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Miao-chong Joy Lin, Ph. D. 

Cornell University 2013 

 

Heregulin (HRG) is a growth factor that mediates the activation of ErbB2/ErbB3 receptors. 

Aberrant signaling of HRG and the ErbB receptors give rise to human cancer. Our laboratory has 

previously identified mammalian target of rapamycin (mTOR), an essential hub for growth 

factor and nutrient sensing, as an important intermediate in HRG-signaling. This thesis focuses 

on the pathways that lead to the activation of mTORC1 (mTOR complex 1) in response to HRG.  

First, I identified the importance of mTORC2 signaling to mTORC1 in ErbB2/HRG-

mediated cellular transformation in SKBR3 breast cancer cells. mTORC2 was initially identified 

to play a role in actin cytoskeletal remodeling, but with the discovery of novel mTORC2 targets, 

mTORC2 has been implicated in cellular functions such as cell proliferation, survival, and 

metabolism. By utilizing rapamycin and an ATP-competitive inhibitor of mTOR, INK128, I was 

able to differentiate between mTORC1 and mTORC2 activation by HRG. In HRG/ErbB2-

mediated signaling to AKT, mTORC2 is required for the phosphorylation on AKT (S473) and 

this precedes the activating PDK1 phosphorylation at AKT (T308). AKT phosphorylates TSC2, 

making TSC2 unable to function on Rheb. Rheb remains in its GTP-bound form and activates 

mTORC1. By performing a Rictor knock-down, which decreased mTORC2 availability in the 

cell, the HRG-mediated transforming capability of SKBR3 cells was reduced.  

Next, I took a mechanistic approach to identify how small GTPases, namely Rheb, Rac, and 
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Cdc42, are playing a role in HRG-mediated mTORC1 activation. Using a knock-down and 

rescue approach, I was able to delineate that Rac and Cdc42 are upstream of Rheb, and that they 

signal independently of one another to mTORC1 in this context. Additionally, I found that 

Dock7, a GEF for Rac and Cdc42, serves as a unique scaffold for the G-proteins and mTORC1. 

The most intriguing finding, however, is that Dock7 also possesses properties of a Rheb GEF. It 

has long been hypothesized that only a GAP is needed for the regulation of Rheb, so the 

identification of a putative Rheb GEF is of significant interest to the field. 
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Chapter 1 

 

Introduction 

 

ErbB2/HRG Signaling in Cancer 

Growth factor receptor tyrosine kinases (RTKs) have been under extensive study due to the 

fact that anomalies either in the regulation of the growth factors that signal through these 

receptors or in the receptors themselves can give rise to human cancer [1]. The EGF (epidermal 

growth factor) family of receptor tyrosine kinases includes four members, EGF receptor/ErbB1, 

ErbB2/HER2, ErbB3 and ErbB4 (Figure 1.1A). This family of RTKs signals by forming homo- 

or heterodimers with other members of the family [1] (Figure 1.1B). One growth factor-induced 

signaling pathway of particular interest to our laboratory is the heregulin (HRG)-stimulated 

activation of ErbB2 through the initial binding of HRG to either ErbB3 or ErbB4 and its 

subsequent heterodimerization with ErbB2 [2, 3]. What is most interesting about ErbB2-ErbB3 

heterodimers is that ErbB2 has no known ligand and ErbB3 is incapable of kinase activity [4]. 

However, the ErbB2-ErbB3 heterodimer gives rise to the most potent signaling among the ErbB 

family members in terms of cell growth and transformation [5, 6]. Over-expression of ErbB2 is 

found in 20-30% of breast and ovarian tumors, and this is correlated with poor prognosis and 
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Figure 1.1 The ErbB family of receptor tyrosine kinases. A. The ErbB family of receptor 

tyrosine kinases consists of four members, epidermal growth factor receptor (EGFR/ErbB1), 

ErbB2/HER2, ErbB3, and ErbB4. Each is comprised of an extracellular domain for ligand 

binding (i.e. EGF, HRG), a transmembrane domain, and an intracellular kinase domain. ErbB2 is 

an orphan receptor and has no known ligand whereas ErbB3 lacks kinase activity. B. The ErbB 

receptors are activated through the formation of homo- or heterodimers. Depicted in this diagram 

is ErbB3 binding to a ligand (e.g. HRG) which then opens up the dimerization domain of the 

receptor, allowing it to heterodimerize with ErbB2. This allows the autophosphorylation of 

ErbB2 and also the transphosphorylation of ErbB3 by ErbB2, enabling the transmission of 

downstream signals. C. Examples of ErbB2 inhibitors used as anti-cancer reagents. 

Trastuzumab/Herceptin, a monoclonal antibody targeting the ErbB2 receptor, suppresses ErbB2 

signaling activity, prevents cleavage of the extracellular domain and targets the cancer cells that 

over-express ErbB2 for immunological attack. Pertuzumab is also a monoclonal antibody, 

however, it specifically targets the dimerization domain of ErbB2 preventing the formation of 

ErbB2-ErbB3 heterodimers, and thus preventing signaling by ErbB2-ErbB3. Various tyrosine 

kinase inhibitors have been developed to inhibit ErbB2-dependent signaling (e.g. Lapatinib). 

This figure is adapted from Baselga et al. [7]
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tumor chemoresistance in these patients [8-10]. Moreover, HRG is also found to be 

over-expressed in breast, ovarian, and prostate cancers (reviewed in [11]) and can drive cellular 

transformation by the activation of ErbB2, independent of the expression status of the receptor 

[12]. Inhibitors of ErbB2, such as trastuzumab (also known as Herceptin, a monoclonal antibody 

that recognizes the ErbB2 receptor) and Lapatinib (a tyrosine kinase inhibitor) have been 

developed as anti-cancer agents [7] (Figure 1.1C). More recently, however, many 

ErbB2-overexpressing breast cancers have been shown to exhibit resistance to such therapy [13, 

14]. Therefore, understanding the molecular mechanisms responsible for ErbB2/HRG-signaling, 

and identifying novel targets in the ErbB2 pathways, could yield strategies for overcoming the 

resistance to standard anti-ErbB2/HRG therapies. 

Previous studies performed in our laboratory have established that HRG can stimulate both 

cell growth and cellular differentiation, thus distinguishing it from EGF, whose interaction with 

the EGFR primarily results in mitogenic signaling [15]. Furthermore, HRG is able to signal 

though an mTOR- (mammalian target of rapamycin) and S6 kinase-dependent pathway to alter 

the RNA splicing and transport properties of the nuclear cap-binding complex (CBC) and Ran, a 

nuclear small GTPase [16, 17].  
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Ras-like GTPases 

When considering the architecture of cellular signaling pathways, it becomes important to 

understand the structure and function of a class of molecular switches, namely, the members of 

the super-family of Ras-like GTPases (also known as small GTPases or small G-proteins). The 

Ras super-family consists of 5 subfamilies: Ras, Rho, Arf, Rab, and Ran [18]. They are capable 

of binding guanine nucleotides, and cycle between an inactive GDP-bound state and an active 

GTP-bound state [18] (Figure 1.2). The small GTPases can bind to specific regulators or 

effectors in their inactive and active states, thus transmitting cell signals from cell-cell contacts, 

growth factors, and the extracellular matrix [19-21]. Ras-like GTPases are activated by guanine 

nucleotide exchange factors (GEFs) [22]. These regulatory proteins, upon binding to the inactive 

forms (GDP-bound) of the GTPase in response to a stimulus, destabilize the binding of GDP, 

allowing GTP (which is at a higher concentration in the cell) to gain access to the nucleotide 

binding pocket of the small G-protein, rendering it active [22]. Small G-proteins have intrinsic 

GTP-hydrolytic activity, but GTPase activating proteins (GAPs) can greatly accelerate the 

hydrolysis of GTP to GDP [23]. Of particular interest in our laboratory are the Rho family of 

GTPases, specifically Cdc42 and Rac, as our laboratory was the first to clone Cdc42 and 

discover Cool-1/Cool-2 (cloned out of library), a Cdc42/Rac GEF [24-26]. Also, Cdc42 and Rac 

have been implicated in mTOR signaling downstream of HRG (unpublished data). 



6 

 

Figure 1.2 The GDP/GTP cycle of small GTPases. Small GTPases in their inactive state are 

bound to GDP. Upon stimulation by extracellular cues, such as growth factors, guanine 

nucleotide exchange factors (GEFs) facilitate the release of GDP. GTP, which is 10-fold higher in 

concentration than GDP in the cell, will then occupy the nucleotide binding pocket, rendering the 

GTPase active. The GTP-bound small G protein undergoes conformational changes which 

enables it to bind to downstream effectors. The GTPase activating protein (GAP) accelerates the 

hydrolysis of GTP to GDP, returning the GTPase back to its inactive state. 
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Rho GTPases have been implicated in many cellular functions such as cytoskeleton 

remodeling and vesicular trafficking [27, 28]. Additionally, Cdc42 is known to be activated in 

response to EGF and has been found to play a role in EGFR homeostasis (reviewed in [28]). The 

activated EGFR signals downstream to Src, which phosphorylates Cool-1, a GEF for Cdc42, thus 

activating Cdc42. The activated Cool-1/Cdc42 complex then sequesters Cbl, an adaptor protein 

that exhibits E3 ubiquitin ligase activity, from binding to the EGFR. Once Cdc42 is inactivated 

by GTP hydrolysis, the Cdc42-Cool-1-Cbl complex dissociates, allowing Cbl to then catalyze 

EGFR ubiquitination, targeting it for degradation upon endocytosis [29, 30]. Cool-1 highlights 

an intriguing role for certain GEFs: Not only can they act as activators, but also as effectors for 

their target small GTPases. More examples (i.e. Dock11) of this dual function will be discussed 

later in this chapter.  

 HRG is more potent than EGF in its ability to activate Rac in the breast cancer cell lines 

MCF-7 and T-47D [31]. The HRG-mediated Rac activation in these cells is PI3K-dependent and 

signals through ERK to control cell proliferation via the cell cycle regulators cyclin D1 and 

p21Cip [31, 32]. Moreover, the phosphatidylinositol 3,4,5-trisphosphate-dependent Rac-GEF 

(P-REX1) has been found to be over-expressed in certain breast cancers and can regulate Rac 

activation downstream of HRG signaling [33-35]. P-REX1 has also been shown to be activated 

through mTORC2 (mTOR complex 2) to promote Rac activation and cell migration [36]. 



9 

 

mTOR 

The mammalian target of rapamycin (mTOR) is a member of the PI-3 kinase-like kinase 

family (PIKK) and forms two functionally distinct complexes, mTORC1 and mTORC2 [37-39]. 

mTORC1 is involved in numerous cellular processes such as cell proliferation, lipid biogenesis, 

autophagy, and metabolism [37-42]. It is now highly recognized to be a master regulator of a 

number of cellular functions, being activated in response to the nutrient and energy status of the 

cell and also by growth factors [37-39]. mTORC2, a more recently identified mTOR complex, 

has been implicated in cytoskeletal remodeling and more recently to be involved in cellular 

transformation [43-45]. The cellular regulation of the mTOR complexes is critical as their 

aberrant activation can lead to cancer progression [38, 46, 47].  

mTORC1 

 mTORC1 consists of Raptor, PRAS40, mLST8, and Deptor. Raptor (Regulatory associated 

protein of mTOR) is an mTORC1-specific scaffold protein and has been implicated in recruiting 

downstream effectors of mTOR (i.e. S6 kinase and 4E-BP1) [48-50]. PRAS40 (proline-rich AKT 

substrate 40 kDa) negatively regulates mTORC1, and this inhibition can be released by 

AKT-catalyzed phosphorylation and subsequent binding of the scaffolding protein, 14-3-3 [51]. 

The function of mLST8 (mammalian lethal with SEC13 protein 8) in mTORC1 still remains 

elusive [52], whereas Deptor (DEP domain-containing mTOR-interacting protein) appears to 
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function as a negative regulator of mTORC1 kinase activity [53]. 

The discovery of rapamycin, an anti-fungal agent and immuno-suppressant found in the 

bacteria Streptomyces hygroscopicus from soil samples on Rapa Nui (Easter Island), contributed 

greatly to our initial understanding of mTORC1 function [54, 55]. Rapamycin works as an 

allosteric inhibitor which interacts with FKBP12 (12 kDa FK-506 binding protein) and the FRB 

(FKBP12-rapamycin binding) domain of mTOR to bring FKBP12 and mTOR together [54, 56]. 

Once the FKBP12-rapamycin complex binds to mTOR, it destabilizes the binding of mTOR to 

Raptor, thus disrupting the recruitment of mTORC1 targets [57]. Raptor is not present in 

mTORC2, therefore, mTORC2 has often been regarded as the rapamycin-insensitive mTOR 

complex [43, 44].  

Upstream of mTORC1: Regulation by growth factors, amino acids, and energy status of 

the cell 

 The best-studied growth factor-stimulated pathway leading to the activation of mTORC1 is 

insulin-mediated signaling, which is often regarded as the canonical pathway [37, 46, 58]. 

Insulin signals through PI3K to catalyze the conversion of PIP2 to PIP3 [37, 46, 58]. PDK1 

(phosphoinositide-dependent kinase 1) is then recruited to the plasma membrane by PIP3, where 

it phosphorylates AKT at threonine 308 (reviewed in [59]). AKT achieves maximal activation 

when it is phosphorylated on both threonine 308 in its activation loop and serine 473 within its 
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hydrophobic motif [60]. Once activated, AKT phosphorylates multiple sites on TSC2 (tuberous 

sclerosis complex 2), a GAP for the small GTPase Rheb (reviewed in [61]). Phosphorylation of 

TSC2 inhibits its ability to associate with TSC1 at the endo-membrane where Rheb resides, 

thereby preventing TSC2 from turning off Rheb [62]. Rheb-GTP binds and activates mTORC1, 

although the molecular basis for this activation remains poorly defined [63] (Figure 1.3).  

 Amino acid sensing provides another important input toward mTORC1 activation. Previous 

studies have shown that growth factor signaling to mTORC1 requires the presence of amino 

acids [64-66]. Various mechanisms have been proposed for how amino acids can regulate the 

activation of mTORC1. One involves the hVps34 (human vacuolar protein sorting 34) protein, a 

class III PI3K [67, 68]. The evidence for the involvement of hVps34 in amino acid sensing has 

been indirect [67, 68]. However, PLD1 (phospho-lipase D1) has been shown to bind to hVps34 

on the lysosomal membrane, where Rheb resides. PLD1 is responsible for the production of 

phosphatidic acid which has been suggested to promote the activation of mTORC1 [69].  

The identification of Rag proteins greatly advanced the understanding of how amino acids 

signal to mTORC1 [64]. Rag proteins are a unique class of small GTPases existing in 

heterodimeric forms in the cell [64]. They localize at the lysosomal membrane and, upon 

stimulation with amino acids, recruit mTORC1 through a protein complex called the ‘Ragulator’, 

allowing mTORC1 to be activated by Rheb on the lysosome [70-72] (Figure 1.3). The details of  
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Figure 1.3 Upstream signaling to mTORC1. mTORC1 can be activated by several 

extracellular signals such as growth factors, amino acids, and glucose. Insulin-mediated 

mTORC1 activation is PI3K-dependent. Amino acids activate mTORC1 through a 

Rag-dependent mechanism. Glucose levels, or the cellular energy status as indicated by AMP 

and ADP levels, can be sensed through AMP kinase (AMPK). Details of the pathways are 

described in the text. 
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how Rag proteins regulate mTORC1 will be discussed later in this chapter. 

mTORC1 senses the energy status of the cell through AMP-activated kinase (AMPK) [73, 

74]. ATP is produced from cellular processes such as glycolysis and the tri-carboxylic acid cycle, 

ultimately being broken down to ADP and AMP. AMPK contains nucleotide binding pockets for 

AMP/ADP, thereby allowing it to sense the increase in AMP/ADP, and the need for more ATP 

production [73]. AMPK activation results in a phosphorylation on TSC2 which augments TSC2 

function and thus suppresses mTORC1 activity [75]. AMPK can also phosphorylate the 

mTORC1 scaffold, Raptor, to inhibit mTORC1 from phosphorylating its downstream substrates 

[76] (Figure 1.3).  

Downstream of mTORC1: Cellular effects of mTORC1 (Protein synthesis, Lipid biogenesis, 

Autophagy) 

The best-characterized downstream effectors of mTORC1 are S6 kinase and 4E-BP1 [77, 

78]. Since both proteins play major roles in protein synthesis, this is the area of mTORC1 

signaling that has been extensively explored [39, 77, 78]. mTORC1 phosphorylates S6 kinase on 

T389, which together with the phosphorylation of T229 by PDK1, renders S6 kinase active [78]. 

For over a decade, ribosomal S6 protein (rpS6) was the only known substrate for S6 kinase, 

however, how the phosphorylation of rpS6 promotes protein synthesis is still unclear [78]. 

Numerous other substrates for S6 kinase have since been identified, and have provided insight 
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into the individual steps involved in protein translation [78]. One way that mTORC1-S6 kinase 

regulates protein synthesis is through the dynamic interaction with the eIF3 (eukaryotic 

translation initiation factor 3) scaffold of the translation initiation complex [79]. S6 kinase forms 

a stable complex with eIF3 when inactive [79]. Upon mTORC1 activation, the S6 kinase-eIF3 

complex is recruited to mTORC1 and the phosphorylation of S6 kinase on T389 causes a 

dissociation of eIF3 from S6 kinase [79]. mTORC1 subsequently binds to eIF3 which can then 

interact with eIF-4E (the cytoplasmic cap-binding protein), bringing the mTORC1-eIF3 complex 

in close proximity to another mTORC1 substrate, 4E-BP1 (eIF-4E binding protein 1) ([79], 

reviewed in [77]). Phosphorylation of 4E-BP1 releases its inhibition of eIF-4E (eukaryotic 

translation initiation factor 4E), allowing eIF-4E to recruit other translation initiation factors to 

start protein synthesis [77, 80] (Figure 1.4). 

 mTORC1 regulates lipogenesis through SREBPs (sterol-regulatory-element binding 

proteins) that function as transcription factors to up-regulate the expression of genes required for 

fatty acid and cholesterol synthesis [41, 81]. It is still unclear if mTORC1 can directly 

phosphorylate SREBPs to alter either their binding properties or localization in the cell [81]. 

However, rapamycin inhibits the nuclear accumulation of SREBPs and also the transcription of 

SREBP-dependent genes [82] (Figure 1.4). 

 Autophagy, a process of recycling intracellular components, is initiated to maintain cellular  
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Figure 1.4 Cellular effects of mTORC1. Shown here are three cellular outcomes downstream 

of mTORC1. Two important targets of mTORC1 in regulating protein synthesis are S6 kinase 

and 4E-BP1. mTORC1 can regulate the initiation of autophagy in concert with AMPK activation. 

mTORC1 has also been shown to modulate lipid biogenesis through the 

sterol-regulatory-element binding proteins (SREBPs). Details of these are described in the text. 

This figure is a compilation of [77, 82, 83]. 
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homeostasis when a cell is deprived of nutrients or energy [84, 85]. mTORC1 has been shown to 

have a key role in the initiation of autophagy [42, 86]. mTORC1, along with AMPK, coordinates 

the phosphorylation of ULK1/2 (unc-51-like kinase), a serine/threonine kinase acting as an 

initiator of autophagic processes [83]. Under nutrient-sufficient conditions, mTORC1 

phosphorylates ULK1/2 and Atg13 (an accessory protein stably bound to ULK1/2 in mammalian 

cells), thus suppressing ULK1/2 kinase activity and inhibiting autophagy [83]. Under starvation 

conditions, these sites on ULK1/2 and Atg13 are quickly dephosphorylated through unknown 

phosphatases, causing the dissociation of ULK1/2-Atg13 from mTORC1 [83]. Once this 

dissociation occurs, AMPK can then phosphorylate ULK1/2 to initiate autophagy [73, 83, 87] 

(Figure 1.4). 

mTORC2 

 mTORC2 consists of Rictor, mLST8, mSin1, Protor, and Deptor [37-39, 47]. Rictor 

(rapamycin-insensitive companion of mTOR) and mSin1 (mammalian stress-activated protein 

kinase interacting protein) are necessary for mTORC2 kinase activity and, therefore, are often 

used as targets for genetic manipulation to study mTORC2-specific functions [43, 44, 52, 88, 89]. 

mLST8 and Deptor are components found in both mTORC1 and mTORC2, however, 

knock-down of mLST8 expression only affects mTORC2 function but not mTORC1 [52]. 

