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Acylsugars are accumulated by several wild relatives of tomato and are implicated in mediating 

a variety of defensive plant-insect interactions. Acylsugars are produced at high levels by 

glandular trichomes of Solanum pennellii and the ability to produce acylsucrose acylsugars at 

elevated levels was previously bred into tomato using S. pennellii (Correll) D’Arcy accession 

LA716, leading to the creation of the benchmark line CU071026, which exhibits an acylsugar 

chemotype profile distinct from that of S. pennellii LA716. 

 Four QTL previously associated with changes in fatty acid profile (FA2, FA5, FA7, and 

FA8), were individually combined with the five introgressions of CU071026. Characterization of 

the resulting lines indicated alterations to acylsugar level and acylsugar chemotype by 

modulating the length, orientation and/or relative proportion of fatty acid acyl groups, leading to 

changes in overall acylsugar composition.  

 The combinatory effect of three of the QTL (FA2, FA7, and FA8) on acylsugar level and 

chemotype was evaluated by combining these QTL. Characterization of the resulting lines 

demonstrated that the fatty acid QTL interacted additively and epistatically to alter acylsugar 

level and chemistry, increasing the diversity of acylsugars accumulated. The acylsugar level and 

chemotype traits of the lines generally displayed high heritability and minimal environmental 

interaction.   

 Three acylglucose QTL (AG3, AG4, AG11), previously associated with control of 

acylsugar moiety, were utilized to generate lines with acylglucose accumulation. Two 

approaches were taken to generate these lines and characterization demonstrated that epistatic 

interactions among the three acylglucose QTL controlled acylsugar level and acylglucose 



 
 

accumulation and that the three QTL can result in moderate levels of acylglucoses, but that an 

additional QTL might be needed for high acylglucose accumulation. Additionally, 

characterization of the acylsugar chemistry revealed impact of the acylglucose QTL on the 

composition of accumulated acylsucroses, and potential impact on the fatty acid composition.  

 The knowledge and the germplasm from this dissertation will support the generation of 

high acylsugar-accumulating tomato lines and hybrids with increased acylsugar profile diversity. 

This germplasm can also contribute to elucidation of the mechanism of insect resistance 

mediated by acylsugars, and assist with identification of yet-unknown acylsugar synthesis 

genes. 
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CHAPTER 1 

 

Introgression of Acylsugar Chemistry QTL Modifies the Composition and Structure of 

Acylsugars Produced by High-accumulating Tomato Lines 

 

ABSTRACT 

 Acylsugars are important insect defense compounds produced at high levels by 

glandular trichomes of the wild tomato, Solanum pennellii.  The ability to produce acylsugars at 

elevated levels was bred into the tomato line CU071026.  This study utilized a marker-assisted 

backcross approach to individually introgress into CU071026 and to fine map the three 

quantitative trait loci (QTL) FA5QTL, FA7QTL, and FA8QTL, which were previously associated 

with changes in acylsugar chemistry.  Additional breeding with, and fine-mapping, the previously 

introgressed QTL FA2QTL was also conducted. The effect of these four QTL on acylsugar 

quality and quantity in the presence of the five introgressions of CU071026 was evaluated. 

Incorporation of the QTL altered acylsugar chemotype by modulating the length, orientation 

and/or relative proportion of fatty acid acyl groups. The resulting quantities of acylsugar 

produced in most of the new lines were similar to that of CU071026; however, introgression of 

FA5QTL reduced acylsugar levels. The acylsugar lines containing each QTL were characterized 

for acylsugar level, trichome abundance, and acylsugar chemistry through gas 

chromatography/mass spectrometry and liquid chromatography/mass spectrometry. The novel 

acylsugar chemotype lines created can contribute to elucidation of the mechanism of insect 

resistance mediated by acylsugars, and help with identification of yet-unknown genes 

contributing to acylsugar synthesis and diversity.  
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INTRODUCTION 

Human population growth, dietary needs, and a more variable climate demand increased, 

sustainable food production. Phytophagous insects and the viruses they vector are among the 

most significant challenges to maintaining and increasing crop quality and yield.  Plants have 

evolved myriad ways to combat threats from herbivores and pathogens, including the production 

of specialized metabolites that facilitate mediation of physiological stresses and also function as 

defenses. Breeding for metabolites that contribute to plant defense has not been a major focus 

of plant breeders since use of synthetic pesticides provided cheap and relatively effective 

control of insects.  However, increased awareness of economic and environmental costs of 

chemical control, and the desire to support sustainable agriculture, demand novel plant 

breeding strategies including utilization of natural defensive traits to control plant pests. The 

tremendous diversity of secondary metabolites implies ecological functions in stress mediation 

(Leckie et al. 2016), and provides opportunities and valuable tools to employ plant chemistry to 

improve host-plant resistance and advance food security (Dixon 2001; Schilmiller et al. 2008; 

Wink 2010).  

One promising class of secondary metabolites receiving increased attention is a family 

of sugar polyesters known as acylsugars. Acylsugars are accumulated by numerous species in 

the nightshade family (Solanaceae), such as wild potato (Solanum berthaultii), tobacco 

(Nicotiana tabacum), Petunia (Petunia hybrida), and several wild relatives of tomato, such as 

Solanum pennellii, S. galapagense, and S. habrochaites (Fobes et al. 1985; Burke et al. 1987; 

King et al. 1986, 1988; King and Calhoun 1988; Ohya et al. 1996; Kim et al. 2012; Schilmiller et 

al. 2015). Acylsugars are implicated in mediating a variety of plant-insect interactions, including 

feeding deterrence and oviposition preference (Severson et al. 1985, Goffreda and Mutschler 

1989; Hawthorne et al. 1992; Rodriguez et al. 1993; Juvik et al. 1994, Liedl et al. 1995, Fancelli 

et al. 2005; Leckie et al. 2016). In Nicotiana attenuata acylsugars play a role in indirect defense 

against Manduca sexta by serving as a volatile attractant to a ground hunting ant, 
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Pogonomyrmex rugosus, after undergoing hydrolysis in the caterpillar midgut (Weinhold and 

Baldwin 2011).  In tomato species, the acylsugars produced and secreted from glandular 

trichomes are composed of a sugar backbone (sucrose or glucose) to which several short to 

medium chain aliphatic acids are esterified. These fatty acids can be either straight-chained or 

branched (Fobes et al. 1985; Burke et al. 1987; Shapiro et al. 1994; Schilmiller et al. 2010, 

2012, 2016; Fan et al. 2016).  

Solanum pennellii (Correll) D’Arcy accession LA716 accumulates substantial amounts of 

acylsugars which have been shown to effectively control many insects and provides a promising 

source of direct insect resistance (Goffreda and Mutschler 1989; Hawthorne et al. 1992; 

Rodriguez et al. 1993; Juvik et al. 1994; Shapiro et al. 1994; Liedl et al. 1995 that can be 

transferred to tomato (Mutschler and Wintermantel 2006, Leckie et al. 2012). Efforts to transfer 

acylsugar production from S. pennellii LA716 into tomato led to the creation of the Cornell 

benchmark line, CU071026, which accumulates ca. 15% the level of acylsugar of S. pennellii 

LA716 (Leckie et al. 2012).  CU071026 contains five introgressions from LA716 on 

chromosomes 2, 3, 7 and 10 (called AS2, AS3, AS7, AS10.1, and AS10.2, respectively; see 

Supplementary Table S1 of Leckie et al. 2012 for markers and map positions of the S. pennellii 

LA716 introgressions in CU071026).  Although the level of acylsugars accumulated by 

CU071026 and its sister lines is lower than the extremely high levels of S. pennellii LA716, the 

level of acylsugars produced by these tomato lines is sufficient to significantly reduce Bemisia 

tabaci oviposition on lines grown in field cages (Leckie et al. 2012) and acylsugar producing 

hybrids also reduced the incidence of tomato infectious chlorosis virus in fields with heavy 

pressure from the whitefly Trialeurodes vaporariorum (Mutschler and Wintermantel 2006).   

Solanum pennellii accessions have various acylsugar chemotypes that vary with 

geographical location (Shapiro et al. 1994; Ning et al. 2015), which suggests the possibility of 

adaptation and selection of specific metabolic profiles in response to local herbivore pressures. 

The acylsugars of S. pennellii LA716 are predominantly acylglucoses with a characteristic array 
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of fatty acids including 2-Methylpropanoate (i-C4), 2-Methylbutanoate (ai-C5), 3-

Methylbutanoate (i-C5), 8-Methylnonanoate (i-C10), n-Decanoate (n-C10), and n-Dodecanoate 

(n-C12) (Burke et al. 1987; Shapiro et al. 1994; Blauth et al. 1999). In contrast, the profile of 

CU071026, which was bred using S. pennellii LA716, is exclusively acylsucroses with 

predominantly ai-C5, i-C5 and n-C12 fatty acids, and only trace or undetectable levels of i-C4, i-

C10 and n-C10 (Leckie et al. 2014). The fatty acid profile of CU071026 is similar to that of 

cultivated tomato, which predominantly accumulates i-C5, ai-C5 and n-C12 fatty acids as well 

(Schilmiller et al. 2010 and Ghosh et al. 2014). Work with purified acylsugars from CU071026 

and several S. pennellii accessions, including S. pennellii LA716, indicates that purified 

acylsugars of CU071026 are less effective at equimolar levels than purified acylsugars of some 

S. pennellii accessions at controlling whitefly (Bemisia tabaci) and western flower thrips 

(Frankliniella occidentalis) feeding and oviposition in laboratory assays (Leckie et al. 2016), 

suggesting that insect control of CU071026 or derived lines could be improved by altering their 

acylsugar chemotypes.  QTL that affect acylsugar chemistry have been identified (Blauth et al. 

1998, 1999; Schilmiller et al. 2010, 2012, 2015; Leckie et al. 2013, 2014; Fan et al. 2016) and 

shown to alter the chemotype of acylsugars accumulated in tomato lines (Schilmiller et al. 2010) 

such as the mono-introgression lines (ILs) created by Eshed and Zamir (1994, 1995).  Addition 

of QTL that alter acylsugar chemotype into CU071026 could provide a means of generating 

acylsugars with stronger or broader insect resistance than that of CU071026.  

The objectives of this study were to individually introgress several previously identified 

acylsugar chemotype QTL into CU071026 to create a set of tomato sister lines and extensively 

characterize these lines for alterations in the acylsugars accumulated through gas 

chromatography mass spectrometry (GC-MS) and liquid chromatography mass spectrometry 

(LC-MS).  The ILs were identified as an optimum source of the desired S. pennellii LA716 

acylsugar chemotype QTL for transfer to CU070126. Three QTL: fatty acid 5 (FA5QTL) and 

fatty acid 7 (FA7QTL) (identified in Leckie et al. 2014), and fatty acid 8 (FA8QTL) (identified in 
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Blauth et al. 1999; Schilmiller et al. 2010; and Leckie et al. 2014), previously shown to alter 

acylsugar chemistry, were introgressed into CU071026 to test the effect of these QTL in an 

acylsugar-producing tomato line, both to confirm function, and to create tomato lines for testing 

against insects. Identification of plants with recombinations within these introgressions during 

transfer allowed fine mapping of the QTL within them. An additional QTL, fatty acid 2, 

(FA2QTL), on chromosome 2, was previously introgressed into CU071026 (Leckie et al. 2014); 

additional selection was performed to create a FA2 acylsugar line (FA2/AS). The acylsugars 

accumulated by the altered acylsugar chemotype lines were characterized by acylsugar assay, 

which measures acylsugar level, by GC-MS analysis, which determines relative proportions of 

the fatty acids present, and by LC-MS characterization, which determines the relative 

proportions of acylsugar molecules accumulated with information concerning the number and 

length of fatty acids esterified to the sugar backbone. The implications of these data are 

discussed, including whether adding the acylsugar chemotype QTL affects levels of acylsugars 

accumulated, leads to greater diversity in the fatty acids esterified to the sugar molecules, 

and/or also in changes in the specific acylsugars accumulated. 

 

MATERIALS AND METHODS 

 

Plant materials 

CU071026 is an acylsugar-producing tomato line bred using S. pennellii LA716 by the Cornell 

University tomato breeding program, which is the source of the seed used.  Seeds from S. 

pennellii LA716 were produced by the Cornell University tomato breeding program, derived from 

seed originally obtained from the Tomato Genetics Resource Center (TGRC) at the University of 

California at Davis.  The modified acylsugar tomato line FA2/AS was developed from CU071026 

by the Cornell University tomato breeding program, which is the source of FA2/AS seed.  
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A series of tomato lines with individual introgressions of S. pennellii LA716 DNA in the 

processing tomato M82 (a sub-selection of UC82-B) were produced by Eshed and Zamir (1994, 

1995).  Based on prior QTL analysis the introgression line IL2-4 was used by the Cornell 

University tomato breeding program as the source of FA2QTL (Leckie et al. 2014).  Similarly, 

we chose the introgression lines IL5-3, IL7-4-1 and IL8-1-1 to use as sources of the FA5, FA7 

and FA8 QTLs for transfer. The seed of IL5-3, IL7-4-1 and IL8-1-1 were produced at Cornell 

University, derived from seed obtained from D. Zamir (Hebrew University of Jerusalem, 

Rehovot, Israel).  Seed of M82 was produced by the Cornell University tomato breeding 

program, derived from seed originally obtained from the Tomato Genetics Resource Center 

(TGRC) at the University of California at Davis. 

 

Plant growth conditions 

Seed were germinated in 32 cell flat cups with LM1 (Lambert, Rivière-Ouelle, Quebec, Canada) 

mix until ca. five weeks of age, during which time any necessary marker based genetic analysis 

could be completed.  Selected plants were transplanted to eight in. clay pots of LM111 

(Lambert, Rivière-Ouelle, Quebec, Canada) mixed with turface (Turface Athletics, Buffalo 

Grove, IL) in a 1:1.8 ratio, with 0.3% unimix (10-5-10) and calcium sulfate additive. Plants for all 

populations and experiments were grown in a greenhouse in the Guterman Bioclimatic 

Laboratory and Greenhouse Complex at Cornell University in Ithaca NY, and were typically 

maintained at 29°C: 20°C day night temperatures with a 16:8 hr light:dark photoperiod.  

 

Breeding scheme for transfer of QTL 

For transfer of each QTL an IL line was selected that putatively contained the QTL of interest. 

Selection of IL line was based on marker data from IL lines compared to QTL marker mapping 

intervals identified in Leckie et al. (2014). The selected IL line was crossed as the female parent 

to CU071026, and the resulting F1 plant backcrossed to CU071026 to create the BC1F1 
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populations (CU071026 x (IL line x CU071026). Selection of plants from the BC1F1 populations 

were based on markers within the five S. pennellii LA716 introgressions possessed by 

CU071026 and markers within the additional introgression being introduced into CU071026.  

The original introgressions of CU071026 were selected for homozygosity, using markers, to 

maintain the CU071026 introgressions in the new line.  The markers within the new IL 

introgression were utilized to select for both presence of the new introgressions, and for plants 

with recombinations within the new introgressions, to reduce introgression sizes and fine map 

the new QTL within these introgressions.  

 

Genotypic screening 

Molecular markers utilized in all populations to select for CU071026 regions are provided in 

Table 1.1. Identity and location of markers used to introgress FA5QTL, FA7QTL, and FA8QTL 

into the presence of the five CU071026 introgressions are provided in Table 1.2.  

 

 
Table 1.1  Markers and map locations delineating CU071026 introgressions based on 
Tomato-EXPEN SL2.50 ITAG2.4 

Markera Chromosome Start Position (Bp) End Position (Bp)  

C2_At4g37300 2 53,834,679 53,835,655  

C2_At3g26900  2 54,947,728 54,950,298  

solcap_snp_sl_63290b 3 1,390,271 1,390,304  

TG130  3 1,755,716 1,756,224  

C2_At5g24120  3 1,914,316 1,920,336  

C2_At3g02420  3 11,509,743 11,514,318  

C2_At5g23060  3 64,448,262 64,451,474  

C2_At3g15430  7 65,800,017 65,803,497  

TG303  10 1,773,625 1,774,114  

C2_At5g60990  10 1,853,562 1,864,123  

SSR85  10 61,580,912 61,581,577  

C2_At3g12290  10 62,141,901 62,147,562  
a Full marker information provided by The Sol Genomics Network (SGN; http://solgenomics.net/) 
b A cleaved amplified polymorphic sequence (CAPS) marker was designed from this SNP 
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Table 1.2. Markers and map locations used to introgress FAQTL based on Tomato-
EXPEN SL2.50 ITAG2.4 

Markera Chromosome Start Position (Bp)    End Position (Bp) 

solcap_snp_sl_51242b 5 16,840,699 16,840,733 

T1601 5 41,511,439 41,512,805 

solcap_snp_sl_69382b 5 54,980,534 54,980,568 

solcap_snp_sl_29b 5 60,842,571 60,842,605 

C2_At1g10500 5 62,107,578 62,107,796 

solcap_snp_sl_25859b 5 62,738,979 62,739,013 

TG23 5 63,347,293 63,348,190 

C2_At2g26590 7 6,878,227 6,899,018 

C2_At4g29490 7 32,758,106 32,807,954 

solcap_snp_sl_52215b 7 38,290,705 38,290,739 

solcap_snp_sl_70150b 7 51,197,900 51,197,934 

solcap_snp_sl_100893b 7 54,044,220 54,044,254 

C2_At2g30520 7 56,723,902 56,725,342 

U221657 8 3,279,725 3,283,085 

solcap_snp_sl_51919 b 8 3,781,348 3,781,382 

solcap_snp_sl_51931 b 8 4,103,545 4,103,579 

solcap_snp_sl_51969 b 8 4,744,567 4,744,601 

solcap_snp_sl_69286 b 8 5,597,495 5,597,529 

solcap_snp_sl_69336 b 8 9,125,184 9,125,218 

C2_At5g27390 8 22,850,567 22,857,802 

C2_At1g30360 8 27,897,600 27,905,822 

C2_At4g33030 8 52,633,704 52,637,369 
a Full marker information provided by The Sol Genomics Network (SGN; http://solgenomics.net/). 
b A cleaved amplified polymorphic sequence (CAPS) marker was designed from this SNP 

 

Phenotypic screening 

Acylsugar level: Levels of acylsugar for plants of the controls and of populations in the 

development of the FA/AS lines were measured on 9-10 weeks of age plants using the method 

of Leckie et al. (2012), which is a modification of the prior method described by Goffreda et al. 

(1990), replacing the Nelson reaction originally used to measure sugar (Goffreda et al. 1990) 

with a modified peroxidase/glucose oxidase assay (Setter et al. 2001) that measures glucose. 

For these replicated screens, four plants of each genotype were sampled, collecting four 

samples of two lateral leaflets from leaves that were two to three nodes from the apex of stems.  

Each two leaflet sample was each placed in wide mouth plastic scintillation vials and completely 



9 
 

dried in a seed dryer at 290 C. Fully dried leaflets were rinsed with 3 ml of methanol containing 

methyl heptanoate (30 mg L-1), an internal standard for fatty acid analysis. The assay uses 

100ul of each rinsate.  Leaflets were redried immediately after rinsing and weighed, so that 

acylsugar level could be expressed per weight dried leaf.  Dried leaf weights ranged from about 

50 to 90 mg.  Acylsugar level data were analyzed using ANOVA in JMP Pro 11 (SAS Institute 

Inc. 2014), and means were separated by Tukey-Kramer HSD (p < 0.05). Prior to analysis, 

acylsugar level data were Ln(x) transformed to improve normality.  

Fatty acid characterization: Percentages of each type of fatty acids from each sample were 

ascertained by collecting pairs of young, fully expanded primary lateral leaflets, rinsing leaflets 

with 3 ml of methanol containing methyl heptanoate (30 mg L-1) as an internal standard, and 

then utilizing transmethylation/GC-MS analysis, as described in Leckie et al. (2014). Peak areas 

of the resulting chromatograms were calculated using Varian MS Workstation Version 6.9.1 

(Agilent Technologies, Santa Clara, CA) and levels of respective fatty acids were determined 

through comparison with levels of the internal standard to generate relative proportions of each 

fatty acid. Percent fatty acid GC data was analyzed using ANOVA in JMP Pro 11 (SAS Institute 

Inc. 2014), and means separated by Tukey-Kramer HSD (p < 0.05). Prior to analysis, data for i-

C4, n-C10 and i-C11 (9-methyldecanoate) aliphatic acids were cube root transformed and the 

data for ai-C5 and i-C13 (11-methyldodecanoate) were log10(x+1) transformed to improve 

normality. 

Heritability estimation: Broad sense heritability estimates were generated by using acylsugar 

level and fatty acid data from 2014 and 2015 over several environments. Heritability for 

acylsugar level and the major fatty acids was calculated according to Holland et al. (2003) using 

variances obtained from the lmer function in the lme4 package in R (Bates et al. 2014) where 

genotype, location, year, genotype by location, and genotype by year were treated as random 

effects.  
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Acylsugar composition characterization:  LC-MS was utilized to analyze the composition of 

acylsugars accumulated in each line. Three samples of a single primary lateral leaflet per 

genotype were taken and extracted with a buffer consisting of isopropanol:acetonitrile:water 

(3:3:2 v/v/v) containing 0.1% formic acid and 10 uM of propyl-4- hydroxybenzoate, an internal 

standard, and processed as described in Schilmiller et al. (2015). Acylsugar results from the LC-

MS analysis are described using the nomenclature of Schilmiller et al. (2010), in which the 

acylsugar name S4:17 indicates a sucrose backbone sugar, with four fatty acid acyl chains that 

have a total of 17 carbons. LC-MS data were analyzed by hierarchical clustering with a Pearson 

correlation using a pairwise average-linkage clustering method for both genotypes and 

acylsugars using the hierarchical clustering tools provided by GenePattern Reich et al. (2006).  

Trichome density:  Since acylsugars are secreted by glandular trichomes, the density of type IV 

and type VI trichomes were evaluated for each fatty acid line to provide further characterization 

of factors related to acylsugar production and defense. Four plants of each fatty acid line were 

simultaneously grown in a greenhouse and sampled at 9-10 weeks of age for trichome counts.  

Two young, expanding, primary lateral leaf samples were taken from each plant; two interveinal 

areas on the abaxial side of the leaflet from each sample were used to count trichomes. 

Trichomes were visualized with a Carl Zeiss 475003, 9901 microscope using 63x power. An eye 

piece grid was utilized to facilitate counting, and a 5x5 section of the grid, where each square 

measured 0.0256mm2 was used to count trichomes, for a total counting area of 0.64mm2. Only 

those trichomes whose base fell in the 5x5 grid were counted. Trichome counts were later 

adjusted to number of trichomes per mm2 and trichome density data was analyzed using 

ANOVA in JMP Pro 11 (SAS Institute Inc. 2014), and means separated by Tukey-Kramer HSD 

(p < 0.05). Prior to analysis, data for density of Type IV and VI trichomes were log10(x+1) 

transformed to improve normality. 
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RESULTS AND DISCUSSION 

 

Introgressing FA7QTL 

FA7QTL was readily transferred into CU071026 and fine-mapped due to the dominant nature of 

this QTL. FA7QTL was putatively localized in and introgressed from IL7-4-1, which possesses a 

56.3 Mbp chromosome 7 introgression from S. pennellii LA716 in the M82 background (Long et 

al. 2013).  A 380 individual (CU071026 x (CU071026 x IL7-4-1)) BC1F1 population was used to 

identify, through marker assisted selection (MAS), those plants that were homozygous for the 

majority of the five CU071026 S. pennellii introgressed regions, and were also heterozygous for 

the IL7-4-1 introgression. In addition, one recombinant BC1F1 plant (131285-176) was identified 

that was homozygous for the CU071026 introgressions AS3, AS10.1 and AS10.2 and 

heterozygous for the CU071026 introgressions AS2 and AS7, as well as heterozygous for a ca 

3.2 Mb sub-region of the IL7-4-1 introgression.  

 BC1F1 plant 131285-176 and sibling plants containing the entire IL7-4-1 introgression 

and homozygous for AS2, accumulated acylsugar levels at least as high as that of the 

CU071026 control and selections homozygous for AS2 but lacking the entire IL7-4-1 

introgression (data not shown). Additionally, 131285-176 and plants containing the entire IL7-4-

1 region produced acylsugars with an increase in n-C10 and a decrease in n-C12 fatty acids 

compared to selections lacking the IL7-4-1 introgression (Figure 1.1) which is consistent with 

the impact of FA7QTL on acylsugar fatty acid profile as described by Leckie et al. (2014).  

Specifically, BC1F1 plants that did not possess the IL7-4-1 introgression averaged 1.2% n-C10 

and 45.6% n-C12, while BC1F1 plants possessing the IL7-4-1 introgression accumulated on 

average 5.3% n-C10 and 38.0% n-C12. The GC fatty acid profile of these BC1F1 plants 

confirms that the full IL7-4-1 introgression contains FA7QTL, that the subintrogression in 

131285-176 still possesses FA7QTL, and that FA7QTL functions in a background that contains 

the five introgressions of CU071026.  These results also support those of Leckie et al. (2014), 
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which indicate that FA7QTL reduces the extension fatty acid products by two carbons. The level 

of acylsugars accumulated was not compared among the selections because the CU071026 

introgressions (AS2 and AS3) are recessive, and were segregating, thus confounding any effect 

of the IL7-4-1 introgression on acylsugar level in this generation.  
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Figure 1.1. Markers, genotypes and selected fatty acid data, diagnostic for the presence of 
FA7QTL, in CU071026 and selected individuals out of a BC1F1 population showing the relative 
location of FA7QTL as past snp_100893 (solcap_snp_sl_100893) and tightly linked to 

C2_At2g30520. N-C10 fatty acid cube root transformed prior to analysis. ≈ represents a large 

physical distance. Means followed by different letters within a column are significantly different 
at P < 0.05. 
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The purpose of the BC1F2 population was to obtain plants homozygous for FA7QTL and 

to observe the effect of this QTL in the homozygous condition in an acylsugar background, 

which has not previously been reported. The 131285-176 individual that was homozygous for 

the AS3 and AS10 CU071026 introgressions, and heterozygous for the AS2 and AS7 

introgressions of CU071026 was chosen for production of a BC1F2 population. In this BC1F1 

selection, the AS7 introgression and sub IL7-4-1 introgression were in trans configuration, so a 

recombination between them was necessary to get both regions homozygous in the BC1F2. 

Individuals from a 188 plant BC1F2 population were selected by MAS and grown to obtain 

plants that were homozygous for the AS2 and AS7 CU071026 regions as well as for the ca. 3.2 

Mbp subsection of the IL7-4-1 introgression. We screened for plants in which both of the 

parental gametes were recombinant between AS7 and FA7 so that the plants were homozygous 

for both AS7 and the IL7-4-1 sub-region; five of the 188 plants had the desired recombinations 

so that the AS7 and sub IL7-4-1 regions were both homozygous and 2 of these plants were also 

homozygous for AS-2. These two individuals, as well as a plant that was homozygous for the 

AS2 and sub IL7-4-1 regions but had lost AS7, all produced high levels of acylsugar and 

accumulated increased n-C10 and decreased n-C12 fatty acids, which suggests the AS7 

introgression is not necessary to maintain acylsugar level and has no impact on the fatty acid 

profile (Table 1.3). The GC fatty acid profile of tomato plants homozygous for the S. pennellii 

LA716 introgressions within CU071026, and also for the ca 3.2 Mbp sub IL7-4-1 region is 

largely the same for plants heterozygous for the entire or sub IL7-4-1 introgression, which 

suggests that FA7QTL is largely dominant in its impacts (Figure 1.1 and Table 1.3).  The two 

plants homozygous for the ca. 3.2 Mbp FA7QTL sub-region containing both AS7 and FA7QTL 

as well as for the other four introgressions of CU071026 were observed in the greenhouse and 

one with higher seed set was selected as the initial plant to establish the line FA7/AS.  
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Table 1.3. Haplotype summary of the homozygous effect of FA7QTL on 
acylsugar level and fatty acid profile in a BC1F2 population 

   QTLab 
nc 

Acylsugar as 
percent of 

CU071026 (%) 

     Selected fatty acid profile (%) 

FA7 AS7 i-C4 ai-C5 i-C5 n-C10 n-C12 

1 3 2 101.5 1.6 12.3 56.5 2.7 26.5 

3 1 1 126.5 1.6 14.5 50.0 10.8 22.8 

3 3 2 116.6 1.1 15.4 56.3 9.5 17.4 
a 1: locus homozygous for S. lycopersicum alleles; 3: locus homozygous for S. pennellii LA716 alleles 
b Haplotype 1 3 are selections lacking the IL7-4-1 introgression 
c Number of plants identified/tested with respective haplotype 

 

GC data from additional recombinant plants in FA7QTL BC1F1 fine-mapped the location 

of FA7QTL within the original ca. 56.3 Mbp IL7-4-1 introgression and facilitated selection of a ca 

3.2 Mbp sub-region carrying FA7QTL. All recombinant plants that were heterozygous for at least 

marker C2_At2g30520 (Tomato SL2.50 ITAG2.4 Solgenomics.net) (56,723,010 - 56,725,124 

bp), near the bottom of the IL7-4-1 introgression, accumulated acylsugar with increased n-C10 

(Figure 1.1).  Three recombinant plants that were heterozygous for most of the introgression, 

but that had lost the region near C2_At2g30520, accumulated low levels of n-C10 and higher 

levels of n-C12; averages of 1.4% and 47.7% respectively. Together these data indicated 

FA7QTL was tightly linked with the C2_At2g30520 marker, and that FA7QTL was between 

dCAPS_100893 (derived from solcap_snp_sl_100893) (ca. 54,043,669 - 54,044,558) and at or 

extending slightly past C2_At2g30520. Later genotyping utilizing genotyping by sequencing 

indicated the sub FA7QTL introgression ranged from a single nucleotide polymorphism (snp) at 

55,977,484 bp to a snp at 59,210,920 bp, or ca. 3.2 Mbp in length.     

 

Introgressing FA8QTL 

Introgressing FA8QTL was more challenging due to the recessive nature of this QTL.  FA8QTL 

was putatively localized in and transferred from IL8-1-1 which possesses a ca. 50 Mbp 

chromosome 8 introgression from S. pennellii LA716 (Long et al. 2013).  A 184 individual 

BC1F1 population (CU071026 x (CU071026 x IL8-1-1)) was used to identify, through MAS, 
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plants homozygous for the CU071026 regions and heterozygous for the IL8-1-1 introgression. 

While the BC1F1 population provided a number of recombinants for the IL8-1-1 introgression, 

we could not use GC data from BC1F1 plants to select recombinants that possessed FA8QTL, 

since the location of FA8QTL within the IL8-1-1 introgression was unknown and the effect of 

FA8QTL on the GC profile largely recessive (Leckie et al. 2014).  Therefore, to ensure 

maintenance of FA8QTL, we selected a plant, 121225-111, which was heterozygous for the full 

length IL8-1-1 introgression and homozygous for all five CU071026 regions, to create a BC1F2 

population and test QTL impact. 

The purpose of the BC1F2 populations was to confirm that FA8QTL was contained 

within IL8-1-1 and observe its effect on acylsugar level and fatty acid profile in the presence of 

the five CU071026 introgressions. Seeds from the BC1F1 selection, 121225-111, were used to 

create a 67 plant FA8QTL BC1F2-(A) population, from which 16 plants were identified that were 

homozygous for the entire IL8-1-1 introgression. The five of those homozygous IL8-1-1 

selections that were tested by GC analysis accumulated an average of 21.2% i-C4 and 12.0% i-

C5 fatty acids (Figure 1.2). Conversely, CU071026 accumulated 1.4% i-C4 and 36.6% i-C5; 

similarly four BC1F2-(A) plants that lost the IL8-1-1 region accumulated 1.2% i-C4 and 35.0% i-

C5.  These results demonstrate the principle effect of FA8QTL, which is a large increase in i-C4 

and a simultaneous decrease in i-C5 fatty acids. Four plants heterozygous for the IL8-1-1 

introgression accumulated 1.9% i-C4 and 33.8% i-C5 fatty acids, further confirming the function 

of FA8QTL is largely recessive. BC1F2-(A) selections homozygous for the full length FA8/QTL 

introgression appeared to accumulate slightly lower levels of acylsugars than that of CU071026 

(Figure 1.2), which could either be due to linkage drag in the ca. 50 Mbp IL8-1-1 introgression or 

to the impact of the QTL itself. Data from a BC1F2 (A) population confirm that IL8-1-1 contains 

FA8QTL, and that it functions in the presence of the five CU071026 introgressions.  
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Figure 1.2. Markers, genotypes and selected fatty acid data, diagnostic for the presence of 
FA8QTL, in CU071026 and selected individuals out of a BC1F2 population showing the relative 
location of FA8QTL between U221657 and snp_51969 (solcap_snp_sl_51969). Two additional 
markers run on all plants, (C2_ At5g27390 at 22.8 Mbp and C2_ At1g30360 at 27.9 Mbp) 
revealed no recombinations between snp_51969 and C2_At4g33030.  i-C4 data cube root 
transformed prior to analysis to improve normality. ≈ represents a large physical distance. 
Means followed by different letters within a column are significantly different at P < 0.05. 
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Recombinant plants from the BC1F2 (A) population also allowed mapping of FA8QTL to 

a ca. 1.5 Mbp region (Figure 1.2). The average i-C4 and i-C5 fatty acid proportion for 

recombinant plants 131095-040 and 131095-066 was 1.9% and 38.2% respectively, which was 

very similar to individuals heterozygous for the entire introgression, indicating FA8QTL was 

located in the heterozygous region both plants shared. This shared heterozygous region 

containing FA8QTL was ca. 1.5 Mbp from marker U221657 (3,280,372 - 3,283,363 bp) to 

solcap_snp_sl_51969 (4,744,567 - 4,744,601 bp) (Tomato SL2.50 ITAG2.4 Solgenomics.net). 

