. Now suppose one unit of flow leaves z at time 6; it travels back in
time and reaches y at time # — 7,. This backward time travel is equivalent to
sending one negative unit of flow from y at time 6 — 7,; it reaches z at time 6.
Figures 4.2(b1-b3) show the equivalence of positive flow moving backward in time

and negative flow moving forward in time.
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Figure 4.3: Non-Standard Chain-Decomposable Flow

Example: Consider the network of Figure 2.1(a) with time horizon T' = 5. Fig-
ure 4.3(a) shows a non-standard chain decomposition of a maximum static flow
in this network. The dynamic flows induced separately by each of these chain
flows are depicted in Figures 4.2(al-b3). Added together, this non-standard chain

decomposition induces the dynamic flow of Figures 4.3(b,c).

Feasibility. Feasibility of chain-decomposable flows depends crucially on the tim-
ing of when each chain flow brings dynamic flow to each edge. Consider the previous
example depicted in Figure 4.3; let ; denote the solid-edged chain flow and ~y» the
dashed chain flow. Chain flow 79 uses opposite edge zy to cancel the flow on edge
yz induced by ~y;. If the transit times of the network were different so that s
reached y before v;, however, then the flow induced by 9 would start cancelling
on yz before y; provided any flow there to cancel. The resulting dynamic flow
would be infeasible, even though 1 + 79 is feasible. Thus, in contrast to the trivial
feasibility proofs of standard chain-decomposable flows, we have to argue carefully

to show that our chain-decomposable flows do not violate capacity constraints.
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Finite vs Infinite Horizons. When we introduced standard chain-decompos-
able flows, we distinguished between finite-horizon flows of the form [I']7 and
infinite-horizon flows of the form [I']. In the context of general chain-decomposable
flows, however, this distinction is not as clear as it first appears.

Suppose T is a chain decomposition of flow f in extended network AN'T. Let v*
be the longest chain flow in I'. Notice that for any time 6 after 7(v*), static flow
f exactly characterizes dynamic flow [I'], that is [I'],,(f) = fy.. Suppose also that
f is the zero flow. If T" is a standard chain decomposition of f, then the dynamic
flow [I'] is trivially zero. If we allow non-standard chain decompositions, however,
then [I'] may be non-zero. Even though [I'] is non-zero, however, the fact that f is
zero means that [['] will be zero by time 7(v*) and will remain zero forever after.
In other words, [I'] may be a finite-horizon dynamic flow.

We use non-standard chain decompositions of the zero flow in the extended net-
work AT to induce dynamic flows. Each chain flow starts and ends at the superter-
minal . This is our most general framework for chain-decomposable flows; every
problem solved by standard chain-decomposable flows and finite-horizon chain-

decomposable flows [I']T can also be solved using this method.

Example: Suppose network A consists of a single edge st of unit length and
unit capacity. Consider the extended network N7 with T'= 1. Figure 4.4 depicts
this network with two different chain flows. Chain flow 7; pushes one unit of flow
along cycle (¢s, st,ty); chain flow 42 pushes one unit of flow along the opposite
cycle (¢t,ts,sy). Taken together, {7y1,72} is a chain decomposition of the zero
flow, and [{71,72}] is a finite-horizon dynamic flow with time horizon 7. Notice
that [{71,72}] is equivalent to the standard chain-decomposable flow [{y}]T, where

7 is a unit-value chain flow on path (st).

We conclude this chapter by deriving the edge throughput of dynamic flow [I'].
We then apply this result in Corollary 4.3.2 to obtain the value of such a flow into
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and out of each terminal in the network; we show an equivalence between dynamic

flow value and static flow cost.

Lemma 4.3.1 Suppose I' is a chain decomposition of the zero flow in extended net-
work NI, For any edge vz, the total throughput of [T'] on edge yz is
Tyl = > M= X m(hl.
7€l 2y Y€ly:
Proof: Consider time 6, late enough so that every chain flow in I' that touches
edge yz covers yz by time . The throughput up to time # on edge yz is equal to
the amount of flow from I'y, that reaches y by time 6 minus the amount of flow

from T, that reaches y by time 0:

Fly.l = > @=n(hl= 2 (@ —7()h

’)/Eryz "/Erzy
=9(Z|7|—Z|7|)—E Vhl+ 2 m(hl-
’}’eryz ’)’er‘zy ’Yeryz ’Yerzy

Because I' is a chain decomposition of the zero flow, the 6 term cancels itself out

and the lemma follows. H

Corollary 4.3.2 Suppose I' is a chain decomposition of the zero flow in extended

network AT, For any source s in ST, the total value of [I'] out of s is

[Flysl = X2 m(V)yl = (Tyz > 7yz
yz€Et

’YEFS,’[, ’)’EF‘”L,

For any sink ¢ in S, the total value of [I'] into ¢ is

Clpl = X T+ = > (t(n)+T+ 1)

’}’GI‘¢t 7GFt¢

= - Z (Tyz Z ’sz)-

yzeE+t Y€lty

In the case of a single-source single-sink network, Corollary 4.3.2 is equivalent

to Lemma 4.2.1. Notice that Corollary 4.3.2 includes the artificial edges of the

extended network in ET, but Lemma 4.2.1 does not and so adds that cost explicitly.






Chapter 5

Universally Maximum Dynamic

Flows

We defined universally maximum dynamic flows in Chapter 3. Wilkinson [54] and
Minieka [40] described virtually identical algorithms to compute universally max-
imum dynamic flows. Both algorithms are pseudopolynomial; neither uses any
form of chain-decomposable flows. Wilkinson did consider chain-decomposable
flows, but only to prove that standard chain-decomposable flows are insufficient to
solve the universally maximum dynamic flow problem. In the next section, how-
ever, we solve the problem with (general) chain-decomposable flows; our algorithm
is little more than a restatement of Wilkinson and Minieka’s results in terms of
chain-decomposable flows.

The perspective of our algorithm leads us to some new results in this area. In
the next section, we describe the first polynomial algorithm to compute a time-
step snapshot of a universally maximum dynamic flow. Rather than computing a
complete dynamic flow f, this algorithm computes the dynamic flow value on a
particular edge yz at a particular time step 6 (i.e., fy,(#)). In the final section
of this chapter, we consider approximating a universally maximum dynamic flow.

We describe a simple yet novel scaling algorithm that approximates a universally

37
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L0
f < zero flow
while df(s,t) <T {
P «— shortest (s,t)-path in N
v < minimum residual capacity of P
augment f by v along P
' —T'+ {(v, P)}
}

return T'

Figure 5.1: Universally Maximum Dynamic Flow Algorithm

maximum dynamic flow within a factor of (1 + €), for any € > 0. The algorithm

runs in polynomial time with respect to e~! and the input network.

5.1 Exact Algorithms

Wilkinson [54] and Minieka [40] solved the universally maximum dynamic flow
problem with an approach based on Ford and Fulkerson’s shortest augmenting
path algorithm [16]. We present essentially the same algorithm, but we express
the solution as a chain-decomposable flow. The algorithm is shown in Figure 5.1.
Consider a dynamic network N with time horizon 7. Suppose that a static
minimum-cost maximum flow f* in A/ is computed via shortest augmenting paths.
Let 71,72,...,7 be the sequence of augmentations, I'* = {vy1,...,7%}, and f¢ =
j‘:l v;. Then I'* is a chain decomposition of f*. Lemma 3.1.5 implies that 7(7;) <
7(7i+1), and so there is some &k : 0 < k < [ such that I'* is the set of all chain flows
7; no longer than 7. The algorithm of Figure 5.1 computes I'*. The following

three theorems show that [I'*]7 is a universally maximum dynamic flow.
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Theorem 5.1.1 (Wilkinson [54] and Minieka [40]) [T*]7 is a feasible dynamic flow.

Proof: The flow conservation constraints are trivial, and so we consider only
capacity constraints. [['9]7 is zero and trivially obeys all capacity constraints.
Suppose 0 < i < k and [I"71]7 is feasible; we show that [I']T is feasible. Note

that [T9]7 = [T + [{v;}]. Consider the capacity constraint of edge yz at time

AT
0. 1t [{%}]yz(é)) = 0, then the induction hypothesis implies that this constraint

is not violated. Otherwise [{7;}]¥
Yz

T - dgi1(y,t). Lemma 3.1.5 implies that the distances dti-1(s,y) and dsi-1(y,1)

(0) # 0, which means that dsi-1(s,y) < 0 <

increase monotonically with ¢, so that any for any j < i, if ; touches yz then +;

- - i—11T ,
covers yz at time #. This means [T ]yz(a) = fi-1. Since [{3:}]7 is a feasibM

dynFivd ddlbowing ddidonghm étwplis Myat: an henckigsiciyrioah dtominiith meytviotatieadde-
parture and arrival schedules is also a latest departure flow, and hence a universally

maximum dynamic flow.

Theorem 5.1.2 (Minieka [40]) Consider dynamic network A" with time horizon 7.
If an earliest arrival flow in A sends vy units of flow into the sink at each time step 6,
then a latest departure flow in A/ sends vy units of flow out of the source at each time

step T'— 0.

Proof: For any time 6, an earliest arrival flow maximizes the total amount of
dynamic flow reaching the sink by time #. Similarly, a latest departure flow max-
imizes the total amount of dynamic flow leaving the source from time 7" — 6 till
time 7. These are both maximum dynamic flows in 6 time steps, and hence have
the same value. Since these cumulative values are equal for any time bound 6, the
amounts arriving at the sink at any individual time step € and departing from the

source at any time step 7" — 6 must also be identical. B

Theorem 5.1.3 (Wilkinson [54] and Minieka [40]) [T'*]7 is a universally maximum

dynamic flow.
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Proof: We first prove that [['*]7 is an earliest arrival flow. For any time < T,
let T% = {y; € T¥ : 7(v;) < 0}. Lemma 3.1.5 implies that the sum of chain
flows in I"g is a minimum-cost flow; in fact, it can be converted to a minimum-cost
circulation by adding a return edge ¢s to the network with length —(6 + 1). Thus,
by Corollary 4.2.2 and Theorem 4.2.3, I"g induces a maximum dynamic flow with
time horizon . Note also that I'* — I'¥ has no effect on the flow value until after
time 6.

Finally, we prove that [I'*]T is a latest departure flow and hence a universally
maximum dynamic flow. Consider the dynamic flow induced by any single chain
flow 7; in T*. The arrival and departure of flow obey a simple symmetry: for every
|7;| units of flow arriving at the sink at time 6, there are |y;| units of flow departing
from the source at time 7' — #. Summing over all chain flows in I'*, we observe
that the departure schedule of [T'*]T is symmetric to the arrival schedule, and so

Theorem 5.1.2 implies that [[*]7 is a latest departure flow. W

Snapshot Algorithm. Zadeh [55] constructed pathologically bad networks for
the shortest augmenting path algorithm, proving that our universally maximum
dynamic flow algorithm can generate an exponential number of chain flows. Thus,
regardless of whether we compute universally maximum dynamic flows in the con-
text of time-expanded networks or chain-decomposable flows, we do not yet have
a polynomial algorithm. However, by considering chain flows rather than time-
expanded networks, we can derive a polynomial algorithm to compute the univer-
sally maximum dynamic flow value on a specified edge yz at a specified time 6.
We present such an algorithm in Figure 5.2.