Deptor is an inhibitor of both mTORC1 and mTORC2 activity [53]. The function of Protor 
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(protein observed with Rictor) is not yet defined.  

Upstream of mTORC2 

 Since the discovery of mTORC2 is relatively recent, the upstream regulators of mTORC2 

are still under investigation. It has been suggested that PI3K can activate mTORC2 in response 

to growth factors [89-91]. PIP3 has been shown to directly activate mTORC2 kinase activity in 

vitro and in vivo [92]; in addition, the PH domain of mSin1 binds to PIP3 which recruits 

mTORC2 into close proximity to its substrate, AKT [93, 94]. Ras has also been shown to interact 

with mSin1 [93], however, it is still unclear whether there is some degree of cross-talk between 

PI3K and Ras in the regulation of mTORC2 function. Interestingly, the negative regulator for 

mTORC1, the TSC1/2 complex, is necessary for mTORC2 activity [95]. TSC1/2 has been shown 

to interact with mTORC2 and regulates mTORC2 function independently of TSC2 GAP activity 

[95]. These findings are summarized in Figure 1.5A. 

mTORC2 targets 

AKT was the first direct kinase target identified for mTORC2, with S473 on the 

hydrophobic motif of AKT being the site of phosphorylation [96]. This provided a great deal of 

insight into how AKT is regulated. There are two critical phosphorylation sites on AKT, 

Threonine 308 and Serine 473, and AKT achieves maximal activation when both sites are 

phosphorylated [60]. Before the identification of mTORC2 as the bona fide kinase for  
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Figure 1.5 Up- and downstream of mTORC2. A. Upstream regulators of mTORC2. Growth 

factors, namely insulin, have been shown to activate mTORC2 through a PI3K-dependent 

mechanism. The direct addition of PIP3 also activates mTORC2. TSC1/TSC2 shows direct 

binding to mTORC2 and is required for the activity of mTORC2. B. Downstream effects of 

mTORC2. This figure is adapted from [97].
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AKT (S473), PDK1 was thought to be responsible for phosphorylating both T308 and S473, and 

the two phosphorylation sites have often been used interchangeably to read out AKT activation 

[47]. The discovery of mTORC2 has added another dimension to the regulation of AKT and its 

role in cell proliferation and survival [98, 99]. This also provides an intriguing possibility for 

cross-talk between mTORC2 and mTORC1, given that AKT can act upstream of mTORC1 and 

downstream of mTORC2 [47].  

Other kinase targets of mTORC2 include the SGK proteins (serum- and 

glucocorticoid-induced protein kinase) and PKC (protein kinase C) [52, 90, 100, 101]. These, 

along with AKT, all belong to the AGC family of protein kinases [47]. The direct 

phosphorylation of SGK1 (S422) by mTORC2 activates SGK1 [90]. It has been shown that 

various cancer cell lines with PI3K-activating mutations rely on SGK proteins instead of AKT to 

confer their oncogenic properties [102, 103]. There is still no in vitro evidence that the 

phosphorylation of PKC is directly catalyzed by mTORC2. However, mTORC2 does regulate 

the phosphorylation and stability of PKCα, which in turn alters the organization of the actin 

cytoskeleton [44] (Figure 1.5B).   

mTORC1 and mTORC2 

For a number of years, researchers have treated mTORC1 and mTORC2 as having separate 

signaling networks [44, 47, 104]. As more studies have emerged for mTORC2, the two mTOR 
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complexes have shown more similarities than was initially appreciated. Even though the mTOR 

complexes have different downstream effectors, both have now been implicated to play a role in 

cancer progression [38, 46, 47]. Rapalogs (rapamycin analogs) were developed to specifically 

inhibit mTORC1 function [105, 106]. However, inhibiting mTORC1 alone also disrupts the 

negative-feedback regulation that S6 kinase imparts upon PI3K, causing cancer cells to have 

aberrant PI3K activity [105, 106]. With the discovery of mTORC2 as an upstream regulator of 

AKT, and a downstream effector of PI3K, ATP-competitive inhibitors for mTOR (inhibiting both 

mTOR complexes) have proven to be more effective in restricting cancer cell growth [47, 107, 

108]. 

 

Regulation of mTORC1/mTORC2 by Small GTPases  

Rheb and mTORC1 

 Ras-homology enriched in brain (Rheb) belongs to the Ras-family of small GTPases [109]. 

There are two Rheb genes in mammals, Rheb1 and Rheb2 [110]. Rheb1 is ubiquitously 

expressed whereas Rheb2 is mostly expressed in brain [109-111]. Far less is known about Rheb2 

(aka RhebL) and I will focus on Rheb1 (aka Rheb) for its role as a critical regulator of mTORC1. 

Like other GTPases, Rheb shuttles between the inactive GDP-bound form and an active 

GTP-bound form [109]. The mechanism responsible for how Rheb activates mTORC1 remains 
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elusive but it is generally recognized that the activation is due to the direct binding of Rheb to the 

catalytic domain of mTOR [112]. However, while Rheb-GDP binds with higher affinity to 

mTORC1, it is only the GTP-bound form of Rheb that can activate mTORC1 [112] (Figure 

1.6A).  

Various effectors of Rheb have also been identified to play a role in mTORC1 activation, 

e.g. PLD1 and FKBP38 (FK506-binding protein 38) [69, 113]. Rheb-GTP can bind to and 

activate PLD1 to catalyze the conversion of phosphatidylcholine (PC) to phosphatidic acid (PA) 

and choline [69]. PA can act as a second messenger which binds directly to and activates 

mTORC1 [114]. The PLD1 pathway, as aforementioned, appears to function in parallel with the 

Rags to sense amino acids [115, 116] (Figure 1.6B). FKBP38 is a mitochondrial protein which 

also binds to Rheb-GTP with higher affinity than Rheb-GDP [113, 117, 118]. FKBP38 is 

regarded as a negative regulator of mTORC1 [113]. Upon binding to Rheb-GTP, FKBP38 

releases its inhibition of mTORC1, allowing it to be active [113] (Figure 1.6C). However, in vitro 

biochemical assays have argued against a direct interaction occurring between FKBP38 and 

Rheb [119, 120]. 

 Rheb is regulated upstream by its GAP, TSC2, which forms a stable complex with TSC1 

[121-124]. TSC1 stabilizes TSC2 and prevents it from ubiquitin-dependent degradation [125, 

126]. There are multiple sites on both TSC1/TSC2 that can be phosphorylated in response to  
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Figure 1.6 Rheb in mTORC1 activation. A. GTP-bound Rheb directly binds to and activates 

mTORC1. B. GTP-bound Rheb activates its effector, PLD1, which produces phosphatidic acid to 

activate mTORC1. C. Rheb-GTP binds to a negative regulator of mTORC1, FKBP38, and 

sequesters FKBP38, thereby activating mTORC1.
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growth factors, amino acids, and the energy status of the cell (reviewed in [124]). Under 

favorable growth conditions or upon stimulation by growth factors, these phosphorylation sites 

create binding sites for the scaffolding protein 14-3-3 on TSC2, thus preventing the inactivation 

of Rheb [62, 127]. When the cell is deprived of nutrients, an alternative set of sites are 

phosphorylated on the TSC1/TSC2 complex that enhance and stabilize the complex and 

subsequently enable TSC2 to exert its GAP activity towards Rheb [123, 124]. 

Rheb shows a few unique properties as a small GTPase. It has very low intrinsic GTP 

hydrolysis activity and exhibits an abnormally high GTP-bound/GDP-bound ratio (over 20%) in 

cells compared to other Ras superfamily members [128]. Furthermore, Rheb that is ectopically 

expressed in cells is mainly in the GTP-bound state [128]. Another interesting property of Rheb 

is that it has one known GAP, whereas thus far, no GEF has been identified [110, 123, 124]. The 

current hypothesis is that perhaps Rheb, with its low intrinsic GTP hydrolysis activity and high 

GTP-bound ratio in the cell, only needs the regulation of a GAP but not a GEF. However, this 

hypothesis does not explain how Rheb becomes activated within the cell. TCTP (translationally 

controlled tumor protein) was identified from a Drosophila screen to regulate Rheb/mTORC1 

function [129], however, biochemical assays performed by various groups including our 

laboratory have questioned whether TCTP is a bona fide Rheb GEF ([120, 130], unpublished 

results). Thus, the search for a Rheb GEF continues to be an ongoing effort in the field.  
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  Rheb has a farnesyl tail on the C-terminus [131, 132] and can localize to various 

endo-membranes such as the ER, Golgi, lysosome, and mitochondria [64, 133-137]. This also 

implies that mTORC1 can be activated on the membranes of these different cellular 

compartments [64, 133, 135, 137]. The reasoning would be that mTORC1 has to activate 

different downstream targets for its many functions, therefore, the spatial activation of mTORC1 

is critical.  

Rheb and mTORC2 

 Rheb is well-established as a direct upstream activator of mTORC1, however, it has been 

demonstrated to have opposite effects on mTORC2 [138]. Knock-downs of Rheb in both 

Drosophila and mammalian cells show increased phosphorylation on AKT (S473), an indicator 

of mTORC2 activation [138]. It has been suggested that the inhibition of mTORC2 by Rheb may 

not be direct but potentially through the activation of S6 kinase which then gives rise to a 

feed-back inhibition of the PI3K pathway [138]. It has also been suggested that Rheb increases 

the ratio of mTORC1 to mTORC2 in cells [138]. Along the lines of these findings, the 

TSC1/TSC2 complex has also been shown to be necessary and positively regulate mTORC2 

activation independent of TSC2’s GAP activity [95].  

Rags and mTORC1 

 Rags are newly identified regulators for mTORC1 in amino acid sensing [64, 139]. There 
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are four Rag proteins in mammals, RagA, RagB, RagC and RagD [140, 141]. The Rag GTPases 

are non-conventional in that they are larger (40 kDa) than other Ras-related GTPases (25 kDa) 

and exist as dimers in the cell [141]. RagA/B forms a heterodimer with RagC/D and the 

nucleotide binding status of the heterodimer is often found to be in alternate GTP- or 

GDP-bound states [64]. Rags have been identified to bind to Raptor, the mTORC1-specific 

scaffold [64, 142]. Of the heterodimers tested to bind to Raptor, the strongest interaction is 

RagB-GTP/RagC-GDP [64]. Rags have been shown to tether to the lysosomal membrane 

through the interaction of Ragulators [70]. Ragulator is composed of five proteins: p14, MP1, 

p18, HBXIP, and C7orf59 [70, 71]. The Ragulator complex as a whole serves as a GEF for RagA 

and RagB and has no enzymatic function when the individual components are not in complex 

with each other [71].  

 Rags can sense amino acids through a lysosomal v-ATPase-dependent, inside-out 

mechanism [72]. When cells are stimulated with amino acids, an accumulation of amino acids 

occurs in the lysosome [143]. The v-ATPase resides on the lysosomal membrane and can sense 

the amino acids through an unknown mechanism presumably independent of its ability to form a 

proton gradient [72]. The Ragulator then senses an activating signal from the v-ATPase to turn 

on RagA or RagB [72]. Once RagA or RagB is activated, it can then interact with Raptor to bring 

mTORC1 to the lysosomal surface to be activated by Rheb [64, 70-72] (Figure 1.7). It is  
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Figure 1.7 Rags in amino acid sensing and mTORC1 activation. Rags can sense amino acids 

through a lysosomal v-ATPase-dependent, inside-out mechanism. The details of this mechanism 

are described in the text. Adapted from [71].
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interesting to note that Rags do not activate mTORC1 directly but work as an intermediate to 

alter the localization of mTORC1 to its activator, Rheb, upon amino acid stimulation. 

 

Rac and Cdc42 on mTOR regulation 

 Rac and Cdc42 are Rho GTPases known for their roles in cytoskeletal remodeling [27, 28]. 

Over the years, Rac and Cdc42 have also been shown to directly regulate S6 kinase, the 

mTORC1 downstream substrate, even though this has been controversial and much less is known 

in this regard [144]. More recently, it was reported that knock-outs as well as knock-downs of 

Rac in mouse embryonic fibroblasts (MEFs) and HeLa cervical carcinoma cells showed a 

decrease in cell size, a hallmark of mTORC1 inhibition. The authors then went on to show that 

Rac can interact with both mTORC1 and mTORC2, regardless of its nucleotide binding state, to 

localize the mTOR complexes to the plasma membrane [145] (Figure 1.8A). However, the 

specific mechanism of how this interaction regulates mTOR function is still unclear.  

mTORC2 was initially identified for its role in cytoskeletal remodeling [43, 44], making 

Rac one of the first downstream effectors investigated [43]. Knock-down of mTORC2-specific 

components showed a decrease in GTP-bound Rac in NIH3T3 cells [43]. This correlation of 

mTORC2-Rac activity was later found to be through P-REX1 [36], a GEF for Rac that has also 

shown activity towards Cdc42 in vitro [146]. P-REX1 interacts with both mTORC1 and  
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Figure 1.8 Rac and Cdc42 in mTOR regulation. A. Rac binds to both mTORC1 and mTORC2 

and localizes the complexes to the plasma membrane. Adapted from [145]. B. In the P19 

embryonic carcinoma cell line, Cdc42 activates mTOR to call up transcription factors important 

for the maintenance of neural progenitor status. C. Cdc42 activates PLD1, a Rheb effector, which 

in turn activates mTORC1. 
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mTORC2, but is only active when bound to mTORC2 [36]. Taken together, Rac can act as a 

direct upstream regulator of mTORC1 [145]. Rac can also act both up- and downstream of 

mTORC2, albeit not as a direct effector of mTORC2 [36, 43, 145]. 

The known regulation of mTORC1 by Cdc42 is less direct than Rac. A study from our 

laboratory identified the importance of Cdc42 for activating mTOR in P19 cells, a pluripotent 

embryonic carcinoma cell line, in order to promote the differentiation of these cells into neural 

progenitors [147] (Figure 1.8B). However, the mechanism of how this activation is achieved is 

still not understood. Another study suggested that Cdc42 can regulate the activation of mTORC1 

through PLD1 [148]. Cdc42 has been shown to activate PLD1 through its Rho-insert region, i.e. 

a stretch of residues unique to Rho, Rac, and Cdc42 but missing in Ras [149]. A mutation in the 

Rho-insert region of Cdc42 lowered PLD1 and S6 kinase activities but was rescued by the PLD1 

product, phosphatidic acid [148]. As aforementioned, PLD1 has been shown to be an effector of 

Rheb, and PA can activate mTORC1 directly [69, 114]. This raises the possibility of a novel 

mechanism by which Cdc42 signals to mTORC1 through its ability to activate PLD1 (Figure 

1.8C). However, this does not shed light on the relationship between Cdc42 and Rheb with 

regard to PLD1 signaling to mTORC1. 

TSC2 (-/-) fibroblasts and colon cancer cells show a defect in cell polarization and 

migration due to lowered Rac and Cdc42 activation [150]. It was hypothesized that this may be 
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due to the over-activation of S6 kinase in TSC2 (-/-) cells which then results in the feedback 

inhibition of PI3K, decreasing PI3K activity and subsequently Rac and Cdc42 downstream [150]. 

However, the TSC complex has also been shown to be important in regulating mTORC2 activity 

[95], creating another possible mode of regulation for Rac and Cdc42 by mTORC2. 

Other small GTPases in mTOR signaling (Rab, Arf, and RalA) 

 Various other small GTPases have also been implicated in mTORC1 signaling. 

Over-expression of constitutively active Rab5 or the knock-down of hVps39, a GEF for Rab7, 

inhibits the maturation of early endosomes to late endosomes, creating a hybrid endosome that 

contains both early and late endosomal markers. Under such circumstances, mTORC1 is still 

recruited to the late endosome/lysosome but cannot be activated [151]. It is interesting to note 

that over-expression of exogenous Rheb rescues the mTORC1 inhibition but not the activation of 

endogenous Rheb. This suggests that the local environment is critical for Rheb localization and 

furthermore, mTORC1 activation [151]. A large-scale RNAi screen of Drosophila small GTPases 

revealed that the Rab and Arf proteins, which are important for intracellular trafficking, are 

necessary for mTORC1 activation [152]. RalA, a Ras-like small GTPase, has also been shown to 

be downstream of Rheb in the amino acid- and glucose-sensing pathway of mTORC1 [153]. 

Most of these studies were performed using RNAi [151-153]. However, while some of these 

small GTPases have been shown to be necessary for mTORC1 signaling, their exact mechanisms 
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of action are still unknown. 

 What I have summarized here are the various modes of regulation that small GTPases can 

have on mTORC1/mTORC2 signaling. Rheb acts as a direct activator of mTORC1, whereas 

Rags and Rac are important for mTORC1 localization upon stimulation. Rabs, on the other hand, 

are important for the local environment of where mTORC1 activation takes place in the cell. The 

involvement of so many small GTPases emphasizes the importance of the spatial and temporal 

regulation of mTOR activation. 

 

Dock Family of GEFs – Dock7 

A member of the Dock180 family of GEFs, Dock7, has emerged as a novel player in mTOR 

signaling. The Dock180 family is one of two classes of GEFs discovered so far, the other being 

the Dbl-homology-pleckstrin-homology domain (DH-PH) containing family [154-156]. Dock180 

family members differ from the classical Dbl-like GEFs in that they contain DHR1 (dock 

homology region 1) and DHR2 domains, instead of the canonical DH-PH domain [155, 156]. 

Even though the DHR1-DHR2 domains of Dock family members and the DH-PH domains of 

Dbl family members do not show any sequence similarities, the functions of the domains remain 

similar [157]. The DHR2 domain functions like the DH domain in that it catalyzes the 

guanine-nucleotide exchange activity of Rho GTPases [158]. The DHR1 domain has been 
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implicated in cell membrane binding (e.g. PIP3) similar to the function of PH domains [159, 

160]. The Dock180 family of GEFs consists of 11 members that have only been shown to exhibit 

GEF activity towards the Rho GTPases Cdc42 and Rac. Depending on their activity and 

sequence domains, Dock family members can be further divided into four sub-groups, Dock-A, 

B, C, and D. Dock-A and B group members are Rac-specific, whereas Dock-D members are 

Cdc42-specific. Dock-C can activate both Rac and Cdc42, with Dock7 being a member of this 

sub-family (reviewed in [155], Figure 1.9A).  

The GEF activity of Dock7 towards Cdc42 or Rac is not yet clearly defined. The Van Aelst 

group demonstrated that Dock7 can act as a Rac-specific GEF in hippocampal neuronal cells and 

can contribute to axon formation [161]. It was inferred from this study that Dock7 can activate 

Rac to further phosphorylate Stathmin/Op18, a microtubule destabilizing protein, in a localized 

manner to promote axon formation. The over-expression of Dock7 promoted the growth of 

multiple axons whereas the knock-down of Dock7 prevented axon formation [161].  

Yamauchi et al. have shown in Schwann cells that ErbB2 can be activated through HRG 

stimulation to phosphorylate Dock7 [162]. This enhances the GEF activity of Dock7 towards 

Cdc42 and Rac to promote Schwann cell migration [162]. In a follow-up study, the authors 

showed that Dock7 needs to be down-regulated to promote Schwann cell differentiation and 

myelination once the cells have migrated down the axon to their final destination to form myelin  
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Figure 1.9 Dock180 family of guanine nucleotide exchange factors. A. The DHR1-DHR2 

domains are conserved amongst Dock180 family members. Adapted from [155]. B. A novel form 

of regulation for Dock11. Activated Cdc42 allosterically interacts with Dock11 to enhance its 

catalytic activity. Adapted from [163].  
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sheaths [164]. Furthermore, a report published in 2005 demonstrated that Dock7 can form a 

complex with the Rheb GAP, TSC1/TSC2, suggesting a potential role for Dock7 in Rheb 

regulation [165].  