This location is consistent with the QTL on chromosome 8 identified in Blauth et al. (1999) for 

presence of iso-C4 fatty acids in acylsugars. One of the BC1F2 (A) individuals homozygous for 

the entire introgression that also set seed well in the greenhouse was selected to establish the 

new line designated FA8/AS.  

Recent work by Ning et al. (2015) identified a non-functional isopropylmalate synthase 

(Solyc08g014230) in the S. pennellii LA716 introgression contained in the IL8-1-1 line, and 

demonstrated that this gene is responsible for an increase in i-C4 fatty acids in the acylsugars of 

this IL line. This gene, originally integral in leucine biosynthesis, is critical for production of i-C5 

Coenzyme A (CoA), a precursor of i-C5 fatty acids. A non-functional copy of this enzyme leads 

to an increase in i-C4 fatty acids, through an increase in i-C4 CoA, the precursor of i-C4 fatty 

acids. The location of Solyc08g014230 (Tomato SL2.50 ITAG2.4 Solgenomics.net) (3,945,013 - 

3,955,435 bp), falls within our proposed region for FA8QTL, and is likely the gene responsible 

for this QTL.  

With the success in fine-mapping FA8QTL, we attempted to use this information to 

decrease the size of the IL8-1-1 introgression in an acylsugar breeding line. Because neither 

recombinant plant from FA8QTL BC1F2 (A) had the type of subintrogression needed to produce 

the desired plant, we returned to a recombinant individual, 121225-31, from FA8QTL BC1F1 

which had a recombination such that it had lost at least 40 Mbp of the IL8-1-1 introgression, but 

still possessed the top ca. 6 Mbp of the IL8-1-1 introgression with FA8QTL. Plant 121225-31 



19 
 

was still heterozygous for the AS3 and AS10.1 regions of CU071026. Seeds from 121225-31 

were sown to generate a 377 individual FA8QTL BC1F2 (B) population. Through MAS we 

identified individuals that were homozygous for both CU071026 regions, but we observed 

extreme segregation distortion in this population for the sub IL8-1-1 region, specifically 282 

plants heterozygous for the sub IL8-1-1 region, 92 plants that lost the region, and a complete 

lack of plants homozygous for the S. pennellii copy of the sub IL8-1-1 region. This distortion was 

contrary to the segregation we observed in the BC1F2 (A) population, where the full length IL8-

1-1 region segregated normally, however it is consistent with a segregation distortion trait 

previously noted for chromosome 8 from S. pennellii (Eshed and Zamir 1994).  These results 

suggests that some genetic characteristic of BC1F1 plant 121225-111, which was the parent of 

FA8QTL BC1F2 (A) population, allowed the normal segregation of full IL8-1-1 chromosome 8 

introgression in this population, but the genetic characteristic was not present in BC1F1 plant 

121225-31, the parent of FA8QTL BC1F2 (B) population. This pattern is further supported by 

results of additional progenies derived from BC1F2 (B) population.  The self-progeny of one 

BC1F2 (B) plant (131254-066), which was homozygous for the CU071026 regions and 

heterozygous for only the sub IL8-1-1 region, produced a 189 plant BC1F3 population with 

extreme distortion for the sub IL8-1-1 region (54 plants homozygous for tomato alleles, 134 

heterozygous, but no plants homozygous for S. pennellii alleles within the sub IL8-1-1 region).  

Furthermore, a BC1F3 plant (131544-003) heterozygous for the IL8-1-1 sub-region, and 

homozygous for all CU071026 regions, was crossed as a female to a line with the full length 

IL8-1-1 introgression selection from the FA8QTL BC1F2 (A) population. In this cross, both 

parental plants were homozygous for the CU071026 regions therefore the only S. pennellii 

LA716 region segregating was the sub IL8-1-1 introgression. The 64 plant F1 progeny from this 

cross also showed observed extreme distortion, such that all individuals were found to be 

heterozygous for the sub IL8-1-1 region, with a complete lack of individuals homozygous for S. 

pennellii LA716 from IL8-1-1.  
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In creating the IL lines, Eshed and Zamir (1994) noted the male gametes possessing the 

chromosome 8 S. pennellii LA716 alleles were eliminated in the original line IL8-1; the original 

introgression in line IL8-1 was maintained by selecting and self-pollinating plants heterozygous 

for the introgression.  Later, line IL8-1-1, was released, in which the chromosome 8 

introgression was homozygous and which was used in our work.  It was initially thought that the 

IL8-1-1 introgression was reduced in size from that of IL8-1, perhaps eliminating a region 

responsible for the segregation distortion. However more recent characterization by SSR 

markers indicates that IL8-1 and IL8-1-1 contain the same length S. pennellii LA716 

introgression for chromosome 8 (Long et al. 2013). Additionally, recent genotyping of the 

original Zamir ILs revealed that IL8-1 and IL8-1-1 were identical for 3503 snps and in particular 

shared 85 snps in common on chromosome 8 from S. pennellii LA716 (Sim et al. 2012).  The 

fact that IL8-1-1 introgression can be homozygous but is putatively the same length as IL8-1, 

which cannot be homozygous, might suggest the line IL8-1-1 contains a gene elsewhere in its 

genome which is necessary to allow normal segregation and homozygosity for the IL8-1/IL8-1-1 

introgression.  The loss of the normal segregation in the BC1F2 population (B) that was derived 

from IL8-1-1 could suggest that the factor is not within region of the IL8-1-1 introgression.   

 

Introgressing FA5QTL 

The transfer of FA5QTL led to complex results due to its interaction with acylsugar level.  

Schilmiller et al. (2010, 2016) through LC-MS identified a dominant QTL in IL5-3 that lowered 

acylsugar levels compared to M82. Additionally, Leckie et al. (2012, 2014) identified QTL on 

chromosome 5 with overlapping genetic intervals that affected fatty acid profile and also 

reduced acylsugar level. It was not possible in these studies to determine if the results were due 

to two linked QTL or due to the same QTL.  We introgressed FA5QTL into CU071026 using the 

line IL5-3, which possesses a 52.6 Mbp chromosome 5 introgression from S. pennellii LA716 

(Long et al. 2013).  Plants that were homozygous for the majority of the five S. pennellii 
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introgressed regions of CU071026, and also heterozygous for the IL5-3 introgression were 

selected by MAS from a 380 plant (CU071026 x (IL-5-3 x CU071026)) BC1F1 population.  The 

recombinant BC1F1 plant, 131075-252, was homozygous for S. pennellii introgressions AS2, 

AS7 and AS10.1, and heterozygous for AS10.2, the top of AS3 from CU071026, and a ca. 3.5 

Mbp sub-region of the IL5-3 introgression. 131075-252 and plants heterozygous for the entire 

IL5-3 introgression produced acylsugars with an increase in n-C12 and decrease in i-C5 fatty 

acids (data not shown), which is largely consistent with the impact of FA5QTL on acylsugar fatty 

acid profile as described in Leckie et al. (2014). BC1F1 plants containing the IL5-3 introgression 

generally accumulated far less acylsugar than plants that lost the introgression, but it was 

difficult to measure the effect of FA5QTL on acylsugar level since the CU071026 regions, which 

also affect total acylsugar, were segregating in the population, and so plants differ for 

presence/homozygosity of those region. The GC profile of the BC1F1 plants confirms that IL5-3 

possesses FA5QTL, that the subintrogression in 131075-252 still contains FA5QTL, and that 

the QTL functions to alter the fatty acid profile in the presence of the five introgressions of 

CU071026.  

Acylsugar and GC data from selected BC1F1 plants indicated that marker 

C2_At1g10500, on chromosome 5, from 62,107,578 - 62,107,796 bp in the 2.5 tomato genomic 

build (Tomato SL2.50 ITAG2.4), is strongly associated with both decreased acylsugar level and 

also the change in the fatty acid profile, supporting the idea that either two very closely linked 

QTL or pleiotropy of one QTL is responsible for both of these traits.  It was important to progress 

to the BC1F2 to obtain lines with further reduction in introgression size, to attempt to separate 

the QTL for acylsugar level and fatty acid profile, if two linked QTL were controlling these traits. 

The purpose of the BC1F2 population was to observe the effect of FA5QTL when 

homozygous both on acylsugar level and fatty acid profile, which has not previously been 

reported in an acylsugar accumulating background, as well as to identify recombinants that 

could indicate whether the acylsugar level and fatty acid phenotypes were governed by linked 
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QTL or pleiotropy. Seeds from the 131075-252 BC1F1 plant were used to produce a BC1F2 

population; this BC1F1 plant was heterozygous for ca. 3.5 Mbp of the original ca. 52.6 Mbp IL5-

3 introgression, extending from ca. solcap_snp_sl_29 (60,842,588 - 60,842,588 bp) to TG23 

(63,347,423 - 63,348,074 bp) (Tomato SL2.50 ITAG2.4 Solgenomics.net), and was also 

heterozygous for AS10.2 and the top of AS3. Individuals from a 278 plant BC1F2 population 

were selected by MAS to obtain plants that were homozygous for the AS10.2 and top of AS3, 

and heterozygous or homozygous for presence or absence of the ca. 3.5 Mbp IL5-3 sub-region. 

The acylsugar level of plants homozygous for the 3.5 Mbp IL5-3 sub-region is largely the same 

for plants heterozygous for the sub IL5-3 introgression, which suggests that FA5QTL is largely 

dominant in its impacts on total acylsugar level (Figure 1.3). Specifically, individuals that had 

lost the IL5-3 sub-region (131245-008, 131245-045, and 131245-072) accumulated acylsugars 

about the level of CU071026, while plants that were heterozygous (131245-12, 131245-97, and 

131245-105) and homozygous (131245-17, 131245-32, 131245-78) for the IL5-3 sub-region 

accumulated acylsugars at ca. 17 and 10 % of CU071026, respectively.  
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Figure 1.3. Markers, genotypes, acylsugar level and selected fatty acid data, diagnostic for the 
presence of FA5QTL. Plants include CU071026 and selected individuals, representative of a 
haplotype, out of a BC1F2 population indicating the relative location of FA5QTL at or before 
snp_29 and up to snp_25859 (solcap_snp_sl_25859). Plant 131245-227 had a recombination 
such that it lost a small region of AS3 from CU071026 on the top of chromosome 3. Plant 
131245-092 was heterozygous for a small region at the top of AS3. i-C5 data Ln(x) transformed 
and Percent CU071026 data cube root transformed prior to analysis to improve normality. 
Means followed by different letters within a column are significantly different at P < 0.05. 
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The GC-measured fatty acid profiles of the same selected BC1F2 plants differed, 

depending on the genotype of FA5QTL (Figure 1.3). The BC1F2 plants lacking the IL5-3 sub-

region exhibited an average of 44.4% i-C5, and 44.1% n-C12, which is very similar to that of the 

control CU071026, which averaged 46.8% i-C5 and 40.2% n-C12.  Selected plants 

heterozygous for the IL5-3 sub-region in the FA5QTL BC1F2 averaged 13.3% i-C5 and 64.9% 

n-C12 fatty acids; this increase in n-C12 and decrease in i-C5 was comparable to that observed 

in the BC1F1 plants heterozygous for FA5QTL. The fatty acid profile of selections homozygous 

for the IL5-3 sub-region did not fully match that of the heterozygous plants (Figure 1.3).  

Specifically, while the homozygous plants were similar to the heterozygous siblings in having 

decreased i-C5 fatty acids, they did not show the large increase in n-C12. Six selections 

homozygous for the IL5-3 sub-region averaged 6.5% i-C5, and 47.7% n-C12. In addition, in 

selections homozygous for the IL5-3 sub-region, we saw a rise in the proportion of i-C4 and ai-

C5 fatty acids, (18.6% and 17.4%), versus selections heterozygous for the IL5-3 sub-region 

which accumulated 8.8% and 7.0% i-C4 and ai-C5 fatty acids, respectively. Selections that lost 

the IL5-3 sub-region accumulated low levels of i-C4 (3.2%) and ai-C5 (6.0%), similar to 

CU071026, which accumulated 3.7% i-C4 and 7.3% ai-C5. These data could indicate that 

FA5QTL is not fully dominant, and or that there is a linked recessive QTL(s) in the IL5-3 sub-

region that affects the accumulation of i-C4 and or ai-C5 fatty acids. We were unable to identify 

any recombinant plants in the BC1F2 that appeared to maintain FA5QTL affecting fatty acid 

profile while losing the negative acylsugar phenotype, which suggests very tight linkage, or 

more likely, pleiotropy for these two effects. 

Utilizing plants recombinant for the IL5-3 introgression and GC data from the BC1F2 

plants, we were able to fine map FA5QTL within the original ca. 52.6 Mbp IL5-3 introgression to 

a region of ca. 1.9 Mbp (Figure 1.3). Two selections, 131245-227 and 131245-254 both had low 

acylsugar levels and fatty acid profiles characteristic of plants homozygous for the IL5-3 sub-

region. If 131245-227 and 131245-254 are homozygous for FA5, then the putative region is at 
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or before solcap_snp_sl_29 (snp_29), and extending to solcap_snp_sl_25859 (snp_25859) 

(62,738,979 – 62,739,013 bp) (Tomato SL2.50 ITAG2.4 Solgenomics.net). Two other 

recombinant plants, 131245-92 and 269, provide further support for this region. 131245-92 has 

low levels of acylsugar and a fatty acid profile like that of plants heterozygous for the IL5-3 sub-

region. 131245-269 has levels of acylsugar and a fatty acid profile like that of CU071026 and 

selections that lost the sub-region. Again this suggests the location of FA5QTL is at or before 

snp_29 and up to snp_25859. Plant 131245-139 also supports the proposed region for 

FA5QTL. Plant 131245-139 had low acylsugar level (17.3% of CU071026), low levels of ai-C5 

(4.9%) and high levels of n-C12 (70.9%), consistent with the profile of plants heterozygous for 

the IL5-3 sub region, which implies FA5QTL is before snp_25859.  A final recombinant could 

provide greater delineation. Plant 131245-123 had very low acylsugar level (11.7% of 

CU071026), consistent with plants homozygous for the region, but a fatty acid profile more 

consistent with plants heterozygous for the region. If plant 131245-123 is heterozygous for 

FA5QTL, it would imply the location is between C2_At1g10500 and snp_25859, but most likely 

131245-123 is homozygous for the QTL, which suggests, like the other recombinants, that the 

location of FA5QTL is at or before snp_29 and up to snp_25859 (ca. 1.9 Mbp).  

The dominant QTL identified in Schilmiller et al. (2010) that greatly diminished the 

acylsugar level of IL5-3 was further elucidate by Schilmiller et al. (2016), where they identified a 

pair of acylhydrolases on chromosome 5 (Sopen05g030120 and Sopen05g030130) from S. 

pennellii LA716 and demonstrated that they function in vitro to cleave specific acyl groups from 

certain acylsucrose molecules. In cultivated tomato, these acylhydrolases are within the IL5-3 

full introgression and located at ca. 62.05 Mbp, which is ca. 50,000 bp before C2_At1g10500, 

and consistent with our FA5QTL mapping interval. Schilmiller et al. (2016) showed that these 

acylhydrolases greatly contribute to diminished acylsugar levels in the line IL5-3, and provided 

in vitro evidence that S. pennellii LA716 acylhydrolases preferentially cleave acyl groups from 

acylsucroses accumulated by cultivated tomatoes, such as M82, rather than acylsucroses from 
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LA716, which accumulates structurally different acylsugars. The results of Leckie et al. (2012) 

support this idea, since their negative acylsugar level QTL TA5, in the vicinity of FA5QTL, only 

reduced acylsugar levels to ca. 44% of haplotypes lacking FA5QTL region. The lesser degree of 

reduction in acylsugar level in the Leckie et al. (2012) BC1F1 population could be partly due to 

FA5QTL being heterozygous, but also, since that population was segregating for most of the S. 

pennellii LA716 genome, it is likely that some of the SpASAT genes (Schilmiller et al. 2012, 

2015; Fan et al. 2016) could have been present, leading to production of acylsucroses that are 

more like those in LA716 and therefore less subject to acyl cleavage. 

The low acylsugar-producing IL5-3 line was also shown to accumulate mostly acylsugars 

with a long chain fatty acid, and only very low amounts of acylsugars with all short acyl chains, 

such as i-C5 (Schilmiller et al. 2016). This is largely consistent with GC-MS data from the 

FA5QTL BC1F2 population (Figure 1.3), which showed the presence of FA5QTL led to a 

reduction in i-C5 fatty acids and an increase in n-C12 fatty acids. The effect of FA5QTL in the 

homozygous condition on fatty acid profile in a higher acylsugar level line, rather than the M82 

background, had not previously been reported, and it was intriguing to find different effects on 

the profile when FA5QTL was homozygous versus heterozygous in the lines bred using 

CU071026. In particular, the positive effect of FA5QTL, when homozygous, on i-C4 and ai-C5 

was unexpected. Leckie et al. (2014) did find a weak association between FA5QTL and ai-C5, 

moderated by an epistatic interaction with another fatty acid QTL identified in that paper, FA11 

but since they were only working in a BC1F1 population, FA5QTL would have been 

heterozygous, and the effect of FA5QTL in the homozygous condition would not have been 

seen.  

We selected a plant out of the BC1F2 (131245-032) that was homozygous for the ca. 3.5 

Mbp IL5-3 sub-region and all CU071026 regions and that set seed well in the greenhouse and 

designated the resulting tomato line FA5/AS; despite its severely reduced level of acylsugar, as 

the FA5/AS line contains the CU071026 regions necessary for acylsugar production. Taken 
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together, these data support the hypothesis of pleiotropy in that the same gene or genes, likely 

the S. pennellii acylhydrolases, which affect the fatty acid profile, also lead to a reduction in 

acylsugar level, and it is highly likely that these genes are responsible for the FA5QTL 

phenotypes.  The SpASAT genes are not present in the FA5/AS line, and while these are good 

candidates for ameliorating the negative acylsugar phenotype of FA5QTL, there presumably are 

additional genes in S. pennellii that raise acylsugar levels, given that the level of acylsugars 

produced by CU071026 is only ca. 15% the level of the wild species (Leckie et al. 2012). 

Whether some or all of the SpASAT genes, or other classes of acylsugar level QTL, are 

sufficient to recover the CU071026 level of acylsugar in lines that also possess FA5QTL 

remains to be seen, but until the necessary regions from S. pennellii LA716 are identified and 

combined with FA5QTL, it is unlikely the current FA5/AS line containing FA5QTL can be utilized 

against insects due to very low acylsugar accumulation.  

 

Simultaneous characterization of all modified fatty acid lines 

Previous studies investigating the broad sense heritability of secondary metabolites in tomato, 

including some acylsugar compounds, suggest that heritability of secondary metabolites in 

tomato is often quite high (Alseekh et al. 2015). In agreement with that study, total acylsugar 

level displays high broad sense heritability in our acylsugar lines (0.76) (Table 1.4). Despite high 

heritability, acylsugar-accumulating tomatoes produce different quantities of acylsugar in 

different environments (Shapiro et al. 1994), indicating that the amount of acylsugar 

accumulated exhibits significant genotype by environment interaction. This variability makes it 

difficult to compare the new modified fatty acids lines for acylsugar related traits using data 

collected at different times and in different greenhouses as the lines were developed.  Similarly, 

it was possible that environmental factors could impact fatty acid profiles of the acylsugars 

produced. Therefore, a final experiment growing all modified fatty acid acylsugar lines and 

controls in a replicated trial under greenhouse conditions was necessary to simultaneous 
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characterize the lines for acylsugar level, density of glandular trichomes, and their acylsugar 

profile, both for fatty acid acyl group through GC-MS, and type of acylsugar through LC-MS. A 

schematic of the introgressions contained in each fatty acid line and CU071026 are displayed in 

Figure 1.4.   

 

 

Table 1.4. Broad sense heritability estimates for total 
acylsugar and relative percent of the most predominant 
fatty acids 

Trait Broad Sense Heritabilitya 

Total Acylsugar Level 0.76 
% i-C4 fatty acids 0.34 
% ai-C5 fatty acids 0.48 
% i-C5 fatty acids 0.67 
% n-C10 fatty acids 0.98 
% i-C11 fatty acids 0.63 
% n-C12 fatty acids 0.84 
% i-C13 fatty acids 0.51 
a Total acylsugar level heritability calculated from 21 entries replicated over five 
locations and two years. Heritability for the relative percent of each fatty acid 
calculated from 18 entries replicated over four locations and two years.  
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Figure 1.4. Depiction of the size and location of the S. pennellii LA716 introgressions on each 
chromosome, based on physical distance, in CU071026 and the fatty acid lines. White is tomato 
and black is LA716 
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Acylsugar level and trichome density   

The fatty acid QTL modified the fatty acids of the acylsugars produced as expected, but also 

impacted the acylsugar levels of several of the resulting modified fatty acid acylsugar lines.  The 

FA2/AS and FA7/AS lines accumulated higher (119.2% and 121.9%, respectively) acylsugar 

levels than CU071026 (Table 1.5). It is possible that the introgressions containing FA2QTL and 

FA7QTL introgressions also contain some minor QTL from S. pennellii LA716 affecting 

acylsugar level, or that the QTL responsible in the introgressions for alteration of fatty acid 

profile also impact acylsugar level.  If there are QTL for increased acylsugar level in the FA2/AS 

and FA7/AS lines, the effect of these QTL might be influenced by the environment, since past 

characterization of these lines in field and greenhouse settings (data not shown) indicated that 

their acylsugar levels are not always significantly different from those of CU071026. The 

FA8/AS line appeared to have a slightly lower acylsugar level (81.1%) than the CU071026 

control, although the difference was not statistically significant. The acylsugar level of the 

FA5/AS line was strongly reduced, averaging only 16.2% the level of CU071026 (Table 1.5), 

indicating that the regions from S. pennellii LA716 ameliorating this impact of FA5QTL on 

acylsugar level must be identified and introgressed to obtain a FA5/AS tomato line that 

produces high acylsugar levels.   
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Because prior work showed that acylsugar level could be increased with or without an 

increase in trichome density (Leckie et al. 2012), we evaluated the density of glandular 

trichomes among the modified fatty acid lines and their controls. This characterization allows 

differentiation between increased trichome density and increased acylsugar production per 

trichome as mechanisms for overall increased acylsugar levels. The density of type IV 

trichomes varied among the lines tested, with increased trichome density positively correlated 

with increased acylsugar level (r = 0.66). The type IV trichomes density of CU071026 and the 

FA2/AS and FA7/AS lines were all equivalent, however, the type IV trichome density of the 

FA5/AS line was lower and the density of type IV trichomes in the FA8/AS line was marginally 

lower than the other three entries (Table 1.5).  

Type IV glandular trichome types have repeatedly been implicated as the predominant 

trichome type for acylsugar production (Fobes et al. 1985; Goffreda et al. 1990; Slocombe et al. 

2008). In particular, the SpASAT1-4 genes, which are integral in attachment of acyl groups to 

the sugar backbone in acylsugar biosynthesis have been shown to be expressed in type IV 

trichomes (Schilmiller et al. 2012, 2015; Fan et al. 2016). While density of type IV trichomes was 

positively correlated with acylsugar level when comparing the fatty acid lines, the density of type 

IV trichomes alone does not account for differences in acylsugar levels among lines. Type VI 

glandular trichome density also varied between entries, but was not positively correlated with 

acylsugar accumulation (r = -0.16) as expected based on the role of type VI trichomes in 

production of other specialized metabolites, such as terpenes (Coates et al. 1988; Frelichowski 

and Juvik 2001; Li et al. 2004). These results imply that differences in acylsugar levels among 

lines could be influenced by type IV trichome density, but are more likely due to variation in 

acylsugar biosynthesis rather than trichome density.  

Acylsugar level can also be influenced by QTL that increase or decrease the density of 

the trichomes that produce and exude these compounds.  Comparison of acylsugar producing 

sister lines with and without the chromosome 6 S. pennellii LA716 QTL, named TA6, showed 
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that its presence increased both the total acylsugar level and the density of type IV trichomes 

that exude acylsugar droplets (Leckie et al. 2012). While the modified fatty acid lines have 

variation for acylsugar level and trichome density, none of the fatty acid line possess the TA 6 

acylsugar level QTL, or the TA 10.1 acylsugar level QTL that increases acylsugar level without 

affecting trichome density (Leckie et al. 2012). The acylsugar level and trichome data from the 

fatty acid lines suggests type IV trichome density is an important morphological feature for 

acylsugar level in the some of the modified fatty acid lines, but that modulation of acylsugar 

level through biosynthesis could also be a major component contributing to the differential 

acylsugar levels observed. It is possible that adding one or both of the acylsugar level QTL (TA 

6 or TA 10.1) to the fatty acid lines could further improve the acylsugar level/type characteristics 

of the resulting lines.  

 

Fatty acid characterization from GC-MS 

The results from the GC-MS analysis of CU071026 vs. the new modified fatty acid lines closely 

matched predictions based on prior QTL analyses (Leckie et al. 2014). Consistent with previous 

characterizations, the acylsugars of the FA2/AS line included the extended branch chain fatty 

acids i-C11 and i-C13 at 8.7% and 3.2% respectably, whereas in the acylsugars of CU071026 

these fatty acids were either found at trace levels or not detected (Table 1.5). The acylsugars of 

the FA2/AS line also possessed reduced levels of n-C12 and slightly increased levels of i-C5 

compared to the acylsugars of the CU071026 control. The fatty acid profile of the acylsugars of 

the FA7/AS line was also consistent with previous characterization of lines during their 

development; the acylsugars of this line have an increase in n-C10 fatty acids (11.3%) over 

acylsugars of CU071026 (1.5%), and a reduction in the level of i-C5 (37.9%) compared to that 

of CU071026 (48.1%) (Table 1.5). The FA8/AS line data were also generally consistent in 

profile with previous characterization of lines during their development; the acylsugars of the 

FA8/AS line show increased i-C4 fatty acids (12.5%) over the acylsugars of CU071026 (3.4%) 
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as well as decreased i-C5 fatty acids (16.1%) versus that in CU071026 (48.1%) (Table 1.5). 

Additionally, FA8/AS appears to accumulate increased n-C12 fatty acids, which was not 

previously observed. The FA5/AS line GC-MS data deviated from previous characterization in 

that the FA5/AS line in the replicated trial accumulated higher levels of i-C4 (40.5%) and very 

lower levels of ai-C5 (3.5) and i-C5 (9.4%), than was seen in initial characterization of BC1F2 

selections homozygous for FA5QTL subregion.  This difference this could be due in part to the 

difficulties inherent in characterizing fatty acids present at low levels by GC-MS. To better 

understand the effect of FA5QTL on acylsugar chemistry it is necessary to identify and combine 

any necessary epistatic QTL from S. pennellii LA716 that will allow recovery of higher levels of 

acylsugar in the presence of FA5QTL. With the exception of the FA5/AS line, all modified 

acylsugar lines displayed remarkable consistency in fatty acid profile at different times and in 

different environments, suggesting fatty acid profile is minimally impacted by the environment. 

Broad sense heritability estimates were high for all the major fatty acids accumulated by the 

acylsugars lines from 2014 and 2015, and are displayed in Table 1.4.  

 

Acylsugar characterization from LC-MS 

To further characterize the fatty acid lines, LC-MS data was collected to provide information 

about not only the fatty acids accumulated by each line, but also to provide greater detail on the 

major acylsugars produced, including the number and length of fatty acids and to which sugar 

they are esterified (Figure 1.5). Representative LC-MS chromatograms for each fatty acid line 

are displayed in Figure 1.6. LC-MS is a sensitive technique that can readily detect the low levels 

of acylsugars produced by cultivated tomato. Although the LC-MS procedure cannot 

differentiate between orientations in fatty acids of the same length, such as ai-C5 and i-C5, GC-

MS can differentiate between these, and therefore the joint analysis using both GC-MS and LC-

MS data provides greater detail regarding the acylsugar profiles of each fatty acid line. 
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Figure 1.5. Hierarchical cluster analysis, with Pearson correlation using a pairwise average-
linkage clustering method, indicating the predominant acylsugars accumulated by each fatty 
acid line. Three samples for each genotype were analyzed. Color across a row indicates relative 
levels of the respective acylsugar, with red indicating samples with the highest levels detected 
and blue/purple indicating low or no detection relative to the highest sample.  a The mass to 
charge ratio for each acylsugar followed by retention time in min. bAcylsugar nomenclature 
indicates S for sucrose backbone of the molecule, as well as the number of fatty acid acyl 
chains (2 to 4) with their cumulative length in carbons that are esterified to the sugar followed by 
the lengths in number of carbons of each acyl group in the respective acylsugar. c Proposed 
acylgroup number and length for acylsugar; identification hampered by low abundance and 
peak overlap. 
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Figure 1.6. Representative LC-MS base peak intensity chromatograms for CU071026 (A), 

FA2/AS (B), FA5/AS (C), FA7/AS (D), and FA8/AS (E). Each compound peak is scaled according 

to the most abundant peak in the chromatogram to show differences in the acylsugar profiles 

among the different lines rather than to show differences in abundance. The CU071026, FA2/AS, 

and FA7/AS samples were diluted 1:10 prior to LC-MS analysis due to high concentrations of 

acylsugars in the sample. Therefore, the internal standard (IS) peak in these samples is ten-fold 

lower compared to the FA5/AS and FA8/AS samples (All data in the HCA figure was normalized 

to the IS peak area which corrected for the dilution). A general acylsucrose structure is shown in 

panel A. 
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CU071026 predominantly accumulates three major acylsugars: S4:17 (ID 53), S3:22 (ID 

56) and S4:24 (ID 55) (Figure 1.5). These acylsugars support the GC-MS fatty acid data, as all 

three acylsugars contain C5 and C12 fatty acids, which are the principal fatty acid chain lengths 

in CU071026. The FA2/AS line accumulates the three major acylsugars found in CU071026, but 

additionally possesses significant amounts of two acylsugars that are much lower in CU071026: 

S3:21 (ID 33) and S4:25 (ID 30). These two acylsugars contain C11 and C13 fatty acids, 

respectively, which accumulate in the FA2/AS line but are at trace or undetectable amounts in 

CU071026 (Figure 1.7). The FA7/AS line also accumulates the three major acylsugar peaks 

found in CU071026, and also has greatly increased relative abundance of two acylsugars 

accumulated at very low levels in CU071026, S3:20 (ID 45) and S4:22 (ID 46) (Figure 1.8). 

Additionally, the FA7/AS line accumulates low levels of several other acylsugars that show very 

low abundance in CU071026, including S3:19 (ID 42) and S4:21 (ID 43). The increase in 

abundance of C10 containing acylsugars for the FA7/AS line shown by LC-MS is consistent with 

GC-MS data for which indicates n-C10 fatty acids are more prevalent in this line.  The FA8/AS 

line accumulates the three major acylsugars in CU071026 but also produces significant 

quantities of a number of acylsugars not significantly accumulated by CU071026, including 

S4:15 (ID 18), S3:21 (ID 24) and S4:23 (ID 23). These acylsugars all contain C4 fatty acids, 

which are increased in FA8/AS (Figure 1.9), and some of these acylsugars also contain C12 

fatty acids which are increased in the FA8/AS line according to GC-MS data. There were also 

two acylglucose isomers detected at low abundance in the FA8/AS line (IDs 4 and 5), that were 

not detected in the other fatty acid lines. As all the fatty acid lines are lacking several important 

QTL necessary for production of acylglucoses (Smeda et al. accepted), the detection of 

acylglucoses in the FA8/AS line was unexpected and suggests FA8QTL or a linked QTL within 

the IL8-1-1 introgression could be involved in acylglucose biosynthesis. The FA5/AS line was 

found to accumulate similar types of acylsugars to CU071026, however, in contrast to data from 

the GC-MS-based fatty acid characterization of the FA5/AS with all lines together, LC-MS data 
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showed the FA5/AS line accumulated an increased proportion of acylsugars containing a long 

chain fatty acid, and reduced quantities of acylsugars with all short chain acyl groups, consistent 

with the results in Schilmiller et al. (2016). It is possible that fatty acid levels near the detection 

limit in GC-MS analysis will result in higher variability between repeated samples and suggests 

the profile of tomatoes that accumulate low levels of acylsugar, such as the FA5/AS line should 

be characterized through LC-MS for consistent results.  
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Figure 1.7. Extracted ion chromatograms (XIC) from CU071026 (A) and FA2/AS (B) for formic acid 
adducts of acylsugars with m/z 723.4, 751.4, 765.4, and 793.4, as well as the internal standard (m/z 
179.08). At higher collision energy where fatty acids fragment from the acylsugar, the C11 (m/z 
185.17) and C13 (m/z 213.19) fatty acid anions are seen in FA2/AS (D) but not significantly in 
CU071026 (C). The lack of C11 or C13 fragments co-chromatographing with peaks in the CU071026 
XIC indicate that these peaks are acylsugar isomers different from those in FA2/AS 
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Figure 1.8. Extracted ion chromatogram from CU071026 (A) and FA7/AS (B) for m/z 179.08 
(internal standard, IS), 709.37 (S3:20) and 751.4 (S4:22). At higher collision energy where fatty 
acids fragment from the acylsugar, the C10 fatty acid anion (m/z 171.14) is seen in CU071026 (C), 
but found at higher abundance in FA7/AS (D).  
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Figure 1.9. Extracted ion chromatogram from CU071026 (A) and FA8/AS (B) for m/z 87.05 at 

higher collision energy showing the C4 fatty acid anion present in FA8/AS and at trace levels in 

CU071026.  

C4 

C4 
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For several acylsugars identified in the LC-MS analysis, there was clear 

chromatographic separation of compounds having identical mass and indistinguishable mass 

spectra, for example S3:20 (5,5,10) (ID 45) with a retention time of 8.22 min and S3:20 (5,5,10) 

(ID 28) with a retention time of 8.07 min (Figure 1.5).  These acylsugar isomers likely differ in 

either the position of acyl chain attachment or in the branching of the acyl chains. There are 

several instances of fatty acid QTL influencing the relative abundance of different acylsugar 

isomers. For example, each line accumulates some level of S3:20 (5,5,10) (ID 45) (see 

Supplementary Table S4 of Smeda et al. 2016), however, the FA2/AS line also accumulates a 

significant amount of S3:20 (5,5,10) (ID 28) that is not detected in CU071026 or the FA7/AS line 

and is seen at only very low levels in the FA5/AS and FA8/AS lines. The difference between 

these two isomers would require purification and nuclear magnetic resonance (NMR) analysis 

for clarification, and could be pursued in future work.  