Our snapshot algorithm relies on the insight that, given edge yz and time 6, we
no longer need to know every chain flow in I'* that induces a universally maximum
dynamic flow; instead, we need only know the sum of all chain flows in I'* that
cover edge yz at time #. This sum of chain flows is a minimum-cost static flow

that we can compute efficiently, as shown in the following theorem:



41

f < zero flow
if df(s,y) >0 or d¢(y,t) > T — 6 then return 0 else {
L—0
f < minimum-cost maximum flow
if df(s,y) <0 and d¢(y,t) <T — 0 then return fy, else {
H—|f
while (H — L > 1) {
f < minimum-cost [(H + L)/2]-value flow
if d¢(s,y) > 0 or d¢(y,t) > T — 0 then H « |f]| else L — |f|
}
f < minimum-cost H-value flow

return fy,

Figure 5.2: Snapshot of Universally Maximum Flow on Edge yz at Time 0
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Theorem 5.1.4 Let f* be the universally maximum dynamic flow for network A/
with time horizon T'. For any edge yz and time step ¢, we can compute f;.(0) in

O(log(nU) MCF ) time.

Proof: From Theorem 5.1.3 and Lemma 3.1.4, we can consider a unique univer-

sally maximum dynamic flow f* = [['¥]T. Let
Fk(y,g) = {7yi+1 € I dfi(S,y) < 6 and dfi(y,t) <T -0}

Then the desired flow value fy,(6) is equal to 3, crk(y g) Tyz- Lemma 3.1.5 implies
that the distances dyi(s,y) and dyi(y,t) increase monotonically with ¢, so that
T'*(y, ) is a chain decomposition of a minimum-cost flow. Note that fy2(0) depends
only on this minimum-cost flow and not on the chain decomposition.

The algorithm of Figure 5.2 computes a minimum-cost flow f equal to the sum
of chain flows in I'*(y,#). Lower bound L maintains the property that I'*(y,0)
contains the shortest augmentation that can be added to an L-value minimum-
cost flow; by Lemma 3.1.5, this also means that T'*(y,0) contains every chain
flow used when computing an L-value minimum-cost flow by shortest augmenting
paths. Upper bound H maintains the property that no augmentation to an H-value
minimum-cost flow can be in T'*(y, §). The algorithm terminates when H = L + 1
(or degenerately when H = 0 or H = L + 1 =the maximum flow value), at which
point an H-value minimum-cost flow f satisfies f;,(0) = fy..

The running time of the algorithm is easy to bound. The gap H — L is initially
no more than nU. Each iteration cuts the gap in half and is dominated by one

minimum-cost flow computation. B

5.2 Approximation Algorithm

In this section we develop an efficient capacity-scaling algorithm that approximates
a universally maximum dynamic flow within a factor of (1 + €), for any ¢ > 0.

The algorithm has the unusual feature of scaling upwards. Traditional scaling
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' —0; A—1;, @« u; f+ zeroflow
while (3 (s,t)-path in N ¢ of length < T') {
o+ 0
while ( (¢ < mA/e) and
(3 (s,t)-path in N s of length < T') ) {
P «— shortest (s,t)-path in Ny ¢
v < minimum residual capacity of P
augment f by v along P
I' =T+ {{(v,P)}
o«—0o0+v
}
A —2A
Vyz € E 1 Uy, — Uy, — (7252 mod A)
}

return T

Figure 5.3: Universally Maximum Flow (1 + €)-Approximation Algorithm

algorithms work initially with capacities rounded by a big scaling factor; the idea
is that large capacity edges are more important than small capacity edges. In a
dynamic flow, however, a small capacity edge that is short might carry more flow
than a large capacity edge that is long. Our algorithm is based on the idea that
short chain flows are more important than long ones.

The algorithm is shown in Figure 5.3. In essence, it computes a minimum-cost
flow via shortest augmenting paths in a repeatedly rounded network. We use the
chain decomposition defined by the sequence of augmentations to induce a dynamic

flow. The rounding guarantees that the number of augmentations can be bounded



44

by a polynomial in n, log U, and €.

The algorithm starts by augmenting along exact shortest paths. Depending
on €, the algorithm periodically rounds down the edge capacities according to an
increasing scaling factor A. This rounding implies that all residual capacities are
integer multiples of A, so that subsequent augmentations carry at least A units
of flow in the static network. Notice that if an edge yz in E* carries less than A
units of flow, then rounding down the residual capacity of zy results in a negative
capacity for edge zy, i.e., a lower bound on the flow of edge yz. This corresponds
to “irreversible” flow on edge yz.

We need some additional notation in order to analyze the algorithm. Say there
are k + 1 scaling phases during the algorithm, numbered 0 to k. We index phases
so that A = 2! during the inner loop of phase 5. Let ™! = () and I'* denote the set
of chain flows at the end of phase 4; let 7% denote the length of the longest chain
flow in I'*; let f* denote the static flow after phase i; and let @' denote the rounded

capacity function at the beginning of phase 1.
Theorem 5.2.1 [I'*]7 is a feasible dynamic flow.

Proof: By induction on the number of scaling phases. The first scaling phase
is identical to the exact algorithm of Wilkinson and Minieka, and so I'? induces
a feasible dynamic flow by Theorem 5.1.1. Suppose that I' induces a feasible
dynamic flow and 0 < ¢ < k. The next scaling phase starts with rounded capacity
#**!. By Theorem 5.1.1 we know that I'**! — I' induces a feasible dynamic flow
in the residual network Ni+1 si, but we need to show that T'**! induces a feasible
dynamic flow in the original network A/. This feasibility rests primarily on the
fact that the rounding process does not increase the capacity of any edge. One
consequence of this fact is that I'**!* —I'* induces a feasible dynamic flow in residual
network N, 7. Another consequence of this fact is that shortest residual (s,y)-
and (y,t)-path lengths cannot decrease between scaling phases, for every node .

This monotonicity implies that if some chain flow in T**! — I' covers an edge yz
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at time 6, then every chain flow in I'* that touches yz must also cover it at time
6, so that [I‘i]yz(9) = f;z. Combined with the first consequence noted above, this

proves the theorem. B

Because our capacity-scaling algorithm can reduce edge capacities between scal-
ing phases, the maximum dynamic flow value in the rounded network may be less
than the original maximum dynamic flow value. Next, we analyze this lost dy-
namic flow value. For notational simplicity, we use the observation that for any
feasible [[]7 and time 6 : 0 < @ < T, the value |[T']7]4 is equal to |[T']|s.

First we consider the lost dynamic flow value due to a single rounding. Let
A% denote a chain decomposition inducing an earliest arrival flow in the residual
network A i and let A’ denote a chain decomposition inducing an earliest arrival
flow in the further rounded residual network N1 i. For any time 6, the loss in
dynamic flow value due to the rounding at the end of phase i is [[AL]|g — |[A?]]s-
The following lemma bounds this loss by € times the value of the dynamic flow

induced by the chain flows added during phase .
Lemma 5.2.2 If 0 <i<kand 0<6 <T then [[AL]|s—[[A]|s < €|[[* — T,

Proof: Let static flow fi equal the sum of all chain flows in A%. Construct fz
from f! by repeatedly finding any edge where f! violates the rounded capacity
constraint #**!, and then subtracting some 2*-value chain flow in fZ that uses that
edge. Because the rounding of phase ¢ reduces the capacity of any edge by at most
2! this process subtracts no more than m chain flows from fi. Furthermore, every
canceled chain flow has length at least 7%, since after phase 7 there is no (s,t)-path
of length less than 7" in the residual network Nﬂi7fi. Let A" denote a standard

chain decomposition of the resulting flow fz We have that
[AL]g — |[A]lg < m2%(0 — T* +1).

Note that [A’]T is feasible for the earliest arrival flow problem defined on the

rounded residual network Nit1 fi, but [AY)T is feasible and optimal for the same
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problem, so that |[A?]|s > |[A?]|g, and therefore
[ALle — [[Ale < m2'(0 - T" +1).

Finally, 0 < i < k implies that the chain flows of I'* — T"~! have total value at least

m2¢/e. Since each of these chain flows has length at most 7", we obtain
0 =T Y]y > (m2¥/e)(0 — TF +1).
|

Theorem 5.2.3 Suppose 0 < 6 < T. Let v} denote the maximum dynamic flow
value in time #. The algorithm of Figure 5.3 computes dynamic flow [I*]T in time

O(me~(m + nlogn)log U) such that v} < (1 + €)|[T¥]T],.

Proof: The claimed running time follows easily. There there are O(log U) scaling
phases. Capacity rounding guarantees that there are O(m/¢) augmentations per
phase, each of which requires one non-negative edge length shortest path compu-
tation with running time O(m + nlogn) (see Fredman and Tarjan [17]).

We use Lemma 5.2.2 to prove approximate optimality. Theorem 5.1.3 implies
that phase 7 + 1 begins to compute an earliest arrival flow in the rounded residual
network Ngi+1 i of phase 4. This means that |[(I'+! — I'') + ATy = |[A7]],.

Similarly, we have v} = |[I'® + AY]|s. Now we get the following chain of equalities:
IT°Tlg + (1A% e
. k—1 ‘ .
= (M)l + 3 (IT]ls — [I17+]1g) + [[A2]]g
i=0
k & i Ti 0
= [T¥le + X (11A51s — [[A7]6) + [A2)1s
i=0
\ k—1 , . i
= |[¥]lo + 3= (I1Als = I[A]lo) + [AX]]o-
i=0
Since the phase-k residual network Nak’fk contains no (s,t)-paths of length less

than 6, it follows that |[A¥]|g = 0. Applying Lemma 5.2.2 and observing |[T'*~1]|4 <
[[T*]]g, we obtain [[[%+Al]lg < |[T*]]g + €|[T*]]5. m
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Corollary 5.2.4 [T*]T is a (1 + ¢)-approximate universally maximum dynamic flow.

Proof: Theorem 5.2.3 shows that [['¥]T is (1+¢)-approximate earliest arrival flow.
The approximate optimality of the departure schedule follows from the symmetry
of optimal arrival and departure schedules (see Theorem 5.1.2) and the fact that for
every unit of flow in [[*]T arriving at the sink at time 6, there is a corresponding
unit of flow departing from the source at time 7'—6 (see the proof of Theorem 5.1.3).






Chapter 6

Lexicographically Maximum

Dynamic Flows

In the lexicographically mazximum dynamic flow problem, we are given a dynamic
network N with time horizon 7" and an ordering of the terminals S = {sq, ..., Sg—1};
we seek a feasible dynamic flow that lexicographically maximizes the amount of
flow leaving each terminal in the given order. Note that the terminal set includes
both sources and sinks. Maximizing the amount of flow leaving a terminal is
equivalent to minimizing the amount of flow entering a terminal. Let S; denote
the high-priority subset of terminals {sg,...,s;—1} and Sy = 0. We denote an
instance of the lex max dynamic flow problem by the triplet (NV,C,T), where C is
the chain of nested high-priority subsets {So,..., Sk}

We describe a polynomial algorithm to compute lex max dynamic flows. Our
lex max dynamic flow algorithm is an important subroutine in our algorithms for
solving dynamic transshipment and quickest transshipment problems, which we

describe in subsequent chapters.
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6.1 Applications of Lex Max Flows

Lex max flows are especially useful and interesting because of one important prop-
erty, which we repeat from Minieka [40] and Megiddo [37]. Consider a dynamic
network A" with time horizon 7'. For any subset of terminals A C S, let o(A)
denote the maximum amount of flow that the sources in A can send jointly to the
sinks in S\ A in time 7" without regard to the needs of other terminals. (Notice
that we can compute o(A) as a single-source single-sink maximum dynamic flow
value from a supersource connected to the sources of A to a supersink connected
to the sinks outside of A.) Minieka and Megiddo both observed the following

fundamental property of multi-terminal flows:

Lemma 6.1.1 (Minieka [40] and Megiddo [37]) Suppose dynamic flow f solves the
lex max dynamic flow problem (N, C,T). Then |f(S;)|r = o(S;) for every high-priority

subset S; € C.

