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Human malaria parasites are vectored primarily by three mosquito species of the genus 

Anopheles, and new technologies and strategies to control disease transmission by 

targeting the mosquito vector have been proposed or are in development.  The success 

of these strategies depends on knowledge of genetic variation at relevant loci in targeted 

mosquito populations.  However, we know very little about the selective forces shaping 

genetic variation of proteins involved in the mosquito-parasite interaction that could 

potentially be developed for intervention.  Genetic variation in populations is largely 

shaped by natural selection, demography, and genetic drift.  I used population genetic 

approaches to study the historical demographic and selective events of multiple 

populations of one of the primary vectors, Anopheles gambiae.  Statistical inference 

through comparisons of population samples simulated under a variety of demographic 

models to genomically distributed empirical re-sequencing data revealed evidence for 

both historical population growth and migration in the M and S molecular forms, two 

insipient species of A. gambiae.  Importantly, significantly different demographic histories 

were inferred for the two molecular forms.   Both forms show evidence of population 

growth that predated the agricultural revolution, which has been suggested as a cause of 

population growth in this system.  Novel vector-based disease intervention strategies are 

largely based on two types of mosquito proteins: non-immune proteins that physically 

interact with the malaria parasite during parasite development and immune genes 

involved in the anti-malaria immune response.  To test whether two transmission-

blocking vaccine candidate proteins saglin and laminin are adaptively evolving, I 
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sampled alleles from wild caught populations of the M and S molecular forms and 

analyzed both intraspecific and interspecific patterns of variation using population 

genetic tests.  Neither protein showed significant evidence for positive selection in these 

populations.  On the contrary, these proteins are evolving neutrally, one protein is 

evolving under particularly strong purifying selection, suggesting that it may be relatively 

reliable vaccine target.  Immune genes show different patterns of evolution, however.  I 

sampled alleles at 28 candidate immune genes in wild caught samples of three 

populations of A. gambiae: the M and S molecular forms and the recently discovered 

and genetically distinct GOUNDRY population.  Population genetic neutrality tests 

revealed striking divisions of putative selection signals among these strata, with only 1 of 

the 11 loci that rejected the neutral model being shared among the populations.  

Interestingly, the S molecular form showed no evidence of positive selection at any loci.  

Putative positive selection was identified at loci that encode immune proteins from a 

variety of functional classes.  When considered in the context of differences between the 

larval ecologies of these populations, these results point to a complex division of 

selection regimes among these strata of A. gambiae, probably related to larval 

pathogens encountered during niche expansion in the M molecular form and 

GOUNDRY.    

 

Recent advancements in DNA sequencing technology make the prospects of whole-

genome sequencing-based population genomic studies likely for Anopheles mosquitoes 

in the near future, but this so-called ʻnext-generation sequencingʼ (NGS) is complicated 

by relatively high sequencing error rates and subsequent uncertainty in genotype 

inference.  To explore potential biases and statistical power of NGS-based population 

genomic studies, I used a simulation approach to identify biases introduced into 

demographic analysis, tests for positive natural selection, and analysis of genetic 

differentiation between populations.  At relatively shallow sequencing depth (4x), 
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demographic inference and estimates of genetic differentiation are systematically biased, 

and positive selection can only be reliably detected if it is strong and recent.  Many of the 

biases are mitigated and statistical power improved when sequencing depth is increased 

to even 8x, and 15x recovers the population genetic signals almost completely.  This 

analysis provides insight into the biases that can be expected in NGS-based studies, 

and provides parameter values that can be used to inform the design of future NGS-

based studies. 

  

Anopheles funestus is a primary vector of malaria, but little is known about the basic 

biology and few genetic resources are available for this species.  I used next-generation 

Illumina RNA-sequencing technology to sequence and assemble the transcriptome of A. 

funestus de novo, generating over 15,000 putative transcripts.  I annotated the 

transcriptome through comparisons to the sequenced genomes of other Dipteran insects 

and functional domain databases, identified over 300 putative immune genes, and 

mapped the raw sequence reads back to the transcriptome and identified over 300,000 

potential genetic variants.  These data provide the largest and most exhaustive 

sequence and bioinformatic resource as well as putative genetic variants that can be 

developed for population genetic or mapping studies for this system 
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I was born around Christmas to Leslie and Douglas Crawford in Leesburg, VA in 1980, 

joining my brother Jeffrey who had just turned two years old.  We lived on a non-working 

farm in West Virginia till the age of 8 when we moved to Baltimore, MD so that my 

mother could pursue at Masters Degree in movement therapy at Goucher College.  To 

avoid the pitfalls of the crumbling Baltimore City school system, my brother and I were 

switched from the local public school to the Waldorf School of Baltimore, where we 

enjoyed a wonderful blend of artistic and academic pursuits and spent lots of time 

outdoors, particularly in the woods of the Cylburn Arboretum next door.  For high school, 

we returned to the public school system in Baltimore County to attend Towson High 

School.  My interest in the natural world surely began early with my experiences as a 

young person, but several classes in high school with Mr. Gosnell and Mr. Lear provided 

my first taste of more formal biological education that I can credit as the beginning of a 

long pursuit of scientific knowledge.  Despite a clear interest in biology, I enrolled in the 

Commercial Music degree program at The University of Memphis in Tennessee 

motivated to pursue my passion for music.  This diversion lasted only a year before I 

transferred to Georgetown University in Washington, D.C. and switched my major to 

Biology.  As a relatively small Biology department, my options for research were 

somewhat limited, but I found a home in the Plant-Insect Interactions lab where I 

conducted senior thesis research studying the role of olfaction and induced plant 

chemicals in predatory Polistes paper wasp learning under they supervision of Dr. 

Martha Weiss.  While at Georgetown, I also had my first exposure to Cornell University 

through the Field Marine Science course I completed on Appledore Island in the Isle of 

the Shoals off the coast of Maine.  Both my thesis research and my experience on 

Appledore Island cemented my interest in pursuing biological research in a more formal 

setting.  After graduating, I remained at Georgetown and worked as a 
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research/laboratory technician with Dr. Peter Armbruster.  Research in the Armbruster 

Lab focuses on the rapid ecological adaptation of invasive populations of the Asian Tiger 

mosquito Aedes albopictus using both ecological and molecular techniques, providing 

me the opportunity to develop molecular biology skills and think about ecology at the 

molecular level.  Interested in learning more about mosquitoes, I accepted a one-year 

post-baccalaureate fellowship to work on ecological aspects of insipient speciation in 

Anopheles gambiae under the supervision of Dr. Tovi Lehmann at the National Institutes 

of Health.  I found the Anopheles system (and mosquitoes in general) to be fascinating 

and a good system to study the process of adaptation, and liked that research involving 

this system could be medically relevant.  In response, I joined the laboratory of Dr. Brian 

P. Lazzaro in the Entomology Department at Cornell University with the intention of 

studying life-history trade-offs at the organismal level in A. gambiae to identify trade-offs 

that limit the anti-malaria immune response in these mosquitoes.  However, in my first 

semester at Cornell I completed Introduction to Population Genetics and shifted my 

focus to use population genetic tools to study natural variation in populations of 

Anopheles vectors to understand the role of natural selection in shaping the Anopheles 

immune response.  In the process, I have learned a great deal about the biology of 

mosquitoes, theoretical and empirical population genetics, and the process of conducting 

sound scientific research.  I hope to continue conducting population genetic research, in 

both mosquitoes and other systems, for many years to come to address fundamental 

questions in evolutionary biology in hopes of applying these findings in medically 

relevant settings.   
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CHAPTER 1: 

INTRODUCTION 
 

The human malaria parasite, Plasmodium falciparum, is vectored predominantly and 

most efficiently by only three species of mosquitoes in sub-Saharan Africa: Anopheles 

gambiae, Anopheles arabiensis, and Anopheles funestus (Collins and Paskewitz 1995).  

The parasite is remarkably specific and adapted to these vector species.  Many other 

mosquito species are exposed to infectious human blood meals, sometimes on a daily 

basis in endemic areas, but the parasite fails to complete development and transmission 

is blocked (Billingsley and Sinden 1997; Sinden, Alavi, and Raine 2004).  Even within the 

highly permissive species, a large proportion of parasites are killed and potential 

infections are limited or eliminated completely, owing in part to the deployment of a 

potent and efficient mosquito innate immune response that limits parasite development 

(Vaughan, Hensley, and Beier 1994; Luckhart et al. 1998; Gouagna et al. 1998; Han et 

al. 2000; Frolet et al. 2006; Hillyer, Barreau, and Vernick 2007).  Collectively, these 

features of the malaria system mean that malaria is transmitted through a very small 

conduit that is dictated by both the parasite adaptation to a small number of mosquito 

species and the efficacy of the mosquito immune response to parasite infection.  An 

important implication of this fact is that the mosquito immune response (and also the 

human immune response) is perhaps the most potent and effective mechanism of 

disease control available, and so should be carefully studied to identify opportunities for 

manipulation or augmentation that could further reduce disease transmission (Vernick 

and Waters 2004).  Despite an impressive body of work functionally dissecting the 

mosquito-parasite interaction (reviewed in Yassine and Osta 2010; Cirimotich et al. 

2010), less is known about the evolutionary and ecological contexts that have shaped 
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this interaction and influence the outcome.  The research presented in this dissertation 

focuses on the evolutionary component, but the results also provide some insight into 

ecological factors affecting the mosquito-malaria system as well.  

 The host immune response is at the center of host-pathogen interactions, so 

understanding this system is fundamental.  As a result of its crucial role in the conflict 

between hosts and pathogens, immune system molecules tend to be rapidly evolving, as 

was first postulated over a century ago (Biffen 1905; Haldane 1949).  In Drosophila, 

molecules involved in the innate immune response as a class evolve faster than the 

genome on average (Sackton et al. 2007; Obbard et al. 2009).  But rapid evolution is not 

a feature of all molecules and sub-classes of molecules involved in the immune 

response (Sackton et al. 2007; Lazzaro 2008; Waterhouse et al. 2007), making it 

important to identify which components of the immune system may be evolving in 

response to pathogenic pressure and to elucidate details and patterns of evolution 

among the molecules in play.  In addition to the immune system, structural and receptor 

proteins are exploited by invading pathogens including Plasmodium and may also play a 

role in the host-pathogen conflict.  Multiple proteins have been identified in Anopheles 

mosquitoes that physically interact with the malaria parasite during tissue invasion or 

recognition (Brennan et al. 2000; Arrighi et al. 2005; Rodrigues et al. 2012).  These 

physical interactions have been proposed as potential opportunities for intervention and 

disease control, using transmission-blocking vaccines for example (Dinglasan and 

Jacobs-Lorena 2008), and understanding the evolutionary history of these host 

molecules is essential for development and success of such technologies.      

 One classical model for host-pathogen interactions is characterized by 

evolutionarily rapid and repeated reciprocal fixations of adaptive genetic variants in both 

the pathogen and the host in what is often called a host-pathogen co-evolutionary ʻarms 
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raceʼ (Dawkins and Krebs 1979).  Over long time scales, rapidly evolving proteins can 

accumulate multiple amino substitutions, and statistical tests have been developed to 

detect this pattern through comparisons of the rate of nucleotide substitutions at non-

synonymous, amino-acid changing positions relative to the rate of substitution at silent 

sites (McDonald and Kreitman 1991; R Nielsen and Yang 1998).  During the time 

surrounding a selective event (i.e. shorter time-scale) when an evolutionarily favored 

genetic variant rises to high frequency in the population or species through the action of 

positive selection, sometimes even to fixation, patterns of intraspecific linked genetic 

variation are altered in the genomic region surrounding the selected site.  This so-called 

ʻgenetic hitchhikingʼ effect leads to several hallmark signatures, including the local 

elimination of genetic variation, an enrichment of low and high frequency genetic variants 

in the derived state, as well as an increase in haplotype structure and homozygosity 

(Smith and Haigh 1974; Braverman et al. 1995; Przeworski 2002; Sabeti et al. 2002).  

Statistical tests that detect these signatures have been developed as a means to identify 

positively selected loci (Tajima 1989; Fay and Wu 2000; Kim and Stephan 2002; Sabeti 

et al. 2002).  However, the signature of genetic hitchhiking is complex and fleeting, 

detectable most reliably in only certain phases of the selective event, and detecting this 

signature is further complicated by the confounding effects of demographic shifts, 

background selection, population structure and variations in mutation and recombination 

rates (reviewed in Nielsen 2005).   

 Prime among concerns in Anopheles mosquitoes is the highly complex 

demography and population structure in this system.  Originally thought to be a single 

species based on morphology, Anopheles gambiae sensu lato has been taxonomically 

divided into a seven member species complex, including species that differ in 

remarkable ways such as blood-meal host preference and preference for fresh versus 
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salt water larval habitats (Krzywinski and Besansky 2003).  Among these members, the 

type species Anopheles gambiae sensu stricto has been studied most thoroughly and 

has been found to be comprised of at least three insipient species, termed the M 

molecular form, the S molecular form, and GOUNDRY, with the M and S molecular 

forms being much more closely related to each other than either is to GOUNDRY (della 

Torre et al. 2001; Riehle et al. 2011).  Genetic exchange among these insipient species 

is very limited, and population differentiation is genomically widespread between the M 

and S molecular forms (Lawniczak et al. 2010), although the genomic distribution of 

differentiation between GOUNDRY and the M and S molecular forms is not yet well 

understood.  Both ecological and molecular data have led to suggestions in the literature 

that some compartments of this species are adapting to novel, perhaps human-derived, 

environments and may have experienced population shifts as a result (M Coluzzi et al. 

1979; Donnelly, Licht, and Lehmann 2001; Mario Coluzzi et al. 2002).  The M and S 

molecular forms of A. gambiae differ in a number of ecological and behavioral 

phenotypes (reviewed in Lehmann and Diabate 2008), although how these difference 

impact disease transmission is not yet clear.  Chromosomal inversions also play a 

significant role in the ecology and evolution of this system; over 120 polymorphic 

inversions have been detected in natural populations of species in the complex, 10 of 

which are fixed between species, and multiple large inversions show strong correlations 

with ecological clines (M Coluzzi et al. 1979; Mario Coluzzi et al. 2002).  Many decades 

of study have focused largely on A. gambiae s.s., and some of the cryptic and complex 

details of this system are beginning to come into focus.  Much less is known about the 

other primary vectors, A. arabiensis and A. funestus, although the limited data available 

suggests evidence of cryptic substructure and ecological heterogeneity within these 

species as well, highlighting the need for more attention to be focused on these systems  
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Overall, the complexities of this system continue to develop, and rigorous analysis of 

genetic variation, particularly with the goal of identifying the signatures of natural 

selection, can only move forward once these processes are better understood.   

 In this dissertation, I describe research that focuses on patterns of evolution at 

protein coding sequences in populations of two of the three primary vectors, A. gambiae 

and A. funestus, with the goal of understanding the contributions of natural selection and 

non-selective demographic processes in shaping genetic variation in these species.  

Chapter 2 is a statistical inference of the demographic history of the M and S molecular 

forms of A. gambiae that uses the statistical fit of data simulated under a variety of 

demographic models to empirical re-sequencing data from approximately 100 genes 

distributed around the genome. In addition to distinguishing between population growth, 

population bottleneck, and migration models, I use population genetic theory to estimate 

the timing of population shifts and demonstrate that the data are not consistent with the 

long-held hypothesis that demographic shifts in mosquito populations stemmed from the 

agricultural revolution in Africa.  Chapter 3 is a population genetic analysis of genes 

encoding the salivary gland protein saglin and a basil lamina structural protein laminin, 

both of which have been shown to interact physically with malaria parasites.  Analysis of 

intraspecific genetic variation data as well as interspecific comparative data reveals no 

evidence for non-neutral evolution at either protein in either the M and S molecular 

forms.  Chapter 4 is an additional population genetic analysis of re-sequencing data at 

immune genes to test whether these immune genes bear the signature of positive 

selection in the M and S forms and GOUNDRY.  I found signals of putative positive 

selection at 11 genes, but only one signal is shared among populations, and no signals 

are found in the S form population, leading to the interpretation that the signals identified 

in the M form and GOUNDRY may reflect ongoing niche specialization in these two 
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populations.  Chapter 5 is a simulation study assessing the power and accuracy of 

population genomic analyses based on whole-genome re-sequencing data generated by 

new high-throughput DNA sequencing technologies (next-generation sequencing).  This 

analysis illustrates that deeper sequencing is needed when the experimental goal is 

demographic inference or analysis of genetic differentiation among closely related 

populations, but that tests for positive selection retain significant power and accuracy 

with shallow read depths, particularly when positive selection is strong and recent.  

Chapter 6 presents the development of a novel approach to de novo transcriptome 

assembly from short-read sequence data in the absence of a sequenced genome.  This 

approach is applied to A. funestus, which is an important vector but for which virtually no 

genomic resources existed.  From this assembly approach, I obtain a final set of over 

15,000 putative cDNA transcripts (contigs) that are annotated through comparisons to 

Dipteran species with sequenced genomes and functional domain databases. Many 

immune genes are identified in the contig set, and read mapping back to the contig set 

reveals over 300,000 putative single nucleotide polymorphisms, both representing 

significant contributions to the data-poor A. funestus system that can be used in future 

studies by the research community.   Overall, the work I present in this thesis makes 

significant contributions to our understanding of the evolution of A. gambiae, particularly 

at immune genes, provides valuable insights and resources for future studies of A. 

funestus, and establishes informative parameters for design and implementation of 

population genomic studies in any system.   
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ABSTRACT 

 Anopheles gambiae is a primary vector of Plasmodium falciparum, a human 

malaria parasite that causes over a million deaths each year in sub-Saharan Africa. 

Population genetic tests have been employed to detect natural selection at suspected 

An. gambiae anti-malaria genes, but these tests have generally been compromised by 

the lack of demographically correct null models.  Here, we used a coalescent simulation 

approach within a maximum likelihood framework to fit population growth, bottleneck and 

migration models to polymorphism data from Cameroonian An. gambiae.  The best-fit 

models for both the 'M' and 'S' molecular forms of An. gambiae included ancient 

population growth and a high rate of migration from an unsampled subpopulation.  After 

correcting for differences in effective population size, our models suggest that the 

molecular forms expanded at different times, and both expansions significantly pre-date 

the advent of agriculture.  We show that correcting null models for demography 

increases the power to detect natural selection in An. gambiae. 
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INTRODUCTION 

Anopheles gambiae sensu stricto (hereafter An. gambiae) is a primary vector of 

Plasmodium falciparum (Collins and Paskewitz 1995), a human malaria parasite 

responsible for the death of an estimated 1 million people each year in sub-Saharan 

Africa, most of whom are children under the age of 5 (WHO/UNICEF World Malaria 

Report 2008).  Development of novel technologies for controlling disease transmission, 

including genetic engineering of Plasmodium-resistant transgenic mosquitoes (Alphey et 

al. 2002), depends on knowledge of the basic biology and evolution of the vector and the 

parasite.  One approach to obtaining such information is to use population genetic data 

to identify Anopheles loci that evolve under pathogen-mediated natural selection, and a 

number of candidate loci have been tested for selection in An. gambiae (e.g. Cohuet et 

al. 2008; Obbard et al. 2009).  Tests for selection in this system tend to rely on the site-

frequency spectrum (SFS; the frequency distribution of polymorphic mutations in the 

population) due to the lack of a suitable outgroup for inter-species molecular evolutionary 

comparisons (Obbard et al. 2007).  However, tests of the SFS are also sensitive to 

demographic processes such as population growth and bottlenecks (Tajima 1989a,b; Fu 

and Li 1993).  One way to improve the power to distinguish patterns generated by 

selection from those generated by demography is to test selective hypotheses against a 

null model based on the demographic history of the species (e.g. Stajich and Hahn 2005; 

Haddrill et al. 2005), but the absence of genome-wide polymorphism data has prevented 

development of an adequate demographic null for An. gambiae.  In this work, we use 

sequence polymorphism data from 109 An. gambiae genes recently published by 

Cohuet et al. (2008) to infer the demographic history of Cameroonian An. gambiae.     

Several non-equilibrium demographic hypotheses have been previously 

proposed to describe An. gambiae.  An. gambiae is highly anthropophilic and 



 13 

ecologically dependent on humans, and has been hypothesized to have undergone a 

range and population expansion coincident with agriculture-related shifts in human 

populations (Coluzzi et al. 2002; Costantini et al. 2009).  A study of microsatellite 

polymorphism from Kenyan An. gambiae found evidence for population growth (Donnelly 

et al. 2001), and the SFS in this system tends to be enriched with low-frequency alleles 

(e.g. Cohuet et al. 2008; Obbard et al. 2009) consistent with an historical population 

expansion.  Such patterns of polymorphism could also, however, derive from population 

bottlenecks (Tajima 1989a,b).  Additional evidence for a bottleneck stems from 

transposable element insertion site frequency data that are suggestive of population 

bottlenecks (e.g. Esnault et al. 2008), possibly related to founding events associated with 

the formation of incipient species or population fluctuations during the last glacial 

maximum (Weijers et al. 2007).  Migration among sub-populations may also be an 

important demographic factor in this system.  Extant An. gambiae are divided into two 

largely reproductively isolated units referred to as the ʻMʼ and ʻSʼ molecular forms (della 

Torre et al. 2001).  Geographic and microecological sub-structure has been identified 

within both molecular forms as well (e.g. Lehmann et al. 2003; Slotman et al. 2007).  

To distinguish among potential demographic hypotheses describing An. 

gambiae, we performed coalescent simulations under various parameterizations of the 

above demographic models (Supplementary fig S1, Supplemental Methods online) and 

employed a modified approximate-likelihood method (Weiss and von Haeseler 1998) to 

test the fit of simulated models to synonymous autosomal polymorphism data for each 

molecular form independently (Cohuet et al. 2008; Supplementary Material online). The 

Cohuet et al. (2008) data set consists of short coding fragments from 72 immune-related 

and 37 functionally random genes sequenced in M form (n=10-16 chromosomes) and S 

form (n = 10-18 chromosomes) mosquitoes collected in Cameroon.  We treated the 
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demographic models in a hierarchy of increasing parameter number, such that the 

standard neutral equilibrium model (SNE) was the null hypothesis, population growth 

was the first alternative, and the bottleneck and migration models were alternatives to 

the growth model.  We found that the population growth model fit the empirical data 

significantly better than the equilibrium model for both the M and the S forms (table 1; pM 

< 10-4, pS < 10-4).  No support was found for a population bottleneck in either molecular 

form (table 1).  However, models that included both population growth and migration fit 

the data significantly better than the simple growth model for both molecular forms (table 

1; pM = 0.0019, pS < 10-4).  We confirmed that our best-fit models were able to 

adequately reproduce the empirical data by showing that the average number of 

pairwise differences and the number of segregating sites in samples simulated under the 

best fit migration models (Supplementary Material online) match those summary 

statistics from the empirical data very well (Supplementary fig. S2 and S3).  Furthermore, 

approximately 10% of simulations were accepted for each model (Supplementary table 

1), which implies a good fit considering that we used the 20% threshold approach within 

the approximate-likelihood method that should reject as high as 80% of simulations even 

when the model perfectly matches the evolutionary process underlying the data.   

Although similar in structure, the most likely migration models for the M and S 

molecular forms differed in their timing of expansion.  From profile likelihood curves, we 

obtained maximum likelihood estimates (MLE) and approximate 95% confidence regions 

for the growth parameters (fig. 1 and 2).  To evaluate the potential impact selection may 

have on our demographic inference, we reanalyzed the likelihood surface after removing 

the 6 loci with the most extreme Tajimaʼs D values and found that the migration models 

remained the best fit models and MLE parameter values were essentially unchanged 

from those inferred using whole datasets.  From this, we conclude that it is unlikely that 
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any natural selection in the history of the empirical data is biasing our inference process.  

We estimate that both molecular forms underwent at least 13-fold growth (table 1), but 

that the M molecular form expanded more recently than the S molecular form (49,000-

490,000 years before present (YBP) for M form versus 63,000-630,000 YBP for S form, 

assuming 10 generations per year and a reasonable mutation rate; table 2).  Our 

estimated growth times likely pre-date the extant division between the two molecular 

forms (e.g. Mukabayire et al. 2001).  One potential explanation for our estimate of 

differing times of expansion for the two forms is that the ancestral, pre-molecular form 

population underwent an expansion, and then the derived M molecular form underwent a 

second more recent expansion, that may have been associated with post-speciation 

niche specialization (Constantini et al. 2009), such that the M form genome bears a 

mixed demographic signal from the two expansions.   

Models that include migrational exchange with an unspecified second population 

fit the data best for both molecular forms, but these models should be interpreted with 

caution.  For both molecular forms, the profile likelihood curve for the rate of migration 

(4Nm) is bimodal with local maxima near 4Nm of 0 and 10 (fig. 1 and 2).  Both of these 

maxima suggest near-panmixia, with little or no real migration component. We therefore 

next modeled each molecular form under the growth model, but manually adjusted the 

modeled effective population size to be larger (i.e., pooled the sampled and hypothetical 

unsampled 'populations' into a single panmictic unit).  We found that both the MLE 

growth and MLE migration models fit the data significantly better than the Ne-adjusted 

growth model for both molecular forms (Supplementary Material online).  In principle, the 

migration models might provide a statistically better fit to the data in the absence of true 

historical migration if they allow for greater variance in effective population size than the 

simple growth model does.  The signal for ancient growth is strong and clear in both 
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forms regardless of whether historical migration is included in the model.  Nonetheless, 

the best fitting models for both molecular forms are those in which the focal populations 

share migrants with an un-sampled population that is smaller than the sampled 

population.  Since the effective population size of the S molecular form is thought to be 

significantly larger than that of the M molecular form (e.g. Cohuet et al. 2008), this is 

unlikely to reflect migration between progenitors of extant M and S form mosquitoes, at 

least when the M population is the focal population being modeled. 

It has been hypothesized that the advent of agriculture played a major role in the 

history of An. gambiae populations (e.g. Coluzzi et al. 2002; Donnelly et al. 2001), but 

the empirical sequence data from Cohuet et al. (2008) do not support this hypothesis.  

Based on the MLE growth parameter values inferred in our study, one would have to 

assume a per-nucleotide mutation rate of 10-7 mutations per generation in order to 

reconcile the inferred timing of population expansion with the agricultural revolution ( < 

5,000 YBP; Phillipson 2004).  Such a mutation rate is orders of magnitude higher than 

typical per nucleotide mutation rate estimates for Drosophila (e.g. Tamura et al. 2004; 

Keightley et al. 2009), which provides our best estimate of the Anopheles mutation rate.  

Calculations based on more plausible parameter values (table 2) suggest that earlier 

anthropogenic events such as the movement out of the ancestral East African range by 

early humans (ca. 130,000 YBP; Reed and Tishkoff 2006) or subsequent human 

population expansions (ca. 50,000 – 70,000 YBP; Rogers and Harpending 1992) may 

have been key factors allowing mosquito populations to grow.  

Genetic sub-structure in An. gambiae has been associated with the incipient 

speciation between the M and S forms (della Torre et al. 2001) as well as with ecological 

factors and chromosomal inversions (e.g. Slotman et al. 2007), raising the possibility that 

the demographic signal inferred from any single population may not be universally 
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applicable.  With specific respect to our study, the “Forest” M form population from 

Cameroon under analysis here is partially differentiated from the “Mopti” M form 

populations from West Africa (e.g., Slotman et al. 2007).  However, the population size 

expansion we infer in this study surely pre-dates extant population structure between 

Forest M and Mopti M, and we are confident that the signature of this M form 

demographic history should be shared among extant un-inverted M form autosomes.  

The same logic can be applied to geographically distinct S-form populations.  Sequences 

within polymorphic chromosomal inversions, particularly on the inversion-rich 

chromosome II, are likely to bear the signature of more recent demographic and 

selective events associated with the inversions themselves, which could confound 

model-based inference of demographic history.  As our analysis was based entirely on 

autosomes with the standard (un-inverted) karyotype (Cohuet et al. 2008), thought to be 

the ancestral form of An. gambiae (Ayala and Coluzzi 2005), we believe our conclusions 

are insulated from this concern, and that they can be taken to provide a baseline, 

ancestral demographic history for the genomes of extant An. gambiae. 

A primary motivation for establishing correct demographic models in An. gambiae 

and other systems is to accurately identify targets of natural selection.  This is especially 

important in Anopheles, where sites of host-pathogen coevolution may serve as targets 

for malaria-control intervention. To show the effect of including demography in the null 

population genetic model on the inference of putatively non-neutral patterns of 

polymorphism, we re-evaluated the results from a frequency spectrum-based analysis of 

An. gambiae loci conducted by Obbard et al. (2009).  These authors re-sequenced 16 

serine protease inhibitor genes (serpins) and 16 control loci in a West African M form 

population from Burkina Faso (BK) and an East African S form population from Kenya 

(KY), although we will only consider loci on chromosome III (4 serpins and 4 control loci) 
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to avoid the potentially confounding effects of chromosome II inversions in Burkina Faso.  

Of the 8 chromosome III loci that had at least 4 segregating sites (4 serpins and 4 

control loci), only control loci BK-5 and BK-6 departed significantly (5% threshold) from a 

null distribution simulated under the standard neutral equilibrium (SNE) model (Obbard 

et al. 2009).  We compared Tajimaʼs D values from all 8 loci from BK and KY first to null 

distributions simulated under SNE, then to null distributions simulated under the MLE 

migration models we developed here (Supplementary Material online; Supplementary 

table 2).  We found that the negative values of D observed at control loci 5 and 6 

remained significantly inconsistent with neutrality under the MLE migration model (locus 

BK-5: p = 0.0160; locus BK-6: p = 0.0076), and that the positive values of D observed at 

serpins 4C and 6 became significant when compared to the MLE models (KY-4C: p = 

0.0372; KY-6: p = 0.0069; Supplementary table 2).  Interestingly, while the mean D value 

under MLE migration models was consistently more negative than those under the SNE, 

the distributions showed less dispersion around the mean than distributions simulated 

under the SNE, resulting in a lower p-value for control loci BK-5 and BK-6 under the SNE 

model than under the MLE migration model (Supplementary table 2).  These results 

highlight the increased power to detect putative signals of natural selection when using 

demographically corrected null models.  The power gains associated with using correct 

null models should be even greater when sophisticated genome-scale methods such as 

the composite-likelihood ratio test of Kim and Stephan (2002) are employed.  
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FIGURES 

Figure 1: M molecular form genome-likelihood values relative to migration model 

parameters (A) Time of expansion in units of Ncurr generations, (B) Size of population 

growth (Ncurr/Nanc), (C) Rate of migration (4Nm) per generation and (D) Size of the 

unsampled subpopulation relative to the sampled subpopulation.  For each parameter 

value, the highest genome-likelihood value from all models within the migration model 

family is plotted.  Note log scale in panels (B) and (C).  Horizontal dashed line indicates 

95% threshold, such that all genome-likelihood values below this threshold are 

significantly different from the maximum-likelihood value.  Vertical dashed line(s) indicate 

approximate boundaries of the 95% confidence region of the model parameter.  For 

panels (A) and (D), all parameter values outside of the vertical dashed lines are 

significantly different from the MLE value.  For panel (B), all parameter values to the left 

of the vertical line are significantly different from the MLE value.  The shape of the curve 

in panel (C) did not allow determination of confidence region.   
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Figure 2: S molecular form genome-likelihood values relative to migration model 

parameters (A) Time of expansion in units of Ncurr generations, (B) Size of population 

growth (Ncurr/Nanc), (C) Rate of migration (4Nm) per generation and (D) Size of the 

unsampled subpopulation relative to the sampled subpopulation.  For each parameter 

value, the highest genome-likelihood value from all models within the migration model 

family is plotted.  Note log scale in panels (B) and (C).  Horizontal dashed line indicates 

95% threshold, such that all genome-likelihood values below this threshold are 

significantly different from the maximum-likelihood value.  Vertical dashed line(s) indicate 

approximate boundaries of the 95% confidence region of the model parameter.  For 

panels (A) and (D), all parameter values outside of the vertical dashed lines are 

significantly different from the MLE value.  For panel (b), all parameter values to the left 

of the vertical line are significantly different from the MLE value.  The shape of the curve 

in panel (C) did not allow determination of confidence region. 
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Table 1: Maximum Likelihood Estimates (and 95% confidence intervals) for model families and model comparisons 
  M form   S form  
Model  Growth Bottleneck Migration      Growth Bottleneck Migration 

Generations since growth (Ncurr) a 
3.52 

(2.88 - 4.12) 
3.44 

(2.92 - 4.16) 
3.00 

(2.54 – 3.50) 
     3.08 

     (2.58 – 3.50) 
3.04 

(2.60 – 3.52) 
2.60 

(2.18 – 2.88) 

Fold growth  
(Ncurr /Nanc) a 

1,000 
(4.65 - ND) b 

10,000 
(4.05 - ND) b 

10,000 
(13.0 - ND) b 

     2,000 
     (4.65 - ND) b 

1,000 
(5.10 - ND) b 

100 
(13.00 - ND) b 

Reduction during bottleneck  
(Npre-bottle/Nanc ) a 

--- 10,000 
(NA) c ---     --- 667 

(NA) c --- 

Duration of bottleneck (Tbot ) a --- 0.2 
(NA) c 

---     --- 0.2 
(NA) c 

--- 

Migrants per generation (4Nm ) a --- --- 
5 

(ND) 
    --- --- 

10 
(ND) 

Size of Unsampled subpopulation 
(relative to sampled) --- --- 0.40 

(0.23 – 0.58)     --- --- 0.50 
(0.35 – 0.75) 

Log Likelihood -217.1336 -216.9759 -213.6302     -210.4305 -210.3666 -197.9891 

AIC  
(k) 

438.2672  
(2) 

441.9518 
(4) 

435.2604 
(4) 

      424.861  
    (2) 

428.7332 
(4) 

403.9782 
(4) 

ΛSN
d 

(p value relative to equilibrium) 
-28.7046 
(<0.0001) 

--- --- 
     -44.7847 
     (<0.0001) 

--- --- 

ΛG
e  

(p value relative to growth) 
--- 

3.6846 
(ns) 

-3.0068 
(0.0019) 

   --- 
3.8722 

(ns) 
-20.8828 
(<0.0001) 
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AIC = -2(LogLikelihood -k) where k is the number of free parameters in model.  
a  Parameter units 
b  ND indicates cases where only one boundary of the confidence interval could be determined.  
c  Confidence intervals were not estimated for these parameters 
d  ΛSN indicates comparisons made between the AIC under the MLE and the AIC under the standard-neutral equilibrium model.  
e  ΛG indicates comparisons made between the AIC under the MLE and the AIC under the growth model. 

1 
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Table 2: Calculations of the approximate timing of growth based on 
empirical parameter values 
Form (θW

a) µb Ne
c T1

d Generations 
per yeare 

Years 
before 
presentf 

3.5 × 10-

9 
1,623,571 3.0 10 487,071 

3.5 × 10-

8 
162,357 3.0 10 48,707 

3.5 × 10-

7 
16,236 3.0 10 4,871 

3.5 × 10-

9 
1,623,571 3.0 20 243,536 

3.5 × 10-

8 
162,357 3.0 20 24,353 

M (2.27%) 

3.5 × 10-

7 
16,236 3.0 20 2,435 

3.5 × 10-

9 
2,435,000 2.6 10 633,100 

3.5 × 10-

8 
243,500 2.6 10 63,310 

3.5 × 10-

7 
24,350 2.6 10 7,500 

3.5 × 10-

9 
2,435,000 2.6 20 316,550 

3.5 × 10-

8 
243,500 2.6 20 37,499 

S (3.4%) 

3.5 × 10-

7 
24,350 2.6 20 3,750 

a  θW was estimated from synonymous sites in the Cohuet et al. (2008) 
datasets (see Supplementary Material online) and is an estimator of 4Neµ 
b  mutation rate per base pair per generation of 3.5 × 10-9 taken from 
Keightley et al. (2009) 
c  Effective population size calculated from θW using the stated mutation 
rate 
d  MLE time of growth in units of Ncurr 
e  Estimates taken from Lehmann et al. 1998. 
f  Years before present calculated as (T1 x Ne)/Generations per year 
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SUPPLEMENTAL MATERIAL 

Molecular Form Datasets: 

Our analysis is based on sequence polymorphism in coding fragments of 72 immune-related 

and 37 non-immune genes spread across all chromosome arms published by Cohuet et al. 

(2008).  The mosquitoes sampled by Cohuet et al. (2008) are multiple An. gambiae individuals 

of the M (n=16 chromosomes) and S (n=18 chromosomes) molecular forms collected near 

Yaounde, Cameroon (03°51'N, 11°30'E).  Mean nucleotide diversity was not significantly 

different between immune and non-immune loci and there was no evidence for strong selection 

in these data (Cohuet et al. 2008), so we consider all autosomal loci without regard to gene 

function in our analysis.  We downloaded the heterozygous sequence fragments  (accessions 

AM774672 – AM777160, AM900849 – AM900919), arbitrarily resolved the heterozygous sites 

to produce two hypothetical alleles for each individual and constructed alignments of each gene.  