The hierarchical clustering analysis (HCA) in Figure 1.5 separates the fatty acids lines 

into several clades. As expected, the presence of FA8QTL largely separates the fatty acid lines 

into two main clusters. Acylsugars with IDs 6 to 25 commonly contain C4 fatty acids and are 

significantly accumulated in the FA8/AS line and largely absent in the other acylsugar lines, 

which is due to the effect of FA8QTL. Acylsugars with IDs 26 to 56, conversely, are generally 

accumulated in CU071026, and the FA2/AS and FA7/AS lines, and largely absent in the 

FA8/AS line. Further elucidation of the impact of fatty acid QTL on the fatty acid combinations 

within acylsugars and the locations of fatty acid attachment could allow greater understanding of 

acylsugar biosynthesis, how acylsugars interact with insects, and selection of optimal acylsugar 

lines for insect resistance. 

 

The effect of the fatty acid QTL on acylsugar diversity   

A broad question that can be addressed by looking at the combination of GC-MS and LC-MS 

data on the acylsugar lines is whether addition of the fatty acid QTL into CU071026 increases 
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the diversity of fatty acid acyl groups, and or the diversity of acylsugars accumulated. It is 

possible that when a novel acylsugar is accumulated in a line possessing an additional QTL, the 

acylsugar replaces acylsugar(s) accumulated in lines lacking the QTL, so that the addition of 

fatty acid QTL might lead to accumulation of acylsugars not seen in CU071026, but that this 

gain could be coupled with the loss of acylsugars produced in CU071026. Alternately, addition 

of a novel acylsugar not accumulated in CU071026 could be additive rather than a replacement 

of a previously accumulated acylsugar. GC-MS data indicates there are five fatty acids acyl 

groups (i-C4, ai-C5, i-C5, n-C10 and n-C12) that are significantly accumulated by all the fatty 

acid lines and CU071026 (Table 1.5). The FA5/AS, FA7/AS and FA8/AS lines vary in the 

relative proportions of these five fatty acids, but do not accumulate detectable levels of novel 

fatty acids not found in CU071026.  Conversely, the FA2/AS line accumulates the five fatty 

acids in CU071026 as well as detectable levels of two fatty acids (i-C11 and i-C13) not 

abundant in CU071026. These data indicate that addition of FA2QTL increases acyl chain 

diversity compared to CU071026, but the QTL in lines FA5QTL, FA7QTL, and FA8QTL do not 

increase acyl chain diversity.  

Concerning LC-MS data, 56 acylsugars are identifiable among the fatty acid lines and 

CU071026 (Figure 1.5). We can evaluate the effect of introgression of the fatty acid QTL on 

acylsugar diversity by comparing the lines for acylsugars that are accumulated at moderate to 

high levels in respective lines. The acylsugars that are the darkest blue color in Figure 1.5 are 

accumulated at low levels or are not detectable in the respective line. If at least two of the three 

samples per genotype are above the background dark blue, that acylsugar is considered 

present in that line. Using this metric, CU071026 accumulates 23 of the 56 identifiable 

acylsugars. Not surprising, the FA2/AS line accumulated an increased number of acylsugars 

(31), some of which contained C11 and C13 acyl groups, likely the novel i-C11 and i-C13 fatty 

acid acyl groups detected in GC-MS analysis. LC-MS analysis revealed the FA7/AS and 

FA8/AS lines also accumulated an increased diversity of acylsugars over CU071026, (30 each), 
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comparable to the FA2/AS line. Unlike FA2QTL, which partly seems to increase acylsugar 

diversity by incorporating novel acyl groups, FA7QTL and FA8QTL seem to increase diversity 

by modulating increased or decreased incorporation of existing upregulated or downregulated 

fatty acid acyl groups. The FA5/AS line displayed a lower diversity of acylsugars due to the low 

levels of acylsugar in this line, likely resulting from the presence of the acylhydrolases discussed 

in Schilmiller et al. (2016). Taken together the LC-MS data indicate that addition of FA2QTL, 

FA7QTL and FA8QTL each leads to an increased diversity of acylsugars accumulated. 

The additional acylsugars in the FA7/AS line did not result in a substantial tradeoff since 

all but one of the acylsugars moderately accumulated by CU071026 were still accumulated by 

the FA7/AS line (Figure 1.5). In the FA2/AS line, the addition of eight acylsugars resulted in a 

slight tradeoff; four acylsugars accumulated by CU071026 were no longer moderately 

accumulated in the FA2/AS line. The FA8/AS line, accumulated seven additional acylsugars, but 

this resulted in a strong tradeoff, (Figure 1.5), with only six acylsugars in common between 

CU071026 and the FA8/AS line.  

Perspective to the diversity metrics discussed in this study can be gained by comparison 

with recent published work concerning acylsugar biosynthesis and chemistry (Schilmiller et al. 

2010, 2015; Fan et al. 2016). It is evident that there is, at most, one long (C9 to C13) chain acyl 

group found in each of the 56 identifiable acylsugars accumulated by the fatty acid lines and 

CU071026 (Figure 1.5); the long chain acyl group is almost exclusively found in one location in 

tomato acylsucroses, whereas there are up to four positions at which short chain (C4, C5, C6) 

acyl groups are commonly found in tomatoes (Schilmiller et al. 2015; Fan et al. 2016). With this 

in mind, the added diversity in acylsugars provided by the addition of FA2QTL and FA7QTL 

have limited impact in diversifying the acylsugars produced since these two QTL mostly alter the 

long chain fatty acids. Despite the addition of novel fatty acids, the FA2/AS line only 

accumulates moderate levels of one additional acylsugar compared with the FA7/AS line 

because there are limited long chain acyl group attachment sites open to diversification. There 
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is not much tradeoff in acylsugar diversity produced in the FA2/AS and FA7/AS lines compared 

to CU071026, since these three lines have similar levels of ai-C5 and i-C5 fatty acids, and these 

short chain acyl groups are ubiquitous in almost all acylsugars accumulated by these lines. On 

the other hand, FA8QTL increases the diversity of short chain fatty acids, which leads to 

increased diversity of acylsugar chemotypes accumulated in the FA8/AS line, but the loss of 

some of the acylsugar chemotypes found in CU071026. The FA8/AS line has increased levels 

of i-C4, which is only found at low levels in CU071026, and greatly reduced levels of i-C5, which 

is the most common short chain acyl group in CU071026.  Furthermore, since short chain acyl 

groups are part of every acylsugar identified in the fatty acid lines and CU071026 (Figure 1.5), 

there are few acylsugars in the FA8/AS line that do not incorporate at least one i-C4 acyl group. 

In fact, many of the acylsugars no longer accumulated at substantial levels in the FA8/AS line 

contain at least two C5 acyl groups. This replacement of at least one i-C5 group with one i-C4 

acyl group is most likely responsible for the limited overlap of acylsugars between CU071026 

and the FA8/AS line. This idea is supported by LC-MS data from Schilmiller et al. (2010) 

showing i-C5 replacement by i-C4 acyl groups in the line IL8-1-1 vs. M82. Additionally, Ning et 

al. (2015) showed that a feedback insensitive isopropylmalate synthase on chromosome 8 

governs an increase in C4 and a decrease in C5 acyl groups in cultivated and wild tomato.  

 

CONCLUSIONS 

 

An important question when transferring the FA5, FA7 and FA8QTL, was whether the QTL have 

the impact on acylsugar accumulation in the resulting line that was predicted based on prior 

QTL analysis. As noted by Bernardo (2008) regarding work in maize, the majority of QTL 

identified never find their way into released varieties. The common explanation for this 

observation across crops is that the QTL do not have the expected impact after transfer from 

the background in which they were discovered, possibly due to missing epistatic interactions. 
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When dealing with qualitative traits governed by one or two QTL, the likelihood of successful 

transfer and expected function is greater than when dealing with quantitative traits. Since there 

are many QTL that affect both acylsugar level and/or chemistry, it is difficult to predict how a 

QTL will behave in a different genetic background. For example, pertinent to FA5QTL, the 

recently discovered acylhydrolases (Schilmiller et al. 2016) that cleave particular acyl groups 

from specific locations on acylsucroses, depend on the ASAT genes, which is likely why the 

acylsucroses of S. pennellii LA716 are less subject to acyl group cleavage than the 

acylsucroses of tomato, such as in the FA5/AS line. Therefore, it is imperative to understand 

acylsugar biochemistry to successfully utilize QTL that impact acylsugar chemistry because of 

the potential for epistatic interactions.  

Analysis of the new tomato lines bred by transfer of FA2QTL, FA5QTL, and FA7QTL 

showed alteration in acylsugar profiles that largely matched the expectations for these QTL 

based on QTL analysis. The existence of epistatic interactions among acylsugar QTL affecting 

acylsugar level, sugar component of acylsugars, and fatty acid components of acylsugars was 

already demonstrated in QTL mapping populations (Leckie et al. 2012, 2013, 2014), and will be 

a factor in development of lines with desired acylsugar levels and chemotypes. Production of 

lines combining two or more of the fatty acid QTL would be needed to test whether similar 

epistatic relationships are observed in the resulting lines.    

 The incorporation of FA2QTL, FA7QTL and FA8QTL into CU071026, creating the lines 

FA2/AS, FA7/AS, and FA8/AS, respectively, led to an increase in the diversity of either fatty acid 

acyl groups or acylsugars accumulated in these lines. A logical question to ask is whether the 

functionality of the acylsugars is altered by the increased diversity? From the results of Leckie et 

al. (2016) it is evident that acylsugar chemistry can have an impact on the efficacy of insect 

deterrence. It is possible that production of particular acyl groups, or modulation of the 

proportions of particular acyl groups, played a role in the differential insect control observed in 

that study. The results of Leckie et al. (2016) also demonstrate that synergy is an important 
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element in the functionality of acylsugars as a defense, which suggests that an increased 

diversity of acyl groups and acylsugars could lead to greater opportunity for synergy and 

therefore improved insect resistance. Whether the fatty acid lines differ for control of various 

insects, and the role of acyl group and acylsugar diversity in mediating the efficacy of insect 

resistance will be evaluated in future studies. 

The tomato lines completed to date, and additional lines nearing completion, are being 

developed to serve as a research platform with broad utility.  These lines could be used: (1) for 

research directed at further elucidating acylsugar biosynthesis and its regulation, such as the 

genes controlling FA2QTL and FA7QTL, which have not yet been elucidated (2) for a range of 

entomological research including efficacy of acylsugar-mediated control of diverse tomato insect 

and arthropod pest species by the different lines, identification of acylsugar levels and 

chemotypes with the optimal impact on each insect species, and study of the mechanism by 

which acylsugar mediated insect resistance operates against insect and arthropod pest species 

(3) to be utilized as breeding material for the transfer of acylsugar QTL to tomato lines with 

optimal acylsugar profiles for control of targeted insect and arthropod pest species with 

reduction/elimination of pesticides.  As each line is completed, characterized, and its seed is 

sufficiently increased, the line will be provided, under MTA, upon request.  

 

Original publication of this data was in Molecular Breeding 2016 

The final publication is available at doi:10.1007/s11032-016-0584-6. 
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CHAPTER 2 

Combination of QTL Affecting Acylsugar Chemistry Reveals Additive and Epistatic 

Genetic Interactions to Increase Acylsugar Profile Diversity 

 

ABSTRACT 

The tomato breeding line, CU071026, was bred to accumulate high levels of the insect control 

compounds called acylsugars, which are exuded from glandular trichomes. The acylsugars of 

CU071026 exhibit a characteristic profile of acylsugar composition and constituent fatty acid 

acyl groups that is distinct from that of the progenitor wild tomato, Solanum pennellii LA716. A 

prior study reported transfer of three QTL (FA2, FA7, and FA8), from S. pennellii LA716, that 

are associated with changes in acylsugar chemistry into CU071026 and demonstrated that the 

resulting lines, each of which possesses one of these QTL displayed a unique acylsugar and 

fatty acid profile distinct from that characteristic of the acylsugars of CU071026 and each other. 

The current study utilized marker-assisted backcrossing to combine pairs of two of these QTL or 

all three of these QTL. This created a new set of lines, which allowed evaluation of the 

combinatory effects of FA2QTL, FA7QTL, and FA8QTL, on acylsugar level and acylsugar and 

fatty acid profile and diversity. The resulting high-acylsugar accumulating tomato lines 

possessing combinations of two or all three QTL revealed that the QTL interacted additively and 

epistatically to alter acylsugar level and chemistry, increasing the diversity of fatty acid 

constituents and/or or acylsugar chemotypes present in the exudates of some of the lines. 

Extensive characterization of the lines for acylsugar level through a spectrophotometric 

invertase assay and acylsugar chemistry, through gas and liquid chromatography mass 

spectrometry allowed association of the QTL interactions with aspects of acylsugar chemotype. 

The evaluated fatty acids and acylsugars accumulated by the set of lines generally displayed 

high heritability and minimal environmental effect, which is discussed. The QTL interactions that 
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govern a more diverse acylsugar and fatty acid profile provide valuable information for the 

generation of tomato lines with improved acylsugar efficacy against pests of tomato.  

 

INTRODUCTION 

 

Plants produce a large diversity of specialized metabolites, of which some mediate resistance to 

pathogens and herbivores and have been suggested as viable targets in breeding for 

sustainable pest control. One promising class of specialized metabolites receiving increased 

attention for their potential to provide resistance to a wide array of insect herbivores is a family 

of sugar polyesters known as acylsugars. Acylsugars are accumulated by various species in the 

nightshade family (Solanaceae), including several wild relatives of tomato, such as Solanum 

pennellii, Solanum galapagense, and Solanum habrochaites (Fobes et al. 1985; Burke et al. 

1987; King et al. 1986, 1988; Shapiro et al. 1994; Kim et al. 2012; Schilmiller et al. 2015). 

Acylsugars are implicated in mediating a variety of plant-insect interactions, including feeding 

deterrence and oviposition preference by a number of insect species (Severson et al. 1985, 

Goffreda and Mutschler 1989; Hawthorne et al. 1992; Rodriguez et al. 1993; Juvik et al. 1994, 

Liedl et al. 1995, Fancelli et al. 2005; Leckie et al. 2016).  

Solanum pennellii (Correll) D’Arcy accession LA716 accumulates substantial amounts of 

acylsugars which have been shown to effectively control many insects and provides a promising 

source of direct insect resistance (Goffreda et al. 1990; Hawthorne et al. 1992; Rodriguez et al. 

1993; Juvik et al. 1994; Shapiro et al. 1994; Liedl et al. 1995) that can be transferred to 

cultivated tomato (Mutschler and Wintermantel 2006; Leckie et al. 2012). The Cornell 

benchmark acylsugar tomato line, CU071026, was bred from S. pennellii LA716, and contains 

five introgressions from S. pennellii LA716 on chromosomes 2, 3, 7 and 10, which are called 

AS2, AS3, AS7, AS10.1, and AS10.2, respectively (Leckie et al. 2012). The acylsugars secreted 

by CU071026 and related lines significantly reduced Bemisia tabaci oviposition on lines grown 
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in field cages (Leckie et al. 2012) and acylsugar producing hybrids reduced the incidence of 

tomato infectious chlorosis virus in fields with heavy pressure from the whitefly Trialeurodes 

vaporariorum (Mutschler and Wintermantel 2006).   

In wild and cultivated tomato species, the acylsugars produced and secreted from 

glandular trichomes are composed of a sugar backbone (sucrose or glucose) to which several 

short to medium chain aliphatic acids are esterified. These fatty acids can be either straight-

chained or branched (Fobes et al. 1985; Burke et al. 1987; Shapiro et al. 1994; Schilmiller et al. 

2010, 2012, 2016; Fan et al. 2016). S. pennellii accessions have various acylsugar chemotypes 

(number, length and branching orientation of acyl groups and to which sugar they are esterified) 

that vary with geographical location (Shapiro et al. 1994 and Ning et al. 2015), suggesting the 

possibility of adaptation and selection of specific metabolic profiles in response to local 

herbivore pressures. The acylsugars of S. pennellii LA716 are predominantly acylglucoses with 

a characteristic array of fatty acids including 2-Methylpropanoate (i-C4), 2-Methylbutanoate (ai-

C5), 3-Methylbutanoate (i-C5), 8-Methylnonanoate (i-C10), n-Decanoate (n-C10), and n-

Dodecanoate (n-C12) (Burke et al. 1987; Shapiro et al. 1994; Blauth et al. 1999). In contrast, 

the profile of CU071026, bred from S. pennellii LA716, is almost exclusively acylsucroses with 

predominantly ai-C5, i-C5 and n-C12 fatty acids, and only trace or undetectable levels of i-C4, i-

C10 and n-C10 (Leckie et al. 2014). The fatty acid profile of CU071026 is similar to that of 

cultivated tomato, which also predominantly accumulates i-C5, ai-C5 and n-C12 fatty acids 

(Schilmiller et al. 2010 and Ghosh et al. 2014).  

Leckie et al. (2016) evaluated the deterrence effect of purified acylsugars from 

CU071026 and several S. pennellii accessions, including S. pennellii LA716 on thrips and 

whitefly feeding and oviposition. Results indicated that the purified acylsugars of CU071026 

were less effective at equimolar levels than purified acylsugars of the S. pennellii accessions 

(especially S. pennellii LA1376) at controlling whitefly (B. tabaci) and western flower thrips 

(Frankliniella occidentalis) feeding and oviposition in laboratory assays. Furthermore, the results 
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of Leckie et al. (2016) revealed synergistic interaction between acylsugar fractions, which led to 

improved insect resistance. These results suggest that greater diversity of acylsugars could lead 

to synergistic interactions and greater efficacy against insects. An increased diversity of 

acylsugars and fatty acid acyl groups could also provide a sophisticated plant defense that 

impedes the selection of insects that can overcome acylsugar mediated resistance. These 

hypotheses are in agreement with a number of other studies evaluating plant-herbivore 

interactions with a focus on specialized metabolites that suggested chemical diversity could 

decrease insect feeding, adaptation and survival (Duffey and Stout 1996; Castellanos and 

Espinosa-Garcia 1997; Akhtar and Isman 2003). The mechanism of resistance mediated by 

acylsugars has not been elucidated, but as acylsugars are broadly deterrent to insects, 

understanding of the mode of action could have a significant impact on breeding for resistance 

to many insects.  

QTL from S. pennellii LA716 that impact acylsugar chemistry have been identified 

(Blauth et al. 1998, 1999; Schilmiller et al. 2010, 2012, 2015; Leckie et al. 2013, 2014; Fan et al. 

2016). Some QTL were shown to alter the chemotype of acylsugar accumulating tomato lines 

(Schilmiller et al. 2010) such as the mono-introgression lines (ILs) created by Eshed and Zamir 

(1994, 1995). Addition of several fatty acid altering QTL (FA2QTL, FA7QTL, FA8QTL) into 

CU071026 led to the creation of three fatty acid acylsugar lines (FA2/AS, FA7/AS, and FA8/AS 

respectively) that produced high levels of acylsugars with fatty acid profiles distinct from that of 

CU071026 (Leckie et al. 2014; Smeda et al. 2016). Characterization of the acylsugars produced 

by this new set of tomato lines revealed that FA2QTL mediates production of novel fatty acids 

not significantly accumulated in CU071026 (i-C11 and i-C13), and FA7QTL and FA8QTL 

moderate variation in the proportions of several fatty acids, such as i-C4, i-C5 and n-C10. 

Additionally, LC-MS analysis demonstrated that all three QTL function in the resulting lines and 

lead to accumulation of a greater diversity of acylsugars over CU071026 (Smeda et al. 2016). 

While these three lines have increased acylsugar and or fatty acid diversity compared to 
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CU071026, the acylsugar compound diversity of FA2/AS, FA7/AS and FA8/AS is still far less 

than that of the S. pennellii accessions tested by Leckie et al (2016).  

The objectives of this study were to combine the previously introgressed FAQTL 

(FA2QTL, FA7QTL and FA8QTL) in all possible pairs and all together in pursuit of lines with 

increased acylsugar and fatty acid diversity over the single QTL lines. After generating these 

lines, we wanted to characterize them for acylsugar level, acylsugar profile, and fatty acid profile 

to enhance the current platform of knowledge and germplasm. Several of the QTL were 

combined with FA5QTL, which was previously linked to low acylsugar level (Leckie et al. 2014; 

Schilmiller et al. 2010, 2016; Smeda et al. 2016) to determine if the low acylsugar phenotype 

could be rescued through combination with some of the fatty acid QTL (FAQTL). Additionally, 

we attempted to identify combinations of QTL that would result in a greater quantity of 

acylsugars accumulated and or increased diversity of acylsugars and fatty acids to increase the 

likelihood of synergistic interactions and improved efficacy of insect deterrence. Specifically, we 

wanted to determine what degree of fatty acid and acylsugar profile diversity could be obtained 

through combination of the FAQTL, and if compound tradeoffs, such as the simultaneous 

gain/loss of accumulation of particular acylsugars similar to that observed in Smeda et al. 

(2016), would restrict our ability to increase the number of acylsugars and fatty acids and profile 

diversity in the combination FAQTL germplasm above that observed in the single QTL lines. We 

anticipated that combination of the FAQTL would lead to a greater number of compounds and a 

more diverse fatty acid and acylsugar profile than the single FAQTL lines. Finally, we sought to 

evaluate the heritability of selected fatty acids and acylsugars and the impact of the environment 

on these traits to inform breeding objectives, such as increasing the diversity of the acylsugar 

and fatty acid profiles. We characterized the acylsugars accumulated by the combination QTL 

lines through a spectrophotometric acylsugar assay to measure total acylsugar level, GC-MS 

analysis to evaluate the type and percentage of fatty acid acyl groups present, and LC-MS to 

determine the relative proportions of acylsugars accumulated. Discussion of the implications of 
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these data includes evaluation of the interactive effect of the FAQTL on acylsugar level, fatty 

acid acyl group diversity and acylsugar diversity.  

 

MATERIALS AND METHODS 

 

Plant materials 

CU071026 is an acylsugar-producing tomato line bred using S. pennellii LA716 as the donor of 

the QTL necessary for substantial acylsugar accumulation. See Supplementary Table 1 of 

Leckie et al. 2012 for markers and map positions of the S. pennellii LA716 introgressions in 

CU071026. The acylsugar lines that each possess one of the fatty acids QTL (FA2QTL, 

FA7QTL, FA5QTL or FA8QTL) are named FA2/AS, FA5/AS, FA7/AS and FA8/AS, respectively. 

These acylsugar-producing tomato lines with modified fatty acid profiles were developed by the 

Cornell University tomato-breeding program, bred as described in Smeda et al (2016) using 

CU071026 and specific S. pennellii LA716 mono-introgression lines developed by Eshed and 

Zamir (1994, 1995). Visual representation of the introgressions contained in CU071026 and the 

single fatty acid QTL acylsugar lines is depicted in Figure 1.4.  

 

Plant growth conditions 

Seed were germinated in 32 cell flat cups with LM1 (Lambert, Rivière-Ouelle, Quebec, Canada) 

mix until ca. 5 weeks of age, during which time any necessary marker based genetic analysis 

could be completed.  Selected plants were transplanted to 8 inch clay pots of LM111 (Lambert, 

Rivière-Ouelle, Quebec, Canada) mixed with turface (Turface Athletics, Buffalo Grove, IL) in a 

1:1.8 ratio, with 0.3% unimix (10-5-10) and calcium sulfate additive. Plants for all populations 

and experiments were grown in a greenhouse in the Guterman Bioclimatic Laboratory and 
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Greenhouse Complex at Cornell University in Ithaca NY, and were typically maintained at 29°C: 

20C day night temperatures with a 16:8 hr light:dark photoperiod. 

 

Genotypic screening 

Identity and location of all molecular markers utilized to select for CU071026 regions can be 

found in Table 2.1. Identity and location of markers used to pyramid FA2QTL, FA7QTL, and 

FA8QTL can be found in Table 2.2.  

 

Table 2.1. Markers and map locations delineating CU071026 introgressions based on 
Tomato-EXPEN SL2.50 ITAG2.4 

Markera Chromosome Start Position (Bp) End Position (Bp)  

C2_At4g37300 2 53,834,679 53,835,655  

C2_At3g26900  2 54,947,728 54,950,298  

solcap_snp_sl_63290b 3 1,390,271 1,390,304  

TG130  3 1,755,716 1,756,224  

C2_At5g24120  3 1,914,316 1,920,336  

C2_At3g02420  3 11,509,743 11,514,318  

C2_At5g23060  3 64,448,262 64,451,474  

C2_At3g15430  7 65,800,017 65,803,497  

TG303  10 1,773,625 1,774,114  

C2_At5g60990  10 1,853,562 1,864,123  

SSR85  10 61,580,912 61,581,577  

C2_At3g12290  10 62,141,901 62,147,562  
a Full marker information provided by The Sol Genomics Network (SGN; http://solgenomics.net/) 
b A cleaved amplified polymorphic sequence (CAPS) marker was designed from this SNP 
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Table 2.2. Markers and map locations used to introgress FAQTL based on Tomato-
EXPEN SL2.50 ITAG2.4 

Markera Chromosome Start Position (Bp)    End Position (Bp) 

solcap_snp_sl_51242b 5 16,840,699 16,840,733 

T1601 5 41,511,439 41,512,805 

solcap_snp_sl_69382b 5 54,980,534 54,980,568 

solcap_snp_sl_29b 5 60,842,571 60,842,605 

C2_At1g10500 5 62,107,578 62,107,796 

solcap_snp_sl_25859b 5 62,738,979 62,739,013 

TG23 5 63,347,293 63,348,190 

C2_At2g26590 7 6,878,227 6,899,018 

C2_At4g29490 7 32,758,106 32,807,954 

solcap_snp_sl_52215b 7 38,290,705 38,290,739 

solcap_snp_sl_70150b 7 51,197,900 51,197,934 

solcap_snp_sl_100893b 7 54,044,220 54,044,254 

C2_At2g30520 7 56,723,902 56,725,342 

U221657 8 3,279,725 3,283,085 

solcap_snp_sl_51919 b 8 3,781,348 3,781,382 

solcap_snp_sl_51931 b 8 4,103,545 4,103,579 

solcap_snp_sl_51969 b 8 4,744,567 4,744,601 

solcap_snp_sl_69286 b 8 5,597,495 5,597,529 

solcap_snp_sl_69336 b 8 9,125,184 9,125,218 

C2_At5g27390 8 22,850,567 22,857,802 

C2_At1g30360 8 27,897,600 27,905,822 

C2_At4g33030 8 52,633,704 52,637,369 
a Full marker information provided by The Sol Genomics Network (SGN; http://solgenomics.net/). 
b A cleaved amplified polymorphic sequence (CAPS) marker was designed from this SNP 

 

Phenotypic screening 

Acylsugar level   Levels of acylsugar for control plants and populations in the development of 

the combination FA/QTL lines were measured on 9-10-week-old plants using the method of 

Leckie et al. (2012), which was modified from a prior method described by Goffreda et al. 

(1990). For the segregating populations, four samples of two primary lateral leaflets were taken 

per plant. For the replicated screen, four plants of each entry were sampled, collecting four 

samples of two primary lateral leaflets from leaves that were two to three nodes from the apex 

of stems.  Each two-leaflet sample was placed in a wide mouth plastic scintillation vial and 

completely dried in a seed dryer at 290 C. Fully dried leaflets were rinsed with 3 ml of methanol 
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containing methyl heptanoate (30 mg L-1), an internal standard for fatty acid analysis. The assay 

uses 100 ul of each rinsate.  Leaflets were re-dried after rinsing and weighed, so that acylsugar 

level could be expressed per weight dried leaf. Acylsugar level data were analyzed using 

ANOVA in JMP Pro 12 (SAS Institute Inc. 2015), and means were separated by Tukey-Kramer 

HSD (p < 0.05). Prior to analysis, acylsugar level data were Ln(x) transformed to improve 

normality.  

 

Fatty acid characterization  Percentages of each type of fatty acids from each sample were 

ascertained by collecting pairs of young, fully expanded primary lateral leaflets, rinsing leaflets 

with 3 ml of methanol containing methyl heptanoate (30 mg L-1) as an internal standard, and 

then utilizing transmethylation/GC-MS analysis, as described in Leckie et al. (2014). Peak areas 

of the resulting chromatograms were calculated using Varian MS Workstation Version 6.9.1 

(Agilent Technologies, Santa Clara, CA) and levels of respective fatty acids were determined 

through comparison with levels of the internal standard to generate relative proportions of each 

fatty acid. Percent fatty acid GC-MS data was analyzed using ANOVA in JMP Pro 12 (SAS 

Institute Inc. 2015), and means separated by Tukey-Kramer HSD (p < 0.05). Prior to analysis, 

data for i-C4, n-C10 and n-C12 aliphatic acids were cube root (x + 0.1) transformed and the data 

for ai-C5, i-C9, i-C10, i-C12, i-C13 (11-methyldodecanoate) and i-C14(likely 12-

methyltridecanoate) were log10(x+1) transformed to improve normality. 

 

Acylsugar composition characterization LC-MS was utilized to analyze the composition of 

acylsugars accumulated in each line. Three samples of a single primary lateral leaflet per 

genotype were taken and extracted with a buffer consisting of isopropanol:acetonitrile:water 

(3:3:2 v/v/v) containing 0.1% formic acid and 10 µM of propyl-4- hydroxybenzoate, an internal 

standard, and processed as described in Schilmiller et al. (2015). Acylsugar results from the LC-

MS analysis are described using the nomenclature of Schilmiller et al. (2010), in which the 
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acylsugar name S4:17 indicates a sucrose backbone sugar, with four fatty acid acyl chains that 

have a total of 17 carbons. LC-MS data were analyzed by hierarchical clustering with a Pearson 

correlation using pairwise average-linkage clustering for both genotypes and acylsugars using 

the hierarchical clustering tools provided by GenePattern (Reich et al. 2006).  

 

Heritability estimation and environmental impact on traits 

 Broad sense heritability estimates and environmental impact for fatty acids were calculated 

using the dataset from Smeda et al. (2016), but with an additional year of data from 2016. 

Acylsugar heritability and environmental impact was calculated from data spanning 2015 and 

2016 from two greenhouse experiments. Heritability for the major fatty acids and acylsugars 

(only those whose levels were at least 1% of the internal standard) was calculated according to 

Holland et al. (2003) using variances obtained from the lmer function in the lme4 package in R 

(Bates et al. 2014) where genotype, location, year, genotype by location, and genotype by year 

were treated as random effects. The lmer function was used to fit a second model with 

genotype, location and genotype by location interaction effects, where each was treated as a 

random effect to calculate the relative variance contribution from environment and genotype by 

environment interaction.  

 

Non metric multidimensional scaling (NMDS) 

NMDS analysis for Figure 2.1, 2.2 and 2.3 was performed in R using the meta MDS function in 

the Vegan Package (Oksanen et al. 2013). Ten-twelve samples from each genotype were used 

for calculation, and prior to the analysis data were square-root transformed and then 

standardized using a Wisconsin double standardization, which is the default data treatment in 

the meta MDS function to diminish the range of values. A data matrix of pairwise comparisons 

among samples was calculated using the Bray-Curtis distance index, for NMDS analysis, which 

ranges between 0 and 1. NMDS was used to find the best low-dimensional representation of the 
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distance matrix that minimized stress. The NMDS analysis was performed using two 

dimensions, which resulted in a stress of 0.1, with profiles of plants of the same genotype 

clustering well. The solution was rotated according to PCA (Vegan default) so that the largest 

variance of samples was on the first axis. 

 

Shannon’s diversity index (H’) 

Assessments of profile diversity for fatty acids and acylsugars was conducted in R using the 

diversity function within the Vegan package. Shannon’s Diversity Index has been adapted from 

ecological species diversity analyses to evaluate plant chemical profiles (Becerra et al. 2009; 

Cacho et al. 2015). H’ values were calculated for fatty acids as proportions and as 

presence/absence, whereby fatty acid data were recoded 0 for absence and 1 for presence of a 

compound within each acylsugar line. Similarly, H’ values were calculated for acylsugar profile, 

both as relativized peak areas, and as presence/absence, whereby acylsugar data were 

recoded 0 for absence and 1 for presence of an acylsugar within each acylsugar line. The 

specific diversity index values are not informative, but increased index values correspond to an 

increased profile diversity.  

 

RESULTS 

 

Combination of FA2QTL/FA7QTL and initial assessment of impacts on acylsugar level 

and fatty acid profile 

An F1 plant (131540-2) heterozygous for FA2QTL was crossed with a selection (131285-176) 

from the BC1F1 FA7QTL population (Smeda et al. 2016) that was heterozygous for the ca. 3.2 

Mbp FA7QTL sub introgression from IL7-4-1 and also heterozygous for the AS2 and AS7 S. 

pennellii introgressions from CU071026, resulting in a 32 plant F1 population. Three plants were 

identified that lacked both FA2QTL and FA7QTL, and two plants were identified that were 
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heterozygous for both FA2QTL and FA7QTL. One plant each was also identified that were 

heterozygous for just FA2QTL or FA7QTL. 