So far, Dock7-related studies have predominantly focused on the nervous system, where 

Dock7 is highly expressed [161, 162, 164, 166]. However, we have evidence that Dock7 is 

expressed in SKBR3, HeLa, and 293T cells (unpublished results). We are particularly interested 

in Dock family members because we have previously shown that Dock11, a Cdc42-specific GEF 

in the Dock-D subfamily, can act both as an activator and effector for Cdc42. Activated Cdc42 

can bind to Dock11 at an allosteric site to augment its GEF activity toward Cdc42 [163] (Figure 

1.9B). We have also observed that Dock7 shows similar properties to Dock11 where the 

allosteric binding of activated Cdc42 enhances its GEF activity (Zhou et al., submitted). Given 

the ability of Dock7 to act both as an activator and effector for Cdc42, coupled with its ability to 

interact with mTOR signaling components, we have been very interested in gaining a better 

understanding of how Dock7 coordinates Rac/Cdc42 activation and mTORC1 signaling. 

 

Overview of the Thesis 

 In this thesis, I have taken advantage of our laboratory’s experience in HRG-signaling as a 

means to understand growth factor signaling to mTOR. In Chapter 2, I investigated how 
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HRG/ErbB2-signaling contributes to the transformed properties of SKBR3 breast cancer cells. 

The transformed growth characteristics of these cancer cells are largely due to signaling to 

mTORC1 in an mTORC2-dependent manner. When inhibiting mTORC2 by knocking-down 

Rictor, the mTORC2 scaffold, mTORC1 activation was blocked as was the ability of SKBR3 

cells to exhibit anchorage-independent growth and form colonies in soft agar.  

In Chapter 3, the HeLa cervical carcinoma cell line was used as a model system to delineate 

the signaling interplay between Rac, Cdc42, and Rheb upstream of mTORC1. Using a 

knock-down and rescue approach, I have shown that Rac and Cdc42 are upstream of Rheb in a 

signaling pathway that leads to mTORC1 activation. However, Rac and Cdc42 appear to provide 

independent inputs into Rheb. Interestingly, I have also discovered that Dock7 not only acts as a 

GEF for Rac and Cdc42, but it also serves as a scaffolding protein for mTOR and TSC1/TSC2. 

More surprisingly, Dock7 also shows properties of a Rheb GEF, leading to the idea that Dock7 

serves as a novel mTOR scaffold that may coordinate the activation of Rac, Cdc42, and Rheb 

upon HRG-stimulation. 

 

 

 

 



43 

 

References 

 

1. Yarden, Y. and M.X. Sliwkowski, Untangling the ErbB signalling network. Nat Rev Mol 

Cell Biol, 2001. 2(2): p. 127-37. 

2. Carraway, K.L., 3rd, et al., The erbB3 gene product is a receptor for heregulin. J Biol 

Chem, 1994. 269(19): p. 14303-6. 

3. Jones, J.T., et al., Binding interaction of the heregulinbeta egf domain with ErbB3 and 

ErbB4 receptors assessed by alanine scanning mutagenesis. J Biol Chem, 1998. 273(19): 

p. 11667-74. 

4. Guy, P.M., et al., Insect cell-expressed p180erbB3 possesses an impaired tyrosine kinase 

activity. Proc Natl Acad Sci U S A, 1994. 91(17): p. 8132-6. 

5. Pinkas-Kramarski, R., et al., Diversification of Neu differentiation factor and epidermal 

growth factor signaling by combinatorial receptor interactions. Embo J, 1996. 15(10): p. 

2452-67. 

6. Wallasch, C., et al., Heregulin-dependent regulation of HER2/neu oncogenic signaling by 

heterodimerization with HER3. Embo J, 1995. 14(17): p. 4267-75. 

7. Baselga, J. and S.M. Swain, Novel anticancer targets: revisiting ERBB2 and discovering 

ERBB3. Nature Reviews Cancer, 2009. 9(7): p. 463-475. 

8. Marmor, M.D., K.B. Skaria, and Y. Yarden, Signal transduction and oncogenesis by 

ErbB/HER receptors. Int J Radiat Oncol Biol Phys, 2004. 58(3): p. 903-13. 

9. Slamon, D.J., et al., Human breast cancer: correlation of relapse and survival with 

amplification of the HER-2/neu oncogene. Science, 1987. 235(4785): p. 177-82. 

10. Slamon, D.J., et al., Studies of the HER-2/neu proto-oncogene in human breast and 

ovarian cancer. Science, 1989. 244(4905): p. 707-12. 

11. Montero, J.C., et al., Neuregulins and Cancer. Clinical Cancer Research, 2008. 14(11): p. 

3237-3241. 

12. Wilson, Timothy R., et al., Neuregulin-1-Mediated Autocrine Signaling Underlies 

Sensitivity to HER2 Kinase Inhibitors in a Subset of Human Cancers. Cancer Cell, 2011. 

20(2): p. 158-172. 

13. Nahta, R. and R.M. O'Regan, Evolving strategies for overcoming resistance to 

HER2-directed therapy: targeting the PI3K/Akt/mTOR pathway. Clin Breast Cancer, 2010. 

10 Suppl 3: p. S72-8. 

14. Stern, H.M., Improving treatment of HER2-positive cancers: opportunities and 

challenges. Sci Transl Med, 2012. 4(127): p. 127rv2. 

15. Gamett, D.C. and R.A. Cerione, Oncogenically activated or ligand-stimulated neu kinase 

stimulates neurite outgrowth in PC12 cells. FEBS Lett, 1994. 351(3): p. 335-9. 



44 

 

16. Wilson, K.F., et al., The nuclear cap-binding complex is a novel target of growth factor 

receptor-coupled signal transduction. J Biol Chem, 1999. 274(7): p. 4166-73. 

17. Ly, T.K., et al., Activation of the Ran GTPase is subject to growth factor regulation and 

can give rise to cellular transformation. J Biol Chem, 2010. 285(8): p. 5815-26. 

18. Wennerberg, K., K.L. Rossman, and C.J. Der, The Ras superfamily at a glance. J Cell Sci, 

2005. 118(Pt 5): p. 843-6. 

19. Hall, A., Rho GTPases and the actin cytoskeleton. Science, 1998. 279(5350): p. 509-14. 

20. Jaffe, A.B. and A. Hall, Rho GTPases: biochemistry and biology. Annu Rev Cell Dev 

Biol, 2005. 21: p. 247-69. 

21. Bar-Sagi, D. and A. Hall, Ras and Rho GTPases: a family reunion. Cell, 2000. 103(2): p. 

227-38. 

22. Schmidt, A. and A. Hall, Guanine nucleotide exchange factors for Rho GTPases: turning 

on the switch. Genes Dev, 2002. 16(13): p. 1587-609. 

23. Tcherkezian, J. and N. Lamarche-Vane, Current knowledge of the large RhoGAP family 

of proteins. Biol Cell, 2007. 99(2): p. 67-86. 

24. Bagrodia, S., et al., A novel regulator of p21-activated kinases. J Biol Chem, 1998. 

273(37): p. 23633-6. 

25. Feng, Q., et al., Regulation of the Cool/Pix proteins: key binding partners of the 

Cdc42/Rac targets, the p21-activated kinases. J Biol Chem, 2002. 277(7): p. 5644-50. 

26. Baird, D., Q. Feng, and R.A. Cerione, The Cool-2/alpha-Pix protein mediates a 

Cdc42-Rac signaling cascade. Curr Biol, 2005. 15(1): p. 1-10. 

27. Ridley, A.J., Rho proteins: linking signaling with membrane trafficking. Traffic, 2001. 

2(5): p. 303-10. 

28. Cerione, R.A., Cdc42: new roads to travel. Trends Cell Biol, 2004. 14(3): p. 127-32. 

29. Feng, Q., et al., Cool-1 functions as an essential regulatory node for EGF receptor- and 

Src-mediated cell growth. Nat Cell Biol, 2006. 8(9): p. 945-56. 

30. Wu, W.J., S. Tu, and R.A. Cerione, Activated Cdc42 sequesters c-Cbl and prevents EGF 

receptor degradation. Cell, 2003. 114(6): p. 715-25. 

31. Yang, C., et al., Essential role for Rac in heregulin beta1 mitogenic signaling: a 

mechanism that involves epidermal growth factor receptor and is independent of ErbB4. 

Mol Cell Biol, 2006. 26(3): p. 831-42. 

32. Yang, C., et al., Heregulin beta1 promotes breast cancer cell proliferation through 

Rac/ERK-dependent induction of cyclin D1 and p21Cip1. Biochem J, 2008. 410(1): p. 

167-75. 

33. Wertheimer, E., et al., Rac signaling in breast cancer: a tale of GEFs and GAPs. Cell 

Signal, 2012. 24(2): p. 353-62. 



45 

 

34. Sosa, M.S., et al., Identification of the Rac-GEF P-Rex1 as an essential mediator of ErbB 

signaling in breast cancer. Mol Cell, 2010. 40(6): p. 877-92. 

35. Montero, J.C., et al., P-Rex1 participates in Neuregulin-ErbB signal transduction and its 

expression correlates with patient outcome in breast cancer. Oncogene, 2011. 30(9): p. 

1059-71. 

36. Hernandez-Negrete, I., et al., P-Rex1 links mammalian target of rapamycin signaling to 

Rac activation and cell migration. J Biol Chem, 2007. 282(32): p. 23708-15. 

37. Laplante, M. and D.M. Sabatini, mTOR signaling at a glance. J Cell Sci, 2009. 122(Pt 

20): p. 3589-94. 

38. Guertin, D.A. and D.M. Sabatini, Defining the role of mTOR in cancer. Cancer Cell, 2007. 

12(1): p. 9-22. 

39. Wang, X. and C.G. Proud, mTORC1 signaling: what we still don't know. J Mol Cell Biol, 

2011. 3(4): p. 206-20. 

40. Cornu, M., V. Albert, and M.N. Hall, mTOR in aging, metabolism, and cancer. Curr Opin 

Genet Dev, 2013. 23(1): p. 53-62. 

41. Laplante, M. and D.M. Sabatini, An emerging role of mTOR in lipid biosynthesis. Curr 

Biol, 2009. 19(22): p. R1046-52. 

42. Jung, C.H., et al., mTOR regulation of autophagy. FEBS Lett, 2010. 584(7): p. 1287-95. 

43. Jacinto, E., et al., Mammalian TOR complex 2 controls the actin cytoskeleton and is 

rapamycin insensitive. Nat Cell Biol, 2004. 6(11): p. 1122-8. 

44. Sarbassov, D.D., et al., Rictor, a novel binding partner of mTOR, defines a 

rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. 

Curr Biol, 2004. 14(14): p. 1296-302. 

45. Guertin, D.A., et al., mTOR complex 2 is required for the development of prostate cancer 

induced by Pten loss in mice. Cancer Cell, 2009. 15(2): p. 148-59. 

46. Efeyan, A. and D.M. Sabatini, mTOR and cancer: many loops in one pathway. Curr Opin 

Cell Biol, 2010. 22(2): p. 169-76. 

47. Sparks, C.A. and D.A. Guertin, Targeting mTOR: prospects for mTOR complex 2 

inhibitors in cancer therapy. Oncogene, 2010. 29(26): p. 3733-44. 

48. Kim, D.H., et al., mTOR interacts with raptor to form a nutrient-sensitive complex that 

signals to the cell growth machinery. Cell, 2002. 110(2): p. 163-75. 

49. Hara, K., et al., Raptor, a binding partner of target of rapamycin (TOR), mediates TOR 

action. Cell, 2002. 110(2): p. 177-89. 

50. Schalm, S.S., et al., TOS motif-mediated raptor binding regulates 4E-BP1 multisite 

phosphorylation and function. Curr Biol, 2003. 13(10): p. 797-806. 

51. Vander Haar, E., et al., Insulin signalling to mTOR mediated by the Akt/PKB substrate 



46 

 

PRAS40. Nat Cell Biol, 2007. 9(3): p. 316-23. 

52. Guertin, D.A., et al., Ablation in mice of the mTORC components raptor, rictor, or mLST8 

reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not 

S6K1. Dev Cell, 2006. 11(6): p. 859-71. 

53. Peterson, T.R., et al., DEPTOR is an mTOR inhibitor frequently overexpressed in multiple 

myeloma cells and required for their survival. Cell, 2009. 137(5): p. 873-86. 

54. Abraham, R.T. and G.J. Wiederrecht, Immunopharmacology of rapamycin. Annu Rev 

Immunol, 1996. 14: p. 483-510. 

55. Schmelzle, T. and M.N. Hall, TOR, a central controller of cell growth. Cell, 2000. 103(2): 

p. 253-62. 

56. Choi, J., et al., Structure of the FKBP12-rapamycin complex interacting with the binding 

domain of human FRAP. Science, 1996. 273(5272): p. 239-42. 

57. Kim, D.H., et al., GbetaL, a positive regulator of the rapamycin-sensitive pathway 

required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell, 2003. 

11(4): p. 895-904. 

58. Wang, X. and C.G. Proud, mTORC1 signaling: what we still don't know. Journal of 

Molecular Cell Biology, 2010. 3(4): p. 206-220. 

59. Vanhaesebroeck, B. and D.R. Alessi, The PI3K-PDK1 connection: more than just a road 

to PKB. Biochem J, 2000. 346 Pt 3: p. 561-76. 

60. Alessi, D.R., et al., Mechanism of activation of protein kinase B by insulin and IGF-1. 

Embo J, 1996. 15(23): p. 6541-51. 

61. Huang, J. and Brendan D. Manning, The TSC1–TSC2 complex: a molecular switchboard 

controlling cell growth. Biochemical Journal, 2008. 412(2): p. 179. 

62. Cai, S.L., et al., Activity of TSC2 is inhibited by AKT-mediated phosphorylation and 

membrane partitioning. J Cell Biol, 2006. 173(2): p. 279-89. 

63. Long, X., et al., Rheb Binds and Regulates the mTOR Kinase. Current Biology, 2005. 

15(8): p. 702-713. 

64. Sancak, Y., et al., The Rag GTPases bind raptor and mediate amino acid signaling to 

mTORC1. Science, 2008. 320(5882): p. 1496-501. 

65. Hara, K., et al., Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E 

BP1 through a common effector mechanism. J Biol Chem, 1998. 273(23): p. 14484-94. 

66. Wang, X., et al., Amino acid availability regulates p70 S6 kinase and multiple translation 

factors. Biochem J, 1998. 334 ( Pt 1): p. 261-7. 

67. Byfield, M.P., J.T. Murray, and J.M. Backer, hVps34 is a nutrient-regulated lipid kinase 

required for activation of p70 S6 kinase. J Biol Chem, 2005. 280(38): p. 33076-82. 

68. Nobukuni, T., et al., Amino acids mediate mTOR/raptor signaling through activation of 



47 

 

class 3 phosphatidylinositol 3OH-kinase. Proc Natl Acad Sci U S A, 2005. 102(40): p. 

14238-43. 

69. Sun, Y., et al., Phospholipase D1 is an effector of Rheb in the mTOR pathway. Proc Natl 

Acad Sci U S A, 2008. 105(24): p. 8286-91. 

70. Sancak, Y., et al., Ragulator-Rag complex targets mTORC1 to the lysosomal surface and 

is necessary for its activation by amino acids. Cell, 2010. 141(2): p. 290-303. 

71. Bar-Peled, L., et al., Ragulator is a GEF for the rag GTPases that signal amino acid 

levels to mTORC1. Cell, 2012. 150(6): p. 1196-208. 

72. Zoncu, R., et al., mTORC1 senses lysosomal amino acids through an inside-out 

mechanism that requires the vacuolar H(+)-ATPase. Science, 2011. 334(6056): p. 

678-83. 

73. Mihaylova, M.M. and R.J. Shaw, The AMPK signalling pathway coordinates cell growth, 

autophagy and metabolism. Nat Cell Biol, 2011. 13(9): p. 1016-23. 

74. Inoki, K., J. Kim, and K.L. Guan, AMPK and mTOR in cellular energy homeostasis and 

drug targets. Annu Rev Pharmacol Toxicol, 2012. 52: p. 381-400. 

75. Inoki, K., T. Zhu, and K.L. Guan, TSC2 mediates cellular energy response to control cell 

growth and survival. Cell, 2003. 115(5): p. 577-90. 

76. Gwinn, D.M., et al., AMPK phosphorylation of raptor mediates a metabolic checkpoint. 

Mol Cell, 2008. 30(2): p. 214-26. 

77. Ma, X.M. and J. Blenis, Molecular mechanisms of mTOR-mediated translational control. 

Nat Rev Mol Cell Biol, 2009. 10(5): p. 307-18. 

78. Magnuson, B., B. Ekim, and D.C. Fingar, Regulation and function of ribosomal protein 

S6 kinase (S6K) within mTOR signalling networks. Biochem J, 2012. 441(1): p. 1-21. 

79. Holz, M.K., et al., mTOR and S6K1 mediate assembly of the translation preinitiation 

complex through dynamic protein interchange and ordered phosphorylation events. Cell, 

2005. 123(4): p. 569-80. 

80. Gingras, A.C., et al., 4E-BP1, a repressor of mRNA translation, is phosphorylated and 

inactivated by the Akt(PKB) signaling pathway. Genes Dev, 1998. 12(4): p. 502-13. 

81. Lewis, C.A., et al., Regulation of the SREBP transcription factors by mTORC1. Biochem 

Soc Trans, 2011. 39(2): p. 495-9. 

82. Porstmann, T., et al., SREBP activity is regulated by mTORC1 and contributes to 

Akt-dependent cell growth. Cell Metab, 2008. 8(3): p. 224-36. 

83. He, C. and D.J. Klionsky, Regulation mechanisms and signaling pathways of autophagy. 

Annu Rev Genet, 2009. 43: p. 67-93. 

84. Wang, R.C. and B. Levine, Autophagy in cellular growth control. FEBS Lett, 2010. 

584(7): p. 1417-26. 



48 

 

85. Chang, Y.Y., et al., Nutrient-dependent regulation of autophagy through the target of 

rapamycin pathway. Biochem Soc Trans, 2009. 37(Pt 1): p. 232-6. 

86. Kim, J., et al., AMPK and mTOR regulate autophagy through direct phosphorylation of 

Ulk1. Nat Cell Biol, 2011. 13(2): p. 132-41. 

87. Alers, S., et al., Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, 

shortcuts, and feedbacks. Mol Cell Biol, 2012. 32(1): p. 2-11. 

88. Jacinto, E., et al., SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt 

phosphorylation and substrate specificity. Cell, 2006. 127(1): p. 125-37. 

89. Frias, M.A., et al., mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms 

define three distinct mTORC2s. Curr Biol, 2006. 16(18): p. 1865-70. 

90. Garcia-Martinez, J.M. and D.R. Alessi, mTOR complex 2 (mTORC2) controls 

hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced 

protein kinase 1 (SGK1). Biochem J, 2008. 416(3): p. 375-85. 

91. Yang, Q., et al., Identification of Sin1 as an essential TORC2 component required for 

complex formation and kinase activity. Genes Dev, 2006. 20(20): p. 2820-32. 

92. Gan, X., et al., Evidence for direct activation of mTORC2 kinase activity by 

phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem, 2011. 286(13): p. 10998-1002. 

93. Schroder, W.A., et al., Human Sin1 contains Ras-binding and pleckstrin homology 

domains and suppresses Ras signalling. Cell Signal, 2007. 19(6): p. 1279-89. 

94. Cameron, A.J., et al., mTORC2 targets AGC kinases through Sin1-dependent recruitment. 

Biochem J, 2011. 439(2): p. 287-97. 

95. Huang, J., et al., The TSC1-TSC2 complex is required for proper activation of mTOR 

complex 2. Mol Cell Biol, 2008. 28(12): p. 4104-15. 

96. Sarbassov, D.D., et al., Phosphorylation and regulation of Akt/PKB by the rictor-mTOR 

complex. Science, 2005. 307(5712): p. 1098-101. 

97. Hall, M.N. and F. Tamanoi, Structure, function and regulation of TOR complexes from 

yeasts to mammals. Part B. 1st ed. The enzymes,. 2010, Amsterdam ; Boston: Academic 

Press, Elsevier. xi, 390 p. 

98. Lawlor, M.A. and D.R. Alessi, PKB/Akt: a key mediator of cell proliferation, survival 

and insulin responses? J Cell Sci, 2001. 114(Pt 16): p. 2903-10. 

99. Brazil, D.P. and B.A. Hemmings, Ten years of protein kinase B signalling: a hard Akt to 

follow. Trends Biochem Sci, 2001. 26(11): p. 657-64. 