In other words, a lexicographically maximum flow (static or dynamic) simulta-
neously sends as much flow as possible out of every high-priority subset of terminals,
for any network and any ordering of that network’s terminals.

Our interest in the lex max dynamic flow problem stems primarily from its
applications to the dynamic transshipment problem. In the dynamic transshipment
problem, we are given a dynamic network A with time horizon 7" and supply vector
v. We seek a feasible dynamic flow with time horizon 7" that satisfies supply v, if
such a flow exists. We denote an instance of the dynamic transshipment problem
by the triplet (N, v,T). In the next chapter, we show how to reduce the dynamic
transshipment problem to the lex max dynamic flow problem.

In this section, we describe a simpler application of lex max dynamic flows.
Given a dynamic network A with time horizon T', let P be the set of all sup-
ply vectors v for which the dynamic transshipment problem (A, v,T') is feasible.

Optimizing any linear objective function over set P reduces to solving a lex max
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dynamic flow problem:

Theorem 6.1.2 Given a dynamic network A/ with time horizon T', let P be the set
of all supply vectors v € R® for which the dynamic transshipment problem (N, v,T)
is feasible. For any cost vector ¢ € IRS, we can find v* € P such that Vo € P: T <

cTv* via one lex max dynamic flow computation.

Proof: Suppose that ¢, > ¢5; > ... > ¢5, ,. If this is not the case, reindex
the terminals so that it is; the time required to sort the terminals is dominated by
the time required to compute a lex max dynamic flow. For any supply vector v,

observe that its cost is

k—1
v = Csp 1 0(Sk) + Z(Csi—l — ¢5;)v(5i)-
i=1
Compute lex max dynamic flow f. Let v, = |fs;|r for every terminal s; in S.

By Lemma 6.1.1, v*(S;) is maximal over all v in P for every high-priority subset
S;. The theorem then follows from the facts that v(Sg) = 0 for all v in P and
Csg > Csy = - > Csp - I

We revisit Theorem 6.1.2 in the next chapter, describing it in terms of submod-

ular functions and extended polymatroids.

6.2 Lex Max Dynamic Flow Algorithm

Minieka [40] described an intuitive algorithm for computing a lex max static flow
in network N. Start by computing a maximum (static) flow jointly from Sy_; to
Sg—1. In the residual network of this flow, compute a maximum flow jointly from
Sk—_9 to $;_9. Continue in this fashion until the final iteration sends flow from
so to s1 through the residual network of all previous iterations. Each iteration
of this algorithm saturates another (S;, .S \ Si)-cut and so ultimately leads to a

lexicographically maximal flow.
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Our algorithm for the dynamic version of this problem has a similar structure.
We use k iterations of a maximum flow computation in an evolving residual net-
work; however, each iteration computes a maximum dynamic flow rather than a
maximum static flow. We induce maximum dynamic flows with standard chain de-
compositions of minimum-cost static flows, a technique of Ford and Fulkerson [16]
presented in Chapter 4. Beginning with the zero flow and an empty chain de-
composition I', our lex max dynamic flow algorithm computes successive layers of
minimum-cost static flows in the residual networks of previous layers. Each layer
yields a standard chain decomposition that is added to set I'. At the end of the
algorithm, [T'] is a lexicographically maximum dynamic flow.

We present our lex max dynamic flow algorithm formally in Figure 6.1. It starts
by adding a superterminal ¢ to the input network and connecting v to each source
s; in St by an infinite-capacity zero-transit-time artificial edge ¢s;. Let A* denote
the resulting network, f* the zero flow in this network, and I'* the empty set.

The algorithm consists of k iterations indexed in descending fashion. In itera-
tion¢ =k —1,...,0 we consider terminal s;. If s; is a source, then we delete edge
1¥s; from network A1 to create A%, and we compute a minimum-cost maximum
(1, s;)-flow g* in the residual network of flow fi*! in network A% If s; is a sink, we
add an infinite-capacity edge s;i» with transit time —(7 + 1) to network N**! to
create network A%, and we compute a minimum-cost circulation ¢* in the residual
network of flow f**! in network A*. To complete each iteration (for a source or
sink), we add ¢¢ to f**! to obtain flow f?, compute a standard chain decomposition

Al of flow ¢¢, and add A? to I'"*! to get chain decomposition I'.

Theorem 6.2.1 For any lex max dynamic flow problem (N, C,T), a lex max dynamic

flow can be computed in O(k MCF ) time.

Proof: The algorithm consists of k iterations, each of which is dominated by one
minimum-cost flow computation. The correctness of the algorithm is proved in the

next section. W
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V —Vu{y}
E —EU{¢s;:s; € ST} with uys; = 0o and 7, = 0

f* — zero flow

Tk — ¢
fori —k—1,...,0 {
ifsi€S+{

delete edge ¥s; from E
g + minimum-cost maximum (1, s;)-flow in N}Hl

}

else {
add edge s;% to E with u,,, = 0o and 75,y = —(T + 1)
¢* < minimum-cost circulation in /\/’}Hl

}

fi fitl g gi

A' — standard chain decomposition of g

}

return T'°

Figure 6.1: Lex Max Dynamic Flow Algorithm
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6.3 Proof of Correctness

This section culminates with three theorems, proving that [['] is a feasible dynamic
flow with time horizon 7' that maximizes the amount of flow leaving every high-

priority subset S;. First, however, we prove several preliminary lemmas.

Lemma 6.3.1 For any iteration i, static flow f* is a minimum-cost circulation in

network A%,

Proof: By induction on the number of iterations. Initially, f* (the zero flow) is
a minimum-cost circulation in network A* because the input network A/ has no
negative-cost residual cycles, and hence neither does A%,

Suppose that the lemma is true for iteration ¢+ 1 and that s; is a source. Lemma
3.1.6 implies that fis a minimum-cost flow. We need only worry about disturbing
the balance of flow at nodes 1 and s;. The artificial edges in A/* connecting sink
nodes to superterminal ¢ and the fact that the sources of input network N have
no incoming capacity guarantee that a maximum (¢, s;)-flow in N}i“ is exactly
equal in value to flow fi*! on edge vs;. Thus, deleting edge 1s; and then adding
a maximum (1, s;)-flow leaves both 1 and s; balanced with zero net flow.

The remaining case is trivial. If s; is a sink and the lemma is true for iteration

i+ 1, then Lemma 3.1.6 implies that f? is a minimum-cost circulation in N¢.

For any node y and iteration 4, let pi(y) denote the length of a shortest (1, )-
path in the residual network of flow f* in network A (or infinity if no such
path exists). Note that Lemma 6.3.1 and Theorem 3.1.1 imply that there are

no negative-cost cycles in this residual network, so that p’(y) is well-defined.
Lemma 6.3.2 For any node y and iteration i, pi(y) > p't1(y).

Proof: Consider iteration ¢ and its effect on shortest residual path lengths. Sup-

pose terminal s; is a source. Shortest path lengths cannot decrease after deleting
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edge 1s;, obviously; neither can they decrease after adding a minimum-cost (¢, s;)-
flow, because of Lemma 3.1.6.

If s; is a sink, iteration ¢ first adds edge s;% to the network and then computes a
minimum-cost circulation ¢¢ in the resulting residual network. Adding an edge can
decrease shortest residual path lengths only if the new shortest paths use the new
edge. We are concerned only with paths from 1 to the rest of the network, and new
edge s;9 can reduce these path lengths only by creating a negative-cost residual
cycle through node 1. However, adding the minimum-cost circulation ¢* not only
saturates all negative-cost residual cycles but also cannot decrease any shortest

residual path lengths, because of Theorem 3.1.1 and Lemma 3.1.6, respectively. B

Lemma 6.3.3 Suppose v € A* L and y,z € V. Then v does not cover yz at any

time before p(y).

Proof: By definition, residual network A%; contains no (1, y)-path of length less
than p’(y). We claim that chain flows in A?~! are likewise constrained. If s;_1 is a
source, then the path of any chain flow in A~ is a path in N%,. If s;_1 is a sink,
then every edge but s;_1% of each chain flow is in Nﬂ-; and since s;_1% is the last
edge of each chain flow, it has no effect on when any chain flow covers any other

edge. B

Lemma 6.3.4 Suppose v € A and y,z € V. If v touches yz, then  covers yz at

time pt(y).

Proof: Suppose, for a contradiction, that v touches yz but does not cover it at
time p’(y). Then v gives a residual (y,))-path in A% of cost less than —p'(y).
Together with the definition of p’(y), this means that network A/¢; has a negative-
cost cycle, contradicting Lemma 6.3.1 and Theorem 3.1.1. B

We are now ready for the main theorems, which prove the correctness of our

lex max dynamic flow algorithm.
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Theorem 6.3.5 [I'] is a feasible dynamic flow.

Proof: First we consider capacity constraints, proving feasibility by induction on
the number of iterations. [I'*] is zero and trivially obeys all capacity constraints.
Suppose 0 < i < k and [['] is feasible; we show that [[*~!] is feasible. Note
that [[*~!] = [I] + [A*"!]. Consider the capacity constraint of edge yz at time
0. If [A*"1],,(0) = 0, then the induction hypothesis implies that this constraint
is not violated. If [A""1],,(#) # 0, then Lemma 6.3.3 implies that 6 > p'(y), and
consequently Lemmas 6.3.2 and 6.3.4 imply that [["],.(6) = fi,. Since [A" '] is a
feasible dynamic flow in ./\/'in_l, the capacity constraint is not violated.

Finally, we consider flow conservation. These constraints are trivial except at
the source nodes: the chain decomposition I'° includes chains flows terminating
at sources. However, the validity of the capacity constraints and the assumption
that no source has incoming capacity in A/ guarantee that no source ever has net

incoming flow. W
Theorem 6.3.6 [I'°] has time horizon T.

Proof: First we prove that [I['%] is a finite-horizon flow, and then we prove the
theorem.

(1) [I9 has a finite time horizon.
For each edge yz, let Ty, be the longest (¢, y)-length of a chain flow in I'’ touching
yz (or zero if no chain flow in I'? touches yz); clearly this value is finite. Because
the final network A has no negative-cost cycles, Lemmas 6.3.1 and 3.1.4 imply
that the final static flow f° is zero, so that [I],,(f) = 0 for any time 6 > T,,.
Dynamic flow [I'] is finished after max,,{T},} time steps.

(2) [T has time horizon T.
Consider any sink s; € S7; recall that artificial edge s;9 has transit time —(7'+1).
Let ys; be an edge in the input network A'. Every chain flow using ys; (forward)

ends with edge s;1, is part of a minimum-cost circulation, and so must reach sink
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s; by time T + 1; every chain flow using s;y (ys; backward) starts with edge 9s;
and so reaches sink s; at time 7'+ 1. Thus, Ty, < T+ 1 — that is, there is no
flow entering any sink in the network after time 7.

Assume for a contradiction that there is flow left somewhere in the network
after time 7. All edges with positive capacity have non-negative length, so that
this flow cannot reach any sink by time 7" and hence must stay in the network

forever. This contradicts the fact that [['°] has a finite time horizon.
Theorem 6.3.7 [I'°] is a lexicographically maximum dynamic flow.