Evaluation of the acylsugar level and fatty acid profile of the selections from the F1 

population were as conducted. Those plants that were homozygous for the AS2, AS3, AS10.1 

and AS10.2 S. pennellii introgressions of CU071026 and heterozygous for AS7 and both 

FA2QTL and FA7QTL accumulated high levels of acylsugars (Table 2.3). Specifically, 

selections that contained both FA2QTL and FA7QTL accumulated acylsugars at 125.1% the 

level of CU071026, comparable to internal control selections lacking either QTL, which 

accumulated acylsugars at 117.8% the level of CU071026. The fatty acid profile of the 

selections revealed that plants containing the FA2QTL and FA7QTL individually in the 

heterozygous condition accumulated increased proportions of i-C11/i-C13 (9.3% and 1.0%, 

respectively) and n-C10 (7.6%) fatty acids, respectively (Table 2.3). The selections lacking both 

FA2QTL and FA7QTL accumulated low to trace levels of i-C11/i-C13 (0.0% and 0.0%, 

respectively) and n-C10 (2.2%), and the selections heterozygous for AS7 and both FA2QTL and 

FA7QTL accumulated increased proportions of both i-C11 (8.7%) and n-C10 (5.5%), but low 

levels of i-C13 (0.1%). In addition, the selections heterozygous for AS7/FA2QTL/FA7QTL 

accumulated detectable levels of i-C9 (0.5%) which was not detectable in the other haplotypes.   
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A 187 plant F2 population was generated from one of the selections in the F1 that was 

segregating for FA2QTL, FA7QTL, and the AS7 introgression from CU071026. Eight of the 187 

plants had the desired recombination so that the AS7 and FA7QTL regions were both 

homozygous and one of the eight recombinant plants was also homozygous for FA2QTL. Six 

selections were identified that were homozygous for both FA2QTL and FA7QTL, but that had 

lost the AS7 CU071026 introgression. Additionally, one plant was identified that was 

homozygous for just FA2QTL, and two plants were identified that were homozygous for just the 

FA7QTL. Characterization of the acylsugar level and fatty acid profile of the selections from the 

F2 population was conducted and suggested interaction between the QTL on acylsugar level 

and fatty acid profile. In the F2 population selections, plants homozygous for just the FA2QTL or 

FA7QTL displayed higher acylsugars levels, 149.6% and 126.6% the level, respectively, of 

CU071026. Additionally, we observed that plants homozygous for both FA2QTL and FA7QTL 

accumulated increased levels of acylsugars as well, compared to CU071026 (Population I Table 

2.4). Specifically, the six selections homozygous for FA2QTL/FA7QTL, but lacking the AS7 

introgression, accumulated 170% the level of acylsugars of CU071026, and the selection 

Table 2.3. Initial characterization of the heterozygous effect of FA2QTL and FA7QTL on 
acylsugar level and fatty acid profile 

   QTLab 

nc 

Acylsugar as 
percent of 
CU071026 

(%)de 

     Selected fatty acid profile (%)de 

FA2 FA7 i-C4 ai-C5 i-C5 i-C9 n-C10 i-C11 n-C12 i-C13 

1 1 3 117.8 a 2.7 a 15.0 a 54.0 a 0.0 b 2.2 c 0.0 b 25.8 a 0.0 c 

1 2 1 104.2 a 2.6 a 12.1 a 49.0 a 0.0 b 7.6 a 0.1 b 28.1 a 0.0 c 

2 1 1 137.6 a 4.3 a 15.6 a 57.5 a 0.0 b 0.9 d 9.3 a 11.2 b 1.0 a 

2 2 2 125.1 a 2.7 a 13.8 a 49.3 a 0.5 a 5.5 b 8.7 a 19.0 ab 0.1 b 

a 1 = locus homozygous for S. lycopersicum alleles; 2 = locus heterozygous for S. lycopersicum / S. pennellii 

LA716 
b Haplotype 1 1 are selections derived in this F1 population and are equivalent to CU071026 
c Number of plants per haplotype that were identified and averaged for acylsugar level and fatty acid profile 
d Means followed by different letters within a column are significantly different at P < 0.05 
e i-C4, n-C10, n-C12 Cuberoot(x+.1) transformed, % CU071026 ln(x) transformed and ai-C5, i-C9, i-C10, i-
C12, i-C13 Log10(x+.1) transformed prior to analysis to improve normality 
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homozygous for AS7/FA2QTL/FA7QTL accumulated 150.3% the level of acylsugars of 

CU071026.  
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The fatty acid profile of the selections homozygous for just FA2QTL or FA7QTL showed 

the characteristic increase in i-C11/i-C13 (5.0/1.6%) and n-C10 (6.3%), respectively (Population 

I Table 2.4). Consistent with the FA2QTL/FA7QTL F1 selections, plants homozygous for 

FA2QTL/FA7QTL exhibited an increase in both n-C10 (ca. 5.6%) and i-C11 (ca 3.8%), but low 

levels of i-C13 (ca. 0.1%). The FA2QTL/FA7QTL selections also accumulated increased levels 

of i-C9 (ca. 0.2%), which was undetectable in the other haplotypes. We also observed that the 

selection homozygous for FA2QTL/FA7QTL and homozygous for the AS7 introgression had a 

profile consistent with the six selections homozygous for FA2QTL/FA7QTL, but lacking the AS7 

introgression. The selection homozygous for FA2QTL, AS7 and FA7QTL was selected as the 

initial plant for the new line, FA2/FA7/AS. However, since this selection had reduced seed set, 

we also selected a higher seed set plant homozygous for FA2QTL and FA7QTL, but that lost 

the AS7 introgression, as the initial plant for the new line, FA2/FA7/-AS7/AS. 

 

Combining FA2QTL/FA8QTL and initial assessment of impacts on acylsugar level and 

fatty acid profile 

Parallel to combining FA2QTL/FA7QTL, pyramiding FA2QTL/FA8QTL was also begun to 

characterize the interaction of these QTL in the homozygous condition on the accumulated 

acylsugars. An F1 plant (131540-4), heterozygous for FA2QTL, and equivalent to the 131540-2 

plant used to pyramid FA2QTL/FA7QTL, was crossed to the FA8/AS line (Smeda et al. 2016). 

The resulting 32 plants of the F1 population segregated for the introgression containing 

FA2QTL, with all plants heterozygous for the full length introgression carrying FA8QTL. Four 

plants were identified that were heterozygous for just FA8QTL, and 4 plants were identified that 

were heterozygous for both FA2QTL and FA8QTL.  

The acylsugar levels and fatty acid profile of the selections and control CU071026 plants 

were evaluated (Table 2.5). The levels of acylsugars accumulated in plants heterozygous for 

just FA8QTL were comparable to the levels of acylsugars accumulated in CU071026 plants. 
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Conversely, the plants heterozygous for FA2QTL/FA8QTL were slightly higher at 124.4% the 

levels of acylsugars accumulated in CU071026. The fatty acid profiles of the CU071026 plants 

and selections heterozygous for just FA8QTL were quite similar, with the plants containing 

FA8QTL slightly higher for i-C4 fatty acids. The selections containing the FA2QTL/FA8QTL 

together in the heterozygous condition exhibited an increase in i-C11/i-C13 fatty acids at 8.1% 

and 1.0%, respectively, typical of plants containing FA2QTL, as well as a slight increase in i-C4 

fatty acids.  

 

 

 

 An F2 population of 160 plants was generated from an F1 selection heterozygous for 

both FA2QTL and FA8QTL to evaluate the interactive effect of these QTL in the homozygous 

condition. Two of the 160 F2 plants screened were identified to be homozygous for just 

FA8QTL, and four plants were identified that were homozygous for both FA2QTL and FA8QTL. 

The acylsugar levels and fatty acid profiles of the selections and CU071026 control were 

evaluated (Population II Table 2.4). Selections homozygous for the FA8QTL alone accumulated 

lower levels of acylsugars (86.6% of CU071026) similar to selections homozygous for 

Table 2.5. Initial characterization of heterozygous effect of FA2QTL and FA8QTL on 
acylsugar level and fatty acid profile 

   QTLab 

nc 

Acylsugar as 
percent of 
CU071026 

(%)d 

Selected fatty acid profile (%)de 

FA2 FA8 i-C4 ai-C5 i-C5 n-C10 i-C11 n-C12 i-C13 

1 1 4 100.0 b 1.9 b 12.6 a 52.4 b 2.3 a 0.1 b 30.2 a 0.0 b 

1 2 4 107.0 b 3.4 a 12.8 a 50.4 b 2.5 a 0.1 b 30.3 a 0.0 b 

2 2 4 124.4 a 3.1 a 13.2 a 55.7 a 1.6 b 8.1 a 16.6 b 1.0 a 

a 1 = locus homozygous for S. lycopersicum alleles; 2 = locus heterozygous for S. lycopersicum / S. pennellii 
LA716 
b Haplotype 1 1 is CU071026 
c Number of plants per haplotype that were identified and averaged for acylsugar level and fatty acid profile 
d Means followed by different letters within a column are significantly different at P < 0.05 
e i-C4, n-C10, n-C12 Cuberoot(x+.1) transformed, and ai-C5, i-C13 Log10(x+.1) transformed prior to analysis 
to improve normality 
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FA2QTL/FA8QTL which accumulated levels of acylsugars at 91.5% the level of CU071026. 

Selections homozygous for just the recessive FA8QTL accumulated a characteristic increase of 

i-C4 fatty acid proportion (9.4%) compared to CU071026 (0.3% i-C4). Similarly, the selections 

homozygous for FA2QTL/FA8QTL also accumulated an increase in i-C4 (15.0%), but also 

accumulated an increase in i-C11/i-C13 (7.1% and 2.8%, respectively), characteristic of the 

presence of FA2QTL. In addition, the FA2QTL/FA8QTL selections displayed a significant 

accumulation of i-C10 (3.1%) and i-C12 (0.9%) fatty acids, which were not detectable in 

selections containing just FA8QTL, or in the CU071026 control. It was also observed that the 

selections homozygous for both FA2QTL/FA8QTL accumulated higher levels of i-C5 fatty acids 

and much lower levels of n-C12 fatty acids than selections homozygous for just FA8QTL. One 

of the four selections homozygous for FA2QTL/FA8QTL with the best seed set was chosen to 

be the initial plant to establish the new line, FA2/FA8/AS. 

 

Combining FA7QTL/FA8QTL and FA2/FA7QTL/FA8QTL and initial assessment on 

acylsugar level and fatty acid profile    

Simultaneously with the combination of FA2QTL/FA7QTL and FA2QTL/FA8QTL, breeding was 

initiated to combine FA7QTL and FA8QTL, and FA2QTL, FA7QTL, and FA8QTL to observe the 

interaction of FA7QTL and FA8QTL, and all three QTL when homozygous, on the accumulated 

acylsugars. An F1 between the FA8/AS line and a selection heterozygous for FA2QTL, 

FA7QTL, and the AS7 region was made, and the resulting 186 plant F1 population segregated 

for the FA2QTL, FA7QTL, and AS7 introgressions, with all plants heterozygous for the full 

length introgression (ca. 50 Mbp) (Smeda et al. 2016) carrying FA8QTL. Two selections 

heterozygous for FA2QTL, FA7QTL, the AS7 introgression, and FA8QTL, (151142-016 and 

151142-088) were used to generate F2 populations of 192 plants each, to obtain plants 

homozygous for both FA7QTL and FA8QTL, and all three FAQTL. 
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Out of the two 192 plant populations, 13 plants were identified as being homozygous for 

both FA7QTL and AS7, which required recombination to bring into coupling. Of these 13 

selections, only one was also homozygous for the FA8QTL introgression and had lost the 

FA2QTL introgression.  In addition, two other selections out of the population were homozygous 

for FA7QTL, and FA8QTL, but had lost the AS7 introgression. Out of the 13 selections with the 

necessary recombination between FA7QTL and AS7, one plant was also identified that was 

homozygous for FA2QTL, FA7QTL and FA8QTL. 

The acylsugar level and fatty acid profile of the selections was evaluated (Population 

III/IV Table 2.4). The level of acylsugars in the FA8/AS controls was low, at 53.1% of 

CU071026, while the level of acylsugars accumulated in FA7/AS controls were higher, at 

139.8% the level of CU071026. For the selection homozygous for FA7QTL/FA8QTL, and 

homozygous for AS7 from CU071026, the level of acylsugars accumulated was also lower, at 

73.9% the level of acylsugars in CU071026. Similarly, the level of acylsugars accumulated in 

the selections homozygous for FA7QTL/FA8QTL, but lacking the AS7 introgression were low, at 

65.6% the level of CU071026. The plant identified that was homozygous for 

FA2QTL/FA7QTL/FA8QTL and homozygous for the AS7 introgression accumulated high levels 

of acylsugars at 108.3% the level of CU071026. Evaluation of the fatty acid profile revealed that 

the selections homozygous for FA7QTL/FA8QTL accumulated increased i-C4 and n-C10 fatty 

acids. Specifically, the selections homozygous for FA7QTL/FA8QTL and lacking the AS7 

introgression accumulated 14.0% i-C4 and 9.5% n-C10 fatty acids, while the selection 

homozygous for FA7QTL/FA8QTL/AS7 accumulated a similar profile with 12.0% i-C4 and 9.3% 

n-C10. The selection homozygous for FA2QTL/FA7QTL/FA8QTL and homozygous for AS7 

accumulated increased levels of i-C4, i-C9, i-C10, n-C10, and i-C11, but did not accumulate 

detectable levels of i-C13. The selection homozygous for the FA7QTL/FA8QTL and AS7 

introgressions was chosen as the initial plant for the new line, FA7/FA8/AS. Additionally, since 

the AS7 introgression did not appear to have a significant effect on acylsugar level or chemistry 
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in this population, we also chose among the selections homozygous for the FA7QTL and 

FA8QTL introgressions but missing AS7 for the plant that set the most seed as the initial plant 

for the new line, FA7/FA8/-AS7/AS. The selection homozygous for the FA2QTL, FA7QTL, 

FA8QTL and AS7 introgressions was chosen as the initial plant for the new line, 

FA2/FA7/FA8/AS. 

 

Characterization of combination QTL lines 

To appropriately compare the single and multiple FAQTL lines and to evaluate whether 

interactions between the FAQTL could increase acylsugar level and acylsugar and fatty acid 

diversity compared to the single FAQTL lines, all lines were simultaneously grown and sampled 

for acylsugar level, fatty acid profile and acylsugar profile. To build upon the heritability results 

mentioned in Smeda et al. (2016), heritability analysis was conducted for the predominant fatty 

acids accumulated by the combination QTL lines, as well as for a selected number of the 

predominant acylsugars accumulated by the lines. In addition, to evaluate the impact of the 

environment on these traits to inform breeding objectives, the environment (E) and genotype by 

environment (G X E) values for these traits were also calculated.  

 Acylsugar level    The levels of acylsugars in the single QTL fatty acid lines were largely 

consistent with previous characterization (Smeda et al. 2016). FA8/AS accumulated lower levels 

of acylsugars (58.6%) compared to CU071026, while the FA2/AS and FA7/AS lines 

accumulated levels of acylsugars comparable to CU071026 (Table 2.6). The FA2/FA8/AS line 

accumulated less acylsugars compared to CU071026 (76.0%), whereas the FA7/FA8/AS line 

accumulated comparable levels of acylsugars (99.9%) similar to CU071026. Conversely, the 

FA2/FA7/AS and FA2/FA7/FA8/AS lines were observed to accumulate higher levels of 

acylsugars (141.0% and 169.8% respectively) than CU071026.  
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 Fatty acid profile   Consistent with preliminary characterization during development, the 

FA2/FA7/AS line accumulated significant levels of n-C10 and i-C11 fatty acids, which are found 

at low and trace levels, respectively in CU071026 (Table 2.6). The proportion of n-C10 (6.5%) in 

FA2/FA7/AS was slightly lower than that in FA7/AS (8.6%), and the proportion of i-C11 (5.8%) in 

FA2/FA7/AS was slightly lower than that in FA2/AS (8.5%). The FA2/FA7/AS line was found to 

accumulate a decreased proportion of i-C13 (0.2%) compared to FA2/AS (3.7%) and an 

increased proportion of i-C9 fatty acids (0.29%), compared to FA2/AS (0.05%) and which is not 

detectable in FA7/AS or CU071026. FA2/FA8/AS accumulated an increased proportion of i-C4 

(25.4%) fatty acids, similar to FA8/AS (21.7% i-C4) and significant levels of i-C11 (8.1%) and i-

C13 (3.2%), similar to FA2/AS. FA2/FA8/AS, however, also accumulated significant levels of i-

C10 (2.97%), i-C12 (1.88%), and i-C14 (0.78%) fatty acids, not detectable in CU071026, and 

virtually undetectable in the FA2/AS and FA8/AS lines. FA7/FA8/AS accumulated an increased 

proportion of i-C4 (15.4%), slightly less than FA8/AS, and an increased proportion of n-C10 

(8.3%), similar to FA7/AS. The FA7/FA8/AS line was also observed to possess an extremely 

low proportion of i-C5 fatty acids (18.9%), lower than FA7/AS (52.0%) and slightly less than 

FA8/AS (24.6%), although not significant. The interaction of all three FAQTL in the 

FA2/FA7/FA8/AS line displayed an increased proportion of i-C4 (16.8%), slightly less than 

FA8/AS, and increased proportions of n-C10 (6.5%) and i-C11 (3.5%), slightly less than FA7/AS 

and FA2/AS, respectively. The FA2/FA7/FA8/AS line also accumulated increased i-C9 fatty 

acids (0.27%) and decreased i-C13 fatty acids (0.1%), similar to the FA2/FA7/AS line and 

increased i-C10 and i-C12 fatty acids (4.2% and 0.37% respectively), similar to the FA2/FA8/AS 

line.  

 Non-metric multidimensional scaling (NMDS) analysis was conducted to further evaluate 

whether the fatty acid profile of each FAQTL line was distinct, and to visualize the results 

(Figure 2.1). The NMDS analysis clearly showed clustering of the profiles of plants of the same 

genotype, but also revealed that a pair of genotypes clustered closely together, CU071026 with 
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FA7/AS, while the rest of the genotypes were cleanly separated. Additionally, FA2/AS, FA8/AS 

and FA2/FA8/AS showed greater profile variance between plant samples than the other 

genotypes (Figure 2.1). Two further NMDS analyses of the FAQTL lines helped illustrate the 

effects of the single and combination FAQTL to separate genotypes based on their fatty acid 

profiles. For example, NMDS analysis was performed, but the single and multiple FAQTL line 

and CU071026 samples were colored according to whether they possessed the single FAQTL 

(FA2, FA7, or FA8); even more clearly than in Figure 2.1 presence of the FA7QTL did not 

differentiate samples (Figure 2.2.b). Conversely, presence of the FA2QTL and FA8QTL cleanly 

separated samples of the different genotypes (Figure 2.2.a and 2.2.c, respectively). Additionally, 

the NMDS analysis was recoded so that the samples were distinguished according to the 

FAQTL combination classes, which furthered clarified the ability of the FAQTL to differentiate 

fatty acid profiles. For example, in Figure 2.3.a, the combination of FA2QTL/FA7QTL 

demonstrated that the samples with just FA7QTL did not separate well from samples that had 

neither FAQTL, but the FA2QTL/FA7QTL class did separate well from the FA2QTL alone class. 

In contrast to the FA7QTL, the samples with just FA2QTL separated well from the other classes, 

especially the class with neither QTL. In Figure 2.3.b, the four classes with both 

FA2QTL/FA8QTL, just FA2QTL, just FA8QTL, or neither, all separated cleanly. Lastly, the 

combination of FA7QTL/FA8QTL, depicted in Figure 2.3.c. showed that the FA7QTL class did 

not separate well from the neither QTL class, and that the FA7QTL/FA8QTL class did not 

separate well from the FA8QTL class. The FA8QTL class, however, did separate well from the 

neither QTL class and the FA7QTL class.  
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Figure 2.2. NMDS ordination of the fatty acid profile of the FAQTL lines and CU071026, based on 
Bray-Curtis distance, rotated by principal component analysis. Samples are separated by FA2QTL 
(a), FA7QTL (b) and FA8QTL (c), illustrating the effect of each QTL to alter and distinguish fatty acid 
profile 
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Figure 2.3. NMDS ordination of the fatty acid profile of the FAQTL lines and CU071026, based on 
Bray-Curtis distance, rotated by principal component analysis. Samples are separated by 
FA2QTL/FA7QTL (a), FA2QTL/FA8QTL (b) and FA7QTL/FA8QTL (c), illustrating the effect of FAQTL 
pairs to alter and distinguish fatty acid profile 
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  Acylsugar profile   To evaluate the diversity of acylsugars accumulated by the 

combination fatty acid lines, LC-MS data was collected to complement the GC-MS data and 

provide a holistic picture of the acylsugar composition of each line (Figure 2.4). LC-MS revealed 

that the three predominant acylsugars accumulated by CU071026 are S4:17 (ID 48), S3:22 (ID 

56) and S4:24 (ID 57), which matches previous characterization of this line in Smeda et al. 

(2016). The predominant acylsugars accumulated by the single FAQTL lines and discussed in 

Smeda et al. (2016) also closely matched previous characterization. The combination FAQTL 

lines displayed both additive and epistatic impacts on acylsugar profile. Specifically, the 

FA2/FA7/AS line was observed to accumulate the predominant acylsugars identified in 

CU071026, FA2/AS and FA7/AS, but also accumulated significant amounts of S3:19 (5,5,9) ID 

39 and S4:21 (2,5,5,9) ID 40, which are not detectable in CU071026, and detectable in FA2/AS 

and FA7/AS, but in much lower levels. For the ID 39/40 acylsugars, FA2/FA7/AS accumulated 

ca. 15x the levels of these acylsugars compared to FA2/AS and ca. 100x the levels of these 

acylsugars compared to FA7/AS. The FA2/FA8/AS line was observed to accumulate, but at 

lower levels, the three major acylsugars that dominated the profile of CU071026 and additionally 

accumulated the predominant acylsugars in the FA2/AS and FA8/AS lines. The FA2/FA8/AS line 

also accumulated significant amounts of S4:22 (2,5,5,10) ID 29, S4:21 (2,4,5,10) ID 27, S4:20 

(2,4,4,10) ID 25, and S3:19 (4,5,10) ID 26, all of which are undetectable or at trace levels in 

CU071026, and undetectable or much lower in FA2/AS and FA8/AS. The levels of S4:21 

(2,4,5,10) ID 27, for example, were 85x higher in FA2/FA8/AS compared to FA8/AS and 165x 

higher than in FA2/AS. Additionally FA2/FA8/AS significantly accumulated S3:22 (5,5,12) ID 31, 

which was not detected in CU071026, FA2/AS or FA8/AS. FA2/FA8/AS also significantly 

accumulated an acylsugar with a C14 group, S3:24 (5,5,14) ID 34, which was detected at 

moderate levels in FA2/FA7/FA8/AS and FA2/AS. The FA7/FA8/AS line was observed to 

accumulate the three major acylsugars of CU071026, as well as the major acylsugars of FA7/AS 

and FA8/AS. Additionally, the FA7/FA8/AS line accumulated significant amounts of S3:18 
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(4,4,10) ID 18 and S4:20 (2,4,4,10) ID 19, which are accumulated at low or undetectable levels in 

FA7/AS and FA8/AS. Specifically, for S4:20 (2,4,4,10) ID 19, FA7/FA8/AS accumulated 5x 

higher levels than FA8/AS and 79x higher levels than FA7/AS. The FA2/FA7/FA8/AS line was 

observed to significantly accumulate a large number of acylsugars including the major 

acylsugars of CU071026, FA2/AS, FA7/AS, and FA8/AS. In addition to accumulating the major 

acylsugars of the single FAQTL lines, the FA2/FA7/FA8/AS line also accumulated significant 

amounts of the major acylsugars found in the binary combination lines (FA2/FA7/AS, 

FA2/FA8/AS, FA7/FA8/AS). Chromatograms of each combination line are displayed in Figure 2.5 

and illustrate the dominant acylsugars accumulated in each line. 
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Figure 2.4. Hierarchical cluster analysis with Pearson correlation using a pairwise average-
linkage clustering method, indicating the predominant acylsugars accumulated by each tomato 
line. Three samples were analyzed per line. Color across a row indicates relative levels (peak 
area/g leaf weight) of the respective acylsugar, with red indicating samples with the highest 
levels detected and blue/purple indicating low or no detection relative to the highest sample for 
the particular type of acylsugar.  aThe mass to charge ratio for each acylsugar followed by 
retention time in minutes. bAcylsugar nomenclature indicates S for sucrose backbone of the 
molecule, as well as the number of fatty acid acyl chains (2 to 4) with their cumulative length in 
carbons that are esterified to the sugar followed by the lengths in carbons of each acyl group in 
the respective acylsugar. A question mark indicates the proposed acylgroup number and length 
for an acylsugar whose identification was hampered by low abundance and peak overlap. 
 

 

 

 

 

 

 

 

 

 

 

 



89 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



90 
 

  

Figure 2.5. Representative LC-MS base peak intensity chromatograms for the FAQTL lines and 
CU071026. Each chromatogram is scaled according to the most abundant peak in the chromatogram 
to show differences in acylsugar profiles. Peaks are labeled with the ID number system used in the 
HCA analysis (Figure 2.4) 
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Clear chromatographic separation was observed for several acylsugars identified in LC-

MS analysis with identical mass and indistinguishable mass spectra, such as S4:16 (2,4,5,5) ID 

10 with a retention time of 5.06 min and S4:16 (2,4,5,5) ID 50 with a retention time of 5.43 min. 

We also detected influence of the FAQTL alone and in combination on presence/absence and 

relative abundance of acylsugar isomers. We observed that acylsugar S3:20 ID 60 with a 

retention time of 8.23 min was highly accumulated in FA7/AS, and accumulated at lower levels 

in CU071026 and FA2/AS, and very low levels in FA8/AS. Acylsugar S3:20 ID 28 with a 

retention time of 8.07 min, however, was significantly accumulated by FA2/AS but was present 

only at very low levels in CU071026, FA7/AS and FA8/AS. A possible example of differential 

isomer abundance due to acyl group branching orientation involved four isomers: S4:17 

(2,5,5,5) ID 3 with a retention time of 5.46 min, S4:17 (2,5,5,5) ID 9 with a retention time of 5.55 

min, S4:17 (2,5,5,5) ID 48 with a retention time of 5.63 min and S4:17 (2,5,5,5) ID 46 with a 

retention time of 5.16 min. CU071026, FA2/AS, FA7/AS, and FA2/FA7/AS only accumulated 

detectable levels of the isomers with IDs 46 and 48, whereas FA8/AS, FA2/FA8/AS, 

FA7/FA8/AS, and FA2/FA7/FA8/AS accumulated detectable levels of the isomers with IDs 3, 9, 

and 48. The isomer with ID 46 was not detectable in lines containing FA8QTL.   

 To further evaluate the acylsugar profiles of the FAQTL lines, the hierarchical clustering 

analysis (HCA) in Figure 2.4 was utilized to compare how the acylsugars clustered between 

genotypes. The clustering analysis revealed separation of the fatty acid lines into four main 

clusters. Acylsugars with IDs 1-23 were more abundant in lines with FA8QTL (FA8/AS, 

FA2/FA8/AS, FA7/FA8/AS, and FA2/FA7/FA8/AS), whereas acylsugars with IDs 24-38 

(particularly 24-27) were most abundant in lines with both FA2QTL and FA8QTL. Acylsugars 

with IDs 39-45 were most abundant in lines containing FA2QTL, and acylsugars with IDs 46-61 

were most abundant in lines lacking the FA8QTL. Only one of the QTL combinations 

(FA2QTL/FA8QTL) was observed to generate a novel cluster in the HCA. The 
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FA2QTL/FA7QTL, FA7QTL/FA8QTL, and FA2QTL/FA7QTL/FA8QTL did not lead to novel 

clusters of acylsugars unique to these QTL combinations.  

 

Heritability estimates for acylsugar and fatty acid traits and environmental impact 

Fatty acid heritability and environmental impact   Heritability estimates (Figure 2.6.a) for the fatty 

acids were high, with all fatty acids displaying broad sense heritability of at least 0.5. Estimates 

were particularly high for the heritability of the three novel fatty acids, increased in the 

combination FAQTL lines (i-C9, i-C10, and i-C12), all greater than 0.9, and together the 

estimates revealed a trend for the longer chain fatty acids (C > 8), except i-C13, to exhibit 

higher heritability than the shorter fatty acids. Looking beyond heritability, we also generated 

estimates for the effect of the environment and genotype by environment interaction on the 

evaluated fatty acids (Figure 2.6.a). The shorter chain fatty acids were more impacted by the 

environment, which was not unexpected based on the lower heritability; in particular, the i-C4 

fatty acids experienced considerable genotype by environmental interaction, whereas the i-C5 

fatty acids experienced greater interaction with the environment directly. Consistent with the 

lower heritability, the i-C13 fatty acids also experienced greater interaction with the environment, 

in particular through genotype by environmental interaction.  
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Figure 2.6. Heritabilities, environmental impact (E) and genotype by environmental impact 
(GxE) for proportions of specific fatty acid components of acylsugars (a) and specific 
acylsugars (b). Calculations for fatty acids were performed using data from 2014-2016 and 
calculations for acylsugars were performed using data from 2015-2016. Full acylsugar ID 
information is displayed in Figure 2.4. 
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 Acylsugar heritability and environmental impact    Estimates were generally high for the 

heritability of the acylsugars looked at in this study as well, and a selection of them are 

displayed in Figure 2.6.b. Consistent with the lower heritability for the shorter chain acyl groups, 

there was a trend for the acylsugars containing all short chain acyl groups to display lower 

heritability, although most evaluated acylsugars exhibited a broad sense heritability of at least 

0.4. In particular, the acylsugars with C4 and C5 chains together displayed relatively lower 

heritability, ranging from ca. 0.16 to 0.8, versus many of the acylsugars which displayed 

heritability values of at least 0.9. Unlike the fatty acid data, where the i-C13 acyl groups 

displayed lower heritability, the heritability for the acylsugar containing a C13 group (ID 45) was 

high (> 0.9). Heritability estimates for many of the acylsugars displayed in Figure 2.4 that are 

not included in Figure 2.6 are displayed in Table 2.7. Like we did for the fatty acids, we also 

generated estimates for the effect of the environment and genotype by environment interaction 

on selected acylsugars (Figure 2.6.b). The acylsugars with lower heritability estimates were 

generally impacted to a greater degree by the environment; in particular, the acylsugars with 

combinations of C4 and C5 acyl groups displayed considerable genotype by environmental 

interaction.  
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Table 2.7. Broad sense heritability estimates and environmental (Percent E) and genotype by 
environmental (Percent GxE) impact on acylsugars 

Acylsugar 
IDa 

Mass to charge ratio 
and retention times 

Acylsugar and 
acyl groups 

Heritabilityb Percent Eb 
Percent 

GxEb 

5 625.27 (4.20) S3:14 (4,5,5) 0.73 0.00 0.32 
7 639.26 (3.94) S4:14 (2,4,4,4)? 0.86 0.04 0.16 
8 653.27 (4.50) S4:15 (2,4,4,5) 0.78 0.04 0.17 

10 667.29 (5.06) S4:16 (2,4,5,5) 0.41 0.23 0.52 
16 723.38 (9.14) S3:21 (4,5,12) 0.21 0.00 0.85 
17 765.4 (10.07) S4:23 (2,4,5,12) 0.16 0.00 0.82 
20 695.35 (7.67) S3:19 (4,5,10) 0.87 0.00 0.18 
21 737.36 (8.63) S4:21 (2,4,5,10) 0.81 0.00 0.26 
25 723.36 (7.91) S4:20 (2,4,4,10) 0.73 0.01 0.41 
26 695.35 (7.53) S3:19 (4,5,10) 0.69 0.01 0.44 
27 737.37 (8.46) S4:21 (2,4,5,10) 0.42 0.00 0.63 
28 709.37 (8.07) S3:20 (5,5,10) 0.79 0.00 0.31 
29 751.38 (9.02) S4:22 (2,5,5,10) 0.44 0.00 0.66 
39 695.35 (7.38) S3:19 (5,5,9) 0.97 0.00 0.03 
40 737.34 (8.31) S4:21 (2,5,5,9) 0.96 0.00 0.04 
42 723.38 (8.80) S3:21 (5,5,11) 0.96 0.02 0.07 
43 765.39 (9.74) S4:23 (2,5,5,11) 0.96 0.01 0.07 
44 751.41 (10.21) S3:23 (5,5,13) 0.97 0.00 0.00 
45 793.42 (11.04) S4:25 (2,5,5,13) 0.94 0.00 0.00 
47 639.29 (4.75) S3:15 (5,5,5) 0.85 0.11 0.19 
48 681.3 (5.63) S4:17 (2,5,5,5) 0.96 0.02 0.06 
51 695.32 (6.23) S4:18 (2,5,5,6) 0.77 0.00 0.32 
53 723.35 (7.00) S4:20 (5,5,5,5) 0.93 0.01 0.10 
55 821.46 (11.43) S4:27 (5,5,5,12) 0.69 0.05 0.38 
56 737.4 (9.68) S3:22 (5,5,12) 0.97 0.06 0.04 
57 779.41 (10.59) S4:24 (2,5,5,12) 0.96 0.09 0.05 
58 751.41 (10.21) S3:23 (5,6,12) 0.65 0.00 0.48 
60 709.37 (8.22) S3:20 (5,5,10) 0.97 0.01 0.05 
61 751.38 (9.18) S4:22 (2,5,5,10) 0.96 0.03 0.06 
62 793.43 (10.29) S4:25 (5,5,5,10) 0.64 0.00 0.48 
63 793.43 (11.04) S4:25 (2,5,6,12) 0.84 0.00 0.25 

a Acylsugars listed include acylsugars with levels at least 1% of the internal standard  

b Calculated from eight entries, replicated over two years 
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The impact of pyramiding FAQTL on acylsugar and fatty acid richness/diversity 

To more holistically evaluate the fatty acid and acylsugar diversity, we measured the profile 

richness through ANOVA and the profile diversity and evenness using Shannon’s Diversity 

Index (H’) (Shannon and Weaver 1949). Richness focuses on comparing the number of 

significantly accumulated compounds between genotypes whereas evenness is a measure of 

the spread of accumulated compounds among the possible compound classes. The diversity 

metric is a combination of the richness and evenness measures. Specifically, a higher H’ index 

score equates to a generally more even profile with greater compound richness. It is important 

to clearly define these labels, as much confusion in the literature results from ambiguous 

terminology concerning diversity, which is articulated in Spellerberg and Fedor (2003).  