100. Facchinetti, V., et al., The mammalian target of rapamycin complex 2 controls folding and 

stability of Akt and protein kinase C. Embo J, 2008. 27(14): p. 1932-43. 

101. Ikenoue, T., et al., Essential function of TORC2 in PKC and Akt turn motif 

phosphorylation, maturation and signalling. Embo J, 2008. 27(14): p. 1919-31. 



49 

 

102. Tessier, M. and J.R. Woodgett, Serum and glucocorticoid-regulated protein kinases: 

variations on a theme. J Cell Biochem, 2006. 98(6): p. 1391-407. 

103. Vasudevan, K.M., et al., AKT-independent signaling downstream of oncogenic PIK3CA 

mutations in human cancer. Cancer Cell, 2009. 16(1): p. 21-32. 

104. Loewith, R., et al., Two TOR complexes, only one of which is rapamycin sensitive, have 

distinct roles in cell growth control. Mol Cell, 2002. 10(3): p. 457-68. 

105. Wang, X. and S.Y. Sun, Enhancing mTOR-targeted cancer therapy. Expert Opin Ther 

Targets, 2009. 13(10): p. 1193-203. 

106. Carew, J.S., K.R. Kelly, and S.T. Nawrocki, Mechanisms of mTOR inhibitor resistance in 

cancer therapy. Target Oncol, 2011. 6(1): p. 17-27. 

107. Benjamin, D., et al., Rapamycin passes the torch: a new generation of mTOR inhibitors. 

Nat Rev Drug Discov, 2011. 10(11): p. 868-80. 

108. Schenone, S., et al., ATP-competitive inhibitors of mTOR: an update. Curr Med Chem, 

2011. 18(20): p. 2995-3014. 

109. Yamagata, K., et al., rheb, a growth factor- and synaptic activity-regulated gene, encodes 

a novel Ras-related protein. J Biol Chem, 1994. 269(23): p. 16333-9. 

110. Aspuria, P.J. and F. Tamanoi, The Rheb family of GTP-binding proteins. Cell Signal, 2004. 

16(10): p. 1105-12. 

111. Patel, P.H., et al., Drosophila Rheb GTPase is required for cell cycle progression and cell 

growth. J Cell Sci, 2003. 116(Pt 17): p. 3601-10. 

112. Long, X., et al., Rheb binds and regulates the mTOR kinase. Curr Biol, 2005. 15(8): p. 

702-13. 

113. Bai, X.C., et al., Rheb activates mTOR by antagonizing its endogenous inhibitor, FKBP38. 

Science, 2007. 318(5852): p. 977-980. 

114. Fang, Y., et al., Phosphatidic acid-mediated mitogenic activation of mTOR signaling. 

Science, 2001. 294(5548): p. 1942-5. 

115. Yoon, M.S., et al., Class III PI-3-kinase activates phospholipase D in an amino 

acid-sensing mTORC1 pathway. J Cell Biol, 2011. 195(3): p. 435-47. 

116. Xu, L., et al., Phospholipase D mediates nutrient input to mammalian target of 

rapamycin complex 1 (mTORC1). J Biol Chem, 2011. 286(29): p. 25477-86. 

117. Ma, D., et al., Rheb GTPase controls apoptosis by regulating interaction of FKBP38 with 

Bcl-2 and Bcl-XL. J Biol Chem, 2010. 285(12): p. 8621-7. 

118. Choi, B.H., L. Feng, and H.S. Yoon, FKBP38 protects Bcl-2 from caspase-dependent 

degradation. J Biol Chem, 2010. 285(13): p. 9770-9. 

119. Uhlenbrock, K., et al., Reassessment of the role of FKBP38 in the Rheb/mTORC1 

pathway. FEBS Lett, 2009. 583(6): p. 965-70. 



50 

 

120. Wang, X., et al., Re-evaluating the roles of proposed modulators of mammalian target of 

rapamycin complex 1 (mTORC1) signaling. J Biol Chem, 2008. 283(45): p. 30482-92. 

121. Inoki, K., et al., Rheb GTPase is a direct target of TSC2 GAP activity and regulates 

mTOR signaling. Genes Dev, 2003. 17(15): p. 1829-34. 

122. Manning, B.D. and L.C. Cantley, Rheb fills a GAP between TSC and TOR. Trends 

Biochem Sci, 2003. 28(11): p. 573-6. 

123. Li, Y., et al., TSC2: filling the GAP in the mTOR signaling pathway. Trends Biochem Sci, 

2004. 29(1): p. 32-8. 

124. Huang, J. and B.D. Manning, The TSC1-TSC2 complex: a molecular switchboard 

controlling cell growth. Biochem J, 2008. 412(2): p. 179-90. 

125. Benvenuto, G., et al., The tuberous sclerosis-1 (TSC1) gene product hamartin suppresses 

cell growth and augments the expression of the TSC2 product tuberin by inhibiting its 

ubiquitination. Oncogene, 2000. 19(54): p. 6306-16. 

126. Chong-Kopera, H., et al., TSC1 stabilizes TSC2 by inhibiting the interaction between 

TSC2 and the HERC1 ubiquitin ligase. J Biol Chem, 2006. 281(13): p. 8313-6. 

127. Li, Y., et al., Regulation of TSC2 by 14-3-3 binding. J Biol Chem, 2002. 277(47): p. 

44593-6. 

128. Im, E., et al., Rheb is in a high activation state and inhibits B-Raf kinase in mammalian 

cells. Oncogene, 2002. 21(41): p. 6356-65. 

129. Hsu, Y.C., et al., Drosophila TCTP is essential for growth and proliferation through 

regulation of dRheb GTPase. Nature, 2007. 445(7129): p. 785-8. 

130. Rehmann, H., et al., Biochemical characterisation of TCTP questions its function as a 

guanine nucleotide exchange factor for Rheb. FEBS Lett, 2008. 582(20): p. 3005-10. 

131. Clark, G.J., et al., The Ras-related protein Rheb is farnesylated and antagonizes Ras 

signaling and transformation. J Biol Chem, 1997. 272(16): p. 10608-15. 

132. Basso, A.D., et al., The farnesyl transferase inhibitor (FTI) SCH66336 (lonafarnib) 

inhibits Rheb farnesylation and mTOR signaling. Role in FTI enhancement of taxane and 

tamoxifen anti-tumor activity. J Biol Chem, 2005. 280(35): p. 31101-8. 

133. Buerger, C., B. DeVries, and V. Stambolic, Localization of Rheb to the endomembrane is 

critical for its signaling function. Biochem Biophys Res Commun, 2006. 344(3): p. 

869-80. 

134. Saito, K., et al., Novel role of the small GTPase Rheb: its implication in endocytic 

pathway independent of the activation of mammalian target of rapamycin. J Biochem, 

2005. 137(3): p. 423-30. 

135. Takahashi, K., et al., Differential membrane localization of ERas and Rheb, two 

Ras-related proteins involved in the phosphatidylinositol 3-kinase/mTOR pathway. J Biol 



51 

 

Chem, 2005. 280(38): p. 32768-74. 

136. Ma, D., et al., The switch I region of Rheb is critical for its interaction with FKBP38. J 

Biol Chem, 2008. 283(38): p. 25963-70. 

137. Hanker, A.B., et al., Differential requirement of CAAX-mediated posttranslational 

processing for Rheb localization and signaling. Oncogene, 2010. 29(3): p. 380-91. 

138. Yang, Q., et al., TSC1/TSC2 and Rheb have different effects on TORC1 and TORC2 

activity. Proc Natl Acad Sci U S A, 2006. 103(18): p. 6811-6. 

139. Kim, E., et al., Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol, 

2008. 10(8): p. 935-45. 

140. Schurmann, A., et al., Cloning of a novel family of mammalian GTP-binding proteins 

(RagA, RagBs, RagB1) with remote similarity to the Ras-related GTPases. J Biol Chem, 

1995. 270(48): p. 28982-8. 

141. Sekiguchi, T., et al., Novel G proteins, Rag C and Rag D, interact with GTP-binding 

proteins, Rag A and Rag B. J Biol Chem, 2001. 276(10): p. 7246-57. 

142. Gong, R., et al., Crystal structure of the Gtr1p-Gtr2p complex reveals new insights into 

the amino acid-induced TORC1 activation. Genes Dev, 2011. 25(16): p. 1668-73. 

143. Reeves, J.P., Accumulation of amino acids by lysosomes incubated with amino acid 

methyl esters. J Biol Chem, 1979. 254(18): p. 8914-21. 

144. Chou, M.M. and J. Blenis, The 70 kDa S6 kinase complexes with and is activated by the 

Rho family G proteins Cdc42 and Rac1. Cell, 1996. 85(4): p. 573-83. 

145. Saci, A., L.C. Cantley, and C.L. Carpenter, Rac1 regulates the activity of mTORC1 and 

mTORC2 and controls cellular size. Mol Cell, 2011. 42(1): p. 50-61. 

146. Welch, H.C., et al., P-Rex1, a PtdIns(3,4,5)P3- and Gbetagamma-regulated 

guanine-nucleotide exchange factor for Rac. Cell, 2002. 108(6): p. 809-21. 

147. Endo, M., M.A. Antonyak, and R.A. Cerione, Cdc42-mTOR signaling pathway controls 

Hes5 and Pax6 expression in retinoic acid-dependent neural differentiation. J Biol Chem, 

2009. 284(8): p. 5107-18. 

148. Fang, Y., et al., PLD1 regulates mTOR signaling and mediates Cdc42 activation of S6K1. 

Curr Biol, 2003. 13(23): p. 2037-44. 

149. Walker, S.J., et al., Activation of phospholipase D1 by Cdc42 requires the Rho insert 

region. J Biol Chem, 2000. 275(21): p. 15665-8. 

150. Larson, Y., et al., Tuberous Sclerosis Complex 2 (TSC2) Regulates Cell Migration and 

Polarity through Activation of CDC42 and RAC1. Journal of Biological Chemistry, 2010. 

285(32): p. 24987-24998. 

151. Flinn, R.J., et al., The late endosome is essential for mTORC1 signaling. Mol Biol Cell, 

2010. 21(5): p. 833-41. 



52 

 

152. Li, L., et al., Regulation of mTORC1 by the Rab and Arf GTPases. J Biol Chem, 2010. 

285(26): p. 19705-9. 

153. Maehama, T., et al., RalA functions as an indispensable signal mediator for the 

nutrient-sensing system. J Biol Chem, 2008. 283(50): p. 35053-9. 

154. Rossman, K.L., C.J. Der, and J. Sondek, GEF means go: turning on RHO GTPases with 

guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol, 2005. 6(2): p. 167-80. 

155. Cote, J.F. and K. Vuori, GEF what? Dock180 and related proteins help Rac to polarize 

cells in new ways. Trends Cell Biol, 2007. 17(8): p. 383-93. 

156. Meller, N., S. Merlot, and C. Guda, CZH proteins: a new family of Rho-GEFs. J Cell Sci, 

2005. 118(Pt 21): p. 4937-46. 

157. Yang, J., et al., Activation of Rho GTPases by DOCK exchange factors is mediated by a 

nucleotide sensor. Science, 2009. 325(5946): p. 1398-402. 

158. Cote, J.F. and K. Vuori, Identification of an evolutionarily conserved superfamily of 

DOCK180-related proteins with guanine nucleotide exchange activity. J Cell Sci, 2002. 

115(Pt 24): p. 4901-13. 

159. Cote, J.F., et al., A novel and evolutionarily conserved PtdIns(3,4,5)P3-binding domain is 

necessary for DOCK180 signalling. Nat Cell Biol, 2005. 7(8): p. 797-807. 

160. Kobayashi, S., et al., Membrane recruitment of DOCK180 by binding to PtdIns(3,4,5)P3. 

Biochem J, 2001. 354(Pt 1): p. 73-8. 

161. Watabe-Uchida, M., et al., The Rac activator DOCK7 regulates neuronal polarity 

through local phosphorylation of stathmin/Op18. Neuron, 2006. 51(6): p. 727-39. 

162. Yamauchi, J., et al., ErbB2 directly activates the exchange factor Dock7 to promote 

Schwann cell migration. J Cell Biol, 2008. 181(2): p. 351-65. 

163. Yamauchi, J., et al., The atypical Guanine-nucleotide exchange factor, dock7, negatively 

regulates schwann cell differentiation and myelination. J Neurosci, 2011. 31(35): p. 

12579-92. 

164. Nellist, M., et al., Phosphorylation and binding partner analysis of the TSC1-TSC2 

complex. Biochem Biophys Res Commun, 2005. 333(3): p. 818-26. 

165. Lin, Q., et al., Identification of a DOCK180-related guanine nucleotide exchange factor 

that is capable of mediating a positive feedback activation of Cdc42. J Biol Chem, 2006. 

281(46): p. 35253-62. 

166. Yang, Y.T., C.L. Wang, and L. Van Aelst, DOCK7 interacts with TACC3 to regulate 

interkinetic nuclear migration and cortical neurogenesis. Nat Neurosci, 2012. 15(9): p. 

1201-10. 

 

 



53 

 

Chapter 2 

 

Identification of an mTORC2-mTORC1 signaling cascade necessary for 

HRG/ErbB2-dependent cellular transformation 

 

 

Abstract 

ErbB2 is both a prognostic indicator and a target for therapy in breast cancer. The 

over-expression of heregulin (HRG), a growth factor that activates the ErbB2 receptor, has also 

been shown to be critical for patient responsiveness to ErbB2 inhibitors. Although ErbB2 

inhibitors offer a major advancement in the treatment of ErbB2-dependent breast cancers, 

patients are susceptible to developing clinical resistance to these inhibitors. Therefore, 

understanding the molecular mechanism of HRG/ErbB2-induced tumorigenesis is critical for the 

development of effective therapeutic strategies for this cohort of breast cancer patients. We 

demonstrate that HRG promotes anchorage-independent growth more potently than EGF in the 

breast cancer cell line, SKBR3, and determine that both PI3K and mTORC1 are necessary for 

this transformation event. Surprisingly, we find that the activation of mTORC1 in response to 

HRG is dependent upon the upstream activation of mTORC2. HRG signaling to PI3K bifurcates 
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to activate both PDK1 and mTORC2 and then converges at the level of AKT/TSC2, where we 

observe a dominance of mTORC2 over PDK1 in the activation of AKT. We further demonstrate 

that eliminating the mTORC2 component, Rictor, is detrimental to both the activation of 

mTORC1 and HRG-mediated cellular transformation. This study highlights a previously 

unappreciated role for mTORC2 in ErbB2-dependent breast cancer and suggests benefits for 

targeting mTORC1 and mTORC2 in these cancers. 

 

Introduction 

 ErbB2 over-expression characterizes 20 – 30 percent of all breast cancers and correlates 

with a poor prognosis for patients presented with this key biomarker [1, 2]. Additionally, 

heregulin (HRG), an EGF-like growth factor that binds to the ErbB3/ErbB4 receptor and induces 

ErbB2 dimerization and activation [3, 4], is also found over-expressed in breast, ovarian and 

prostate cancers (reviewed in [5]) and can drive cellular transformation by the activation of 

ErbB2, independent of the over-expression status of the receptor [6]. A major advancement in the 

treatment of ErbB2-positive cancers came with the development of monoclonal antibodies 

against ErbB2 (trastuzumab/Herceptin) and more recently, ErbB2 kinase inhibitors (e.g. lapatinib) 

(reviewed in [7]). These strategies have offered significant clinical value but, as is now being 

appreciated for many forms of targeted therapy in cancer, patients treated with either trastuzumab 
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or lapatinib are susceptible to the development of clinical resistance to these therapies [8-10]. As 

new treatment options are considered for ErbB2-positive cancers, a molecular understanding of 

the signaling events that underlie HRG/ErbB2-dependent cellular transformation will be critical.  

 We have found previously that HRG, but not the closely related growth factor, EGF, signals 

to the RNA processing machinery to impact cell growth [11]. Specifically, the activation of 

ErbB2 at the cell surface translates into the nuclear activation of the small GTPase Ran [11]. Ran, 

together with importin α and β, regulates the binding and processing of capped mRNAs by the 

nuclear cap-binding complex (CBC) to promote mitogenesis [11-13]. The over-expression of 

wild-type Ran or constitutively-active Ran mutants is sufficient to transform NIH-3T3 fibroblasts 

and non-invasive R37 mammary cells [14, 15], as well as accelerate the transforming potential of 

the breast cancer cell line, SKBR3 [14], thus underscoring the significance of this signaling 

endpoint in HRG/ErbB2-dependent transformation. 

 The ability of HRG to signal to Ran and the CBC is dependent upon the mammalian target 

of rapamycin (mTOR, [11, 12]). mTOR is a 280 kDa Ser/Thr kinase that forms two functionally 

distinct complexes in mammalian cells, mTORC1 and mTORC2. The rapamycin-sensitive 

mTORC1 consists of mTOR, Raptor, mLST8, and PRAS40. mTORC1 controls cell size, 

proliferation, lipid biogenesis, metabolism, and autophagy by sensing growth factors and the 

nutrient availability of the cell (reviewed in [16-18], [19], [20]). mTORC2 is insensitive to 
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short-term rapamycin treatment and is comprised of mTOR, Rictor, mSin1 and mLST8 ([21-23]). 

Raptor and Rictor are commonly used as markers to discern the two complexes [22, 24]. 

Significantly less is understood regarding the functions and regulation of mTORC2, with the 

exception of a role for mTORC2 in cytoskeletal remodeling [22, 25]. There is, however, 

emerging evidence for the involvement of mTORC2 in growth factor signaling and tumor 

progression [26, 27].  

Many growth factors signal to mTORC1 by activating PI3K, which converts PIP2 to PIP3 at 

the cell membrane (reviewed in [16-18]). PDK1 (phosphoinositide-dependent kinase 1) is then 

recruited to the membrane, where it phosphorylates AKT at threonine 308 (reviewed in [28]). 

AKT achieves maximal activation when it is phosphorylated on both threonine 308 in its 

activation loop and serine 473 within the hydrophobic motif [29]. Once activated, AKT 

phosphorylates an inhibitory site on TSC2 (tuberous sclerosis complex 2), a GTPase-activating 

protein (GAP) for the small GTPase Rheb (reviewed in [30]). Rheb binds and activates mTORC1 

although the molecular basis for this activation remains poorly defined [31].  

In this study we sought to better understand the cellular signals that underlie the 

transforming potential of HRG, with an emphasis on HRG signaling to mTORC1. We 

demonstrate that HRG promotes colony formation more efficiently than EGF in the SKBR3 

breast cancer cell line, and that the differential activation of mTORC1 is necessary for the 
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enhanced potency. Surprisingly, the ability of HRG to signal to mTORC2 plays a critical role in 

the ability of HRG to activate mTORC1 and promote cellular transformation. Pharmacological 

studies contrasting rapamycin and an ATP-competitive inhibitor of mTOR, INK-128 [32], reveal 

that the phosphorylation of AKT at serine 473 by mTORC2 is critical for downstream TSC2 

phosphorylation and mTORC1 activation in response to HRG. The specific disruption of 

mTORC2 signaling by the introduction of Rictor shRNA, not only attenuated the activation of 

mTORC1 and its upstream signaling activators but also had a deleterious effect on 

HRG-mediated colony formation. Taken together, these data highlight mTORC2 as a previously 

unappreciated signaling endpoint for HRG, demonstrate that mTORC2 is necessary for the 

activation of mTORC1 by HRG, and provide evidence for an important role for mTORC2 in 

HRG- and ErbB2-dependent cellular transformation. 

 

Materials and Methods 

Antibodies and reagents 

The antibodies used for this study were purchased from Cell Signaling Technology with the 

exception of anti-pan-mTOR (Millipore), anti-pan-S6 kinase (Millipore), anti-actin (NeoMarker), 

and anti-Myc (Covance). Rapamycin and LY294002 were purchased from Calbiochem. INK-128 

was a generous gift from Dr. Kevan Shokat (UCSF). HRG (Heregulin β, EGF domain, residues 



58 

 

178-241) was obtained from Sigma. EGF and Protein G beads were purchased from Invitrogen. 

DNA constructs and shRNAs 

Rictor (Addgene plasmid 1860) and Raptor (Addgene plasmid 1859) DNA constructs were 

obtained from Addgene [22]. The shRNAs targeting Rictor were purchased from Sigma 

(TRCN0000074288, TRCN0000074290). The lenti-viral constructs expressing Rictor shRNAs 

were generated according to the manufacturer’s protocol (Sigma). 