Then, for each molecular form separately, the total number of segregating synonymous sites (S) 

was determined in each alignment and genetic diversity at synonymous sites was summarized 

for each molecular form as θW (Watterson 1975) and π (Tajima 1983) based on the total number 

of mutations using DnaSP (version 5.00.07, Librado and Rozas 2009).  We used only 

synonymous sites to minimize any effects of natural selection in the dataset.  θW and π are both 

estimators of the population parameter 4Neμ (Watterson 1975; Tajima 1983) where Ne is the 

effective population size and μ is the neutral substitution rate, but they are calculated from 

different features of the empirical data.  Whereas π is the average number of differences 

between alleles and is thus sensitive to allele frequency, θW is calculated based on the number 

of segregating mutations regardless of their frequency in the sample.  p and q respond 

differently to demographic shifts (Tajima 1989a,b).  We used θW estimated from the empirical 

data to set the rate of mutation in the coalescent simulations, and we used π and S to 
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summarize diversity in the simulated and empirical samples.  These latter two summary 

statistics are the main components of the frequently used Tajimaʼs D statistic (Tajima 1989a) 

and provide information about the shape of the underlying genealogy.  Their relationship can be 

used to detect demographic (or selective) perturbations reflected in a sample.  We used the 

components of the D statistic instead of the statistic itself because the D statistic is a biased 

summary of the data when recombination rates are not correctly incorporated and can 

compromise approximate-likelihood inference of demographic parameters (Thornton 2005).  

However, the bias is minimized if D is decomposed and its components, π and S, are used in its 

place (Thornton 2005).  Only autosomal loci from the Cohuet et al. (2008) data set that were 

represented by at least ten alleles (range of 10 to 16 alleles for the M form and 10 to 18 alleles 

per locus) and exhibited a value of θW greater than zero were included our analysis (92 and 95 

loci for M and S form respectively).  Although excluding polymorphism-free loci from the analysis 

may slightly bias the dataset, a non-zero value of θW is needed for simulations (see below).  We 

excluded X-linked loci for this analysis because large regions of the X-chromosome lack 

polymorphism, possibly due to recent selective sweeps (Stump et al. 2005; Turner et al. 2007), 

making most of the chromosome difficult to simulate.   

 

Coalescent Simulations and Demographic Models: 

We were interested in identifying a demographic scenario that can explain observed 

patterns of polymorphism in each of the molecular forms of An. gambiae.  Our approach was to 

simulate individual loci under specific population demographic scenarios, evaluate the fit of the 

simulated data to the empirical polymorphism data at individual loci, and combine these 

likelihood values into a ʻgenome likelihood.ʼ  We applied this approach to the M and S molecular 

forms independently.  We modeled each gene individually by conducting 2 × 104 coalescent 
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simulations under varying demographic scenarios using the program ms (Hudson 2002) 

conditioned on the sample size and θW  for each gene as reflected in the empirical data set. 

Based on the fact that the sequenced genes are physically dispersed but typically shorter than 

700 base pairs, we assumed free recombination between genes, but no intragenic 

recombination.  Underestimating recombination is a conservative approach and not likely to 

produce large biases in the inference process.  We calculated π and S from the ms output, 

which were then used to evaluate the 'genome likelihood' fit to the empirical data (described 

below).  

 We considered three families of demographic models: population growth, population 

bottleneck, and migration between two growing populations (main text fig. 1).  For each model 

family, we explored a wide range of parameter values, chosen to be comprehensive but 

biologically plausible.  The first model, population growth, varied in two parameters: the timing of 

the expansion (T1, in units of 4N generations) and the ratio of ancient to current effective 

population size (Nanc/Ncurr).  The population bottleneck model family included the growth 

parameters listed above with the addition of a pre-expansion bottleneck that varied in both the 

severity of size reduction (Npre-bottle/Nanc) and the number of generations the population remained 

at the reduced size (Tbot).  The last model, migration between expanding subpopulations, 

included the growth parameters as well as migration from a second, unsampled subpopulation 

with growth parameters identical to the sampled subpopulation.  The relative size of the 

unsampled subpopulation (Nunsampled/Nsampled) and rate of migration (4Nm) was also allowed vary 

in the model.  The standard neutral drift-equilibrium model was considered as a null hypothesis.  

All parameter values are listed in Table 1. 

 

Approximate Likelihood Method:  
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To determine how well each demographic model fit the empirical data, the simulated 

population samples were evaluated using an adaptation of Weiss and von Haeselerʼs (1998) 

approximate likelihood method.  An indicator variable Iδ was calculated as 

 

where πdata equals the average number of pairwise differences in the empirical sample and Sdata 

equals the number of segregating sites in the empirical sample at locus j.  πsim and Ssim were 

summary statistics calculated from the simulation results for that locus under the given model 

and δπ and δS were positive numbers that define an empirically determined interval (see below) 

for locus j.  Our method differs slightly from that of Weiss and von Haeseler (1998) in that they 

required the number of segregating sites to exactly match the empirical data, which is a slightly 

more conservative method, but we used the threshold approach to accommodate uncertainty in 

empirical estimates of the true population θW.  The numerical threshold was designed to capture 

20% of stochastic variation natural to the coalescent process, such that simulated values of p or 

S falling more than 10% above or below the empirical value resulted in the assignment of zero 

to the indicator variable (Weiss and von Haeseler 1998).  Both threshold values were 

determined for each gene and each molecular form by conducting 2 × 104 coalescent 

simulations conditioned on the empirical sample size and θW for each locus under the standard 

neutral model.  The summary statistics, p and S, were calculated for all simulations, assembled 

into a distribution and the thresholds were determined as the values 10% greater and less than 

the median of the simulated distribution.   

The likelihood of the model given the data for each gene was estimated as the 

proportion of simulations that were assigned an Iδ of 1.  The approximate likelihood function can 

be written as  
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where Φ is the model, π and S are summary statistics from the empirical data at locus j, B is the 

number of simulations (2 × 104) and I is the indicator variable from above.  To obtain a genome-

wide likelihood value that reflects the likelihood of the model given genome-wide patterns of 

polymorphism, gene-specific likelihoods were then natural log transformed and summed.  

To identify the most likely model within each model family, we evaluated a series of 

models organized across a grid of parameter values using the above likelihood function to 

obtain the genome-likelihood value for each model.  First, we searched a coarse grid of 

parameter values for each family of models.  Next, in order to improve the precision of our 

parameter estimates, we adjusted parameter scales to finer levels in regions of the parameter 

space that showed high likelihood values in the coarse grid search and searched our finer-scale 

grid using the same likelihood procedure.  We identified the best-fit model within each model 

family as the combination of parameter values that maximized the genome-wide likelihood 

function, and these best-fit models were then compared to determine which model family is 

most likely given the data (discussed below).  To visualize the likelihood surface, we generated 

profile-likelihood curves for each parameter by plotting the maximum likelihood value for each 

parameter value.  We estimated approximate 95% confidence intervals for each parameter 

using asymptotic theory where all parameter values with a likelihood value within 1.92 likelihood 

units (i.e. Χ2
df = 1 and α = 0.05) of the maximum likelihood value were considered not significantly 

different from the MLE.  Linear interpolation of the profile-likelihood curves was used where 

points were not simulated directly.   

 

Model Comparison: 
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After identifying the best-fit model within each model family, we compared models 

between families (e.g. growth vs. bottleneck) to identify the maximum likelihood estimate (MLE) 

for the demographic history of the An. gambiae population.  We treated the models in a 

hierarchical fashion, with the standard-neutral model considered to be the primary null 

hypothesis.  The simple growth model is an alternative to the standard neutral null.  The more 

complex bottleneck and migration models both have the growth model nested within them, so 

the growth model is considered the null model for testing bottleneck and migration hypotheses.  

Thus, the standard-neutral was first compared to the growth model.  If the standard neutral null 

was rejected in this first comparison, the growth model then became the secondary null model 

against which the bottleneck and migration models were compared.  If neither the bottleneck nor 

migration models fit significantly better than the growth model, we concluded that simple growth 

was the most parsimonious and likely model.  

 We compared models using the Akaike Information Criterion (AIC; Akaike 1974).  Our 

models were not nested in the fashion required for evaluation of likelihood ratios.  We employed 

AIC values to compare the likelihoods of non-nested models by penalizing models according to 

the number of free parameters in the model.  We calculated AIC values as AICi = -2(lmaxi – ki) 

where lmaxi is the maximum likelihood value under model i and k is the number of free 

parameters in model i, such that a higher AIC value means a better fit to the data (Akaike 1974).  

Then we used the statistic Λ = AICalt – AICnull to compare AIC values between models (Caicedo 

et al. 2007).  Negative values of this statistic indicate that the alternative model is a better fit.  

We established a null distribution by simulating 104 ʻgenomesʼ comprised of the same number of 

loci as the empirical dataset under the null model, evaluating the maximum likelihood of each 

ʻgenomeʼ under the null and alternative models and calculating Λsim as the difference between 



 35 

the AIC statistics calculated under the null and alternative models.  We calculated a p-value as 

the proportion of simulations with Λsim < Λobs.   

 

Model performance: 

Although the approximate likelihood method used here explicitly evaluates the fit of the model to 

the entire dataset, we wanted to confirm that our best-fit model is able to adequately reproduce 

the empirical data for each molecular form.  To this end, we simulated all chromosome III loci 

under the best-fit migration model for each molecular form and plotted the median value of π 

and S from 104 coalescent simulations next to the empirical data (Supplementary figs. 4 and 5).  

Simulations were conducted as above where each locus was simulated using ms conditioned on 

the empirical sample size and θW.  The distributions of the summary statistics are often skewed 

so we compared the median value to the data in order to minimize biases associated with mean 

values of skewed distributions.  We considered the comparison of loci on only one chromosome 

sufficient to demonstrate the adequacy of model performance and arbitrarily chose chromosome 

III.     

 

Comparison of the timing of expansion between Molecular forms: 

 To determine whether the MLE timings of expansion were significantly different between 

the molecular forms, we asked whether the timing inferred for one molecular form was within the 

confidence region of the timing or growth parameter (T1) estimated for the other molecular form.  

For example, the inferred timing of growth for the M form is 3.0Ncurr, which corresponds to 

2.1Ncurr for the S form after calibration for the relative effective population sizes (we estimate 

that the M form is 0.7 times the S form).  This value is outside of the confidence interval 
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estimated for the timing of growth for the S form (95% C.I. 2.18 - 2.88), suggesting that this 

more recent timing of the M form expansion did not overlap in time with the S form expansion.   

 

Population genetic re-analysis of Obbard et al. (2009) data: 

To test the effects of applying the demographic correction to the null model on 

population genetic analyses, we compared Tajimaʼs D values from 4 serpin loci and 4 control 

loci obtained by Obbard et al. (2009) first to null distributions simulated under the standard-

neutral equilibrium (SNE) model then to null distributions simulated under the MLE migration 

models inferred here.  We simulated each sample and locus individually using the same 

simulation framework described above.  104 coalescent simulations were conducted using the 

coalescent simulation program ms (Hudson 2002) for each locus-population combination 

conditioned on the number of chromosomes sampled for that locus-population combination and 

θW estimated from the empirical data.  Tajimaʼs D was calculated from each simulated sample 

and assembled into null distributions for a given locus-population combination.  Null distributions 

were generated both under the standard-neutral equilibrium as well as under the MLE migration 

models for each form.  Empirical D values were then compared to null distributions in a one-

tailed test, the polarity of which depended on whether D was positive or negative.  No correction 

for multiple testing was made, so D was considered significantly unlikely under a given null 

model if the empirically observed value fell into the 5% tail of the null distribution.  The 

simulations assumed no recombination, which is a reasonable approximation given the short 

sequences (range of 354 to 783 basepairs), and so are conservative with regard to testing 

hypotheses of selection.      

 

Simulations of Ne-adjusted migration models: 
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 One possible explanation for the better fit of migration models is that the effective 

population size is increased through migration, and thus no migration is actually necessary in 

the models.  To determine whether manually adjusting the effective population size can account 

for the increased likelihood of the migration models over the growth models, we simulated each 

locus under the MLE growth model, but we adjusted θW to reflect the larger effective population 

size.  For example, the MLE migration model for the M molecular form includes migration 

between the sampled population and an unsampled population that is 0.4 times the size of the 

sampled population, so we multiplied the empirical θW for each locus by 1.4 so that the adjusted 

simulated population is one panmictic unit 1.4 times as large as its unadjusted counterpart.  

These adjusted models were compared to the unadjusted MLE growth and MLE migration 

models using the model comparison framework described above.  
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Supplementary Table 1: Demographic model parameter ranges, sampling density and rejection statistics 
Parameter Rangea (units) Growth Bottleneck Migration 
 M S M S M S 
Fold population expansion (Nanc/Ncurr ) 0 – 10,000 42 33 22 19 11 11 

Generations since growth (T1) 
0.05 – 1.2 
(4Ncurr 
generations) 

64 55 29 29 17 13 

Fold population reduction during 
bottleneck ( Npre-bottle/Nanc) 

1.25 – 10,000 --- --- 4 4 --- --- 

Duration of bottleneck (Tbot) 
0.01 – 0.5 
(4Ncurr 
generations) 

--- --- 4 5 --- --- 

Subpopulation size (Nunsampled/Nsampled) 0.1 – 1.0  --- --- --- --- 9 8 

Rate of migration (4Nm) 
10-4 – 10 
(migrants per 
generation) 

--- --- --- --- 10 10 

Total number parameter combinationsb  2,688 1,815 7,888 7,556 16,830 11,440 

Percentage of simulations acceptedc  9.74 10.66 9.42 10.17 8.28 9.47 

Total number parameter combinations 
acceptedd  

 432 267 1,269 1,062 88 149 

Percentage of simulations accepted within 
accepted modelse 

 10.39 11.64 10.40 11.66 11.29 13.63 
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a For each demographic model and molecular form, we searched the parameter space uniformly over coarse intervals.  We then 
adjusted the parameter space to include a higher density of grid points (parameter combinations) in the region with the highest 
likelihood values in the first search and evaluated the grid a second time. 
b Total number of parameter combinations searched in grid after increasing density of parameter values sampled in the second grid 
search. 
c Percentage of all simulations that was not rejected within likelihood framework.  Each locus was simulated 20,000 times for each 
parameter combination.  
d Total number of parameter combinations that received likelihood value within 1.92 likelihood units of the maximum. 
e Percentage of simulations within accepted models (see d) that were not rejected within the likelihood framework.  
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Supplementary Table 2:  Population genetic re-analysis of 
Obbard et al. (2009) data under SNE and MLE migration 
models 
 Tajima’s D 

Locus Populationa D SNEb MLEc 
Control 4 Burkina Faso 0.16 0.3715 0.1894 
 Kenya 0.34 0.3066 0.0622 
Serpin 4C Burkina Faso -0.11 0.5093 0.6333 
 Kenya 0.90 0.1575 0.0372 
Control 5 Burkina Faso -1.74 0.0235 0.0160 
 Kenya 0.36 0.3123 0.1784 
Serpin 5 Burkina Faso -1.33 0.0737 0.0609 
 Kenya 0.07 0.4158 0.2077 
Control 6 Burkina Faso -1.85 0.0113 0.0076 
 Kenya    --- --- --- 
Serpin 6 Burkina Faso -0.63 0.2943 0.3361 
 Kenya 1.25 0.0836 0.0069 
Control 16 Burkina Faso -0.75 0.2569 0.2850 
 Kenya    --- --- --- 
Serpin 16 Burkina Faso -0.29 0.4284 0.5539 
 Kenya -0.77 0.2507 0.3504 
a location where An. gambiae were sampled 
b P values indicating probability of statistic when compared to null 
distribution simulated under standard-neutral equilibrium 
c P values indicating probability of statistic when compared to null 
distribution simulated under MLE migration model 
- Values in bold font were significantly inconsistent with the 
simulated null model at the nominal 5% threshold (no correction for 
multiple testing) 
 

 

 



 42 

 

 

 

Supplementary Figure S1: Demographic models and their varied parameters (a) 
Population growth included time of expansion (T1) and size of expansion (Ncurr/Nanc) 
variables  (b) Population bottleneck included growth parameters (T1 and Ncurr/Nanc), the 
size of population reduction and duration of bottleneck (Tbot)  (c) Migration between 
growing subpopulations including growth parameters (T1 and Ncurr/Nanc), the rate of 
migration (4Nm) and the size of the unsampled subpopulation relative to the sampled 
subpopulation. 

 

 

Supplementary Figure S2: Comparison of M form loci modeled under the MLE to M form 
empirical data.  We conducted 104 simulations using the program ms under the MLE 
migration model for each 3rd chromosome locus and plotted the median value (gray bars) 
of the average number of pairwise differences (π) and the number of segregating sites 
(S) next the empirical value (black bars) of each statistic for that locus.  No intralocus 
recombination was included in the simulations.  Loci are ordered according to their 
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relative positions on the 3rd chromosome.

 
 

Supplementary Figure S3: Comparison of S form loci modeled under the MLE to S form 
empirical data.  We conducted 104 simulations using the program ms under the MLE 
migration model for each 3rd chromosome locus and plotted the median value (gray bars) 
of the average number of pairwise differences (π) and the number of segregating sites 
(S) next the empirical value (black bars) of each statistic for that locus.  No intralocus 
recombination was included in the simulations.  Loci are ordered according to their 
relative positions on the 3rd chromosome. 
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CHAPTER 3: 

No evidence for positive selection at two malaria Transmission-Blocking Vaccine target 

molecules in Anopheles gambiae s.s. 

 

 

Jacob E. Crawford, Susan Rottschaefer, Brian P. Lazzaro
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ABSTRACT: 

Human malaria causes nearly a million deaths in sub-Saharan Africa each year, and the 

development of parasitic drug-resistance and mosquito vector insecticide resistance has 

complicated control measures and made the need for new control strategies more 

urgent.  Anopheles gambiae s.s. is one of the primary vectors of human malaria in 

Africa, and parasite-transmission-blocking vaccines targeting Anopheles proteins have 

been proposed as a possible strategy to control the spread of the disease.  However, the 

success of these hypothetical technologies would depend on the ability to successfully 

target potentially heterogeneous mosquito populations. Understanding the evolutionary 

pressures shaping genetic variation among candidate target molecules offers a first step 

towards evaluating the prospects of successfully deploying such technologies.  We 

studied the population genetics of two candidate target molecules, the salivary gland 

protein saglin and the basil lamina structural protein laminin, in wild populations of the M 

and S molecular forms of A. gambiae in Mali.  Through analysis of intraspecific genetic 

variation and interspecific comparisons, we found no evidence of positive natural 

selection at the genes encoding these proteins.  On the contrary, we found evidence for 

particularly strong purifying selection at one protein, and we discuss these findings in 

relation to the potential development of these molecules as vaccine targets.  
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INTRODUCTION: 

Mosquito-stage, transmission blocking vaccines have been proposed as an 

alternative novel technology for blocking transmission of human malaria parasites 

(Gwadz 1976; Carter and Chen 1976; Barreau et al. 1995; Brennan et al. 2000).  The 

logic of this technology is that mosquito proteins essential for parasite development 

could be targeted, for example by human derived anti-bodies, and blocked such that 

transmission is halted within the mosquito.  At the heart of this hypothetical technology is 

the assumption that the vaccine target (i.e. mosquito proteins) can be easily and 

exhaustively identified and blocked by anti-bodies, but genetic variation segregating in 

natural populations could result in a heterogeneous molecule population that is difficult to 

target.  Such genetic variation could be neutral with respect to natural selection or it 

could evolve adaptively if some functional alleles are favored over others in resisting 

parasite establishment.  Substantial traction has been made in identifying potential target 

molecules within the mosquito, but mostly through the use of genetically inbred lab 

strains of both the mosquito and the parasite (Brennan et al. 2000; Arrighi et al. 2005; 

Saul 2007; Dinglasan and Jacobs-Lorena 2008), providing little information on potential 

genetic heterogeneity and its consequences in nature.  Understanding the evolutionary 

pressures shaping genetic variation among candidate target molecules offers a first step 

towards evaluating the prospects of successfully deploying such technologies.  

The suggestions that pathogen-related selection pressures are likely to drive host 

evolution date back 100 years (Biffen 1905; Haldane 1949; Lederberg 1999).  As one of 

only a very few permissive and common vectors of the human malaria parasite 

Plasmodium falciparum, Anopheles gambiae sensu stricto is a good candidate for 

experiencing such selection.  Several non-immune mosquito proteins directly interact 

with the developing malaria parasite and are in some cases required for successful 
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parasite tissue invasion and development.  One of the first Anopheles proteins shown 

interact directly with both ookinete and oocyst stages of Plasmodium parasites is 

laminin, a component of basil laminae in the mosquito, including the one surrounding the 

midgut (Adini and Warburg 1999; D Vlachou et al. 2001; Arrighi and Hurd 2002; Dessens 

et al. 2003).  Subsequent studies of laminin suggests that this protein may act as a 

trigger for the transition from ookinete to oocyst development or even as a protective 

coating that masks the parasite from immune detection (Arrighi et al. 2005; Warburg et 

al. 2007).  Further evidence for the intimate and perhaps protective role of laminin was 

provided by the observations that laminin becomes localized within the oocysts and 

sporozoites, and it is incorporated into the oocyst capsule (Nacer, Walker, and Hurd 

2008).   

A second host protein, saglin, plays a crucial role in parasite localization and 

invasion of the salivary glands through a receptor-ligand interaction with the Plasmodium 

TRAP protein (Brennan et al. 2000; Korochkina et al. 2006; Okulate et al. 2007; Anil K. 

Ghosh et al. 2009).   Blocking this interaction with either antibody interference or 

receptor saturation by SM1, a short peptide whose physical conformation resembles 

TRAP, inhibits parasitic salivary gland invasion (Brennan et al. 2000; A K Ghosh, 

Ribolla, and Jacobs-Lorena 2001; Anil K. Ghosh et al. 2009).  Moreover, point mutations 

in TRAP completely abrogate gland invasion (Matuschewski et al. 2002). Population 

genetic analysis of Plasmodium falciparum and Plasmodium vivax suggests adaptive 

maintenance of variation, especially in the A-domain that binds to saglin (Weedall et al. 

2007; Barry et al. 2009).   

Based on the evidence that laminin and saglin mediate Plasmodium infection in 

Anopheles, we hypothesized that these proteins may be under pathogen-related 

selection pressure.  To address this hypothesis, we sequenced alleles of the genes 
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coding for these proteins in wild populations of the two incipient species of Anopheles 

gambiae, the M and S molecular forms from Mali.  We analyzed patterns of intraspecific 

polymorphism and divergence at these loci but found no significant evidence for non-

neutral evolution at these loci in either population.   

 

MATERIALS AND METHODS: 

 

Mosquito Samples   

Anopheles gambiae individuals were collected inside dwellings from the villages of 

Bancoumana and Nʼgabakoro Droit outside the Malian capital city, Bamako (12°39′N 

8°0′W), and an additional collection was drawn from Toumani-Oulena, Mali (10°83′N 

7°81′W).  The M/S molecular form of each individual mosquito was determined using the 

PCR diagnostic developed by Favia et al. (2001).  Of the mosquitoes sampled from 

Bancoumana, four were M form and eleven were S form.  All mosquitoes sampled from 

Nʼgabakoro Droit were M form (n = 10), and all Toumani-Oulena individuals were S form 

(n = 7).  Anopheles merus DNA from mosquitoes of the OPHANSI colony was obtained 

from MR4. 

 

DNA extraction, PCR and sequencing 

DNA was extracted from the mosquitoes using DNeasy kits (Qiagen) under slight 

modifications to the manufacturersʼ suggested protocols.  PCR primers were designed 

based on the published A. gambiae genome sequence (Holt et al. 2002).  Each gene 

was amplified from genomic DNA using iProof high fidelity DNA Polymerase (BioRad).  

PCR products were run out on a 1% agarose gel and the product fragments were 

excised and purified using the PureLink gel extraction kit (Invitrogen).  Adenosine tails 
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were added to the purified products by incubating for 20 minutes at 72°C with PCR 

buffer, dATP and Taq polymerase.  Products were then cloned using the TOPO XL 

cloning kit (Invitrogen).  Colonies to be sequenced were grown overnight at 37°C in liquid 

Luria-Bertani broth supplemented with 20 mg/ml kanamycin, and the plasmids were 

isolated using the Qiaprep spin miniprep kit (Qiagen).  The products were then 

sequenced directly from the plasmids using the BigDye Terminator Cycle Sequencing Kit 

v3.1(ABI).  The sequences were assembled using Sequencher (Gene Codes Corp.) and 

CodonCode Aligner (CodonCode Corporation).  Only one of the two alleles at each gene 

was sequenced from any given mosquito in the study.  All sequences have been 

deposited into Genbank under accession numbers XXXXXX – XXXXXX. 

To control for sequencing error, all singleton polymorphisms were verified by re-

amplification and direct sequencing of heterozygous PCR products.  The entire gene 

was amplified from genomic DNA using iProof high fidelity DNA Polymerase (BioRad) 

and this full-length amplicon was then used as template in a secondary PCR using 

internally nested primers to robustly amplify the gene region containing the singleton to 

be validated.  Unincorporated primers and dNTPs were inactivated from these 

secondary amplification products by incubation with ExoI and SAP (both manufactured 

by USB), and amplification products were then sequenced using the BigDye Terminator 

Cycle Sequencing Kit v3.1(ABI).  To further avoid errors stemming from homopolymers, 

we deleted all homopolymer sequences from the alignment. 

The two loci were sometimes sequenced from different individuals within the 

Bancoumana and Nʼgabakoro Droit populations, and only SAG sequences were 

generated from the Toumani-Oulena population. 
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Loci Analyzed 

We analyzed the SAG locus (AGAP000610), which is X-linked, and LANB2 

(AGAP007629), which is found on the distal tip of chromosome 2L..  The original 

predicted exon structure of SAG in Ensemble was changed to remove a predicted intron 

leaving a single coding sequence (Brennan et al. 2000).  However, to be certain, we 

obtained cDNA from live A. gambiae females and directly sequenced SAG transcripts to 

identify intronic boundaries if they exist.  We used the same PCR, cloning, and 

sequencing conditions and reagents described above, only first-strand cDNA from whole 

mosquitoes was used as template in the initial PCR reaction.  After aligning the cDNA 

sequence to the Agam PEST reference sequence, we identified a single 175 basepair 

(bp) intron beginning at position 1007 of the coding sequence, consistent with the 

original Ensemble annotation prior to the re-annotation based on short peptide mapping 

(Brennan et al. 2000).  According to our sequencing results, the final saglin protein is 

predicted to be 374 amino acids in length, and for the analyses here, we assumed that 

the putative 175 bp intron is non-coding and analyzed the sequence accordingly. For 

LANB2, we analyzed the genomic region according to the exon structure annotated in 

Vectorbase (www.vectorbase.org) 

 

Population genetic analysis 

Measures of nucleotide diversity estimated from the average number of differences 

between haplotypes (π) and the number of polymorphic sites (θW) were calculated on 

synonymous and non-synonymous sites alone as well as on all sites combined using 

DnaSP version 5 (Librado and Rozas 2009).  Three neutrality tests that emphasize 

different features of the data including Tajimaʼs D (Tajima 1989), a normalized version of 

Fay and Wuʼs H (Fay and Wu 2000; Zeng et al. 2006), and Ewens-Wattersonʼs 
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haplotype homozygosity statistic (EW) were calculated using a program kindly provided 

by K. Zeng.  Tajimaʼs D detects significant excesses of rare SNPs or intermediate 

frequency SNPs, normalized H detects excesses of high-frequency derived SNPs, and 

EW detects excess homozygosity between haplotypes, all of which are deviations from 

the neutral equilibrium model expected under a hitchhiking model of positive selection.  

Three compound statistics (DH, HEW, DHEW) that combine the p-values of these 

neutrality tests were also calculated.  These compound statistics were developed to take 

advantage of each of the features from the different neutrality tests and are more robust 

to confounding factors such as demography and background selection (Zeng et al. 2006; 

Zeng, Shi, and Wu 2007; Zeng et al. 2007).  The statistical significance of the neutrality 

tests and compound statistics was evaluated through comparisons to 105 neutral 

coalescent simulations without recombination conditioned on the sample size and θW 

estimated from the data conducted using the program from K. Zeng.   

 We also used tests to identify patterns of potentially adaptive rates of evolution at 

non-synonymous sites as would be expected under a model of repeated episodes of 

historical positive selection at these genes.  First, we applied the McDonald-Kreitman 

test (McDonald and Kreitman 1991) within DnaSP using A. merus as an outgroup and 

evaluating significance using Fisherʼs exact test.  For SAG, we applied this test first to 

SAG alone then to all three genes in the sequenced region (SG1-2, SAG, gSG1a).  We 

also calculated the ratio of evolutionary rates at non-synonymous to synonymous sites 

(Ka/Ks) within DnaSP using A. merus for estimates of divergence.  This ratio is expected 

to equal one under a completely neutral model and to be greater than 1 when positive 

selection has caused repeated adaptive evolution.  However, purifying selection often 

acts to conserve amino acid state such that the rate of substitutions at non-synonymous 

sites tends to be much lower than that of synonymous sites.  As such, Ka/Ks is often less 
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than 1 when considered across an entire gene or gene region due to the widespread 

effects of purifying selection at most positions.  Thus, the Ka/Ks test is conservative.  To 

circumvent the obscuring effects of purifying selection, we used a sliding window 

approach to localize any potential cluster of rapidly evolving sites.  For both datasets, we 

used a window size of 1200 basepairs (bp) with a step size of 500bp.   

     

RESULTS: 

Saglin 

To test the hypothesis that saglin (SAG) has experienced recent positive 

selection, we re-sequenced this gene in the M and S molecular forms and used 

population genetic analyses to probe patterns of inter- and intra-species genetic variation 

at these genes.  We sequenced a 3.7 kilobase (kb) region that includes the SAG gene 

as well as 1.6kb of sequence upstream and 0.8kb of sequence downstream of the SAG 

coding region.  Saglin is one of several members of the SG1 protein family of salivary 

gland proteins arrayed on the X chromosome (Arcá et al. 1999; Lanfrancotti et al. 2002; 

Arcà et al. 2005), and in addition to SAG, we captured the complete coding sequence of 

SG1-2 (upstream of SAG) and partial coding sequence of the downstream paralog 

gSG1a within our 3.7kb sequenced region.  Across the entire region, nucleotide diversity 

is low in both populations, consistent with the expectations of low diversity on the X 

chromosome in A. gambiae (e.g. Cohuet et al. 2008).  Analysis of each paralog and the 

intergenic regions separately revealed that diversity is approximately equal across the 

sequence except at SAG and the upstream intergenic region (data not shown).  Non-

synonymous diversity is particularly rare at the SAG gene in these populations.  The 

ratio of non-synonymous to synonymous nucleotide diversity (πNS/πS) is 0.059 in the M 

form population and 0.096 in the S form population.  In contrast, this ratio equals 
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approximately 0.5 in both populations for SG1-2, the paralog only 300bp upstream.  If we 

assume that the mutation rate is not especially low at SAG since diversity at 

synonymous sites is comparable across the region, the relatively low πNS/πS at this locus 

implies particularly strong effects of purifying selection acting on this protein.   

The process of genetic hitchhiking that affects genetic variation linked to a 

positively selected site in a population modifies linked nucleotides in a number of 

hallmark ways, including increase in the physical scale of observed linkage 

disequilibrium (LD) and shifts in the site-frequency spectrum of allele frequencies at 

polymorphic sites (Smith and Haigh 1974; Braverman et al. 1995; Przeworski 2002).  

Statistical tests have been developed to detect such genomic footprints (e.g. Tajima 

1989; Fay and Wu 2000; Kim and Stephan 2002).  To test for the presence of hitchhiking 

at SAG, we used a compound statistic, HEW (Zeng, Shi, and Wu 2007), that combines a 

site-frequency spectrum based test, Fay and Wuʼs H (Fay and Wu 2000), and a 

haplotype-based test, EW (Watterson 1978).  We are specifically aiming to detect 

scenarios where genetic hitchhiking has resulted in an excess of high-frequency derived 

variants and an increase in haplotype structure.  When we applied this test to the entire 

sequenced region, we found that patterns of genetic variation in the M form were 

consistent with neutrality (HEW: p = 1.0), but the S form harbored patterns of variation 

that were nearly significant (HEW: p = 0.0507) and may reflect the effects of recent 

positive selection.  This S form signal appears to be driven largely by an increase in 

haplotype structure that is unexpected under a neutral model, although not significantly 

so (EW = 0.2089, p = 0.0712; Table 1).  Scanning this region using a sliding-window 

approach to localize the signal indicated that genetic variation downstream of SAG, 

including part of gSG1a, harbors the most significant deviations from neutrality (HEW: 
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uncorrected p = 0.0267), while the windows that include SAG and SG1-2 do not reject 

the neutral model (HEW: p > 0.05; Figure 1).  

 We applied the McDonald-Kreitman test to these data for the signature of 

historical selection using A. merus as the outgroup species and found no evidence for an 

excess of non-synonymous fixed differences for either population (M form p = 0.4892; S 

form p = 0.2757; Table 2) as would be expected under a model of recurrent direction 

selection at this locus.  Moreover, a comparison of the rates of substitution at 

synonymous and non-synonymous sites (Ka/Ks) confirms purifying selection as the 

predominant mode of evolution at SAG.  If multiple episodes of positive selection has 

fixed non-synonymous sites at this locus, the Ka/Ks ratio would be expected to exceed 

one (Hughes and Nei 1988).  However, Ka/Ks = 0.294 for the S form and Ka/Ks = 0.303 for 

the M form, reflecting fewer fixations at non-synonymous sites relative to synonymous 

sites in both subpopulations, consistent with the operation of purifying selection on the 

locus.  Taken together, these data provide no evidence for recent or more ancient 

natural selection at the SAG gene.  We sequenced only a small portion of the coding 

sequence for gSG1a, so more data will be required to determine whether this gene could 

be under positive selection, perhaps associated with a role in blood-feeding (Arcá et al. 

1999; Lanfrancotti et al. 2002; Arcà et al. 2005). 

 

LANB2 

 We tested the hypothesis that LANB2 is under positive selection by analyzing 

both intraspecific and interspecific genetic variation.  LANB2 is a relatively large gene 

composed of nine exons that span approximately 8kb of the distal tip of the left arm of 

chromosome 2.  We sequenced an approximately 10kb region that includes LANB2 as 

well as 497bp of sequence upstream and 789bp of sequence downstream of LANB2.  
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Consistent with other estimates of nucleotide diversity at A. gambiae autosomal loci 

(Cohuet et al. 2008), LANB2 harbors substantial genetic diversity in both populations 

with per site estimates of diversity (θW) equaling 0.0180 and 0.0175 for the M and S 

molecular forms, respectively, for all functional classes of nucleotide sites (Table 1).  The 

vast majority of this variation maps to synonymous sites, however, and non-synonymous 

variation is nearly absent (Table 1).   

 We tested LANB2 for evidence of recent positive selection.  As for SAG, we 

applied the compound HEW test statistic (Zeng, Shi, and Wu 2007) using A. merus as 

the outgroup species.  When applied to the entire region, HEW is not significant for 

either population (pM = 1.0; pS = 1.0; Table 1).  To rule out the possibility that a smaller 

region within the 10kb sequenced region could have experienced positive selection and 

is being masked by neutral patterns in the larger surrounding sequence, we calculated 

HEW using a sliding-window of 1200 bp with a step size of 500 bases, but this approach 

failed to reveal any significant windows (all p > 0.05).  Our inability to reject a neutral 

equilibrium model at this locus suggests that the protein coding sequence of LANB2 has 

been evolving neutrally or under purifying selection in the recent past.   

 We also used interspecies comparative analyses to determine whether this gene 

has experienced repeated selective sweeps in the more distant past.  First, we applied 

the McDonald-Kreitman test to these data for each population independently using A. 

merus as the outgroup but found no evidence of deviations from neutral expectations (M 

form p = 0.1367; S form p = 0.1846; Table 2).  Second, we used Ka/Ks to test for 

accelerating rates of evolution at non-synonymous sites.  Since the Ka/Ks test is 

conservative across large spans of sequence, we used a sliding window approach as 

described above.  We found that the maximum Ka/Ks value never exceeded 0.1 for either 

molecular form in any window (1200bp window with maximum Ka/Ks  = 0.046 for S and 
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0.053 for M).  Coupled with the results from intra-specific analyses, these data provide 

no evidence for positive selection on LANB2.   

 

DISCUSSION 

 Structural and receptor host proteins can also be intimately involved in host-

pathogen interactions, for example related to their crucial role in tissue recognition and 

invasion (Brennan et al. 2000; Arrighi et al. 2005).  Like immune proteins, non-immune 

proteins with a direct role in pathogen development within the host could be subject to 

pathogen-related selection pressure.  One such case of non-immune pathogen-related 

selection has been documented in humans at the Duffy erythrocyte receptor protein, 

which is exploited by the malaria parasite for merozoite invasion (Hamblin and Di Rienzo 

2000), and HIV-related selection is thought to be currently driving the evolution of the 

chemokine CCR5 in Africa (Schliekelman, Garner, and Slatkin 2001).  Several A. 

gambiae proteins have been identified as playing roles in the establishment or 

development of malaria parasites within the mosquito host (Brennan et al. 2000; Arrighi 

et al. 2005; Rodrigues et al. 2012).  We tested the genes that code for two of these 

proteins, saglin and laminin, for the signatures of Plasmodium-related selection 

pressure.  To address hypotheses of selection at these genes, we re-sequenced the 

genomic regions harboring these genes in a small population sample of both the M and 

S molecular forms of A. gambiae and applied population genetic tests to identify 

significant deviations from expectations under a neutral model.  Neither intra-specific 

analyses based on the site-frequency spectrum of genetic variation, nor inter-specific 

comparisons designed to detecte accelerated rates of evolution at non-synonymous 

sites revealed any evidence for non-neutral evolution at these loci.  The HEW neutrality 

test failed to reject the neutral model, confirming that the number of high-frequency 
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derived alleles and the degree of haplotype homozygosity are both consistent with 

expectations under a neutral model.  Inter-specific comparisons with A. merus also 

revealed patterns expected under models of purifying selection and failed to provide any 

evidence for adaptive evolution in the protein coding sequences.  