 Fatty acid richness.  Evaluation of fatty acid profile using the relative percent of fatty 

acids from the whole fatty acid profile of each FAQTL line and CU071026 revealed that the 

acylsugar lines separated into two main groups, with acylsugar lines containing the FA2/AS 

introgression demonstrating increased fatty acid richness (Table 2.8). The FA7/AS and 

FA7/FA8/AS lines did not have greater fatty acid richness than CU071026, but the FA8/AS line 

did have a slight increase in richness. It was observed that the QTL in FA7/AS was associated 

with a decrease in fatty acid richness, as the FA7/FA8/AS line had less richness than FA8/AS 

and the FA2/FA7/AS line has less richness than FA2/AS. Additionally, it was observed that the 

FA2/AS line had a comparable level of fatty acid richness as the FA2/FA7/AS, FA2/FA8/AS and 

FA2/FA7/FA8/AS combination QTL lines.   
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Table 2.8. Richness of fatty acids and acylsugars accumulated by each FAQTL 
line and CU071026 

Genotype Fatty Acid Richnessab Acylsugar Richnessac 

FA7/FA8/AS 6.8 a 42.3 a 
CU071026 6.7 a 43.3 ab 
FA7/AS 6.9 a 44.0 bc 
FA2/AS 11.6 d 45.0 c 
FA8/AS 8.2 b 46.7 d 
FA2/FA7/AS 10.6 c 47.0 d 
FA2/FA8/AS 11.6 d 53.0 e 
FA2/FA7/FA8/AS 12.0 d 53.0 e 
a Means followed by different letters within a column are significantly different at P < 0.05 
b Number of distinct fatty acid acyl groups identified from the acylsugars of each genotype 
c Number of distinct acylsugars identified to be accumulated by each genotype 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 2.7. Shannon’s Diversity Index (SDI) values for fatty acid profile using relative 
percent of fatty acids for CU071026 and the FAQTL lines. Higher values indicate 
greater profile diversity through a combination of a greater number of types of fatty 
acids present and greater evenness of fatty acids. Genotypes not sharing the same 
letter are significantly different (p < 0.05) Tukey HSD. Error bars represent one 
standard error of the mean. 
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 Fatty acid diversity and evenness   Using H’ with the relative proportions of the fatty 

acids for each genotype revealed a more sophisticated pattern than the richness analysis. For 

example, CU071026 possessed the lowest diversity index score; FA7/AS, on the other hand, 

had a slightly higher index score, and FA7/FA8/AS had a much higher diversity score (Figure 

2.7). FA2/AS and FA8/AS were observed to have a more diverse fatty acid profile than 

CU071026 or FA7/AS, and a comparable level of profile diversity to FA2/FA7/AS and 

FA7/FA8/AS. The FA2/FA8 and FA2/FA7/FA8/AS lines, unlike the richness analysis, displayed 

the highest H’ values, and therefore had the most diverse fatty acid profiles. The fatty acid 

profile evenness analysis revealed a slightly different pattern where CU071026 had the lowest 

evenness score, similar to FA2/AS, whereas the FA7/AS and FA8/AS lines had increased fatty 

acid profile evenness (Figure 2.8). The QTL in FA2/AS appeared to slightly lower evenness 

when combined with the QTL in FA7/AS, but combination of FA7QTL/FA8QTL and 

FA2QTL/FA8QTL increased fatty acid profile evenness.  
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Acylsugar richness.  Evaluation of acylsugar profile richness using the 63 acylsugars 

from the whole acylsugar profile of each FAQTL line and CU071026 (Figure 2.4) revealed a 

more complex pattern of acylsugar richness than fatty acid richness (Table 2.8). Specifically, the 

FA7/FA8/AS and CU071026 profiles displayed the lowest acylsugar richness, similar to FA7/AS. 

FA2/AS and FA7/AS had similar richness values, but the FA2/FA7/AS line had increased 

acylsugar richness. FA8/AS displayed an increase in acylsugar richness and FA2/FA8/AS, and 

FA2/FA7/FA8/AS had the highest acylsugar richness values.  

Figure 2.8. Fatty acid profile evenness values for CU071026 and the FAQTL lines, as 
calculated from the diversity values in Figure 2.7. Values can range from 0 (no 
evenness) to 1 (complete evenness). Genotypes not sharing the same letter are 
significantly different (p < 0.05) Tukey HSD. Error bars represent one standard error 
of the mean. 
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 Utilization of the HCA in Figure 2.4 demonstrated that some FAQTL combinations led to 

significant tradeoffs in acylsugar accumulation. For example, FA7/FA8/AS lost moderate 

accumulation of 19 acylsugars that were accumulated by at least one of the FA7/AS or FA8/AS 

genotypes. Similarly, FA2/FA8/AS also lost moderate accumulation of 19 acylsugars 

significantly accumulated in FA2/AS or FA8/AS. FA2/FA7/FA8/AS lost moderate accumulation 

of slightly less acylsugars (15) that were significantly accumulated in at least one of the single or 

binary FAQTL genotypes. Contrary to the other combinations, the FA2QTL/FA7QTL, in 

FA2/FA7/AS only resulted in the loss of moderate accumulation of five acylsugars that were 

accumulated in FA2/AS or FA7/AS, indicating these two FAQTL experience fewer acylsugar 

tradeoffs when combined. 

 Acylsugar diversity and evenness   Using H’ with the relative peak areas of each of the 

63 acylsugars accumulated by the FAQTL lines and CU071026 (Figure 2.4) revealed that 

CU071026 possessed the least diverse acylsugar profile (Figure 2.9). Consistent with the fatty 

acid profile diversity, FA2/AS and FA2/FA7/AS had comparable levels of diversity, with both 

exhibiting a more diverse acylsugar profile than FA7/AS. FA2/FA8/AS and FA7/FA8/AS 

exhibited a more diverse acylsugar profile than any of the single FAQTL lines with FA2/FA8/AS 

slightly more diverse than FA7/FA8/AS. FA2/FA7/FA8/AS displayed the highest H’ values, 

indicating the most diverse acylsugar profile, which was slightly more than the FA2/FA8/AS line. 

The acylsugar evenness analysis demonstrated the same pattern as the diversity analysis with 

FA7/FA8/AS demonstrating a higher evenness value than any of the single QTL lines and 

comparable evenness to the FA2/FA8/AS line; the FA2/FA7/FA8/AS line had the most even 

acylsugar profile, slightly more even than FA2/FA8/AS (Figure 2.10).  
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Figure 2.9. Shannon’s Diversity Index (SDI) values for acylsugar profile using peak 
area of acylsugar abundance from CU071026 and the FAQTL lines. Higher values 
indicate greater profile diversity through a greater number of compounds present and 
greater acylsugar profile evenness. Genotypes not sharing the same letter are 
significantly different (p < 0.05) Tukey HSD. Error bars represent one standard error 
of the mean. 
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Figure 2.10. Acylsugar profile evenness values for CU071026 and the FAQTL lines as 
calculated from the diversity values from Figure 2.9. Values can range from 0 (no 
evenness) to 1 (complete evenness). Genotypes not sharing the same letter are 
significantly different (p < 0.05) Tukey HSD. Error bars represent one standard error 
of the mean. 
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DISCUSSION 

 

There were two major questions we hoped to answer through pyramiding the FAQTL. One 

question in combining the three FAQTL (FA2, FA7, FA8), was whether we could identify 

combinations of these QTL that increased acylsugar level over the single QTL lines. Closely 

related, a second question to answer was whether combinations of the three FAQTL could 

increase the diversity of the fatty acids and acylsugars accumulated compared to the single QTL 

lines. In this study, we show that combination of the FAQTL has a profound impact on altering 

the accumulated levels of acylsugars, the fatty acid and acylsugar profiles, and the fatty acid 

and acylsugar profile diversity (richness and evenness) in the resulting lines.  Additionally, we 

show that significant interactions between the FAQTL, both additive and epistatic, modulate the 

acylsugar level and chemotype changes in the FAQTL lines.  

 Evaluation of the F1 and F2 population selections combining FA2QTL and FA7QTL 

heterozygously and homozygously suggested these QTL in combination were providing additive 

and epistatic impacts on acylsugar level and fatty acid profile. In the heterozygous condition and 

homozygous condition, pairing the FA2QTL and FA7QTL appeared to increase acylsugar levels 

relative to CU071026. Additionally, pairing the QTL in both the heterozygous and homozygous 

conditions resulted in a fatty acid profile that exhibited increased levels of i-C9, and decreased 

levels of i-C13, indicative of positive epistatic interaction between FA2QTL and FA7QTL for i-

C9, and negative interaction for i-C13. Together, the data for the FA2QTL/FA7QTL population 

selections indicate these QTL function together heterozygously and homozygously to generate 

high levels of acylsugars with modified fatty acid profiles.  

 Evaluation of the F1 and F2 population selections combining FA2QTL and FA8QTL in 

the heterozygous and homozygous condition indicated that in combination these QTL were 

additively impacting acylsugar level and additively and epistatically altering the fatty acid profile. 

FA8QTL is largely recessive in function (Leckie et al. 2014), and as such FA8QTL minimally 
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impacted acylsugar level or fatty acid profile when heterozygous. When homozygous, FA8QTL 

negatively impacted acylsugar levels compared to CU071026, but pairing FA2QTL/FA8QTL in 

the homozygous condition revealed additive action since the levels of acylsugars accumulated 

were increased back toward the level of CU071026. Pairing the FA2QTL/FA8QTL in the 

homozygous condition resulted in a distinct fatty acid profile highlighted by the marked increase 

in several extended, even, branched fatty acids through epistatic interaction. Together the data 

from the F2 population selections indicated FA2QTL and FA8QTL function together in the 

homozygous condition to allow accumulation of moderate levels of acylsugars with a unique 

fatty acid profile.  

 Similarly, assessment of the population selections combining FA7QTL/FA8QTL and 

FA2QTL/FA7QTL/FA8QTL suggested that in combination these QTL were additively and 

epistatically affecting acylsugar level and fatty acid profile. Pairing of the FA7QTL and FA8QTL 

in the homozygous condition led to levels of acylsugar higher than when FA8QTL was alone, 

indicating additive impact on acylsugar level. The selection that combined all three FAQTL in 

the homozygous condition displayed levels of acylsugars at or above the level observed in 

CU071026, which suggested all three FAQTL could be interacting epistatically to increase the 

accumulated levels of acylsugars. Combination of FA7QTL/FA8QTL in the homozygous 

condition resulted in a fatty acid profile additive of the profiles associated with the FA7/AS lines 

and FA8/AS lines. Pairing of the FA2QTL/FA7QTL/FA8QTL in the homozygous condition 

displayed a profile that appeared additive to that observed in the FA2QTL/FA7QTL selections 

and the FA2QTL/FA8QTL selections. Together the data from the FA7QTL/FA8QTL and 

FA2QTL/FA7QTL/FA8QTL population selections indicated these QTL functioned together 

homozygously as a FA7QTL/FA8QTL pair, and all together to affect acylsugar levels and modify 

the fatty acid profile. Preliminary evaluations of selections among the populations containing two 

or all three of the FAQTL suggested that some combinations led to increased acylsugar levels 

and increased fatty acid profile diversity, such as the increased accumulation of novel fatty acids 
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like i-C9/i-C10/i-C12. Observation of increased acylsugar levels and fatty acid profile richness 

and evenness in some FAQTL combinations illustrates the intricacy of acylsugar biosynthesis, 

and suggests acylsugar phenotypes depend on the interaction of a number of QTL. 

 Replicated evaluation of the FAQTL lines supported the initial characterization from 

selections in the breeding populations, but also revealed additional additive and epistatic 

interactions to increase acylsugar level and acylsugar and fatty acid profile complexity. Based 

on the trend for FA2QTL and FA7QTL, individually, to increase acylsugar levels and FA8QTL, 

individually, to decrease acylsugar levels (Smeda et al. 2016) we expected to see levels of 

acylsugars in the FA2/FA8/AS line and FA7/FA8/AS lines that were comparable to CU071026, 

and levels of acylsugars in the FA2/FA7/AS line that were at or above the level of CU071026. 

Consistent with the initial FA2QTL/FA8QTL F2 population selections though, the FA2/FA8/AS 

line accumulated less acylsugars then CU071026, while conversely, the FA7/FA8/AS line 

accumulated comparable levels of acylsugars (99.9%) to CU071026, somewhat higher than that 

observed in the FA7QTL/FA8QTL F2 population selections. The FA7/FA8/AS line matched our 

hypothesis, suggesting FA7QTL can mediate the negative effect of FA8QTL on total acylsugar 

level, possibly through epistatic interaction. Conversely, while there was a trend for acylsugar 

levels in the FA2/FA8/AS line to be higher than the FA8/AS line, these data suggest the 

FA2QTL introgression cannot fully compensate for the lower acylsugar levels in the FA8/AS 

line. We also observed that the FA2/FA7/AS and FA2/FA7/FA8/AS lines accumulated much 

higher levels of acylsugars than CU071026. The increase in acylsugar levels in FA2/FA7/AS 

suggests that the FA2QTL and FA7QTL introgressions are combining in a non-additive manner, 

since in this study the acylsugar levels observed in the FA2/FA7/AS line are greater than the 

summed increase in acylsugar levels of the FA2/AS and FA7/AS lines. Furthermore, the 

FA2/FA7/FA8/AS line accumulated acylsugars at least as high as the FA2/FA7/AS line despite 

addition of FA8QTL, which suggests epistatic interaction between all three FAQTL when 

combined to increase acylsugar levels.  
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 NMDS analysis (Figure 2.1) clearly distinguished FAQTL lines based on their 

accumulated fatty acids, which demonstrated that each FAQTL line had a unique fatty acid 

profile. FA7QTL had the least impact on altering a fatty acid profile, in particular when alone. 

Figures 2.2 and 2.3 provided additional perspective on the separation of FAQTL lines based on 

the single and multiple FAQTL. In particular, Figure 2.1 and 2.3 demonstrated a limited ability to 

separate plants with just FA7/QTL and those without FA7QTL, and plants with both 

FA7QTL/FA8QTL from plants with just FA8QTL. This suggested that FA7QTL in combination 

with FA8QTL had little epistatic impact on generating a unique fatty acid profile. Conversely, 

Figure 2.3 suggested that FA7QTL interacted with FA2QTL to impact fatty acid profile, causing 

distinct separation of the FA2/AS and FA2/FA7/AS samples, and the FA2/FA8/AS and 

FA2/FA7/FA8/AS samples. The separation of these samples and other FAQTL line pairs 

provides further support for the presence of epistatic genetic interactions that modify fatty acid 

profile.  

 The FA7QTL/FA8QTL interaction in the FA7/FA8/AS line was largely additive of the fatty 

acid profile of the FA7/AS and FA8/AS line profiles, with no novel fatty acids accumulated that 

were unique to this line. The FA2/FA7/AS line profile was largely additive of the fatty acid 

profiles of FA2/AS and FA7/AS, but an epistatic effect was apparent in the increased production 

of a novel fatty acid (i-C9), and decreased production of i-C13. Based on previous knowledge 

about FA7QTL, it is not surprising that the FA2QTL/FA7QTL combination would lead to 

increased i-C9 and decreased i-C13. For example, presence of FA7QTL results in accumulation 

of shorter iso-branched and straight chain fatty acids above C8 in length (Leckie et al. 2014). It 

is possible that FA7QTL prevents the last two carbon extension (Slocombe et al. 2008; Walters 

and Steffens 1990) of a portion of iso-branched and straight chain fatty acids such as n-C10 to 

n-C12 or to i-C11 to i-C13. Due to the presence of FA2QTL, which generates accumulation of 

both i-C11 and i-C13, the addition of FA7QTL possibly prevents some of the i-C9 fatty acids 

from being extended to i-C11, and some of the i-C11 fatty acids from being extended to i-C13. 
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The FA2/FA8/AS and FA2/FA7/FA8/AS line profiles were substantially more complex than the 

individual FAQTL lines, which was largely due to epistatic interaction between FA2QTL and 

FA8QTL to increase accumulation of novel fatty acids, such as i-C10, i-C12, and i-C14. 

Extension of fatty acids to 14 carbons has not been previously reported, and to our knowledge, 

this is the first observation of a 14 carbon fatty acid that is part of an acylsugar molecule. The 

orientation of this fatty acid is likely i-C14 because it was mostly detected in FAQTL lines 

containing FA2QTL, and was greatly upregulated in FA2/FA8/AS, which also has increased 

accumulation of i-C10, and i-C12. Based on knowledge of how the individual FAQTL function 

(Leckie et al. 2014; Smeda et al. 2016), it is not surprising that FA2QTL and FA8QTL would 

lead to a more complex fatty acid profile. For example, the FA8QTL allows substantial 

accumulation of i-C4, which is largely absent in genotypes lacking the FA8QTL, but still 

maintains a decent proportion of i-C5 as well. These two branched-chain fatty acids are the 

starting point for the two-carbon extension method in acylsugar biosynthesis by which extended 

straight chain and branched-chain fatty acids are generated (Slocombe et al. 2008; Walters and 

Steffens 1990). FA2QTL extends short, branched-chain chain fatty acids, and leads to a greater 

proportion of extended branched fatty acids (Leckie et al. 2014). Therefore, when FA2QTL is 

combined with FA8QTL, this leads to extended odd and even branched-chain fatty acids. These 

data demonstrate that FA2QTL, FA7QTL and FA8QTL function together in all combinations to 

distinctly alter the fatty acid profile.  

Similar to the analysis of the fatty acid profiles, the analysis of the acylsugar profiles of 

the combination QTL lines revealed both additive and epistatic interactions. In combination, the 

FA7QTL/FA8QTL in the FA7/FA8/AS line appear to function mostly in an additive manner, but 

there was some evidence of non-additive interaction to modify the acylsugar profile. The 

epistatic impact on acylsugar profile in the FA7/FA8/AS line was limited to increased levels of a 

few acylsugars over that accumulated in the single FAQTL lines (FA7/AS and FA8/AS). There 

was also no accumulation of novel acylsugars in FA7/FA8/AS, which is supported by analysis of 
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the HCA in Figure 2.4 that showed no clustering of acylsugars specific to the FA7QTL/FA8QTL 

combination. The few acylsugars increased in the FA7/FA8/AS line over FA7/AS and FA8/AS 

contain C4 and C10 acyl groups, which are likely i-C4, and n-C10, both of which are increased 

in FA7/FA8/AS due to combination of FA7QTL and FA8QTL (Table 2.6).  

Together, the FA2QTL/FA7QTL in FA2/FA7/AS also functioned in a mostly additive 

manner, but demonstrated some non-additive impact on acylsugar profile as well. The epistatic 

impact of FA2QTL/FA7QTL was limited to a couple acylsugars, in this case containing C9 acyl 

groups that were significantly upregulated in the FA2/FA7/AS line over the FA2/AS and FA7/AS 

lines. This was supported by the HCA in Figure 2.4 that showed there was no cluster unique to 

the FA2QTL/FA7QTL combination. The C9 acyl group in the upregulated acylsugars in this line 

is likely i-C9 based on GC characterization of FA2QTL/FA7QTL combination plants, showing 

increased levels of i-C9 compared to the single QTL parent lines (Table 2.6). An explanation for 

why the epistatic increase in i-C9 fatty acids in FA2/FA7/AS, did not lead to a unique cluster of 

acylsugars in the HCA is that i-C9 comprises less than 1% of the fatty acid profile, therefore 

limiting the incorporation of this fatty acid into a large number of acylsugars. Additionally, 

acylsugars in the FAQTL lines only incorporated one longer chain fatty acid (C > 8) (Figure 2.4), 

which is consistent with prior studies (Schilmiller et al. 2015; Fan et al. 2016). Since FA2QTL 

and FA7QTL increase longer chain fatty acids such as n-C10 and i-C11, the effect of combining 

these QTL to generate novel acylsugars is limited because it does not appear possible in this 

germplasm to combine two longer chain acyl groups on the same sugar residue.  

Together, the FA2QTL/FA8QTL in FA2/FA8/AS revealed additive impact, but also 

substantial epistatic impact on modifying the acylsugar profile. For example, analysis of the 

HCA in Figure 2.4 identified a cluster of about 15 acylsugars greatly upregulated in the 

FA2/FA8/AS line, a few of which were only detectable in the FA2QTL/FA8QTL combination 

lines (FA2/FA8/AS and FA2/FA7/FA8/AS). Almost all the upregulated acylsugars in the 

FA2/FA8/AS line contain an extended even acyl group of C10, C12 or C14 length. It is likely 
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most of these extended acyl groups are iso orientation because the combination of 

FA2QTL/FA8QTL uniquely allows increased accumulation of extended even branched chain 

fatty acids (Table 2.6).  

When all three FAQTL in the FA2/FA7/FA8/AS line were combined, they demonstrated 

both additive and epistatic impacts on acylsugar profile. Moreover, the combination of all three 

FAQTL revealed that the epistatic interactions identified in the FA2/FA7/AS, FA2/FA8/AS and 

FA7/FA8/AS lines were largely combined in the FA2/FA7/FA8/AS line. For example, 

FA2/FA7/FA8/AS significantly accumulates acylsugars with IDs 24-27, similar to FA2/FA8/AS, 

suggesting the FA2QTL/FA8QTL epistatic interaction remains with or without addition of 

FA7QTL. FA2/FA7/FA8/AS also accumulates detectable levels of the epistatically upregulated 

acylsugars in FA2/FA7/AS (IDs 39 and 40), although at lower levels, suggesting presence of 

FA8QTL diminishes the epistatic effect of FA2QTL/FA7QTL on these acylsugars.  

 Chromatographic separation of acylsugars through LC-MS with identical mass and 

indistinguishable mass spectra was observed. These differences could represent positional 

isomers where acyl chains are esterified to different positions, allowing for chromatographic 

separation (likely explanation for acylsugar IDs 10 and 50) or to differential acyl group branching 

orientation. Moreover, there were differences between genotypes for a number of these 

acylsugars with identical mass and indistinguishable mass spectra. The differential 

accumulation of four S4:17 (2,5,5,5) acylsugars with varying retention times (IDs 3, 9, 46, and 

48) is likely an example of the FAQTL interacting to control isomer abundance through acyl 

group branching orientation. Because FA8QTL decreases the amount of i-C5 fatty acids and 

increases the relative amount of ai-C5 fatty acids, some or all of the C5 acyl groups in the 

acylsugars with IDs 3, 9 and 48 could be ai-C5 fatty acids in place of i-C5 fatty acids. 

Conversely, the isomer with ID 46 is not detectable in lines containing FA8QTL, possibly 

because all C5 acyl groups in this acylsugar could be in the iso orientation; i-C5 is greatly 

reduced in lines containing FA8QTL according to GC-MS analysis (Table 2.6). For the observed 
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isomers that have differential abundance due to presence or absence of FAQTL, it would 

require nuclear magnetic resonance analysis (NMR) spectroscopy with purified compounds to 

clarify if separation was due to location changes in attachment site for acyl groups or acyl group 

branching orientation.  

 Evaluation of the heritability of the fatty acids revealed a trend for the shorter chain acyl 

groups to display a lower heritability than the longer chain fatty acids. This trend was evident in 

evaluation of the heritability of the acylsugars as well, with acylsugars containing all short chain 

acyl groups often displaying lower heritability. A possible explanation for this pattern is that the 

shorter chain acyl groups are the starting point for extension, and once a shorter chain fatty acid 

has been extended, there is no evidence that those extended acyl groups are shortened or 

deconstructed, although there is evidence that acylsugar acylhydrolase genes (Schilmiller et al. 

2016) can remove acyl chains from acylsugars. In particular, it was also observed that 

acylsugars with combinations of C4 and C5 acyl groups displayed some of the lowest 

heritabilities and experienced considerable genotype by environmental interaction. It is unclear if 

there is a biological basis for this trend, but it is possible that these C4 and C5 acyl groups are i-

C4 and i-C5 branching orientations. Ning et al. (2015) demonstrated that a non-functional 

isopropylmalate synthase gene from S. pennellii LA716, contained in the FA8QTL introgression, 

governs a shift from i-C4 to i-C5 fatty acid production. As seen in the fatty acid characterization 

in Smeda et al. (2016), and in Table 2.6, FAQTL lines containing FA8QTL accumulate a mixture 

of i-C4/i-C5. Therefore, it is possible that the isopropylmalate synthase gene governing the shift 

could be influenced to a greater degree by environmental conditions, resulting in greater flux in 

the resulting proportions of i-C4 and i-C5. Further evaluation of this germplasm over additional 

years and environments could help provide an explanation for this observation.  Together the 

data showed that heritabilities for the novel fatty acids due to the FAQTL interactions were high, 

as were most of the evaluated acylsugars. The high heritabilities for these traits are promising 

for selection of lines with increased fatty acid and acylsugar complexity, and suggest selection 
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can be made in a variety of environments. Additionally, the disproportionate impact of the 

environment and genotype by environment interaction on particular fatty acids and acylsugars 

can inform target environments for deployment of particular acylsugar chemotypes. 

 An important question to answer in this paper was what the combinatory effect of the 

FAQTL is on acylsugar and fatty acid diversity. The richness/evenness diversity analysis of the 

fatty acids and acylsugars demonstrated positive and negative FAQTL interactions, mediated 

both additively and epistatically. Generally, addition of FAQTL led to a greater diversity of fatty 

acids and acylsugars, however, contribution of the richness and evenness of the profiles to 

increase diversity depended on genotype. Interestingly, increased fatty acid richness did not 

always correspond with acylsugar richness. For example, the FA2/AS line displayed greater 

fatty acid richness, yet lower acylsugar richness compared to FA2/FA7/AS. One explanation for 

this disparity is that some FAQTL lines like FA2/AS accumulated trace levels of a larger number 

of fatty acids, but it is possible that some of the trace fatty acids in FA2/AS were not abundant 

enough to be incorporated into acylsugars to the extent that they could be detected in LC-MS 

analysis. Alternatively, the increased diversity of fatty acids in FA2/AS were all extended acyl 

groups, which apparently could not be combined in an acylsugar, therefore limiting a 

commensurate impact on diversifying the acylsugar profile. Because the characterized ASAT 

genes involved in attachment of acyl groups to the sugar residues (Schilmiller et al 2012, 2015; 

Fan et al. 2016) do not reside in any of the FAQTL introgressions, additional genes, or 

pleiotropic effects of the FAQTL and epistatic interactions between them could also help explain 

the differential effects on fatty acid and acylsugar richness. In general, addition of FAQTL 

increased the evenness of both the fatty acid and acylsugar profiles, particularly in lines 

containing FA8QTL. An explanation for the increase in profile evenness in lines containing 

FA8QTL could involve accumulation of both i-C4 and i-C5 fatty acids, and when FA8QTL is 

combined with FA2QTL, an increase in extended even and odd branched chain fatty acids. The 

impact of FA8QTL on fatty acid and acylsugar evenness likely contributed significantly to the 
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increased profile diversity of lines containing FA8QTL, since profile evenness is a component of 

H’ calculation. An important observation from these analyses was that we have not yet identified 

a limit on the number of moderately accumulated acylsugars a line can accumulate, as evinced 

by the substantial richness of acylsugars in the FA2/FA7/FA8/AS line.  

 Additionally, FA7/FA8/AS plants demonstrated low compound richness and yet high fatty 

acid and acylsugar diversity. This disparity between the relatively low numbers of fatty acids and 

acylsugars accumulated in FA7/FA8/AS and high H’ diversity contrasted with the other FAQTL 

lines and CU071026, where low compound richness was associated with lower profile diversity. 

The negative effect of FA7QTL/FA8QTL in combination in FA7/FA8/AS on acylsugar richness is 

likely due to the observed increase in acylsugar tradeoffs in FA7/FA8/AS. The loss of moderate 

accumulation of acylsugars in lines containing FA8QTL, predominantly from the non FA8QTL 

genotype(s), is supported by the genotype clustering in Figure 2.4 showing all FA8QTL 

genotypes clustering together. This suggests that the FA8QTL has a profound influence on 

acylsugar richness, and that presence of FA8QTL affects a greater number of acylsugars than 

FA2QTL or FA7QTL. The high fatty acid and acylsugar profile diversity of FA7/FA8/AS, despite 

low compound richness, could be due to the high measures of evenness for fatty acids and 

acylsugars in FA7/FA8/AS, which likely had a large impact on the H’ calculation. The compound 

profile of FA7/FA8/AS, in particular, revealed that the richness and evenness metrics provide 

different information.  

 Further work beyond the scope of this paper would be required to elucidate whether the 

QTL(s) affecting acylsugar level are pleiotropically regulating fatty acid profile, or whether 

separate QTL, contained in the FAQTL introgressions, are governing the level and profile 

changes. Information about the FAQTL interactions that can increase total acylsugar level is 

useful and can be utilized for breeding objectives.  
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CONCLUSIONS 

 

In light of the growing desire to breed for metabolites involved in resistance to insects, this study 

provides an example of the combination and comprehensive evaluation of QTL involved in 

mediating the chemistry of a specialized metabolite with known involvement in insect resistance 

in tomato. The development and characterization of these multiple FAQTL lines complements 

and improves the current platform of knowledge concerning acylsugar biosynthesis and 

chemistry and can be used to help elucidate remaining knowledge gaps in acylsugar 

biosynthesis. In particular, the specific effect of the FAQTL to modify fatty acid and acylsugar 

composition, without affecting acylsugar moiety, will help facilitate identification of the genes 

underlying FA2QTL and FA7QTL. A detailed understanding of acylsugar biochemistry is 

necessary for the deployment of these QTL into breeding lines for cultivar development, as 

there have been many epistatic interactions observed that affect acylsugar moiety, level, and 

fatty acid and acylsugar production/diversity (Leckie et al. 2012, 2014). Development of these 

FAQTL lines with variation for acylsugar level, and fatty acid and acylsugar profile will facilitate 

future studies to determine if deployment of these lines and hybrids derived from this material 

can reduce insect feeding, damage and virus incidence, as well as potential to reduce or 

eliminate spray regimes in field trials. The identification of differential acylsugar isomer 

accumulation from LC-MS analysis raises questions about the biological significance of the 

acylsugar isomers, and if they are important in breeding for resistance. Future experiments 

beyond the scope of this study could combine NMR and bioassays to evaluate the significance 

of differential isomer accumulation for insect resistance.  

 Leckie et al. (2016) suggest that increased acylsugar diversity could lead to greater 

insect efficacy through increased synergistic interactions. Current understanding of acylsugar 

biosynthesis suggests there are two ways to increase acylsugar profile diversity. The first way is 

to accumulate both acylsucrose and acylglucose acylsugars, and the second way is to increase 
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the number of unique acyl groups that are incorporated, either within or across sugar moiety 

(acylsucrose or acylglucose). The most efficacious acylsugars among those tested in Leckie et 

al. 2016 have a profile that is more complex due to both mechanisms, but there was no 

indication if the acylsugars from those samples were more effective due to the fatty acids, the 

sugar moiety, or a combination of both. Since all of the FAQTL lines in this paper only 

accumulate acylsucroses, use of these lines in future bioassays and field trials can help 

determine whether increased diversity of acylsucrose acylsugars alone is sufficient for 

increased insect efficacy. Similarly, this germplasm also provides an ideal platform to test the 

more general hypothesis that a greater diversity of fatty acids/acylsugars will correspond with an 

increase in insect resistance. Finally, lines can also be used to help elucidate how insects 

interact with and are deterred by acylsugars and further clarify and inform the components of 

acylsugar chemistry that mediate the synergistic mechanism of insect resistance governed by 

acylsugars observed in Leckie et al. (2016).  

The diversity of acylsugars in the combination FAQTL lines do not include diversity for 

sugar moiety, as is seen in some wild Solanum accessions. Higher levels of diversity could 

likely be attained by combining the FAQTL and the QTL necessary for acylglucose 

accumulation (Leckie et al. 2013), which could be due to the ASAT genes from S. 

pennellii LA716 (Schilmiller et al 2012, 2015; Fan et al. 2016) that co-localize with some of the 

acylglucose QTL; breeding has begun to combine the FAQTL lines and acylglucose QTL. The 

high heritabilities of the fatty acid and acylsugar compounds evaluated in this study are 

promising for breeding efforts, and understanding of the environmental impact on acylsugar 

traits is valuable for selection of target environments for deployment of these lines. Evaluation of 

this germplasm in bioassays and field trials will inform selection of optimal breeding lines for the 

creation of elite hybrids with improved insect resistance. 

 

Original publication of this data was in Molecular Breeding July 2017 
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CHAPTER 3 

Introgression of Acylsugar Moiety QTL Modifies the Composition of Acylsugars 

Produced by High-accumulating Tomato Lines 

 

ABSTRACT 

 Acylsugars are important insect defense compounds produced at high levels by 

glandular trichomes of the wild tomato, Solanum pennellii. The ability to produce acylsucrose 

acylsugars at elevated levels was previously bred into tomato using S. pennellii (Correll) D’Arcy 

accession LA716 which led to the creation of the acylsugar benchmark line CU071026. Our 

study utilized marker-assisted backcrossing and selfing approaches to transfer and combine two 

acylglucose quantitative trait loci (AGQTL) named AG3QTL, and AG11QTL, which were 

previously associated with changes in acylsugar moiety, from mono-introgression lines into 

CU071026. Additionally, marker assisted selection was used to select for plants containing the 

three AGQTL named AG3QTL, AG4QTL and AG11QTL from selfed populations derived from 

an interspecific backcross population of CU071026 x (CU071026 x S. pennellii LA716). High 

acylglucose accumulating lines were selected from these populations that possess the AGQTL 

and few extraneous S. pennellii LA716 introgressions. Incorporation of the three AGQTL in the 

presence of the five standard S. pennellii introgressions of CU071026 altered acylsugar level 

and moiety, demonstrating epistatic interactions between the AGQTL on both of these traits. 