Cell culture conditions 

The breast cancer cell line, SKBR3, was maintained in RPMI 1640 (Invitrogen) containing 10% 

FBS (Invitrogen) at 37℃, 5% CO2. For growth factor stimulation, SKBR3 cells were seeded at 

5-7x10
5
 on 100 mm cell culture plates (Corning), followed by serum-starvation with RPMI for 

40-48 hours, replenishing with fresh RPMI 24 h after initiation of starvation. SKBR3 cells were 

then stimulated with HRG at the concentration and times indicated, followed by cell lysis. For 

inhibitor analysis, SKBR3 cells were pre-treated with 50 nM rapamycin, 50 nM INK-128, or 10 

μM LY294002 for 30 min followed by the addition of HRG. 293T cells were maintained in 10% 

FBS-containing DMEM (Invitrogen) at 37℃, 5% CO2. 

Transfection 

HEK 293T cells were seeded at 1x10
6
 cells on 100 mm cell culture plates. Four μg of DNA was 

transfected into the cells the next day using Lipofectamine and Plus Reagent, following the 
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manufacturer’s protocol (Invitrogen). 

Immunoblot analysis 

Cells were lysed with cell lysis buffer (50 mM Hepes, 150 mM NaCl, 1 mM MgCl2, 25 mM NaF, 

1 mM Na3VO4, 50 mM β-glycerophosphate, 10 μg/ml Leupeptin, 10 μg/ml Aprotinin, 1% Triton 

X-100). The lysates were resolved by SDS-PAGE, and then the proteins were transferred to 

polyvinylidene fluoride membranes. The membranes were incubated with the indicated primary 

antibodies diluted in 20 mM Tris, 135 mM NaCl, and 0.02% Tween-20. The primary antibodies 

were detected with horseradish peroxidase-conjugated secondary antibodies (GE Healthcare) 

followed by exposure to ECL reagent (Perkin Elmer). 

Soft-agar assays 

SKBR3 cells, or SKBR3 cells infected with the various Rictor shRNAs as described, were 

seeded at a density of 5x10
3
 cells/well in complete medium (10% FBS, RPMI) containing 0.3% 

agarose, onto underlays composed of growth medium containing 0.6% agarose in 6-well dishes. 

The corresponding growth factors or inhibitors were added in the cell mixture. The cultures were 

fed with complete medium containing 0.3% agarose along with their respective growth factors or 

inhibitors every three days. Colonies were counted after 13 days. 

Immunoprecipitation 

293T cells were lysed with cell lysis buffer (50 mM Hepes, 150 mM NaCl, 1 mM MgCl2, 25 mM 
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NaF, 1 mM Na3VO4, 50 mM β-glycerophosphate, 10 μg/ml Leupeptin, 10 μg/ml Aprotinin, 0.3% 

CHAPS). Lysates were precleared with Protein G beads on a rotator at 4℃ for 10 min. The 

supernatant was collected and added with anti-Myc antibody for 2 h followed by the addition of 

Protein G beads for 1 h at 4℃. Immunoprecipitates were washed 3 times with the lysis buffer 

followed by the addition of 5X Laemilli buffer. 

ImageJ quantification 

The Western blots were quantified using ImageJ (http://rsbweb.nih.gov/ij/) under the Gel 

Analysis Tool. The intensity of the different lanes was then normalized to the control lane, which 

was set to one. In Figure 2.4, the difference in intensity was obtained by subtracting the intensity 

of the control (untreated) samples from the HRG-stimulated samples. The percentage of 

inhibition is calculated by (1-(Difference in Intensityknock-down)/(Difference in Intensitycontrol))  

x100%. 

 

Results 

 To investigate important aspects of HRG/ErbB2-dependent transformation, we started by 

comparing the relative effectiveness of HRG and EGF to stimulate mitogenesis in breast cancer 

cells and then attempted to understand what signaling components contribute to any differences 

observed. The SKBR3 cell line is a low-grade breast cancer cell line that expresses EGFR and 



61 

 

over-expresses ErbB2, and as such is a useful model for comparisons between HRG- and 

EGF-dependent signaling. We first compared the abilities of HRG and EGF to enhance the 

anchorage-independent growth of SKBR3 cells. Cells were seeded in soft agar either in the 

presence of regular growth media (no treatment), or media supplemented with the addition of 

100 nM HRG, or 100 ng/ml EGF, and colonies were then counted after 13 days. As shown in 

Figure 2.1A, treating the SKBR3 cells with HRG significantly enhances the ability of these cells 

to form colonies in soft agar while EGF does not. Previous studies indicate that mTOR is a 

necessary component in the HRG-specific activation of the Ran GTPase and the CBC in SKBR3 

cells [11]. Thus we next examined the differential abilities of HRG and EGF to activate 

mTORC1. SKBR3 cells were serum-starved for two days and stimulated with 100 nM HRG or 

100 ng/ml EGF for the times indicated. Despite a relatively high basal level of mTOR activity 

(we observe that both the over-expression of ErbB2 and the presence of amino acids contribute 

to this background mTOR activity; data not shown), the treatment of SKBR3 cells with HRG 

leads to a time-dependent increase in the phosphorylation of mTOR as determined by Western 

blotting using a phospho-mTOR (S2448) antibody as quantified in Figure 2.1B (left). An 

example of the 30 minute time-point stimulation by HRG, compared to the background mTOR 

activity at time zero, is shown on the right panel of Figure 2.1B. In contrast, EGF was relatively 

ineffective in its ability to activate mTOR.  
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Figure 2.1 HRG is more effective than EGF at promoting colony formation in SKBR3 cells 

and does so in an mTOR-dependent signaling pathway. A. SKBR3 cells were seeded in 0.3% 

agarose-containing complete medium with the addition of 100 nM HRG or 100 ng/ml EGF. Cells 

were fed every three days with the growth factor- containing medium and colonies were counted 

on day 13. The experiment was done in triplicate and the results were averaged and graphed. B. 

SKBR3 cells were serum-starved for 40-48 h followed by 0-60 min treatment of 100 nM HRG or 

100 ng/ml EGF. Whole cell lysates were collected and subjected to Western blotting with 

phospho-mTOR (S2448) and pan-mTOR antibody. The blots were quantified using ImageJ. 

Relative intensities of the bands were plotted against the zero-minute time-point of each 

individual blot, which was normalized to one. Two time points, 0 and 30 minutes, are shown on 

the right as an example of the Western blots. C. SKBR3 cells were treated as stated above. 

Whole cell lysates were collected and subjected to Western blotting with phospho-TSC2 (T1462) 

and pan-TSC2 antibody. The blots were quantified as described above. Two time points, 0 and 30 

minutes, are shown on the right as an example of the Western blots. D. SKBR3 cells were treated 

as stated above. Whole cell lysates were collected and subjected to Western Blotting with 

phospho-S6 kinase (T389) and pan-S6 kinase antibody. The blots were quantified as described 

above. Two time points, 0 and 30 minutes, are shown on the right as an example of the Western 

blots. E. SKBR3 cells were serum-starved for 40-48 h followed by 0, 1, or 100 nM HRG 

stimulation for 30 minutes. Whole cell lysates were collected and subjected to Western blotting 

with phospho-mTOR (S2448), phospho-TSC2 (T1462), pan-mTOR, and pan-TSC2. The blots 

were quantified as described above.  
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We next examined the effects of HRG and EGF on other constituents of mTORC1 signaling. 

TSC2 functions upstream of mTORC1 by regulating the GTP-binding activity of Rheb (reviewed 

in [30]). Phosphorylation of TSC2 by AKT at threonine 1462 disrupts the ability of TSC2 to 

regulate Rheb [30], resulting in enhanced mTORC1 function. Probing for the phosphorylation of 

TSC2 at T1462 indicated that HRG potentiates this phosphorylation to a greater extent than does 

EGF (Figure 2.1C), similar to what was observed for mTOR (S2448). Interestingly, S6 kinase, a 

downstream target of mTORC1 that is known to have a complex mode of activation [33], 

showed little difference in the ability of HRG versus EGF to induce its phosphorylation at 

threonine 389 (Fig. 2.1D). 

Additionally, we examined the HRG dose-dependence of these signaling events by 

stimulating SKBR3 cells with 1 nM and 100 nM HRG, as read-out by Western blotting with 

phospho-mTOR (S2448) and phospho-TSC2 (T1462) antibodies. 1 nM HRG was sufficient to 

achieve near maximal phosphorylation of mTOR and TSC2 (Figure 2.1E), and also to support 

the enhanced ability of SKBR3 cells to grow in soft agar (Figure 2.2A). 

Given that HRG is better at promoting anchorage-independent growth in SKBR3 cells than 

EGF, and is similarly more effective at activating components of mTORC1 signaling (i.e., TSC2 

and mTOR), we wanted to probe the necessity of mTORC1 for HRG-induced cellular 

transformation. To this end, we utilized inhibitors for mTOR (rapamycin and INK-128) as well  
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Figure 2.2 Inhibitors of PI3K and mTOR inhibit colony growth and HRG-mediated 

signaling to mTOR and TSC2. A. SKBR3 cells were seeded in 0.3% agarose with complete 

medium containing either DMSO (vehicle), DMSO + 1 nM HRG, 50 nM Rapamycin + 1 nM 

HRG, 50 nM INK-128 + 1 nM HRG, or 10 μM LY294002 + 1 nM HRG. Cells were replenished 

with the inhibitor + HRG every three days. Colonies were counted on day 13. The experiment 

was done in triplicate and the results were averaged and graphed. B. SKBR3 cells were 

serum-starved for 40-48 h. Cells were then pretreated with 50 nM rapamycin, 50 nM INK-128, 

or 10 μM LY294002 for 30 min followed by the corresponding inhibitor plus 1 nM HRG for 30 

min. Whole cell lysates were collected and subjected to Western blotting with phospho-mTOR 

(S2448) and pan-mTOR antibodies. The bar graph was generated by quantifying blots from three 

independent experiments using ImageJ and normalizing the intensity of the bands to the 

untreated lane. C. SKBR3 cells were treated as described above, followed by blotting with 

phospho-TSC2 (T1462) and pan-TSC2 antibodies. The bar graph was generated by quantifying 

blots from three independent experiments using ImageJ and normalizing the intensity of the 

bands to the untreated lane.  
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as a conventional PI3K inhibitor (LY294002) since the mitogenic activation of mTORC1 is 

classically described as occurring as a result of PI3K/AKT signaling. Rapamycin is a specific 

allosteric inhibitor of mTORC1, although prolonged treatments with rapamycin have also been 

suggested to inhibit mTORC2 [34], while INK-128 is a novel ATP-competitive mTOR inhibitor 

and as such, does not distinguish between mTORC1 and mTORC2 [32]. 

SKBR3 cells were seeded in soft agar in the presence of 1 nM HRG, followed by the 

addition of either DMSO (vehicle), rapamycin, INK-128 or LY294002. These treatments were 

repeated every three days until colonies were counted on day 13. As shown in Figure 2.2A, 1 nM 

HRG markedly augments the ability of SKBR3 cells to form colonies in soft agar, allowing for 

an increase in colony size as well as colony number. Both mTOR inhibitors were quite potent in 

their ability to block HRG-stimulated colony formation. INK-128 in particular was striking for 

its ability to limit the growth of cells beyond the single cell state. The inhibition of PI3K also 

blocks HRG-mediated colony formation, albeit to a lesser extent both in number and colony size. 

Taken together, these data demonstrate that mTOR signaling, as well as PI3K signaling, is 

essential for HRG-induced cellular transformation. 

As HRG-promoted transformation was sensitive to both mTOR and PI3K inhibitors, it 

appeared that this event was most likely an outcome of HRG-stimulated PI3K/PDK1/AKT 

activation, which in turn would lead to the phosphorylation and deactivation of TSC2 and a 



68 

 

corresponding stimulation of mTORC1 activity due to increased Rheb-GTP levels, similar to 

what has been described for insulin-stimulated signaling [16]. To test this hypothesis, we 

examined the impact of rapamycin, INK-128 and LY294002 on phospho-mTOR (S2448) and 

phospho-TSC2 (T1462). SKBR3 cells were serum-starved for two days and then stimulated with 

HRG in the presence or absence of these inhibitors. Cell lysates generated from these cells were 

then analyzed by Western blotting. The expectation was that all three inhibitors should impact 

the phosphorylation of mTOR at S2448, whereas TSC2, as an up-stream regulator of mTOR, 

would be expected to be sensitive to PI3K inhibition. Indeed, this is the case for the 

phosphorylation of mTOR at S2448 (Fig. 2.2B). Each of the inhibitors was able to reduce the 

HRG-stimulated phosphorylation of mTOR. Also as anticipated, Figure 2.2C shows that 

rapamycin did not affect the ability of HRG to stimulate the phosphorylation of TSC2 at T1462, 

whereas the PI3K inhibitor, LY294002, inhibited TSC2 phosphorylation. What was surprising, 

however, was that INK-128 was as effective as LY294002 at inhibiting the phosphorylation of 

TSC2 (T1462) in response to HRG. 

Since the short-term treatment of HRG-stimulated SKBR3 cells with rapamycin did not 

affect the phosphorylation of TSC2, whereas treatment with INK-128 reduced the 

phosphorylation, we could only reconcile these data by attributing the effects of INK-128 to the 

inhibition of mTORC2. This then raised the question of how mTORC2 might be feeding into the 
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mTORC1 pathway. As mentioned earlier, T1462 has been identified as an AKT-dependent 

phosphorylation site on TSC2 [30]. It is known that the phosphorylation of two amino acid 

residues on AKT (T308 and S473) are important for its activation [35], and often these sites have 

been used interchangeably as read-outs for PDK1-catalyzed AKT phosphorylation [36]. More 

recently it has been demonstrated that mTORC2 is a bona fide kinase for AKT by 

phosphorylating serine 473 [37], thus distinguishing these two phosphorylation sites on AKT. 

The time course for HRG-stimulation in SKBR3 cells revealed that the levels of both 

phospho-AKT (S473) and phospho-AKT (T308) were increased in response to the growth factor 

(Fig. 2.3A), suggesting that HRG not only promotes the phosphorylation of AKT at the PDK1 

site as would be anticipated with the classical activation of the mTORC1 pathway, but it also is 

able to send signals to AKT via mTORC2. 

 To further understand how HRG is directing signals to AKT, we probed for the effects of 

rapamycin, INK-128 and LY294002 on the HRG-stimulated phosphorylation of AKT (S473) and 

AKT (T308). As shown in Figure 2.3B, rapamycin does not inhibit the phosphorylation of AKT 

(S473), similar to what we observed for TSC2 (T1462). In contrast, INK-128 leads to a dramatic 

decrease in AKT (S473) phosphorylation. LY294002 reduces the phosphorylation of AKT (S473) 

to approximately basal levels, consistent with suggestions that PI3K may play a role in signaling 

upstream of mTORC2 [27]. All three inhibitors showed some ability to impact the  
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Figure 2.3 mTORC2 is an intermediate in HRG-signaling. A. SKBR3 cells were 

serum-starved for 40-48 h followed by 0-60 min of 1 nM HRG stimulation. Whole cell lysates 

were collected and subjected to Western blotting with phospho-AKT (S473), phospho-AKT 

(T308) and pan-AKT antibodies. B. SKBR3 cells were serum-starved for 40-48 h. Cells were 

then pretreated with 50 nM rapamycin, 50 nM INK-128, or 10 μM LY294002 for 30 min 

followed by the corresponding inhibitor plus 1 nM HRG for 30 min. Whole cell lysates were 

collected and subjected to Western blotting with phospho-AKT (S473) and pan-AKT antibodies. 

The bar graph was generated by quantifying blots from three independent experiments using 

ImageJ and normalizing the intensity of the bands to the untreated lane. C. SKBR3 cells were 

treated as described above, followed by blotting with phospho-TSC2 (T1462) and pan-TSC2 

antibodies. The bar graph was generated by quantifying blots from three independent 

experiments using ImageJ and normalizing the intensity of the bands to the untreated lane.  
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phosphorylation of AKT (T308) in response to HRG, although only INK-128 was able to reduce 

the phosphorylation at this site to near basal levels (Fig 2.3C), suggesting that phosphorylation of 

AKT at S473 may influence the phosphorylation at T308. 

 The experiments outlined in Figures 2 and 3 provide pharmacological evidence to suggest 

that mTORC2 may be playing a pivotal role in relaying signals arising from the interactions 

between HRG and ErbB receptors to mTORC1 in the promotion of the transformed phenotype. 

While INK-128 certainly appears to be having effects on signaling events which are distinct from 

rapamycin, thereby suggesting an involvement of mTORC2 in the regulation of the mTORC1 

pathway, we cannot rule out the possibility that INK-128 is simply a more potent inhibitor of 

mTORC1 under the conditions used. 

 To distinguish these possibilities, we complimented the inhibitor studies with a genetic 

approach. Rictor is a key component of mTORC2 assembly and function, yet it is not present 

within mTORC1 [22]. Thus, by specifically targeting Rictor using an shRNA knock-down 

approach, we can specifically assess the role of mTORC2 in the HRG-stimulated transformation 

of SKBR3 cells and activation of mTORC1. The importance of mTORC2 in the transforming 

capability of HRG was examined in soft agar assays. SKBR3 cells were infected twice, one day 

apart, with a Rictor shRNA-carrying virus or a control virus, and cells were then selected with 

puromycin for 48 hours. Following selection, cells were seeded in soft agar and fed every three 
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days with regular growth medium in the presence or absence of 1 nM HRG until colonies were 

scored on day 13. As seen in Figure 2.4A, the cells in the control-infected plates formed colony 

growth in response to HRG. In contrast, colony formation did not occur in cells where Rictor had 

been knocked down, demonstrating that Rictor, and by extension mTORC2, is necessary for 

HRG to promote the transformed features of SKBR3 cells.  

We next investigated the role of Rictor in relaying HRG-promoted signaling events. Cells 

were infected and selected as described above and then serum-starved for 2 days. After 

serum-starvation, cells were treated with or without 1 nM HRG for 30 minutes. The top panel of 

Figure 2.4B shows that the Rictor shRNAs achieved an approximately 50% knock-down of the 

Rictor protein as compared to the control samples. Examination of phospho-mTOR (S2481), a 

specific phosphorylation site on mTOR which has been shown to both be a marker for intact 

mTORC2 [38], as well as a rapamycin-insensitive autophosphorylation site [39], was next 

examined to determine how much intact mTORC2 is available to the cells following the 

knock-down of Rictor. There is a 70-80% inhibition of the phosphorylation of mTOR at S2481 

between the two different sets of Rictor shRNAs (Fig. 2.4B, middle panel), indicating a 

significant loss of mTORC2 assembly without affecting total levels of mTOR protein (Fig. 2.4B, 

lower panel). 

Having confirmed the efficacy of the Rictor knock-down on mTORC2 function in response  
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Figure 2.4 Rictor is essential for HRG-mediated colony formation and HRG-signaling to 

mTORC1 in SKBR3 cells. A. SKBR3 cells were infected with virus containing Rictor shRNA 

twice, one day apart, followed by 48 h selection with 2 μg/ml puromycin. Cells were then seeded 

in 0.3% agarose in complete medium with or without 1 nM HRG. Cells were fed every three 

days and colonies were counted on day 13. The experiment was done in triplicate and the results 

were averaged and graphed. B. SKBR3 cells were infected and selected as described above. 

Cells were then serum-starved for 40-48 h followed by stimulation with 1 nM HRG for 30 min. 

Whole cell lysates were collected and subjected to Western blotting. Blots were probed for Rictor, 

actin, phospho-mTOR (S2481) and pan-mTOR. Detailed quantification and calculation is 

described in Materials and Methods. C. SKBR3 cells were treated as described in Figure 2.4B. 