Proof: Given any index i : 0 < 7 < k, we prove that the amount of dynamic flow
leaving the set of terminals S; = {sq,..., $;—1} is maximum. Our proof relies on
the infinite time-expanded network N (*). We construct a cut C; in this network
that separates the source set {s;(0) : s; € S;"} U {s;(T) : s; € S; } from the sink
set {sj(0) : s; € ST\ S;}U{s;(T):s; € S7\Si}. We then show that [['"] saturates
this cut and so sends as much flow as possible from S; to S\ S; within time horizon
T.

The cut is defined as C; = {y(0) : 0 > p'(y)} U {s;(T) : s; € S;7}. It is
easy to see that C; contains the source set, because the artificial edges in network
N guarantee that pi(s;) = 0 for all sources s; in S;". It is not much harder
to see that C; contains no element of the sink set by considering each iteration
J > 1. If terminal s; is in S, then iteration j adds infinite-capacity artificial edge
s;j¢ with transit time —(7" + 1) so that the subsequent minimum-cost circulation
establishes p/(s;) > T + 1; otherwise s; € ST and iteration j saturates every
residual (¢, sj)-path so that p/(s;) = co. These facts together with Lemma 6.3.2
imply that p’(sj) > T for all terminals s; in S\ S;, and so no terminal in the sink
set {sj(0):s; € ST\ S;}U{s;(T):s; € S~ \ Si} is contained in Cj.

Next we show that [['?] saturates cut C;. Consider any edge y(6)z(#') that
crosses Cj; then y(0) € C; and 2(0') ¢ C;. (The other direction is considered as
opposite edge z(8')y(#).) There are three cases: the first applies when 6 < pi(y),
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otherwise we distinguish non-holdover edges from holdover edges. (1) If § < pi(y)
then y € S;”. Recall our assumption that each sink in S~ has no outgoing capacity
in the input network N this implies that the capacity of edge yz is zero. (2)
Consider any holdover edge y(8)y(6') that crosses C;. By the definition of C;, this
must be a reverse holdover edge with ' = § — 1. The capacity of a reverse holdover
edge is zero. (3) Suppose & > p'(y) and y(0)z(f') is not a holdover edge. Then
0' = 0 + 7y, and y(0)z(0 + 7,,) crosses C; for every 0 : pi(y) < 0 < p'(z) — 7.
Thus, the total capacity of cut Cj; is
> max{0, p*(z) — Tyz — pi(y)}uyz.
yzeE+t\¢
By Lemma 3.1.2 applied to edges yz and zy, the above formula reduces to

Z (pl(z) _pi(y)) 'Z/z - Z Tyzfgjz'

yz€E+\¢ yz€E+\¢

Flow conservation implies that the first sum cancels itself out except at terminal
nodes. Notice that for any source s; in S, if fgjz > 0 then p(s;) = 0; and for
any sink s; in S, if f;s]- > 0 then p‘(s;) = T + 1. Thus, we can simplify the
remaining terms by considering all the artificial edges of network A”* and deriving
the capacity of cut C; to be =3, . cp+ Tyzféz.

The value of [I'%] across C; is equal to the net flow out of .S;, derived as follows:
Observe that f¢ is the sum of all chain flows into S\ S;. Therefore, Corollary 4.3.2
implies that the total cost of f* is equal to the dynamic flow value out of S\ S;.
By dynamic flow conservation, this value is exactly opposite to the net flow out of
S;. Thus, the capacity of cut C; is equal to the value of [I'?] across it. m

Note that the maximum dynamic flow problem is just the lexicographically
maximum dynamic flow problem in a network with one source so and one sink sj.
Theorem 4.2.3 is essentially a two-terminal special case of Theorem 6.3.7 that uses

a standard chain-decomposable flow [I']7 rather than a chain-decomposable flow
[T



Chapter 7

The Dynamic Transshipment

Problem

In the dynamic transshipment problem, we are given a dynamic network A" with
time horizon 7' and supply vector v. We seek a feasible dynamic flow with time
horizon T that satisfies supply v, if such a flow exists. We denote an instance of
the dynamic transshipment problem by the triplet (N, v, T).

In this chapter, we describe a polynomial algorithm to solve the integral dy-
namic transshipment problem. Our algorithm takes as input an integral instance
of the dynamic transshipment problem, and for output finds an integral solution, if
one exists. (An integral solution exists if and only if there is a fractional solution.)
Our algorithm reduces a dynamic transshipment problem to an equivalent lex max
dynamic flow problem in a slightly modified network. We described a polynomial
lex max dynamic flow algorithm in Chapter 6.

Before discussing the main algorithm, we describe how to determine the fea-
sibility of a dynamic transshipment problem in polynomial time. This test is the

core subroutine in our main dynamic transshipment algorithm.
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7.1 Dynamic Transshipment Feasibility

Ford and Fulkerson [16] proved perhaps the best-known result in network flow
theory: the maximum value of an (s,t)-flow is equal to the minimum capacity of
an (s,t)-cut in any network A. This famous theorem implies a multi-terminal
corollary: there exists a feasible flow satisfying supply vector v if and only if for
every subset of terminals A C S the maximum flow jointly from A to S\ A has
value no less than v(A).

Klinz [33] derived similar results for dynamic network flows. Consider a dy-
namic network N with time horizon 7". Recall the maximum value function o(A)
defined in Chapter 6 for terminal subsets A C S. For a dynamic transshipment
problem (N, v,T) to be feasible, clearly we must have that v(A) < o(A) for ev-
ery terminal subset A C S. Klinz observed that this condition is equivalent to
Ford and Fulkerson’s cut condition of feasibility applied to time-expanded network
N(T). Thus, this condition is not only necessary, but also sufficient.

It is a well-known result of Ford and Fulkerson [16] that single-commodity static
network flow problems can always be solved by integral flows when the input data
are integral. This fact applies equally to the dynamic transshipment problem,

again for the reason that it is equivalent to a static network flow problem in N(T').

Theorem 7.1.1 (Klinz [33]) The dynamic transshipment problem (N,v,T) is fea-
sible if and only if v(A) < o(A) for every subset A C S. Furthermore, if the problem

is feasible and the input data are integral, then there is an integral solution.

Violated Sets. Given a dynamic transshipment problem, we call a subset of
terminals A C S violatedif v(A) > o(A). Theorem 7.1.1implies that we can test the
feasibility of a dynamic transshipment problem simply by searching for a violated
set of terminals. Our dynamic transshipment algorithm requires a subroutine that

not only determines feasibility of a dynamic transshipment problem but also finds
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a violated set if the problem is infeasible. A simple exhaustive search, testing all

possible subsets A C S, yields the following result:

Lemma 7.1.2 For any dynamic transshipment problem (N, v,T), a violated set can

be found (or feasibility proven) in O(2% MCF) time.

Proof: There are 2 subsets A C S. For any particular subset of terminals
A, computing o(A) reduces directly to a single-source single-sink maximum dy-
namic flow problem, and so Corollary 4.2.2 and Theorem 4.2.3 imply that we can
determine if v(A) > o(A) in O( MCF ) time. H

In the remainder of this section, we derive theoretically efficient alternatives to
this brute-force algorithm. They are geometric algorithms that work with the fea-
sibility polytope induced by the given dynamic transshipment problem; we discuss
this polytope in the next subsection. Unfortunately, these algorithms are much
more complicated than the simple approach just described. In networks with only
a few terminals, exhaustive search should be preferable to currently-known poly-

nomial techniques for feasibility testing.

7.1.1 The Feasibility Polytope

Consider a dynamic network A with time horizon T. Recall from Chapter 6 that
P denotes the set of feasible supply vectors for this network and time horizon.
Testing the feasibility of a supply vector v is equivalent to determining if v € P. In
this subsection we prove that P is a polytope, which is a bounded set of the form
{v eR%: Av < b}.

First, we consider the vector space spanned by P. (The origin is contained in
P, so this is equivalent to the affine hull of P.) Notice that P must be contained
in the (k — 1)-dimensional subspace {v € R® : v(S) = 0}, since we require that the
total supply of all terminals be zero. The subspace actually spanned by P can be
determined by a generalization of this observation. Suppose the terminal set can

be partitioned S = A U B so that no flow can possibly go from A to B or from B
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to A through network A/ within time horizon T’; then any supply vector v cannot
be feasible unless v(A) = v(B) = 0.

We seek such a partition of S into as many subsets as possible. We can construct
the partition S = S'U...U S with O(k?) shortest path computations in network
N. Our construction relies on a bipartite graph using the sources St of N as
one node set and the sinks S~ of A/ as the other node set. For each source-sink
pair s; € ST,s; € S7, connect s; and s; by an edge if and only if the shortest
(84, 8j)-path in A is no longer than 7. The subsets S, ..., Sh are the connected
components of this bipartite graph. We say a subset S* is trivial if it consists of
one terminal; the supply of any terminal in a trivial subset must be zero.

Let Z denote the subspace {v € RS : 9(S%) =0 Vi=1,...,h}. We prove in
Lemma 7.1.3 that P spans this space. We also prove that P is contained within
a ball centered close to the origin and that P contains a smaller ball in space Z.
Along with the convexity of P, these properties are enough for us to determine
efficiently if v € P for any v in RS. The rest of this subsection depends on the

following definitions. Let
F' be a spanning forest of the bipartite graph just described;
Z* be the k x (k — k) node-edge incidence matrix of F: Tf =1 (or —1) if edge
j leaves (or enters) node i in F, and T} = 0 otherwise; and
# be 1/2k times the sum of the columns of ZF'.
For any norm p, Z € Z, and r > 0, let Bg(f,r) denote the closed ball {z € Z :
|z — 2|, <7}
Lemma 7.1.3 P is a full-dimensional polyhedron in subspace Z.

Proof: It is clear that Z is a (k — h)-dimensional subspace and that P is contained
in this space. We claim that P is a full-dimensional polyhedron in this subspace.
The columns of Z*' are linearly independent because F is a forest; notice also that

any column of ZF is a vector in P; this implies that P is full-dimensional in Z.
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Theorem 7.1.1 implies that P is a polyhedron, which is a (not necessarily
bounded) set of the form {v € RS : Av < b}. The rows of A are the charac-
teristic vectors of the terminal subsets A C S, and the entries of b are the values

o(A) for each of these subsets. There is one additional constraint v(S) > 0. B
Lemma 7.1.4 P is a polytope. It is contained within BZ (2, VknU(T + 2)).

Proof: No terminal can send or receive more than nU units of flow per time
step, from time zero till time 7'; this implies that P C BZ(0,nU(T + 1)). Be-
cause there are only k£ — h edges in F', we have ||%| < 1/2, which implies P C
BZ (z,nU(T 4 2)). The lemma then follows from the fact that ||z|[2 < VE||2|o
for all z ¢ R*. m

Lemma 7.1.5 P contains BZ(%,1/2k).

Proof: Because ||z||coc < ||z||2 for all z, we can prove the lemma using infinity-
norm boxes. If s; is a source in some non-trivial subset S* then there is at least
one edge of I leaving s;, so that &5, > 1/2k. Similarly, 25, < —1/2k for any sink
sj in a non-trivial subset S°. Thus, if z € BZ(%,1/2k) then zs; > 0 for any source
sj and zs; < 0 for any sink s;. Because there are only k — h edges in F', we have
#(S*T) < 1/2. Thus, if z € BZ(%,1/2k) then z(ST) < 1.