Comparison of the lines generated from the two breeding techniques indicated the three AGQTL 

are essential but not necessarily sufficient for the production of elevated levels of acylglucose 

acylsugars. Fine-mapping of AG3QTL, AG4QTL and AG11QTL resulted in less than 1 Mbp 

intervals for the locations for AG4QTL/AG11QTL; proposals of the causal genes underlying 

these AGQTL are discussed. The acylglucose accumulating lines containing the AGQTL were 

characterized for acylsugar level through a spectrophotometric assay, and acylsugar chemistry 
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through gas chromatography/mass spectrometry and liquid chromatography/mass 

spectrometry. Characterization of the fatty acid profile of lines selected out of the interspecific 

backcross populations revealed an increase in the proportion of acylsugar n-C10 fatty acid acyl 

chains, suggesting that additional changes to the acylsugar composition beyond the sugar 

moiety could be governed by one or more AGQTL or linked QTL. Characterization of the 

acylsugar profile of acylglucose lines selected from the interspecific backcross populations also 

demonstrated interactions between the AGQTL and other QTL to further modulate the diversity 

of acylsugars accumulated. The novel acylsugar moiety lines created by this work could be 

used to elucidate of the mechanism of insect resistance mediated by acylsugars and can be 

combined with the FAQTL discussed in chapter one and two to help generate high acylsugar 

accumulating tomato lines with increased acylsugar profile diversity.  

 

INTRODUCTION 

 

Plants accumulate a seemingly inexhaustible diversity of specialized metabolites, many of which 

are involved in mediating interactions with the environment. Many of the specialized metabolites 

produced by plants function in resistance to pathogens and herbivores and interest in utilization 

of these metabolites over traditional practices, such as pesticides, has substantially grown. 

Durable resistance to insect herbivores and the diseases and viruses they vector has long been 

a primary goal of plant breeders, and a promising group of specialized metabolites, known as 

acylsugars, has received considerable attention for their potential as a source of resistance to a 

myriad of insect herbivores and the diseases and viruses they vector. Numerous species in the 

nightshade family (Solanaceae) accumulate acylsugars, such as Solanum pennellii, Solanum 

galapagense, Solanum habrochaites, Solanum berthaultii, and Nicotiana tabacum (Fobes et al. 

1985; Severson et al. 1985; Burke et al. 1987; King et al. 1986, 1988; Shapiro et al. 1994; Kim 

et al. 2012; Schilmiller et al. 2015). Acylsugars are secreted from glandular trichomes and act as 
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a direct (feeding and oviposition deterrents) and indirect defense to a variety of insect 

herbivores (Severson et al. 1985; Goffreda and Mutschler 1989; Hawthorne et al. 1992; 

Rodriguez et al. 1993; Juvik et al. 1994; Liedl et al. 1995; Fancelli et al. 2005; Weinhold and 

Baldwin 2011; Leckie et al. 2016). The acylsugars accumulated by tomato species are 

composed of a sugar backbone, either sucrose or glucose, to which are esterified several 

aliphatic acids, ranging from 4 to 14 carbons in length. These fatty acid acyl chains can be 

straight-chained or branched (iso or anteiso) (Fobes et al. 1985; Burke et al. 1987; Shapiro et al. 

1994; Schilmiller et al. 2010, 2012, 2016; Fan et al. 2016). A two carbon extension method has 

been proposed and demonstrated in tomato to explain the production of medium chain length 

fatty acid acyl chains from the short chain (C4/C5) precursors (Slocombe et al. 2008; Walters 

and Steffens 1990). Solanum pennellii (Correll) D’Arcy accession LA716 accumulates elevated 

levels of acylsugars that are associated with resistance to many insects and is a promising 

source of insect resistance (Goffreda and Mutschler 1989; Hawthorne et al. 1992; Rodriguez et 

al. 1993; Juvik et al. 1994; Shapiro et al. 1994; Liedl et al. 1995 that can be transferred to 

tomato (Mutschler and Wintermantel 2006; Leckie et al. 2012; Dias et al. 2013).  

 Breeding efforts to transfer increased acylsugar accumulation QTL into tomato from S. 

pennellii LA716 led to the generation of the Cornell benchmark line, CU071026, which 

accumulates moderate levels of acylsugars. CU071026 contains five introgressions from S. 

pennellii LA716 on chromosomes 2, 3, 7, and 10 (called AS2, AS3, AS7, AS10.1, and AS10.2, 

respectively) (Smeda et al. 2016) (See Supplementary Table S1 of Leckie et al. 2012 for 

markers and map positions of the S. pennellii LA716 introgressions in CU071026). The 

moderate levels of acylsugars in CU071026 are sufficient to reduce silverleaf whitefly (Bemisia 

tabaci) oviposition (Leckie et al. 2012) and similar levels in acylsugar hybrids reduced incidence 

of tomato infectious chlorosis virus in fields with heavy greenhouse whitefly (Trialeurodes 

vaporariorum) pressure (Mutschler and Wintermantel 2006). 
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 Solanum pennellii accessions accumulate diverse acylsugar chemotypes that vary with 

geographical location (Shapiro et al. 1994; Ning et al. 2015), which suggests the possibility of 

co-evolution of specific metabolic profiles with local herbivore populations. S. pennellii LA716 

accumulates predominantly acylglucoses with a characteristic array of fatty acids, including 2-

Methylpropanoate (i-C4), 2-Methylbutanoate (ai-C5), 3-Methylbutanoate (i-C5), 8-

Methylnonanoate (i-C10), n-Decanoate (n-C10), and n-Dodecanoate (n-C12) (Burke et al. 1987; 

Shapiro et al. 1994; Blauth et al. 1999; Schilmiller et al. 2012; Ning et al. 2015). In contrast, the 

profile of CU071026 is exclusively acylsucroses with predominantly ai-C5, i-C5 and n-C12 fatty 

acids, and only trace or undetectable levels of i-C4, i-C10 and n-C10 (Leckie et al. 2014; Smeda 

et al. 2016), despite having been bred using S. pennellii LA716. The fatty acid profile of 

CU071026 is similar to that of cultivated tomato, which predominantly accumulates i-C5, ai-C5 

and n-C12 fatty acids as well (Schilmiller et al. 2010 and Ghosh et al. 2014). A series of recent 

studies identified four BAHD acyltransferases (ASAT1-4), named according to the first four 

characterized enzymes of the family: BEAT, AHCT, HCBT, DAT (St-Pierre and Luca 2000; 

D’Auria, 2006), which together function to generate most of the acylsucroses accumulated by 

cultivated tomato and several wild relatives (Schilmiller et al 2012, 2015; Fan et al. 2016). 

A study that utilized purified acylsugars from CU071026 and several S. pennellii 

accessions, including S. pennellii LA716, indicated that the purified acylsugars from CU071026 

are less effective at equimolar levels than purified acylsugars of some S. pennellii accessions at 

controlling silverleaf whitefly (Bemisia tabaci) and western flower thrips (Frankliniella 

occidentalis) oviposition in laboratory assays (Leckie et al. 2016). Furthermore, the Leckie et al. 

(2016) study revealed synergistic interaction between acylsugar fractions, which led to improved 

insect resistance. These results suggest that the insect control of CU071026 or derived lines 

could be improved by altering their acylsugar and or fatty acid profiles to increase diversity, 

which could lead to greater synergistic interactions. This hypothesis about the benefits of an 

increasingly diverse metabolic profile is in agreement with a number of other studies evaluating 
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plant-herbivore interactions with a focus on specialized metabolites that suggested chemical 

diversity could decrease insect feeding, adaptation and survival (Duffey and Stout 1996; 

Castellanos and Espinosa-Garcia 1997; Akhtar and Isman 2003).  

QTL that affect acylsugar moiety (acylglucose vs acylsucrose) have been identified and 

shown to alter the sugar moiety in both inter and intra-specific mapping populations (Mutschler 

et al. 1996; Blauth et al. 1998; Leckie et al. 2013). Recently, Leckie et al. (2013) identified three 

acylglucose QTL (AG3, AG4, and AG11) that largely controlled acylglucose accumulation in a 

BC1F1 population of CU071026 x (CU071026 x S. pennellii LA716) and a subsequent BC1F2 

population. One objective of our study was to introgress several previously identified 

acylglucose QTL into CU071026 to generate a series of tomato lines closely related to 

CU071026 that accumulated high levels of acylsugars that were primarily acylglucoses. Another 

objective of our study was to select high acylglucose accumulating lines out of selfed 

populations derived from a backcross population of CU071026 x (CU071026 x S. pennellii 

LA716) (Leckie et al. 2013) and reduce extraneous S. pennellii introgressions. A final objective 

was to extensively characterize these acylglucose lines for alterations in the level of acylsugars 

accumulated through a spectrophotometric assay and for alterations in fatty acid and acylsugar 

composition through gas chromatography mass spectrometry (GC-MS) and liquid 

chromatography mass spectrometry (LC-MS). The mono-introgression lines (ILs) created by 

Eshed and Zamir (1994, 1995) were identified as an optimum source of the desired S. pennellii 

LA716 acylsugar chemotype QTL for transfer to CU070126. Two acylglucose QTL: acylglucose 

3 (AG3QTL) and acylglucose 11 (AG11QTL), previously shown to alter acylsugar level and 

moiety (Leckie et al. 2013) were introgressed into CU071026 to test the effect of these QTL in 

an acylsugar-producing tomato line, both to confirm function, and to create tomato lines for 

testing against insects. Simultaneously, selection of high acylglucose accumulating acylsugar 

lines was conducted out of BC1F3, BC1F4 and BC1F5 populations derived from a BC1F2 plant 

generated by Leckie et al. (2013) and identification of plants with recombinations within the 



126 
 

acylglucose QTL introgressions during selection allowed fine mapping of the QTL within them. 

The acylsugars accumulated by the selected acylglucose accumulating lines were characterized 

by a spectrophotometric acylsugar assay, which measures acylsugar level, by GC-MS analysis, 

which determines relative proportions of the fatty acids present, and by LC-MS characterization, 

which determines the relative proportions of accumulated acylsugar molecules with information 

concerning the number and length of fatty acids esterified to the sugar backbone. The 

implications of these data are discussed, including how addition of the acylglucose QTL affected 

the level, moiety and composition of acylsugars accumulated, and whether addition of the 

acylglucose QTL lead to alteration of the fatty acid profile.  

 

MATERIALS AND METHODS 

 

Plant materials 

CU071026 is the acylsugar-producing tomato benchmark line bred by the Cornell University 

tomato breeding program using S. pennellii LA716.  Seeds from S. pennellii LA716 were 

produced by the Cornell University tomato breeding program, derived from seed originally 

obtained from the Tomato Genetics Resource Center (TGRC) at the University of California at 

Davis.  

The interspecific populations at the BC1F3, BC1F4 and BC1F5 generations used to 

select for high acylglucose accumulating plants were derived from a single BC1F2 plant which 

was selected from the BC1F1 population CU071026 x (CU071026 x LA716) used in a prior 

study to map acylsugar QTL (Leckie et al. 2013, 2014).  

A series of tomato lines with individual introgressions of S. pennellii LA716 DNA in the 

processing tomato M82 (a sub-selection of UC82-B) were produced by Eshed and Zamir (1994, 

1995).  Based on prior QTL analysis the introgression lines (Leckie et al. 2013), IL3-5 and IL11-

3 were used by the Cornell University tomato breeding program as a source of AG3QTL and 



127 
 

AG11QTL, respectively for the introgression line breeding strategy for transfer of QTL. The seed 

of IL3-5 and IL11-3 were produced at Cornell University, derived from seed obtained from D. 

Zamir (Hebrew University of Jerusalem, Rehovot, Israel). Seed of M82 was produced by the 

Cornell University tomato breeding program, derived from seed originally obtained from the 

Tomato Genetics Resource Center (TGRC) at the University of California at Davis. 

 

Plant growth conditions 

Seed were germinated in 32 cell flat cups with LM1 (Lambert, Rivière-Ouelle, Quebec, Canada) 

mix until ca. five weeks of age, during which time any necessary marker based genetic analysis 

could be completed.  Selected plants were transplanted to eight in. plastic pots of LM111 

(Lambert, Rivière-Ouelle, Quebec, Canada) mixed with turface (Turface Athletics, Buffalo 

Grove, IL) in a 1:1.8 ratio, with 0.3% unimix (10-5-10) and calcium sulfate additive. Plants for all 

populations and experiments were grown in a greenhouse in the Guterman Bioclimatic 

Laboratory and Greenhouse Complex at Cornell University in Ithaca NY, and were typically 

maintained at 29°C: 20°C day night temperatures with a 16:8 hr light:dark photoperiod.  

 

Introgression line breeding strategy for transfer of QTL and selection of acylglucose 

lines 

Two introgression lines (IL lines), each of which putatively contained either AG3QTL or 

AG11QTL, were selected for transfer of these two AGQTL. The selected IL lines were 

intermated and selfed to generated a line containing both AG3QTL and AG11QTL in the 

homozygous condition. The double introgression IL line was then crossed as the female parent 

to CU071026, and a resulting F1 plant backcrossed to CU071026 to create the BC1F1 

population (CU071026 x (IL line x CU071026). Selection of plants from the BC1F1 population 

was based on markers within the five S. pennellii LA716 introgressions possessed by 

CU071026 and markers within the additional introgressions being introduced into CU071026.  
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The original introgressions of CU071026 were selected for homozygosity and markers within the 

new IL introgressions were utilized to select for presence of the IL introgressions, as well as for 

recombinations. Markers within the IL introgressions were used in the BC1F2 population to 

select for homozygosity and recombinations within the IL introgressions. 

 

Genotypic screening 

Molecular markers utilized in all populations to select for the five standard S. pennellii 

introgressions in CU071026 are provided in Table 3.1. The identity and location of the markers 

used to introgress the AG3QTL and AG11QTL from the IL 3-5 and 11-3 lines to create lines with 

them and also the five CU071026 introgressions are provided in Table 3.2. The identity and 

location of markers used to select for and fine-map AG3QTL, AG4QTL, and AG11QTL out of 

the BC1F3, BC1F4 and BC1F5 populations are provided in Table 3.3. Genotyping by 

sequencing (GBS) was used on selections from the BC1F4 population to fine-map AG11QTL 

and to define the introgressions contained in the final acylglucose line selections. Genomic DNA 

was isolated with a DNeasy® Plant Mini Kit (Qiagen). GBS was performed as described by 

Elshire et al. (2011) [11] and submitted to the Weill Cornell Medical College Genomics 

Resources Core Facility for 101-cycle single-end sequencing on one lane of a 16-lane flow cell 

of an Illumina HiSeq 2000 instrument (Illumina Inc., San Diego, CA, USA). The sequencing 

reads were processed with the GBS Discovery Pipeline for species with a reference genome 

implemented in TASSEL version 3.0 (Bradbury et al. 2007) and following the pipeline 

documentation (Glaubitz et al. 2014). The sequence tags for our GBS library were aligned to the 

EXPEN SL2.50 ITAG2.4 release of the Solanum lycopersicum genome (Fernandez-Pozo et al. 

2014). 

 

 

 

https://bmcgenomics.biomedcentral.com/articles/10.1186/1471-2164-15-767#CR11
https://dl.sciencesocieties.org/publications/tpg/articles/8/1/plantgenome2014.09.0058#ref-9
https://dl.sciencesocieties.org/publications/tpg/articles/8/1/plantgenome2014.09.0058#ref-17
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Table 3.1. Markers and map locations delineating CU071026 introgressions based on 
Tomato-EXPEN SL2.50 ITAG2.4 

Markera Chromosome Start Position (Bp) End Position (Bp)  

C2_At4g37300 2 53,834,679 53,835,655  

C2_At3g26900  2 54,947,728 54,950,298  

solcap_snp_sl_63290b 3 1,390,271 1,390,304  

TG130  3 1,755,716 1,756,224  

C2_At5g24120  3 1,914,316 1,920,336  

C2_At3g02420  3 11,509,743 11,514,318  

C2_At5g23060  3 64,448,262 64,451,474  

C2_At3g15430  7 65,800,017 65,803,497  

TG303  10 1,773,625 1,774,114  

C2_At5g60990  10 1,853,562 1,864,123  

SSR85  10 61,580,912 61,581,577  

C2_At3g12290  10 62,141,901 62,147,562  
 

 

Table 3.2. Markers and map locations used for delineating AG3QTL and AG11QTL 
introgressions based on Tomato-EXPEN SL2.50 ITAG2.4 

Markera QTL Chromosome Start Position (bp) End Position (bp) 

C2_At3g17970 AG3QTL 3 67,543,166 67,547,468 
TG244 AG3QTL 3 70,680,223 70,680,913 
C2_At2g14260 AG11QTL 11 33,041,080 33,046,140 
C2_At5g04590 AG11QTL 11 51,140,318 51,144,951 
C2_At4g01560 AG11QTL 11 52,008,134 52,014,923 
C2_At3g44600 AG11QTL 11 52,835,120 52,845,120 
C2_At2g27730 AG11QTL 11 53,208,464 53,216,010 
C2_At2g27290 AG11QTL 11 53,417,233 53,420,233 
C2_At5g60600 AG11QTL 11 53,978,721 53,987,402 
C2_At5g25760 AG11QTL 11 54,793,551 54,800,368 

a Full marker information provided by The Sol Genomics Network (SGN; http://solgenomics.net/) 
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Table 3.3. Markers and map locations used to select for AGQTL based on Tomato-EXPEN 
SL2.50 ITAG2.4 
Markera QTL Chromosome Start Position (bp)    End Position (bp) 

C2_At2g42110 AG3QTL 3 69,187,816  69,189,787 

C2_At3g13700 AG3QTL 3 69,556,297  69,563,346 

C2_At3g19895 AG4QTL 4 2,774,629  2,787,443 

C2_At5g50720 AG4QTL 4 4,663,508 4,665,167 

C2_At1g28120 AG4QTL 4 33,670,018 33,681,978 

C2_At3g55010 AG4QTL 4 55,199,449  55,207,322 

C2_At5g04590 AG11QTL 11 51,140,978  51,144,287 

C2_At4g01560 AG11QTL 11 52,008,134 52,014,923 

C2_At5g60600 AG11QTL 11 53,978,721 53,987,402 
a Full marker information provided by The Sol Genomics Network (SGN; http://solgenomics.net/). 

 

 

Phenotypic screening 

Acylsugar level and acylglucose concentration: Levels of acylsugar for plants of the controls and 

of populations in the development of the acylglucose-accumulating acylsugar lines were 

measured on 9-10 weeks of age plants using the method of Leckie et al. (2012), which is a 

modification of the prior method described by Goffreda et al. (1990), replacing the Nelson 

reaction originally used to measure sugar (Goffreda et al. 1990) with a modified 

peroxidase/glucose oxidase assay (Setter et al. 2001) that measures glucose. Evaluation of 

single plants from segregating populations entailed collecting two-four samples of two primary 

lateral leaflets from leaves two to three nodes from the apex of the plant. Evaluation of the 

replicated acylglucose lines, hybrids, and controls entailed collecting four samples per plant 

from four plants of two lateral leaflets from leaves that were two to three nodes from the apex of 

plants. Each two leaflet sample was placed in wide mouth plastic scintillation vials and 

completely dried in a seed dryer at 290 C. Fully dried leaflets were rinsed with 3 ml of methanol, 

which contained methyl heptanoate (30 mg L-1), an internal standard for fatty acid analysis if 

gas chromatography (GC-MS) was desired. The assay uses 100ul of each rinsate. Leaflets 

were re-dried immediately after rinsing and weighed, so that acylsugar level could be expressed 
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per weight dried leaf. Dried leaf weights ranged from about 50 to 90 mg. Percent of acylsugars 

that were acylglucoses was calculated by dividing the concentration of glucoses by the 

concentration of total sugars. Acylsugar level data were analyzed using ANOVA in JMP Pro 12 

(SAS Institute Inc. 2015), and means were separated by Tukey-Kramer HSD (p < 0.05). Prior to 

analysis, acylsugar level data were often Log10(x) or Cube-root(x) transformed to improve 

normality. Concentration of acylglucoses and percent acylglucose data were often Log10(x) or 

Cube-root(x) transformed prior to analysis to improve normality.  

 

Fatty acid characterization: Percentages of each type of fatty acids from each sample were 

ascertained by collecting pairs of young, fully expanded primary lateral leaflets, rinsing leaflets 

with 3 ml of methanol containing methyl heptanoate (30 mg L-1) as an internal standard, and 

then utilizing transmethylation/GC-MS analysis, as described in Leckie et al. (2014). Peak areas 

of the resulting chromatograms were calculated using Varian MS Workstation Version 6.9.1 

(Agilent Technologies, Santa Clara, CA) and levels of respective fatty acids were determined 

through comparison with levels of the internal standard to generate relative proportions of each 

fatty acid. Percent fatty acid GC data was analyzed using ANOVA in JMP Pro 12 (SAS Institute 

Inc. 2015), and means separated by Tukey-Kramer HSD (p < 0.05). Prior to analysis, data for a 

number of fatty acids were log10(x+1) or cube-root transformed to improve normality. 

Acylsugar composition characterization:  Liquid chromatography mass spectrometry (LC-MS) 

was utilized to analyze the composition of acylsugars accumulated in some of the acylglucose 

BC1F5 selections and controls. Three samples of a single primary lateral leaflet per genotype 

were taken and extracted with a buffer consisting of isopropanol:acetonitrile:water (3:3:2 v/v/v) 

containing 0.1% formic acid and 10 uM of propyl-4- hydroxybenzoate, an internal standard, and 

processed as described in Schilmiller et al. (2015). Acylsugar results from the LC-MS analysis 

are described using the nomenclature of Schilmiller et al. (2010), in which the acylsugar name 

G3:19 indicates a glucose backbone sugar, with three fatty acid acyl chains that have a total of 
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19 carbons. LC-MS data were analyzed by hierarchical clustering with a Pearson correlation 

using a pairwise average-linkage clustering method for both genotypes and acylsugars using 

the hierarchical clustering tools provided by GenePattern Reich et al. (2006).  

 

RESULTS AND DISCUSSION 

 

Use of S. pennellii Introgression lines to transfer AG3QTL and AG11QTL into CU071026 

One attempt to generate high acylglucose-accumulating acylsugar lines was made by 

introgressing the additional S. pennellii regions predicted to contain QTL previously associated 

with acylglucose accumulation into the acylsugar benchmark line CU071026, utilizing the mono-

introgression lines created by Eshed and Zamir (1994, 1995) as sources of these additional 

regions. Based on the markers used for QTL analysis of Leckie et al. (2013), the mono-

introgression lines IL3-5 and IL11-3 were selected as those likely to contain the acylglucose 

QTL AG3QTL and AG11QTL, respectively. Line IL3-5 contained an introgression of ca. 3.4 Mbp 

from S. pennellii LA716 and IL11-3 contained an introgression of ca. 44.4 Mbp from S. pennellii 

LA716 (Long et al. 2013). IL3-5 and IL11-3 were inter-mated, the resulting F1 was selfed to 

generate an F2 population from which a plant homozygous for both the IL3-5 and IL11-3 

introgressions was selected to create an IL3-5/IL11-3 line. This line was used to create a 

(CU071026 x (CU071026 x IL3-5/IL11-3)) BC1F1 population. From this 380 plant BC1F1 

population, three plants were identified through marker assisted selection (MAS) that were both 

homozygous for the five CU071026 S. pennellii introgressed regions and also heterozygous for 

the IL3-5 and IL11-3 introgressions. These three plants accumulated slightly lower total 

acylsugar levels (69.0%) than CU071026 (BC1F1 section of Table 3.4) and accumulated trace 

levels of acylglucose acylsugars (0.73% of the total acylsugars), comparable to CU071026. 

Prior identification and evaluation of the AG3QTL and AG11QTL (Leckie et al. 2013) suggested 

that in a CU071026 x (CU0701026 S. pennellii) BC1F1 population, selections heterozygous for 
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the two acylglucose QTL (AG3QTL/AG11QTL accumulated higher levels of acylglucoses (about 

20% of total acylsugars; however, in that BC1F1 population it was likely that additional regions 

of the S. pennellii genome would be present in most plants. 

 

 

 Self seed of one of the three (CU071026 x (CU071026 x IL3-5/IL11-3)) BC1F1 plants 

(121265-56) that were homozygous for the five CU071026 S. pennellii introgressed regions and 

also heterozygous for the IL3-5 and IL11-3 introgressions was used to produce a BC1F2 

population to obtain the plants homozygous for AG3QTL/AG11QTL that were needed to ensure 

the QTL were contained within the IL3-5 and IL11-3 introgressions, respectively, and to observe 

whether these QTL in the homozygous condition would lead to higher levels of acylglucoses in 

Table 3.4. Initial characterization of the heterozygous and homozygous combination of 
AG3QTL and AG11QTL in the presence of the CU071026 introgressions in a BC1F1 and 
BC1F2 population 

Population 
   QTLab nc Acylsugar as 

percent of 
CU071026 (%)de 

Amount of 
acylglucoses

df 

Percent 
acylsugars that 
are AG (%)dg AG3 AG11  

BC1F1 
CU071026 4 100.0 a 0.02 a 0.05 a 

2 2 3   69.0 b 0.11 a 0.73 a 

BC1F2 

1 1 2 103.8 a 0.0 bc 0.0 b 

1 2 3 92.6 ab 0.09 b 0.73 b 

2 2 6 83.2 b 0.11 b 0.86 b 

1 3 5 1.9 d 0.0 c 0.0 c 

2 3 3 3.5 c 0.34 a 64.22 a 

3 3 10 1.6 d 0.06 b 3.37 b 

a 1 = locus homozygous for S. lycopersicum alleles; 3 = locus homozygous for S. pennellii LA716 alleles 

b Plants with haplotype “1 1” for AG3/AG11 in BC1F2 are selections comparable to CU071026. All plants in the 
BC1F1 and BC1F2 lack the AG4QTL. 

c Number of plants with respective haplotype that were identified and averaged for acylsugar level and fatty acid 
profile 
d Means followed by different letters within a column and within each population are significantly different at P < 
0.05 
e % CU071026 acylsugar level transformed in BC1F1 (Log10) and BC1F2 (Cube-root) prior to analysis to improve 
normality 
f umol of acylglucoses g-1 leaf weight, transformed in BC1F2 (Log10(0.5+x)) prior to analysis to improve normality 

g Percent acylsugars that are acylglucoses, transformed in BC1F2 (Cube-root) prior to analysis to improve 
normality 
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the presence of the CU071026 introgressions. The 184 plant BC1F2 population was 

characterized using multiple markers both to determine that the AG3QTL and AG11QTL regions 

were present and to screen for pertinent recombinations to fine map the AG3QTL and 

AG11QTL. Ten BC1F2 plants were identified that were homozygous for both the IL3-5 and the 

IL11-3 introgressions and these, as well as other selections with contrasting genotypes, were 

evaluated for acylsugar level and acylglucose accumulation (BC1F2 section Table 3.4). 

 Two BC1F2 plants, identified as lacking both the IL3-5 and IL11-3 introgressions, 

accumulated total levels of acylsugars comparable to CU071026 (103.8%) and only trace levels 

of acylglucoses (<0.05 umol g-1 leaf weight), which amounted to <0.05% of the acylsugars 

detected (BC1F2 Table 3.4). Similarly, the plants heterozygous for just IL11-3 or heterozygous 

for both IL3-5 and IL11-3 accumulated total levels of acylsugars comparable or slightly lower 

than CU071026 with trace levels of acylglucoses that were no more than 0.11 umol g-1 leaf 

weight (0.73% to 0.86% of the acylsugars detected). In contrast, all three of the classes of 

plants homozygous for the IL11-3 introgression accumulated greatly reduced levels of 

acylsugars. Specifically, plants lacking IL3-5 and homozygous for IL11-3 accumulated 

acylsugars at 1.9% of CU071026, and plants homozygous for IL11-3 and heterozygous and 

homozygous for IL3-5 accumulated acylsugars at 3.5% and 1.6% of CU071026, respectively. 

These three classes of plants homozygous for IL11-3 accumulated low levels of acylglucoses 

similar to the other classes; however, the class of plants heterozygous for IL3-5 and 

homozygous for IL11-3 accumulated slightly more acylglucoses at 0.34 umol g-1 leaf weight. 

Interestingly, the class of plants heterozygous for IL3-5 and homozygous for IL11-3 

accumulated  

 The combination of the AG3QTL and AG11 QTL into plants that possess the five S. 

pennellii introgressions of CU071026 did result in an increase in acylglucose production, which 

is almost absent in CU071026, however the levels of acylglucose were quite low, suggesting 

that while these two QTL might be needed for acylglucose production, they are not sufficient for 
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accumulation of higher levels of acylglucoses. The impact of homozygosity for the introgression 

containing AG11QTL resulted in trace total acylsugar accumulation, which is a complicating 

factor.  This problem might be a secondary effect of the AG11QTL itself or to a different QTL 

also contained within the introgression. A similar situation was observed with the transfer of a 

fatty acid QTL, FA5QTL, which was expected to alter the chain length of fatty acid constituents 

of acylsugars, but also severely reduced acylsugar accumulations in plants either heterozygous 

or homozygous for FA5QTL (Smeda et al 2016). It is feasible that if two or more QTL interact to 

create a different form of acylsugar, the lack of one or more of the QTL would result in a block in 

acylsugar biosynthesis. A selection from the BC1F2 that set seed well and was homozygous for 

AG3QTL and AG11QTL was selected to establish the new line, designated AG3/AG11/AS. A 

schematic depiction of the size and location of S. pennellii LA716 introgressions in the 

AG3/AG11/AS line are displayed in Figure 3.1. 

 The practical implication of the failure of the plants homozygous for AG4QTL, AG11QTL 

and the acylsugar introgressions of CU071026 to accumulate high levels of acylsugars and 

acylglucoses is that one or more additional regions are probably necessary for these traits, but it 

was not clear how many additional QTL were needed, and where they were located. One 

candidate would be the AG4QTL also identified by Leckie et al (2013), but the data from the 

QTL analysis were not sufficient to indicate if only that additional QTL would be needed to 

support high levels of acylglucose production. Therefore, the data from the IL strategy and prior 

QTL analysis together result in uncertainty of the likelihood of successfully generating high-

accumulating acylglucose germplasm even if AG4QTL was combined with the BC1F2 

selections homozygous for the CU071026, IL3-5 and IL11-3 introgressions. With this in mind, 

the second approach to producing tomato lines with accumulation of acylglucoses at high levels 

was pursued using the progenies of selected plants from the interspecific (CU071026 x 

(CU071026 x S. pennellii) BC1F1 population used by Leckie et al (2013, 2014) for mapping 

acylsugar QTL. 
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Selection of high-accumulating acylglucose lines out of progenies of an interspecific 

backcross population 

This alternative strategy was based on selecting plants out the BC1F2 population generated by 

Leckie et al. (2013) that produced seed and also were noted for having high acylglucose 

production and whose genomes had relatively low number and size of additional S. pennellii 

LA716 introgressions. Based on marker data from Leckie et al. (2013), plant 111205-235 of the 

BC1F2 population was selected to generate a BC1F3 population. This plant accumulated high 

levels of total acylsugars and acylglucoses, was homozygous for the five S. pennellii 

introgressions of CU071026, heterozygous for the AG3QTL, AG4QTL and AG11QTL 

introgressions, and was homozygous for small introgressions on the ends of chromosomes 4 

and 10, as well as heterozygous for four additional introgressions on chromosomes 1, 3, 9, and 

12. A schematic depiction of the size and location of introgressions in 111205-235 is displayed 

in Figure 3.1.  