 It is possible that the population genetic tests may be underpowered in this study 

because of the limited number of chromosomes sampled and the limited divergence 

between A. gambiae and A. merus.  Small sample sizes lead to increased sampling 

variance in population genetic analyses and also limit the amount of information 

available for analysis (i.e. number of segregating sites), in turn potentially resulting in 

false negative test results (Simonsen, Churchill, and Aquadro 1995).  This may be of 

particular concern for SAG since levels of diversity are particularly low in this gene 

region, partly owing to its location on the X chromosome, which is known to be 

depauperate of diversity in A. gambiae (Cohuet et al. 2008; Lawniczak et al. 2010; 

Neafsey et al. 2010).  This issue was partially mitigated by sequencing a larger physical 

region to capture both additional segregating sites as well as the spatial distribution of 

diversity.  Moreover, statistical tests based on divergence from an outgroup such as the 

McDonald-Kreitman test may be generally underpowered because within the Anopheles 

gambiae species complex because of the very recent divergence of the species 

(Besansky et al. 2003; Darren J Obbard, Welch, and Little 2009), violating assumptions 

of the model upon which these tests are based (McDonald and Kreitman 1991).  These 

violations are of most concern when comparing the sister species A. gambiae and 

Anopheles arabiensis, however, and previous studies have suggested that divergence 

between A. merus and A. gambiae may be sufficient (synonymous divergence ranging 

Ks = 4 - 11%) to allow the proper application of divergence based tests (Wang-Sattler et 

al. 2007; D J Obbard et al. 2007; Parmakelis et al. 2008; Darren J Obbard, Welch, and 
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Little 2009; Rottschaefer et al. 2011).  Nonetheless, some caution is warranted when 

interpreting the results of these tests since low statistical power could have led to false 

positives and/or false negatives.  

  Our results lead us to accept the null hypothesis of neutral evolution at these 

loci, suggesting that the proteins coded by these loci are not involved in the evolutionary 

host-parasite conflict, or at least are not evolving in response.  One alternate hypothesis 

to explain these data could be that both saglin and laminin serve a critical purpose, 

structural or otherwise, that requires the protein structure to remain conserved, 

consistent with the evidence of particularly strong purifying selection at LANB2 (Table 1).  

Overall, these results suggest that both proteins would be reliable candidates for 

interventions such as transmission blocking vaccines (Brennan et al. 2000; Dinglasan 

and Jacobs-Lorena 2008). If vaccines are to be developed to directly target either of 

these proteins, it would be detrimental to the technology if the proteins were adaptively 

evolving or were adaptively maintaining functionally variable alleles in natural 

populations, neither of which is the case here.  Although SAG harbors a substantial 

number of fixed differences from the outgroup, the level of non-synonymous variations 

currently segregating in the population is very low for both proteins.  This suggests that 

technologies could easily be developed to target existing alleles, and the technologies 

could be expected to remain effective in at least the natural populations sampled here.   
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TABLES 

Table 1: Nucleotide diversity and neutrality tests for SAG and LANB2 

 n S θW π πS πNS H EW HEW 

SAG          

M form 14 59 0.0051 0.0044 0.0092 0.0005 -1.0300 0.0769 1.0 

S form 15 58 0.0048 0.0049 0.0081 0.0008 -0.3680 0.2089 0.0507 

LANB2          

M form 14 480 0.0180 0.0157 0.0369 0.0002 0.4972 0.0714 1.0 

S form 11 412 0.0175 0.0151 0.0358 0.0002 0.2954 0.0909 1.0 

n – Number of chromosomes sampled per population. 
S – Total number of segregating sites detected in each sample.  
θW – Per site Watterson’s Theta calculated on all segregating sites. 
π – Average number of pairwise differences (nucleotide diversity) calculated on all 
segregating sites. 
πS – nucleotide diversity at synonymous sites only. 
πNS – nucleotide diversity at non-synonymous sites only. 
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Table 2: McDonald-Kreitman test results for both SAG and LANB2 

 Polymorphic sites Fixed sites  

 Synonymous Non-Synonymous Synonymous Non-Synonymous p-value 

S form      

SAGa 7 2 27 25 0.2757 

Allb 19 17 64 77 0.4587 

M form      

SAGa 7 3 27 24 0.4892 

Allb 17 20 64 77 1.0 

S form      

LANB2 151 4 22 2 0.1846 

M form      

LANB2 162 4 19 2 0.1367 

a – Test applied to all coding regions in the sequenced region (SG1-2, SAG, gSG1a) 
b – Test applied to SAG alone. 
Significance of contingency table evaluated using Fisher’s exact test, no corrections for 
multiple testing applied.  
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FIGURES: 

Figure 1: Sliding window analysis of SAG using HEW neutrality test.   

The compound neutrality test statistic HEW plotted as a function of position across 

sequenced region containing three genes.  HEW was calculated in a sliding window 

analysis using a 1200bp window with a 500bp step size.  The schematic below the plot 

indicates the location of each gene in the region.  Both the uncorrected log transformed 

HEW p-values as well as corresponding per site Wattersonʼs Theta value for each 

window is plotted and the dotted line indicates 0.05 threshold such that any point below 

the line indicates a value that satisfies the criteria for statistical significance.   
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ABSTRACT: 

Host-pathogen interactions can be powerful drivers of adaptive evolution, shaping the 

patterns of molecular variation at the genes involved.  In this study, we sequenced 

alleles from 28 immune-related loci in wild samples of multiple genetic subpopulations of 

the African malaria mosquito Anopheles gambiae, obtaining unprecedented sample 

sizes and providing the first opportunity to contrast patterns of molecular evolution at 

immune-related loci in the recently discovered GOUNDRY population to those of the 

indoor-collected M and S molecular forms.  In contrast to previous studies that focused 

on immune genes identified in laboratory studies, we centered our analysis on genes 

that fall within a quantitative trait locus associated with resistance to P. falciparum in 

natural populations of A. gambiae.  Analyses of haplotypic and genetic diversity at these 

28 loci revealed striking differences among populations in levels of genetic diversity and 

allele frequencies in coding sequence.  Moreover, putative signals of positive selection 

were identified at 11 loci, but only one was shared among subgroups of A. gambiae.  We 

discuss these results with respect to ecological differences among these strata as well 

as potential implications for disease transmission. 
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INTRODUCTION: 

Over six decades ago, J.B.S. Haldane inferred from simple ecological 

observations that host-pathogen interactions must be a unique and powerful driving 

agent of adaptive evolution (Haldane 1949).  Such evolutionary dynamics are expected 

to leave traces in genomes of both host and pathogen; especially in immunity-related 

genes for the former and in virulence genes for the latter.  Consistent with this 

expectation, molecular evolutionary studies of genes in primates, Drosophila, and plants 

have shown that immune-related genes tend to evolve adaptively and are among the 

most rapidly evolving genes in the genome (Clark et al. 2003; Schlenke and Begun 

2003; Nielsen et al. 2005; Tiffin and Moeller 2006; Sackton et al. 2007).  Here, we 

examine patterns of genetic variation in multiple natural populations of the African 

malaria mosquito, A. gambiae s.s. to identify possible evidence of pathogen-driven 

molecular evolution.    

One form of pathogen-driven evolution is positive selection acting on a beneficial 

allele or alleles.  In the classical selective sweep model, positive selection acts on a new 

allele that arises by mutation, driving it to fixation within a population or species 

(Maynard Smith and Haigh 1974).  Partial selective sweeps are also possible, in which 

the beneficial mutation increases in frequency within the population but does not or has 

not yet reached fixation (Hudson, Sáez, and Ayala 1997).  Partial sweeps may be 

expected when the selective event is either very recent or occurs in a heterogeneous 

environment.  In models of positive directional selection, the chromosomal background 

carrying the beneficial mutation also rises in frequency through so-called genetic 

hitchhiking, leaving a distinct footprint on linked neutral variation in the genomic region 

surrounding the mutation (Smith and Haigh 1974; Kaplan, Darden, and Hudson 1988; 

Kaplan, Hudson, and Langley 1989; Braverman et al. 1995). 
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Positive selection can also act on polymorphisms segregating at low or 

intermediate frequency in the population prior to the selective event.  Such selection on 

standing genetic variation can yield a rapid response to a change in selective pressure, 

such as a switch of ecological niche (Przeworski, Coop, and Wall 2005; Pritchard, 

Pickrell, and Coop 2010).  This could explain the fixation of the Duffy null allele in sub-

Saharan African human populations, where two major haplotypes carrying the null allele 

were driven to fixation presumably in response to selection pressure from the human 

malaria parasite Plasmodium vivax (Hamblin and Di Rienzo 2000).  Statistical population 

genetic tests have been developed to detect the footprint left by positive selection on 

natural variation in a population (Tajima 1989; Fay and Wu 2000; Kim and Stephan 

2002; Sabeti et al. 2002), although the signature of selection on standing variation is 

more complex and more difficult to identify reliably, especially when the adaptive allele is 

relatively common at the beginning of the selective event (Przeworski, Coop, and Wall 

2005). 

Identifying adaptive evolution in A. gambiae s.s. may also have implications for 

human health, since this species is a primary vector of the human malaria parasite 

Plasmodium falciparum in sub-Saharan Africa.  Malaria remains the most deadly vector 

borne disease and a major public health concern in tropical Africa.  Control of vector-

borne diseases such as malaria is difficult due to their complex mode of transmission, 

and development of novel control strategies depends on a clear understanding of host-

pathogen dynamics.  Natural mosquito phenotypic variation for susceptibility to malaria 

parasite infection has a large genetic component, and has been mapped to loci on all 

three chromosomes in multiple studies in both West and East Africa (Niaré et al. 2002; 

Menge et al. 2006; Riehle et al. 2006; Riehle et al. 2007).  In particular, the left arm of 

chromosome 2 carries a genomic region containing a cluster of significantly associated 
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genetic markers that has been termed a “Plasmodium-Resistance Island” (PRI; Menge 

et al. 2006; Riehle et al. 2006; Riehle et al. 2007).  The PRI is 15 megabases (Mb) in 

size and encompasses approximately 1000 coding genes (Riehle et al. 2006), and the 

genetic variants responsible for the resistance trait have not been identified.  

Nonetheless, a set of plausible candidate genes has been proposed that may harbor the 

causative variation, and we analyzed sequence diversity in a large sample of wild-caught 

mosquitoes at a subset of the candidate genes to analyze the selective history and 

genetic structure at these loci. 

Anopheles gambiae s.s. is comprised of genetically differentiated but 

morphologically identical subgroups that can be distinguished only on the basis of 

molecular diagnostic assays, termed ʻmolecular formsʼ.  The “S” molecular form has the 

largest range, and is widespread throughout sub-Saharan Africa.  The “M” molecular 

form has arisen only in West Africa (della Torre et al. 2001), likely as a population 

derived from the S form, and the two are broadly sympatric over the M form range.  The 

M and S forms are reproductively isolated at the prezygotic level (Diabaté et al. 2007) 

and display restricted gene flow (Wondji et al. 2005; Neafsey et al. 2010).  However, the 

evolutionary status of the subgroups appears to be dynamic, because some sympatric 

populations of M and S forms display elevated levels of hybridization, with complex 

patterns of directional introgression (Oliveira et al. 2008; Marsden et al. 2011). 

We identified an additional population form in the Sudan Savanna zone of 

Burkina Faso, the GOUNDRY subgroup, which is genetically distinct from both M and S 

forms, and in which the markers typically diagnostic for the M and S forms segregate 

freely (Riehle et al 2011).  In this sampling location, the three subgroups are sympatric 

and larval collections yield all three forms.  Phenotypic differences among the M and S 

molecular forms have been described at the aquatic larval stage, but the larval ecology 
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of GOUNDRY is not well understood.  M and S can differ by the ecotype of their larval 

sites (Costantini et al. 2009), where the S form favors temporary breeding sites and the 

M form prefers permanent freshwater pools, although larval breeding sites are also often 

shared.  The larval habitats of these mosquitoes harbor a diverse community of 

invertebrates, microbes, fungi and protozoa, and there is some evidence that the M and 

S molecular forms may differ in their interactions with this community, particularly with 

respect to their ability to avoid predators that are more often found in habitats preferred 

by the M form population (Diabaté et al. 2008; Fillinger et al. 2009; Gimonneau et al. 

2010; Gimonneau et al. 2012).  At the adult stage, the M and S molecular forms are 

highly endophilic and tend to rest indoors after feeding, and are thus sometimes referred 

to as ENDO forms (Riehle et al. 2011).  In contrast, GOUNDRY adults presumably 

exploit yet undiscovered outdoor resting sites, although occasional indoor-resting 

GOUNDRY adults have been captured (Riehle MM, Vernick KD, Sagnon N, Guelbeogo 

WM, unpublished observation). 

The genomic region containing the Plasmodium-Resistance Island partially 

overlaps the large 2La paracentric chromosomal inversion.  2La polymorphism is 

widespread in Africa and was originally noted for the allele frequency correlation with 

degree of environmental aridity (Coluzzi et al. 1979; Powell et al. 1999).  In the Burkina 

Faso study area, the M and S form populations are nearly fixed for the inverted 2Laa 

arrangement, while the GOUNDRY subgroup segregates both the standard 2La+ and 

inverted 2Laa arrangements in Hardy-Weinberg equilibrium (Riehle et al. 2011). 

In this study, we used a population genetic approach to test hypotheses of 

adaptive evolution at candidate immune genes within the PRI infection control locus.  

The candidate gene set is comprised of genes with a diverse array of putative immune 

functions including immune effector molecules, pathogen recognition, signal transduction 
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and modulation (Riehle et al. 2006).  We hypothesized that the differences in ecology 

and adaptation of the M and S molecular forms, the 2La inversion arrangements, and the 

GOUNDRY subgroup might result in exposure to distinct suites of pathogens in the 

environment, and that these differences in exposure could result in different host-

pathogen evolutionary dynamics that may have important implications for malaria 

transmission.  We analyzed the patterns of genetic variation in 28 immunity-related 

genes in four population strata of A. gambiae collected from the village of Goundry, 

Burkina Faso.  We find that signals of putative positive selection vary among the genetic 

subpopulations and 2La inversion types.  We discuss these results in the context of 

Plasmodium selection pressure and transmission, ecological differences among these 

populations, and the ongoing incipient speciation process. 

 

MATERIALS AND METHODS 

Mosquito collection and sample sets  

The mosquitoes used in this study are part of the sample set described by Riehle 

and colleagues (2011), with full details on the origin of mosquito specimen, sample 

composition and genotyping methodologies given in that publication.  Briefly, A. gambiae 

s.s. were collected as larvae in 2007 and 2008 from larval habitats in and around 

Goundry, Burkina Faso (coordinates 12o30ʼN, 1o20ʼW), about 30 km north of the capital 

city Ouagadougou. The collection area is situated within the Sudan-Savanna (Sudano-

Sahelian) ecological zone of tropical shrubland and dry forest.  Mosquitoes from 56 

larval collections were reared to adults in an insectary.  Sixteen distinct larval collections 

from the years 2007 and 2008 were used to compose the samples. 

 

DNA isolation 
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DNA was extracted from individual adult female mosquito carcasses in 100 µl 

DNAzol (Invitrogen) according to the manufacturerʼs recommendations. The genomic 

DNA from each mosquito was resuspended in 500 µl H2O. 

 

Genotyping and population assignment: 
 

Species, molecular form and 2La inversion karyotype were genotyped as 

described previously in Riehle et al. (Riehle et al. 2011).  Briefly, species and molecular 

form were typed using the SINE200 X6.1 assay (Santolamazza et al. 2008).  The 2La 

inversion was typed using the published molecular assay (White et al. 2007).  

Fluorescent primers were used in both assays, and PCR fragments were sized using an 

ABI Genetic Analyzer 3730 as previously described (Riehle et al. 2011).  

Genotyping of microsatellites on the third chromosome was carried out as 

described previously (Riehle et al. 2011).  The genotyped markers were: 3R.H59, 

3R.H93, 3R.H249, 3R.H119, 3R.H555, 3L.H242, 3L.H758, and 3L.H817. These markers 

are regularly spaced on the two chromosome arms, present no detectable null alleles 

and segregate at HWE. Microsatellites were used to assign the samples to either ENDO 

M/S or GOUNDRY subpopulations using the program STRUCTURE (Pritchard, 

Stephens, and Donnelly 2000), then the standard molecular diagnostic (Favia et al. 

2001) was used to assign M versus S molecualar form as described in (Riehle et al. 

2011).  Mosquitoes not assigned to a single cluster with greater than 80% probability by 

STRUCTURE were removed from the analysis.  Heterokaryotypic 2Laa/2La+ mosquitoes 

were not included in this study.  Mosquito identifiers, sampling year, molecular form 

status, and 2La karyotype for each mosquito is provided in Supplementary Table 1.   

 

PCR amplification of target gene fragments 
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For 28 selected candidate genes, two alternative primer pairs were designed 

manually based on the A. gambiae genome (Vectorbase, A. gambiae genome, version 

AgamP3). Primers were designed in coding exons to generate a PCR product of ~500 

bp. If possible, the PCR amplicon was designed to span an intron to increase the 

number of sequence variants.  The two alternative primer pairs were first tested for 

efficient amplification with DNAs from three unrelated A. gambiae s.s. of different 2L 

inversion karyotypes (2Laa/2Laa, 2La+/2La+, 2La+/2Laa) and one mosquito from the 

Ngousso colony of A. gambiae. The generated PCR amplicons were analyzed on a 1% 

agarose gel, and single band PCR products of the correct size were sequenced in both 

directions to confirm the amplification of the correct target gene. If needed, additional 

primer pairs were designed to optimize the amplification. The primer pair that performed 

best with all four mosquito DNAs was retained for the experiment with the field-collected 

specimens. The sequences of the primers are given in Supplementary Table 2. In the 

sample set from 2007, PCR fragments were generated from all 28 target genes. In the 

2008 samples set PCR fragments were produced from 7 of the 28 target genes 

(Supplementary Table 1). To facilitate the direct sequencing of the PCR products, all 

retained primer pairs were synthesized with 5ʼ extensions corresponding to the universal 

forward and reverse M13 primers, respectively.  

PCR reactions were performed in 20 µl with 2 µl of genomic DNA using the 

AccuPrime SuperMixII (Invitrogen) according to the supplierʼs recommendations. The 

amplification conditions included an initial denaturation step of 94°C for 3 min, followed 

by 40 cycles at 94°C for 30 sec, 55°C for 45 sec and 72°C for 1 min. A final extension 

step of 72°C lasted 10 min. 

To obtain PCR amplicons suitable for sequencing, unincorporated primer 

molecules and nucleotides were removed from the PCR product by centrifugation over 
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Sephadex P100 columns in Multi Screen filter plates (Millipore). To obtain an efficient 

purification, a mixture of 6 µl PCR amplification product and 26 µl of H2O were carefully 

overlaid on a 300 µl P100 column and centrifuged for 4 min at 1800 rpm.  

 

Sequencing  

Sequencing reactions were conducted using 2 to 4 µl of the P100 purified PCR 

product. All amplicons were sequenced in both directions using the universal forward 

and reverse M13 primers, the ABI Big Dye Terminator v.3.1 Cycle Sequencing kit 

(LifeTechnologie) and an ABI Prism 3730 DNA Analyzer (Applied Biosystems).  

Genotypes were called for each heterozygous sequence individually automatically using 

the internal software of the DNA Analyzer based on intensity ratios of the sequence 

chromatograms.  The sequences were assembled using CodonCode Aligner 

(CodonCode Corporation). To assemble a contig, the two sequences of a PCR fragment 

from a single mosquito were aligned using the reference genome of A. gambiae as a 

guide.  Then a multiple sequence alignment of all consensus sequences was 

constructed using ClustalW.  Gene names, genomic locations, and AGAP identifiers are 

provided in Supplementary Tables 2 and 3.  The number of chromosomes sequenced 

from each population for each fragment is provided in Supplementary Table 4 and in the 

Results section.   

 

Haplotype phasing 

Haplotypes were inferred from the aligned sequences using PHASE 2.1.1 

(Stephens, Smith, and Donnelly 2001) for each population independently using default 

options. The FASTA sequence alignment obtained for each population was converted 

into the input file format requested for phase inference using the program Seqphase 
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(Flot 2010). The same software was also used to transform the PHASE output file back 

into FASTA.   Within the GOUNDRY subgroup, for sequenced amplicons located within 

the 2La inversion, the phase reconstruction was done independently for 2Laa/2Laa and 

2La+/2La+ mosquitoes.   

 

Outgroup sequence 

For inference of ancestral versus derived allele states, we used sequence from 

Anopheles arabiensis, Anopheles quadriannulatus, and Anopheles merus, all of which 

are members of the Anopheles gambiae species complex.  In order to collect sequence 

for each gene from these species, we downloaded paired-end lanes of Illumina short 

read sequence data from the NCBI Short Read Archive (A. merus: SRR314654 and 

SRR314646; A. arabiensis: SRR314650; A. quadriannulatus: SRR314661), deposited by 

a public sequencing initiative (Besansky and Anopheles Genomes Cluster Commitee 

2008). These short reads were generated from whole genome sequencing of a pool of 

two individuals from the A. merus OPHANSI strain, a pool of two individuals from the 

DONGOLA strain of A. arabiensis, and a pool of two individuals from the SKUQUA strain 

of A. quadriannulatus.  Each paired-end lane was mapped to the Anopheles gambiae 

PEST genome sequence (AgamP3, August 2011 release from VectorBase.org) using 

BWA (Li and Durbin 2009) with default parameter settings except for the edit distance, 

which was set to 8 to accommodate the relatively high expected genetic distance 

between the reads and the reference.  Read mapping resulted in median alignment 

depths of 20, 20, and 23 for A. merus, A. arabiensis, and A. quadriannulatus, 

respectively.  We used the mpileup function in SAMtools (Li et al. 2009) to generate 

pileups and call variants.  We extracted an outgroup sequence for each species by 

substituting the alternative nucleotide into the A. gambiae reference sequence whenever 
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the short-read data from the outgroups differed from the A. gambiae reference. The 

inferred sequence for each species was aligned with the A. gambiae sequences and 

used for subsequent analyses.  

 

Genetic differentiation  

To estimate levels of genetic differentiation between the strata at the immune 

genes studied here, we calculated FST using Weir and Cockerhamʼs unbiased estimator 

(Weir and Cockerham 1984) as implemented in an R script written by Eva Chan 

(www.evachan.org).  FST was calculated for each gene separately between all pairs of 

population strata.  To determine whether each estimate was significantly greater than 

zero, we randomly permuted population assignments 105 times, recalculated FST, and 

asked how many of the randomly permuted data sets exhibited FST greater than the 

observed value.  Values were considered significantly greater than zero if fewer than 5% 

of simulations resulted in FST greater than the observed value.  We were also interested 

in determining whether each gene-wise value of FST is greater than genomic levels of 

FST, so we compared gene-wise values to values of FST that had been calculated 

previously using microsatellite loci on the 3rd chromosome in a previous study of these 

populations (Riehle et al. 2011).  

 

Neutrality tests and population genetic statistics 

We calculated population genetic statistics for each gene within each population.  

To identify patterns of genetic variation that are consistent with positive selection, we 

used a compound statistic called HEW (Zeng, Shi, and Wu 2007).  This approach 

combines Fay and Wuʼs H statistic (Fay and Wu 2000), which is based on site-frequency 

estimators of the population parameter 4Neμ while giving extra weight to high frequency 
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derived alleles, with the Ewens-Watterson (EW) haplotype based statistic (Watterson 

1978) that measures haplotype homozyosity.  HEW is implemented by calculating H and 

EW separately, comparing each test statistic to a null distribution to obtain p-values, 

combining the p-values into a vector, and then comparing this vector against empirically 

determined thresholds to determine whether the vector is consistent with neutrality 

(Zeng, Shi, and Wu 2007).  Empirical thresholds for statistical significance for HEW were 

established by comparing the distribution of p-values for the component statistics and 

finding the threshold that provided the desired statistical cutoff (0.05) for the vector 

combining the two component p-values (Zeng, Shi, and Wu 2007).  Null distributions of 

all test statistics were generated using coalescent simulations conditioned on the 

number of haplotypes in the sample with the mutation rate set to the population 

parameter θ (4Neμ) estimated from the data using Wattersonʼs estimator (Watterson 

1975), as described in Zeng et al. (Zeng, Shi, and Wu 2007).  All coalescent simulations 

were conservatively conducted with no recombination.  The assumption of no 

recombination is justified because the gene fragments sequenced in the present study 

are short enough that recombination is not likely to be pervasive in the samples.  

Accurate estimates of recombination are not available in A. gambiae, especially in and 

around the 2La inversion, and estimating recombination rates from population sequence 

data can produce inaccurate results (Wall 2000).  It should be noted that we used a 

normalized version of the H statistic that was derived by Zeng et al. (Zeng et al. 2006) 

and was shown to consistently have slightly more power than the original un-normalized 

version.  Since H requires an outgroup and EW is based on haplotype diversity, the A. 

merus outgroup sequence and A. gambiae haplotypes consisting only of silent 

(synonymous and non-coding) sites were used to calculate the component statistics of 

HEW for each gene and for each population. Calculations of the component statistics of 
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HEW and all coalescent simulations were carried out using a program kindly provided by 

K. Zeng.  The resulting p-values were corrected for multiple testing using the Benjamini 

and Hochberg (Benjamini and Hochberg 1995) correction as implemented in the p.adjust 

function in R (R Development Core Team 2011).   

Additional population statistics including nucleotide diversity, the number of 

haplotypes, and Tajimaʼs D (Tajima 1989) were calculated.  Nucleotide diversity (π) was 

measured as the average number of nucleotide differences per site using DnaSP v.5.10 

(Librado and Rozas 2009).  The number of haplotypes, h, was also calculated using 

DnaSP.  To test the significance of haplotype and nucleotide diversity for genes with 

structured genealogies, we simulated neutral genealogies using ms (Hudson 2002) 

conditioned on the empirical clade structure and number of segregating sites in the 

empirical sample.  For each simulated genealogy that satisfied these criteria, we 

calculated nucleotide and haplotype diversity for each sub-clade and counted how many 

simulated genealogies showed values equal to or more extreme than the empirically 

observed values.  Tajimaʼs D was calculated using the software package provided by K. 

Zeng mentioned above and evaluated for statistical significance in the same simulation 

framework as for H and EW. 

We also used a multilocus version of the Hudson-Kreitman-Aguade (HKA) Test 

(Hudson, Kreitman, and Aguadé 1987) to test for deviations from neutral expectations.  

We employed a multi-locus version of the HKA test implemented in the program hka 

written by J. Hey (http://genfaculty.rutgers.edu/hey/software#HKA).  For this test, we 

used only variation at synonymous or non-coding sites and A. merus as the outgroup 

(species 2).  To determine significance of the observed values and sum of deviations, 

105 neutral coalescent simulations were conducted modeled on parameters inferred from 

the data within the program to establish an empirical distribution of the χ2 distribution.  
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Since the comparison is designed to be between a locus of interest and a ʻneutralʼ locus 

and we didnʼt sequence any functionally random control loci, we instead compared the 

focal locus to the nearest upstream and downstream neighbors that did not show a 

significant HEW test statistic.   

 

Linkage disequilibrium and haplogroup analysis 

We estimated genetic correlation, r2, between all variant sites within each gene 

for each population and used this statistic to identify blocks of high linkage disequilibrium 

(LD) in genes that rejected neutrality based on the HEW statistic above.  r2 was 

calculated using an R script written by Eva Chan (www.evachan.org) and plotted using 

the R package LDheatmap (Shin et al. 2006).  LD plots were visually inspected for all 

loci with a significant HEW result in the homokaryotype groups of GOUNDRY (2Laa/2Laa, 

2La+/2La+), and the gene with the most striking LD block was chosen for further analysis.  

Where we hypothesized that incomplete sweeps or sweeps from standing variation were 

plausible models in this data, MEGA5 (Tamura et al. 2011) was used to calculate and 

draw neighbor-joining gene trees using the Maximum Composite Likelihood method with 

uniform substitution rates among sites, and trees were inspected for evidence of distinct 

clades of genetically similar haplotypes.  Alignments were inspected for distinct 

haplotypes using CodonCode (v3.7), and evidence for increased linkage within and 

differentiation between groups of haplotypes was used to delineate distinct haplotype 

groups within the sample.  These haplogroups were then designated A and B, and each 

haplogroup was further analyzed for evidence of positive selection based on the same 

summary statistics as above.  To test whether the distribution of segregating sites and 

patterns of nucleotide diversity across the two haplogroups were consistent with the 

neutral equilibrium model, we conducted an additional 105 coalescent simulations for 
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each gene conditioned on the observed clade structure and the observed number of 

segregating sites.  We then asked how often the simulated data showed values equal or 

more extreme than those observed in our empirical datasets.   

We also conducted additional analyses of specific clades within certain datasets.  

To identify specific regions of high divergence, we calculated Jukes-Cantor corrected 

divergence (KJC) using a sliding window analysis in DnaSP with a physical window size 

of 50bp and a shift size of 10bp.  After identifying a region of high divergence, we 

extracted the sequence from both the low and high divergence clades and searched for 

transcription factor binding sites by comparing the sequences to insect matrices within 

the TRANSFAC database using the Match™ 1.0 webserver (BioBase).  We set the 

selection cutoff to minimize false positives and only searched high quality matrices within 

the insect group.      

 

Results 

Population differentiation and genetic variation  

We examined genetic variation at 28 loci, comprised mostly of genes selected by 

a filtering process designed to enrich for immune-related genes inside the Plasmodium-

Resistance Island (PRI) on the A. gambiae second chromosome near the proximal 

boundary of the 2La inversion (Niaré et al. 2002; Riehle et al. 2006; Riehle et al. 2007).  

Population samples were drawn from three strata of A. gambiae s.s.: ENDO M and 

ENDO S molecular forms of A. gambiae and the recently discovered cryptic sub-group 

GOUNDRY (Riehle et al. 2011).  The genes analyzed here can be grouped by genomic 

context since many of the genes (18/28) are located inside the large 2La inversion on 

the left arm of the second chromosome, although many of the genes are located near 

the proximal breakpoint of the inversion (Figure 1).  Half of the remainder of the genes lie 
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on 2L outside the inversion and the rest are on other chromosomal arms.  Twenty of the 

28 sequenced loci fell within the PRI (Figure 1).  The 2La inversion is nearly fixed for the 

inverted form in the molecular forms in Burkina Faso, but is segregating at Hardy-

Weinberg equilibrium frequencies in GOUNDRY (Riehle et al. 2011).  When GOUNDRY 

2La+/2La+ and 2Laa/2Laa individuals are contrasted for genetic differentiation, genes in 

collinear regions of the genome that are physically distant from the inversion show no 

differentiation among homozygous groups (mean FST = -0.0005), while those inside or 

near (<2.2MB) the inversion show extremely high levels of differentiation (mean FST = 

0.52), indicating strong reductions of recombination and independent evolutionary 

trajectories within and surrounding the 2La inversion (Figure 1).  On the other hand, 

comparisons among the M and S molecular forms and GOUNDRY individuals 

homozygous for the inverted form revealed relatively constant genetic differentiation 

across all loci, irrespective of distance from the inversion (Figure 1).  Both the M and S 

molecular forms were compared to GOUNDRY separately and exhibited qualitatively 

similar levels and patterns of differentiation, so only the S form comparison is presented 

in Figure 1.  These results highlight reductions of interbreeding between the M and S 

molecular forms and GOUNDRY as well as reductions in recombination between the two 

forms of the 2La inversion, especially at the breakpoints, and lead us to delineate four 

groups (M, S, GOUNDRY 2La+/2La+, and GOUNDRY 2Laa/2Laa) for subsequent 

analysis.  The contrast between the molecular forms and the GOUNDRY 2Laa/2Laa 

group also indicates that the origin of the 2La inversion predates the split between all of 

these groups, since differentiation is similar between loci inside and outside the 

inversion.  This pattern is contrary to that which would be expected if the inversion had 

been introgressed after the subgroups diverged, in which case the inversion might show 

less differentiation than loci outside the 2La region.     
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Patterns of genetic diversity also differentiate these population strata (Table 1). 

Levels of synonymous coding variation are 35% lower in GOUNDRY 2Laa 

homokaryotypes (average θW = 1.64%) compared to M form (θW = 2.53%) and S form 

(θW = 3.66%), indicating that the effective population size of GOUNDRY is substantially 

smaller than that of the M and S form populations, which are distributed across most of 

West Africa and sub-Saharan Africa, respectively (Lehmann and Diabate 2008).  

Furthermore, the distributions of allele frequencies differ between GOUNDRY and the 

molecular forms, possibly indicating distinct demographic histories.  While genes of M 

and S molecular form mosquitoes generally have negative values of Tajimaʼs D 

consistent with recent population growth previously inferred for these populations 

(Crawford and Lazzaro 2010), GOUNDRY exhibits a distribution of D approximately 

centered on D = 0 with a substantially increased variance.  The reduced nucleotide 

diversity and non-negative values of D may indicate either a recent bottleneck of at least 

moderate size and duration in GOUNDRY or that this population has maintained a 

relatively small and consistent effective population size in the recent past.  We also 

compared levels of variation and distributions of allele frequencies between genes inside 

and outside of the 2La inversion and found that, while loci associated with the inversion 

may be more differentiated among inversion forms, levels of diversity and D do not differ 

among genes inside and out of the inversion (Table 1). 

   

Evidence for positive selection 

To determine whether genetic variation at the immune-related genes under study 

exhibit patterns that are consistent with positive selection, we used summary statistics 

that measure enrichment of high frequency derived alleles (Fay and Wu 2000) and levels 

of haplotype homozygosity (Watterson 1978) to ask whether the observed patterns are 
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consistent with neutral evolution.  A recent series of papers introduced the HEW test that 

combines Fay and Wuʼs site-frequency spectrum based H statistic (Fay and Wu 2000) 

with Ewens-Watterson test for haplotype homozygosity (Watterson 1978) into a 

compound statistic.  The compound statistic HEW provides a sensitive and specific 

approach for distinguishing the footprint of positive selection from both stochastic neutral 

evolution as well as demographic effects, particularly for short sequence fragments as 

analyzed here (Zeng et al. 2006; Zeng et al. 2007; Zeng, Shi, and Wu 2007).  We tested 

all genes in each of the four groups using HEW and, despite the relatively conservative 

nature of the compound HEW statistic, we found putative evidence for positive selection 

at 11 immune-related genes after correcting for multiple testing (Table 2).  Interestingly, 

of the 11 genes that exhibit evidence for positive selection, only one (APL1B) is shared 

across population strata (Figure 3), implying that the strata reflect ecologically distinct 

subpopulations whose immune genes are under substantially different selection regimes.  

The contrast between the molecular forms is remarkable in that evidence for selection 

was identified at six loci in the M form, but not one gene showed significant departure 

from neutrality in the S form.  Furthermore, there is no overlap among adaptive signals 

between the two GOUNDRY classes of 2La homokaryotypes (Figure 3), suggesting that 

the two inversion states may experience distinct selective pressure.   

The HEW statistic is relatively robust to demographic effects, but false positive 

results can occur if haplotype reconstruction is incorrect (Zeng et al. 2007).  To rule out 

this potential source of false positive test results, we evaluated the phase inference 

results based on several criteria to determine whether genes with significant HEW 

statistics also showed relatively low confidence phase reconstruction.  When the 

statistical software PHASE assigns heterozygous sites to haplotypes, confidence 

probabilities are calculated for each site that reflect the degree of statistical confidence in 
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the assignment, where a probability of one reflects no ambiguity and 0.5 indicates 

complete ambiguity (Stephens, Smith, and Donnelly 2001).  In our dataset, more than 

half of inferred sites were assigned to a haplotype with a confidence probability of one, 

thanks in part to the power of haplotype inference achieved with large numbers of 

individuals sampled and small sequence windows with little recombination.  There is 

some uncertainty in haplotype reconstruction based on the remaining sites with 

probabilities less than one, and we sought to use the information contained in these 

probabilities to evaluate the possible effects of this uncertainty on our HEW results.  We 

evaluated each run of PHASE (see Methods) based on the proportion of sites that were 

inferred or imputed as well as the distribution of confidence probabilities, reasoning that 

haplotype reconstruction might be most problematic in genes with relatively more 

missing and heterozygous sites and, therefore, more low confidence probabilities.  To 

determine whether this was a concern with respect to our inferences of positive 

selection, we first evaluated genes based on the proportion of the total sequence that 

was phased or imputed.  None of the genes that rejected neutrality based on HEW were 

in the top 5% for proportion of either phased or imputed sites (Supplementary Table 5).  