The lemma finally follows from the fact that if zs; > 0 for every source s;,
zs; < 0 for every sink s, z(ST) < 1, and x € Z, then z € P. Such an z can
be expressed as a convex combination of the columns of Z along with the zero

vector. H

7.1.2 A Polynomial Algorithm for Feasibility Testing

Given a dynamic transshipment problem (N, v,T), we want to determine if v lies
in the feasibility polytope P or not. Grotschel et al [22] proved that there is a
polynomial algorithm to test membership in a convex set if and only if there is

a polynomial algorithm to optimize a linear objective function over that set. We
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proved in Theorems 6.1.2 and 6.2.1 that there is a polynomial algorithm to optimize

over the convex set P; thus, we arrive at the following result:

Theorem 7.1.6 For any dynamic transshipment problem (A, v,T'), a violated set

can be found (or feasibility proven) in polynomial time.

In most applications, testing membership in a convex set is considered an eas-
ier problem than optimizing over that set. The usual application of [22] is to
construct an optimization algorithm, given an oracle to test membership. We are
in the opposite situation. Our lex max dynamic flow algorithm gives us an effi-
cient combinatorial algorithm to optimize over P, but we do not have an efficient
combinatorial algorithm to test membership in P. Nevertheless, Theorem 7.1.6
implies that a (not necessarily combinatorial) efficient algorithm does exist. We
could use the ellipsoid method as described in [22] to derive a polynomial algorithm
for testing feasibility; however, we obtain a more efficient algorithm by relying on
an algorithm of Vaidya [52] instead.

Vaidya states his result as an efficient optimization algorithm given an oracle
to test membership. Because we are building a membership algorithm from an
optimization oracle, we apply Vaidya’s algorithm to the polar of P, defined as
P* = {w e R’ : 2Tw < 1 Vz € P}. Polars are characterized by the following

well-known fact:

Lemma 7.1.7 Suppose P is a closed convex set containing the origin. Then z € P

if and only if Vw € P* : 2Tw < 1.

Lemma 7.1.7 implies that testing membership in P reduces to a linear opti-
mization problem over the convex set P*. The value max{v?w : w € P*} is no
more than one if and only if the given dynamic transshipment problem is feasible.
In order to solve this optimization problem, Vaidya’s algorithm needs to know the
vector space spanned by P* and the radii of two balls: one contained within P*

and another centered at the origin that contains P*; it also needs an oracle to test
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membership in P*. The membership oracle must not only determine membership
in the set but also provide a separating hyperplane when given any point not in
the set.

Because P is a full-dimensional polytope in (k — h)-dimensional subspace Z,
the polar P* contains h-dimensional subspace Z+ = {w € R :wTz=0 VzeZ }
and P* N Z is a full-dimensional convex set containing no non-trivial subspace.
Unfortunately, P* N Z is not bounded. In order to obtain a bounded convex set,
we consider an affine variant of the polar restricted to subspace Z. For any Z in
7, let

Pr.={weZ:(z—2)Tw<1 VeeP)

We run Vaidya’s algorithm on the set P%.. Our result depends on the following

technical lemmas, which we prove at the end of this subsection:

Lemma 7.1.8 LetZ € Z. z € Pifandonlyifz € Z and Vw € Py, : (z—2)Tw < 1.
Lemma 7.1.9 P} contains BZ(0, (VEknU(T + 2))7}).

Lemma 7.1.10 P} is contained within BZ(0, 2k).

Lemma 7.1.11 Suppose w € Z. The lex max dynamic flow algorithm determines if
w € Py in O(kMCF) time. If w ¢ P}, then it computes a vector ¢ in R® such

that max{cTy:y € P};} < cTw.

Theorem 7.1.12 For any dynamic transshipment problem (N, v,T), a violated set
can be found (or feasibility proven) in O(k%2 MCF log(nUT)) time.

Proof: We assume v € Z (it is easy to check this and find a violated set if v ¢ 7).

We use Vaidya’s algorithm to solve max{(v — £)T

w: w € Py,}. The algorithm
works on any full-dimensional convex set contained in a ball of radius 2 centered
at the origin and containing a ball of radius 27L. The algorithm takes O(kL)
iterations given a k-dimensional set. Each iteration inverts a £ x k£ matrix and

calls the membership oracle at most once.
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Lemmas 7.1.9 and 7.1.10 imply that L = O(log(nUT)). By Lemma 7.1.11,
our lex max dynamic flow algorithm provides a membership oracle; notice that its
O(k MCF ) running time dominates the time required to invert a k£ x k matrix. The
total running time of the algorithm is O (k% MCF log(nUT)).

If max{(v — #)Tw : w € P};} is at most one, then Lemma 7.1.8 implies that
v € P and the dynamic transshipment problem is feasible. Otherwise, Vaidya’s
algorithm returns w in P}, such that (v — £)Tw > 1. We claim that S(a) = {s; €
St ws; > a} is a violated set for some a.

Assume for notational simplicity that ws, > ws, > ... > ws, ,; then S(wy;) =
Si+1 as we defined S;4; in Chapter 6. The inner product of w with v is

k—1
wlv = ws,_ v(Sk) + 'Zl(w&q — wg, )v(S;).
=
Now consider maximizing w’'z over all z in P. By Theorem 6.1.2, this is a lex max
dynamic flow problem and the maximizer z* in P has objective function value
k—1
w'e' = wy_ 0(Sk) + _Zl(’w»l — ws;)0(S54).
i=
Because z* € P and w € P, we have wlz* < 1+ 2Tw; we also assume wlv >
1 4+ 2Tw. Therefore, the formulas above imply that v(S;) > o(S;) for some i.
Finally, notice that the time required to run Vaidya’s algorithm dominates both

the time to compute Z and the time it takes to find a violated set. B

We conclude this subsection by proving some technical lemmas.
Proof of Lemma 7.1.8: Suppose z € P. Then Lemma 7.1.3 implies that z € Z
and the definition of P}_ implies that (z — Z)Tw < 1 for all w € P},.

To prove the converse, we consider Lemma 7.1.7 applied to the polytope Pz =
{z — % : = € P} with traditional polar (Pz)*. The lemma is trivial if z ¢ Z;
otherwise, if z € Z \ P then x — T ¢ Pz and there is a w in (Pz)* N Z such that

(z —Z)Tw > 1. The lemma follows from the observation that (Pz)*NZ = Pj,. W
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The following two lemmas help prove Lemmas 7.1.9 and 7.1.10:
Lemma 7.1.13 P C BZ(%,R) = B%Z(0,1/R) C P}, forany 7 € Z and R > 0.

Proof: Suppose P C BZ(Z,R). Let w € BZ(0,1/R) and = € P. By the well-
known Schwarz inequality, |(z — Z)Tw| < ||z — Z||2||w||2. Our assumptions imply

that this value is no more than one, so that w € P},. B
Lemma 7.1.14 BZ(z,r) CP = Py, CBZ(0,1/r) forany € Z and r > 0.

Proof: Suppose BZ(Z,r) C P. Let w € P}, and suppose ||w||2 > 0 (otherwise
w € BZ(0,1/7) is trivial). Consider z = Z + rw/||w||2. Because ||z — Z||s = 7
it follows that z € P and so (z — Z)Tw < 1. Because z — Z is a positive scalar

T

multiple of w, we have (z — Z)" w = ||z — Z||2||w||2 = r||w||2. Thus ||w|z < 1/r. ®

Proof of Lemmas 7.1.9 and 7.1.10: Lemmas 7.1.4 and 7.1.13 imply that P
contains BZ (0, (vVknU(T +2))71). Lemmas 7.1.5 and 7.1.14 imply that P} is

contained within BZ(0,2k). m

Proof of Lemma 7.1.11: By Theorem 6.1.2, we can compute ma,x{wa :x € P}
via one lex max dynamic flow computation. Lemma 7.1.8 implies that w € Py if
and only if the maximum value is at most 1 + #7w. If w ¢ P}, then the lex max
dynamic flow computation returns supply vector z* in P such that (z* —£)Tw > 1.
By the definition of P}, this means that max{(z*— )Ty : y € Py} < (z*—2)Tw.

Theorem 6.2.1 implies that this procedure takes O(k MCF ) time. B

7.1.3 A Strongly Polynomial Algorithm

Our strongly polynomial algorithm is a simple corollary of Theorem 7.1.1 and the

following two results of Megiddo [37] and Grotschel et al [22]:

Theorem 7.1.15 (Megiddo [37]) o(A) + o(B) > o(A N B) + o(A U B) for every
pair of subsets A, B C S in any dynamic network A/ with time horizon T'. That is,

function o is submodular.
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Theorem 7.1.16 (Grétschel et al [22]) Suppose f: 2% — R is a submodular func-

tion. A subset W C S minimizing f(W) can be found in strongly polynomial time.

Corollary 7.1.17 For any dynamic transshipment problem (A, v,T'), a violated set

can be found (or feasibility proven) in strongly polynomial time.

Proof: Consider the submodular function b(A) = o(A) — v(A). A violated set
is a set A such that b(A) is negative. Therefore, a violated set can be found (or

feasibility proven) by minimizing the submodular function 5. B

Remark on Extended Polymatroids. Any submodular function f : 25 — R
induces a polyhedron EP; = {v € R® : v(A) < f(A) VA C S}. This polyhedron
is called an extended polymatroid and it has a special structure ideal for optimizing
linear objective functions, as discovered by Edmonds [14].

Given any vector cin RS, order the elements of S'so that ¢y > ¢ > ... > ¢, ;.
Edmonds proved that a vector v* maximizing ¢’ v over all vectors v in E Py can be

found by the greedy algorithm:

* — .
vz, = max{vs :v € EPs}
* _ . _ *
vy, = max{vs :v € EPyand vsy = vg }
* . . . * . *
vy, = max{vs, , :v € EP;and vsy = vg,...,vs, , = Vg, ,}-

For any dynamic transshipment problem (N, v,T), Theorems 7.1.1 and 7.1.15
imply that the feasibility polytope P is a facet of the extended polymatroid EP,,
more specifically P = {v € RS : (S) = 0(S) and v(A4) < 0o(A) VA C S}. Our lex
max dynamic flow algorithm is a greedy algorithm. Theorem 6.1.2, which proves
that the lex max dynamic flow algorithm optimizes linear objective functions over

P, also follows from the fact that P is a facet of an extended polymatroid.
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7.2 Dynamic Transshipment Algorithm

In this section we describe a polynomial algorithm for the dynamic transshipment
problem; in the next section we prove the running time and correctness of our
algorithm. The algorithm relies on feasibility testing as a black box; we use FEAS

to denote the time required to test feasibility of a dynamic transshipment problem.

7.2.1 Overview of Algorithm

Our algorithm reduces any dynamic transshipment problem (N, v,T) to an equiv-
alent lex max dynamic flow problem on a slightly more complicated network A/.

We described a polynomial lex max dynamic flow algorithm in Chapter 6.