 BC1F3 Population   The purpose of the BC1F3 population was to identify high 

acylglucose selections in which the relatively small AG3QTL introgression was homozygous and 

to select for recombinations in the large AG4QTL and AG11QTL introgressions. Additionally, we 

would select against the segregating additional introgressions on chromosomes 1, 3, 9, and 12 

in pursuit of our goal of selecting a homozygous line that accumulated high levels of 

acylglucoses with minimal additional introgressions other than those containing AG3QTL, 

AG4QTL, and AG11QTL. Seeds from the BC1F2 selection 111205-235 were used to generate 

a 353 individual BC1F3 population. Through MAS, a number of plants were identified that were 

homozygous for combinations of the AG3QTL, AG4QTL and AG11QTL introgressions, and a 

number of plants that had lost several of the additional S. pennellii LA716 segregating 

introgressions on chromosomes 1, 3, 9, and 12 were also identified.  A single plant that was 

homozygous for all three introgressions containing AG3QTL, AG4QTL and AG11QTL was also 

identified.  
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Figure 3.1. Depiction of the size and location of S. pennellii LA716 introgressions on each 
chromosome, based on physical distance, in CU071026 and the acylglucose selections. White is 
tomato, black is LA716, and grey is heterozygous  
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 The BC1F3 plants varied for both for total acylsugar level and for the amount and 

relative proportion of acylglucoses. CU071026 and plants lacking the AG3QTL, AG4QTL and 

AG11QTL accumulated low to trace levels of acylglucoses (0.1 and 1.3 umol g-1 leaf weight, 

respectively) despite high levels of total acylsugars (BC1F3 Table 3.5). Plants heterozygous for 

all three acylglucose QTL accumulated high levels of acylsugars (140.9% the level of 

CU071026), with high levels of acylglucoses (11.7 umol g-1 leaf weight), which amounted to 

55.7% of the total acylsugars. As expected, the CU071026 x S. pennellii LA716 F1 plants grown 

for comparison accumulated higher levels of acylsugars (254.6% of CU071026) and higher 

levels of acylglucoses (20.1 umol g-1 leaf weight) than the BC1F3 selections heterozygous for 

the three acylglucose QTL, but the two types of plants were similar in producing ca. 50% 

acylglucoses. The selections homozygous for the AG11QTL and lacking the AG4QTL 

accumulated low levels of acylsugars (<40% the level of CU071026), and selections lacking the 

AG4QTL accumulated lower levels of acylglucoses compared to plants heterozygous for the 

three acylglucose QTL or homozygous for AG3QTL and heterozygous for AG4QTL and 

AG11QTL. 
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Table 3.5. Selected haplotype summary of the effect of the AG3QTL, AG4QTL, and 
AG11QTL on total acylsugar level, acylglucose level and percent acylglucose in BC1F3, 
BC1F4, and BC1F5 selections 

 

QTLab nc 

Acylsugar as 
percent of 
CU071026 

(%)de 

Amount of 
acylglucose 

accumulateddf 

Percent of 
acylsugars 

that are 
acylglucoses 

(%)dg 

 AG3 AG4 AG11     

 CU071026 x LA716 4 254.6 a 20.1 a 50.8 b 

BC1F3 
 

CU071026 3 100.0 bc 0.1 f 0.5 d 

1 1 1 4 110.2 bc 1.3 e 7.2 d 

2 1 2 7 72.6 cd 3.9 d 35.9 c 

3 1 2 5 102.8 bc 4.1 d 24.7 c 

2 1 3 7 36.4   e 5.2 d 91.1 a 

3 1 3 3 39.5 de 5.2 cd 84.2 a 

2 2 2 40 140.9 b 11.7 b 55.7 b 

3 2 2 18 121.8 b 10.2 bc 54.8 b 

BC1F4 

CU071026 4 100.0 bc 0.0 d 0.0 c 

3 2 1 2 223.3 a 0.6 c 0.5 c 

3 3 1 2 124.3 b 1.6 c 2.9 c 

3 2 2 7 112.5 b 17.1 b 36.1 b 

3 2 3 10 81.4 cd 26.0 a 71.9 a 

3 3 2 10 71.5 de 23.0 ab 73.1 a 

3 3 3 5 61.5 e 20.1 ab 73.1 a 

BC1F5 

CU071026 4 100.0 b 0.0 c 0.0 c 

3 3 1 14 117.5 a 0.7 b 2.3 b 

3 3 2 7 51.8 c 11.1 a 77.1 a 

3 3 3 11 57.9 c 13.2 a 82.2 a 

a 1: locus homozygous for S. lycopersicum alleles; 3: locus homozygous for S. pennellii LA716 alleles; 2: 
locus heterozygous 
b Haplotype 1 1 1 are selections lacking the ACYLGLUCOSE QTL, comparable to CU071026 for 
acylglucose accumulation 
c Number of plants identified/tested with respective haplotype 

d Means followed by different letters within a column are significantly different at P < 0.05 

e % CU071026 data transformed in BC1F3/BC1F5 (cube-root), and in BC1F4 (Log10) prior to analysis to 

improve normality 
f Glucose level data transformed in BC1F3/BC1F4 (cube-root), and in BC1F5 (Log10) prior to analysis to 

improve normality 
g % Acylglucose data transformed in BC1F5 (Log10) prior to analysis to improve normality 
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 Data from the BC1F3 selections demonstrated the importance of the presence of all of 

the AG3QTL, AG4QTL and AG11QTL for plants to generate high levels of acylglucoses. The 

selections lacking the AG4QTL and heterozygous or homozygous for the AG3QTL/AG11QTL 

showed that AG4QTL was not necessary to generate levels of acylglucoses above that of 

CU071026 or selections lacking all three acylglucose QTL. However, when AG11QTL was 

homozygous, lack of the AG4QTL resulted in greatly reduced levels of accumulated acylsugars. 

These results largely match those observed in Leckie et al. (2013) in the QTL analysis using an 

interspecific BC1F2 population. The negative interaction between AG4QTL and AG11QTL on 

total acylsugar level observed in our study is also supported by the epistatic interaction between 

these QTL reported in Leckie et al. (2013). While the data from our study largely support 

previous studies concluding acylglucose accumulation is governed by AG3QTL, AG4QTL, 

AG11QTL, and their epistatic interaction, there is some evidence from the BC1F3 selections 

that supports the hypothesis of an additional region(s) involved in acylglucose accumulation. For 

example, selections heterozygous or homozygous for the AG3QTL and AG11QTL, but lacking 

the AG4QTL, accumulated acylglucoses at a concentration of at least 3.9 umol g-1 leaf weight 

(BC1F3 Table 3.5). In comparison, the selections from the BC1F1 and BC1F2 populations from 

the IL breeding strategy that were heterozygous or homozygous for the AG3QTL/AG11QTL 

combination accumulated acylglucoses at a concentration of at most 0.34 umol g-1 leaf tissue 

(Table 3.4). Additionally, within the BC1F3 population, the plants lacking AG3QTL, AG4QTL, 

and AG11QTL accumulated a higher concentration of acylglucoses than CU071026 (1.3 vs 0.1 

umol g-1 leaf weight), despite a comparable level of total acylsugars (BC1F3 Table 3.5), 

suggesting that these plants might contain an unidentified acylglucose QTL absent in 

CU071026. Also, the plants heterozygous for the AG3QTL/AG4QTL/AG11QTL accumulated 

less total acylsugar and a lower concentration of acylglucoses than the CU071026 x S. pennellii 

LA716 plants. An explanation for the higher acylglucoses in the CU071026 x LA716 hybrid is 

that these plants contain several QTL previously identified to increase total acylsugar levels 
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(Blauth et al. 1998; Leckie et al. 2012). However, if the top four highest total acylsugar 

accumulating plants are evaluated from the class of plants heterozygous for the three 

acylglucose QTL, these plants accumulate total acylsugar levels comparable to CU071026 but 

concentrations of acylglucoses that are only 16.0 umol g-1 leaf weight, about 25% less than the 

F1 plants (data not shown). The relative percent of acylglucoses in the CU071026 x S. pennellii 

LA716 plants, though, is comparable to the plants heterozygous for the three acylglucose QTL. 

A recent study by Ranjan et al. (2016) showed that chromosomes 4, 6 and 8 in tomato have a 

high abundance of trans active expression QTLs (eQTLs), QTLs that function to affect gene 

expression from a distance; therefore, it is possible the homozygous/heterozygous 

introgressions on chromosome 4 could contain eQTL(s) that improve the accumulation of 

acylsugars/acylglucoses by interacting with QTL on other chromosomes, like 

AG3QTL/AG11QTL. Together, the data from the BC1F3 plants suggest that a region or regions 

with minor effect on acylglucose accumulation could have been brought to homozygosity in the 

111205-235 plant and universally improved acylglucose accumulation in selections from the 

BC1F3. This region(s) could be recessive in function, which could help explain why the 

CU071026 x S. pennellii LA716 plants did not have increased percent acylglucose over the 

selections heterozygous for the three acylglucose QTL.  

 Due to the presence of S. pennellii LA716 introgressions still segregating in the BC1F3 

population, we used MAS to select the BC1F3 plant 141004-217 to generate a BC1F4 

population. Plant 141004-217 accumulated high levels of total acylsugars and acylglucoses. 

Plant 141004-217 was homozygous for the five introgressions of CU0170226, and for the small 

introgression containing AG3QTL, but was heterozygous for a large introgression on 

chromosome 4 containing AG4QTL and a large introgression on chromosome 11 containing the 

AG11QTL introgression. Regarding additional introgressions, Plant 141004-217 was 

homozygous for a small introgression on the top of chromosome 12, was heterozygous for an 

additional small introgression on chromosome 3, and a large introgression on chromosome 12, 
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and had lost the additional introgressions on chromosomes 1 and 9.  A schematic depiction of 

the size and location of introgressions in 141004-217 is displayed in Figure 3.1.  

 BC1F4 population  Seeds from the 141004-217 BC1F3 selection were used to generate 

a 380 individual BC1F4 population. The purpose of this BC1F4 population was to bring to 

homozygosity part of the introgression on chromosome 4 containing the AG4QTL and part of 

the introgression on chromosome 11 containing the AG11QTL, and to select for recombinations 

on these chromosomes. Additionally, we wanted to select against the segregating 

introgressions on chromosomes 3 and 12 in pursuit of our goal of selecting a homozygous line 

that accumulated high levels of acylglucoses with minimal additional introgressions besides the 

AG3QTL, AG4QTL, and AG11QTL introgressions. From the 380 BC1F4 plant population, a 

number of plants were identified that were homozygous for both the AG4QTL and AG11QTL 

introgressions, and a number of potentially important recombinations on chromosomes 4 and 11 

near the AG4QTL and AG11QTL, respectively, were also identified.  

 Evaluation of the BC1F4 selections again demonstrated the importance of the interaction 

between AG4QTL and AG11QTL to increase accumulation of acylglucoses. Specifically, 

selections heterozygous for the AG4QTL and AG11QTL accumulated high concentrations of 

acylglucoses (17.1 umol g-1 leaf tissue), which amounted to 36.1% of the acylsugar profile 

(BC1F4 Table 3.5). When AG4QTL, AG11QTL, or both was homozygous, the concentration of 

acylglucoses increased in some of these classes versus the plants heterozygous for both 

AG4QTL/AG11QTL, up to 26.0 umol g-1 leaf tissue. The more striking difference though was 

that the relative proportion of acylglucoses increased, up to 73.1% of the total acylsugars when 

one, the other, or both of the AG4QTL/AG11QTL were homozygous, but the total accumulation 

of acylsugars decreased compared to the plants heterozygous for both AG4QTL/AG11QTL. The 

effect of homozygosity for AG4QTL alone can be seen by comparing the class of plants 

homozygous for AG3QTL and heterozygous for AG4QTL/AG11QTL with the class of plants 

homozygous for AG3QTL/AG4QTL and heterozygous for AG11QTL. Specifically, the plants 
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homozygous for AG4QTL accumulated lower levels of acylsugars (71.5% of CU071026) and a 

higher proportion of acylglucoses (73.1%) compared to the plants heterozygous for AG4QTL 

which accumulated levels of acylsugars at 112.5% of CU071026 and a proportion of 

acylglucoses at 36.1% (BC1F4 Table 3.5). Similarly, the effect of the AG11QTL alone can be 

seen by comparing the class of plants homozygous for AG3QTL/AG11QTL and heterozygous 

for AG4QTL with the class of plants homozygous for AG3QTL and heterozygous for 

AG4QTL/AG11QTL. Specifically, the plants homozygous for AG11QTL and heterozygous for 

AG4QTL accumulated lower levels of acylsugars (81.4% of CU071026), yet higher levels of 

acylglucoses (26.0 umol g-1 leaf tissue) and a higher proportion of acylglucoses (71.9%) than 

plants heterozygous for AG4QTL/AG11QTL, which accumulated total acylsugars at 112.5% of 

CU071026 with accumulation of acylglucoses at (17.1 umol g-1 leaf tissue) which constituted 

36.1% of the acylsugar profile (BC1F4 Table 3.5).  

 The effect of the AG4QTL and AG11QTL on acylglucose accumulation and percent 

acylglucose was comparable to that seen in Leckie et al. (2013), but the effect on total 

acylsugar was different. Specifically, the class of plants in Leckie et al. (2013) homozygous for 

the AG3QTL, AG4QTL, and AG11QTL was comparable in total acylsugar level to the plants 

homozygous for the AG3QTL, but heterozygous for the AG4QTL and AG11QTL. In our study, 

comparison of those classes of plants demonstrated that the plants homozygous for 

AG4QTL/AG11QTL accumulated about half the level of acylsugars compared to plants 

heterozygous for AG4QTL/AG11QTL (BC1F4 Table 3.5). This incongruity could be explained by 

selection against additional S. pennellii LA716 introgressions in the BC1F3 and BC1F4 

populations, some of which could have as of yet unidentified acylsugar QTL that have 

interactive effect with the AG3QTL, AG4QTL, and AG11QTL to control total acylsugar levels or 

specifically acylsucrose accumulation. There is considerable evidence for epistatic interactions 

in acylsugar biosynthesis, both for total acylsugar and acylglucose accumulation (Blauth et al. 

1998; Leckie et al. 2012, 2013). The general trend observed in Leckie et al. (2013) and our 
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study could suggest that homozygosity for the acylglucose QTL leads to greater relative 

proportions of acylglucoses, partly through increased acylglucose accumulation and partly 

through lower total acylsugar levels. However, S. pennellii LA716 accumulates mostly 

acylglucoses, and accumulates levels of acylsugars at least six times that of CU071026 (Leckie 

et al. 2013), demonstrating that homozygosity for the acylglucose QTL does not necessitate 

lower acylsugar levels, and suggesting that additional QTL are necessary to combine with the 

acylglucose QTL to achieve even higher acylsugar levels.  

 Due to S. pennellii LA716 introgressions still segregating in the BC1F4 population, we 

used MAS to select a plant 141195-353 which accumulated high levels of total acylsugars and 

acylglucoses.  Plant 141195-353 was homozygous for the five introgressions of CU071026, and 

for the small introgression containing AG3QTL, and was homozygous for a large part of the 

AG4QTL introgression (likely homozygous for the AG4QTL) and had a recombination to lose 

the end of the chromosome 4 introgression (ca. 9 Mbp). Additionally, 141195-353 had a 

recombination on chromosome 11 such that it was homozygous for a small part of the end of 

the AG11QTL introgression (ca. 2.8 Mbp); it was uncertain if this region contained AG11QTL, 

however since the rest of chromosome 11 was heterozygous, the plant would still possess 

AG11QTL. Plant 141195-353 had also lost the small introgression on the top of chromosome 3 

(ca. 1 Mbp), but was heterozygous for a small introgression on the end of chromosome 4, and a 

large introgression on chromosome 12. A schematic depiction of the size and location of 

introgressions in 141195-353 is displayed in Figure 3.1.   

 BC1F5 population  Seeds from the 141195-353 BC1F4 selection were used to generate 

a 313 individual BC1F5 population. The purpose of the BC1F5 population was to bring to 

homozygosity, if necessary, part of the introgression on chromosome 11, and to select against 

the segregating introgressions on chromosomes 4 and 12 in pursuit of our goal of selecting a 

homozygous line that accumulated high levels of acylglucoses with minimal additional 

introgressions besides the AG3QTL, AG4QTL, and AG11QTL introgressions. Six plants were 
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identified that had lost the introgressions on chromosome 4 (ca. 9 Mbp) and 11 (ca. 50.5 Mbp) 

and were homozygous for the top of chromosome 12 (ca. 2.9 Mbp) but had lost the vast 

majority of the large chromosome 12 introgression (ca. 40 Mbp). Three additional plants were 

identified that were homozygous for the chromosome 11 introgression and the top of the 

chromosome 12 introgression, but lost the end of the chromosome 4 introgression and the bulk 

of the chromosome 12 introgression.  

 Evaluation of the acylsugar level and acylglucose accumulation in BC1F5 selections 

further supported the essential role of the AG11QTL and revealed that the recombination on 

chromosome 11 in the BC1F4 selection did not bring the AG11QTL into homozygosity. 

Specifically, the 14 selections that lost the chromosome 4 and 11 introgressions accumulated 

levels of acylsugars slightly higher than CU071026 (118.9%), but accumulated acylglucoses at 

a concentration of only 0.7 umol g-1 leaf weight (BC1F5 Table 3.5). The plants heterozygous for 

AG11QTL accumulated reduced levels of acylsugars (51.8% of CU071026), but with high levels 

of acylglucoses (11.1 umol g-1 leaf weight), which amounted to 77.1% of the acylsugar profile. 

Similarly, the plants homozygous for the AG11QTL accumulated lower levels of acylsugars 

(57.9% of CU071026) with high levels of acylglucoses (13.2 umol g-1 leaf weight), which 

equated to 82.2% of the acylsugar profile. The AG11QTL effect in the BC1F5 to control 

acylglucose accumulation was consistent with the BC1F4 and BC1F3 populations and the 

BC1F2 population from Leckie et al. (2013). Again, however, the effect of the AG11QTL on total 

acylsugar level was not consistent between the BC1F5 in our study and the BC1F2 population 

in Leckie et al. (2013). Specifically, Leckie et al. (2013), observed that the total acylsugar levels 

accumulated were comparable between the classes of plants homozygous for 

AG3QTL/AG4QTL, but lacking, heterozygous or homozygous for the AG11QTL. Conversely, in 

our study, the same classes of plants in the BC1F5 population demonstrated that the total levels 

of acylsugars in the plants lacking the AG11QTL were at least twice as high as the plants 

heterozygous for or homozygous for the AG11QTL. An explanation for this could be that 
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additional segregating introgressions, from S. pennellii LA716, present in the BC1F2 from 

Leckie et al. (2013), were lost or selected against in the BC1F3, BC1F4, and BC1F5. These 

introgressions could have contained QTL that interacted with the AG11QTL to affect total 

acylsugar level, or specifically acylsucrose accumulation.    

 Based on the acylglucose phenotype and the loss of several extraneous introgressions, 

one of the selections (141425-188) that was homozygous for the CU071026 introgressions and 

the AG11QTL introgression, and that set seed well, was designated as the initial plant for the 

new line, AG3/AG4/AG11/AS. A schematic of the S. pennellii LA716 introgressions, contained 

within 141425-188 is displayed in Figure 3.1. Identity of the boundaries of the introgressions in 

141425-188, outside of those from CU071026, and defined by SNPs obtained by GBS from the 

BC1F4 selection, 141195-353, are displayed in Table 3.6. The selection (141425-042), lacking 

the AG11QTL introgression was selected as the initial plant for the new line, AG11/AG4/-

AG11/AS, which provides a closely related high-acylsucrose accumulating line to compare with 

the AG3/AG4/AG11/AS line. 

 

Table 3.6. Names, chromosome location and physical ranges of additional Solanum 
pennellii LA716 introgressions contained within 141195-353, the source of the 
AG3/AG4/AG11/AS line 

  Tomato-EXPEN SL2.50 ITAG2.4 Tomato-EXPEN SL3.0 ITAG3.1 

Introgressiona Chr. 
Start Position 

(Bp) 
End Position 

(Bp) 
Approx Start 
Position (Bp) 

Approx End 
Position (Bp) 

Add-int-3 3 67,785,747 70,755,827 69,273,871 72,261,603 

Add-int-4a 4 2,567,686 53,483,733 2,565,794 53,424,590 

Add-int-4b 4 62,648,875 64,694,133 62,734,276 64,780,930 

Add-int-10 10 60,498,688 65,501,089 60,623,704 65,628,087 

Add-int-11 11 2,980,642 56,274,540 2,977,714 56,569,478 

Add-int-12 12 19,246 2,919,236 18,295 2,920,288 
a Introgressions defined by Genotyping by Sequencing (GBS) single nucleotide polymorphisms (SNPs) 
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Characterization of acylsugar levels, fatty acid profile and acylsugar profile of 

acylglucose lines and hybrids 

Acylsugar biosynthesis in tomato is a complicated system that relies on interaction among a 

number of genes scattered across the genome. Complicating understanding of acylsugar 

biosynthesis and the phenotypes observed in the BC1F1-BC1F5 populations is environmental 

interaction. For example, Shapiro et al. (1994) observed that acylsugar accumulation in S. 

pennellii accessions was affected by the environment, such that the same accessions grown 

simultaneously in a greenhouse or in the field in Ithaca, NY had two or three times the total 

acylsugar levels accumulated in the field. Percentage of acylglucoses also varied by location for 

some accessions, but the degrees of difference were modest, with the differences being 10% or 

less. Previous studies that introgressed and evaluated QTL affecting composition of fatty acids 

esterified to the sugar backbone (Smeda et al. 2016, in review), evaluated the heritability of a 

number of traits, including acylsugar level, profile and fatty acid profile, and showed that despite 

their high heritabilities many of these traits were still significantly influenced by the environment. 

Due to evaluation of single plants in the BC1F1-BC1F5 a replicated experiment growing a series 

of acylglucose lines, hybrids, and controls was necessary to properly characterize the effect of 

the acylglucose QTL on acylsugar level, acylglucose accumulation, and fatty acid profile. The 

entries in a replicated evaluation experiment included the CU071026 control, the AG3/AG11/AS 

line, the AG3/AG4/-AG11/AS line, the AG3/AG4/AG11/AS line, and a CU071026 x 

AG3/AG4/AG11/AS hybrid.  

Total acylsugar level   Analysis of the replicated entries clearly demonstrated that the AG3QTL, 

AG4QTL and AG11QTL and their interaction significantly influenced acylsugar level. The 

AG3/AG11/AS line accumulated trace levels of acylsugar (0.2% of CU071026) (Table 3.7), 

which agreed with initial evaluation of selections from our IL BC1F2 population. Similarly, the 

AG3/AG4/AG11/AS line accumulated lower levels of acylsugars compared to CU071026 

(62.6%), similar to initial evaluation of plants from the BC1F5 population. The CU071026 x 
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AG3/AG4/AG11/AS F1 hybrid was observed to accumulate levels of acylsugars intermediate to 

CU071026 and the AG3/AG4/AG11/AS line at 84.3% of CU071026. The AG3/AG4/-AG11/AS 

line was observed to accumulate higher levels of acylsugars (118.8% of CU071026), which is 

consistent with initial evaluation in the BC1F5 selections lacking the AG11QTL The level of 

acylsugars accumulated in the AG3/AG4/AG11/AS line were about half the level observed in the 

AG3/AG4/-AG11/AS line, which demonstrates the pronounced impact of the AG11QTL, when 

homozygous, to decrease total acylsugar levels. The CU071026 x AG3/AG4/AG11/AS F1 

hybrid accumulated an intermediate level of acylsugars to the parental lines, which highlights 

the incomplete dominance effect of the AG11QTL on acylsugar level. The extremely low levels 

of acylsugars observed in the AG3/AG11/AS line also support the role of AG11QTL, when 

homozygous to decrease acylsugar levels, but also indicates the necessity of AG4QTL to raise 

acylsugar/acylglucose levels. The trace levels of acylsugars in the AG3/AG11/AS line are much 

lower than that observed in similar haplotype selections from the BC1F3, which accumulated 

levels of acylsugars at 39.5 % of CU071026. This again suggests that a region or regions from 

S. pennellii LA716, necessary for raising acylsugar levels of acylglucose producing lines, and 

which were present in the BC1F3 population are missing in the AG3/AG11/AS line. 
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 Acylglucose accumulation  Analysis of the replicated entries also demonstrated that 

AG3QTL, AG4QTL, and AG11QTL profoundly impact acylglucose accumulation and the relative 

proportion of acylglucoses (Table 3.7). CU071026 did not accumulate appreciable levels of 

acylglucoses, consistent with prior evaluation, whereas the AG3/AG4/AG11/AS line 

accumulated high levels of acylglucoses (14.1 umol g-1 leaf weight) which amounted to 84.8% of 

the acylsugar profile. The CU071026 x AG3/AG4/AG11/AS F1 hybrid accumulated high levels 

of acylglucoses (9.8 umol g-1 leaf weight), which were slightly lower than that observed in 

AG3/AG4/AG11/AS. The percent of acylsugars that were acylglucoses in the CU071026 x 

AG3/AG4/AG11/AS hybrid was only 43.8%, which was much less than the percent of 

acylglucose acylsugars in AG3/AG4/AG11/AS (84.8%). Conversely, the AG3/AG4/-AG11/AS 

and AG3/AG11/AS lines accumulated trace (0.3 umol g-1 leaf weight) and no acylglucoses, 

respectively. The lack of acylglucose accumulation in the AG3/AG11/AS line and the trace 

acylglucose accumulation in the AG3/AG4/-AG11/AS line demonstrate clearly that both 

AG4QTL and AG11QTL are necessary for accumulation of high levels of acylglucoses. The high 

levels of acylglucoses in the CU071026 x AG3/AG4/AG11/AS F1 hybrid, were only slightly less 

than that of the AG3/AG4/AG11/AS line, indicating that heterozygosity for all three acylglucose 

QTL is sufficient to generate significant acylglucose accumulation. The much lower relative 

percent of acylglucose acylsugars in the CU071026 x AG3/AG4/AG11/AS F1 hybrid compared 

to that of the AG3/AG4/AG11/AS line, though, matches well with the BC1F4 and BC1F5 

selections which illustrated that homozygosity for either AG4QTL or AG11QTL or both is 

necessary for a large proportion of the accumulated acylsugars to be acylglucoses. The lack of 

detectable acylglucoses in the AG3/AG11/AS line was again in contrast to the BC1F3 selections 

homozygous for AG3QTL and AG11QTL, but lacking AG4QTL which accumulated detectable 

levels of acylglucoses. This contrast suggests that a region or regions from S. pennellii LA716, 

in addition to AG4QTL, are missing in the AG3/AG11/AS line and necessary to generate high 

levels of acylglucoses.  
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 Fatty acid profile  Analysis of the entries revealed an unexpected impact on the fatty acid 

profile of the acylsugars produced, potentially due to the acylglucose QTL. Generally, the 

entries had fatty acid profiles that were similar to that of CU071026, as expected, but two entries 

(AG3/AG4/AG11/AS and AG3/AG4/-AG11/AS) displayed a decrease in ai-C5 fatty acids, and an 

increase in n-C10 fatty acids (Table 3.7). Specifically, the proportion of ai-C5 and n-C10 fatty 

acids in AG3/AG4/AG11/AS and AG3/AG4/-AG11/AS was 6.69%/5.62% and 6.25%/9.05%, 

respectively. Conversely, CU071026 displayed a higher proportion of ai-C5 (10.15%) and a 

lower proportion of n-C10 (1.37%). In addition, the AG3/AG11/AS line displayed a much lower 

proportion of i-C5 fatty acids, and higher proportion of n-C12 fatty acids than CU071026. 

However, because the AG3/AG11/AS line has very low acylsugar levels, which can result in the 

GC-MS derived fatty acid profile being unreliable, as discussed in Smeda et al. (2016). This 

suggests LC-MS profiling would be the preferable means of characterization of the 

AG3/AG11/AS acylsugars. The FA7QTL has also been shown to generate an increase in n-C10 

fatty acids (Leckie et al. 2014; Smeda et al. 2016, in review), however, an introgression 

containing FA7QTL was not present in any of these entries, which suggests that one of the 

additional introgressions in the AG3/AG4/AG11/AS and AG3/AG4/-AG11/AS lines is involved in 

this trait. Because the AG3/AG4/-AG11/AS line displays the increased n-C10 phenotype, the 

AG11QTL region is not likely contributing to the increase in n-C10. The AG3/AG11/AS line does 

not accumulate an increase in n-C10, which again suggests the AG11QTL introgression is not 

involved, and that the AG3QTL introgression is not involved. Because the CU071026 x 

AG3/AG4/AG11/AS hybrid does not display an increase in n-C10 fatty acids, the S. pennellii 

LA716 alleles involved in the increased proportion of n-C10 are likely recessive, and increased 

n-C10 would require homozygosity for the LA716 alleles. Based on the other introgressions 

contained within the AG3/AG4/AG11/AS line (Table 3.6), the most likely remaining 

introgressions that might contribute to the increased n-C10 are the large introgression on 

chromosome 4, the introgression on the end of chromosome 10, or the introgression on the top 
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of chromosome 12. Additionally, the AG3/AG4/-AG11/AS line contains a small introgression (ca. 

2.8 Mbp) on the end of chromosome 11 that is also contained in AG3/AG4/AG11/AS, and not in 

AG3/AG11/AS, and therefore could also be involved in the increased n-C10 fatty acids.  

 LC-MS Characterization   An additional level of characterization, LC-MS, was 

implemented on some of the selections from the BC1F5 to more fully evaluate the effect of the 

AG11QTL on the acylsugar composition of the plants. LC-MS provided a way to corroborate the 

spectrophotometric assay evaluation which revealed the accumulation of acylglucoses, and also 

enabled a detailed comparison of the specific acylsugars accumulated between entries. The 

three BC1F5 plants identified as homozygous for the AG11QTL introgression (141425-120, 

141425-185, 141425-188), as well as a plant lacking the AG11QTL introgression (141425-042) 

and a plant that was heterozygous for the introgression (141425-112) were included in the LC-

MS analysis with the CU071026 control. Representative LC-MS chromatograms for each entry 

are displayed in Figure 3.2.  A total of 71 acylsugars were identified as being accumulated by at 

least one of the entries (Figure 3.3). CU071026 was observed to accumulate exclusively 

acylsucroses, while the 141425-042 samples displayed a profile dominated by acylsucroses, but 

with accumulation of several acylglucoses. Specifically, the 141425-042 plant accumulated 

moderate levels of five acylglucoses: G3:22 (ID 1), G3:22 (ID 3), G3:15 (ID 5), G3:20 (ID 6), and 

an acylsugar annotated as an acylglucose (ID 63), but whose fatty acid acyl group profile was 

difficult to confirm due to low abundance and peak overlap. The 141425-120, 141425-185, and 

141425-188 plants, homozygous for the AG11QTL, exhibited an acylsugar profile that was 

dominated by acylglucoses, but with significant accumulation of several acylsucroses. 

Specifically, looking at the peak areas of the acylsugars (data not shown), the most abundant 

acylsugars in the 141425-120, 141425-185, 141425-188 plants are two acylsucroses: S3:22 (ID 

4) and S3:20 (ID 2). The next most abundant acylsugars in these three plants are acylglucoses 

with ID 5, ID 6, and ID 1, respectively. The 141425-112 plants, heterozygous for the AG11QTL, 

accumulated a more even mixture of acylsucroses and acylglucoses. Like the 141425-120, 
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141425-185, and 141425-188 plants, the 141425-112 plants’ acylsugar profile was dominated 

most by the two acylsucroses with ID 2 and ID 4, but the next two most abundant acylsugars 

were also two acylsucroses with IDs 38 and ID 40, which were accumulated at very low levels in 

the 141425-120, 141425-185, and 141425-188 plants.   
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Figure 3.2. Representative LC-MS base peak intensity chromatograms for the BC1F5 
acylglucose entries and CU071026. Each chromatogram is scaled according to the most 
abundant peak in the chromatogram to show differences in acylsugar profiles. The most 
predominant peaks are labeled with the sugar moiety (S, sucrose or G, glucose) and the 
number of acyl groups attached with the total number of carbons between the acyl groups.  
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Figure 3.3. Hierarchical cluster analysis with Pearson correlation using a pairwise 
average-linkage clustering method, indicating the predominant acylsucroses and 
acylglucoses accumulated by each plant. Three samples were analyzed per plant. Color 
across a row indicates relative levels (peak area/g leaf weight) of the respective acylsugar, 
with red indicating samples with the highest levels detected and blue/purple indicating low 
or no detection relative to the highest sample for the particular type of acylsugar. aThe 
proposed acylgroup number and length for an acylsugar whose identification was 
hampered by low abundance and peak overlap. bAn annotated acylglucose based on m/z 
range but whose acylgroup number and length was hampered by low abundance and 
peak overlap. cThe mass to charge ratio for each acylsugar followed by retention time in 
minutes. dAcylsugar nomenclature indicates S for sucrose backbone of the molecule and 
G for glucose, as well as the number of fatty acid acyl chains (2 to 4) with their cumulative 
length in carbons that are esterified to the sugar followed by the lengths in carbons of 
each acyl group in the respective acylsugar.  
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The hierarchical cluster analysis (HCA) revealed a pattern of acylsugar composition 

largely defined by AG11QTL, but also by AG3QTL and AG4QTL. For example, the HCA 

revealed that the entries split into two broad groups, those with and without AG11QTL (Figure 

3.3). Within the plants lacking the AG11QTL, the HCA clearly showed the 141425-042 plants 

clustered versus the CU071026 plants, which is largely due to the moderate accumulation of 

several acylglucoses in the 141425-042 plant. Within the plants containing the AG11QTL, the 

three entries homozygous for AG11QTL (141425-120, 141425-185, and 141425-188) were 

virtually indistinguishable. The 141425-112 plants, on the other hand, clustered separately, 

likely from the decrease in moderate accumulation of acylglucoses, and increase in 

accumulation of acylsucroses, indicating the incompletely dominant action of the AG11QTL, or 

linked QTL. The 141425-112 plants also accumulated moderate levels of three acylsugars with 

ID 35, ID 36, and ID 37 that are only moderately accumulated in this entry.   

 For several acylsugars identified in the LC-MS analysis, there were clear 

chromatographic separation of compounds having identical mass and indistinguishable mass 

spectra, for example G3:22 (5,5,12) (ID 1) with a retention time of 11.57 min and G3:22 (5,5,12) 

(ID 3) with a retention time of 11.42 min (Figure 3.3).  These acylsugar isomers likely differ in 

either the position of acyl chain attachment or in the branching of the acyl chains. This is similar 

to the observations in Smeda et al. (2016, in review) of acylsucroses having clear 

chromatographic separation despite identical mass and indistinguishable mass spectra. For the 

two acylglucoses (ID 1 and ID 3) that likely differ in position or orientation of the acyl chains, the 

abundance of these acylsugars differed between entries. Specifically, the acylglucose with ID 3 

was highly abundant in the 141425-120, 141425-185, and 141425-188 plants, but also 

moderately accumulated in the 141425-112 and 141425-042 entries. Conversely, the 

acylglucose with ID 1 was abundant in the 141425-120, 141425-185, and 141425-188 plants, 

which are homozygous for AG11QTL, but was not detectable in the 141425-112 plants, which 

are heterozygous for AG11QTL. This observation suggested there could be a recessive effect of 
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the AG11QTL or a linked QTL to affect either acyl chain position or orientation. However, the 

141425-042 plants accumulated moderate levels of the ID 1 acylglucose, despite lacking of the 

AG11QTL. An explanation for this could involve the complex interactions previously detected 

between the AG3QTL, AG4QTL, and AG11QTL, such that homozygous S. lycopersicum or S. 

pennellii AG11QTL alleles confer a similar effect to generate the ID 1 acylglucose isomer 

through interaction with the AG3QTL and AG4QTL, but that when heterozygous, this interaction 

is disrupted.  