We then ranked the genes by proportion of variant sites at which the confidence 

probability estimated by PHASE was less than one.  One of the genes that rejected 

neutrality, LRR(7030) (for simplicity of presentation, the unnamed LRR genes are 

labeled according to shortened forms of their AGAP identifiers) in GOUNDRY 2Laa/2Laa, 

was in the 5% tail (Supplementary Table 5).  This suggests that the results from this 

gene should be interpreted with caution.  Generally speaking, however, the mean 

confidence probability among sites with probabilities less than one was 0.78 at this 

locus.  Although it is difficult to fully evaluate the success of the phase inference process 

in the absence of experimental validation, since the genes that show evidence of positive 
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selection are not among those with the lowest confidence or even those that required the 

most phasing, we do not believe that phasing errors are likely to be causing false 

positives in our tests for positive selection.  

 

TEP1, LRIM1, and APL1 

An important validation of our analysis was the recovery of signals of positive 

selection in two genes previously indicated as evolving adaptively through analysis of 

independent datasets and analytical approaches.  Positive selection has been identified 

at both TEP1 (White et al. 2011) and the APL1 gene cluster (Rottschaefer et al. 2011) in 

the M form population, and our new analysis indicated adaptive evolution at both of 

these loci (Figure 3).  In addition, it has been speculated that, since a physical complex 

is formed between the proteins encoded by TEP1 and APL1C as well as a third protein 

(LRIM1), the patterns of variation at TEP1 and the APL1 locus may reflect coordinate 

adaptive evolution (Fraiture et al. 2009; Povelones et al. 2009; Rottschaefer et al. 2011).  

Thus far, no signals of adaptive evolution have been identified at LRIM1 in A. gambiae 

(Obbard et al. 2007; Slotman et al. 2007; Cohuet et al. 2008), but our new analysis 

points to an enrichment of high frequency derived alleles (Hnorm = -2.49; uncorrected p = 

0.0222) and an increase in haplotype homozygosity (EW = 0.12; uncorrected p = 

0.0513) at LRIM1 in the M form population that is inconsistent with neutral evolution 

(HEW corrected p = 0.0336).  We also find evidence for positive selection at the TEP1 

locus (HEW corrected p = 0.0233), consistent with coordinate adaptive evolution among 

the proteins making up the complex.  When we analyze the APL1 paralogs separately, 

we find that APL1C, the only APL1 paralog involved in the described protein complex, is 

a clear outlier from the majority of loci in this population (Figure 3), although its HEW 

statistic is marginally non-significant after multiple testing (HEW corrected p = 0.084).  If 



 89 

selection is acting on the three members of the complex in a coordinate fashion, TEP1 is 

an outlier (Figure 4) suggesting that selection is stronger on this locus than on LRIM1 

and APL1C.   

 

FBN32 

Of all genes that showed a significant departure from the neutrality by the HEW 

statistic, FBN32 (AGAP007041; HEW corrected p = 0.0482) in the GOUNDRY 2Laa/2Laa 

subgroup showed the most striking pattern of linkage disequilibrium (Figure 4).  

Inspection of the sequence data revealed three derived SNPs in perfect linkage 

disequilibrium at the boundaries of the sequenced fragment.  These SNPs mark two 

distinct major haplotype clades, hereafter referred to as haplogroups A and B, the larger 

of the two also harboring two possible recombinant haplotypes (clade A*; Figure 4).  This 

genealogical structure is significantly unlikely under a neutral model (p = 0.0062), and we 

hypothesized that the presence of two sharply defined clades could be consistent with 

either a partial selective sweep (Hudson, Sáez, and Ayala 1997), a sweep from standing 

genetic variation (Przeworski, Coop, and Wall 2005), or a classical selective sweep with 

at least one recombination event occurring during the sweep.  Several lines of evidence 

suggest that an incomplete sweep cannot explain the data.  First, if we assume that the 

less variable B haplotype is the selected haplotype, it would be segregating at a 

relatively low frequency in the population (27% or 30 out of 110 chromosomes) that the 

HEW test statistic has very low power to detect (Zeng, Shi, and Wu 2007), implying that 

the deviation from neutrality detected by the HEW test stems from the entire sample 

instead of just one clade.  Second, under a partial selective sweep model, we would 

expect the selected clade to lack variation while the other clade harbors pre-sweep 

variation, but this is not what we find. Comparison to simulated neutral genealogies 
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indicates that the low average number of pairwise differences (πA = 0.0021; πB = 0.0002) 

is significantly unlikely under the neutral model in both clades (clade A p < 0.0005; clade 

B p < 0.05; Table 3).  Moreover, when applied to the larger (n = 80 chromosomes) and 

more diverse A clade, neutrality tests (D, H, EW, HEW) reject the neutral model (all p < 

0.05; Table 3).  Collectively, these results confirm that the A and B clades both harbor 

patterns of genetic variation that are inconsistent with neutrality, thus the data are more 

consistent with a complete sweep with recombination rather than an incomplete sweep.  

To rule out the possibility that this locus could have an unusually low mutation rate that 

could be driving these results, we compared patterns at FBN32 to its nearest neighbors 

in the dataset using an HKA test (Hudson, Kreitman, and Aguadé 1987), and found that 

FBN32 harbors significantly fewer polymorphisms and is significantly more diverged 

from A. merus than expected under neutral model (uncorrected p = 0.0176).   

The division of the haplotypes into two large clades could have arisen due to 

either the presence of the selected site on two chromosomal backgrounds prior to 

selection or a recombination event could have occurred during the selective event.  It is 

difficult to distinguish between these two models.  Overall, the data are consistent with a 

model of positive selection at FBN32 in this population that may have involved a sweep 

with recombination or selection on standing variation.   

  

Toll9 

In the GOUNDRY 2La+/2La+ group, the only gene to show significant evidence for 

non-neutral evolution based on the HEW statistic was Toll9 (Figure 3).  Despite showing 

a significant departure from neutrality, this gene harbors substantial variation in this 

subpopulation (θW = 0.0204), signaling that these data are not consistent with a recent 

and strong selective sweep.  Similarly to the pattern observed in FBN32 in GOUNDRY 
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2Laa/2Laa, two distinct clades are present in the Toll9 data, a genealogical structure that 

is significantly unlikely under a neutral model (p < 105; Figure 5).  Analysis of LD in this 

region reveals an LD block consisting of 18 sites in linkage disequilibrium separating the 

two clades, three of which are nonsynonymous substitutions in the fourth exon (Figure 

5).  Of these sites, 17 are fixed between the two clades.  A neighbor-joining tree reveals 

an interesting and unexpected topology where the A clade shares a common ancestor 

with the outgroups before coalescing with the B clade sequences (Figure 5).  Plotting 

divergence across the sequence for each clade separately reveals a large spike in 

divergence between clade B and the outgroups (KJC = 0.495) restricted to the intronic 

sequence (Figure 6).  We found that divergence from the outgroups (KJC) never 

exceeded 0.155 in similarly sized sequence windows from other genes in our data set, 

confirming that the Toll9 sequence is an outlier.  We also examined divergence at Toll9 

in other subpopulations and found similar, albeit smaller spikes in the intronic sequence 

(maximum 50bp window KJC = 0.322 in M form population, mean across all populations 

KJC = 0.252), suggesting that both haplotype groups existed and were segregating at 

intermediate frequency prior to the split of GOUNDRY from the M and S molecular 

forms.  We considered that the unusual B clade could have arisen through a paralogous 

gene conversion event, for example with another member of the Toll family.  To test this 

hypothesis, we used BLAST to search the clade B sequence against the A. gambiae 

genome and the NCBI nr sequence database, but we found no significant matches to 

any other available sequence other than existing A. gambiae Toll9 sequences.  It is 

possible that the sequence may have been introgressed from a species not sampled in 

this study, but we have no data to support or refute that hypothesis.  

The divergent sequences defining clades A and B may represent a functional 

balanced polymorphism.  Among other possible functions, introns can harbor 
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transcription-binding sites that affect expression patterns of the surrounding gene, or 

even a different gene in trans.  We compared the intronic sequence from both haplotype 

groups to known insect transcription factor binding site motifs in the TRANSFAC 

database and found that both haplotypes showed approximately equal matches to three 

binding motifs (BR-C z1, Hairy, Elf-1).  Each haplotype also showed matches to at least 

one unique motif.  The divergent B haplotype showed a match (matrix match = 0.852) to 

a motif that recruits the NF-kappaB transcription factor Dorsal that has been shown in 

Drosophila to function both in dorsal-ventral patterning during embryogenesis as well as 

in activating an immune response as a component of the Toll signaling pathway 

(Lemaitre et al. 1995; Ghosh, May, and Kopp 1998; De Gregorio et al. 2002).  The 

homolog of Dorsal in Anopheles, Rel1, has been shown to play a role in driving immune 

responses against a variety of pathogens, perhaps in part through the action of the APL1 

proteins (Barillas-Mury et al. 1996; Frolet et al. 2006; Mitri et al. 2009), so it is tempting 

to speculate that this motif may serve a role in immunity, but further experimental 

analysis is required to determine any functional differences between the divergent 

haplotypes.   

We propose similar population genetic models to explain the Toll9 and FBN32 

data: a partial selective sweep or a selective sweep with recombination either from 

standing genetic variation or with subsequent recombination during the sweep.  Under 

the partial selective sweep model, the selected haplogroup would be expected to show a 

departure from neutrality while the alternative haplogroup would show patterns of genetic 

variation consistent with neutral expectations.  To determine whether the Toll9 data fit 

these expectations, we analyzed the haplogroups separately for evidence of non-neutral 

evolution.  Population genetic analysis of the B haplogroup indicates a significant 

departure from neutrality in this clade, reflecting a scooped shape in the site-frequency 
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spectrum enriched in both rare and high frequency derived sites (H = -3.0625; p < 0.005; 

Table 2).  The A haplogroup, however, also exhibited a significant paucity of genetic 

variation compared to neutral expectations (p < 0.005), suggesting the possibility of 

recent positive selection acting to remove linked variation in this clade, but the very low 

level of polymorphism (3 segregating sites) precludes further analysis of this clade with 

neutrality tests (Table 2).  The alternative hypothesis of selection on standing variation 

predicts that the selected allele was segregating at appreciable frequencies in the 

population on multiple backgrounds at the time of the selective event.  Under this model, 

we would expect to find private fixations in this population as well as chromosomes 

bearing both genetic backgrounds segregating in other populations.  Although the 

degree of linkage disequilibrium is much lower in other populations, the SNPs that 

delineate the two clades in GOUNDRY 2La+/2La+ are segregating at intermediate and 

even high frequencies in the M and S molecular forms as well as GOUNDRY 2Laa/2Laa 

(data not shown).  Furthermore, comparison to the outgroup species A. merus reveals 4 

derived fixations that are unique to GOUNDRY 2La+/2La+, three of which are 

synonymous substitutions and the fourth of which falls within an intron (Figure 5).  

Although these fixations and deficits of diversity could reflect sites linked to an adaptive 

fixation as expected under a sweep model, they could also be a feature of Toll9 residing 

inside the polymorphic and highly diverged 2La inversion.  We tested this hypothesis by 

comparing Toll9 to its neighbors (LRR(7030) and IRSP1) using a multi-locus HKA test 

(Hudson, Kreitman, and Aguadé 1987) and found that, although the data were 

significantly inconsistent with equivalent evolutionary rates across the genes (p < 

0.0125), the deviation is largely driven by excess divergence and lower than expected 

polymorphism at IRSP1, while the Toll9 data more closely fit expected levels of 

divergence and polymorphism.  The results of this test support the neutral model for 



 94 

Toll9, contradicting the HEW test result.  However, this test may be inappropriate for 

these data since the diverged intronic sequence may have been a single mutational 

event and reflect a balanced polymorphism that could reduce the rate of fixation at this 

locus, in turn downward biasing the estimate of the mutation parameter 4Nμ in the HKA 

model reducing the power to detect reductions in polymorphism.  In both intraspecific 

and interspecific comparisons, the presence of the highly diverged intronic haplotypes 

makes these data somewhat difficult to interpret.  Nonetheless, both global and clade-

specific summary statistics point to positive selection at this locus (Table 3), and 

functional studies of Toll9 are needed to identify both the selective agent as well as the 

functional role, if any, of the diverged intronic haplotypes. 
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DISCUSSION 

 We sequenced alleles from 28 immune-related loci in wild samples of multiple 

genetic subpopulations of A. gambiae, obtaining unprecedented sample sizes and 

providing the first opportunity to contrast patterns of molecular evolution at immune-

related loci in the recently discovered GOUNDRY subgroup (Riehle et al. 2011) with 

those in the indoor-collected M and S molecular forms.  Analyses of haplotypic and 

genetic diversity revealed sharp differences among these strata in levels of genetic 

diversity and allele frequencies in coding sequence, as well as evidence for significant 

deviations from neutrality at 11 loci among these populations.  Further experimentation 

will be necessary to determine the nature of the selective pressures behind the signals 

observed here.  Our results do, however, allow some speculation on the distribution and 

nature of the selective events affecting these loci.     

 

Selection across functional classes 

Our results reveal possible evidence for positive selection at genes coding for 

proteins with a broad range of functions.  In one case, we found evidence for positive 

selection at the developmental morphogen Distal-less (DLL). Our previous studies 

showed a highly significant association between microsatellite (H603) alleles inside an 

intron of DLL and infection by P. falciparum (Niaré et al. 2002; Riehle et al. 2006), and 

the signal identified here may reflect linked selection on the functional site driving these 

signals, although the genetic mapping was conducted in the M and S molecular forms 

while the signal detected here came from GOUNDRY, where such mapping has not yet 

been done.  However, we also sequenced an intronic fragment flanking H603 and did 

not find evidence for selection, highlighting the need for further analysis of this genomic 
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region to identify the linked functional site(s) identified in our genetic mapping studies.  In 

another case, the gene encoding FBN32 (also known as FREP39), a member of the 

pathogen recognition receptor family in invertebrates (Gokudan et al. 1999; Dong and 

Dimopoulos 2009), also showed possible evidence for selection.  Expression analyses of 

this gene revealed expression patterns restricted to the abdomen and midgut, the larval 

salivary gland, and male accessory glands (Dong and Dimopoulos 2009; Neira Oviedo et 

al. 2009; Baker et al. 2011).  With respect to immune function, FBN32 was up-regulated 

in response to immune challenge with a gram-negative bacteria, a fungal pathogen, and 

P. falciparum, but not the rodent malaria parasite P. berghei (Dong and Dimopoulos 

2009), indicating some degree of generality in its immune function. 

Leucine-rich repeat-containing (LRR) proteins, a superfamily composed of 180 

proteins in A. gambiae (Waterhouse, Povelones, and Christophides 2010), featured 

prominently among the original filtered gene set within the PRI and also among the 

genes that showed possible evidence for selection.  In fact, the PRI locus as a window 

contains the largest number of LRR genes in the A. gambiae genome (Riehle et al. 

2006).  One class of LRRs, Toll-like receptors (TLRs), are trans-membrane proteins 

known to act as pathogen recognition molecules in mammals (Means, Golenbock, and 

Fenton 2000). But strong functional evidence is available for only a small number of 

TLRs in insects, and these TLRs have roles in development and immune-related signal 

transduction (Imler and Hoffmann 2001; Imler and Zheng 2004).  We found evidence for 

positive selection acting on the TLR Toll9 in the GOUNDRY subpopulation.  The exact 

functional role of Toll9 is unknown, but several studies have shown that Toll9 is slightly 

up-regulated following a bacterial immune challenge in larvae and expression is 

concentrated in the midgut of adults, particularly after a blood-meal (Luna et al. 2002; 

Marinotti et al. 2005; Baker et al. 2011).  Phylogenetic comparisons of the Toll genes 



 97 

may provide insight into protein function in that A. gambiae Toll9 clusters with 

mammalian TLRs based on its ectodomain structure and sequence similarity of the 

intracytoplasmic domain, suggesting that it may be an ancestral TLR in insects (Du et al. 

2000; Imler and Zheng 2004; Waterhouse et al. 2007). 

The other LRRs that showed evidence for positive selection included several 

more characterized LRRs (APL1B, APL1A and LRIM1) as well as three uncharacterized 

LRRs (LRR(7030), LRR(7059), LRR(7060)).  Interestingly, structural similarities between 

APL1 and LRIM1 proteins prompted a bioinformatic search through the A. gambiae 

genome for genes that code for other LRIM-like proteins that turned up 24 candidates, 

but the three uncharacterized LRRs studied here were not among them (Waterhouse, 

Povelones, and Christophides 2010), implying yet another sub-class of LRRs in 

mosquitoes.  Collectively, our results point to selection acting on proteins with a broad 

range of putative immune function, most of which show little specificity with respect to 

the pathogen classes to which they respond.  This observation is consistent with 

gathering evidence supporting a model wherein selection pressures derive from a 

diverse suite of pathogens, including those that infect larvae, driving the evolution of a 

generalized immune response (Rottschaefer et al. 2011; Mitri and Vernick 2012).   

 

No evidence for Plasmodium-driven selection  

Our focus on candidate genes within the PRI provides the potential opportunity to 

identify Plasmodium-driven selection pressure on Anopheles immune genes, since our 

candidate ascertainment process intentionally enriched for immune-related genes that 

may play a role in resisting Plasmodium infection based on experimental and 

bioinformatic evidence (Riehle et al. 2006).  The epidemiological importance of 

GOUNDRY is not currently known, although this population is physiologically more 
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permissive than M or S form A. gambiae to infection with P. falciparum (Riehle et al. 

2011).  Since the M and S molecular forms are both primary malaria vectors in sub-

Saharan Africa and rates of natural P. falciparum infection in wild M and S mosquitoes 

are equivalent (Wondji et al. 2005; Ndiath et al. 2008; Trout Fryxell et al. 2012),  

Plasmodium-driven selective pressure should be shared among these subgroups, if it 

exists.  However, in our data, only 1 of the 11 signals of positive selection (that at 

APL1B) is shared among subpopulations (Figure 3), and we found no evidence of non-

neutral evolution at APL1B or any other genes in the S form population.  Differences in 

sample sizes or the number of variant sites among populations could lead to reductions 

in statistical power that could generate false negatives, but this is not likely to be the 

explanation here because the populations with the fewest signals of possible selection 

(S form and GOUNDRY 2La+/2La+) had larger sample sizes in most cases than both of 

the populations that did show signals of putative natural selection (Supplementary Table 

4).   

Alternatively, the selection pressures driving non-neutral evolution at these loci 

could be related to differential pathogen exposure associated with ecological differences 

among these populations.  Although some of the immune genes studied here affect 

susceptibility to infection by P. falciparum in laboratory gene silencing experiments, most 

of these loci appear to also play a role in resistance to bacteria and non-human malaria 

parasites.  Thus while the polymorphism in these genes might contribute to variation in 

susceptibility to Plasmodium infection, it is unlikely that Plasmodium is itself the agent 

driving selection.  Nevertheless, selective pressure driven by other pathogens, acting on 

immunity related genes, could modify the mosquito response to the parasite, in turn 

enhancing or decreasing malaria transmission.  In fact, the increased susceptibility of 

GOUNDRY to malaria parasite infection (Riehle et al. 2011) could be explained by such 
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a mechanism, under the hypothesis that a change of ecological niche in this population 

has shaped a new pattern of selection in the immune genes.   

 

Niche specialization 

The striking division of selective pressures among populations points to a model 

of recent ecological niche specialization.  Specifically, our results are consistent with a 

model in which the M form and GOUNDRY are moving into novel ecological niches 

exposing genetic variation to novel selection pressures in the new environments.  Under 

this model, the genetic variation segregating in GOUNDRY and the M form would be 

expected to be largely a subset of S form variation.  As expected under this model, the 

majority of segregating sites in both the M form and GOUNDRY 2Laa/2Laa are shared 

with the S form (mean proportion of M and GOUNDRY 2Laa/2Laa sites shared with S 

form = 0.5892 and 0.6309, respectively, after correction for sample size), but the 

opposite is not the case (proportion of S form sites shared with M form = 0.4729 and with 

GOUNDRY 2Laa/2Laa = 0.3564, after correction for sample size).  Indeed, this model 

has been proposed previously to explain the relationship between the M and S forms 

based on the ecological observation that the M form exploits human-derived marginal 

habitats (della Torre et al. 2002; Simard et al. 2009; Costantini et al. 2009), and to 

explain molecular data indicating lower levels of genetic diversity (Cohuet et al. 2008) as 

well as more recent population growth in the M form relative to the S form (Crawford and 

Lazzaro 2010). 

Although adaptive divergence at immune genes is not likely to drive the 

speciation and niche specialization process, exploitation of novel environments is likely 

to be accompanied by novel pathogen pressures, potentially leading to adaptation of 

immune factors as observed here (Lee 2002).  For example, the more permanent, 
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disturbed, human-derived larval habitats preferred by the M form population harbor more 

abundant and complex insect communities (Diabaté et al. 2008; Gimonneau et al. 2010; 

Gimonneau et al. 2012), reflecting the more permanent, ecologically viable nature of 

these habitats that may also harbor a greater diversity of pathogens.  The larval habitat 

ecology of GOUNDRY has not been well characterized, but the lower genetic diversity 

relative to the M and S molecular forms and the fact that genetic variation in this group is 

largely a subset of that in the S molecular form suggests the possibility that it is also a 

derived population that could be moving into novel environments.   

Differences between the two 2La homokaryotype groups of GOUNDRY in the 

genes that show signals of putative positive selection is not likely to be explained by 

ecology, but rather by the lack of recombination between the two forms of the inversion, 

particularly near the breakpoints.  Under this model, the two forms of the inversion 

represent distinct gene pools in this region of the genome that harbor distinct sets of 

genetic variants that respond differentially to selection.  Consistent with this observation 

and the model that the 2La+ form is the derived form, we find that only 35.6% of 

segregating sites among 2Laa/2Laa individuals are shared with 2La+/2La+ individuals, 

while 63.1% of sites segregating among 2La+/2La+ individuals are shared with 2Laa/2Laa 

individuals, after correcting for sample size.  Taken together, these lines of evidence 

support a model of ongoing insipient speciation and niche specialization in this system 

that has led to adaptive evolution at immune genes.  

As in any molecular population genetic analysis of natural selection, it is 

impossible to state conclusively the selective agent responsible for the observed 

patterns.  However, it seems reasonable in this case to exclude the human malaria 

parasite P. falciparum as the driving force behind the signals detected in our data, 

considering the striking division of selective signals among population strata.  A 



 101 

compelling alternative explanation is that pathogens in the larval habitats may be driving 

evolution of these immune genes, and this may have implications for malaria 

transmission.  If broad spectrum immune factors involved in responding to multiple 

pathogen classes, one of which including P. falciparum (Meister et al. 2005; Dong et al. 

2006; Dong, Manfredini, and Dimopoulos 2009; Meister et al. 2009), are evolving in 

response to non-Plasmodium pathogens,  susceptibility to the malaria parasite could be 

affected.  Many of the immune proteins studied here (e.g. FBN32, LRR(7060)) have not 

been thoroughly tested functionally for anti-Plasmodium activity.  But almost all of the 

loci that show putative signals of selection are within the PRI region that showed 

significant association to Plasmodium resistance phenotypes, and these proteins 

warrant further genetic and functional analysis. 

 

CONCLUSION 

In 1949, Haldane hypothesized, with very little knowledge of the underlying 

molecular mechanisms, that host-pathogen interactions must be an important factor in 

shaping the ecological patterns observed in nature (1949).  In this study, we tested 

candidate immune-related genes for evidence of this evolutionary conflict and found a 

striking pattern that provides grounds to make the reverse inference from molecular 

evolution to ecology.  Namely, the distribution of putative pathogen-related signals of 

selection among populations of A. gambiae implies that these populations may occupy 

distinct ecological niches and correspondingly experience disparate host-pathogen 

interactions. 
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TABLES 

Table 1:  Summary of nucleotide diversity and the site-frequency spectrum among 
populations of A. gambiae. 
Population na θb Tajima’s Dc 

  All 2Lad All 2Lad 

M form 94 0.0253 0.0278 -1.28 -1.24 

S Form 136 0.0366 0.0412 -1.41 -1.39 

GOUNDRY 
2Laa/2Laa 

56 0.0164 0.0186 -0.07 -0.13 

GOUNDRY 
2La+/2La+ 

170 0.0114 0.0125 0.22 0.17 

a average number of chromosomes sequenced per gene fragment. 
b average θ calculated for each gene fragment using all sites.  
c average D calculated for each gene fragment using only synonymous sites.  
d statistic calculated using only genes inside 2La inversion. 
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Table 2: Population genetic summary statistics and test results for loci with a 
significant HEW test p-value (statistics for all loci are presented in Supplementary 
Table 4). 
Locus na Ssynb Dc Hd EWe HEW	  p-

valuef 
M	  form       

LRIM1 64 25 -‐0.1096 -‐2.4951 0.1221 0.0336 

TEP1 64 10 -‐2.1817 -‐2.0996 0.7979 0.0233 

APL1A 62 110 -‐1.1500 -‐2.5176 0.3002 0.0140 

APL1B 100 88 -‐0.5362 -‐1.7003 0.0898 0.0294 

LRR	  (7059) 100 50 -‐1.8131 -‐1.6246 0.1480 0.0302 

IRSP1 64 55 -‐1.4194 -‐2.4365 0.0557 0.0140 

GOUNDRY	  
2Laa/2Laa 

      

APL1B 100 70 0.2394 -‐2.4022 0.2408 0.0252 

LRR	  (7030)g 34 22 -‐1.3252 -‐1.5011 0.1211 0.0482 

LRR	  (7060) 100 38 -‐2.0531 -‐2.2083 0.3992 0.0280 

FBN32 100 15 -‐1.2392 -‐1.6624 0.5080 0.0482 

DLL 100 72 -‐2.3283 -‐2.5965 0.2512 0.0252 

GOUNDRY	  
2La+/2La+ 

      

Toll9 100 50 -‐0.1716 -‐3.0625 0.0868 0.0224 

a	  Number	  of	  chromosomes	  in	  the	  sample.	  	  Loci	  with	  n=100	  had	  more	  than	  100	  in	  
the	  original	  sample,	  but	  were	  down-‐sampled	  to	  100	  for	  this	  analysis.	   
b	  Number	  of	  synonymous	  segregating	  sites.	  	   
c	  Tajima’s	  D	  calculated	  using	  only	  synonymous	  sites. 
d	  Normalized	  Fay	  and	  Wu’s	  H	  calculated	  using	  only	  synonymous	  sites. 
e	  Ewens-‐Watterson’s	  haplotype	  homozygosity	  statistic	  calculated	  using	  only	  
synonymous	  sites. 
f	  HEW	  p-‐value	  with	  Benjamini	  and	  Hochberg	  correction	  for	  multiple	  tests.	  
Statistical	  significance	  of	  HEW	  was	  evaluated	  by	  comparison	  to	  105	  neutral	  
coalescent	  simulations	  of	  each	  sample	  (see	  Methods). 
g	  For	  simplicity	  of	  presentation,	  the	  unnamed	  LRR	  genes	  are	  labeled	  according	  to	  
a	  shortened	  form	  of	  their	  AGAP	  identifier	   
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Table 3: Population genetic summary statistics for haplogroups of FBN32 in 
GOUNDRY 2Laa/2Laaand Toll9 in GOUNDRY 2La+/2La+. 
Clade na hb,	  i Sc,	  i πd,	  i De Hf,	  j EWg,	  j HEWh,	  j 

FBN32         

All 110 10 18 0.0046* -‐1.2392 -‐1.6624 0.508 ** 

A 80 8	  NS 17 0.0021*** -‐2.16** -‐2.60* 0.81** ** 

B 30 2	  NS 1** 0.0002* NA NA NA NA 

Toll9         

All 122 42 42 0.0183NS -‐0.1716 -‐3.0625 
** 

0.0868* *** 

A 20 3	  NS 3** 0.0013* NA NA NA NA 

B 102 39	  NS 39 0.0001*** -‐1.4 -‐1.79* 0.09** ** 
a	  Number	  of	  chromosomes	  in	  each	  clade. 
b	  Number	  of	  haplotypes	  in	  each	  clade.	  	   
c	  Number	  of	  segregating	  sites	  in	  each	  clade. 
d	  Per	  site	  nucleotide	  diversity	  calculated	  on	  all	  segregating	  sites.	   
e	  Tajima’s	  D	  calculated	  on	  synonymous	  sites. 
f	  Normalized	  Fay	  and	  Wu’s	  H	  calculated	  on	  synonymous	  sites.	   
g	  Ewens-‐Watterson’s	  haplotype	  homozygosity	  statistic	  calculated	  on	  synonymous	  
sites. 
h	  P-‐value	  of	  the	  HEW	  test	  corrected	  for	  multiple	  tests. 
i	  For	  h,	  S,	  and	  π,	  statistical	  significance	  was	  evaluated	  by	  comparison	  to	  105	  
coalescent	  simulations	  conditioned	  on	  clade	  structure	  (see	  Methods). 
j	  For	  the	  neutrality	  tests,	  statistical	  significance	  was	  evaluated	  by	  comparison	  to	  
105	  neutral	  coalescent	  simulations	  of	  each	  sample	  sub-‐set/clade	  (see	  Methods).	  	  
Statistical	  significance	  is	  indicated	  as	  *	  <	  0.05,	  **	  <	  0.005,	  ***	  <	  0.0005. 
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FIGURES 

Figure 1: Barplot distributions of genetic differentiation among groups of 

A. gambiae at immune genes.  

Genetic differentiation was estimated using Weir and Cockerhamʼs unbiased estimator of 

FST between groups of A. gambiae at each gene separately.  Loci are arranged 

according to their genomic coordinates with the 2La inversion presented in the inverted 

arrangement.  The vertical bar colors specify genomic region according to the legend.  

The schematic below indicates the physical distribution of the genes on 2L with ʻCʼ and 

ʻTʼ representing the centromere and telomere respectively.  The PRI region and 2La are 

also indicated on the chromosome schematic.  Dashed lines indicate levels of 

differentiation estimated from 3rd chromosome microsatellites in corresponding 

population comparisons in Riehle et al. (Riehle et al. 2011).  Asterisks indicate FST 

values significantly greater than zero as determined by permutation tests (see Methods).  

Both the M and S molecular forms were compared to GOUNDRY separately and 

exhibited qualitatively similar levels and patterns of differentiation, so only the S form 

comparison. is presented here.     
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Figure 2: Distribution of Tajimaʼs D.  

Tajimaʼs D was calculated for all genes using synonymous sites and both boxplots and 

data points are presented.  The dotted line indicates the expected value of D under 

neutral equilibrium population models.  ʻGNDRY a/aʼ and ʻGNDRY +/+ʼ refer to 

GOUNDRY 2Laa/2Laa and 2La+/2La+, respectively. 
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Figure 3: The distribution of Fay and Wuʼs H and the Ewens-Watterson statistic 

for all loci in A. gambiae populations. 

Normalized Fay and Wuʼs H and Ewens-Watterson statistics were calculated on 

synonymous variation at each gene and evaluated using coalescent simulations (see 

Methods).  Red dots indicate that the HEW statistic is significant at a 5% threshold level 

after correcting for multiple tests.  Each panel presents the results for a different group 

and the gene names are presented next to the corresponding data point. 
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Figure 4: LD plot and Neighbor-joining tree of FBN32 in GOUNDRY 2Laa/2Laa  

A) Linkage disequilibrium (r2) plotted among variant sites in the sequenced fragment of 

FBN32.  Each pixel represents an r2 value according to the shade of grey, as indicated in 

the scale.  Higher r2 values indicate increased linkage among those sites.  The exon 

structure of FBN32 is placed on the diagonal of the plot to indicate the physical location 

of each variant site.  The frequency of the derived allele frequency (DAF) relative to A. 

merus is plotted in the barplots above and to the side of the LD plot.  B) Neighbor-joining 

tree of all FBN32 sequences from GOUNDRY 2Laa/2Laa as well as three outgroups: 

Anopheles merus, Anopheles arabiensis, and Anopheles quadriannulatus.  The scale 

bar indicates genetic distance. Large clades of genetically similar taxa were collapsed for 

presentation.  
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Figure 5:  LD plot and Neighbor-joining tree of Toll9 in GOUNDRY 2La+/2La+.  

Linkage disequilibrium (r2) plotted among variant sites in the sequenced fragment of 

Toll9.  Each pixel represents an r2 value according to the shade of grey, as indicated in 

the scale.  Higher r2 values indicate increased linkage among those sites.  The exon 

structure of Toll9 is placed above and beside the plot to indicate the structural location of 

each variant site.  The frequency of the derived allele relative to A. merus is plotted in 

the barplots above and to the side of the LD plot.  The red bars indicate the three non-

synonymous sites and the triangle delineates the block of linked sites.  B) Neighbor-

joining tree of all Toll9 sequences from GOUNDRY 2La+/2La+ as well as three 

outgroups: Anopheles merus, Anopheles arabiensis, and Anopheles quadriannulatus.  

The scale bar indicates genetic distance. Large clades of genetically similar taxa were 

collapsed for presentation. 
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Figure 6: Clade specific patterns of divergence at Toll9 intron.   

 Sliding window analysis of Jukes-Cantor corrected divergence (KJC, range 0 to 1) at all 

sites relating the two haplotype groups (A and B) to three outgroup species.  Divergence 

was calculated for 50bp physical windows shifting 10bp for every consecutive window.  

The top horizontal dotted line indicates the average maximum divergence per window for 

Toll9 in the M and S molecular forms as well as GOUNDRY 2Laa/2Laa.  The lower 

horizontal dashed line indicates the average maximum divergence per window for all 

other sequenced loci that included an intron in the GOUNDRY 2La+/2La+ population.  

The legend indicates the color and line style for each clade/outgroup comparison.  The 

schematic under the plot depicts the exon structure in the sequenced region of Toll9. 
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Supplementary Table 1: Mosquito population assignment, molecular form, and 2La 
karyotype. 
(Microsoft Excel spreadsheet attached) 

Each row in the spreadsheet corresponds to an individual mosquito.  Columns indicate 

mosquito identifier, the malaria transmission season in which the mosquito was collected, 

the molecular form (see Methods), and karyotype of the 2La chromosomal inversion (see 

Methods).   This spreadsheet is provided on www.jacobecrawford.com. 
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Supplementary Table 2: Fragment and PCR Oligo information.  

Identifier Gene 
PCR 

fragment Forward oligo Reverse oligo 
Fragment 

Length Year Sampled 
AGAP005681 GPRNNA21 AmS010b 5'-GCATCATCATCGGTCACCG-3' 5'-CTGAGTCACCTGCAAACCG-3' 528 2007 

AGAP005693 APL2 AmS011b 5'-CTATCCACCGTCCAGTTTG-3' 5'-GGTTCGGTGGAATTCTAACC-3' 561 2007 

AGAP005716 SCRB16 AmS013a 5'-TGCCGAAGATGAAACGTACG-3' 5'-CGTGCTAAAGATTGTCATCCG-3' 534 2007 

AGAP005728 5728 AmS048b 5'-GAATTGCGCAAACAGTCCAG-3' 5'-CACGTTCGATATCTCGCTGA-3' 650 2007 

AGAP005762 5762 AmS049b 5'-ATCGATGTCCTCGGCACTAC-3' 5'-GATGGTCAAAGCCAACGAAC-3' 525 2007 

AGAP006102 PRS1 AmS052b 5'-CGAAAGTGATTCCGGACAAG-3' 5'-TTATCGCTCGCACAGCAC-3' 304 2007 

AGAP006348 LRIM1 AmS059e 5'-CCTCGTACCGCTTGACGAT-3' 5'-GTGACCTGGATCAGTCTGC-3' 576 2007 

AGAP006421 IRSP1 AmS053a 5'-ATGGCCATCTGGATAGCTTG-3' 5'-GATATTCGCTCCACCAGCTC-3' 563 2007 

AGAP006974 TOLL9 AmS001b 5'-GCATCTCGAACTGACACCAG-3' 5'-TTCGGATATTCCGGAGGAG-3' 536 2007 

AGAP007030 LRR(7030) AmS002a 5'-AGAAACAACAGTCGCAAGCTC-3' 5'-ACATGCTGTGCACCATAAAGAA-3' 501 2007 

AGAP007032 7032 AmS046a 5'-CGAAAGCAGCAGAAGAATCG-3' 5'-TGCTGCATCGTTGTGCACG-3' 601 2007 

AGAP007033  APL1C AmS003a 5'-CTTCTGAATAGTGTGCGCGTAA-3' 5'-TGAGACAAACTTTGGAGGTCAG-3' 371 2007 

AGAP007034 LRR(7034) AmS047b 5'-CACAGATGCTCCAGCTTCG-3' 5'-CGTACTTGGTGGACCAACG-3' 738 2007 

AGAP007035 APL1B AmS036a 5'-AGATGGGTCTGTGTTTGCTG-3' 5'-CGCACAACCATTTGATGTGGG-3' 833 2007-2008 

AGAP007036 APL1A AmS037d 5'-TGTGATTTAYMCAACTCATGC-3' 5'-TCAAAGTGCTCGATYTGTCG-3' 802 2007 

AGAP007037 LRR(7037) AmS038a 5'-CGTTGTCCAGTATCCACAG-3' 5'-CAACAACACGATCAAGCAGC-3' 580 2007 

AGAP007041 FBN32 AmS004b 5'-GTACGATGGTACGGTCGATTTC-3' 5'-GGTAGGAATGCTTTCCGATTAG-3' 486 2007-2008 
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Supplementary Table 2: Continued 

Identifier Gene 
PCR 

fragment Forward oligo Reverse oligo 
Fragment 

Length Year Sampled 
AGAP007048  LRR(7048) AmS005b 5'-TTTTTAAGCCTAGCCCGTCTG-3' 5'-CAGCTCGGTAAGCCGATTG-3' 491 2007-2008 

AGAP007058 DLL AmS007b 5'-GTACGTAGCCACCCATCTG-3' 5'-GTTAAGATCTGGTTTCAAAATCG-3' 641 2007-2008 

AGAP007059  LRR(7059) AmS051b 5'-ACCAGGCGCTAGTTCTTTGA-3' 5'-TACCGGCAACGGTCTTTAAC-3' 641 2007-2008 

AGAP007060  LRR(7060) AmS006b 5'-AGTAGCAGGCTCGTGAGTGAG-3' 5'-GAAGCACTTCCACTGGTGCT-3' 658 2007-2008 

AGAP007061  LRR(7061) AmS045b 5'-AGGAAAGATCAAGCAGCTCG-3' 5'-CTGGCGATCGTCAACAACG-3' 532 2007 

H603flank intergenic 
region AmS050a 5'-CAAGGCAGCTTCTTCGTTCT-3' 5'-GTTCACGAGTTTGGTCTTGC-3' 522 2007-2008 

AGAP001826 APOII/I AmS056a 5'-CCGTTGACGTGGTACTTGG-3' 5'-ATGTGGCTGCCGATTTCTAC-3' 566 2007 

AGAP002593 APOD AmS057c 5'-GGTACGATCAACACTTCGAG-3' 5'-TGATGCGCATATCCTGTCG-3' 490 2007 

AGAP010815 TEP1 AmS054c 5'-CGTATTTGGACGTCCGACG-3' 5'-CCATGCAATCAATGAGAACG-3' 579 2007 

AGAP012352 AgMDL1 AmS055b 5'-CAGCAGGATTCACTGTTCTC-3' 5'-ATCCATGAGGTTTCGATCTC-3' 486 2007 

AGAP001081 WASP AmS058b 5'-TTCGTCCTCGGTAGCAAAG-3' 5'-TGGTGCAGCTGTACACGAC-3' 440 2007 
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Supplementary Table 3: Sequenced fragment physical genomic locations 

Identifier Gene Name Chromosome 
Chromosomal 

Locationa 
Inside 
PRI? 