Tight Sets. Given a dynamic transshipment problem, we call a subset of ter-
minals A C S tight if v(A) = o(A). Tight sets characterize a very special type of

dynamic transshipment problem that reduces directly to lex max dynamic flow:

Theorem 7.2.1 Suppose C is a chain of nested tight subsets of terminals in dynamic
transshipment problem (N,v,T), and |C| = k + 1. Then the dynamic transshipment

problem can be solved by a single lex max dynamic flow in A/

Proof: If |C| = k + 1, then we can relabel the set of terminals S so that S; =
{s0,...,8i—1} is a tight set in C for alli = 0,...,k. Lemma 6.1.1 and the definition
of tight sets imply that any solution f to the lex max dynamic flow problem
(N,C,T) satisfies |f(S;)|7 = v(S;) for all i = 0,...,k and so yields a solution to
the dynamic transshipment problem. W

Most dynamic transshipment problems do not satisfy the requirements of The-
orem 7.2.1 to reduce directly to lex max dynamic flow. Next, we describe how to
modify any dynamic transshipment problem (N, v,T) so that it does satisfy the
requirements of Theorem 7.2.1. Our algorithm attaches to the network a new set of

terminals S’ and creates for them a new supply vector ¢'. Initially, S’ contains one
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Figure 7.1: Transforming (N ,v,T) to (N, ¢/, T)

source s? for each source s; in S, connected by edge s)s; with infinite capacity and

zero transit time; likewise, S’ contains one sink s? for each sink s; in S, connected
!

by edge sis? with infinite capacity and zero transit time. Define v/ in R’ based on

v in the obvious manner: vy = vg,. Clearly (N',+',T) is equivalent to (N, v, T).

Example: Figure 7.1(a) depicts dynamic transshipment problem (A, v,T) with
time horizon 7" = 3. There is one non-trivial tight set. (Trivial tight sets are § and

S.) Figure 7.1(b) shows the corresponding problem (N, v/, T).

The algorithm maintains a chain C whose elements are tight subsets of S’
ordered by inclusion. The goal of the algorithm is to extend C to a complete
chain of size |S’| + 1. Theorem 7.2.1 implies that a complete chain C reduces
the associated dynamic transshipment problem to a single lex max dynamic flow
problem on the same network.

The body of the algorithm is a loop. FEach iteration of the loop adds new
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terminals to S’. Each new terminal s{: is attached to a terminal s; of the original
network N by an edge as described above, but using finite capacities and non-
negative transit times. These capacities and transit times restrict the ability of
new terminals to send or receive flow; the algorithm assigns a supply to each new
terminal sg based on these restrictions and adjusts the supply of the corresponding
s? so that for any original terminal s; in S, the total supply of new terminals in
S’ associated with s; is vs,. This maintains the invariant that any solution to
(N',2',T) yields a solution to (N, v,T).

We measure the progress of the algorithm by the formula |C| — |S’|. Initially,
C = {0,595}, and so |C| — |S'| = 2 — k. By Theorem 7.2.1, we are done when
IC| —|S’| = 1, and so we need to increase the value of this expression. In the next
subsection, we describe how one iteration of the algorithm increases [C|—|S’| by one
and maintains the feasibility of (N, ', T'). Thus, the given dynamic transshipment
problem is reduced to an equivalent lex max dynamic flow problem after £ — 1

iterations.

Network Inversion. In a straightforward implementation of our algorithm, each
iteration could add either new sources or new sinks to the network. The treatment
of sources and sinks is entirely symmetric, however, and so describing both cases
with proofs would be somewhat tedious. To simplify our presentation, we make this
symmetry precise by using network inversion, and we describe only the treatment
of sources by the algorithm.

For any dynamic network A/, the inverted network A/ ~! consists of exactly the
same nodes, edges, and terminals; but the capacities and transit times of edges are

S |
reversed: uy;

= Uzy and Ty_zl = T,y. For any family of subsets C in a universe S,
we denote the inverted family C~! = {S\ A: A € C}. The symmetry of sources

and sinks is captured by the following lemma of Minieka:
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Lemma 7.2.2 (Minieka [40]) Suppose flow f solves lex max dynamic flow problem
(N,C,T). Then the inverted dynamic flow f;.'(8) = —f,.(T — ) solves the inverted
lex max dynamic flow problem (A =1, C~1, 7).

7.2.2 One Iteration of the Algorithm

An iteration begins with a modified dynamic transshipment problem (N, v',T).
Network A contains terminal set S’. In addition, each iteration starts with a chain
C of tight subsets of S’ ordered by inclusion. The goal of an iteration is to increase
IC| — |S’| by one. The first step toward this goal is to add more sources to S'.
Done arbitrarily, these sources would take the algorithm farther from the goal; but
new sources are connected to the network through edges with carefully computed
capacities and transit times. By assigning supplies to new sources according to
these capacities and transit times (and adjusting the supplies of other sources ap-
propriately) the algorithm creates a modified but equivalent problem with enough
new tight sets so that |C| — |S’| increases by one.

Let @ C R be adjacent sets in C such that |R\ @| > 1. (By adjacent we mean
AAeC: Q C ACR.) If nosuch @ and R exist, then |C| — |S’| = 1 and we are
done. The algorithm maintains the invariant that every terminal in R\ @ is one
of the first terminals s9 in S’

Let s? be a source in R\ Q. Lemma 7.2.2 implies that we lose no generality
by assuming there is a source in R\ @. (If there are no sources in R\ @, then we
can invert network N, negate supply vector v/, and invert chain C to obtain an
equivalent problem with at least one source in (S"\ Q) \ (S’ \ R).)

We first check if the set Q U {s%} is tight; if so, then we can add it to chain C
and the current iteration is done. If the set Q) U {s?} is not tight, however, then
we use the following steps to increase |C| — |S’| by one.

Source s is adjacent to s;, one of the original sources in S; suppose there are

j — 1 other sources in S’ adjacent to s;. Add a new source s/ to ', connected
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Figure 7.2: Connecting New Source s§ with Parameterized Capacity

to s; by a parameterized a-capacity zero-length edge. Let Q' = Q U {s{ }. Recall
that o(A) is the maximum dynamic flow out of a subset of terminals A. Define
new supply v®: the supply of S‘Z is o(Q") — o(Q); the supply of s? is reduced by
0(Q") — 0o(Q); and other terminal supplies remain unchanged.

Consider the above parameterized dynamic transshipment problem (N, v*, T).
Notice that if @ = 0, then the maximum flow out of sf is zero: the problem
is equivalent to (N’,¢',T) and is therefore feasible. At the opposite extreme, if
a = oo then (N®,v* T) must be infeasible — if it were feasible then @ U {s9}
must be a tight set, but we have already determined that Q U {s0} is not tight.
Thus, we can binary search for an integer a* such that o = a* yields a feasible
problem but a = o* + 1 yields an infeasible problem. An upper bound for this

binary search is the total capacity out of the original source s; in S.

Example: Figure 7.2 shows the result of choosing source s in the network of

Figure 7.1(b) and completing the a-binary search to determine the capacity of edge

s§so. The critical value is o* = 0, which gives source s§ a supply of zero. Note

that choosing a = 1 would give s} a supply of o({s§}) — o(#) = 2, which leaves s

with a supply of —1, which is infeasible (because s} has no incoming capacity).
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Figure 7.3: Connecting New Source s3 with Parameterized Transit Time

Consider the dynamic transshipment problem (N a*,va*,T). In this network,

add another source sf+1 to S’, connected to s; by a parameterized é-length unit-
I+l
?

is 0(Q") — o(Q"); the supply of s is reduced by o(Q") — o(Q'); and other terminal

capacity edge. Let Q" = Q' U {52“}. Define new supply 7%: the supply of s

supplies remain unchanged.

Now we have a new parameterized dynamic transshipment problem (N 5, 7, T).
Notice that if § = 7'+ 1, then the maximum flow out of SZH is zero: the problem is
equivalent to the old capacity-parameterized problem (A ot gat T') and is therefore
feasible. On the other hand, if § = 0, then the problem is equivalent to the
old capacity-parameterized problem (N 1 92 +1 T) and is therefore infeasible.
Thus, we can binary search for an integer ¢* such that § = ¢* yields a feasible

problem but § = ¢* — 1 yields an infeasible problem.

Example: Figure 7.3 shows the completion of a one-iteration run of the algo-
rithm. (The rest of the run is illustrated in Figures 7.1 and 7.2.) The §-binary
search determines the transit time of edge s3so. The critical value is 6* = 1, which

gives source s3 a supply of o({sg,s3}) — o({sy}) = 1, which leaves s3 with a supply
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of zero. Notice that the final network has a complete chain of nested tight subsets
(including the trivial tight sets @ and S’) so that the resulting dynamic transship-

ment problem can be solved with a single lex max dynamic flow by Theorem 7.2.1.

So far, we have described how one iteration adds two new sources to dynamic
transshipment problem (A, v, T) to obtain (N’ 5 ,7%",T), which is used in the next
iteration. Chain C contains tight sets for the former problem and has not yet been
modified. The progress of the algorithm depends on the following properties of the

new dynamic transshipment problem (A 5*,75*, T):

Property 7.2.3 Q' and Q" are both tight sets.

Property 7.2.4 If A€ Cand A C @, then A is still a tight set.

Property 7.2.5 f AcCand Q C A, then Q" U A is a tight set.
Property 7.2.6 There exists a tight set W such that Q" C W C (Q" U R).

The first three properties follow from definitions. In the next section, we not only
prove Property 7.2.6 but also show how to find such a tight set in polynomial time.

Given these properties, we can augment C as follows: (1) For every A € C
such that @ C A, replace A by Q" U A. (2) Add @' and Q" to C. (3) Find set W
satisfying Property 7.2.6 and add W to C. These three steps maintain the invariant
that C is a chain of tight subsets of S’, and they increase |C| — |S’| by one.

7.3 Proof of Correctness

The main goal of this section is to prove the following theorem, which restates

Property 7.2.6:

Theorem 7.3.1 There exists a tight set W in (Nﬁ ,70°,T) such that Q" C W C
(Q" U R), and W is computable in O(FEAS) time.
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After proving this theorem, the correctness and running time of our dynamic
transshipment algorithm quickly follow. First, however, we prove several lemmas
concerning any subset of terminals A C S’. Let functions o and v to refer to feasible

dynamic transshipment problem (A b ,7°,T), while o and o' refer to infeasible

W 1 T,
Lemma 7.3.2 If o/(A) < v/(A) then o(A) = v(A) and 5Z+1 c A but 5? ¢ A.

Proof: Suppose 0'(A) < v'(A). Feasibility implies o(A) > v(A). Decreasing the

delay ¢ of source SZH

0'(A) > o(A). Furthermore, decreasing ¢ has no effect on o(A) for any A ¥ s]+1,

cannot decrease the maximum dynamic flow out of any set:

but a unit decrease of § could increase o(A) by at most one if s 1 ¢ A. Applied to
Q' and Q", this means Vgt < v;]}l < Vgt + 1. Combined with the observation

that no terminal supply other than v j+1 can increase, the above inequalities yield
v'(A) > 0'(A) > 0o(A) > v(A) > V' (A) - 1.

Notice that all but the first element of this chain must in fact be equal, so that A is
a tight set: o(A) = v(A). This chain also shows v'(A4) > v(A); because parameter

0 changes Vg0 exactly opposite to v _j+1, this means that sgﬂ CAbuts?¢ A m
Lemma 7.3.3 If (AN R) C Q" then o'(A) > v/'(A).

Proof: We prove the lemma in two parts:

(1) If A C Q" then d'(A) > V/'(A).
Suppose A C Q". By Lemma 7.3.2, if sJT' ¢ A then o/(4) > v/(A); thus we
need only consider the case when s ' € A, which means AU Q' = Q". Using
submodularity with A and @', we get o'(4) > J(Q")+d(ANQ") —d(Q'). Both
Q' and Q" are tight. Since sf“ ¢ ANQ', Lemma 7.3.2 implies o'(4) > v'(Q")+
V(AN Q) =(Q) = V(A).