 In addition to these acylglucose isomers, several acylsucrose isomers displayed 

presence/absence variation between entries. For example, a pair of acylsucrose isomers 

differing in retention time despite identical mass and indistinguishable mass spectra suggests a 

role for the AG4QTL in the HCA. Specifically, the S3:19 (4,5,10) ID 62 acylsugar is accumulated 

by both CU071026 and 141425-042, although the levels are 11x higher in 141425-042 (data not 

shown). Conversely, the S3:19 (4,5,10) ID 69 acylsugar is only accumulated in 141425-042, 

although at a much lower level (ca. 0.1x) (data not shown) than the ID 62 acylsugar. The 

presence/absence of the ID 62 and 69 acylsugar in CU071026 and 141425-042 is consistent 

with data presented in Fan et al. (2016) showing the presence of a recently characterized 

acyltransferase, Sp-ASAT2, led to accumulation of a few acylsucroses with all acyl chains on 

the pyranose ring, which were virtually undetectable in plants lacking Sp-ASAT2. Additionally, 

Fan et al. (2016) observed that the levels of the isomer with all acyl chains on the pyranose ring 

were much lower than the isomer with an acyl chain on the furanose ring, consistent with the 

much lower levels of the ID 69 acylsugar in 141425-042 vs the ID 62 acylsugar. Together this 

data suggests that the ID 62 acylsugar has an acyl chain on the furanose ring while the ID 69 

acylsugar has all acyl chains on the pyranose ring. The presence/absence of these acylsucrose 

isomers likely demonstrates an effect of the AG4QTL, probably through action of Sp-ASAT2, to 

generate acylsucroses distinct from those of CU071026. 
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Another pair of acylsucroses (ID 2 and ID 4) are exclusively accumulated in the entries 

containing the AG11QTL (141425-112, 141425-120, 141425-185, and 141425-188) and not 

detected in the 141425-042 samples or CU071026. The likely explanation for this pattern is that 

the AG11QTL introgression overlaps with the previously identified ASAT3 acyltransferase gene 

(Schilmiller et al. 2015), which controls the location of an acyl chain attachment. Specifically, 

Schilmiller et al. (2015) showed that Sl-ASAT3 functions in S. lycopersicum to esterify an acyl 

chain to the furanose (fructose) ring in an acylsucrose, whereas in IL11-3 and S. pennellii 

LA716, Sp-ASAT3 has a transposon insertion, which inhibits acylation of the furanose ring. Two 

acylsucroses (IDs 53 and 65) that are comparable to the ID 2 acylsucrose in mass and mass 

spectra are highly accumulated in the 141425-042 plants and lowly accumulated in the 141425-

112 plants, but not detectable in the 141425-120, 141425-185, and 141425-188 plants. This 

same pattern holds true for the acylsucrose with ID 4 and an acylsucrose with ID 39. Therefore, 

it is likely that the difference between the ID 2 and ID 53/65 acylsucroses and the ID 4 and 39 

acylsucroses is that the ID 2 and 4 acylsucroses have all acyl chains on the pyranose (glucose) 

ring. This hypothesis is also supported by the observation that the plants homozygous for 

AG11QTL (141425-120, 141425-185, and 141425-188) only share trace accumulation of two 

acylsucroses (ID 46 and ID 54) that are moderately accumulated by CU071026. The 

accumulation patterns of these acylsugars suggests AG11QTL, likely due to the action of Sp-

ASAT3, leads to a profile characterized by acylsucroses with all acyl chains on the pyranose 

ring.  

 HCA results also show that the 141425-120, 141425-185, and 141425-188 plants, 

homozygous for AG11QTL, did not accumulate appreciable levels of tetra-acylsucroses, or 

acylglucoses/acylsucroses with an acetate (C=2) acyl group. The likely explanation for this 

phenotype again is that the Sp-ASAT3 acyltransferase acylates the pyranose ring, specifically at 

the R2 position (Schilmiller et al. 2015), which is the same location that the tomato allele of the 

ASAT4 acyltransferase (Sl-ASAT4) esterifies an acetate group (Schilmiller et al. 2012). Because 
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Sp-ASAT3 acylates the R2 position prior to acylation by Sl-ASAT4, plants homozygous for 

AG11QTL, and therefore likely the Sp-ASAT3 allele, cannot accumulate tetra-acylsucroses, or 

acylsugars with an acetate group.  

 Across entries, the LC-MS data demonstrated the major effect of the AG11QTL to 

control the relative proportion of acylsucroses versus acylglucoses and tetra-acylsucroses vs tri-

acylsucroses in the acylsugar profile. This effect was most pronounced when the AG11QTL was 

homozygous, but also evident when AG11QTL was heterozygous. The data also showed that in 

the absence of the AG11QTL plants could still accumulate low to moderate levels of a few 

acylglucoses, highlighting the likelihood that the other necessary QTL (AG3 and AG4) are 

sufficient for some acylglucose accumulation, but that combination with AG11QTL is required 

for high levels of acylglucoses. Additionally, the data demonstrated the likely effect of AG4QTL 

to control accumulation of unique acylsucroses. Finally, the profile of the plant (141425-112) 

heterozygous for AG11QTL revealed a distinct composition of acylsugars, including three 

acylsugars unique to 141425-112. This suggests a potential role for hybrid deployment of the 

AG11QTL, and or other acylglucose QTL, to capitalize on the allelic interactions that convey 

accumulation of unique acylsugar isomers which could have greater efficacy against insect 

pests of tomato. 

 

Fine-mapping of the acylglucose QTL and gene candidates 

Fine-mapping of the AG3QTL was possible using selections and recombinants from the BC1F3 

population. Previously, Leckie et al. (2013) had delineated the AG3QTL region to be located 

between C2_At1g79840 (70,450,223 - 70,457,873) and TG244 (72,179,021 - 72,184,054) 

(Tomato SL3.0 ITAG3.1 Solgenomics.net). A selection from our study allowed the location of 

AG3QTL to be further defined as a ca. 1.5 Mbp region between markers C2_At2g42110 

(70,672,281 - 70,673,549) and TG244 (Figure 3.4). There are 273 annotated genes within this 
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region, none of which have been implicated in acylsugar biosynthesis (Golden Helix 2016 using 

SL2.5 ITAG 2.4).  

 

 

  

 

 

 

 

 

 

 

 

 

 

Fine-mapping of the AG4QTL was also possible using recombinant and non-

recombinant plants from the BC1F3 population. Previously, Leckie et al. (2013) had delineated 

the AG4QTL region to be located between C2_At2g20390 (3,961,733 - 3,968,830) and TG182 

(4,833,026 - 4,838,070) (Tomato SL3.0 ITAG3.1 Solgenomics.net). The recombinant plants 

from our study allowed the location of AG4QTL to be further defined as a 1.9 Mbp region 

between C2_At3g19895 (2,776,549 - 2,785,771) and C2_At5g50720 (4,663,049 - 4,664,350) 

(Figure 3.5) (Tomato SL3.0 ITAG3.1 Solgenomics.net) overlapping that from Leckie et al. 
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CU071026      100.0 0.0   0.0 
141004-197      99.2 11.2 72.4 

141004-059      183.3 13.3 46.4 

141004-167      164.2 18.8 73.2 

141004-050      158.5 11.2 45.3 

141004-123      124.5 10.3 53.4 

AG3QTL region         

Figure 3.4. Markers, acylsugar level and acylglucose accumulation diagnostic for the presence 
of AG3QTL, on chromosome 3, in CU071026 and selected individuals out of a BC1F3 
population showing the relative location of AG3QTL is between C2_At2g42110 and 
C2_At3g13700. Concentration of acylglucoses is in umol g-1 dry leaf weight.  
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(2013).  Together the recombinants from this study and data from Leckie et al. (2013) allowed 

delineation of the AG4QTL down to ca. 700 kb region between C2_At2g20390 and 

C2_At5g50720. The recently characterized (ASAT2) (Fan et al. 2016) acyltransferase, 

Solyc04g012020, is located between 4,353,166 - 4,354,506 bp (Tomato SL3.0 ITAG3.1 

Solgenomics.net) on chromosome 4, which is within the fine-mapped location of AG4QTL, and 

could be the gene underlying this acylglucose QTL. 

  



164 
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Figure 3.5. Markers, acylsugar level and acylglucose accumulation diagnostic for the presence of 
AG4QTL, on chromosome 4, in CU071026 and selected individuals out of a BC1F3 population 
showing the relative location of AG4QTL is between C2_At3g19895 and C2_At5g50720. 

Concentration of acylglucoses is in umol g-1 dry leaf weight. ≈ represents a large physical distance.  
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Hom AG4QTL 
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Fine-mapping of the AG11QTL was possible using GBS analysis of recombinant and 

non-recombinant plants from the BC1F4 population. Previously, Leckie et al. (2013) had 

delineated the AG11QTL region to be located between C2_At4g01560 (52,303,644 - 

52,309,660) and C2_At2g27290 (53,712,003 - 53,714,416) (Tomato SL3.0 ITAG3.1 

Solgenomics.net). Coordination of GBS, acylsugar level and acylglucose accumulation data 

from BC1F4 plants in our study allowed finer resolution of AG11QTL to a ca. 500 Kbp region 

between GBS SNP 3 (ca. 53.2 Mbp) and GBS SNP 4 (ca. 53.7 Mbp) (Figure 3.6). The recently 

identified ASAT3 acyltransferase gene, Solyc11g067270, (Schilmiller et al. 2015), is contained 

in the IL11-3 introgression; Sp-ASAT3 has been shown to lower acylsugar levels in IL11-3 and 

to acylate the pyranose (glucose) ring of acylsucroses in IL11-3 and S. pennellii LA716 

(Schilmiller et al. 2015). ASAT3 is located between 53,307,619 - 53,308,911bp (Tomato SL3.0 

ITAG3.1 Solgenomics.net) on chromosome 11, which is within the fine-mapped location of 

AG11QTL, and could be the gene underlying the AG11QTL. 
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Figure 3.6. Markers, acylsugar level and acylglucose accumulation diagnostic for the presence of 
AG11QTL, on chromosome 11, in CU071026 and selected individuals out of a BC1F4 population 
showing the relative location of AG11QTL is between GBS SNP 3 and GBS SNP 4. Concentration of 
acylglucoses is in umol g-1 dry leaf weight. All selections used for fine-mapping were 
heterozygous/homozygous for AG3QTL and heterozygous for AG4QTL. Het and Hom AG11QTL 
indicate groups of plants heterozygous and homozygous for AG11QTL, respectively. Physical 
distances are estimates from converting SL2.5 build locations to SL3.0 build locations. 
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Potential for ASAT1 to ASTA4 and other acylsugar genes to affect acylglucose 

biosynthesis and the phenotypes of BC1F1 to BC1F5 plants 

A series of recent studies have elucidated four BAHD acyltransferases (ASAT1 to ASAT4) that 

largely control the acylation of acylsucroses in tomato and wild relatives (Schilmiller et al 2012, 

2015; Fan et al. 2016). Data from our study in conjunction with knowledge of the ASAT genes 

helps clarify the likely impact of these acyltrasferases on the acylsugar and acylglucose 

accumulation observed in the BC1F1 to BC1F5 populations.  

 ASAT1   ASAT1, identified in Fan et al. (2016) is on the top of chromosome 12, and 

controls the first acylation step in acylsucrose biosynthesis, but could be a candidate for an 

additional QTL involved in acylsugar or acylglucose biosynthesis. Fan et al. (2016) showed that 

the tomato (Sl-ASAT1) and S. pennellii (Sp-ASAT1) alleles have a similar function to acylate the 

R4 position on the pyranose ring of an acylsucrose with either a short or longer chain fatty acid. 

The Sl-ASAT1 allele was shown to have no affinity for glucose in vitro, which could contribute to 

the lack of acylglucoses accumulated in cultivated tomato, such as M82. However, they did not 

find variation for ASAT1 across the tomato clade, suggesting that Sp-ASAT1 does not have the 

ability to acylate acylglucoses, and is not likely the first committed step in acylglucose 

biosynthesis. The IL BC1F1 and BC1F2 populations in our study carried the Sl-ASAT1 allele, 

while Sp-ASAT1 was segregating in the interspecific BC1F3 and BC1F4 populations, and 

brought to homozygosity in the BC1F5 selections. The effect of the Sp-ASAT1 versus the Sl-

ASAT1 allele on the acylsugar level and acylglucose accumulation in the BC1F3, BC1F4 and 

BC1F5 populations is unknown. However, high acylsugar and acylglucose accumulating entries 

with either the Sp-ASAT1 or Sl-ASAT1 allele were identified in the interspecific BC1F3, BC1F4, 

and BC1F5 populations in our study (data not shown), therefore, there was unlikely an ASAT1 

allele effect on acylsugar level or acylglucose accumulation.  

 ASAT2 and ASAT3   Fan et al. (2016) also identified ASAT2, the second acylation step 

in acylsucrose biosynthesis in tomato, which is located on chromosome 4 within our fine-
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mapped region of AG4QTL. They showed that Sl-ASAT2 allowed acylation of a variety of acyl 

chain lengths and orientations at the R3 position on the pyranose ring. The results of Fan et al. 

(2016) also suggested that the Sp-ASAT2 acyltransferase alone or in conjunction with an 

unknown enzyme(s) could generate acylsucroses with all three acyl chains on the pyranose 

ring. They observed this pyranose only acylation phenotype in IL4-1 and IL4-2, through 

accumulation of two unique acylsugars with all three acyl chains on the pyranose ring, a 

phenotype which was virtually undetectable in tomato. Sp-ASAT2 was also shown to have little 

activity in vitro with a common mono-acylsucrose substrate utilized by Sl-ASAT2. This could 

suggest that the Sp-ASAT2 enzyme has an affinity for glucose, although no evidence for the 

acylation of acylglucoses by Sp-ASAT2 has been shown. Due to limited activity with mono-

acylsucroses, it is likely that in S. pennellii, this enzyme may not be the second step in 

acylsucrose biosynthesis.  In fact, evidence for a different order of enzymes in S. pennellii 

acylsucrose biosynthesis is provided by Schilmiller et al. (2015), where they demonstrated in 

vitro that the S. pennellii allele of a third ASAT acyltransferase, Sp-ASAT3, on chromosome 11 

within the fine-mapped region of AG11QTL, acylates mono-acylsucroses on the pyranose ring 

at the R2 position. This is in contrast to the tomato allele, Sl-ASAT3, which acylates the R3’ 

position on the furanose ring in acylsucrose biosynthesis.  

 ASAT2 and ASAT3 together likely explain much of the variation for acylsugar level and 

could explain some of the variation for acylglucose accumulation seen in Leckie et al. (2013), 

and our study. Homozygosity for the Sp-ASAT2 allele with the Sl-ASAT3 allele consistently led 

to lower total acylsugar levels for our study in the BC1F4 selections homozygous for the 

AG4QTL and lacking the AG11QTL. This same trend was observed in a BC1F2 population from 

Leckie et al. (2013), and in the IL4-1/IL4-2 plants tested in Schilmiller et al. (2010). Similarly, 

homozygosity for Sp-ASAT3 with Sl-ASAT2 led to significant decline in total acylsugar levels, for 

our study in the BC1F2 and BC1F3 plants homozygous for AG11QTL and lacking the AG4QTL. 
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This trend was also observed in the BC1F2 selections in Leckie et al. (2013) as well as in 

evaluation of IL11-3 in Schilmiller et al. (2010, 2015).  

There are a few possible explanations for these changes in acylsugar levels. One 

explanation for when a plant is homozygous for Sl-ASAT2 and Sp-ASAT3 is that there could be 

competition for the order of acylation. Sl-ASAT2 is the second acylation step in acylsucrose 

biosynthesis, and Sp-ASAT3 is the second step in the proposed biosynthesis of acylglucoses 

(Schilmiller et al. 2015). Furthermore, if Sp-ASAT3 acylates the R2 position first, the Sl-ASAT2 

activity could be inhibited. Evidence for ASAT activity being affected by acylation location was 

shown in Schilmiller et al. (2015) where they observed that pre-existing acylation at the R2 

position in a di-acylsucrose inhibited Sl-ASAT3 acylation of the R3’ position on the furanose 

ring. If Sl-ASAT2 is inhibited, then it is likely more di-acylsucroses would result. Di-acylsucroses 

are not commonly observed in LC-MS profiles (Schilmiller et al. 2010, 2015; Fan et al. 2016; 

Smeda et al. 2016, in review), which could suggest di-acylsucroses are unstable. Evidence for 

the instability of acylsucroses with less than three acyl chains is demonstrated by Fan et al. 

(2016) where they showed a mono-acylated sucrose hydrolyzed to sucrose in the absence of an 

acyl coenzyme A (acylCoA) donor. Therefore, Sl-ASAT2 combined with Sp-ASAT3 could 

contribute to lower acylsugar through production of di-acylsucroses instead of tri-

acylsucroses/tetra-acylsucroses. This same mechanism could explain why acylglucose 

accumulation is decreased in plants homozygous for Sl-ASAT2 and Sp-ASAT3 if Sl-ASAT2 is 

capable of acylating acylglucoses. Specifically, if Sp-ASAT3 acylation occurs before and inhibits 

Sl-ASAT2 acylation, then a proportion of the acylsugars synthesized will be di-acylglucoses. No 

di-acylglucoses were observed in characterization of the BC1F5 plants in our study, which 

suggests di-acylglucoses are not stable, and would likely be hydrolyzed prior to secretion from 

trichomes.  

 An explanation for the decreased total acylsugar and more specifically the reduced 

acylglucose levels observed in plants homozygous for Sp-ASAT2 and Sl-ASAT3 involves 
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inhibition of Sl-ASAT3 and lack of acylation of acylglucoses. IL4-1 and IL4-2 were shown to 

accumulate moderate levels of acylsucroses with three acyl chains on the pyranose ring 

(Schilmiller et al. 2010), which could suggest Sp-ASAT2, homozygous in these lines, or other 

unknown enzymes, are able to acylate the R2 and R3 positions on the pyranose ring. Inhibition 

of the Sl-ASAT3 activity to acylate the R3’ position was shown to occur in vitro if the R2 position 

was acylated first (Schilmiller et al. 2015). If Sp-ASAT2 or another acyltransferase acylates the 

R2 position of an acylsucrose before the Sl-ASAT3 acylation step, then it is likely that Sl-ASAT3 

activity would be inhibited, and a greater proportion of di-acylsucroses would result, which are 

likely unstable and would be hydrolyzed. Data from the BC1F4 and BC1F5 populations in our 

study clearly demonstrated that lack of AG11QTL, (likely presence of the Sl-ASAT3 alleles) 

greatly reduced the accumulation of acylglucoses. The simple explanation for the necessity of 

Sp-ASAT3 for acylglucose accumulation is that Sl-ASAT3 acylates the furanose ring, which is 

not present in an acylglucose. Therefore, the acylglucoses detected when Sl-ASAT3 is 

combined with AG3QTL and AG4QTL (likely Sp-ASAT2), like in 141425-042 (Figure 3.3), likely 

result from Sp-ASAT2 or an unknown enzyme(s) acylating the R2 and R3 positions. Since Sp-

ASAT2 or the unknown enzyme(s) do not appear to readily acylate both the R2 and R3 position, 

when Sl-ASAT3 is present, it is likely that mostly mono or di-acylglucoses would be produced, 

which were not observed in our study and are likely unstable and hydrolyzed.  

 ASAT4   The ASAT4 acyltransferase (Schilmiller et al. 2012) likely interacted with Sp-

ASAT3 in our study to affect the LC-MS profile of the BC1F5 selections. While all plants in our 

study were homozygous for the tomato allele (Sl-ASAT4), it is possible that the interaction 

between Sl-ASAT4 and Sp-ASAT3 limited the ability of plants with this combination to 

accumulate tetra-acylsucroses, such as 141425-120, 141425-185, and 141425-188 (Figure 

3.3). The inability to accumulate tetra-acylsucroses in plants with Sp-ASAT3 suggests that 

interaction between Sp-ASAT3 and Sp-ASAT4 could also contribute to the lower total acylsugar 

levels observed in our study for plants carrying AG11QTL (likely Sp-ASAT3) through lower 
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diversity of acylsucroses. This is supported by transformation of IL11-3 plants with Sl-ASAT3 

that demonstrated increased acylsugar levels, presumably due to the novel accumulation of tri 

and tetra-acylsucroses with furanose ring acylation (Schilmiller et al. 2015).  

 Additional genes   In addition to the ASATs, other studies have elucidated components 

of acylglucose biosynthesis that could play a role in the phenotypes observed in our study and 

that of Leckie et al. (2013). An alternative to the initially proposed thioester acyl-CoA mediated 

transfer of acyl groups to acylglucoses was shown in work with S. pennellii LA716 tissue, which 

suggested glucosyl transferase activity could form 1-O-acylglucose from a free isobutyrate 

group and UDP-glucose (Ghangas and Steffens 1993). This was followed by a study 

demonstrating separation and partial purification of two UDP-glucose:fatty acid glucosyl 

transferases from S. pennellii LA1376 that could catalyze the proposed UDP-Glucose-

dependent activation of fatty acids as 1-O-acyl-β-glucoses (Kuai et al., 1997). Additionally, a 

serine carboxypeptidase-like acyltransferase was identified and shown in vitro to catalyze the in 

vitro disproportionation of two molecules of 1-O-acyl-b-glucose to generate diacylglucose and a 

free glucose (Li et al., 1999; Li and Steffens, 2000). The serine carboxypeptidase, termed a 

glucose acyltransferase, was located on chromosome 10 (Ghangas and Steffens 1993; McNally 

and Mutschler 1997), but was not segregating in the BC1F2 population from Leckie et al. 

(2013). This glucose acyltransferase was not present in the BC1F1 and BC1F2 populations in 

our study, and would not have been segregating in the BC1F3, BC1F4, and BC1F5 populations 

from our study. Therefore, any variation for acylsugar level, acylglucose accumulation, and LC-

MS profile observed in the populations and selections in our study is not likely due to the 

glucose acyltransferase. The additional S. pennellii LA716 introgressions in the 

AG3/AG4/AG11/AS line, beyond those present in CU071026, contain a number of genes 

annotated with glycosyltransferase-like activity; these genes are found in additional 

introgressions Add-int-4a, Add-int-4b, Add-int-10, Add-int-11, and Add-int-12 (Table 3.6). 

However, only one of the additional introgressions, Add-int-10, contained genes annotated with 
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UDP-glucosyltransferase-like activity, the same activity as the enzymes identified in Kuai et al. 

(1997) that were associated with the ability to generate mono-acylglucoses. A series of six 

genes with this annotation are located on chromosome 10 within the Add-int-10 introgression 

and could play a role in acylglucose biosynthesis.  

 Slocombe et al. (2008) identified genes integral to another portion of acylsugar 

biosynthesis in S. pennellii LA716, demonstrating that the branched-chain keto acid 

dehydrogenase (BCKD) enzyme complex, which catalyzes the decarboxylation of keto acids to 

generate acyl-CoAs, is implicated in the biosynthesis of branched chain fatty acids (BCFAs) 

destined for acylsugars. Slocombe et al. (2008) demonstrated the importance of the BCKD 

complex for acylsugar accumulation in S. pennellii LA716, but did not provide elucidation of the 

synthesis of tri-acylglucoses, and still implicated glucosyltransferase activity to generate mono-

acylglucoses. The ASAT genes utilize acyl-CoAs as donors for the acyl groups that are 

esterified to acylsucroses, and therefore support an acyl-CoA mediated system for acylsucrose 

synthesis, but the presence of acyl-CoA dependent acylglucose acylation has not been 

elucidated. Slocombe et al. (2008) identified through microarray analysis a number of genes 

that were preferentially expressed in S. pennellii LA716 leaf trichomes. Among the identified 

genes, several are contained within the S. pennellii LA716 introgressions in the 

AG3/AG4/AG11/AS line, particularly within Add-int-10. The presence and segregation of the S. 

pennellii alleles for these genes in the BC1F3, BC1F4 and BC1F5 populations in our study 

indicates that these genes, previously associated with preferential accumulation in S. pennellii 

LA716 leaf trichomes, could have played a role in the accumulation of acylsugars and 

acylglucoses in our study. Together, the previously discovered gene candidates, especially the 

ASAT genes, likely explain much of the observed variation for acylsugar levels and acylsucrose 

phenotypes. Additionally, ASAT3 likely explains much of the variation for acylglucose 

accumulation in our study, however, the biosynthesis of acylglucoses and the genes responsible 

for additional variation in acylglucose accumulation seen in this work are still largely unknown.  
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Utility of generated acylglucose germplasm to address acylsugar efficacy and 

biosynthesis hypotheses 

A prior study using purified acylsugars collected from CU071026 and four accessions of S. 

pennellii demonstrated the differential efficacy of acylsugars to control insect oviposition, which 

has led to various hypotheses about the structure and function relationships of acylsugars as 

insect deterrent compounds. Leckie et al. (2016) showed that the purified acylsugars from 

several accessions of S. pennellii were more effective at equimolar concentrations than those of 

CU071026 at reducing oviposition of Bemisia tabaci, Middle East-Asia Minor 1 Group (MEAM1), 

and Frankliniella occidentalis, western flower thrips (WFT). Purified acylsugars of two of the 

accessions that were composed an even mixture of acylglucoses and acylsucroses were 

generally more effective than purified acylsugars of the other two S. pennellii accessions 

composed of mostly acylglucoses. Leckie et al. (2016) separated the purified acylsugars of one 

of the accessions (LA1376), which has an even mixture of acylsucroses and acylglucoses, 

using column chromatography into polar and less polar fractions, which corresponded to 

acylsucroses and acylglucoses, respectively. Tests using these two acylsugar fractions showed 

that the less polar fraction (acylglucoses) was more effective at reducing oviposition of both B. 

tabaci (MEAM1) and F. occidentalis than the more polar fraction (acylsucroses), but that an 

even blend of both fractions exhibited synergism in that the blend was more effective than the 

summed effect of either fraction alone. While the data from the Leckie et al. (2016) study could 

suggest that acylglucoses are more effective than acylsucroses, the accessions and acylsugar 

fractions used in that study also differed in fatty acid composition of the acyl chains esterified to 

the sugar molecules. Additionally, acylglucoses are almost exclusively tri-acylated, while 

acylsucroses can be tri or tetra-acylated, and often exhibit acylation on both the pyranose and 

furanose rings. These multiple differences between the two fractions confound interpretation of 

which components of acylsugars contributed to the differential insect efficacy and synergy 

observed in Leckie et al. (2016); however, the results clearly indicate that increased diversity of 
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acylsugars could lead to synergy and pursuit of this phenomenon should be prioritized in 

breeding for optimal insect resistance.  

 The germplasm generated by our study could facilitate the evaluation of several 

hypotheses related to the results of Leckie et al. (2016). One hypothesis is that acylglucoses are 

more effective than acylsucroses in reducing insect oviposition, feeding and virus transmission. 

This hypothesis is hard to test because of the differences in number and location of fatty acid 

acyl groups and likelihood of differential fatty acid composition between acylsucroses and 

acylglucoses. Due to these potential confounding factors we cannot directly answer the 

hypothesis of whether acylglucoses are more effective than acylsucroses, but one related 

hypothesis this germplasm could address is whether the location of acyl chains on the sugar 

backbone contributes to acylsugar efficacy. The best way to address this hypothesis would be 

to fractionate the purified acylsugars of the AG3/AG4/AG11/AS and AG3/AG4/-AG11/AS lines 

and utilize the acylsucrose fractions in bio-assays against thrips and whiteflies. Since these two 

lines have a comparable fatty acid profile (Table 3.7), it is likely the relative proportions of the 

fatty acid acyl chains esterified to the acylsucroses of the two lines will be analogous. Where the 

two acylsucrose fractions differ, however, is that the AG3/AG4/AG11/AS line acylsucroses 

would almost exclusively contain acyl groups on the pyranose ring, with only trace levels of 

tetra-acylation, whereas the AG3/AG4/-AG11/AS acylsucroses would almost exclusively have 

furanose ring acylation, and a number would also be tetra-acylated. Comparison of the efficacy 

of these two fractions in bioassays would help determine if acylation on the furanose ring, in 

conjunction with tetra-acylation, alters the efficacy of acylsucroses.  

 A related hypothesis that could be addressed is whether the number of acyl chains and 

location of acyl chain attachment is integral to the synergism observed between acylglucose 

and acylsucrose fractions in Leckie et al. (2016). Specifically, the purified acylglucose fraction 

from AG3/AG4/AG11/AS could be individually combined with the acylsucrose fractions from 

AG3/AG4/AG11/AS, AG3/AG4/-AG11/AS and a mixture of the acylsucrose fractions of 
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AG3/AG4/AG11/AS and AG3/AG4/-AG11/AS. These would only be useful comparisons if the 

acylsucrose fractions from these two genotypes had similar fatty acid compositions, which is 

likely, as indicated above. The combined acylsucrose and acylglucose fractions from 

AG3/AG4/AG11/AS would likely all have acyl chains only on the pyranose ring, and the 

acylsucroses would be almost exclusively tri-acylated. The combination of acylglucoses from 

AG3/AG4/AG11/AS and the acylsucrose fraction from AG3/AG4/-AG11/AS would have the 

same acylglucose composition as the first combination, but almost all acylsucroses would have 

an acyl group on the furanose ring, with some being tetra-acylated, most likely with an acetate 

group. The final combination of acylglucoses from AG3/AG4/AG11/AS and the blended 

acylsucrose fractions from AG3/AG4/AG11/AS and AG3/AG4/-AG11/AS would have the same 

acylglucose composition as the other two fractions, but would have an acylsucrose composition 

that was a blend of the acylsucrose acylation composition from the first two fractions. Evaluation 

of the relative efficacy of the acylsugar fractions and blends and for synergistic effects of the 

blends could elucidate whether the location and number of acyl groups has a discernable 

impact on efficacy and synergism. Testing these blends would also provide data to help address 

the hypothesis that increased diversity of acylsugars leads to greater efficacy against insects. 

 A final hypothesis that could be tested using this germplasm is that combination of the 

mostly dominant FA5QTL (Leckie et al. 2014; Smeda et al. 2016) from S. pennellii LA716 with 

the AG3QTL/AG4QTL/AG11QTL will result in amelioration of the negative acylsugar level 

phenotype due to FA5QTL. This is predicted because the ASH genes (Schilmiller et al. 2016), 

likely underlying the FA5QTL, preferentially hydrolyze acyl groups from acylsucroses with 

furanose ring acylation. An F1 between FA5/AS (Smeda et al. 2016) and AG3/AG4/AG11/AS 

would allow initial evaluation of this hypothesis, and F2 selections homozygous for FA5QTL and 

AG3QTL/AG4QTL/AG11QTL would allow further evaluation of amelioration of the low acylsugar 

level phenotype, potentially through limiting acylsucrose substrate availability for ASH gene 

hydrolysis.  
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CONCLUSIONS 

 

This study presents the result of the combination of QTL involved in mediating the sugar moiety 

of a specialized metabolite, acylsugars, with known involvement in insect resistance in tomato, 

to create new acylsugar lines and a comprehensive evaluation of the action of these QTL in the 

resulting lines to mediate the sugar moiety of acylsugars. The development and characterization 

of these acylglucose lines and hybrids complements and builds upon the current platform of 

tomato lines that produce different types of acylsugars at moderately high levels and increases 

our knowledge concerning acylsugar biosynthesis and chemistry. This platform of germplasm 

could be used to elucidate remaining gaps in our understanding of acylsugar biosynthesis, such 

as the gene or genes underlying the AG3QTL, and the missing enzymatic steps in acylglucose 

biosynthesis. Two of the recently identified ASAT genes (ASAT2 and ASAT3) co-localized with 

the fine-mapped locations of the acylglucose QTL. Together with ASAT4, ASAT2 and ASAT3 

could largely explain the acylsucrose acylation patterns and total acylsugar level phenotypes in 

our study, however, the potential ability of the ASAT genes to also control acylation of 

acylglucoses and the levels of acylglucoses accumulated has not yet been elucidated. The 

acylglucose germplasm developed in our study could also be used to facilitate the determination 

of whether the acylation patterns and acylglucose accumulation trait are pleiotropically 

controlled by interaction between ASAT2 and ASAT3. Additionally, this platform of germplasm 

will help with identification of the gene or genes controlling the increase in n-C10 fatty acids and 

additional regions involved in acylsugar accumulation and acylglucose biosynthesis.  

This platform of germplasm could also be utilized for research in entomology, virology 

and ecology to elucidate the functionality of acylsugars as insect deterrents, which is still largely 

unknown. Comprehensive knowledge of the genes that control acylsugar level and structure 

would greatly facilitate the use of the acylglucose producing tomato breeding lines for cultivar 

development, since there are numerous epistatic interactions known to affect acylsugar moiety, 
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level, and fatty acid and acylsugar production/diversity (Leckie et al. 2012, 2014; Smeda et al. 

2016, accepted). In particular, knowledge of gene identification and location would greatly aid in 

selecting plants with recombinations that maintain necessary genes while eliminating linkage 

drag.  

 Since the results of Leckie et al. (2016) suggest that increased acylsugar diversity could 

lead to greater insect efficacy through increased synergistic interactions, breeding work has 

already begun to combine the acylglucose QTL with the fatty acid QTL (FAQTL) from the 

acylsucrose-accumulating acylsugar tomato lines that possess different sets of FAQTL and 

produce acylsugars with different fatty acid and acylsucrose profiles (Smeda et al. 2016; in 

review) to increase the diversity of both acylsugar moiety/acyl chain location and acyl chain 

length/orientation. Additional QTL can be utilized, if it is necessary to raise to the total acylsugar 

levels accumulated, that were previously identified on chromosomes 6 and 10, (Blauth et al. 

1998; Leckie et al. 2012) which raise acylsugar levels, sometimes through increased trichome 

density. In addition, since many of the acylsugar QTL are not recessive, hybrids between 

different acylsugar lines should also allow for creation of different sets of plants with increased 

acylsugar profile diversity. Seed of such F1 hybrids can be quickly generated for evaluation in 

bio-assays and field trials. Development of these acylglucose QTL lines with variation for 

acylsugar level, acylglucose accumulation, and fatty acid and acylsugar profile will facilitate 

development of elite breeding lines for the creation of hybrids that have the potential to reduce 

insect feeding, damage and virus incidence, as well as the possibility to reduce or eliminate 

spray regimes in field trials.  
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