Chromosomal  
Strand 

AGAP005681  GPRNNA21 2L 18693376 Yes - 
AGAP005693 APL2 2L 18785249 Yes + 
AGAP005716  SCRB16 2L 19542880 Yes + 
AGAP005728  5728 2L 19769635 Yes - 
AGAP005762  5762 2L 20339460 Yes - 
AGAP006102 PRS1 2L 26685850 No + 
AGAP006348 LRIM1 2L 30329656 No - 
AGAP006421 IRSP1 2L 31693742 No + 
AGAP006974 TOLL9 2L 40434581 Yes - 
AGAP007030  LRR(7030) 2L 41057548 Yes - 
AGAP007032  7032 2L 41245076 Yes + 
AGAP007033  APL1C 2L 41257877 Yes - 
AGAP007034  LRR(7034) 2L 41262272 Yes - 
AGAP007035 APL1B 2L 41266619 Yes - 
AGAP007036 APL1A 2L 41271509 Yes - 
AGAP007037  LRR(7037) 2L 41274607 Yes - 
AGAP007041  FBN32 2L 41381834 Yes + 
AGAP007048  LRR(7048) 2L 41648960 Yes + 
AGAP007058 Distalless 2L 42005592 Yes - 
AGAP007059  LRR(7059) 2L 42005592 Yes + 
AGAP007060  LRR(7060) 2L 42062331 Yes - 
AGAP007061  LRR(7061) 2L 42067616 Yes - 

H603flank intergenic 
region 2L 42071847 Yes - 

AGAP001826 APOII/I 2R 11201968 No - 
AGAP002593 APOD 2R 40909880 No - 
AGAP010815 TEP1 3L 11117128 No - 
AGAP012352 AgMDL1 3L 23677600 No + 
AGAP001081 WASP X 23372448 No - 
a Gene starting positions on chromosome 2 given according to locations in A. gambiae PEST 
genome sequence, which corresponds to the inverted 2La+ form of the 2La inversion. 
 



 

 116 

Supplementary Table 4:  Population genetic summary statistics for all genes in each 
population. 
Locus Identifier na Ssyn

b Dc Hd EWe HEWf 

M form        

Toll9 AGAP006974 64 79 -0.6612 -0.3681 0.019 1 

LRR(7030) AGAP007030 64 34 -0.7755 -0.8827 0.062 0.0921 

APL1C AGAP007033 64 21 -0.546 -1.1648 0.2739 0.084 

FBN32 AGAP007041 100 33 -1.0852 -0.7677 0.0864 0.0992 

LRR(7048) AGAP007048 100 68 -2.0115 -0.1663 0.046 0.1441 

LRR(7060) AGAP007060 100 42 -1.6659 0.084 0.0842 0.2152 

DLL AGAP007058 100 87 -2.0234 -0.6157 0.0208 0.1036 

GPRNNA21 AGAP005681 64 16 -0.7143 0.1597 0.1201 0.2411 

APL2 AGAP005693 64 27 -1.0359 0.6826 0.0459 0.7155 

SCRB16 AGAP005716 64 47 -0.3479 -0.3037 0.0347 0.1326 

APL1B AGAP007035 100 88 -0.5362 -1.7003 0.0898 0.0294 

APL1A AGAP007036 62 110 -1.15 -2.5176 0.3002 0.014 

LRR(7037) AGAP007037 64 13 -1.682 -0.2348 0.5239 0.1441 

LRR(7061) AGAP007061 64 37 -0.8415 0.1359 0.0605 0.2283 

7032 AGAP007032 64 73 -1.4061 0.5115 0.0181 1 

LRR(7034) AGAP007034 62 20 0.174 0.7383 0.1623 0.779 

5758 AGAP005758 64 29 -1.5625 -0.1749 0.0815 0.1441 

5762 AGAP005762 64 73 -1.6686 -0.2999 0.02 0.1326 

H603 
flanking 

AGAP007058 100 54 -1.866 -0.4372 0.023 0.1326 

LRR(7059) AGAP007059 100 50 -1.8131 -1.6246 0.148 0.0302 

PRS1 AGAP006102 64 16 -1.6028 -0.1924 0.1709 0.1441 

IRSP1 AGAP006421 64 55 -1.4194 -2.4365 0.0557 0.014 

TEP1 AGAP010815 64 10 -2.1817 -2.0996 0.7979 0.0233 

AgMDL2 AGAP012352 64 66 -1.7729 0.0863 0.0249 0.2667 

APOII-I AGAP001826 64 23 -1.5496 -0.2477 0.1338 0.1441 

APOD AGAP002593 64 37 -0.8402 -0.9231 0.0454 0.4199 

WASP AGAP001081 64 42 -1.6375 -0.3393 0.0322 0.1326 
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LRIM1 AGAP006348 64 25 -0.1096 -2.4951 0.1221 0.0336 

        

S form        

Toll9 AGAP006974 100 81 -0.6536 -0.4918 0.0118 0.1352 

LRR(7030) AGAP007030 100 59 -1.1477 -1.1961 0.0378 0.091 

APL1C AGAP007033 100 72 -1.3893 -0.885 0.126 0.0928 

FBN32 AGAP007041 100 47 -1.7597 -0.7475 0.0454 0.1117 

LRR(7048) AGAP007048 100 79 -2.2608 -0.1704 0.0364 0.1473 

LRR(7060) AGAP007060 100 50 -2.0471 -1.4173 0.0684 0.091 

DLL AGAP007058 100 96 -1.9502 -1.2775 0.0146 0.091 

GPRNNA21 AGAP005681 100 28 -1.7265 -0.4675 0.1156 0.1473 

APL2 AGAP005693 100 43 -1.7926 0.4499 0.0434 0.3721 

SCRB16 AGAP005716 100 58 -0.7949 -0.4554 0.026 0.1352 

APL1B AGAP007035 100 120 -0.7912 -1.5837 0.0172 0.091 

APL1A AGAP007036 100 147 -0.061 -1.4618 0.0158 0.1352 

LRR(7037) AGAP007037 100 49 -2.0094 -0.0114 0.0688 0.1535 

LRR(7061) AGAP007061 100 33 -0.9212 -0.1171 0.0894 0.1473 

7032 AGAP007032 100 83 -1.7822 0.2356 0.0154 0.2135 

LRR(7034) AGAP007034 100 42 -1.9241 -0.099 0.0598 0.1473 

5758 AGAP005758 100 37 -1.7718 -0.1192 0.0642 0.1473 

5762 AGAP005762 100 100 -1.564 0.0407 0.0122 0.1535 

H603 
flanking 

AGAP007058 100 83 -2.2543 -0.1461 0.0202 0.1473 

LRR(7059) AGAP007059 100 51 -0.986 -0.2439 0.042 0.1473 

PRS1 AGAP006102 100 17 -1.4331 -0.2205 0.1842 0.1473 

IRSP1 AGAP006421 100 61 -0.8321 -0.9617 0.017 0.0928 

TEP1 AGAP010815 100 15 0.317 0.565 0.2096 0.5221 

AgMDL2 AGAP012352 100 68 -1.4512 0.4507 0.0198 0.3682 

APOII-I AGAP001826 100 44 -2.0695 0.1091 0.0598 0.1926 

APOD AGAP002593 100 53 -1.819 -0.9022 0.065 0.0928 

WASP AGAP001081 100 77 -2.2284 -0.1177 0.0432 0.1473 
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LRIM1 AGAP006348 100 47 -0.5435 -0.0234 0.0228 0.1535 

        

GOUNDRY 

2La+/2La+ 

 

      

Toll9 AGAP006974 100 50 -0.1716 -3.0625 0.0868 0.0224 

LRR(7030) AGAP007030 100 23 -0.1144 0.5018 0.059 0.5892 

APL1C AGAP007033 100 22 -0.1767 -1.6356 0.2556 0.0999 

FBN32 AGAP007041 100 23 0.2029 0.3183 0.2676 0.425 

LRR(7048) AGAP007048 100 14 1.5159 -0.1189 0.1616 0.3041 

LRR(7060) AGAP007060 100 10 0.0003 -0.5047 0.3704 0.425 

DLL AGAP007058 100 16 0.9977 -0.2242 0.211 0.3027 

GPRNNA21 AGAP005681 100 11 -0.4812 0.0792 0.365 0.3683 

APL2 AGAP005693 100 13 -1.0815 -0.5745 0.3712 0.2448 

SCRB16 AGAP005716 100 21 1.0104 -1.0902 0.1456 0.2402 

APL1B AGAP007035 100 70 0.7992 -2.3727 0.336 0.0999 

APL1A AGAP007036 100 63 2.4401 -1.8712 0.1678 0.7745 

LRR(7037) AGAP007037 100 8 0.3655 0.6926 0.2866 0.7745 

LRR(7061) AGAP007061 100 8 2.4058 0.072 0.418 0.425 

7032 AGAP007032 100 19 1.1648 -3.0339 0.328 0.2402 

LRR(7034) AGAP007034 100 6 0.8999 0.4665 0.4092 0.7579 

5758 AGAP005758 100 2 2.3379 0.5497 0.4616 0.7745 

5762 AGAP005762 100 20 1.0203 -0.4835 0.2026 0.2448 

H603 
flanking 

AGAP007058 100 16 -1.469 0.3172 0.3162 0.425 

LRR(7059) AGAP007059 100 9 1.6054 -0.0451 0.3622 0.425 

PRS1 AGAP006102 100 14 -1.6311 0.2602 0.3306 0.499 

IRSP1 AGAP006421 100 10 -0.5248 -1.9277 0.1946 0.425 

TEP1 AGAP010815 100 11 0.1881 0.0061 0.3224 0.7133 

AgMDL2 AGAP012352 100 48 -0.423 0.6236 0.1192 0.7126 

APOII-I AGAP001826 100 8 1.1057 0.6108 0.2666 0.7186 

APOD AGAP002593 100 38 -0.57 0.1383 0.0688 0.4118 
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WASP AGAP001081 100 13 -0.8877 0.1567 0.392 0.4439 

LRIM1 AGAP006348 100 22 0.8458 -0.2961 0.2756 0.2863 

        

GOUNDRY 

2Laa/2Laa 

 

      

Toll9 AGAP006974 40 59 0.7813 -0.4603 0.0688 0.1255 

LRR(7030) AGAP007030 34 22 -1.3252 -1.5011 0.1211 0.0482 

APL1C AGAP007033 40 29 -0.1794 -0.6664 0.105 0.16 

FBN32 AGAP007041 100 15 -1.2392 -1.6624 0.508 0.0482 

LRR(7048) AGAP007048 100 73 -1.6192 0.4025 0.1242 0.4164 

LRR(7060) AGAP007060 100 38 -2.0531 -2.2083 0.3992 0.028 

DLL AGAP007058 100 72 -2.3283 -2.5965 0.2512 0.0252 

GPRNNA21 AGAP005681 40 9 -0.0237 -0.8588 0.3275 0.2329 

APL2 AGAP005693 40 17 -1.4316 -0.7944 0.345 0.1101 

SCRB16 AGAP005716 40 28 0.3575 -0.8282 0.1475 0.1033 

APL1B AGAP007035 100 70 0.2394 -2.4022 0.2408 0.0252 

APL1A AGAP007036 38 78 2.4679 -0.2821 0.2853 0.5291 

LRR(7037) AGAP007037 38 5 0.0936 -0.2734 0.4765 0.16 

LRR(7061) AGAP007061 40 19 -0.8833 -1.7333 0.2463 0.4164 

7032 AGAP007032 40 36 -0.3302 0.3314 0.1038 0.3951 

LRR(7034) AGAP007034 40 10 1.2186 -1.045 0.4313 0.5291 

5758 AGAP005758 38 9 1.173 0.9511 0.2175 0.931 

5762 AGAP005762 38 25 -0.1673 0.4451 0.1177 0.4444 

H603 
flanking 

AGAP007058 100 24 -1.312 -3.2452 0.1474 0.0994 

LRR(7059) AGAP007059 100 44 -0.924 -0.8104 0.1418 0.1033 

PRS1 AGAP006102 40 8 0.5677 -1.2126 0.2888 0.1255 

IRSP1 AGAP006421 40 34 -1.2448 -1.8962 0.22 0.1255 

TEP1 AGAP010815 40 11 0.2615 0.3394 0.345 0.5291 

AgMDL2 AGAP012352 40 44 -0.7708 0.7287 0.185 0.6782 

APOII-I AGAP001826 40 8 0.6999 0.5657 0.275 0.5291 
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APOD AGAP002593 40 38 -1.0434 0.0154 0.08 0.2317 

WASP AGAP001081 38 16 -1.3667 0.3246 0.3213 0.4164 

LRIM1 AGAP006348 38 17 2.1208 0.2522 0.3269 0.3668 

a- Number of chromosomes in the sample.  Loci with n=100 had more than 100 in the 
original sample, but were down-sampled to 100 for this analysis.  

b- Number of synonymous segregating sites.   
c- Tajima’s D calculated using only synonymous sites. 
d- Normalized Fay and Wu’s H calculated using only synonymous sites. 
e- Ewens-Watterson’s haplotype homozygosity statistic calculated using only 

synonymous sites. 
f- HEW p-value with Benjamini and Hochberg correction for multiple tests. 
Statistical significance of HEW was evaluated by comparison to 105 neutral coalescent 
simulations of each sample (see Methods). 
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Supplementary Table 5: Results from post-hoc evaluation of haploype 
reconstruction for genes with significant HEW result.   
Gene Confidence 

Ranka 
Mean Probability 
(<1)b 

Proportion 
Imputed Rankc 

Proportion 
Phased Rankd 

M form     
LRIM1 50 0.82 55 26 
TEP1 20 0.76 90 100 
APL1A 86 0.74 33 12 
APL1B 76 0.81 36 19 
LRR (7059) 40 0.78 70 72 
IRSP1 24 0.73 35 32 
     
GOUNDRY 
2Laa/2Laa 

    

DLL 53 0.73 27 70 
APL1B 94 0.86 39 7 
LRR (7030) 2 0.78 24 58 
LRR (7060) 64 0.76 37 83 
FBN32 74 0.77 62 88 
     
GOUNDRY 
2La+/2La+ 

    

TOLL9 63 0.78 29 24 
Haplotype reconstruction and imputation was conducted for each gene in each 
population separately.  For GOUNDRY, genes inside the 2La inversion were treated 
separately according to 2La homokaryotype, while genes outside of the inversion 
were treated as one group.  In total, this resulted in 102 runs of the program PHASE 
(Stephens, Smith, and Donnelly 2001).  When a heterozygous site is phased, it is 
given a statistical confidence probability ranging from 0.5 to 1, where 0.5 is low 
confidence or complete ambiguity and 1 being the highest level of confidence.  
a Genes ranked based on the proportion of phased sites that were given a confidence 
probability less than 1, with 1 indicating the gene with the most  
b Mean probability calculated for each gene for sites with probabilities less than 1. 
c Genes ranked based on the proportion of sequenced sites that were imputed, with 1 
representing gene with the most imputed sites. 
d Genes ranked based on the proportion of sequenced sites that were phased, with 1 
representing the gene with the most statistically phased sites.  
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ABSTRACT 
 Next-generation sequencing technologies have made it possible to address 

population genetic questions in almost any system, but high error rates associated with 

such data can introduce significant biases into downstream analyses, necessitating 

careful experimental design and interpretation in studies based on short-read 

sequencing.  Exploration of population genetic analyses based on next-generation 

sequencing has revealed some of the potential biases, but previous work has 

emphasized parameters relevant to human population genetics and further examination 

of parameters relevant to other systems is necessary, including situations where sample 

sizes are small and genetic variation is high.  To assess experimental power to address 

several principal objectives of population genetic studies under these conditions, we 

simulated population samples under selective sweep, population growth, and population 

subdivision models and tested the power to accurately infer population genetic 

parameters from sequence polymorphism data obtained through simulated 4x, 8x, and 

15x coverage short-read sequence data.  We found that estimates of population genetic 

differentiation and population growth parameters were systematically biased when 

inference was based on 4x sequencing, but biases were markedly reduced at even 8x 

read depth.  We also found that the power to identify footprints of positive selection 

depends on an interaction between read depth and the strength of selection, with strong 

selection being recovered consistently at all read depths, but weak selection requiring 

deeper read depths for reliable detection.  Although we have explored only a small 

subset of the many possible experimental designs and population genetic models, using 

only one SNP calling approach, our results reveal some general patterns and provide 

some assessment of what biases could be expected under similar experimental 

structures.   
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INTRODUCTION 

Principal objectives in population genetics are to identify targets of natural 

selection, infer historical shifts in demography, and define genetic differentiation among 

groups.  Over the past four decades, the power to address these questions has 

improved markedly with the increase in scale and availability of genetic markers.  The 

recent arrival of next-generation sequencing (NGS) marks another shift on multiple 

scales (Pool et al. 2010).  The relative low cost and high throughput nature of next-

generation sequencing technologies has made it possible to collect full genome 

sequence data on population samples, providing the opportunity to address population 

genetic questions at the genomic scale, sometimes across multiple populations (e.g. Xia 

et al. 2009; Durbin et al. 2010; Magwene et al. 2011).  For example, NGS makes 

possible unbiased scans of the genome for signatures of positive selection (Durbin et al. 

2010), tests of demography and population structure that include rare (<5%) variants 

(Henn et al. 2010; Gravel et al. 2011), as well as genomic mapping of population 

parameters such as nucleotide diversity or fine-scale linkage disequilibrium (e.g. Branca 

et al. 2011; e.g. Magwene et al. 2011).   

While NGS has expanded the realm of possible experiments, NGS-based 

population genomic analyses and experimental designs are not yet standard and free of 

complications.  The main challenges to population genomic analysis using NGS data 

stem from the substantially higher error rates in NGS relative to traditional Sanger 

sequencing, which complicates identification of low-frequency variants in populations 

(Johnson & Slatkin 2006, 2008; Hellmann et al. 2008; Lynch 2008, 2009; Jiang et al. 

2009), uneven sequencing of the homologous chromosomes in a diploid individual, 

which may compromise accuracy in detecting heterozygotes (Hellmann et al. 2008; 

Johnson & Slatkin 2008; Lynch 2008, 2009; Jiang et al. 2009), and a higher false 
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negative SNP detection rate due to the Poisson read sampling,  which can result in 

some regions not being sequenced at all (Durbin et al. 2010).  One approach to 

mitigating these challenges is to sequence each sampled individual to substantially 

greater coverage depth or to obtain larger sample sizes of individuals.  However, current 

experimental designs typically consist of either small, deeply sequenced samples (Xia et 

al. 2009; Branca et al. 2011; Magwene et al. 2011) or large samples sequenced to low 

read-depths (Durbin et al. 2010), reflecting a common and practical trade-off between 

sample size and sequencing depth.  In general practice, population genomic 

experiments in ecological and other non-model systems will likely have to compromise 

on both sample size and read depth, possibly resulting in losses in power and biases not 

incurred with larger experimental designs.   

In addition to modifying experimental design to mitigate challenges related to 

NGS data analysis, statistical corrections may also provide a means for accommodating 

uncertainty in the data.  Most current methods for conducting population genetic analysis 

are based on allele frequencies (reviewed in Nielsen 2005) or a summary of allele 

frequencies (e.g. Gutenkunst et al. 2009; but see Yi et al. 2010), and, broadly speaking, 

two statistical approaches have been proposed to estimate this information from NGS 

data.  The first approach entails calling genotypes of each individual using either a 

Bayesian or Likelihood framework (Hoberman et al. 2009; Li et al. 2009b; Bansal et al. 

2010; DePristo et al. 2011).  The other approach attempts to estimate allele frequencies 

directly from the data without first inferring individual genotypes (Lynch 2009; Kim et al. 

2010, 2011; Martin et al. 2010).  In some cases, a posterior probability is generated that 

provides a quantification of the uncertainty of each genotype call (e.g. Martin et al. 2010; 

DePristo et al. 2011) that could be directly incorporated into population genetic analyses 

(e.g. Yi et al. 2010).  However, until population genetic analyses are further adapted to 
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incorporate posterior probabilities, standard population genetic analyses must be applied 

directly to genotype calls.  The number of applications of such statistical approaches to 

empirical data is thus far relatively small with a bias towards human-based studies (e.g. 

Hellmann et al. 2008; Durbin et al. 2010; Yi et al. 2010), but some examples in non-

human systems exist as well (e.g. Williams et al. 2010; Ahmad et al. 2011).  More 

importantly, the biases introduced when population genetic analyses are applied to 

genotypes inferred from NGS data have not been well characterized, particularly in 

systems other than humans.  

The aim of the present study is to determine how variation in the structure of 

NGS experiments and inaccuracies inherent to NGS-based genotype calling impact the 

ability to address several common population genetic questions in non-model or 

ecological systems.  In particular, we sought to provide some assessment of what can 

be accomplished with NGS data when genetic variation is high, sample sizes and 

sequencing budgets are small and independent datasets are not available for calibration.  

We simulated population genetic samples under Wright-Fisher equilibrium, selective 

sweep, population growth, and population sub-division models.  Short read datasets 

were generated in silico and processed through a read-mapping and multi-sample-

genotyping-based SNP calling pipeline similar to that used by the human 1000 Genomes 

Project (Durbin et al. 2010).  We determined the power to infer population genetic 

parameters and conduct populatin genetic tests using NGS data of varying depths.  Our 

results demonstrate that very low sequencing depth introduces systematic biases under 

some, but not all, inference frameworks, yet significant power and accuracy is recovered 

with as little as 8x sequencing depth.        

 

METHODS 
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A graphical flowchart presentation of our analysis pipeline can be found in 

Supplementary Figure 1.   

 

Coalescent Simulations 

We conducted coalescent simulations to generate population samples under a 

variety of equilibrium and non-equilibrium population models.  Our null model is at 

Wright-Fisher equilibrium with no natural selection, constant population size, and 

complete random mating.  Our alterative models included selective sweeps, exponential 

population growth, and sub-divided populations.  The general structure of our simulation 

approach was to simulate 100 population samples comprised of 30 haplotypes that were 

30-kilobases (kb) in length per sample under each set of measured parameters.  The 

departures from this structure were that we conducted 500 simulations under the growth 

model, and for the sub-divided population, we simulated two subpopulations with 30 

haplotypes each (total of 60 haplotypes per iteration).  Because we wanted to consider 

levels of genetic variation seen in many organisms with naturally large population sizes, 

we modeled a population with an effective population size (N) of 106, a per base 

mutation of 3.5x10-9 (Keightley et al. 2009), and a recombination rate of 10-8 per base 

per generation.  These parameters correspond to levels of genetic variation of θ = 0.011 

per site for the Wright-Fisher model and θ = 0.027 per site for population structure 

model, and are similar to what one might expect from abundant insects with large 

geographic ranges such as Drosophila (e.g. Charlesworth 2009) or Anopheles 

mosquitoes (e.g. Michel et al. 2006).   

We used the coalescent simulation program ssw to simulate population samples 

under the selective sweep model of Kim and Stephan (Kim & Stephan 2002).  We 

conducted two rounds of simulations for each parameterization of the sweep model.  In 
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the first round, we conducted simulations under a rejection framework in which we kept 

the simulation result only if the likelihood ratio obtained using the program SweepFinder 

(Nielsen et al. 2005) was deemed significant (described below).  As such, this round of 

simulations contains only datasets that contain patterns of polymorphism that reject in 

favor of selection with true genotypes, thereby providing a direct contrast when the 

simulations are processed through the sequencing pipeline and re-tested for selection.  

In a second round of simulations, we conducted a set of sweep simulations that were 

retained without regard to whether the null hypothesis of no selection could be rejected 

with the complete data set.  This round of simulations provides a more complete power 

curve reflecting both the inherent power of the test implemented in Sweepfinder as well 

as the loss of power due to sequencing.  For both rounds, we generated population 

samples under 6 parameterizations of the sweep model, including three strengths of 

selection (α = 2Ns) varying from weak (α =50) to moderate (α = 200) to strong (α = 

1000).  For each value of selection strength, we also varied the time since completion of 

the sweep (τ [in units of 2NCURR generations] = 0.01 and 0.005) to reflect a variety of 

plausible recent selective sweep events.  In addition, we simulated population samples 

under the null Wright-Fisher equilibrium model with ssw.  ssw allows for both coding and 

non-coding sequences to be modeled, and we included six coding regions (covering 

~21% of the 30kb simulated) where the mutation rate was reduced by a factor of 0.3, the 

default value in ssw.    

To simulate population samples under growth and structure models, we used the 

coalescent simulation program ms (Hudson 2002).  The growth model included 

exponential growth resulting in a doubling of the population size (NANC/NCURR = 0.5) over 

the last 1NCURR generations.  We also simulated paired samples from diverging 

populations.  These models were based on the island model in which, going backwards 
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in time, two sub-populations exchanged migrants at a rate of 4NCURRm = 0.05, and at 

either 2NCURR, 1NCURR, 0.025NCURR generations ago began exchanging migrants at a 

much greater rate (4NCURRm = 10 or 100) meant to reflect near panmixia.  These models 

generated paired sub-populations with current FST values of approximately 0.54, 0.37, 

0.15, and 0.01.  Chromosomes were sampled evenly from each current sub-population 

and population assignment was maintained throughout the analysis.   

 

Short-read generation and mapping 

Short-read sequence libraries were computationally generated and mapped to a 

reference sequence.  A reference sequence of randomly chosen nucleotides was 

generated and used as the starting material for each simulated chromosome.  To 

generate chromosomes, simulated polymorphism data from above was used as a guide 

for applying nucleotide changes resulting in a population sample of nucleotide 

sequences that reflects the simulated sample.  Nucleotide changes, or SNPs, were 

applied to reflect the presence of derived alleles in the simulated polymorphism data.  

Diploid “individuals” were generated by randomly pairing simulated chromosomes.  

These diploid sequences were then computationally fragmented and sampled to 

generate short-reads that emulate Illuminaʼs HiSeq 2000 platform using the short-read 

simulation program SimSeq (Earl et al. 2011). 100 base-pair (bp) paired-end reads were 

sampled with an average insert size of 500bp (std dev = 50) and a duplicate probability 

of 0.01.  SimSeq adds a fixed rate and distribution of ʻsequencingʼ errors using an error 

profile trained on alignments of human-derived HiSeq 2000 reads.  Indels were not 

included in this model.  While human data was used to train the error model, patterns of 

sequencing errors are largely based on sequencing platform and are likely to be similar 

between experimental systems.  We converted BAM alignment files generated by 
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SimSeq into SAM format using SAMtools (Li et al. 2009a), and ultimately into FastQ 

short-read libraries using the BAMtoFastQ program in the Picard Tools (v1.48) package 

(http://picard.sourceforge.net/).  Paired-end short-read libraries were aligned to the 

reference sequence generated above using BWA (Li & Durbin 2009) allowing for an edit 

distance of 4 between each read and the reference, except for samples from the 

population structure models which we mapped with an edit distance of 5 to 

accommodate the higher number of SNPs in these samples.  Reads with duplicate 

mapping positions were removed with the rmdup function in SAMtools (Li et al. 2009a).  

Cleaned BAM files from each of 15 diploids per population were used in subsequent 

steps for SNP calling.  To determine how the power of inference is affected by read 

depth, we generated short-read libraries for each diploid such that the resulting 

alignments would achieve an average of 4, 8 and 15X read depth.  Thus, for each 

individual diploid, we generated BAM alignments at each of the three read depths 

resulting in a total of 45 BAM alignment files per population sample.    

 

SNP calling 

 We used the Genome Analysis Toolkit (GATK v. 1.1-30) to recalibrate FastQ 

quality scores and call candidate SNPs.  The GATK implements a FastQ quality score 

re-calibration step that is designed to recalibrate reported quality scores by accounting 

for technology and sequence features that are known to co-vary with the reported quality 

score (DePristo et al. 2011).  The GATK builds a recalibration model by ignoring all sites 

in a dbSNP database file provided by the user, correlating sequence and technology 

features with reported quality scores at remaining sites that differ from the reference, and 

calculating a recalibrated score based on residuals from this model (DePristo et al. 

2011).  This approach is designed for human genetic analysis, and relies heavily on the 
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well- populated human dbSNP database.  It is less ideal for systems with fewer 

independent SNP datasets.  Although, it may be possible in a full genome re-sequencing 

study to use high-confidence SNPs as the “known” set, this step is likely to be project-

specific so we opted not to model SNP ascertainment in this way.  Instead, we 

circumvented the issue by training the re-calibration model on a sample of 15 diploid 

alignments that are 20 Mb in length and entirely lack “true” SNPs, but that have been 

processed using SimSeq to introduce ʻsequencingʼ error.  We confirmed the validity of 

the re-calibration model and its effectiveness by analyzing the covariates and quality 

scores before and after re-calibration using the GATK.  All BAM alignments in the 

primary study were re-calibrated with this model, and re-calibrated BAMs were used for 

subsequent SNP calling.   

 We tested the GATKʼs Unified Genotyper (UG) for calling SNPs in our simulated 

population samples.  The UG considers all individuals simultaneously to make genotype 

calls in a technology-aware fashion and uses a Bayesian genotype likelihood model to 

calculate genotypes for each individual and estimate the allele frequency at each variant 

site.  We submitted each batch of 15 BAMs to the UG with default settings except the 

expected heterozygosity was set equal to the scaled mutation rate used in the 

simulations.  The UG generates a Phred-scaled Quality score (Q) for each variant 

indicating the probability that a SNP exists at each site, where Q of 20 indicates a 1 in 

100 chance that the call is incorrect.  These Q scores are calculated without regard to 

the surrounding sequence context so the GATK implements a sophisticated variant 

quality score re-calibration method that has been shown to be more effective at sorting 

true from false positives than hard filtering based on un-calibrated Q scores or other 

parameters (DePristo et al. 2011).  However, despite efforts to simulate larger SNPs 

datasets for training, we did not find that re-calibration led to better distinction between 
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true and false positives under our simulation framework (data not shown).  Therefore, we 

opted to use hard filtering based on the Q score and use all SNPs with a score of at least 

5.  Although this is a quite liberal threshold compared to the standard of Q20, preliminary 

analyses indicated that, even at 4X read depth, many true positives had Q values on this 

scale (data not shown).  We found a threshold of 5 struck a good balance of minimizing 

false negatives while permitting a small number of false positives (8.4 false negatives for 

each false positive for 4x read depth).  SNP calls were made for each population 

sample, converted into appropriate input formats and used in subsequent population 

genetic analyses.   

 

Population genetic analysis 

 The goal of this study was to determine the impact of the short-read sequencing, 

alignment and SNP calling process on the inference of population genetic patterns. 

Therefore, for each simulation under a specific model and sequence read depth, we 

quantified the difference between the population genetic model inferred using complete, 

pre-sequencing data and the model inferred from post-sequencing data to directly 

measure the effect of sequencing.   

 To infer selective sweeps, we scanned SNP sets from the sweep simulations as 

well as the Wright-Fisher simulations using the Parametric version of the Composite 

Likelihood Ratio Test implemented in the program SweepFinder (Nielsen et al. 2005), 

which compares the likelihood of a selective sweep under the model of Kim and Stephan 

(Kim & Stephan 2002) to the likelihood of a model without selection based on 

background allele frequencies. We used a grid size of 25, which corresponds to 1250bp.  

For this part of the study, we aimed to compare the power to infer selection before and 

after sequencing as well as to specifically quantify the false-negative rate after 
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sequencing.  To quantify the difference in power to infer selection before and after 

sequencing, we searched for selective sweeps in the pre-sequencing data and then 

searched the SNP set inferred from the post-sequencing alignments.  To determine 

significance, we established a null distribution of the likelihood ratio by conducting 104 

simulations under the neutral Wright-Fisher equilibrium model, and collecting the 

maximum likelihood ratio from each simulation.  The simulated ʻexperimentalʼ sweep 

datasets were considered significant if their likelihood ratio was greater than the 95% 

threshold from this null distribution.  Simulations from both the significance-naïve set and 

the significance-enriched set (see section on Coalescent Simulations) were analyzed in 

this way.  The proportions of significant CLRT results were compared between read-

depths and sweep models.  

 To infer the population growth parameters, we searched a grid of population 

growth models using a Poisson log-likelihood approach to determine the fit of the 

complete and inferred data to each simulated dataset.  We used the program PRFREQ 

(Boyko et al. 2008) to calculate the expected site-frequency spectrum (SFS) across the 

grid and find the model within the grid with the maximum likelihood for each SNP set.  

We used the Poisson likelihood function in PRFREQ to determine the best fit between 

the data and the models, first using the full pre-sequencing data and then with the SFS 

inferred from each post-sequencing SNP set.  We used the scaled mutation rate and 

effective population size used in the simulations above, the instantaneous population 

growth model (two epochs), and the neutral distribution of selective effects (2Ns = 0).  

The grid consisted of 16 grid points for the timing of growth (τ), varying from 0.05 to 0.9, 

in units of 2NCURR and 16 points for the ratio of ancestral to current population size (ω), 

again varying from 0.05 to 0.9, for a total of 256 models.  Since SNPs from the same 

population sample were used for inference before and after sequencing, we compared 
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the pre-sequencing model to the post-sequencing model by subtracting the post-

sequencing parameter values from the pre-sequencing values and plotting the 

difference.      

 To determine the effect of short-read sequencing on inference of genetic 

divergence between populations, we calculated FST between the two simulated sub-

populations before and after short-read sequencing.  We estimated global genetic 

differentiation between the two sub-populations across the 30kb fragment using Weir 

and Cockerhamʼs unbiased estimator (Weir & Cockerham 1984) implemented in an R 

script written by Eva Chan (www.evachan.org).  We compared the differences between 

pre- and post-sequencing FST values between read depths using a Paired Studentʼs t-

test [t.test function in R (R Development Core Team 2011)] to determine whether 

increasing read depth resulted in significantly better inference of population 

differentiation.  We also estimated a line of best-fit for each read depth using the lm 

function in R (R Development Core Team 2011).    

 

RESULTS 

SNP Recovery 

 To quantify the effect of short-read sequencing on the power to infer population 

genetic models, we simulated a typical empirical re-sequencing pipeline including 

sequencing and SNP-calling errors inherent to such experimental frameworks.  For all 

population genetic models, short-read datasets were generated at three read depths, 

aligned to a simulated reference and queried for SNPs.  We found that, under the 

parameterization of this simulation pipeline, read depth had a significant effect on the 

rate of true SNP recovery as well as on the rate of false-positive SNP ascertainment.  