(2) If (AN R) C Q" then o'(A) > v'(A).
Let R" = (Q" U R). Suppose (AN R) C Q"; this implies (AN R") C Q". Using
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submodularity with A and R", we get o'(A) > J(AUR")+d(ANR")—d(R").
Since s € (AU R"), Lemma 7.3.2 implies o/(AU R") > v'(AU R"). Because we
assume (AN R") C Q", the first part of the proof implies o' (AN R") > /(AN R").
Property 7.2.5 implies o/(R") = v'(R"). Thus, we obtain o'(4) > v'(AUR") +
V(ANR") =V (R") = '(A). =

The following Lemma 7.3.4 is a well-known property of tight sets that follows

from the submodularity of function o:

Lemma 7.3.4 In a feasible dynamic transshipment problem, the union and intersec-

tion of tight sets are tight.

We are now ready to prove Theorem 7.3.1:

Proof of Theorem 7.3.1: Let W’ be any violated set in infeasible problem
(N1 75"1 T). By Lemma 7.3.2, W' is a tight set in (N ,7%", T). Lemma 7.3.2
also implies s ¢ W'. Because sY € R\ @, this means R Z (Q"UW'). Lemma 7.3.3
implies (W' N R) Z Q".

Consider W = Q" U (W' N R). The above statements imply that Q" ¢ W C
(Q" U R). Furthermore, after rewriting W as (Q" U W') N (Q"” U R), observe
that Properties 7.2.3 and 7.2.5 and Lemma 7.3.4 imply that W is a tight set in
N 1),

To prove the running time, observe that W' is an arbitrary violated set whose

computation requires only one feasibility test of (A ’ _1,55*_1,T). ]

Theorem 7.3.5 The dynamic transshipment problem can be solved in

O(klog(nUT)FEAS) time.

Proof: The algorithm is dominated by the O(k) iterations described in Sec-
tion 7.2.2. Each iteration is dominated by two binary searches. The first a-binary
search tests feasibility each time it seeks integer a* € [0,nU]. The second §-binary

search tests feasibility each time it seeks integer ¢* € [0,7 + 1]. ®
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Theorem 7.3.6 The dynamic transshipment problem can be solved in strongly poly-

nomial time.

Proof: We proved in Corollary 7.1.17 that dynamic transshipment feasibility
can be tested in strongly polynomial time. Let 4 be such a strongly polynomial
algorithm; suppose this algorithm consists of p comparisons and g additions, where
p and ¢ depend on the number of nodes and edges in the network. Using the
parametric search technique of Megiddo [38], we can replace each binary search
in our polynomial algorithm by a strongly polynomial subroutine consisting of
O(p(q + p)) operations. The result is a dynamic transshipment algorithm running

in O(kp(q + p)) time. We sketch Megiddo’s technique in the remark below.

Remark on Parametric Search. Megiddo [38] described parametric search.
Suppose we have a strongly polynomial algorithm A to test feasibility of dynamic
transshipment problems; each step of algorithm .4 consists only of additions, scalar
multiplications, and comparisons. We modify algorithm A to test feasibility of pa-
rameterized dynamic transshipment problems, where the input includes one linear
parameter \. Each scalar value a; considered by A corresponds to a linear func-
tion a; + Ab; in the parameterized problem. Instead of adding scalars a; + aj, the
modified algorithm adds linear functions (a; + Ab;) + (a; + Abj). This modification
(and that for scalar multiplication) does not change the big-Oh running time of
the algorithm; however, parameterized comparisons are more difficult. We cannot
distinguish the possible relationships of (a; + Ab;) and (aj + Ab;) without some
information about A (unless b; = b;). All we need to know about A, however, is its
relationship to the critical value \*, determined by (a; + A*b;) = (a; + A*b;).

In both the a-capacity and é-length binary searches, we have a network with
one linear parameter. In both cases, we can determine whether A < A* or A > \*
by running the original algorithm A on the non-parameterized network that sub-

stitutes critical value A* for parameter \. With that information in hand, the
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modified algorithm can resume computing on the parameterized network. An im-
proved (sequential) strongly polynomial algorithm may be derived by a similar
technique of Megiddo [39] that uses parallel algorithms to solve parametric opti-

mization problems efficiently.






Chapter 8

Extensions and Applications

In Section 8.1, we describe how to solve the dynamic transshipment problem in
a network of edges that only admit flow during specified time intervals. In Sec-
tion 8.2, we solve the quickest transshipment problem, a version of the dynamic
transshipment problem in which the time horizon 7' is not specified but must be
minimized. In Section 8.3, we apply our quickest transshipment algorithm to solve

a problem of scheduling unit-size jobs on a network of computers.

8.1 Dynamic Dynamic Network Flows

One could argue that the “dynamic networks” we consider in this thesis are not
particularly “dynamic.” Although the flow in a dynamic network does change with
time, we assume that the dynamic network itself does not change at all; it is
essentially “static.” In this section, we discuss some enhancements to traditional
dynamic networks that allow the characteristics of a network to change with time
while still yielding to the efficient algorithms of this thesis.

Our enhancements culminate with the idea of mortal edges. A mortal edge yz
in Et is characterized not only by a capacity u,, and transit time 7,, but also
by a start time oy, and an end time (3,,. Mortal edge yz cannot admit flow out-

side the time interval [0y, By.]; however, we allow any node to hold an arbitrary

81
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non-negative amount of flow at any time. We show how to solve the dynamic trans-
shipment problem in a network of mortal edges in polynomial time. (Note that
if we allow mortal edges but not holdover flow, then Klinz [33] observed that the
problem becomes NP-hard.) By connecting nodes with parallel mortal edges, we
can model problems with time-varying edge capacities and transit times; unfortu-
nately, algorithm performance suffers unless the time-varying edge characteristics

remain constant most of the time.

Terminal Restrictions. In a traditional dynamic transshipment problem, flow
may leave any source node starting at time zero. We can generalize the problem by
specifying a release time vector; each source s; cannot send flow before its release
time 75;. This problem reduces to the original version simply by adding to the
network a new set of sources S’; each new source s in S’ corresponds to an old
source s; in S; they are connected by an uncapacitated edge s;s; with transit time
7s;- In this augmented network, allowing flow to leave s} at time zero is equivalent
to holding flow at s; until its release time 7,,. In a similar manner, we can also
allow deadlines for sinks, so that each sink s; cannot receive flow after its specified
deadline dg,. In this case we connect a new sink s; to the network by uncapacitated
edge sisg with transit time 7' — d,,. We can also limit the rate at which sources
can send flow or sinks can receive flow by augmenting the network as above but

with capacitated edges.

Mortal Edges. We can solve dynamic transshipment problems on networks built
of mortal edges by reducing each mortal edge to a small set of traditional edges.
Throughout our discussion, we focus on positive-capacity mortal edges in E*. For
each mortal edge yz in Et, we assume 0 < a,, < f(,, < T. Mortal edge yz
requires a new source s;z with release time oy, and a new sink s, with deadline

. . + —
Byz; terminal sy, (or s

y-) must send (or receive) uy, (8. — oy, + 1) total units of

flow at a rate no more than uy, per time step. Mortal edge yz then reduces to
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Figure 8.1: Reduction of a Mortal Edge to a Traditional Network

three traditional edges: ys,,, si.s,,, and s} 2. The capacity of each edge is uy..

Edge s,z has transit time 7, while both ys,, and s, s;, have length zero. The

yz5yz
supplies of y and z remain unchanged.

Figures 8.1(a,b) depict the reduction of mortal edge yz to a traditional network
with release times, deadlines, and flow limits. This reduction is very similar to the
standard technique of transforming a capacitated minimum-cost flow problem into

an uncapacitated minimum-cost flow problem. Figure 8.1(c) further reduces the

network to use terminals without release times, deadlines, or flow limits.

Let D be a dynamic transshipment problem with mortal edges. The above
reduction yields a dynamic transshipment problem D’ with release times, deadlines,
and terminal flow limits, but without mortal edges. We prove that these two
problems are equivalent, in that a solution to one easily yields a solution to the

other. The first direction is trivial to check:
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Lemma 8.1.1 Suppose flow f solves dynamic transshipment problem D. Then D' is

solved by flow f/, defined by

fi0) = f:(0
f;;zsgz(e) = uys — fy=(0)
£iy00) = f0)

for all yz € E*, 6 € [y, By.]. The rest of f' is zero except as determined by

antisymmetry.

Next, we prove that a solution to problem D’ yields a solution to problem D.
(We claim without proof that we can solve problem D', since the further reduction
of D' to a problem with no release times, deadlines, or flow limits is trivial.) We

need the following lemma concerning any solution to D’':

Lemma 8.1.2 Suppose flow f’ solves dynamic transshipment problem D’. For any

edge yz in E* and any time 6:

<oy = |f;;z|9 =0

0>y, = [firlo < uye(6—ay: +1)

0< By = —Ifi;lo>up(0 -y +1)
0> By = —fi-lo = uya(Byz — oy +1).

Proof: The first two constraints follow from the release time a, of source s,;

before this time s, can send no flow, and afterward it can send no more than u,,

per time step. The last two constraints follow from the deadline g, of sink s ;

before this time s,

must have received enough flow so that an additional u,, per

remaining time step will meet its demand, and afterward it must be sated. B

Lemma 8.1.3 Suppose flow f’ solves dynamic transshipment problem D’. Then D

is solved by flow f, defined by

fyz(e) = Uyz — f,+ (9) Vyze E+7 0 € [aymﬁyz]

Syz8yz

fyz(e) =0 Vyze E+> ¢ ¢ [ayzvﬂyz]-
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Proof: First we prove that f satisfies terminal supplies. This follows from the fact
that f’ satisfies supplies plus the observation that the total supply of s;z and s,
is zero (which means |fyelr = wy=(By: — aye + 1) = |1y _|r =1f! _|r =1fly Ir)
for any edge yz in ET.

Next, we prove that f is feasible. Dynamic flow f must obey antisymmetry,
conservation, capacity, and mortality constraints. The antisymmetry constraints
are trivial. For any node y, conservation constraint (2.4) follows from the same
argument we made to prove that f satisfies terminal supplies. The capacity con-
straint of any edge yz in E* follows from the feasibility of flow f’. Our definition
of f guarantees edge mortality.

The only remaining constraint is conservation constraint (2.2). We must check
that the holdover flow is always non-negative at every node. (This is a capacity
constraint in the time-expanded network.) We prove that |fylo = X, .cp+ | fyzlo —
Y uyer+ | feylg < 0 for any node y and time 6; we do so by proving | fayls > |fs’:yy|9
and |fy.lg < | f; ., |g for any edges zy,yz in Et. These inequalities together with
the feasibility of f’ and the identical transit times of zy and sjyy imply the lemma.

(1) fuslo > 175 o
Consider any edge zy in E*. If § < agy then |fzylg = 0 = |f;j§yy|‘9' If 0 > By
then [foylg = [foylr = |f;;yy|T 2 |f;;yy|9- Otherwise, [faylg = tay(0 — cay +1) —
|f;jys;y|9' By Lemma 8.1.2, this is at least |f;jy|9 — |f;jy5;y|g = |f;jyy

(2) |fyzlo < 1f, lo-

Consider any edge yz in ET. If § < ), then |fy.[p =0 < |f;s, lg. If 0 > [, then
yZ

lo-

| fuzlo = | fyelr = |f;;s;z|T = |f;s;z|g. Otherwise, |fy.|g = uyz(g—ayz+1)—|f;;}_zs;z|g.