Blots were probed for phospho-AKT (S473), phospho-AKT (T308), and pan-AKT. D. SKBR3 

cells were treated as described in Figure 2.4B. Blots were probed for phospho-TSC2 (T1462), 

pan-TSC2, phospho-mTOR (S2448), and pan-mTOR.  
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to HRG, we went on to examine the role of Rictor/mTORC2 in other HRG- stimulated signaling 

events. AKT phosphorylation is attenuated upon the loss of Rictor from HRG-stimulated cells 

(Figure 2.4C). Not only is there a decrease in AKT phosphorylation at the mTORC2 site (i.e., 

AKT (S473)), but phosphorylation at Thr308 of AKT (i.e. the PDK1 site) is significantly 

impacted as well. This again suggests the need for the priming of phospho-AKT (S473) in 

SKBR3 cells before AKT can be phosphorylated on threonine 308. Figure 2.4D shows the effects 

of the loss of Rictor on TSC2 (T1462) (top panel) and mTOR (S2448) (lower panel) 

phosphorylation in response to HRG. Destabilization of mTORC2 resulted in the abrogation of 

mTORC1 function as read out by the decrease in phosphorylation of TSC2 (T1462) and mTOR 

(S2448).  

In total, these results indicate that mTORC2 plays a previously unappreciated role in 

HRG-promoted transformation via its ability to signal to mTORC1. While mTORC1 is described 

in the literature as a master signal-integrating complex due to its ability to receive signals from 

mitogens, nutrients and energy sources (reviewed in [16-18]), the role of mTORC2 is less well 

understood and largely limited to a role in regulating the cytoskeleton [22, 25].  

One potential clue to understanding this cross-talk between mTORC2 and mTORC1 is a 

reported interaction between mTOR and TSC2 [40]. Given that we have shown TSC2 

phosphorylation to be regulated by mTORC2 in response to HRG, and that TSC2 is an upstream 
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regulator of mTORC1, might TSC2 function as a scaffold to bring together the two mTOR 

complexes under certain cellular contexts? To investigate this possibility we utilized HEK 293T 

cells, a cell line which has been indispensable for the characterization of the different mTOR 

complexes [22, 24, 40], to determine whether both mTORC1 and mTORC2 might be capable of 

complexing with TSC2. HEK-293T cells were transiently transfected with either Myc-tagged 

Rictor or Myc-tagged Raptor (a distinct component of mTORC1) [24], and then these proteins 

were isolated from the resulting cell lysates by immunoprecipitation with an anti-Myc antibody. 

As expected, Myc-Raptor and Myc-Rictor were both able to precipitate mTOR (Figure 2.5A, top 

panel), representing the formation of mTORC1 and mTORC2, respectively. Further probing with 

an antibody targeting TSC2 revealed the ability of both complexes to bind to TSC2 (Figure 2.5A, 

middle panel), suggesting the possibility that TSC2 may provide a point of convergence between 

mTORC2 and mTORC1. 

 

Discussion 

  In the present study, we identify mTORC2 as a novel target of HRG/ErbB2 signaling that 

is critical for the ability of HRG to activate mTORC1. We originally anticipated that the 

activation of mTORC1 in response to HRG would be achieved via the canonical 

PI3K/PDK1/AKT pathway, but the use of mechanistically distinct mTOR inhibitors (i.e.  
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Figure 2.5 HRG signals through mTORC2 to mTORC1. A. HEK-293T cells were transfected 

with either Myc-Raptor or Myc-Rictor. Cells were then lysed in lysis buffer containing 0.3% 

CHAPS and subjected to immunoprecipitation using anti-Myc antibody to pull-down Raptor or 

Rictor. The precipitated samples were subjected to Western blotting probing for TSC2, mTOR, 

and Myc. B. Model for HRG-mediated signaling via mTORC2 to mTORC1. HRG/ErbB2 signals 

through an mTORC2-dependent pathway to phosphorylate AKT (S473). This phosphorylation 

precedes the phosphorylation at AKT (T308) by PDK1. Once AKT is fully activated, it 

phosphorylates TSC2 on multiple sites, sequestering TSC2 away from Rheb, allowing Rheb to 

stay active. Thus, mTORC1 is activated. 
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rapamycin and INK-128) and a PI3K inhibitor revealed a more complex signaling paradigm. The 

model in Figure 2.5B shows the HRG signal bifurcating at PI3K and then converging again at 

AKT where PI3K/PDK1/AKT (as indicated by the phosphorylation of AKT at T308) represents 

one branch of the HRG signal, and PI3K/mTORC2/AKT (i.e., phospho-AKT S473) delineates 

the other. Disruption of the mTORC2 arm of the pathway via the knock-down of Rictor 

significantly attenuates the activation of TSC2/mTORC1 by HRG (Figure 2.4D), arguing that the 

mTORC2 pathway is dominant to the PDK1 pathway in this HRG-invoked response.  

 The phosphorylation and activation of AKT, which in turn phosphorylates TSC2, enabling it 

to regulate Rheb, is an essential aspect of the activation of mTORC1 by growth factors [30, 36]. 

It is well known that both T308 and S473 are critical phosphorylation sites for AKT and that 

having both sites phosphorylated has a synergistic effect on AKT activation [29]. For many years 

the detection of phosphorylation at these two sites has been used interchangeably to interpret the 

activation of AKT by PDK1 [36]. The discovery by the Sabatini group that AKT (S473) is in fact 

a preferred mTORC2 substrate [37] opens the door for an important role for mTORC2 in 

mitogenic signaling [27]. Indeed we find the S473 site of AKT to be more effectively 

phosphorylated in response to HRG than the T308 site (Figure 2.3C). The phosphorylation of 

S473 is exquisitely sensitive to INK-128 but not rapamycin (Figure 2.3B) demonstrating the 

significance of mTORC2 activation by HRG. Also, the effectiveness of INK-128 in inhibiting the 
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phosphorylation of AKT at the PDK1 site (T308) suggests that phosphorylation of S473 is 

necessary to allow efficient phosphorylation at T308. This interpretation is consistent with the 

observed dominance of the mTORC2 pathway over the PDK1 pathway in the activation of 

mTORC1.  

 How is HRG signaling to mTORC2? Certainly how mTORC2 becomes activated by HRG 

and other growth factors is a question that will be garnering acute attention as the appreciation 

for the role of mTORC2 in mitogenic signaling grows. mTORC2 regulation and function is 

poorly characterized relative to mTORC1. The discrepancy in the understanding between the two 

complexes most likely stems from the long-standing use of rapamycin to specifically probe 

mTORC1 function. Prior to the realization that mTORC2 functions as an AKT kinase, mTORC2 

was primarily noted for its role in cytoskeletal remodeling [22, 25]. Our data point to a role for 

PI3K in the activation of mTORC2, consistent with emerging suggestions that PI3K, as well as 

Ras, are upstream regulators of mTORC2 (reviewed in [16, 27], [41]). 

 The association of TSC2 with both Raptor and Rictor reported here makes TSC2 an 

attractive point of convergence for mTORC1 and mTORC2, especially given reports of distinct 

modes of regulation for mTORC1 and mTORC2 by TSC2. While the loss of TSC1-TSC2 

complex from cells gives rise to the activation of mTORC1, consistent with a role for these 

proteins as negative regulators of mTORC1 [30, 42], TSC1-TSC2 deficiency attenuates 
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mTORC2 function, suggesting that the tuberous scleroses complex positively influences 

mTORC2 function [40]. In addition to our findings, it has also been shown that the N-terminus 

of TSC2 can interact with the C-terminus of Rictor [43]. Thus, TSC2 may serve as a biological 

bidirectional switch to bring the two complexes in close proximity to achieve signaling and 

feedback in an efficient manner, both temporally and spatially. 

The observation that mTORC2 is necessary for HRG signaling to mTORC1 is underscored 

by the necessity of mTORC2 for HRG/ErbB2-dependent cellular transformation. Along with an 

emerging appreciation for the role of mTORC2 in mitogenic signaling is a nascent understanding 

of the importance of mTORC2 in tumorigenesis. mTORC2 was shown to be necessary for 

prostate cancer development in Pten deficient mice [26], as well as for the transformation of 

other cancer cells (i.e. glioma, breast cancer, colorectal cancer), while being less important to 

normal cells [27]. The fact that we find functional mTORC2 to be required for HRG to potentiate 

the transformation of SKBR3 cells, raises questions as to whether mTORC2 should be 

considered as a potential therapeutic target when addressing ErbB2-positive cancers (see below). 

While this study provides evidence for mTORC2 functioning as a signaling intermediary in a 

pathway from HRG to mTORC1, might mTORC2 play distinct roles that contribute to 

tumorigenesis? mTORC2 has the potential to promote cell migration and invasion of SKBR3 and 

other breast cancer cells in response to HRG through its function as a cytoskeletal remodeler [44, 
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45]. The Rac GTPase, well known for its participation in cell migration and cytoskeletal events, 

has been observed by us and others to become activated in response to HRG (data not shown, [46, 

47]) and to associate with mTORC1 and mTORC2 to mediate the localization of both these 

complexes [48]. Additionally, a guanine nucleotide exchange factor for Rac, P-Rex1, which can 

function downstream of mTORC2 [49] has been implicated in breast cancer [50]. Future efforts 

will be directed toward distinguishing the different contributions of mTORC2 to cellular 

transformation. 

The data presented in this study describe a pivotal role for mTORC2, as well as mTORC1, 

in the ability of HRG/ErbB2 to stimulate oncogenesis in the SKBR3 breast cancer cell line. 

Additionally, we show that the mTOR kinase inhibitor, INK-128 is effective not only at 

inhibiting mTOR (within the context of mTORC1 and mTORC2), but also at blocking PI3K 

inputs into AKT. Interestingly, the use of mTOR inhibitors (both rapalogs and kinase inhibitors) 

as a co-therapy with either trastuzumab or lapatinib is currently being investigated for cancers 

that are refractory to ErbB2-directed monotherapies [8, 51, 52], as aberrant PI3K/AKT/mTOR 

activity is one hallmark of ErbB2 therapy resistance [8, 9]. Our findings support the rationale of 

this therapeutic approach and would point to a greater efficacy with the use of dual mTORC1 and 

mTORC2 inhibitors. 
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Chapter 3 

 

Interplay of Small GTPases in Heregulin-Mediated Signaling to mTOR/S6 Kinase 

 

Abstract 

Heregulin-initiated signal transduction plays a role not only in the differentiation of normal cells, 

but has also been shown to be aberrantly activated in various types of human cancer. We have 

shown previously that HRG can activate both the nuclear cap-binding protein and the nuclear 

GTPase Ran in a mammalian target of rapamycin/S6 kinase-dependent manner. However, the 

processes that translate the interaction of HRG-activated receptors into the activation of 

mTOR/S6 kinase have yet to be elucidated. A number of GTP-binding proteins have been 

implicated in different aspects of mTOR signaling. Rheb (Ras-homology enriched in brain) is a 

GTPase thought to bind directly to and activate mTOR. The involvement of the Rag proteins is 

important for the localization of mTOR in amino acid sensing. More recently, Rac has been 

shown to interact with mTOR and localize mTOR to the leading edges of the cell. Here, we show 

that Rheb, Rac, and Cdc42 are necessary and sufficient participants in the HRG-mediated 

activation of mTOR/S6 kinase in the HeLa cervical carcinoma cell line. Using a knock-down and 

rescue approach, we have determined that Rac and Cdc42 each signal independently to the key 
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mTOR regulator, Rheb, in response to the stimulation of cells with HRG. These events are being 

coordinated by a unique mTORC1 scaffold, Dock7, which modulates the interplay between these 

GTPases and mTOR/S6 kinase. More surprisingly, we have identified Dock7 as a novel guanine 

nucleotide exchange factor for Rheb. 

 

Introduction 

In Chapter 2, we demonstrated that the HRG-dependent activation of mTORC2 plays a 

necessary role for the activation of mTORC1 in SKBR3 cells. In this chapter, we continue to 

investigate the signaling mechanisms that contribute to the HRG-dependent activation of 

mTORC1, focusing in particular on the roles of the Cdc42 and Rac GTPases in this event.  

Small GTPases act as molecular switches in the cell [1]. They are activated by guanine 

nucleotide exchange factors (GEFs) in response to growth factor signaling, cell-extracellular 

matrix interactions, and cell-cell contact [1-4]. The intrinsic rate of GTP hydrolysis for small 

GTPases is slow but can be greatly enhanced by a GTPase activating protein (GAP) to turn-off 

signaling in a timely manner [5, 6]. Our laboratory has been interested in the Rho family of 

GTPases, namely, Cdc42 and Rac. De-regulation of Cdc42 causes cellular transformation due to 

prolonged signaling of the epidermal growth factor receptor (EGFR) [7, 8] . Moreover, we have 

also unveiled a Cdc42-mTOR link in the development of neural progenitor cells where Cdc42 



90 

 

signals through mTOR to up-regulate the expression of Hes5 and Pax6, which are transcription 

factors important for the maintenance of neuroepithelial and radial glial cells [9]. 

The mammalian target of rapamycin (mTOR) is a member of the PI-3 kinase-like kinase 

family (PIKK) and forms two functionally distinct complexes, mTORC1 and mTORC2 [10-12]. 

mTORC1 is involved in numerous cellular processes such as cell proliferation, autophagy, and 

metabolism [10-15]. It has often been regarded as the master regulator of the cell, as it can be 

activated according to the nutrient and energy status of the cell and also in response to growth 

factors [10-12]. mTORC2 is the other mTOR complex that was initially identified for its role in 

cytoskeletal remodeling [16, 17]. More recently, mTORC2 has also been shown to be involved in 

growth factor signaling and cellular transformation [18, 19]. The proper regulation of the mTOR 

complexes is critical in cells and aberrant activation of either mTORC1 or mTORC2 can lead to 

cancer progression [11, 19, 20]. 

 Numerous small GTPases have been implicated in mTORC1 signaling. Rheb 

(Ras-homology enriched in brain), is a key activator of mTORC1 and is thought to bind mTOR 

directly, leading to the activation of its kinase activity through a poorly defined mechanism [21]. 

The Rag proteins are responsible for mTORC1 localization to the lysosome upon amino acid 

stimulation [22-26]. Rac has recently been shown to bind to both mTORC1 and mTORC2 to 

localize the complexes to the plasma membrane [27]. Also, the knock-out of Rac in mouse 
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embryonic fibroblasts (MEFs) causes a decrease in cell size, a hallmark of mTORC1 inactivation 

[27]. Previous work from our laboratory has suggested that Cdc42, as well as Rac, may play a 

role in propagating signals to mTORC1 in response to the treatment of cells with HRG 

(unpublished results). In this study, we have taken a systematic approach to define the roles of 

three GTPases, Rheb, Rac, and Cdc42, in the HRG-mediated activation of mTORC1.  

 First, we show that Rheb, Rac, and Cdc42 are necessary and sufficient participants in the 

HRG-mediated activation of mTOR/S6 kinase in the HeLa cervical carcinoma cell line. Using a 

knock-down and rescue approach, we find that Rac and Cdc42 each signal independently to the 

key mTORC1 regulator, Rheb, in response to the stimulation of cells with HRG. Dock7, a Rac 

and Cdc42 GEF, also plays a necessary role upstream of mTORC1 and is found in a complex 

with the Rheb GAP, TSC1/TSC2, and mTORC1. Unexpectedly, Dock7 binds to nucleotide-free 

forms of Rheb, and promotes the guanine nucleotide exchange of Rheb, as well as Cdc42 and 

Rac, providing evidence for Dock7 as a novel guanine nucleotide exchange factor for Rheb. 

Together, our results suggest that Dock7 is a unique scaffold that brings together the upstream 

activators of mTORC1 (i.e. Rheb, Rac and Cdc42), as well as the negative regulators of 

mTORC1 (i.e. TSC1/TSC2), to achieve the regulated activation of mTORC1 in response to 

HRG. 
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Materials and Methods 

Antibodies and reagents 

Phospho-mTOR (S2448), phospho-S6 kinase (T389), phospho-ERK, Rheb, Raptor, Rictor, and 

phospho-S6 antibodies were purchased from Cell Signaling Technology. Pan-mTOR, pan-S6 

kinase, Cool-1, Rac, and Cdc42 antibodies were obtained from Millipore. Dock7 and Flag 

antibodies were purchased from Sigma. Myc and HA antibodies were from Covance and 

anti-actin was purchased from NeoMarker. HRG (Heregulin β, EGF domain, residues 178-241) 

was obtained from Sigma. Rapamycin was purchased from Calbiochem. Protein G beads were 

purchased from Invitrogen. 

DNA constructs and siRNAs 

Various Rac, Cdc42, and Rheb wild-type and point mutation constructs were cloned in our 

laboratory. Full-length Dock7 construct was cloned from SKBR3 cDNA into pcDNA3.1. TSC1, 

TSC2, and mTOR DNA constructs were obtained from Addgene [28]. siRNAs of Rheb, Rac, 

Cdc42, and Dock7 were purchased from Invitrogen. 

Cell culture conditions 

The cervical carcinoma cell line, HeLa, was maintained in RPMI 1640 (Invitrogen) containing 

10% FBS (Invitrogen) at 37℃, 5% CO2. For growth factor stimulation, HeLa cells were seeded 

at 7x10
5
 cells on 100 mm cell culture plates (Corning), followed by serum-starvation with RPMI 
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for 20-24 hours. HeLa cells were then stimulated with HRG at the concentration and times 

indicated, followed by cell lysis. HEK-293T cells were maintained in 10% FBS-containing 

DMEM (Invitrogen) at 37℃, 5% CO2. 

Transfection 

HeLa cells were seeded at 7x10
5
 on 100 mm cell culture plates (Corning). Four μg of DNA were 

transfected into the cells the next day using Lipofectamine and Plus Reagent following the 

manufacturer’s protocol (Invitrogen). The cells were recovered in complete medium for 3 hours 

followed by serum starvation for 20-24 hours. For knock-down experiments, HeLa cells were 

seeded as described above, with 2.5 nM siRNA being transfected into the cells the next day using 

Lipofectamine2000 following the manufacturer’s protocol (Invitrogen). For rescue experiments, 

cells were immediately split onto 60 mm cell culture plates (2.5x10
5 

cells) following siRNA 

transfection and allowed to recover overnight. One ug of DNA construct was then transfected as 

described above using Lipofectamine and Plus Reagent. HEK 293T cells were seeded at 3x10
6
 

cells on 100 mm cell culture plates. Four μg of DNA was transfected into the cells the next day 

using Lipofectamine and Plus Reagent following the manufacturer’s protocol (Invitrogen). 

PBD assays 

PBD beads were purchased from Millipore. Cells were cultured as described above. PBD assays 

were performed according to the manufacturer’s protocol using a magnesium-containing lysis 
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buffer. 

Immunoblot analysis 

Cells were lysed with cell lysis buffer (50 mM Hepes, 150 mM NaCl, 1 mM MgCl2, 25 mM NaF, 

1 mM Na3VO4, 50 mM β-glycerophosphate, 10 μg/ml Leupeptin, 10 μg/ml Aprotinin, and 1% 

Triton X-100). The lysates were resolved by SDS-PAGE, and then the proteins were transferred 

to polyvinylidene fluoride membranes. The membranes were incubated with the indicated 

primary antibodies diluted in 20 mM Tris, 135 mM NaCl, and 0.02% Tween-20. The primary 

antibodies were detected with horseradish peroxidase-conjugated secondary antibodies (GE 

Healthcare) followed by exposure to ECL reagent (Perkin Elmer). 

Immunoprecipitation 

293T cells were lysed with cell lysis buffer (50 mM Hepes, 150 mM NaCl, 1 mM MgCl2, 25 mM 

NaF, 1 mM Na3VO4, 50 mM β-glycerophosphate, 10 μg/ml Leupeptin, 10 μg/ml Aprotinin, 0.3% 

CHAPS). Lysates were pre-cleared with Protein G beads on a rotator at 4℃ for 15 min. The 

supernatant was collected and added with anti-tag (Myc, HA, or Flag) antibody for 2 h followed 

by the addition of Protein G beads for 1 h at 4℃. Immunoprecipitates were washed 3 times with 

the lysis buffer followed by the addition of 2X Laemilli buffer. For nucleotide binding to 

HA-tagged Cdc42, Rac, and Rheb, cells were transfected and lysed as described above. Cell 

lysates were then treated with 10 mM EDTA, 10 mM EDTA + 1 mM GDP, or 10 mM EDTA + 
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100 μM GTPγS at RT for 15 min followed by immunoprecipitation as described above.  