The rate of true SNP recovery was high, increasing as a function of read depth, with 
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average recovery rates across population genetic models of 86.7% at 4x read depth 

(standard deviation, σ = 0.0134), 95.7% at 8x (σ = 0.0067), and 99.2% at 15x (σ = 

0.0025). Furthermore, even without using the false positive SNP culling steps in the 

GATK, the false positive rates across all models were reasonably low with 4.1% (σ = 

0.0206) of called SNPs being spurious at 4x, 0.95% (σ = 0.0047) at 8x, and 0.39% (σ = 

0.0025) at 15x, highlighting the effect of read depth on the false positive rate.  

Importantly, false negative and false positive rates differed among population genetic 

models and disproportionately affected low (<0.1) frequency SNPs (Table 1).  For 

example, at 4x read depth, the rates of true SNP recovery (or 1 minus the false negative 

rates) differed among population genetic models, with the rate under the selective sweep 

model being significantly lower than that under the Wright-Fisher equilibrium model 

(tdf=170 = 2.17, p = 0.0314; Figure 1), and the rate under the growth model being 

significantly lower than the sweep model (tdf=165 = 8.02, p = 1.85 × 10-13; Figure 1).  On 

the other hand, the rate of false positives was highest under the selection model at 6.1%, 

which was significantly greater than the rate under the growth model (tdf=195 = 5.67, p = 

5.09 × 10-8), and the rate under the growth model (5.2%) was significantly greater than 

that under the equilibrium model (4.4%; tdf=195 = 7.93, p = 1.7 × 10-13).  Since rare 

variants are disproportionately missed at low read depths (Figure 2; Table 1), the lower 

rate of recovery under the selective sweep and growth models can likely be attributed to 

the proportionally greater number of low-frequency variants under these models relative 

to the Wright-Fisher model (Supp Fig 2).  The structure model showed a lower true SNP 

recover rate relative to Wright-Fisher (Figure 1) and a substantially lower rate of false 

positive SNPs (Table 1), but these are not a fair comparison since the structure model is 

different genotyping environment as it is comprised of twice as many chromosomes and 

approximately three times as many true SNPs as the other models. 
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Inferring selective sweeps 

 We assessed the effect of short read sequencing on the power to infer a 

selective sweep by testing for selection in patterns of variation in simulated population 

samples before and after simulated next-generation sequencing.  When we tested a set 

of random sweep simulations under each sweep model parameterization, we found that 

power curves are quite comparable before and after simulated sequencing, with only 

minor loss in power to identify the signature of a selective sweep at lower read depths 

(Supplementary Figure 3), although further losses might be incurred under different 

parameterizations of the selection model, including modeling of older sweeps.   To more 

directly quantify the loss in power of inference at lower read depths, we conducted a 

second set of genealogical simulations in which we required that the simulation give a 

significant result prior to simulated sequencing.  In this case, we found that the power to 

infer selection depended on both the strength of selection and the depth of sequencing 

(Figure 3).  Depth of sequencing did not have a strong effect on the power to identify the 

signature of selection after sequencing when selection was strong (2Ns = 1000; Figure 

3).  But, when the strength of selection is weak (2Ns = 50), we found a 29.9% reduction 

in power to infer selection with 8x sequencing relative to 15x, and an additional 29.1% 

reduction with 4x relative to 8x read depth (Figure 3). Interestingly, a small but 

noteworthy number of simulated samples that did not give a significant test based on full 

sequence data yielded a significant result after simulated next-generation sequencing 

(data not shown).  Inspection of these test results indicated that many of the pre-

sequencing likelihood ratios were nearly significant in their rejection of the null 

hypothesis. We suspect that the higher rate of undetected SNPs in low pass sequencing 

datasets altered inference of the background (no-selection) model just enough to result 
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in a significant likelihood ratio supporting selection.  Collectively, our results indicate that 

strong and recent selective sweeps can be detected reliably even with low read depths, 

but that deeper sequencing will be required for consistent detection of weak selective 

sweeps and, by extrapolation, older sweeps.  Although not directly assessed here, we 

suspect that the shift in power we observe would not apply to the detection of incomplete 

sweeps since the such sweeps are most reliably detected with statistical tests based on 

haplotype structure (Sabeti et al. 2002), a feature of the data not likely to be greatly 

affected by the SNP recovery patterns observed here.         

 

Inferring demography 

 We simulated population samples under a simplistic model of population size 

expansion in which the population doubled in effective size 1NCURR generations ago, 

where NCURR equals the effective population size at the time of sampling.  To determine 

the effect of short-read sequencing on the accuracy of demographic inference, we used 

a Poisson log-likelihood approach to infer growth parameters from each simulation 

dataset before and after sequencing.  Comparison of inferred values before and after 

simulated sequencing showed that SNP data inferred from 15x sequencing recovers the 

demographic signal extremely well (Figure 4).  At 8x sequencing depth, a large 

proportion of simulations returned post-sequencing parameter values that differed 

slightly from the pre-sequencing values.  Sequencing depths of only 4x introduce a 

systematic downward bias in the inferred timing of expansion, resulting in conclusion of 

more recent growth (by an approximate difference of 0.17*NCURR generations, under our 

simulation framework).      

 

Inference of genetic differentiation 



 

 144 

We simulated structured population samples with three levels of current genetic 

differentiation between the two sub-populations.  The three groups of simulated 

subdivided populations have mean FST values of 0.54, 0.37, 0.15, and 0.01 as estimated 

from the simulated samples.  Analysis of these same samples after they had been 

processed through the simulated NGS pipeline revealed a systematic downward bias in 

FST values (Figure 5).  Although, the bias was most severe at 4x read depth with a mean 

reduction of 0.0147, higher read depths also suffer the downward bias (mean diff at 8x = 

0.0069, and 0.0018 at 15x), albeit significantly less so (4x vs. 8x tdf=299 = 39.34, p < 

2.2×10-16; 8x vs. 15x tdf=299 = 46.41, p < 2.2x10-16).   Interestingly, the bias increases with 

the degree of differentiation (Figure 5).  While this suggests that the bias is minimized 

when differentiation is low, it is in systems with low differentiation that such a bias would 

have the greatest effect on biological interpretation.  Therefore, the significant 

improvements in precision achieved with greater read depths would prove particularly 

valuable when differentiation is being estimated between closely related sub-

populations. 

 

DISCUSSION 

NGS technologies hold promise for expanding the field of population genomics 

into a diverse array of biological and ecological systems (Pool et al. 2010).  However, 

careful consideration of experimental structure and statistical analysis is essential to 

avoid compounding data-related uncertainty and biases in downstream analyses.  

Multiple statistical approaches have been proposed to accommodate the limitations of 

NGS, many specifically designed to handle low (<5x) read depth data (e.g. Lynch 2009; 

Martin et al. 2010; DePristo et al. 2011; Kim et al. 2011).  A prefered standard approach 

that performs well in population genetic analyses under a variety of experimental 
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structures has not surfaced, perhaps due to the limited number of applications to 

empirical data.  While these approaches result in improved ability to call SNPs and 

estimate their population frequencies, particularly for human data or data simulated to 

resemble human data, the effect of sampling error in low-coverage sequencing data on 

the capacity to address population genetic questions has not been previously addressed 

in a broad sense.  It is important to note that our study is not meant to be an evaluation 

of any particular SNP calling approach, but instead is intended to provide an evaluation 

of how using NGS data processed through a typical SNP calling pipeline can affect the 

power to address population genomic questions, recognizing that both the sequencing 

technologies and related statistical approaches are likely to change and improve over 

time.  Moreover, we chose to address population genetic models that are most 

vulnerable to NGS related errors, but other models such as population bottlenecks and 

incomplete sweeps are also of interest and should be explored.   

We evaluated the effect of sequence coverage on the ability to detect three 

common population genetic scenarios: directional selection, population growth, and 

partial subdivision.  The primary source of variation among read depths is the rate of true 

SNP recovery, or the false negative rate.  Consistent with previous observations (e.g. 

Jiang et al. 2009; Lynch 2009), rare variants are disproportionately missed (Figure 2) 

due to sparse read sampling, and the rate of SNP recovery increased substantially with 

read depth (Table 1).  Contrary to previous reports that showed an excess of rare 

variants when the SFS is inferred from short-read data (e.g. Kim et al. 2011), we inferred 

a deficit of rare variants after computational elimination of putative sequencing errors 

(Figure 2), underlining how the ability to distinguish between errors and true SNPs in a 

system with high genetic variation differs from the ability in systems where variation is 

rare.  Another possible explanation for this discrepency is the fact that in our study the 
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sequencing quality scores were recalibrated in a way that may have lead to an 

unrealistically accurate estimate of error rates, perhaps resulting in false negative and 

false positive SNP calling rates unachievable in empirical studies.  Comparison of 

recalibration performance in our study to that achieved using human data from the 1000 

genomes (DePristo et al. 2011) suggests that our approach resulted in comparable 

improvements in base quality distributions with this empirical example.  Interestingly, we 

also observed significantly lower rates of SNP recovery from simulations under the 

growth and sweep models compared to those under the equilibrium model (Figure 1), a 

difference we attribute to the rare-skewed SFS under the growth and sweep models 

(Supplementary Figure 2).  While this result may be specific to the models and 

simulation framework used here, the broader implications is that the dependence of the 

SNP recovery rate on the SFS itself could lead to heterogeneous error in SFS inference, 

even among regions of the same genome.  Genomic regions of low recombination 

exhibiting low diversity may experience further complications in SNP recovery since SNP 

detection is also sensitive to the diversity-to-error ratio (Lynch 2009).  However, in 

humans and possibly other systems with sufficient external data, improvements in rare-

variant recovery can be made through imputation from haplotype information or 

statistical tuning modeled on independent deep sequencing data from the same diploid 

individuals have been employed (Durbin et al. 2010; Gravel et al. 2011).   

How do the differences in SNP recovery across depths of sequencing affect the 

ability to address population genetic questions?  We compared the power to detect 

selective sweeps, infer demographic shifts, and estimate genetic differentiation among 

populations from “true” complete sequence information to the power when sequences 

inferred from NGS data at 4x, 8x and 15x read depths are used.  Interpretation of our 

findings follows below, but it is important to recall throughout that our results are specific 
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in their detail to our particular simulated experimental structure.  General conclusions 

can be drawn from our results, but numerical details, such as exact power curves, will 

depend on experimental parameters such as sample size and levels of genetic variation. 

  

Detecting Positive Selection 

The rapid fixation of a newly arising beneficial mutation leaves a distinct pattern 

diversity in flanking chromosomal segments, including an excess of rare variants and 

high frequency derived alleles.  Multiple statistical tests have been developed to detect 

such selective sweeps (reviewed in Nielsen 2005).  We used the composite likelihood 

ratio test (Nielsen et al. 2005) to detect sweeps among population samples simulated 

under a selective sweep model (Kim & Stephan 2002).  We found that, overall, the 

strength of selection had a larger effect on the power to detect selective sweeps than 

that of the sequencing process and changes in sequencing coverage (Supplemental 

Figure 3).  Since the effects of NGS on genotyping accuracy are physically diffuse but 

the genomic footprint of positive selection is genomically local (reviewed in Nielsen 

2005), it stands to reason that the selection footprint can be inferred with relative 

accuracy provided that the data is not riddled with false positive SNPs that will both 

obscure the selection footprint and alter the neutral background model based on data 

genomic patterns of variation.  However, when we addressed the reduction in power 

related to read depth with greater resolution, we found an interaction between the 

strength of selection and read depth (Figure 3), suggesting that strong selective sweeps, 

leaving large and dramatic selection footprints, can be detected with very low read 

depths, but weaker selective events will only be detected with greater genotyping and 

allele frequency accuracy.  It should be noted, however, that weak selective events are 

difficult to detect even with complete true data (Supplemental Figure 3; Nielsen et al. 
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2005).  Incomplete sweeps (e.g., Sabeti et al. 2002; Juneja & Lazzaro 2010) and sweeps 

from standing genetic variation (Przeworski et al. 2005) are also likely to be difficult to 

detect with low read depth sequencing.      

 

Inferring Demography 

 Many systems show genomic patterns of genetic variation that are inconsistent 

with expectations under canonical equilibrium models, making inference of demography 

a standard component of genomic analyses, both for its own sake and to inform 

accompanying tests of other hypotheses (Boyko et al. 2008; e.g. Crawford & Lazzaro 

2010; Gravel et al. 2011; Locke et al. 2011).  Demographic inference is typically 

accomplished by testing the fit of one or several summaries of polymorphism data that 

include information about both the number of SNPs and their frequency in the sample 

(e.g. Crawford & Lazzaro 2010; Gravel et al. 2011; Locke et al. 2011).  Thus, accurate 

inference of polymorphism from NGS is essential for avoiding biases in demographic 

inference.  We simulated a population growth model and quantified the difference in 

parameter estimates between models inferred from complete sequence data and models 

inferred from simulated short-read sequence data.  Population growth has been shown 

to result in a negative skew in the SFS owing to an enrichment of external branches in 

geneological structures of populations that have experienced growth (Tajima 1989; 

Slatkin & Hudson 1991; Rogers & Harpending 1992), suggesting that the lower recovery 

rate for rare SNPs in low pass sequencing will obscure the signal of growth.  We found 

that the high genotyping accuracy at 15x read depth results in near perfect recovery of 

the demographic signal (Figure 4).  However, at lower depths, we found a systematic 

bias towards inference that growth was more recent that it truly was, without any bias in 

the inferred magnitude of growth.  These results suggest that accurately inferring 
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demographic parameters will hinge on full recovery across the SFS, most likely via 

sequencing depths of at least 8x.  This need may be somewhat mitigated in systems that 

allow alternative approaches for recovery of rare variants such as haplotype imputation 

(Durbin et al. 2010) or statistical tuning based on reduced-representation deep 

sequencing data (Gravel et al. 2011).  It should be noted that we have tested only one, 

argruably simplistic, population growth model here.  Further study will be required to 

extend these results to more complex models.   

 

Inferring Genetic Differentiation 

When a panmictic ancestral population is divided into two predominantly 

reproductively isolated populations, allele frequencies of shared polymorphisms diverge 

over time via neutral genetic drift at a rate that depends on the amount of gene flow 

between the populations and the effective population size of the nascent populations 

(reviewed in Holsinger & Weir 2009).  The signature of this process can be summarized 

using, among other statistics, FST, which directly compares the partitioning of genetic 

variance among populations (Weir & Cockerham 1984; Holsinger & Weir 2009).  Rare 

variants contribute less to estimates of FST than do intermediate frequency variants (Weir 

& Cockerham 1984), suggesting that the missing rare-variant issue inherent to low pass 

sequencing may not have a large impact on estimates of genetic differentiation.  We 

compared the accuracy of FST estimates of genetic differentiation between two partially 

isolated populations inferred from NGS data of various depths and found a systematic 

underestimation of FST, even at 15x read depth (Figure 5).  Inspection of Figure 2 

suggests that underestimation of allele frequency is more common than overestimation.  

A systematic reduction in perceived diversity as well as a tendency to underestimate 

allele frequencies both result in reduced estimates of differentiation.  Interestingly, the 
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bias we inferred here did not vary substantially across a range of FST values (Figure 5), 

although we explored only highly differented samples and this bias may differ at lower 

levels of differentiation.  When population differentiation is substantial, even short read 

data as shallow as 4x is sufficient to detect substantial differences in allele frequencies, 

suggesting significant progress can be made towards measuring genetic differentiation 

with minimal investment in sequencing.  

 

In summary, we assessed the power to address population genetic questions 

using NGS, providing quantification of both the power and accuracy of population 

inference under experimental conditions typical of many ecological systems with large 

population sizes.  We found that the prospect of identifying strong selective sweeps is 

good even at low sequencing depths, while inferring weak selection, non-equilibrium 

population demographics and population structure may suffer significant biases without 

higher coverage.  While our results improve our understanding of the dependencies 

between read depth, SNP calling and allele frequency estimates, and population genetic 

inference using NGS, further investigation is warranted to explore how biases and 

power-loss changes across a broader set of population genetic models and experimental 

parameterizations.     
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Table 1:  Effect of read depth and population genetic model on false negative and 
false positive SNP rates. 
Model Proportion False Negative SNPsa Proportion False Positive SNPsb 

 Total Low Freqc High 
Freqd 

Total Low Freqc High 
Freqd 

4x Read Depthe 

Equilibriumf 0.1268 0.2761 0.0026 0.0444 0.1187 0 

Sweepg 0.1295 0.2822 0.0024 0.0608 0.1672 0 

Growth 0.1463 0.2653 0.0021 0.0516 0.1154 0 

Structureh 0.1340 0.2583 0.0011 0.0084 0.0201 0 

8x Read Depth 

Equilibrium 0.0400 0.0875 0.0005 0.0099 0.0235 0 

Sweep 0.0417 0.0910 0.0006 0.0134 0.0318 0 

Growth 0.0464 0.0843 0.0003 0.0119 0.0234 0 

Structure 0.0449 0.0862 0.0007 0.0031 0.0065 0 

15x Read Depth 

Equilibrium 0.0062 0.0133 0.0003 0.0041 0.0091 0 

Sweep 0.0064 0.0137 0.0004 0.0053 0.0118 0 

Growth 0.0067 0.0121 0.0001 0.0048 0.0088 0 

Structure 0.0095 0.0177 0.0006 0.0013 0.0026 0 

a – Proportion of all true SNPs that were not called after sequencing. 
b – Proportion of all called SNPs that were not present in true data.  
c – SNPs with true frequency less than or equal to 0.1 in sample. 
d – SNPs with true frequency greater than 0.1 in sample. 
e – Simulated read depth for each diploid individual. 
f – Equilibrium refers to Wright-Fisher equilibrium model.  
g – Only rates for sweep model with τ = 0.005 and α = 1000 are presented. 
h – Only rates for structure model with FST = 0.37 are presented. 
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FIGURES 

Figure 1: Proportion of true SNPs recovered with 4x sequencing.  Data from 100 

simulations is presented for each population model (only the selection model with τ = 

0.005 and α = 1000 and structure model with FST ≈  0.37 is presented in each case, see 

Methods).  Models were compared with paired t-test with significance threshold of 5%.  

Note that the y-axis scale is limited from 0.84 to 0.92.  The population structure model 

was not included in this particular statistical contrast (see Methods). 
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Figure 2: Comparison of allele frequencies before and after sequencing at 4x.  

Frequencies for SNPs, including false positives and false negatives, from population 

samples simulated under a) Wright-Fisher model, b) Population Growth model, c) 

Selective Sweep model (α = 1000, τ = 0.005), and d) Population Structure (FST ≈ 0.37).  

The frequencies of false positive SNPs are found in the left most column of each plot.  

The frequencies of true SNPs that were missed after sequencing (false negatives) are 

plotted in the bottom row of each plot.  For the population structure model, frequency 

was calculated as average frequency across both subpopulations.  Colors indicate the 

total number of SNPs (on a log scale) in each bin from 100 simulations for each model.  
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Figure 3: The effect of next-generation sequencing on the power to infer selective 

sweeps.  The proportion of simulated samples that rejected the null hypothesis with 

complete, pre-sequencing data and also rejected after sequencing is plotted as a 

function of the strength of selection.  30kb regions of 30 chromosomes with one selective 

sweep (n = 100 for each α – τ) were simulated.  Simulations were compared to a null 

distribution generated by neutral simulations and considered significant at 0.05 cutoff.  
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Figure 4:  The effect of 4x, 8x, and 15x sequencing on demographic inference.  

Population samples of 30 chromosomes were simulated under a population expansion 

model (n = 500), and the timing and magnitude of growth were inferred using a likelihood 

approach both from full sequence data and after simulated a) 4x, b) 8x, and c) 15x next-

generation sequencing.  The difference in the timing of growth, or bias, was calculated 

by subtracting the parameter value inferred post-sequencing from the pre-sequencing 

value.  The same calculation was used for the magnitude of growth.  Colors indicate the 

proportion of simulations in each region of the parameter space.     

 

Figure 5:  The effect of 4x, 8x, and 15x sequencing on inference of genetic 

differentiation.  FST was calculated with full sequence data (ʻTrue FSTʼ) and after 
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simulated next-generation sequencing using Weir and Cockerhamʼs unbiased estimator 

(Weir & Cockerham 1984), and the post-sequencing bias is plotted.  A loess curve was 

fit to the data for each sequencing depth to illustrate both the effect of increasing FST as 

well as read depth.  The difference between pre- and post-sequencing FST was 

calculated for all simulations (n = 100 for each value of FST) and these differences were 

compared between sequencing depths using a paired t-test.   
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SUPPLEMENTARY FIGURES 

Supplemental Figure 1:  Flowchart of analysis pipeline. 

This flowchart describes the analysis pipeline used to assess the effects of NGS on 

population genetic inference and hypothesis testing.  Population samples were simulated 

under four population genetic model and processed through both A) the “Raw” track of 

the pipeline and B) the “Sequencing” track of the pipeline.  In the “Raw” track, 

unmodified, simulated polymorphism datasets were used for population genetic analysis.  

In the “Sequencing” track, simulated polymorphism datasets were processed through an 

in silico sequencing pipeline, and polymorphisms inferred from the ʻsequenceʼ data were 

used for population genetic analysis.  Comparisons were made between population 

genetic analysis results from the “Raw” track and the “Sequencing” track to quantify the 

differences in accuracy and power of inference after “Sequencing”.    
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Supplemental Figure 2: Site-frequency spectrum from ʻcompleteʼ data for each 

population genetic model. 

The proportion of all true SNPs at various frequencies in the population is presented.  

For the structure model, frequency was calculated across both sub-populations (60 

chromosomes) and proportions calculated according to that distribution, but only SNPs 

with frequencies less than 30 are presented here.  Data from only one selective sweep 

model (alpha = 1000, tau = 0.005) and one structure model (FST = 0.38) is presented 

here. 
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Supplemental Figure 3: The power to detect selective sweeps before and after simulated 

next-generation sequencing.  The proportion of statistically significant detections of 

positive selection was calculated from simulations of a 30kb region of 30 chromosomes 

with one selective sweep.  Simulations were compared to a null distribution generated by 

neutral simulations and considered significant at 0.05 cutoff.  The top panel shows the 

results for recent selective sweep models (τ = 0.005) and the bottom panel shows 

results for models with relatively older selective sweeps (τ = 0.01).  “Pre-seq” refers to 

the complete sequence information, without simulated next-generation sequencing and 

SNP calling. 
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CHAPTER 6: 

De novo transcriptome sequencing in Anopheles funestus using Illumina RNA-seq 

technology. 
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ABSTRACT 

Background:  Anopheles funestus is one of the primary vectors of human malaria, 

which causes a million deaths each year in sub-Saharan Africa.  Few scientific resources 

are available to facilitate studies of this mosquito species and relatively little is known 

about its basic biology and evolution, making development and implementation of novel 

disease control efforts more difficult.  The An. funestus genome has not been 

sequenced, so in order to facilitate genome-scale experimental biology, we have 

sequenced the adult female transcriptome of An. funestus from a newly founded colony 

in Burkina Faso, West Africa, using the Illumina GAIIx next generation sequencing 

platform.   

Methodology/Principal Findings:  We assembled short Illumina reads de novo using a 

novel approach involving iterative de novo assemblies and ʻtarget-basedʼ contig 

clustering.  We then selected a conservative set of 15,527 contigs through comparisons 

to four Dipteran transcriptomes as well as multiple functional and conserved protein 

domain databases.  Comparison to the Anopheles gambiae immune system identified 

339 contigs as putative immune genes, thus identifying a large portion of the immune 

system that can form the basis for subsequent studies of this important malaria vector.  

We identified 5,434 1:1 orthologues between An. funestus and An. gambiae and found 

that among these 1:1 orthologues, the protein sequence of those with putative immune 

function were significantly more diverged than the transcriptome as a whole.  Short read 

alignments to the contig set revealed almost 367,000 genetic polymorphisms 

segregating in the An. funestus colony and demonstrated the utility of the assembled 

transcriptome for use in RNA-seq based measurements of gene expression.   

Conclusions/Significance:  We developed a pipeline that makes de novo 

transcriptome sequencing possible in virtually any organism at a very reasonable cost 
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($6,300 in sequencing costs in our case).  We anticipate that our approach could be 

used to develop genomic resources in a diversity of systems for which full genome 

sequence is currently unavailable.  Our An. funestus contig set and analytical results 

provide a valuable resource for future studies in this non-model, but epidemiologically 

critical, vector insect. 

 

INTRODUCTION 

Anopheles funestus is a primary vector of human malaria parasites, which cause 

almost a million deaths of children under the age of 5 annually in sub-Saharan Africa [1].  

The genome of An. funestus has not been sequenced, although it is expected to be 

within the next couple of years [2].  The current absence of a sequenced genome 

prevents many valuable experimental approaches from being applied to An. funestus, 

including determination of gene expression patterns after exposure to malaria parasites, 

comparison of genome content to other Anopheles and insect species, and reverse 

genetic manipulation to determine gene function.  Despite the absence of a fully 

sequenced and assembled genome, however, many of these experiments could be 

pursued after sequencing of the transcriptome, the complete set of expressed genes.   

Short read sequencing technologies such as the Solexa/Illumina (Illumina), 454 

(Roche) and SOLiD (ABI) platforms have made it increasingly possible to perform de 

novo transcriptome sequencing [3][4].  For example, a single experiment on the 

instrument used in the present study (Illumina Genome Analyzer IIx, Illumina) can 

sequence 225-250 million nucleic acid molecules, generating 45-50 Gigabases of 100 

base pair (bp) paired-end sequence in roughly 9.5 days, where “paired-end” refers to 

sequences obtained from the respective opposite ends of a single DNA molecule.  As we 

will show, this volume of sequencing provides ample read coverage for de novo 
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transcriptome assembly as well as for gene expression analyses and polymorphism 

discovery.  The challenge with de novo transcriptome sequencing using data from short 

read technology lies in the difficulty of assembling the reads into contigs reflecting 

transcriptional units [3].  Short read sequence assembly is an active area of research, 

and has produced an array of assembly options (e.g. Velvet [5]; ALLPATHS2 [6]; ABySS 

[7]; Oases, Schulz and Zerbino, unpublished).  The Roche 454 platform produces longer 

reads (~450 bases) than the Illumina platform (<120 bp), helping to overcome the 

difficulties of de novo assembly, but Illumina produces orders of magnitude more 

sequence at a fraction of the cost, making it an attractive option for researchers with 

limited budgets.  Despite this, de novo short read assembly of eukaryotic transcriptome 

sequence has been largely confined to 454-based sequencing efforts e.g. [8-10], with 

only a very few examples of de novo transcriptome sequencing using the Illumina 

platform occurring in the literature (e.g. Pachycladon [11]; Chinese Hamster Ovary Cell 

[12]; Whitefly [13]).  Illumina-based transcriptome sequencing has been hampered in 

part by the absence of simple and effective assembly workflows capable of handling 

Illumina RNA-seq, or mRNA derived, datasets.   

 Understanding the basic biology of mosquito disease vectors such as An. 

funestus is essential for disease control efforts and development of new control 

technologies to be effective [14].  Valuable insights have been gained through studies of 

An. gambiae [15][16] and the sequencing of its genome [17], but An. gambiae is just one 

of several potent vectors of human malaria in Africa, and many open questions remain, 

including those regarding the genetic similarities and differences between the three most 

important and congeneric vectors: An. gambiae, An. arabiensis and An. funestus.  An. 

funestus is estimated to have shared a common ancestor with the closely related sibling 

species pair An. gambiae and An. arabiensis 30 – 80 million years ago [18], and 
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previous studies found the degree of genetic differentiation between An. funestus and 

An. gambiae to be high (substitutions per synonymous site (Ks) = 0.612 ± 0.392 [19]), 

prohibiting simple use of the An. gambiae genome for gene discovery in An. funestus 

(such as through specific PCR in An. funestus with primers designed to the An. gambiae 

genome).  Furthermore, An. funestus exhibits many epidemiologically important 

ecological differences from An. gambiae, including its ability to thrive in arid conditions 

unsuitable to many other vectors [20][21].  Disease control efforts will have to be tailored 

specifically to An. funestus in order to be fully effective.  To date, there have been no 

efforts to sequence the complete transcriptome of An. funestus, although approximately 

2,800 Expressed Sequence Tags (ESTs) have been obtained from traditional 

sequencing efforts aimed at genetic mapping [19], salivary gland protein discovery [22] 

and general transcript discovery [23]. 

 We used the Illumina Genome Analyzer IIx platform (Illumina) coupled with a 

novel assembly approach to sequence the transcriptome of An. funestus.  Historically, 

the generation of scientific data, genetic and otherwise, from An. funestus has been 

limited by the difficulty in rearing An. funestus in colony.  We have recently established a 

new colony from specimens caught in Burkina Faso [Materials and Methods], bringing 

the number of An. funestus colonies worldwide from two [24] to three.  We sequenced 

mRNA deriving from this colony using the Illumina sequencing platform and assembled 

the adult transcriptome of this species de novo using a hybrid assembly approach.  

Through bioinformatic analyses we identified ~15,500 largely novel, high confidence 

transcription units.  Short read alignments revealed almost 367,000 single nucleotide 

polymorphisms (SNPs) and insertion/deletion polymorphisms (indels), as well as 

substantial variation in expression levels among contigs.  We confirmed homology of a 

large majority of our An. funestus contigs to several Dipteran transcriptomes, and 
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identified 5,434 transcripts that could be paired to an An. gambiae gene as 1:1 

orthologues.  Using bioinformatics, we putatively assigned contigs to broad functional 

categories and found that protein divergence was not evenly distributed among 

functional categories.  Contigs that do not contain ambiguous bases or previously 

published An. funestus EST sequence have been deposited into NCBI and can be 

downloaded through the NCBI Sequence Read Archive website.  The final catalog of our 

inferred transcriptional units is publicly available at www.jacobecrawford.com and at 

www.lazzaro.entomology.cornell.edu.  We expect that this An. funestus transcriptome 

will provide a valuable genomic resource for future studies, including facilitating 

experimental genetic experiments and providing empirical support for gene models of 

the An. funestus genome when it is eventually sequenced.   

 

MATERIALS AND METHODS 

An. funestus colony: 

 We collected fed and gravid female An. funestus mosquitoes from the village of 

Koubri (12°11'54"N; 1°23'43"W) 35 kilometers South East of Ouagadougou, Burkina 

Faso, in February of 2007.  Approximately 50 females were used to establish the colony, 

and the colony is maintained at a large size with overlapping generations in the insectary 

of Centre National de Recherche et de Formation sur le Paludisme in Ouagadougou, 

Burkina Faso.  The females used to establish the colony were monomorphic with respect 

to chromosomal rearrangements and thus of the Kiribina chromosomal form as defined 

by [25].  We sampled females from the colony for mRNA extraction in November of 

2008, corresponding to the 17th-19th generation since the colony was established. 

  

RNA extraction and sequencing: 
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 3-5 day old female mosquitoes (n = 30) were removed from the colony, knocked 

down at -20°C, washed in ice-cold 95% ethanol to overcome the hydrophobic properties 

of mosquito cuticles and rinsed in ice-cold water, and then submerged in RNAlater 

(Qiagen, USA) and frozen at -80°C.  Carcasses frozen in RNAlater were transported 

from Burkina Faso to the US where they were stored at -80°C.  Total RNA was extracted 

using standard protocols (Trizol; Invitrogen, USA) from all 30 carcasses after grinding 

them under liquid nitrogen.  mRNA selection, library preparation and sequencing was 

performed by the Cornell University Life Sciences Core Facilities on an Illumina GAIIx 

sequencer according to manufacturer specifications.  Briefly, mRNA was selected using 

oligo(dT) probes and then fragmented using divalent cations.  cDNA was synthesized 

using random primers, modified and enriched for attachment to the Illumina flowcell.  We 

sequenced one 60-cycle paired-end lane and two 87-cycle paired-end lanes, generating 

~102.6 million reads for a total of 8,150 MB of sequence.  All three un-filtered paired-end 

lanes of sequence have been deposited as a series with the accession number 

GSE21977 at NCBIʼs GEO database or at the NCBI Short Read Archive under 

submission number SRA020147. 

 

De novo transcriptome assembly: 

Prior to assembly and mapping (described below), we applied filters to remove 

low quality reads and reads containing suspected poly-Adenine tails from all three 

paired-end lanes.  First, we implemented a ʻquality filterʼ by removing reads where more 

than 33% of bases were ʻNʼ and reads where more than 34% of the nucleotides had 

Phred quality scores less than 20, where a Phred score of 20 corresponds to a 1% 

expected error rate.  Next, we removed sequences suspected of containing poly-

Adenine tails by discarding any read composed of greater than 33% Adenine.  
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Sequence assembly was carried out in three steps: 1) iterative de novo assembly 

with Velvet v7.58 [5], 2) ʻtarget-basedʼ clustering using An. funestus ESTs to find and 

unite, where possible, sequences belonging to the same transcription unit but not joined 

in Velvet, and 3) ʻtarget-basedʼ clustering using An. gambiae predicted peptides (Figure 

1).   

Step 1: Iterative Velvet assembly.  For step 1, we used the de novo assembler 

Velvet to assemble all three lanes of paired-end Illumina reads.  However, we 

implemented Velvet in a novel way in order to improve the assembly.  First, we 

conducted ʻexploratoryʼ assemblies of the paired reads using multiple hash lengths (k = 

21, 25, 31, 35, 41, 49, and 59).  We then conducted an additional assembly (k = 57) of 

all unused reads (un-paired) from 4 of the exploratory assemblies (k = 21, 35, 49, 59).  

Next, we assembled all contigs obtained from all exploratory assemblies and the unused 

reads assembly in a series of ʻsummaryʼ assemblies.  First, we assembled all contigs at 

3 different kmer values (k = 29, 39, 49) and then assembled the contigs obtained from 

these assemblies in a final summary assembly (k = 39).  This “assembly of assemblies” 

approach may allow inclusion of some misassemblies, but these should result in low-

confidence contigs that will be removed in subsequent steps in the workflow.  Contigs 

from the final summary assembly were included in subsequent clustering steps. 

Step 2: EST-based clustering.  The highly coverage-sensitive nature of contig 

selection and node connection within the de Bruijn graph utilized by Velvet often results 

in partially fragmented assemblies.  Therefore, we included the following clustering step 

to ensure all homologous sequence was joined where possible.  For step 2, we 

downloaded all An. funestus ESTs from Genbank (n = 2,846 as of November 2009; 

referred to as “ESTs” below) [19][22][23].  From this larger set of ESTs, We found 1,496 

unique ESTs and used this condensed set as targets in a ʻtarget-basedʼ clustering 
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process in order to join homologous contigs that were not joined in the Velvet assembly. 

We first used BLASTN from the stand-alone bundle of BLAST algorithms v2.2.23+ [26] 

to identify all contigs that showed significant similarity (e-value ≤ 1×10-6) with each An. 

funestus EST downloaded from Genbank.  Each matching contig was then individually 

aligned to its EST match using ClustalW [27], and contig-EST matches were discarded if 

their ClustalW alignment score was not greater than 50 plus 3 times the length of the 

shorter of the two sequences.  All remaining contigs were then grouped by their 

matching EST and compared to the match with the highest BLAST score by dividing all 

BLAST scores by the maximum score in the group.  Contigs with normalized BLAST 

scores less than 0.7 were discarded from further clustering steps.  If more than one 

contig remained in an EST-group after the two previous filtering steps, contigs within 

each EST-group were aligned in a global alignment using ClustalW.  To identify good 

matches between the EST and individual contigs, individual pairwise alignment scores 

for each EST-contig alignment within the global alignment were divided by the maximum 

EST-contig alignment score in that group, and all contigs with a normalized pairwise 

alignment score less than 0.7 were eliminated from further clustering.  The cutoff value 

of 0.7 used in the previous filtering steps was chosen after visual inspection of a subset 

of alignments suggested that this criteria readily distinguished credible matches from 

those more likely to be spurious.  Contigs that survived all of these filtering steps were 

then aligned to their EST match, and any sequence that extended further than the edge 

of the EST was joined to the EST and the total sequence was used in the final contig set.  

After this clustering process, the resulting contig set contained some contigs that were 

comprised partly of contig sequence and partly of EST sequence, some contigs that 

were comprised of two contigs joined in the middle by EST derived sequence, some 

contigs that resulted from joining two Velvet contigs and many sequences that were 
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unaffected by the clustering process.  Clustering and joining of contigs was 

accomplished with custom scripts written in the statistical computing environment R [28].   

Step 3: An. gambiae-based clustering.  For the final assembly step, step 3, we 

used the An. gambiae predicted peptide set (release 3.5) downloaded from 

Vectorbase.org in a second and analogous ʻtarget-basedʼ clustering step.  The clustering 

step based on An. funestus ESTs (step 2 above) was helpful, but was not likely to be 

exhaustive due to the limited number of An. funestus ESTs available in public 

databases, so we performed the following additional clustering step using the much 

more complete, albeit evolutionarily diverged, An. gambiae transcriptome.  All contigs 

that were not joined in the EST-based clustering in step 2 were evaluated in analogous 

fashion against An. gambiae peptides.  These contigs were compared to the entire An. 

gambiae predicted peptide set using BLASTX and submitted to the same filtering step as 

in the EST-clustering step above, where contigs with a normalized BLAST score less 

than 0.7 were disregarded.  Surviving contigs were then grouped based on their peptide 

match.  If more than two contigs matched a peptide, they were globally aligned using 

ClustalW.  Pairwise ClustalW alignment scores within the global alignment of greater 

than 80 were considered positive matches and these contigs were joined.  If only two 

contigs matched a peptide, they were aligned and if they overlapped with an alignment 

score greater than 90, they were joined into a single contig.  If the contigs did not overlap 

in alignment, they were joined together by a string of ʻNʼs using the peptide BLAST high 

scoring pair coordinates of each contig as a guide for the length of the N string.  Like the 

EST-based clustering step, this clustering process was performed using custom R 

scripts.   