By Lemma 8.1.2, this is no more than —|f;y_z|9 — |f;;,§s;z|9 = |f;s;z|9. |

8.2 The Quickest Transshipment Problem

In the quickest transshipment problem, we are given a dynamic network A and

supply vector v. We seek a feasible dynamic flow that satisfies supply v within the
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minimum possible time horizon, if such a flow exists. We denote an instance of the
quickest transshipment problem by the pair (A, v).

To solve a quickest transshipment problem (A, v), we must find the minimum
time 7' such that the dynamic transshipment problem (N, v,T) is feasible. This
can be done in polynomial time using a binary search and Theorem 7.1.12. To
analyze the binary search, we must bound the optimal time horizon 7" in terms of
the input network A/ and supply vector v. Recall that 7., is the maximum transit

time in network A/, and V denotes the total supply of all sources v(SY).

Lemma 8.2.1 For any quickest transshipment problem (A, v), the optimal time hori-

zon T is no more than n7_ + V.

Proof: Theorem 7.1.1 implies that there is some terminal subset W C .S such
that the quickest flow sending v(W) units of flow collectively from the sources of
W to the sinks of S\ W takes T time steps; this is equivalent to a single-source
single-sink quickest flow. An upper bound for this simpler problem is therefore
also an upper bound for the quickest transshipment problem.

Consider the first time step when flow reaches a sink; this must happen by time
n7,. In a single-source single-sink setting, it is easy to see that after n7,, time steps,
at least one unit of flow can reach the sink with each time step, until there is no
more flow. Thus the optimal time horizon for the quickest transshipment problem

cannot be more than n7_, +V. &

Corollary 8.2.2 The optimal time horizon 7" for the quickest transshipment problem

can be found in O(log(nV 7,,)FEAS) time and also in strongly polynomial time.

For the strongly polynomial time bound, we use Megiddo’s parametric search
[38] instead of binary search. We sketched Megiddo’s technique after the proof of
Theorem 7.3.6.

Given the optimal time horizon T for a quickest transshipment problem (N, v),

we have a dynamic transshipment problem that we know how to solve efficiently
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by Theorem 7.3.5 or 7.3.6. Notice that the running time we need to determine
T is dominated by the running time we need to solve the dynamic transship-
ment problem (A, v,T). Thus, our quickest transshipment algorithm requires the
same running time as our dynamic transshipment algorithm, except that we use

Lemma 8.2.1 to express the bound in terms of A" and v but not 7.

Corollary 8.2.3 The quickest transshipment problem (and the dynamic transship-
ment problem) can be solved in O(klog(nUV7,)FEAS) time and also in strongly

polynomial time.

8.3 Network Scheduling

We introduced network scheduling in Chapters 1 and 3. In this section, we con-
sider the unit-size-job network scheduling problem and show how it reduces to the
quickest transshipment problem. Our quickest transshipment algorithm is the first

efficient algorithm for general unit-size-job network scheduling.

Theorem 8.3.1 The unit-size-job network scheduling problem can be solved via one

quickest transshipment computation.

Proof: Consider an instance of the unit-size-job network scheduling problem.
Let V' be the set of processors, connected by a set of directed links F, which are
characterized by capacity and transit time functions v and 7. Let v, be the number
of unit-size jobs initially assigned to each processor z in V.

We reduce this to an integral quickest transshipment problem by adding a
supersink ¢ to the network. Connect each processor z in V' to supersink ¢ by
a unit-capacity zero-transit-time edge zt. Let V' and E' denote the augmented
graph, and likewise denote the extended capacity and transit time functions by
u' and 7. We define a supply vector v/ based on v as follows: v}, = v, for all
nodes z in V, and v; = —v(V). Network ((V',E’),«',7',V') with supply vector

v’ is an integral quickest transshipment problem. A solution to this dynamic flow
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problem corresponds directly to an optimal network schedule — each unit of flow
corresponds to one unit-size job, and sending one unit of flow from some node z
in V to supersink ¢ corresponds to executing one job on processor x. B

Notice in the above proof that we can also model faster processors. If each
processor x in V can execute s; jobs per time step (where s, is a non-negative
integer), then in our reduction each edge zt entering the supersink has capacity
Sg.

Other groups have obtained polynomial algorithms for unit-job network schedul-
ing, but only for very special cases. Deng et al [13] considered networks with unit
transit times and no capacities. Fizzano and Stein [15] considered ring networks
with unit transit times and unit capacities. There are many other varieties of net-
work scheduling problems and some interesting open questions for research in this

area; we sketch some of these in the next chapter.



Chapter 9

Summary and Open Problems

Current theory and practice in the field of dynamic network flows relies overwhelm-
ingly on time-expanded networks. We introduce chain-decomposable flows in this
thesis as an alternative to the traditional technique. Chain-decomposable flows
lead to the first polynomial algorithms for several important dynamic network flow
problems: notably, the quickest transshipment problem, the dynamic transship-
ment problem, and the lexicographically maximum dynamic flow problem. We also
use chain-decomposable flows to compute universally maximum dynamic flows; this
approach leads to the first polynomial approximation algorithm for this problem
and the first polynomial algorithm to compute a time-step snapshot of a universally
maximum dynamic flow.

Chain-decomposable flows generalize two previously known techniques used in
efficient dynamic network flow algorithms: stationary dynamic flows and standard
chain-decomposable flows. These techniques have proven useful for solving infinite-
horizon problems and the maximum dynamic flow problem, but little else. The
structure of chain-decomposable flows is flexible enough to support polynomial
algorithms for a much wider range of problems.

In the rest of this chapter, we discuss some interesting open problems related

to dynamic network flows.

89
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Combinatorial vs Geometric Algorithms. The inception of the field of net-
work flows coincided with the development of optimization in general. Network
flow problems were quickly recognized as a special type of linear program that
is amenable to solution by the simplex method and other general techniques for
optimizing linear objective functions over polyhedra. Since Ford and Fulkerson,
however, progress in network flow theory has been almost exclusively combina-
torial, relying more on the special structure of networks and less on the general
structure of polyhedra. An intriguing result of this thesis is the reunification of
general polyhedral theory with state-of-the-art network flow algorithms. For the
moment, we test dynamic transshipment feasibility with a geometric algorithm
that can optimize an arbitrary linear objective function over a convex set.

It is an interesting open problem to develop a purely combinatorial polyno-
mial dynamic transshipment algorithm. A successful investigation might yield a
more efficient algorithm (theoretically) and would almost certainly yield a more
practical one. There are two intriguing lines of attack on this problem. First,
geometric methods ignore the network structure inherent to dynamic transship-
ment problems. By considering a direct approach that uses network structure,
one might obtain a better algorithm for feasibility testing. Furthermore, it seems
likely that such an algorithm would not only decide feasibility but also compute
a solution when given a feasible dynamic transshipment problem. Because our
current dynamic transshipment algorithm relies on repeated feasibility testing in
order to compute a solution, replacing our geometric feasibility algorithm with
a network-based approach could yield even bigger improvements to our dynamic
transshipment algorithm. Second, Queyranne discovered a simple combinatorial
algorithm to minimize symmetric submodular functions [49]. Even in a dynamic
network consisting only of “two-way streets” (edges yz and zy always paired with
identical capacities and transit times) we cannot directly apply his result; however,

there may be some way to generalize Queyranne’s approach to our case.
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Multicommodity Dynamic Network Flows. Multicommodity flows model
the transportation of several distinct types of flow through a single network; each
commodity is supplied by its own set of sources and demanded by its own set
of sinks. Multicommodity flow problems are typically much harder than their
single-commodity counterparts. In a traditional network without transit times, a
multicommodity flow problem can be formulated as a linear program and solved
in polynomial time, provided that a fractional solution is allowed. If integral flows
are required, then even the two-commodity flow problem is NP-complete; research
in this area has focused on approximation algorithms.

In a dynamic network, integral multicommodity flows are better known as
packet-routing, a topic of great interest. The tremendous difficulty and vital im-
portance of this problem have spurred a huge research effort. Flow theory has
not played much of a role. Research in this area typically involves heuristics with
empirical support, stochastic models with queuing theory, or deterministic models
with distributed on-line approximation algorithms.

It is an interesting open problem to develop a polynomial algorithm to solve
fractional multicommodity dynamic flow problems. Like their static counterparts,
fractional multicommodity dynamic flow problems can be formulated as linear
programs. In the dynamic case, however, the linear program corresponds to an
exponentially large time-expanded network, and so existing linear program solvers
do not suffice. One needs to take advantage of the fact that, despite its exponential
number of variables and constraints, this linear program has a simple underlying

structure.

Minimum-Cost Dynamic Network Flows. In the quickest transshipment
problem and its multicommodity extension, we know how long it takes flow to get
through each edge, and we want to drain the last unit of flow from the network
within some overall time bound. It is natural to extend these problems by con-

sidering also the cost of sending flow through each edge; then we want to drain
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the network not only within some overall time bound, but also within an overall
cost constraint, or budget. Unfortunately, Klinz and Woeginger [34] showed that
controlling both time and cost simultaneously leads to many NP-hard problems,
even in networks where controlling time or cost separately is trivial.

Suppose we model the roads of greater Los Angeles: the cost might be twenty-
five cents per mile, while the transit time is three minutes per mile. Each commuter
lives at a source node in the network and works at a sink node in the network.
Solving this minimum-cost multicommodity dynamic flow problem would indicate
how to route morning rush hour traffic so that the longest commute is as short as
possible and the total transportation costs are minimized.

The scenario above leads naturally to a special class of dynamic networks in
which the cost of each edge is proportional to its transit time. Given networks
in this class, we do not know minimum-cost dynamic network flow problems to
be NP-hard; unfortunately, we do not know any polynomial algorithms for these
problems either. We do not even know how to approximate dynamic flows with
time and budget constraints. It is an interesting open problem to consider (even
single-commodity) minimum-cost dynamic flow problems given proportional edge

costs and transit times.

Preemptive Network Scheduling. A non-preemptive schedule can interrupt
a job but can only restart that job at the beginning again; a preemptive schedule
is allowed to interrupt a job during execution and then restart it where it left
off. This distinction is pointless in the unit-size-job network scheduling problem
because there is no reason to interrupt one unit-size job for another (assuming all
data are integral). When job sizes are not uniform, however, then some preemptive
schedules may execute faster than any non-preemptive schedule. All the results of
Phillips et al [46] apply to non-preemptive scheduling (with no capacities). Despite
the fact that many systems schedule jobs preemptively, virtually nothing is known

about preemptive network scheduling. Rayward-Smith [50] proved that preemp-
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tive network scheduling is NP-hard, even when the network is a clique and all
interprocessor delays are two (or more). It is an interesting open problem to find a
good approximation algorithm for general preemptive scheduling in networks with

capacities and transit times.






Appendix A
Epilogue

Jack and Rachel relaxed aboard the Manetho, a nearby cargo ship that had picked
up the Combitanic’s distress call and recovered her passengers.

“That was wonderful, Jack,” Rachel cooed. “But I have one question: did you
actually implement one of the polynomial quickest transshipment algorithms, or
did you just use exhaustive search to compute all the tight sets of cabins on the
Combitanic?”

“I think that’s enough of my secrets for now,” Jack said. “My implementation
is proprietary. What I want to know is, who was that drunken sailor I found you
with?”

“Dirk Crandall... but he’s gone, Jack. You’re the only man for me. I love you

maximally.”

THE END
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