GEF activity assays 

Full-length Dock7 was transfected into Cos7 cells, followed by purification using Cobalt beads 

according to the manufacturer’s protocol (Talon). Recombinant Rheb was purified from 

BL21(DE3) using 1x HMN buffer (20 mM Hepes, 5 mM MgCl2, 100 mM NaCl). Final 

concentrations used for the reaction were as follows: 500 nM RhebWT, 5 μM GTPγS, ~100 

nM/~200 nM Dock7 (estimated) to a total of 400 μl in 1x HMN buffer. For the EDTA control, 20 

mM EDTA and 125 mM MgCl2 were added immediately before starting the reaction. 50 μl 

samples were taken from the following time points: 2, 5, 10, 20, 30, 45, 60 min and filtered 

through nitrocellulose membranes (Schleicher & Schuell, BA85) followed by HMN buffer rinses. 

The amount of [
35

S]GTPγS-incorporated Rheb was quantified by scintillation counting using a 

LS 6500 Scintillation System (Beckman). The graph was then normalized to EDTA positive 

control as 100% GTPγS incorporation.  

ImageJ quantification 

The Western blots were quantified using ImageJ (http://rsbweb.nih.gov/ij/) under the Gel 

Analysis Tool. The intensity of the different lanes was then normalized to the control lane, which 

was set to one.  
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Results  

As discussed in Chapter 2, we observe the activation of participants in mTOR signaling, 

including S6 kinase, when the SKBR3 breast cancer cell line is stimulated with HRG. An 

example for this is shown in Figure 3.1A, where SKBR3 cells were serum-starved and then 

stimulated with HRG for the times indicated. Erk is rapidly phosphorylated in response to HRG, 

while S6 kinase phosphorylation (an indicator of mTORC1 activation (reviewed in [29])) is more 

gradual and sustained. A similar pattern can also be observed in HeLa cells, another 

HRG-sensitive cell line, where both S6 kinase and mTOR phosphorylation are gradual and 

sustained in contrast to the rapid and transient activation of ERK (Figure 3.1B).  

 We, and others have demonstrated that Rac and Cdc42 can signal to S6 kinase (unpublished 

results, [30, 31]), and Rac has been shown to bind to mTORC1 and mTORC2 [27]. Thus, we 

were interested in determining if these GTPases are involved in the ability of HRG to activate 

mTORC1 signaling. As a first step, we sought to determine whether Cdc42 and/or Rac could be 

activated in response to HRG, as read-out by a PBD (p21-binding domain of the Cdc42/Rac 

effector, Pak) assay that specifically detects the GTP-bound forms of Cdc42 and Rac [32]. 

SKBR3 and HeLa cells were serum-starved and then stimulated with HRG for the times 

indicated (Figures 3.1C and 3.1D). The cells were then lysed in a HEPES-based, 

magnesium-containing lysis buffer followed by a PBD pull-down. The precipitated proteins were 
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Figure 3.1 mTOR/S6 kinase and Rac/Cdc42 are activated in response to HRG in SKBR3 

and HeLa cells. A. SKBR3 cells were serum-starved for 40-48 h and stimulated with 100 nM 

HRG for the times indicated. Whole cell lysates were collected and the activation of mTOR, S6 

kinase, and ERK was detected by performing Western blotting with phospho-specific antibodies 

for mTOR (Ser2448), S6 kinase (Thr389), and ERK (Tyr202/Tyr204). B. HeLa cells were 

serum-starved overnight and stimulated with 100 nM HRG for the times indicated. The 

activation of mTOR, S6 kinase, and ERK was detected by performing Western blotting as 

described above. C. SKBR3 cells were serum-starved 40-48 h and stimulated with 100 nM HRG 

for the times indicated. Whole cell lysates were collected using a Mg
2+

-containing buffer to 

preserve the nucleotide binding states of Rac and Cdc42. GST-PBD (p21 binding domain of PAK) 

beads were then used to pull-down only the activated forms of Rac and Cdc42. The pulled-down 

products were then subjected to Western blotting for Rac and Cdc42. D. HeLa cells were 

serum-starved overnight and stimulated with 100 nM HRG for the times indicated. PBD assays 

were performed as described above. E. HeLa cells were transfected with either wild-type Rheb, 

constitutively active RacQ61L, or constitutively active Cdc42Q61L followed by overnight 

serum-starvation. Whole cell lysates were collected and subjected to Western blotting with 

phospho-mTOR (S2448), phospho-S6 kinase (T389), pan-S6 kinase, Rheb, Rac, and Cdc42 

antibodies. 
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subjected to Western blotting, probing for Rac and Cdc42. In both cell types, Rac and Cdc42 

were activated within 15 minutes of HRG treatment. The timing and the level of Rac and Cdc42 

activation in response to HRG appeared to be consistent with the activation of mTOR and S6 

kinase. 

 We next wanted to confirm that Cdc42 and Rac are sufficient to activate mTOR and S6 

kinase. To this end, we introduced constitutively active forms of Rac (RacQ61L) and Cdc42 

(Cdc42Q61L) into HeLa cells. As a positive control, we also expressed a wild-type allele of the 

Rheb GTPase. Introducing exogenous, wild-type Rheb is sufficient to activate mTOR, and in 

turn, S6 kinase [21, 33, 34]. Following transfection, cells were serum-starved for 16-20 hours, 

and as an additional positive control, mock control cells were stimulated with HRG for 60 

minutes prior to harvesting. Figure 3.1E shows that individually over-expressing either RhebWT, 

RacQ61L, or Cdc42Q61L in HeLa cells is sufficient to activate mTOR and S6 kinase under 

serum-starved conditions. It also shows that under such conditions, the degree of S6 kinase 

activation by RhebWT, RacQ61L, and Cdc42Q61L is comparable to the treatment of cells with 

HRG.  

Having demonstrated that Rheb, Cdc42 and Rac are sufficient to activate mTOR and S6 

kinase, we determined whether these GTPases play a necessary role in transducing the HRG 

signal to mTORC1. To do this, HeLa cells were transfected with small-interfering RNA (siRNA) 
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for either Rheb, Rac, or Cdc42. Five hours after the transfection, cells were recovered in full 

serum for 24 hours and then serum-starved, followed by HRG stimulation. Scrambled siRNA 

was used as negative control. Figure 3.2A shows that the siRNA successfully knocked-down 

Rheb expression in HeLa cells. In the lanes where Rheb was knocked-down, a decrease in S6 

kinase activation by HRG was also observed, confirming that Rheb is necessary for the 

activation of mTOR and S6 kinase by HRG. The knockdowns of Rac and Cdc42 showed similar 

results, indicating that both Rac and Cdc42 are also necessary for HRG’s ability to activate 

mTOR and S6 kinase (Figures 3.2B and 3.2C). Curiously, despite the high degree of efficiency 

of each of the individual knockdowns, none of the knockdowns were able to dampen the HRG 

effect by more than approximately fifty percent, suggesting the possibility of an inter-play 

amongst these three GTPases in mediating the HRG response.  

We designed a series of knock-down/rescue experiments to methodically dissect what 

relationships might exist between these GTPases in this pathway. First, we started by 

knocking-down Rac or Cdc42, followed by transfection of RhebWT (rescue). In short, HeLa 

cells were transfected with either scrambled siRNA, Rac or Cdc42 siRNA for 5 h, and after an 

overnight recovery period, were transfected with RhebWT. Cells were then serum-starved for 

16-20 h and whole cell lysates were collected and subjected to Western blotting. Figures 3.3A 

and 3.3B show that RhebWT is able to rescue both the Rac and Cdc42 knocked-down in cells, 
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Figure 3.2 Rheb, Rac, and Cdc42 are necessary for the HRG-mediated activation of 

mTOR/S6 kinase. A. HeLa cells were transfected with either control or Rheb siRNA. 

Twenty-four hours after the transfections, cells were serum-starved overnight and then treated 

with or without 100 nM HRG for 60 minutes. Whole cell lysates were collected and subjected to 

Western blotting with phospho-S6 kinase, pan-S6 kinase, Rac, and Rheb antibodies. The 

phospho-S6 kinase blot was quantified using ImageJ. Relative intensities of the bands were 

calculated relative to the control siRNA/HRG-stimulated lane, which was normalized to one. B. 

HeLa cells were transfected with either control or Rac siRNA. Cells were treated as described 

above. The phospho-S6 kinase blot was quantified as described above. C. HeLa cells were 

transfected with either control or Cdc42 siRNA. Cells were treated as described above. 

Phospho-S6 kinase blot was quantified as described above.
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Figure 3.3 Knock-down and over-expression of the small GTPases show that Rac and 

Cdc42 are mutually exclusive in their ability to signal to mTOR/S6 kinase via Rheb. A. 

HeLa cells were transfected with either control or Rac siRNA. Twenty hours after siRNA 

transfections, RhebWT DNA was transfected into the cells. Cells were then serum-starved 

overnight and whole cell lysates were collected and subjected to Western blotting for phospho-S6 

kinase, pan-S6 kinase, Rac, and Rheb. The phospho-S6 kinase blot was quantified using ImageJ. 

Relative intensities of the bands were calculated relative to the control 

siRNA/RhebWT-over-expression lane, which was normalized to one. B. HeLa cells were 

transfected with either control or Cdc42 siRNA. Twenty hours after siRNA transfection, 

RhebWT DNA was transfected into the cells. Cells were then serum-starved overnight and whole 

cell lysates were collected and subjected to Western blotting probing for phospho-S6 kinase, 

pan-S6 kinase, Cdc42, and Rheb. The phospho-S6 kinase blot was quantified using ImageJ. 

Relative intensities of the bands were calculated relative to the control 

siRNA/RhebWT-over-expression lane, which was normalized to one. C. HeLa cells were 

transfected with either control or Rheb siRNA. Twenty hours after siRNA transfection, RacQ61L 

DNA was transfected into the cells. Cells were treated, probed, and quantified as described above. 

Relative intensities of the bands were calculated relative to the control 

siRNA/RacQ61L-over-expression lane, which was normalized to one. D. HeLa cells were 

transfected with either control or Rheb siRNA. Twenty hours after siRNA transfection, 

Cdc42Q61L DNA was transfected into the cells. Cells were treated, probed, and quantified as 

described above. Relative intensities of the bands were calculated relative to the control 

siRNA/Cdc42Q61L-over-expression lane, which was normalized to one. E. HeLa cells were 

transfected with either control or Rac siRNA. Twenty hours after siRNA transfection, 

Cdc42Q61L DNA was transfected into the cells. Cells were treated, probed, and quantified as 

described above. Relative intensities of the bands were calculated relative to the control 

siRNA/Cdc42Q61L-over-expression lane, which was normalized to one. F. HeLa cells were 

transfected with either control or Cdc42 siRNA. Twenty hours after siRNA transfection, 

RacQ61L DNA was transfected into the cells. Cells were treated, probed, and quantified as 

described above. Relative intensities of the bands were calculated relative to the control 

siRNA/RacQ61L-over-expression lane, which was normalized to one. 
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demonstrating that Rheb is able to rescue the ability of Rac and Cdc42 to activate mTOR/S6 

kinase.  

We then performed the reciprocal experiment where we knocked down Rheb and then 

attempted a rescue with either RacQ61L or Cdc42Q61L (Figures 3.3C and 3.3D, respectively). 

The knock-down of Rheb significantly attenuated the ability of both RacQ61L and Cdc42Q61L 

to signal to S6 kinase, again suggesting that Rheb is the immediate activator of mTOR and that 

Rac and Cdc42 are working through Rheb in this activation event. It is interesting to note that 

over-expression of activated-Cdc42 was less impaired by Rheb knock-down, suggesting that Rac 

and Cdc42 may have independent feed-ins to Rheb.  

Having determined that Rac and Cdc42 function upstream of Rheb, we then wanted to 

distinguish between the possibilities that Rac and Cdc42 signal to mTOR/S6 kinase 

independently of one another or that they function in the same pathway. First we knocked-down 

Rac, and then over-expressed Cdc42Q61L. As shown in Figure 3.3E, Cdc42 is able to rescue the 

Rac knock-down. This raises two possibilities: Cdc42 is either downstream of Rac or that Cdc42 

can work independently of Rac and compensate for its knock-down to activate mTOR/S6 kinase. 

We went on to knock-down Cdc42 and examine the effects of RacQ61L over-expression and 

found that activated Rac was sufficient to rescue the ability of Cdc42 to activate S6 kinase 

(Figure 3.3F). Taking Figures 3.3E and 3.3F together, it appears that Cdc42 and Rac are mutually 
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exclusive in their ability to signal to mTOR/S6 kinase via Rheb under conditions of 

over-expression, and that each GTPase can compensate for the loss of the other. 

Since both Cdc42 and Rac can signal through Rheb to activate mTORC1, we next set forth 

to understand the mechanism underlying these relationships. We found a potential clue in the 

guanine nucleotide exchange factor (GEF), Dock7, which has been reported to be 

phosphorylated and activated by ErbB2 (downstream of HRG) to function on Cdc42 and Rac [35, 

36]. To test a possible role for Dock7 in our system, we first examined whether full-length 

Dock7 is sufficient to activate S6 kinase. HeLa cells were transiently transfected with RhebWT, 

Dock7 or RacQ61L and then serum-starved for 20 hours. As an additional positive control, 

mock-transfected cells were stimulated with HRG for 1 hour prior to harvesting. Cell lysates 

were generated and then probed for the phosphorylation of S6 kinase (Figure 3.4A). Dock7 alone 

is able to activate S6 kinase to an extent similar to HRG, Rheb and Rac. We also tested whether 

Dock7 is necessary in activating S6 kinase in response to HRG stimulation. HeLa cells were 

transfected with either scrambled siRNA or Dock7 siRNA followed by recovery and 

serum-starvation. Cells were stimulated with HRG for 1 h before harvesting and lysates were 

subjected to Western blotting. Figure 3.4B shows that knocking-down Dock7 expression inhibits 

the HRG-mediated activation of S6 kinase as well as its downstream target, S6. Together, these 

data suggest an involvement of Dock7 in HRG-mediated activation of mTORC1. 
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Figure 3.4 Dock7 is sufficient and necessary for HRG-mediated mTOR/S6 kinase activation. 

A. HeLa cells were transfected with either mock, wild-type Rheb, Dock7, or constitutively active 

RacQ61L followed by overnight serum-starvation. Mock-transfected cells stimulated with 100 

nM HRG for 30 min before harvesting were used as a positive control for S6 kinase activation. 

Whole cell lysates were collected and subjected to Western blotting with phospho-S6 kinase 

(T389), pan-S6 kinase, V5, HA, and actin antibodies. B. HeLa cells were transfected with either 

control or Dock7 siRNA. Twenty-four hours after the transfection, cells were serum-starved 

overnight and then treated with or without 100 nM HRG for 60 minutes. Whole cell lysates were 

collected and subjected to Western blotting with Dock7, phospho-S6 kinase, pan-S6 kinase, 

phospho-S6, and actin antibodies.
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We then wanted to determine how Dock7 may be playing a role in the context of mTORC1 

signaling. Dock7 was previously identified as a novel binding partner for TSC1/TSC2, the Rheb 

GAP [37]. We proceeded to validate the interaction between Dock7, TSC1, and TSC2 in 

HEK-293T cells, as these cells are routinely used for dissecting the components of mTOR 

complexes [17, 38, 39]. 293T cells were transfected either with Myc-TSC1 or Flag-TSC2. Cell 

lysates were then collected and the expressed proteins were immunoprecipitated with either 

Myc- or Flag- antibodies followed by Western blotting and probing for Dock7. In Figure 3.5A, 

Dock7 is clearly found associated with both TSC1 and TSC2. Based on our observation in 

Chapter 2 that TSC2 is able to bind to mTOR, we suspected that Dock7 may also associate 

within a larger TSC1/TSC2/mTOR complex. As shown in the left panel of Figure 3.5B, 

Myc-mTOR, when transfected into and immunoprecipitated from HEK-293T cells, is able to 

associate with Dock7. To investigate whether these Dock7 interactions existed within the context 

of mTORC1, we probed for an interaction between Dock7 and the mTORC1-specific scaffold, 

Raptor [38]. Myc-tagged Raptor was transfected into HEK-293T cells, followed by 

immunoprecipitation with anti-Myc antibody to precipitate Raptor. As shown in the right panel 

of Figure 3.5B, Dock7, as well as mTOR, is able to bind to Raptor, indicating that Dock7 is a 

component of mTORC1. However, the interaction of Dock7 with Raptor appears to be weaker 

than the interaction between Dock7 and mTOR. This suggests that the interaction of Raptor with  
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Figure 3.5 Dock7 and nucleotide-free Rac and Cdc42 form complexes with TSC1/TSC2 and 

mTORC1. A. HEK-293T cells were transfected with either Myc-TSC1 or Flag-TSC2. 

Twenty-four hours after the transfection, cells were collected with buffer containing 0.3% 

CHAPS. Cells were then immunoprecipitated using anti-Myc or anti-Flag antibodies. The 

immunoprecipitates were subjected to Western blotting for Dock7, Myc-TSC1, or Flag-TSC2. IP: 

immunoprecipitate. WCL: whole cell lysate. B. HEK-293T cells were transfected with either 

Myc-mTOR or Myc-Raptor. Twenty-four hours after the transfection, cells were collected with 

buffer containing 0.3% CHAPS. Cells were then immunoprecipitated using anti-Myc antibodies. 

The immunoprecipitates were subjected to Western blotting for Dock7, Myc-mTOR, Myc-Raptor, 

or endogenous mTOR. C. HEK-293T cells were transfected with Myc-Raptor. Twenty-four 

hours after the transfection, cells were subjected to a second round of transfections with either 

mock, RacT17N, or Cdc42T17N. Whole cell lysates were collected the following day with 

buffer containing 0.3% CHAPS and then immunoprecipitated using anti-Myc antibody. The 

immunoprecipitates were subjected to Western blotting for HA-RacT17N, HA-Cdc42T17N, 

mTOR, and Myc-Raptor. 
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Dock7 may be occurring predominantly in an mTOR-dependent manner. Finally, we examined 

whether Rac and Cdc42 are binding to the Dock7-mTOR-TSC1/2 complex in an 

mTORC1-dependent manner. We co-transfected Raptor, along with either RacT17N or 

Cdc42T17N into 293T cells. Given that Dock7 is a Cdc42/Rac GEF, we expected the 

nucleotide-free forms of Rac and Cdc42 to interact with mTORC1. Indeed, shown in Figure 3.5C, 

Rac and Cdc42 are binding to immunoprecipitated Raptor in a nucleotide-free manner. 

Thus far, we have shown that Dock7 is necessary in HRG-signaling to mTORC1. It also 

shows scaffolding properties for mTORC1 signaling components, including TSC1/2, mTOR, and 

Raptor, and can recruit Rac and Cdc42 to mTORC1. Dock7 has been shown to act as a GEF for 

Rac [36], or Cdc42 and Rac [35], and our laboratory has shown that Dock7 acts as a GEF 

specifically for prenylated Cdc42 and Rac using in vitro liposome systems (Zhou et al., 

submitted). To examine the GEF function of Dock7 in cells, we started by knocking-down 

Dock7 in SKBR3 cells and examining the effect on the activation of Rac using the PBD assay. 

As shown in Figure 3.6A, knocking-down Dock7 significantly attenuated the basal activity of 

Rac in these cells. We also have in vitro data suggesting that a recombinant limit domain of 

Dock7 can serve as a target for Cdc42 (as evidenced by the ability of Cdc42-GTP to bind to 

Dock7 at an allosteric site) (Zhou et al., submitted). This is similar to the dual functions that have 

been reported for other GEFs, including Cool-1 and Dock11 [8, 40]. In these cases, it is thought  
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Figure 3.6 Dock7 is a guanine nucleotide exchange factor for Rac, Cdc42, and Rheb. A. 