At the end of step 3 of the assembly pipeline, the total contig set was comprised 

of many contigs that were not affected by the clustering process, some contigs that were 
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the product of one or two contigs having been concatenated with pre-existing EST 

sequence, some contigs that were joined during the An. gambiae peptide clustering step, 

and some contigs that had been scaffolded around a run of ʻNʼs.   

 

Bioinformatics and contig validation: 

 To distinguish between valid transcript sequence and spuriously assembled 

sequence we compared the post-clustering set of contigs to multiple Dipteran insect 

transcriptomes, searched for open reading frames and compared translated protein 

sequences to functional protein domain databases as a means to identify contigs with 

bioinformatic associations with other species.  First, we searched our assembled and 

clustered An. funestus contigs for homology to the translated predicted transcriptomes of 

other Dipteran insects with sequenced genomes.  In addition to the An. gambiae peptide 

set used for clustering above, we downloaded the predicted peptide set from Aedes 

aegypti (release 1.2) and Culex quinquefasciatus (release 1.2) as well as the full 

genome sequence of An. gambiae (release 3) from Vectorbase.org.  We also 

downloaded the predicted peptide set of Drosophila melanogaster (release 5.26) from 

Flybase.org.  For reference, the genus Anopheles (Subfamily Anophelinae) is predicted 

to have shared a common ancestor with Aedes and Culex (Subfamily Culicinae), 

between 145 – 200 million years ago [18] and a common ancestor with Drosophila 260 

million years ago [29].  We compared our final contig set to each of these four translated 

transcriptomes using BLASTX, as well as to the An. gambiae genome using TBLASTX, 

and high scoring matches with a minimum e-value of 1×10-6 were kept for further 

analysis.  As part of functional annotation (described below), we also compared our 

contig set to the nr database at NCBI as the first step of Gene Ontology [30] (hereafter 
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referred to as GO) annotation implemented by Blast2GO [31] using an expect value 

cutoff of 1×10-6.      

 In addition, we evaluated the post-clustering contig set based the size of the 

inferred open reading frame (ORF) relative to contig size.  We extracted open reading 

frames from all contigs using the ʻ-getorfʼ function in the EMBOSS package [32].  To 

accommodate the uncertainty of whether our contig captured the full ORF, we extracted 

both translated regions that were flanked by a Methionine and a STOP codon (ʻ-find 1ʼ; 

hereafter type A) as well as translated regions that were simply free of STOP codons (ʻ-

find 0ʼ; hereafter type B).  For each contig, we compared the largest ORF from each of 

these types and kept the ORF that contained a start codon unless the type B ORF 

extended upstream of the type A ORF to the beginning of the contig representing cases 

in which the true start codon is likely truncated from the contig.  If no type A ORF was 

found, the type B ORF was chosen.  Then, in order to cleanse the contig set of contigs 

comprised of spuriously assembled sequence, we discarded any contig if its ORF was 

shorter than 50 amino acids. 

 To identify putative conserved protein domains and assign putative functional 

information to the post-clustering contig set, we compared translated protein sequences 

extracted from our contigs to multiple functional domain databases using RPS-BLAST 

and Blast2GO [31].  First, the total peptide set was compared to the SMART [33], KOG 

[34], Pfam [35] and CDD [36] databases using RPS-BLAST with no expect value 

threshold cutoff, but only matches with an expect value less than 1×10-6 were considered 

in further analyses.  We also mapped our contigs to the GO database using Blast2GO.  

Annotation through Blast2GO is accomplished by first searching for matches to the nr 

database at NCBI, then mapping to the BLAST results to the GO database and finally 

selecting a GO annotation using their Annotation Rule that is based on the degree of 
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similarity to the GO, GO Evidence Code weights (default values used here) and relative 

weights given to child versus parent terms [31].  In order to simplify the functional 

annotations to a set of broad terms, we also mapped the GO annotations to the Generic 

GO-Slim terms using Blast2GO.  All results from BLAST comparisons to functional and 

conserved protein domain databases as well as the GO annotations are presented in 

Table S1. 

 We chose a final contig set by comparing results of all of the BLAST and 

functional domain database comparisons and keeping only sequences that showed a 

significant association to at least one proteome or database.  This resulted in a 

conservative set of contigs, although it prevents the discovery of novel genes in the An. 

funestus transcriptome.  This is an unfortunate consequence of the inherent difficulty in 

distinguishing novelties from spuriously assembled sequence.  Our contig set as 

reported is composed entirely of high confidence transcription units.  All contigs that did 

not contain any ʻNʼs inserted during contig clustering (n = 14,980) are available in the 

Transcriptome Assembly Archive at NCBI under the accession numbers EZ966136 - 

EZ980985.  The full final contig set is available at www.jacobecrawford.com and 

www.lazzaro.entomology.cornell.edu. 

After compiling a conservative set of contigs using the bioinformatic and ORF 

filtering criteria, we performed a reciprocal best-hit analysis to identify 1:1 orthologues 

between our An. funestus contigs and An. gambiae predicted proteins.  First, we 

searched the An. gambiae peptide set with BLASTX using An. funestus contigs as 

queries with an e-value threshold of 1×10-6.  We then performed the reciprocal search 

with TBLASTN using An. gambiae peptides as the queries and the same e-value 

threshold.  An. gambiae peptides shorter than 50 amino acids (n = 26) were omitted from 

this search because the BLAST algorithm is unable to parse such short sequences.  
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One-directional ʻbest-hitsʼ were declared for each query if only a single BLAST result 

was obtained or the ratio of the BLAST score of the ʻsecond-best-hitʼ to the BLAST score 

of the first ʻbest-hitʼ was less than 0.7.  One-directional ʻbest-hitsʼ were identified in both 

directions and 5,434 reciprocal ʻbest-hitsʼ were obtained by comparing these datasets. 

 

Read mapping, SND calling and expression profiling: 

 We used the short read alignment algorithm BWA [37] to align all three paired-

end lanes of Illumina sequence reads to the final contig set established above.  Prior to 

the assembly steps, all sequence reads were screened for low quality and low 

complexity as described above.  To accommodate the global mapping procedure used in 

BWA and reduce the number of reads not mapped because of sequencing errors in the 

terminal end of the read, positions 76-87 of all remaining reads in the two lanes of 87 bp 

paired-end reads were trimmed using the FastX toolkit 

[http://hannonlab.cshl.edu/fastx_toolkit/], leaving 75 bp reads for mapping.  The trimmed 

75bp and 60bp paired-end reads were then aligned to the reference final contig set in 

BWA, with the maximum number of difference between each read and reference 

sequence set to 5 (ʻaln -n 5ʼ).  Alignment files from the three paired-end lanes were 

merged, sorted and parsed by contig identification using pileup in the SAMtools package 

[38].  The consensus base, putative single nucleotide polymorphisms and short indels 

were called using the pileup ʻ-cʼ option.  We called single nucleotide polymorphisms and 

indels (hereafter collectively referred to as short nucleotide discrepancies or SNDs) at 

sites where 1) the mapping quality was greater than or equal to 20, 2) the alternative 

base occurred at least twice or the equivalent of 0.025 times the coverage at the site 

when coverage was greater than 80, 3) only one alternative base occurred at or above 

this frequency and 4) at least 6 reads covered the site. Thus, in order to be considered a 
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putative SNP, the alternative nucleotide would have to be observed with high confidence 

at least twice even at a positions covered by 6 reads.  In this way, we aimed to decrease 

false positive SND calls from sequencing errors, which are generally expected to be 

unique in the read set, but which should accumulate in abundance linearly with 

sequence depth. 

We were interested in determining colony-level genetic variation, recognizing that 

because the polymorphisms reported here were obtained from a colony of mosquitoes 

and not a random population sample, true population genetic parameters describing the 

natural population can not be appropriately estimated from this data.  Estimates of 

genetic variation from high-throughput sequencing data are complicated by the fact that 

read depth varies among and within contigs and that highly expressed genes are more 

likely to be completely sequenced and thus represented by more bases.  While raw SND 

counts are presented for the purpose of SND discovery, we applied several corrections 

and assigned each contig an adjusted nucleotide diversity (hereafter simply referred to 

as nucleotide diversity) value.  First, we treated any bases that were not covered by at 

least 6 reads as missing data, so we calculated an initial estimate of nucleotide diversity 

by dividing all SND counts by the number of bases across the contig that were covered 

by at least 6 reads to obtain an estimate of SNDs per base.  Next, to control for 

ascertainment bias related to variable read depth, or in this case expression level and 

mapping success, , we adjusted length-corrected SND counts using the read-depth 

correction (eq. 7) proposed by Jiang et al. [39] that accounts for the possibility of missing 

data at low coverage sites and the probability of observing a mutant allele in a given 

sample.  This correction is intended for regions of a genome with identical read depth 

[39], but since this requirement is not applicable to our case, we used the median read 

coverage per contig.  
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We were also interested in testing the utility of the assembled transcriptome for 

measuring gene expression.  To estimate mapping success, we quantified the total 

number of reads mapped and further distinguished between uniquely mapped reads and 

repetitively mapped reads.  We also quantified gene expression in our dataset extracting 

the number of reads mapped to each contig during the BWA alignment.  However, Gene 

expression levels can be estimated from RNA-seq data with great accuracy e.g. [40], 

but, since read mapping is sensitive to the size of the target reference sequence, 

corrections must be applied to adjust for contig length.  Therefore, we adjusted the raw 

read count by the total number of reads mapped and the length of the contig, calculating 

Reads Per Kilobase per Million mapped reads (RPKM; [40]).  

 

Protein divergence: 

 To identify functional categories of proteins that show high levels of divergence or 

conservation, we determined protein divergence between 1:1 An. funestus:An. gambiae 

orthologues.  First, we aligned orthologous protein sequences using ClustalW.  We then 

calculated protein distance using the ʻidentityʼ mode of the dist.alignment function in the 

R package seqinr [41].  This function calculates protein distance as the square root of 

the proportion of the sequence that is different between the two sequences.  However, 

automated sequence alignment is unreliable at high divergence levels, so we excluded 

orthologous pairs with less than 30% identity (leaving 4,975 contigs) to avoid false 

mismatches introduced by low confidence alignments.  Lastly, we assigned each 

orthologous pair to one of three categories based on its level of divergence (or 

proportion amino acids that differ): High (≥ 0.138), Intermediate (< 0.138 and > 0.058) 

and Low (≤ 0.058) divergence, with bin cutoffs empirically determined so that one-third of 

transcripts fall into each category. 
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Comparison among functional categories: 

 We used Χ2 analyses to ask whether any functional categories of contigs as 

assigned above were significantly enriched or depleted of any of the nucleotide diversity 

categories.  As described above, we first assigned contigs to a protein divergence bin 

(i.e. Low, Intermediate or High), and then to functional categories based on GO-Slim 

terms.  We then, using a Χ2 test, asked whether each GO-Slim category was enriched 

(or depleted) for any of the bins compared to the expectation of equal proportions 

expected under the binning method.  We used a Bonferroni-adjusted α level of 5.26×10-4 

to assign significance in tests.  As the power of Χ2 analyses increases with increasing 

number of observations, we limited our intra-functional category comparisons to 

categories populated by at least 15 contigs. 

 

Distribution of Data and Scripts for Analysis: 

An Excel spreadsheet, modeled after AnoXcel, containing peptide sequences, 

BLAST results, functional annotation results and other pertinent information for each 

contig in the final contig set is available online as Table S1 as well as on the websites 

www.jacobecrawford.com and www.lazzaro.entomology.cornell.edu.  All data and results 

management, manipulations and analyses were carried out using custom scripts written 

by J. Crawford in the statistical computing environment R unless specified otherwise.  

Additionally, a Velvet wrapper script written in python by J. Crawford called 

AssemblyAssembler.py to automate the iterative Velvet assembly used here is available 

at the websites given above and is also packaged with Velvet, starting with version 

0.7.63.  
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RESULTS AND DISCUSSION 

Sequencing and Assembly: 

 Due to the low cost and ability to obtain both novel sequence for assembly as 

well as gene expression data, there is great interest in utilizing Illumina RNA-seq data for 

de novo transcriptome assembly and analysis [3].  We sequenced three paired-end 

lanes of mRNA extracted from 30 whole, sugar-fed female An. funestus using the 

Illumina Genome Analyzer. Approximately 102 million reads (or 51 million paired-end 

reads) passed Illumina quality filtering totaling roughly 8.1 GB of sequence.  We 

removed 2% of these reads flagged as either low-quality or low-complexity.  A first pass 

Velvet assembly with default parameters and a hash length of 31 yielded over 440,000 

contigs and an N50 of 209 bp (i.e. 50% of the total assembled sequence was contained 

in contigs of this length or longer).  We searched a large range of hash values (k = 21 to 

k = 59) and obtained a slight improvement by setting the hash value to 57, producing 

approximately 357,000 contigs with an N50 of 228 bp.  Further exploration of various 

parameter settings and data combinations suggested that an iterative assembly in which 

contigs output from generic Velvet assemblies using various hash lengths are 

assembled in a final series of Velvet runs produced the best assembly (Figures 1 and 2).  

This final contig set of 46,987 contigs with an N50 of 1,140 bp comprised 27.8 MB of 

sequence and was submitted to further downstream filtering and analysis as detailed in 

Materials and Methods and briefly described below.   

 While the present manuscript was in review, several independent efforts to 

optimize transcriptome assembly using RNA-seq data were made publicly available.  We 

were encouraged by the results of one independent study that obtained high quality 

transcriptome assemblies of Illumina reads using an iterative, varied kmer approach 

similar, in principle, to ours [42].  Two other efforts that employ an alternative approach 
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have also been made available (Oases [Schulz and Zerbino, unpublished] and Cufflinks 

[43]).  To determine how the performance our method compares to an alternative 

method, we assembled the An. funestus transcriptome using Oases with standard 

parameter settings and obtained a high quality assembly.  This approach generated 

approximately twice as many contigs as our pre-clustering contig set, but the contig sets 

were very similar with respect to the proportion of sequences showing homology to An. 

gambiae and the N50 value.  However, one key difference is that Oases relies heavily 

node scaffolding using paired-end information (74.8% of contigs contain ʻNʼs in Oases 

contig set generated here), which is not ideal because these ambiguous bases produce 

ʻedge-effectsʼ in short-read mapping analyses.  

 In principle, the iterative assembly routine employed here is intended overcome 

the heterogenous coverage distribution inherent to non-normalized RNA-seq data by 

taking advantage of the fact that some contigs will be assembled best in certain 

assembly conditions while others are best assemble in different conditions.  We and a 

colleague found anecdotal evidence using independent datasets that high coverage 

contigs assemble best in high kmer value assemblies, while low coverage contigs 

assemble best in low kmer value assemblies.  Further exploration is needed to 

determine whether this can be exploited more directly.  Importantly, we subsampled our 

data and found that this assembly routine produced a very respectable assembly 

(maximum contig length = 12,688 bp and N50 = 784 bp) with only single paired-end lane 

of Illumina sequence reads, suggesting that significant progress can be made with very 

little sequencing cost.     

 Following the iterative assembly step, we used ʻtarget-basedʼ clustering to 

improve the de novo assembly.  By clustering contigs around previously described An. 

funestus ESTs and then predicted An. gambiae peptides, we searched the contig set for 
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potential overlaps and joined contigs where possible and appropriate.  This ʻtarget-

basedʼ contig clustering process resulted in only a modest condensation of the contig set 

from 46,987 contigs to 45,644 contigs, a 2.9% reduction (Figure 2).  In their Illumina-

based assembly of the transcriptome of Chinese hamster ovary cells, Birzele et al. [12] 

utilized a similar assembly workflow that was a hybrid of de novo assembly and read 

mapping to the phylogenetically closest sequenced model system genome to improve 

assembly and annotation and achieved similarly modest assembly improvements [12].  

Birzele et al. [12] used transcripts from the closely related mouse genome to cluster 

short reads for assembly leading to a reduction in their contig set of approximately 6% to 

92,272 contigs with a mean length of 352 bp.  Our own experience and the report of 

Birzele et al [12] suggests that, in general, clustering may not be an extremely effective 

means of improving de novo transcriptome assemblies.  In contrast, our pre-clustering 

iterative assembly process generated 46,987 contigs with a mean length of 591 bp, 

underscoring the potential gains to be made through alternative de novo assembly 

approaches even in the absence of any clustering.     

  To purge our contig set of spuriously assembled sequence, we utilized 

bioinformatic support to validate our contigs.  We eliminated any contig that did not show 

a significant BLAST match to at least one of four insect transcriptomes or functional 

databases and did not harbor a convincing ORF (Materials and Methods), leaving 

15,527 contigs with an N50 of 1,753 bp (Figure 2).  For comparison, the predicted 

transcript sets of the most thoroughly annotated Dipteran genomes, An. gambiae and D. 

melanogaster, are comprised of 14,753 and 21,921 transcripts, respectively, with N50s 

of 2,258 and 2,475 bp, respectively.  This suggests that, not surprisingly, our contigs are 

frequently incomplete and represent only a subset of the potentially expressed 

transcriptome. We restricted our final contig set to a limited number of conservative 
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contigs, reducing the total number of contigs relative to other de novo transcriptome 

studies e.g. [9][12].  Even so, our high confidence contig set of 15,527 transcripts 

represents a marked expansion of the An. funestus genetic sequence space over the 

previously available ~2,800 ESTs (521 of which we were able to extend through our 

assembly and clustering process).  

 

Homology with Dipteran sequences   

 In order to determine homology with available Dipteran sequences, we compared 

our contig set to predicted peptide sets extracted from four sequenced Dipteran 

genomes (An. gambiae, Ae. aegypti, C. quinquefasciatus and D. melanogaster) using 

the standalone BLASTX algorithm (e-value ≤ 1×10-6) as well as to the An. gambiae 

genome with the TBLASTX (e-value ≤ 1×10-6).  We compared 15,527 An. funestus 

sequences to the closely related An. gambiae peptide set, finding 13,137 (84.6%) with 

significant similarity to an An. gambiae sequence, although this percentage may be 

slightly upwardly biased due to the usage of An. gambiae peptides during the clustering 

process in assembly step 3 (Materials and Methods).  And while all contigs showed 

homology with at least one Dipteran transcriptome consistent with the selection process 

described above, a core set of 9,929 (63.9%) contigs showed significant matches in all 

four Dipteran transcriptomes (Figure 3).  This high degree of sequence homology is 

consistent with previous observations of transcriptome conservation among these 

species [23].  Consistent with the expectation of increased divergence with increased 

phylogenetic distance, however, the number of contigs showing significant sequence 

similarity in pairwise comparisons between the An. funestus contig set and Dipteran 

transcriptomes decreased with increasing phylogenetic distance (Figure 3).  It should be 

noted that the annotation process that produced the predicted peptide sets queried here 
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were not independent since more recent annotations often train their gene model 

annotation pipeline on gene models from previously annotated genomes e.g. [17].  

Highlighting the potentially limiting effect of this dependence, we found 2,360 contigs that 

showed no matches to the An. gambiae predicted peptide set but significant homology to 

the full An. gambiae genome sequence as well as other Dipteran sequences and 

sequences in functional domain databases.  Although this discrepancy could be 

explained in part by differences between the BLAST algorithms employed in the two 

comparisons (TBLASTX for the genome versus BLASTX for the peptide set), it implies 

the presence of unannotated genes or transcribed units in the An. gambiae genome.  A 

recent transcriptome profiling study also found many clusters of reads that mapped to 

unannotated regions of the Ae. aegypti genome [44] suggesting empirical validation of 

transcribed units using next-generation sequencing should be used to complement in 

silico gene prediction pipelines. 

  To best make direct comparisons between species, we searched for 1:1 

orthologous pairs between our An. funestus contigs and An. gambiae peptides, and 

putatively assigned 5,434 pairs using the standard reciprocal best-hit criteria.  In a 

comparison between protein sequences of An. gambiae, Ae. aegypti and D. 

melanogaster, Waterhouse et al. [45] identified 4,951 1:1:1 orthologues and an 

additional 886 1:1 Anopheles:Aedes orthologues, suggesting that our contig set harbors 

about 93.1% of the conserved, single-copy Dipteran orthologues.  The median sequence 

similarity between 1:1 orthologues identified here is 86.9% (σsim = 0.127), but 57.7% of 

our An. funestus contigs were shorter than their An. gambiae orthologue (mean 

proportion of An. gambiae transcript covered = 81.3%, σcov = 0.237), again suggesting 

that most of our transcripts are not full-length.    
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Immune-system genes 

When challenged by pathogens such as malaria parasites, mosquitoes mount a 

strong and effective innate immune response; so immune genes are of particular interest 

as potential points of exploitation for disruption of disease transmission [16].  To identify 

putative immune genes within our contig set, we downloaded a list of 414 An. gambiae 

genes annotated as immune genes in the ImmunoDB database [45].  We found 

significant sequence homology between 345 An. funestus contigs and 217 annotated 

An. gambiae immune genes.  We also identified contigs with significant homology to 4 

An. gambiae genes that have been functionally shown to be important in anti-malarial 

defense but that are not annotated in ImmunoDB: all three of the APL1 genes (although 

we are unable to assign strict orthology) [46] and LRIM1 [47].   

Genes in the innate immune system can be split into four broad functional 

categories: recognition, signaling, regulation and effectors [45][48].  We also included an 

additional category, ʻotherʼ, to capture genes involved in other processes such as RNAi 

or autophagy that have been implicated in immunity.  Based on significant BLAST 

matches to An. gambiae genes coding for recognition proteins including those annotated 

in ImmunoDB (e.g. Thioester-containing Proteins, Gram Negative Binding Proteins; n = 

139) as well as the APL1 paralogues and LRIM1, our An. funestus transcriptome 

contains 102 contigs that may function in pathogen recognition.  We also recovered 33 

contigs (33 in An. gambiae) putatively involved in immune signaling (e.g. Cactus, Imd), 

108 putative immune regulatory contigs such as CLIP-domain serine proteases or Serine 

protease inhibitors (compared to 132 in An. gambiae), 33 putative effector genes 

(compared to 54 in An. gambiae; e.g. Cecropins, Lysozymes) and 69 contigs in the 

ʻotherʼ category putatively involved in RNAi (e.g. Argonaute and Dicer) and autophagy 

etc. (compared to 45 in An. gambiae).  All matches between An. funestus contigs and 
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An. gambiae immune genes are listed with their relevant immune annotations in Table 

S2. 

Immune-system genes have been shown to be evolving at a faster rate than 

other genes in Drosophila and mosquitoes [45][48].  We compared protein sequence 

divergence among 126 1:1 orthologous pairs between An. funestus and An. gambiae 

with putative immune function to determine whether this observation holds true for our 

contig set.  We found that orthologous pairs with putative immune function are 

significantly more diverged than the total set of all 1:1 An. gambiae:An. funestus 

orthologous pairs (mean sequence differences for immune gene orthologues = 16.0%, n 

= 126, mean sequence differences among all orthologues = 10.2%, n = 4,975; p = 

6.95×10-9, Mann-Whitney U-test).  If we subdivide the analysis based on immune-system 

function, we find that regulatory proteins are most diverged (mean percent sequence 

differences = 18.77%), signaling proteins are second-most diverged (mean percent 

sequence differences = 17.90%), recognition proteins are third-most diverged (mean 

percent sequence differences = 16.59%) and effector proteins and proteins in the ʻotherʼ 

category are least diverged (mean percent sequence differences = 11.51% for effector, 

12.13% for ʻotherʼ), although only the regulatory and other categories are significantly 

different from each other (Figure 4; reg vs. other p-value = 0.0032, all other p-values 

range from 0.0566 to 0.8724, pairwise Mann-Whitney U-tests).  These results suggest 

that the immune system genes of An. funestus are evolving in a fashion consistent with 

immune genes in other insects [45][48].  Further studies dissecting the anti-pathogenic 

role each contig plays will greatly enhance our understanding of the mosquito immune 

system.  

 

Nucleotide diversity 
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 Single nucleotide polymorphisms and short indels (collectively referred to as 

single/short nucleotide discrepancies, or SNDs) are very common in natural populations 

and provide valuable markers for genetic mapping as well as population genetic studies.  

We identified a set of 366,741 SNDs, suggesting approximately 1.95 SNDs exist in every 

100 bp.  The mean nucleotide diversity per contig was 0.019 per base before correction 

for variation in read depth and 0.024, (range of 0 to 0.163 per contig) after correction. 

This level of variation, particularly high coming from a colony, suggests that the colony 

may not have suffered the severe loss of genetic variation that could be expected after 

extended inbreeding.  One explanation for this estimate is that the An. funestus colony 

was only recently established and thus too few generations of inbreeding have passed 

for the effect to be pronounced.  Alternatively, our estimate of 0.024 per base may also 

be upwardly biased, however, by the presence of false-positives in our dataset, resulting 

from nucleotide mis-incorporation during polymerase chain reaction steps in template 

library preparation prior to sequencing.  A previous Sanger-based re-sequencing study 

identified 494 SNPs from 20.5 kilobases of sequence (71.4% coding, with 303 SNPs 

mapping to the coding region), derived from a sample of 21 field and colonized 

specimens of An. funestus [49].  From this survey, they estimated a mean nucleotide 

diversity level of 0.007 [49], considerably lower than our estimate likely due to their 

smaller sample size.  Estimates of nucleotide diversity in An. gambiae, a congeneric 

species with comparable generation time, geographical distribution and seasonality, are 

typically similar or perhaps slightly smaller than our estimate for this colony of An. 

funestus (e.g. [50][51]).  The colony used in this study does not harbor the chromosomal 

rearrangements segregating in natural populations, but small and/or unknown inversions 

may be present and could play a role in preserving genetic variation at some loci.  The 

genetic polymorphisms we have identified as segregating in this colony of An. funestus 
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should be dispersed among all chromosomal arms and suggest that significant natural 

functional variation can still be found in the colony.  Such variation may provide a 

valuable opportunity for future genetic mapping of phenotypes in the colony.  

 

Functional annotation of the whole transcriptome 

To provide a biological foundation on which to begin to globally characterize the 

transcriptome, we sought to functionally annotate our contig set based on sequence 

homology to functionally annotated sequences in other species and identification of 

conserved protein domains.  We identified 7,567 contigs that contained regions of 

significant homology to sequence in at least one database of protein domains (CDD, 

SMART, and Pfam).  Comparisons to the KOG and GO databases provided putative 

functional information for 10,391 contigs.  We were able to assign 3,506 unique GO 

annotations to 9,026 contigs (36,024 total matches), meaning that 58.1% of our total 

contigs have affinity to at least one GO term. These GO annotations are quite detailed 

and provide valuable information for specific contigs, but we were also interested in 

assigning contigs to broad functional categories that could be used to ask transcriptome-

level biological questions.  Therefore, we also found 28,781 associations between 119 

generic GO-Slim annotations and 9,026 contigs.  All annotation information is presented 

in Table S1, but only the GO-Slim annotations were used in the analyses described 

below, specifically focusing on 33 functional categories at the Cellular Component level, 

39 categories at the Molecular Function level and 49 categories at the Biological Process 

level. 

 

Transcriptome divergence 
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 An. funestus and An. gambiae, estimated to have shared a common ancestor 

between 30 and 80 MYA [18], exhibit many ecological, behavioral and physiological 

differences.  We examined levels of protein sequence divergence between 1:1 

orthologues to determine whether specific functional categories evolve at a rate that is 

different from the transcriptome as a whole.  Of the functional categories tested, 10 

Cellular Component categories, 20 Biological Process categories and 12 Molecular 

Function categories showed significant deviations from expected equal proportions of 

high, intermediate and low divergence categories at the Bonferroni-adjusted α level.  

Results for all categories are presented in Table S3, and significant results are 

presented in Figure 5.  In general, significantly deviating categories tended to be 

enriched with lowly diverged orthologous pairs, indicating a high level of evolutionary 

conservation within these categories.  While no categories were enriched with highly 

diverged pairs, we found a significant enrichment of intermediately diverged orthologous 

pairs localizing to the mitochondrion (Figure 5), as might be expected considering the 

known faster rate of evolution among genes associated with the mitochondrion.  We also 

found significant enrichment of intermediately diverged pairs involved in lipid metabolic 

processes as well as in contigs with molecular functions involving catalytic activity and 

binding (Figure 5).  A study of protein evolution among single copy orthologues across 

the phylogeny of the D. melanogaster species group identified 12 functional categories 

putatively under positive selection [52].  The categories identified here as enriched with 

intermediately diverged orthologous pairs are not among those 12, although immune 

genes identified outside of the GO-Slim analysis are significantly more diverged than the 

transcriptome [see above].  We note that our analysis probably has a strong bias toward 

detecting conserved sequences, since we limited our analysis to high confidence 

alignments and thus probably excluded highly diverged orthologous pairs.  Nonetheless, 
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our analysis offers the first glimpse into genome level patterns of protein evolution and a 

step towards a more comprehensive understanding of protein evolution in insect vectors.   

 

Expression profiling: 

 Transcriptome sequencing in a non-model system makes it possible to conduct 

experiments to test hypotheses of differential expression between experimental 

treatments, for example.  RNA-seq provides a powerful means of measuring gene-

expression because the depth of sequence coverage of a transcript should be 

proportional to its expression level [4].  To demonstrate that a transcriptome assembled 

de novo can serve as a reference sequence for short-read mapping, we used the short 

read alignment program BWA to map three paired-end lanes of Illumina sequence to the 

final contig set.  Of 101 million reads, approximately 51% of the reads were mapped 

uniquely to the transcriptome, while a fraction of a percent of the reads mapped to more 

than one location in the transcriptome.  Interestingly, the remaining 49% of the reads 

were not successfully mapped, despite our somewhat liberal mapping criteria.  It is 

possible that this rate of mapping success may reflect problems with this assembly, but 

a recent study mapping short sequence tags to the Ae. aegypti genome reported a 

comparable rate of mapping success [44] indicating that this rate is not likely to be an 

artifact of the de novo assembly process.  Furthermore, we found that the profile of gene 

expression across contigs, as measured by reads per kilobase per million mapped reads 

(RPKM), adhered to the expected distribution with 95% of contigs having an RPKM 

value of 133.83 or less and extreme values that differ by three orders of magnitude (from 

2.69 to 19,775.75).  Therefore, we failed to find good evidence that transcriptomes 

assembled with our approach should not be used in short read mapping experiments. 
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Concluding Remarks 

 Next generation short-read DNA sequencing has made it possible to explore 

genome-level questions in non-model organisms, regardless of their phylogenetic 

proximity to model species [3].  An. funestus is a primary vector of human malaria, but, 

as an experimental system, lags significantly in the availability of research data and 

scientific resources.  To establish a genomic resource that will facilitate future genomic 

level studies in this species, we used the Illumina GAIIx sequencing platform and a novel 

assembly workflow to build the adult female An. funestus transcriptome.  In doing so, we 

demonstrate the feasibility of Illumina-based transcriptome sequencing low cost ($6,300 

in sequencing costs) and with the added value of obtaining quantitative expression and 

polymorphism data.  We assembled a conservative and tractable set of 15,527 

expressed An. funestus contigs, 5,434 of which could be identified as 1:1 orthologues 

with the more distantly related species An. gambiae.  We also identified contigs 

expressed in An. funestus that showed homology with unannotated regions of the An. 

gambiae genome, providing empirical evidence that these may be bona fide genes with 

orthologues that are currently unannotated in the An. gambiae genome.  We identified 

almost 367,000 genome-wide polymorphisms segregating in our recently established An. 

funestus colony, and showed that, as expected, most of the An. funestus transcriptome 

is evolutionary constrained and is likely evolving under purifying selection.  Our results 

highlight by example just some of the many questions that can be addressed using next-

generation sequencing technology to explore the transcriptome of a non-model 

organism.  We also supply essential tools for future genetic study of An. funestus and 

establish a novel de novo transcriptome assembly flow that should be applicable to any 

eukaryote. 

 



 

 194 

ACKNOWLEDGEMENTS 

We thank the entomological team at Centre National de Recherche et de Formation sur 

le Paludisme for their efforts during this study, our colleagues at the Cornell University 

Life Sciences Core Facilities, Cornell Computational Biology Service Unit and Cornell 

Center for Advanced Computing for technical assistance with this work, Daniel Zerbino 

for guidance in developing our approach and Dieter Best for testing the 

AssemblyAssembler on an independent dataset. We also thank members of the Lazzaro 

Lab, Rich Meisel and two anonymous reviewers for helpful comments on earlier versions 

of this manuscript.  

 

 

REFERENCES 

1. WHO/UNICEF World Malaria Report (2009) Geneva: World Health Organization.  

2. Anopheles Genomes Cluster Committee (2008) Genome analysis of vectorial 

capacity in major Anopheles vectors of malaria parasites. VectorBase.org 

3. Hudson HE (2008) Sequencing breakthroughs for genomic ecology and 

evolutionary biology.  Molecular Ecology Resources 8: 3-17. 

4. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for 

transcriptomics. Nat Rev Genet 10: 57–63. 

5. Zerbino DR and Birney E (2008) Velvet: algorithms for de novo 

short read assembly using de Bruijn graphs. Genome Res 18: 

821–829 

6. Maccallum I, Przybylski D, Gnerre S, Burton J, Shlyakhter I, et al. (2009) 

ALLPATHS 2: small genomes assembled accurately and with high continuity 

from short paired reads. Genome Biology 10: R103. 



 

 195 

7. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, et al. (2009) ABySS: a 

parallel assembler for short read sequence data. Genome Res 19:1117-23.  

8. Toth AL, Varala K, Newman TC, Miguez FE, Hutchison SK et al. (2007) Wasp 

gene expression supports an evolutionary link between maternal behavior and 

eusociality. Science 318: 441:444. 

9. Vera JC, Wheat CW, Fescemyer HW, Frilander MJ, Crawford DL, et al. (2008) 

Rapid transcriptome characterization for a nonmodel organism using 454 

pyrosequencing. Molecular Ecology 17: 1636-1647. 

10. Renaut S, Nolte AW, Bernatchez L (2010) Mining transcriptome sequences 

towards identifying adaptive single nucleotide polymorphisms in lake whitefish 

species pairs (Coregonus spp. Salmonidae). Molecular Ecology 19(Suppl. 1): 

115-131. 

11. Collins LJ, Biggs PJ, Voelckel C, Joly S (2008) An approach to transcriptome 

analysis of non-model organisms using short-read sequences. Genome 

Informatics 21: 3-14. 

12. Birzele F, Schaub J, Werner R, Clemens C, Baum P, et al. (2010) Into the 

unknown: expression profiling without genome sequence information in CHO by 

next generation sequencing. Nucleic Acids Res doi:10.1093/nar/gkq116. 

13. Wang X, Luan J, Li J, Bao Y, Zhang C, et al. (2010) De novo characterization of 

a whitefly transcriptome and analysis of its gene expression during development. 

BMC Genomics 11: 400. 

14. Enayati A, Hemingway J (2010) Malaria management: past, present, and future. 

Annu Rev Entomol 55: 569-591. 

15. Cohuet A, Harris C, Robert V, Fontenille D (2010) Evolutionary forces on 

Anopheles: what makes a malaria vector? Trends Parasitol 26: 130-136. 



 

 196 

16. Yassine H, Osta MA (2010) Anopheles gambiae innate immunity. Cellular 

Microbiology 12: 1-9. 

17. Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, et al. (2002) The 

genome sequence of the malaria mosquito Anopheles gambiae. Science 298: 

129-149. 

18. Krzywinski J, Grushko OG, Besansky NJ (2006) Analysis of the complete 

mitochondrial DNA from Anopheles funestus: an improved dipteran mitochondrial 

genome annotation and a temporal dimension of mosquito evolution. Mol 

Phylogenet Evol 39: 417–423.  

19. Sharakhov IV, Serazin AC, Grushko OG, Dana A, Lobo N, et al. (2002) 

Inversions and gene order shuffling in Anopheles gambiae and A. funestus. 

Science 298: 182–185. 

20. Gillies MT, De Meillon B (1968) The Anophelinae of Africa South of the 

Sahara. Johannesburg: South African Institute for Medical Research. 

21. Coetzee M, Fontenille D (2004) Advances in the study of Anopheles funestus, a 

major vector of malaria in Africa. Insect Biochem Mol Biol 34: 599–605. 

22. Calvo E, Dao A, Pham VM, Ribeiro JM (2007) An insight into the sialome of 

Anopheles funestus reveals an emerging pattern in anopheline salivary protein 

families. Insect Biochem Mol Biol 37: 164–175. 

23. Serazin AC, Dana AN, Hillenmeyer ME, Lobo NF, Coulibaly MB, et al. (2009) 

Comparative analysis of the global transcriptome of Anopheles funestus from 

Mali, West Africa. PLoS One. 4:e7976. 