SKBR3 cells were transfected either with control or Dock7 siRNA followed by serum-starvation 

for 40 h. Whole cell lysates were collected using a Mg
2+

-containing buffer to preserve the 

nucleotide binding states of Rac. GST-PBD (p21 binding domain of PAK) beads were then used 

to pull-down the activated forms of Rac. The pulled-down product was then subjected to Western 

blotting for Rac. Dock7 knock-down was monitored by semi-quantitative RT-PCR with primers 

specific for Dock7. B. HEK-293T cells were transfected with either HA-Cdc42, HA-Rac, or 

HA-Rheb. Twenty-four hours after the transfection, cells were collected with buffer containing 

1% Igepal and MgCl. Cells either remained in nucleotide-free buffer (EDTA) or incubated with 

GDP or GTPγS. GTPases were then immunoprecipitated using anti-HA antibody. The 

immunoprecipitates were subjected to Western blotting for Dock7, Cool-1, and HA. IP: 

immunoprecipitate. WCL: whole cell lysate. C. Guanine nucleotide exchange assays were 

performed using recombinant Rheb purified from E. coli and Dock7 purified from Cos7 cells as 

described in Materials and Methods. Nucleotide exchange was determined by the percentage of 

GTPγS bound to Rheb in a time-dependent manner. 
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that the differential binding interactions can either facilitate a GTPase signaling cascade and/or 

provide a positive feedback mechanism to enhance signaling.  

To demonstrate that endogenous Dock7 can function as a target for activated forms of 

Cdc42 as well as a GEF for Cdc42 and Rac, HA-tagged Cdc42WT, RacWT, and RhebWT 

(negative control) were transfected into HEK 293T cells. Cell lysates were then collected and 

stripped of the nucleotide by adding EDTA to the lysates, and then supplemented with 

GDP/Mg
2+

 to drive the GDP-inactive state of the GTPases, GTP/Mg
2+

 (GTP-active state), or left 

in EDTA to achieve the nucleotide-depleted state which is known to preferentially bind GEFs. 

The HA-tagged proteins were then immunoprecipitated from the lysates and subjected to 

Western blotting for either Dock7 or Cool-1, as a control. Shown in the left panel of Figure 3.6B, 

we can detect Dock7 being immunoprecipitated together with Cdc42 from treated lysates with 

the following preferences: EDTA>GTP>GDP; consistent with cellular Dock7 not only 

functioning as a Cdc42 GEF but also being able to bind to activated forms of Cdc42. A similar 

pattern of interaction between Cdc42 and Cool-1 is also observed, consistent with previous work 

[8]. On the right-hand panel of Figure 3.6B, we show that Dock7 interacts specifically with Rac 

from EDTA-treated lysates but not from GTP- or GDP-loaded lysates. This is consistent with the 

interpretation that Dock7 predominantly engages Rac as a GEF but not as an effector. In contrast, 

Cool-1 binds to nucleotide-free Rac, as well as GTP-bound Rac, as demonstrated previously [41]. 
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Together, these data suggest that while Dock7 can interact with Cdc42 and Rac as a GEF, the 

activated form of Cdc42 additionally can associate with Dock7. The most unanticipated finding, 

however, was that Rheb can also bind to Dock7, and it does so specifically in the nucleotide-free 

state.  

Rheb has been shown to bind to mTOR in its nucleotide-free state [21]. Since we find 

Dock7 associating with mTOR, it is possible that the interaction we detect between Dock7 and 

nucleotide-free Rheb is being bridged by mTOR. However, an alternate explanation is that 

Dock7 is functioning directly to promote nucleotide exchange on Rheb. To examine the 

possibility of the latter, in vitro nucleotide exchange assays were performed using Rheb and 

Dock7. Recombinant, wild-type Rheb was purified from E. coli in GDP-containing buffers. 

His-tagged Dock7 was transfected into Cos7 cells and purified using Cobalt resin. Guanine 

nucleotide exchange was initiated by the addition of [
35

S]GTPγS to recombinant Rheb in the 

absence or presence of EDTA (positive control), or two different concentrations of Dock7. The 

nucleotide exchange catalyzed by Dock7 was read-out by the incorporation of [
35

S]GTPγS into 

Rheb, as a function of time. As shown in Figure 3.6C, RhebWT alone (dark blue) showed very 

little intrinsic nucleotide exchange activity over the course of one hour, an indication that a GEF 

is needed for a more rapid activation of this GTPase. In the presence of EDTA, we observed a 

rapid exchange of [
35

S]GTPγS onto Rheb verifying that the GTPase is functional, i.e. EDTA 
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chelates the Mg
2+

 from the GTPase, destabilizing the binding of GDP and allowing excess 

[
35

S]GTPγS to bind. In the presence of Dock7, a dose-dependent increase in the formation of 

Rheb-[
35

S]GTPγS is observed. Indeed, at the higher concentration of Dock7, complete nucleotide 

exchange on Rheb is observed over time. Together these data show that Rheb, like Cdc42 and 

Rac, can be activated by Dock7.  

 

Discussion 

In this study, we initially set out to determine the relationship of the small GTPases, namely 

Rac, Cdc42, and Rheb, in HRG to mTORC1 signaling. Using a knock-down and over-expression 

approach, we identified Rac and Cdc42 to work in parallel upstream of Rheb to activate 

mTORC1. We have also discovered that Dock7 not only acts as a GEF for Rac and Cdc42 but 

also as a novel binding partner of mTORC1. The most unexpected finding, however, is that 

Dock7 displays properties of a Rheb GEF. 

 The search for a Rheb GEF is an ongoing effort in the field. It has always been debated 

whether a Rheb GEF is truly needed [42, 43]. Since the cellular Rheb-GTP levels are high 

compared to other small GTPases [33], one might hypothesize that only a GAP is required for 

turning-off Rheb. However, to achieve activation in a timely manner, a GEF is necessary, 

especially considering the slow intrinsic nucleotide exchange exhibited by wild-type Rheb 
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(Figure 3.6C, dark blue line). The fact that Dock7 interacts with TSC1/2 and mTORC1 (Figures 

3.5A and 3.5B) makes it an attractive candidate as a Rheb GEF. This finding is also supported by 

a previous observation that mTOR preferentially interacts with nucleotide-free and GDP-bound 

Rheb but not GTP-bound Rheb, even though GTP-bound Rheb is necessary for the activation of 

mTORC1 [21]. Dock7, a Rheb GEF that stably interacts with mTOR, would provide a plausible 

explanation for this observation. Additionally, the interaction with the Rheb GAP suggests that 

spatially in the cell, Dock7 has access to inactive Rheb. Furthermore, once Rheb is activated by 

Dock7, mTORC1 is in close proximity to be stimulated by the freshly generated Rheb-GTP. 

There is also the possibility that TSC and Dock7 are in a complex to ensure the activity of the 

GAP and GEF for Rheb are tightly regulated. The activation of the GAP may result in the 

inactivation of the GEF, and vice versa, thus achieving the fine-tuning required for mTORC1 

signaling.  

 It is also interesting that Dock7 not only acts as a Rac and Cdc42 GEF but also a target for 

activated Cdc42. This adds another level of complexity to how Dock7 may be regulating 

mTORC1 signaling. Two possibilities arise: First, we have in vitro evidence showing the binding 

of Cdc42-GTP enhances Dock7’s GEF activity toward GDP-bound Cdc42 (Zhou et al., 

submitted). It may be that not only the GEF activity of Dock7 toward Cdc42 is augmented but 

also its GEF activity toward Rheb (as depicted in Figure 3.7B). This hypothesis is in agreement  
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Figure 3.7 Model depicting Rac, Cdc42, Rheb, and Dock7 are regulating HRG-mediated 

mTORC1 activation. A. HRG binds to and activates ErbB3/4 receptors which in turn activates 

ErbB2. Activated ErbB2 phosphorylates Dock7, activating its GEF activity towards Cdc42 and 

Rac. B. One hypothesis is that activated Cdc42 binds to Dock7 at an allosteric site which 

enhances Dock7’s ability to act as a Rheb GEF. C. Another hypothesis is that Dock7 forms a 

stable interaction with mTORC1 and the TSC complex and this complex enables Rheb to be 

turned off (C-1). Once Cdc42 is activated, it binds to the allosteric site on Dock7, which then 

destabilizes the TSC complex allowing Rheb to remain active (C-2). D. Rheb activates mTORC1 

and its downstream substrate S6 kinase. 
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with the requirement that Cdc42 acts upstream of Rheb for mTORC1 activation. The other 

possibility is whether the allosteric binding of Cdc42-GTP to Dock7 changes its interacting 

partners. We observed that Dock7 forms a stable complex with TSC1/2 and mTORC1 under full 

serum/growing conditions (Figure 3.5). It would be interesting to see if the activated form of 

Cdc42 alters the equilibrium of this interaction. As illustrated in Figure 3.7C, the allosteric 

binding of Cdc42-GTP weakens the interaction of TSC1/2 with Dock7 and mTORC1, allowing 

Rheb to remain active. Further investigation is needed to prove this hypothesis. We do, however, 

have preliminary data showing wild-type Rac and Cdc42 enhancing the formation of mTORC1 

(Figure 3.8).  

The enhancement of mTORC1 formation by wild-type Rac and Cdc42 provides yet another 

clue as to how the small GTPases are regulating mTORC1 activity. By bringing Raptor and 

mTOR together, Rac and Cdc42 are increasing the pool of mTORC1 in the cell and as a 

consequence, recruitment of mTORC1 substrates such as S6 kinase and 4E-BP1 [44]. As a 

control, wild-type Rheb was unable to enhance mTORC1 formation but was still needed for its 

activation, suggesting differential roles for Rac and Cdc42 compared to Rheb. 

We have concluded from Figure 3.3 that Rac and Cdc42 are working through independent 

pathways in Rheb/mTORC1 activation. However, it has been unclear as to how Rac contributes 

to this activation apart from mTORC1 recruitment, as shown in Figure 3.8. A previous report  
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Figure 3.8 Over-expression of RacWT and Cdc42WT enhances mTORC1 formation. 

HEK-293T cells were transfected with Myc-mTOR. Twenty-four hours after the transfection, 

cells were subjected to a second round of transfections with either mock, RacWT, Cdc42WT, or 

RhebWT. Whole cell lysates were collected the following day with buffer containing 0.3% 

CHAPS and then immunoprecipitated using anti-Myc antibody. The immunoprecipitates were 

subjected to Western blotting for Raptor, Rictor, and Myc-mTOR.
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shows a direct binding of Rac to mTOR through its C-terminal domain regardless of its 

nucleotide-binding status [27]. We have also shown in Figure 3.5C that nucleotide-free Rac and 

Cdc42 bind to Raptor and mTOR. However, the stoichiometry of this interaction differs from the 

amount of Dock7 immunoprecipitating with Raptor (Figure 3.5B). This suggests either Raptor 

itself is acting as a pool for inactive Rac and Cdc42, or there is another GEF in the complex that 

has not yet been identified. One possible candidate is Cool-1. We have unpublished data showing 

the knock-down of Cool-1 inhibited HRG-mediated activation of mTORC1 in SKBR3 cells. Also, 

shown in Figure 3.6B, Cool-1 exhibits the same properties toward Rac, as Dock7 displays for 

Cdc42, in that Cool-1 can be an activator and an effector for Rac. As for the direct binding of 

Rac and Cdc42 to Raptor, this would not be the first instance of a small GTPase binding to 

Raptor. The Rag proteins, namely RagA and RagB, directly interact with Raptor in a 

GTP-dependent manner upon amino acid stimulation to recruit mTORC1 to the lysosomal 

surface [22-26, 45]. It will therefore be interesting to see whether Rac and Cdc42 have the same 

ability to interact with Raptor and affect the localization of mTORC1.  
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Chapter 4 

 

Conclusions and Perspectives 

 

Over the past two decades, our laboratory has been interested in HRG-signaling: From the 

discovery of ErbB3 as the bona fide receptor for HRG, to an end-point of its signaling, the 

nuclear cap-binding complex. Over the years, we have identified mTOR, an essential hub for 

nutrient and growth factor sensing, as an important intermediate in HRG-signaling. mTOR has 

gained much interest since its discovery in the 1990’s. Research on the myriad of functions and 

the complexity of regulation for mTOR has been central in understanding cell homeostasis and 

proliferation. Here in this thesis, I have shown two alternative pathways in which mTORC1 can 

be activated by HRG. 

 In Chapter 2, I identified the importance of mTORC2 signaling to mTORC1 in 

ErbB2/HRG-mediated cellular transformation in SKBR3 breast cancer cells. mTORC2 was 

initially identified to play a role in actin cytoskeletal remodeling [1, 2], but with the discovery of 

novel mTORC2 targets, mTORC2 has been implicated in cellular functions such as cell 

proliferation, survival, and metabolism [3]. By utilizing rapamycin and an ATP-competitive 

inhibitor of mTOR, INK128, I was able to differentiate between mTORC1 and mTORC2 
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activation by HRG. In HRG/ErbB2-mediated signaling to AKT, mTORC2 is required for the 

phosphorylation on AKT (S473) and this precedes the activating PDK1 phosphorylation at AKT 

(T308). AKT phosphorylates TSC2, making TSC2 unable to function on Rheb. Rheb remains in 

its GTP-bound form and activates mTORC1 (summarized in Figure 4.1, left panel). By 

performing a Rictor knock-down, which decreased mTORC2 availability in the cell, the 

HRG-mediated transforming capability of SKBR3 was reduced.  

In Chapter 3, I took a mechanistic approach to identify how small GTPases, namely Rheb, 

Rac, and Cdc42, are playing a role in HRG-mediated mTORC1 activation. Using a knock-down 

and rescue approach, I was able to delineate that Rac and Cdc42 are upstream of Rheb, and that 

they signal independently of one another to mTORC1 in this context. At this time, it is not clear 

as to the individual roles of Rac and Cdc42 in achieving mTORC1 activation, and whether under 

more physiologic conditions, the two GTPases might show functional redundancy. Additionally, 

I found that Dock7, a GEF for Rac and Cdc42, serves as a unique scaffold for the G-proteins and 

mTORC1. The most intriguing finding, however, is that Dock7 also possesses properties of a 

Rheb GEF (summarized in Figure 4.1, right panel). It has long been hypothesized that only a 

GAP is needed for the regulation of Rheb, so the identification of a putative Rheb GEF will be of 

significant interest to the field. 

The focus of this thesis is on the pathways that lead to the activation of mTORC1 in 
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Figure 4.1 Summary and model of mTORC2-Rac/Cdc42-Dock7 cross-talk. As described in 

Chapter 2, HRG activates mTORC1 through an mTORC2-dependent pathway in SKBR3 cells 

(left panel). In Chapter 3, Rac/Cdc42 and Dock7 are necessary for mTORC1 activation in HeLa 

cells. Dock7 can act as a scaffold for mTORC1 and also a Rheb GEF (right panel). mTORC2 has 

been shown to regulate the Rho GTPases. TSC2 is also necessary for Rac and Cdc42 activation. 

Dock7 interacts with mTORC2, TSC2, and mTORC1, serving as scaffold, thus creating a 

potential cross-talk between mTORC2 and Dock7/Rho GTPases in regulating the activation of 

mTORC1 (middle panel). 
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response to HRG. One obvious question arises: Are the pathways described in Chapter 2 and 

Chapter 3 interconnected? As previously mentioned, mTORC2 was initially discovered to play a 

role in cytoskeletal remodeling [1, 2]. Constitutively active forms of Rac and RhoA have been 

shown to rescue the actin defects due to the loss of functional mTORC2 components such as 

mLST8 and Rictor [2]. Also, a decrease in Rac-GTP levels has been observed in NIH3T3 cells 

following a Rictor knock-down [2]. This suggests that AKT and TSC2 may not be the only point 

of convergence between the mTOR complexes. From what we observed in Chapter 3, and the 

implication that Rho GTPases can signal downstream of mTORC2, suggests another junction in 

the pathway. Additional evidence for the potential crosstalk between mTORC2 and mTORC1, as 

mediated by the Rho GTPases is a Rac-specific GEF, P-REX1. P-REX1 interacts with both 

mTORC1 and mTORC2, however, P-REX1 only displays GEF activity when bound to mTORC2 

[4]. Moreover, Rac has also been shown to bind to both mTOR complexes at the plasma 

membrane [5]. We observed similar properties for Dock7 in that it interacts with both mTOR 

complexes (data not shown). However, we do not have evidence yet as to whether Dock7 can 

regulate the activity of both mTOR complexes. Another piece of evidence for the 

mTORC2-Rac/Cdc42-mTORC1 crosstalk is the necessity for TSC2 in mTORC2 activation [6]. 

As shown in Figure 2.5 of Chapter 2, we observed that TSC2 co-immunoprecipitates with both 

mTOR complexes, suggesting TSC2 serves as a node for mTOR cross-talk. In addition, TSC2 
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has also been shown to control cell polarity and migration through Rac and Cdc42 [7]. It is still 

unclear if this regulation is through mTORC2. However, data from our laboratory and others 

suggests that mTORC1 and mTORC2 may share more players than initially accounted for, i.e. 

Dock7, Rac/Cdc42, TSC1/TSC2. Therefore, it is of great interest to decipher the role of each of 

these players in achieving the fine-tuning that is necessary for mTOR signaling (Figure 4.1).  

As described in Chapter 2, HRG-mediated mTORC2-mTORC1 activation is important for 

the ability of SKBR3 breast cancer cells to exhibit colony formation. If such crosstalk is 

potentially mediated by Rac/Cdc42 and Dock7 as hypothesized above, another logical question 

to ask would be whether Dock7 contributes to the tumorigenic capability of cancer cell lines. We 

have evidence that Dock7 is not only expressed in neuronal systems but is also expressed in the 

P19 embryonic carcinoma cell line (data not shown), 293T human embryonic kidney cells, breast 

cancer SKBR3 cells, and the HeLa cervical carcinoma cell line. It will be interesting to 

determine whether Dock7 expression and/or its GEF activity is up-regulated in cancer cell lines 

in comparison to normal cells. Considering Dock7’s potential to function as a Rheb GEF, and 

that Rheb has been shown to be over-expressed in certain cancers [8, 9], this is a plausible 

hypothesis. Furthermore, if Dock7 is up-regulated in tumor cells, what aspect of tumorigenesis is 

Dock7 affecting? Is it controlling cell size and proliferation by its ability to act as an mTORC1 

regulator? Or is it affecting the migration and invasion capability of the cancer cells as an 
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activator of Rac and Cdc42? These are all questions that we are very interested in answering. 

 Additional clues as to what cellular functions Dock7 is performing may be garnered by 

determining its localization. The localization of the various signaling components is crucial in 

understanding the functions of the different signaling pathways. For example, the Rag proteins 

are important in sensing amino acids and localizing mTORC1 to the lysosome to be activated by 

Rheb [10-12]. We have preliminary data showing that Dock7 localization resembles that of the 

mitochondria in HeLa cells (Figure 4.2, cell fractionation data not shown). This is very surprising, 

as Dock7 can be activated by the ErbB2 receptor [13], and PIP3 has been shown to bind to the 

DHR1 region of Dock180 [14], leading to the hypothesis that Dock7 localizes to the plasma 

membrane. Is it possible that Dock7 is regulating a mitochondrial-specific function of mTORC1? 

mTORC1 has been shown to localize to the outer membrane of the mitochondria [15, 16]. 

Inhibition of mTORC1 by rapamycin results in a general decrease of mitochondrial metabolism, 

as exhibited by lowered oxygen consumption and tri-carboxylic acid cycle intermediates in 

Jurkat cells [16, 17]. Understanding the regulation of Dock7 may provide novel insights into how 

mTOR may be playing a role in mitochondrial functions. 

 In this thesis, I have furthered our understanding of how HRG signals to mTORC1, by 

identifying two pathways that lead to the activation of mTORC1, and by demonstrating the 

ability of Dock7 to function as a novel Rheb GEF. The long term goal will be to understand 
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Figure 4.2 Dock7 localization resembles that of mitochondria. Top: HeLa cells were fixed in 

4% paraformaldehyde and stained with anti-Dock7 antibody (Sigma) and Texas Red-conjugated 

secondary antibody (Invitrogen). Bottom: HeLa cells were treated with 25 nM MitoTracker 

(Invitrogen), a mitochondrial probe, for 15 min before fixing with 4% paraformaldehyde. Cells 

were visualized using fluorescence microscopy 
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whether these signaling pathways and players are unique to HRG signaling to mTORC1, or if 

they are also responsible for other aspects of mTORC1 signaling. For example, do other growth 

factors share these signaling pathways? Also, are Rac, Cdc42, and Dock7 important for the 

amino acid-sensing capabilities of mTORC1? In addition, what is the broader implication of this 

signaling in other cell types? What cellular functions can be achieved through this signaling in 

either normal cells or cancer cells? Answering these questions will greatly add to what is known 

about mTOR signaling and function. 
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