24. Hunt RH, Brooke BD, Pillay C, Koekemoer LL, Coetzee M (2005) Laboratory 

selection for and characteristics of pyrethroid resistance in the malaria vector 

Anopheles funestus. Med and Vet Entom 19: 271-275. 



 

 197 

25. Costantini C, Sagnon NF, Ilboudo-Sanogo E, Coluzzi M, Boccolini D (1999) 

Chromosomal and bionomic heterogeneities suggest incipient speciation in 

Anopheles funestus from Burkina Faso. Parassitologia 41:595-611. 

26. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, et al. (1997) Gapped 

BLAST and PSI-BLAST: a new generation of protein database search programs. 

Nucleic Acids Res 25: 3389–3402. 

27. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the 

sensitivity of progressive multiple sequence alignment through sequence 

weighting, positions-specific gap penalties and weight matrix choice.  Nucleic 

Acids Research 22:4673-4680. 

28. R Development Core Team (2009) R: A language and environment for statistical 

computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-

900051-07-0, URL http://www.R-project.org. 

29. Gaunt MW, Miles MA (2002) An insect molecular clock dates the origin of the 

insects and accords with palaeontological and biogeographic landmarks. Mol. 

Biol. Evol 19: 748–761. 

30. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. (2000) Gene 

ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat 

Genet 25: 25–29. 

31. Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, et al. (2005) Blast2GO: a 

universal tool for annotation, visualization and analysis in functional genomics 

research. Bioinformatics 21: 3674-3676. 

32. Rice P, Longden I, Bleasby A (2000) EMBOSS: The European Molecular Biology 

Open Software Suite.  Trends in Genetics 16: 276-277. 



 

 198 

33. Schultz J, Copley RR, Doerks T, Ponting CP, Bork P (2000) SMART: a 

webbased tool for the study of genetically mobile domains. Nucleic Acids Res 28: 

231–234. 

34. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, et al. (2003) The 

COG database: an updated version includes eukaryotes. BMC Bioinformatics 4: 

41. 

35. Bateman A, Birney E, Durbin R, Eddy SR, Howe KL, et al. (2000) The Pfam 

protein families database. Nucleic Acids Res 28: 263–266. 

36. Marchler-Bauer A, Panchenko AR, Shoemaker BA, Thiessen PA, Geer LY, et al. 

(2002) CDD: a database of conserved domain alignments with links to domain 

three-dimensional structure. Nucleic Acids Res 30: 281–283. 

37. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-

Wheeler transform. Bioinformatics, 25, 1754-60. 

38. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. (2009) The Sequence 

alignment/map (SAM) format and SAMtools. Bioinformatics 25: 2078-2079. 

39. Jiang R, Tavare S, Marjoram P (2009) Population genetic inference from 

resequencing data. Genetics 181: 187-197. 

40. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and 

quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5: 621–628. 

41. Charif D and Lobry JR (2007) Seqin{R} 1.0-2: a contributed package to the R 

project for statistical computing devoted to biological sciences retrieval and 

analysis.  In: Bastolla U, Porto M, Roman HE, Vendruscolo M, editors. Structural 

approaches to sequence evolution: Molecules, networks, populations. Springer 

Verlag, New York.  pp. 207-232. 

42. Surget-Groba Y, Montoya-Burgos J (2010) Optimization of de novo transcriptome 



 

 199 

assembly from next-generation sequencing data. Genome Research 20: 1432-

1440. 

43. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, et al. (2010) Transcript 

assembly and quantification by RNA-seq reveals unannotated transcripts and 

isoform switching during cell differentiation.  Nature Biotechnology 28: 511-515. 

44. David J, Coissac E, Melodelima C, Poupardin R, Riaz MA, et al. (2010) 

Transcriptome response to pollutants and insecticides in the dengue vector 

Aedes aegypti using next-generation sequencing technology. BMC Genomics 11: 

216.  

45. Waterhouse RM, Kriventseva EV, Meister S, Xi Z, Kanwal S, et al. (2007) 

Evolutionary dynamics of immune-related genes and pathways in disease-vector 

mosquitoes. Science 316: 1738-1743. 

46. Riehle MM, Xu J, Lazzaro BP, Rottschaefer SM, Coulibaly B, et al. (2008) 

Anopheles gambiae APL1 is a family of variable LRR proteins required for Rel1-

mediated protection from the malaria parasite, Plasmodium berghei. PLoS One 

3: e3672.  

47. Fraiture M, Baxter RHG, Steinert S, Chelliah Y, Frolet C, et al. (2009) Two 

mosquito LRR proteins function as complement control factors in the TEP1-

mediated killing in Plasmodium.  Cell Host & Microbe 5: 273-284. 

48. Sackton TB, Lazzaro BP, Schlenke TA, Evans JD, Hultmark D, et al. (2007) 

Dynamic evolution of the innate immune system in Drosophila. Nature Genetics 

39: 1461-1468. 

49. Wondji CS, Hemingway J, Ranson H (2007) Identification and analysis of single 

nucleotide polymorphisms (SNPs) in the mosquito Anopheles funestus, malaria 

vector. BMC Genomics 8: 5. 



 

 200 

50. Obbard DJ, Welch JJ, Little TJ (2009) Inferring selection in the Anopheles 

gambiae species complex: an example from immune-related serine protease 

inhibitors. Malaria Journal 8: 117. 

51. Cohuet A, Krishnakumar S, Simard F, Morlais I, Koutsos A, et al. (2008) SNP 

discovery and molecular evolution in Anopheles gambiae, with special emphasis 

on innate immune system. BMC genomics 9: 227. 

52. Drosophila 12 Genomes Consortium (2007) Evolution of genes and genomes on 

the Drosophila phylogeny. Science 450: 203-218. 

53. Grimaldi D, Engel MS (2005) Evolution of the insects. Cambridge: Cambridge 

University Press. 755 p. 

 



 

 201 

FIGURES 

Figure 1:  De novo transcriptome assembly and analysis workflow.  Illumina reads were 

assembled in a series of ʻexploratoryʼ Velvet assemblies, the contig output of which was 

used in a ʻsummaryʼ assembly.  Following iterative assembly with Velvet, contigs were 

clustered and joined when possible, first using conspecific ESTs, then using the 

transcriptome of a closely related species.  A final contig set was generated by selecting 

contigs based on bioinformatic support criteria.  Illumina reads were then mapped to the 

final contig set and resulting alignments were used for expression profiling and 

polymorphism discovery. aSND refers to short nucleotide discrepancies including both 

single nucleotide polymorphisms and indels.  bRPKM, or reads per kilobase per million 

mapped reads [40], was calculated for each contig and used to represent expression 

level.  
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Figure 2:  Size distribution of contigs at three points of the assembly.  Note that the y-

axis is broken between 10,000 and 40,000.  White bars indicate the size distribution of 

contigs generated by the iterative Velvet assembly.  Grey bars indicated the size 

distribution of contigs after ʻtarget-basedʼ clustering to both An. funestus ESTs and An. 

gambiae peptides.  Black bars indicate the size distribution of the final contig set after 

quality filtering and bioinformatic analysis.  The final contig set contains 15,527 contigs 

with an N50 of 1,753 bp.   
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Figure 3:  Homology with Dipteran transcriptomes decreases with increasing phylogentic 

difference.  The number of An. funestus contigs with significant BLAST hits in pairwise 

comparisons to An. gambiae, Ae. aegypti, C. quinquefasciatus and D. melanogaster is 

plotted.  Note that the y-axis only spans 9,000 to 15,000.  The solid line indicates the 

total number of contigs with a significant BLAST hit in each comparison.  The dashed 

line indicates the number of contigs with a significant BLAST hit in all comparisons as 

phylogenetic distance increases.  The phylogenetic tree at the bottom of the panel 

depicts the evolutionary relationships between the Dipteran insects used in pairwise 

BLAST comparisons, with estimated divergence times (in millions of years) at each node 

(adapted from [53]). 
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Figure 4:  Variation in transcript divergence among immune gene functional classes.  

Protein sequence divergence was estimated as the proportion of aligned amino acids 

that differ between 1:1 An. funestus:An. gambiae orthologues.  As a class, immune gene 

orthologous pairs (dotted line indicates mean divergence between immune gene 

orthologues) are significantly more diverged than the transcriptome as a whole (solid line 

indicates mean divergence across the entire transcriptome; p-value = 4.8 × 10-5, Mann-

Whitney U-test).  The functional classes within the immune genes are not significantly 

different from each (p-values > 0.05, pairwise Mann-Whitney U-tests).  
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Figure 5:  PROTEIN DIVERGENCE is unevenly distributed among GO-Slim categories.  

The heatplot shows proportion of 1:1 orthologous pairs exhibiting Low, Intermediate and 

High protein divergence in GO-Slim functional categories.  Protein divergence was 

estimated as the proportion of aligned amino acids that differed between the two 

orthologues and each orthologous pair was categorized as Low, Intermediate or High 

(Materials and Methods).  Only categories whose proportion of each bin differed from 

expectations based on all orthologous pairs with a p value less than the Bonferroni-

adjusted α of 5.26×10-4 are presented.  The average expected proportions based on all 

orthologous pairs are presented at the top of the heatplot.  
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SUPPLEMENTARY MATERIAL 

Table S1: Contig Information Database. Excel spreadsheet containing information about 

each contig as well as all results from BLAST and functional domain database 

comparisons. Each row contains information for a single contig and each column 

contains a result for a specific analysis. NAs are inserted where there was either no 

result or the result did not apply to that contig. From left to right, the columns contain 

descriptive molecular information, BLAST results, functional annotation results and 

diversity and expression results.   

** This table is extremely large (>30MB) and could not be set into this document.  It was 

included in the published version of this work and can be found at the website of PLoS 

One (doi:10.1371/journal.pone.0014202.s001) or at the Lazzaro Laboratory website 

(www.lazzaro.entomology.cornell.edu).  The most pertinent conclusions from its contents 

are described in the text making the details useful only to those readers interested in 

pursuing further analysis with these data.  

 

Table S2: Putative An. funestus immune genes. Excel spreadsheet containing significant 

BLAST matches between An. funestus contigs and An. gambiae immune genes from 

ImmunoDB. BLAST e-values as well as relevant immunity annotations are presented. 

Found at: doi:10.1371/journal.pone.0014202.s002. 

 

Table S3: Protein Divergence GO-Slim Analysis. Excel spreadsheet containing number 

of contigs in each divergence bin and results of X2 analysis for each GO-Slim functional 

category. Found at: doi:10.1371/journal.pone.0014202.s003 (0.04 MB 

XLS) 
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CHAPTER 7: 

RESEARCH SUMMARY 

 

In my thesis, I studied the demographic and selective processes driving the evolution of 

Anopheles gambiae, explored biases and statistical power inherent to next-generation 

sequencing-based population genomics studies, and sequenced the transcriptome of 

Anopheles funestus.  Chapter 2 described the demographic histories of two insipient 

species of A. gambiae, the M and S molecular forms, and explores the implications of 

these findings for studies of natural selection in this system.  Chapters 3 and 4 

presented the results of population genetic studies of natural selection at two structural 

proteins (Chapter 3) and 28 immune-related proteins (Chapter 4), all of which were 

chosen based on potential involvement in parasite development or susceptibility.  

Chapter 5 described a simulation study undertaken to assess the biases and relative 

statistical power inherent to population genomic studies based on next-generation 

sequencing, in preparation for the shift from candidate gene studies to whole-genome re-

sequencing studies.  Chapter 6 presented the results of a de novo assembly of the 

transcriptome of A. funestus using short-read next-generation sequencing data as well 

as a full annotation and bioinformatic analysis.  By studying the population genetics of A. 

gambiae from both the perspective of demography and natural selection and developing 

infrastructure, I have brought into focus the population history and selective landscape of 

this system and developed resources for future studies in Anopheles malaria vectors.   

 Because of their role in vectoring the human malaria parasite Plasmodium 

falciparum, Anopheles mosquitoes are the subject of extensive functional study aimed at 

understanding the physiological and mechanistic interactions between the mosquito and 

the parasite.  Although the results of these studies can sometimes inform our basic 
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understanding of host-pathogen interactions in general, more often these studies aim 

towards the development of disease intervention measures.  One promising and popular 

intervention strategy is to identify mosquito molecules that are involved in the anti-

Plasmodium immune response or in Plasmodium development within the mosquito and 

exploit these mechanisms to enhance the response or block transmission, through the 

development of a Transmission-Blocking Vaccine or genetically modified mosquitoes 

(Gwadz 1976; Carter and Chen 1976; Brennan et al. 2000; Arrighi et al. 2005; Dong et 

al. 2011).  In most cases, candidate genes that show a significant phenotypic shift when 

interrupted or blocked experimentally are identified in laboratory settings, typically using 

genetically inbred mosquito strains (Vernick et al. 2005; Cirimotich et al. 2010) and 

potentially missing natural phenotypic variation stemming from genetic variation 

segregating in the field.  Indeed, natural populations harbor substantial genetic variation 

for parasite susceptibility (Niaré et al. 2002), and natural selection may further 

complicate the landscape by driving frequency shifts of functionally different genetic 

variants.  Under these conditions, an intervention developed using lab strains may not 

be effective when applied to genetically heterogeneous natural populations.  As such, 

understanding the evolutionary history and population genetics of candidate genes is 

essential to maximize the prospects of effective deployments of mosquito-directed 

malaria intervention technologies.  In a population genetic analysis of the salivary gland 

protein saglin and the basil lamina structural protein laminin, both potential candidates 

for intervention mechanisms, I found no evidence for adaptive evolution in A. gambiae, 

and therefore no reason that these loci should not be considered for such development. 

On the contrary, these proteins appear to be under significant purifying selection 

indicating that they are relatively stable from an evolutionary perspective.  This may 
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imply that functional variation at these genes is limited in natural populations, and that 

these proteins could be particularly good candidates for development as vaccine targets.  

 A slightly more complex picture arose when candidate immune-related genes 

were studied in A. gambiae.  It is well established that immune genes are subject to 

rapid evolution in many organisms (Nielsen et al. 2005; Sackton et al. 2007; Waterhouse 

et al. 2007; Obbard et al. 2009), and are therefore particularly important to study from 

the perspective of intervention technology development.  An especially promising set of 

candidate genes came from a series of genetic mapping studies in natural populations 

from both West and East Africa.  These studies pointed to a quantitative trait locus (QTL) 

on the left arm of chromosome 2 in A. gambiae that repeatedly showed significant 

associations with malaria parasite susceptibility (Riehle et al. 2006; Riehle et al. 2007).  

Filtering of the gene set under the QTL based on functional and annotation criteria 

generated a reasonably small set of candidate genes that I studied from a population 

genetic perspective.  I found a stark division of putative selection signals among incipient 

species of A. gambiae.  One interpretation of these data is that the demographic strata 

are exposed to different pathogen repertoires, perhaps at the larval stage, and may be 

adapting to alternate environments.  Specifically, the M molecular form and GOUNDRY 

showed evidence consistent with adaptive selection at a number of immune genes, while 

the S molecular form showed no evidence of molecular adaptation at these loci.  In 

concert with the fact that the M and S molecular forms appear to have different 

demographic histories, with the M form having undergone a more recent population size 

change (Chapter 2), these results point to a complex ecological and genetic landscape 

where populations that are largely sympatric at the macro scale (at least in West Africa) 

are evolving independently and in response to discrete ecological and pathogenic 

pressures at the micro scale.  From the perspective of intervention, this suggests that 
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immune genes may encode a particularly labile set of proteins that could prove difficult to 

target reliably with intervention strategies.      

 The results of these studies are consistent with a developing theme in the 

Anopheles gambiae literature, namely that, while the Plasmodium parasite may have 

adapted to the mosquito host in a species-and-region-specific manor (Billingsley and 

Sinden 1997; Molina-Cruz et al. 2012), there is less evidence for reciprocal adaptation 

on the part mosquito host.  In fact, substantial cross-talk and overlap exists between the 

anti-Plasmodium immune response and the response to other pathogens (Meister et al. 

2005; Dong et al. 2006; Meister et al. 2009; Dong, Manfredini, and Dimopoulos 2009), 

suggesting that a single gene or set of genes specifically adapted to target the human 

malaria parasite may not exist. Rather, a class of immune factors that are somewhat 

broad spectrum is employed to fight both a Plasmodium infection as well as infections by 

other pathogens, but it is currently unclear where the divisions lie within the immune 

system and within the repertoire of pathogens (Mitri and Vernick 2012).  The fact that 

such stark population-specific selection signals exist among different strata of Anopheles 

suggests that the divisions within the immune system may be evolving differentially 

between strata in response to population-specific host-pathogen conflicts.  Thus far, A. 

gambaie has been the primary focus, but it will be fascinating to explore these divisions 

and specificities within other vector and non-vector species.  For example, experimental 

infections of Anopheles quadriannulatus, a zoophilic member of the Anopheles gambiae 

species complex, revealed a remarkably effective anti-Plasmodium response largely 

based on melanization and involving many of the proteins identified in Anopheles 

gambiae, implying the existence of an ancestral mechanism effective at combating 

Plasmodium that predates the split of these mosquito species (Habtewold et al. 2008).  

Anopheles quadriannulatus is phylogenetically proximal to A. gambiae, so it will be even 
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more insightful to study the immune response of a phylogenetically distant vector 

species, such as A. funestus, where substantial genetic differences have accumulated 

over a time period much longer than the much shorter and more recent time of exposure 

to human malaria parasites.    

 The field of Anopheles population genetics, and perhaps non-model systems at 

large, has been hampered by both a bottleneck in data collection as well as limitations in 

the development of tools and infrastructure appropriate for this system.  For example, a 

reliable, accurate and sufficiently fine scale genetic map is not available for A. gambiae 

or other vector species, although a coarse scale map has been generated for A. 

gambiae (Zheng et al. 1996).  This is in part due to the fact that coarse data suggests 

that recombination rates are 10-fold higher (~ 1 - 1.5 cM Mb-1) in A. gambiae (Zheng et 

al. 1996; Pombi et al. 2006) than in humans (~ 0.1 cM Mb-1; McVean et al. 2004), so 

extremely dense marker datasets are required to capture fine-scale changes in 

recombination rates.  Although the sequencing of the A. gambiae genome in 2002 (Holt 

et al. 2002) has undoubtedly accelerated research in many research areas in that 

species, large-scale genomic technologies such as fine-scale SNP arrays have only 

recently been developed (Neafsey et al. 2010) precluding the large scale population 

studies needed to fully discover internal sub-structure within A. gambiae, instead 

resulting in a trickle of data slowly revealing the complex genetic landscape in this 

system (e.g. Slotman et al. 2007; Caputo et al. 2011).  As an example, a coding-

sequence-based microarray approach revealed several small regions of extreme genetic 

differentiation between the M and S molecular forms of A. gambiae (Turner, Hahn, and 

Nuzhdin 2005), leading to the conclusion that these regions represented ʻgenomic 

islands of speciationʼ surrounded by regions of no differentiation.  However, subsequent 

analysis with greater resolution revealed that, while extreme regions exist, genetic 
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differentiation between these insipient species was widespread across the genome 

(Lawniczak et al. 2010; Neafsey et al. 2010).  Moreover, long held sampling practices 

based on the assumption of indoor adult resting behavior of A. gambiae have lead to 

population ascertainment biases, as revealed by recent work involving more exhaustive 

sampling practices that lead to the discovery of the locally abundant and genetically 

diverged insipient species GOUNDRY in Burkina Faso (Riehle et al. 2011).   This finding 

coupled with the fact that large swaths of the geographic range of many vector species 

have not been sampled, implies that additional complexity may exist in the field that we 

have not yet discovered and are not accounting for.   

 Recent technological advances in DNA sequencing resulting in the ability to 

obtain massive amounts of data at very low costs are sure to flip the paradigm such that 

data acquisition is no longer the limiting step, but instead data analysis and mosquito 

sampling will become limiting.  Aside from the dramatic cost and labor reduction that 

come with next-generation sequencing technologies, they also provide the ability to 

conduct unbiased genome-wide analyses of allele frequencies and patterns of genetic 

variation that will allow the circumvention of the candidate gene ascertainment step that 

is biased by definition.  In a recent first step towards truly genomic analysis in this 

system, Cheng et al. (2012) collected polymorphism data using Illumina next-generation 

sequencing technology from pools of A. gambiae that differ in their karyotype of the large 

2La chromosomal inversion known to be adaptive in some populations and were able to 

characterize differentiation among alternative karyotype chromosomes at single base 

resolution.  However, next-generation sequencing data are complicated by relatively high 

sequencing and genotype calling error rates are not without their limitations.  Their full 

benefit will only be realized once the statistical and analytical tools capable of accounting 

for the substantial uncertainty inherent to these data are available.   
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The complications of next-generation sequencing technologies prohibit 

straightforward, turn-key application of the technology at present, and care must be 

taken to avoid introducing biases into downstream analyses that could lead to biased or 

misleading results.  In Chapter 5, I presented the results of a simulation study aimed at 

quantifying these biases and determining shifts in statistical power when population 

genetic tests are applied to data with varying depth of read coverage without 

incorporating data-related uncertainty into the analyses.  To explore parameters 

expected for studies in ecological systems where budgets are likely to be limited, I 

focused on relatively low read depth (4x – 15x) and a small sample size (n=30).  

Through comparisons between results based on inferred data and complete data, I 

found that significant biases are introduced when using low read depths to study 

demography or measure genetic differentiation, highlighting the necessity of deep 

sequence read depths for some experimental goals.  On the other hand, strong positive 

selection was easily identified using 4x read depth.  As the sequencing technology error 

rates and analytical tools improve, some of these biases may be mitigated, but my 

analysis underlines the need for caution when proceeding with whole-genome re-

sequencing studies in the short term.  The state of the technology will undoubtedly 

improve, however, and I expect large amounts of data to flood the Anopheles system, 

but I am only cautiously optimistic that this flip in the paradigm will result in dramatic and 

quick leaps in our understanding of this system.    

 Another limitation that has mired the study of Anopheles malaria vectors besides 

A. gambiae is the unevenness of the phylogeny of this genus, with the approximately 

seven species within the Anopheles gambiae species complex representing very young 

and closely related species, and most known species outside of the complex being so 
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genetically diverged that few genetic resources can be shared between the resource-rich 

A. gambiae and species outside the complex (Krzywinski and Besansky 2003).  This has 

been particularly complicating for the study of other primary vectors such as A. funestus.  

A. funestus and A. gambiae shared a common ancestor between 30 and 80 million 

years ago (Krzywinski, Grushko, and Besansky 2006) and DNA sequences cannot be 

aligned at the nucleotide level, precluding many experiments and analyses that require 

at least some genetic information.  Adding to this complication, progress in studying A. 

funestus has been slow to accumulate, probably due to a bias of resource allocation 

toward the study of A. gambiae as well as difficulties in rearing A. funestus in the colony.  

A recent breakthrough has partially alleviated the second limitation in that researchers in 

Burkina Faso have managed to grow A. funestus in the lab, providing the third of three 

colonies in the world and the opportunity to conduct functional experiments in this 

species.  Towards this goal, I traveled to Burkina Faso to conduct blood-feeding and 

Plasmodium-infection experiments using this new colony in order to identify genes that 

are transcriptionally regulated following ingestion of an infected blood-meal.  The 

Plasmodium-infections failed due to unknown reasons, but I obtained cDNA from this 

colony, sequenced the messenger RNA using Illumina short-read technology, 

assembled the short-reads by developing a novel assembly approach, and obtained 

over 15,000 putative transcripts.  From these transcripts, I identified a large number of 

immune genes and found these to be evolving more rapidly than the transcriptome on 

average.  I also identified over 300,000 putative segregating sites that can be developed 

into markers for future genetic mapping studies in this system.  This effort dramatically 

increased the genetic resources and bioinformatic data available for this system.  The A. 

funestus genome is to eventually be sequenced as part of a genome cluster sequencing 

project originally funded in 2008 (Besansky and Anopheles Genomes Cluster Commitee 



 

 216 

2008), and my transcriptome data provide a substantial genetic foothold into annotation 

of that genome, provide genomic resources in the A. funestus system in the short term, 

and generally help establish the platform for future studies of this severely understudied 

primary vector of malaria.  

 In summary, my thesis addressed the relative roles of demography and natural 

selection in shaping patterns of genetic variation across the genome of A. gambiae, 

particularly at Plasmodium-related genes, and developed infrastructure for future studies 

of Anopheles vectors.  It represents the most exhaustive demographic analysis and 

deepest re-sequencing analysis of immune genes in A. gambiae to date, and makes by 

far the largest contribution of DNA sequencing data and analysis in A. funestus.  Future 

studies following up on the putative signals of natural selection at the candidate genes 

studied here and the transcriptome data in A. funestus will further our understanding of 

demographic and selective forces shaping evolution in this system and will inform efforts 

to develop mosquito-based intervention technologies.   

 



 

 217 

REFERENCES 

Arrighi, Romanico B G, Gareth Lycett, Vassiliki Mahairaki, Inga Siden-Kiamos, and 
Christos Louis. 2005. “Laminin and the Malaria Parasiteʼs Journey Through the 
Mosquito Midgut.” The Journal of Experimental Biology 208 (Pt 13) (July): 2497–
2502. doi:10.1242/jeb.01664. 

Besansky, Nora, and Anopheles Genomes Cluster Commitee. 2008. “Genome Analysis 
of Vectorial Capacity in Major Anopheles Vectors of Malaria Parasites.” 

Billingsley, P.F., and R.E. Sinden. 1997. “Determinants of Malaria-mosquito Specificity.” 
Parasitology Today 13 (8) (August): 297–301. doi:10.1016/S0169-
4758(97)01094-6. 

Brennan, J D, M Kent, R Dhar, H Fujioka, and N Kumar. 2000. “Anopheles Gambiae 
Salivary Gland Proteins as Putative Targets for Blocking Transmission of Malaria 
Parasites.” Proceedings of the National Academy of Sciences of the United 
States of America 97 (25) (December 5): 13859–13864. 
doi:10.1073/pnas.250472597. 

Caputo, Beniamino, Federica Santolamazza, José L Vicente, Davis C Nwakanma, Musa 
Jawara, Katinka Palsson, Thomas Jaenson, et al. 2011. “The ʻFar-westʼ of 
Anopheles Gambiae Molecular Forms.” PloS One 6 (2): e16415. 
doi:10.1371/journal.pone.0016415. 

Carter, Richard, and David H. Chen. 1976. “Malaria Transmission Blocked by 
Immunisation with Gametes of the Malaria Parasite.” , Published Online: 02 
September 1976; | Doi:10.1038/263057a0 263 (5572) (September 2): 57–60. 
doi:10.1038/263057a0. 

Cheng, Changde, Bradley J White, Colince Kamdem, Keithanne Mockaitis, Carlo 
Costantini, Matthew W Hahn, and Nora J Besansky. 2012. “Ecological Genomics 
of Anopheles Gambiae Along a Latitudinal Cline: A Population-Resequencing 
Approach.” Genetics 190 (4) (April 1): 1417–1432. 
doi:10.1534/genetics.111.137794. 

Cirimotich, Chris M, Yuemei Dong, Lindsey S Garver, Shuzhen Sim, and George 
Dimopoulos. 2010. “Mosquito Immune Defenses Against Plasmodium Infection.” 
Developmental and Comparative Immunology 34 (4) (April): 387–395. 
doi:10.1016/j.dci.2009.12.005. 

Dong, Yuemei, Ruth Aguilar, Zhiyong Xi, Emma Warr, Emmanuel Mongin, and George 
Dimopoulos. 2006. “Anopheles Gambiae Immune Responses to Human and 
Rodent Plasmodium Parasite Species.” PLoS Pathog 2 (6) (June 9): e52. 
doi:10.1371/journal.ppat.0020052. 

Dong, Yuemei, Suchismita Das, Chris Cirimotich, Jayme A Souza-Neto, Kyle J McLean, 
and George Dimopoulos. 2011. “Engineered Anopheles Immunity to Plasmodium 
Infection.” PLoS Pathogens 7 (12) (December): e1002458. 
doi:10.1371/journal.ppat.1002458. 

Dong, Yuemei, Fabio Manfredini, and George Dimopoulos. 2009. “Implication of the 
Mosquito Midgut Microbiota in the Defense Against Malaria Parasites.” PLoS 
Pathogens 5 (5) (May): e1000423. doi:10.1371/journal.ppat.1000423. 

Gwadz, R. W. 1976. “Successful Immunization Against the Sexual Stages of 
Plasmodium Gallinaceum.” Science 193 (4258) (September 17): 1150–1151. 
doi:10.1126/science.959832. 

Habtewold, Tibebu, Michael Povelones, Andrew M Blagborough, and George K 
Christophides. 2008. “Transmission Blocking Immunity in the Malaria Non-vector 



 

 218 

Mosquito Anopheles Quadriannulatus Species A.” PLoS Pathogens 4 (5) (May): 
e1000070. doi:10.1371/journal.ppat.1000070. 

Holt, Robert A, G Mani Subramanian, Aaron Halpern, Granger G Sutton, Rosane 
Charlab, Deborah R Nusskern, Patrick Wincker, et al. 2002. “The Genome 
Sequence of the Malaria Mosquito Anopheles Gambiae.” Science (New York, 
N.Y.) 298 (5591) (October 4): 129–149. doi:10.1126/science.1076181. 

Krzywinski, Jaroslaw, and Nora J Besansky. 2003. “Molecular Systematics of 
Anopheles: From Subgenera to Subpopulations.” Annual Review of Entomology 
48: 111–139. doi:10.1146/annurev.ento.48.091801.112647. 

Krzywinski, Jaroslaw, Olga G Grushko, and Nora J Besansky. 2006. “Analysis of the 
Complete Mitochondrial DNA from Anopheles Funestus: An Improved Dipteran 
Mitochondrial Genome Annotation and a Temporal Dimension of Mosquito 
Evolution.” Molecular Phylogenetics and Evolution 39 (2) (May): 417–423. 
doi:10.1016/j.ympev.2006.01.006. 

Lawniczak, M K N, S J Emrich, A K Holloway, A P Regier, M Olson, B White, S 
Redmond, et al. 2010. “Widespread Divergence Between Incipient Anopheles 
Gambiae Species Revealed by Whole Genome Sequences.” Science (New York, 
N.Y.) 330 (6003) (October 22): 512–514. doi:10.1126/science.1195755. 

McVean, Gilean A T, Simon R Myers, Sarah Hunt, Panos Deloukas, David R Bentley, 
and Peter Donnelly. 2004. “The Fine-scale Structure of Recombination Rate 
Variation in the Human Genome.” Science (New York, N.Y.) 304 (5670) (April 
23): 581–584. doi:10.1126/science.1092500. 

Meister, Stephan, Bogos Agianian, Fanny Turlure, Angela Relógio, Isabelle Morlais, 
Fotis C Kafatos, and George K Christophides. 2009. “Anopheles Gambiae 
PGRPLC-mediated Defense Against Bacteria Modulates Infections with Malaria 
Parasites.” PLoS Pathogens 5 (8) (August): e1000542. 
doi:10.1371/journal.ppat.1000542. 

Meister, Stephan, Stefan M Kanzok, Xue-Li Zheng, Coralia Luna, Tong-Ruei Li, Ngo T 
Hoa, John Randall Clayton, et al. 2005. “Immune Signaling Pathways Regulating 
Bacterial and Malaria Parasite Infection of the Mosquito Anopheles Gambiae.” 
Proceedings of the National Academy of Sciences of the United States of 
America 102 (32) (August 9): 11420–11425. doi:10.1073/pnas.0504950102. 

Mitri, Christian, and Kenneth D Vernick. 2012. “Anopheles Gambiae Pathogen 
Susceptibility: The Intersection of Genetics, Immunity and Ecology.” Current 
Opinion in Microbiology (April 24). doi:10.1016/j.mib.2012.04.001. 
http://www.ncbi.nlm.nih.gov/pubmed/22538050. 

Molina-Cruz, Alvaro, Randall J Dejong, Corrie Ortega, Ashley Haile, Ekua Abban, 
Janneth Rodrigues, Giovanna Jaramillo-Gutierrez, and Carolina Barillas-Mury. 
2012. “Some Strains of Plasmodium Falciparum, a Human Malaria Parasite, 
Evade the Complement-like System of Anopheles Gambiae Mosquitoes.” 
Proceedings of the National Academy of Sciences of the United States of 
America (May 23). doi:10.1073/pnas.1121183109. 
http://www.ncbi.nlm.nih.gov/pubmed/22623529. 

Neafsey, D E, M K N Lawniczak, D J Park, S N Redmond, M B Coulibaly, S F Traoré, N 
Sagnon, et al. 2010. “SNP Genotyping Defines Complex Gene-flow Boundaries 
Among African Malaria Vector Mosquitoes.” Science (New York, N.Y.) 330 (6003) 
(October 22): 514–517. doi:10.1126/science.1193036. 

Niaré, Oumou, Kyriacos Markianos, Jennifer Volz, Frederick Oduol, Abdoulaye Touré, 
Magaran Bagayoko, Djibril Sangaré, et al. 2002. “Genetic Loci Affecting 



 

 219 

Resistance to Human Malaria Parasites in a West African Mosquito Vector 
Population.” Science (New York, N.Y.) 298 (5591) (October 4): 213–216. 
doi:10.1126/science.1073420. 

Nielsen, Rasmus, Carlos Bustamante, Andrew G Clark, Stephen Glanowski, Timothy B 
Sackton, Melissa J Hubisz, Adi Fledel-Alon, et al. 2005. “A Scan for Positively 
Selected Genes in the Genomes of Humans and Chimpanzees.” PLoS Biol 3 (6) 
(May 3): e170. doi:10.1371/journal.pbio.0030170. 

Obbard, Darren J, John J Welch, Kang-Wook Kim, and Francis M Jiggins. 2009. 
“Quantifying Adaptive Evolution in the Drosophila Immune System.” PLoS 
Genetics 5 (10) (October): e1000698. doi:10.1371/journal.pgen.1000698. 

Pombi, Marco, Aram D Stump, Alessandra Della Torre, and Nora J Besansky. 2006. 
“Variation in Recombination Rate Across the X Chromosome of Anopheles 
Gambiae.” The American Journal of Tropical Medicine and Hygiene 75 (5) 
(November): 901–903. 

Riehle, Michelle M, Wamdaogo M Guelbeogo, Awa Gneme, Karin Eiglmeier, Inge Holm, 
Emmanuel Bischoff, Thierry Garnier, et al. 2011. “A Cryptic Subgroup of 
Anopheles Gambiae Is Highly Susceptible to Human Malaria Parasites.” Science 
(New York, N.Y.) 331 (6017) (February 4): 596–598. 
doi:10.1126/science.1196759. 

Riehle, Michelle M, Kyriacos Markianos, Louis Lambrechts, Ai Xia, Igor Sharakhov, 
Jacob C Koella, and Kenneth D Vernick. 2007. “A Major Genetic Locus 
Controlling Natural Plasmodium Falciparum Infection Is Shared by East and West 
African Anopheles Gambiae.” Malaria Journal 6: 87. doi:10.1186/1475-2875-6-
87. 

Riehle, Michelle M, Kyriacos Markianos, Oumou Niaré, Jiannong Xu, Jun Li, Abdoulaye 
M Touré, Belco Podiougou, et al. 2006. “Natural Malaria Infection in Anopheles 
Gambiae Is Regulated by a Single Genomic Control Region.” Science (New York, 
N.Y.) 312 (5773) (April 28): 577–579. doi:10.1126/science.1124153. 

Sackton, Timothy B, Brian P Lazzaro, Todd A Schlenke, Jay D Evans, Dan Hultmark, 
and Andrew G Clark. 2007. “Dynamic Evolution of the Innate Immune System in 
Drosophila.” Nature Genetics 39 (12) (December): 1461–1468. 
doi:10.1038/ng.2007.60. 

Slotman, M A, F Tripet, A J Cornel, C R Meneses, Y Lee, L J Reimer, T C Thiemann, et 
al. 2007. “Evidence for Subdivision Within the M Molecular Form of Anopheles 
Gambiae.” Molecular Ecology 16 (3) (February): 639–649. doi:10.1111/j.1365-
294X.2006.03172.x. 

Turner, Thomas L, Matthew W Hahn, and Sergey V Nuzhdin. 2005. “Genomic Islands of 
Speciation in Anopheles Gambiae.” PLoS Biology 3 (9) (September): e285. 
doi:10.1371/journal.pbio.0030285. 

Vernick, K D, F Oduol, B P Lazzaro, J Glazebrook, J Xu, M Riehle, and J Li. 2005. 
“Molecular Genetics of Mosquito Resistance to Malaria Parasites.” Current 
Topics in Microbiology and Immunology 295: 383–415. 

Waterhouse, Robert M, Evgenia V Kriventseva, Stephan Meister, Zhiyong Xi, Kanwal S 
Alvarez, Lyric C Bartholomay, Carolina Barillas-Mury, et al. 2007. “Evolutionary 
Dynamics of Immune-related Genes and Pathways in Disease-vector 
Mosquitoes.” Science (New York, N.Y.) 316 (5832) (June 22): 1738–1743. 
doi:10.1126/science.1139862. 



 

 220 

Zheng, L, M Q Benedict, A J Cornel, F H Collins, and F C Kafatos. 1996. “An Integrated 
Genetic Map of the African Human Malaria Vector Mosquito, Anopheles 
Gambiae.” Genetics 143 (2) (June): 941–952. 

 

 


