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Abstract

We show that Todd’s low-complexity algorithm for linear programming takes affine-scaling steps
when and only when the current point is nearly centered, and, after such a step, requires at most
three more iterations before taking another affine-scaling step. The main tool is-Roos and Vial’s

measure of centrality.
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1 Introduction

Interior-point methods for linear programming can be roughly divided into affine-scaling methods
(e.g. Dikin [5], Barnes [3]) projective methods based on Karmarkar [8], path-following methods
(e.g. Roos and Vial [10]) and potential reduction methods (e.g. Ye [13]). The path-following
methods try to stay close to the so-called central path or central trajectory in either primal, dual,
or primal-dual space, while potential reduction methods attempt only to guarantee a suitable
reduction in a primal or primal-dual potential function.

Todd’s “low-complexity algorithm” [11] at each iteration takes a step in either the affine-
scaling direction of Dikin [5] or the constant-cost centering direction, with a very simple rule to
determine which to take. The step length is fixed in the scaled space, i.e., when the current point
is scaled so that each component is one. This fixed step length is characteristic of affine-scaling
and projective methods, at least in their basic form. The low complexity algorithm requires only
O(4y/n't) iteration to attain precision ¢ for a problem in standard form with n variables, and thus
attains the current best theoretical complexity bound. The complexity analysis uses the primal-
dual potential function.

In this paper we show that, after an initial centering phase, the low-complexity algorithm is a
predictor-corrector path-following method. Affine-scaling steps are taken only when the current
point is approximately centered. After such a step, at most three constant-cost centering steps are
required before the new iterate is approximately centered and another affine-scaling step is taken.

Section 2 provides the tools to relate algorithms taking fixed step lengths in the scaled space to
path-following methods. First, we show that if a primal feasible point is nearly centered according
to the Roos-Vial measure of centrality [10] then such a step will yield a point that is also approxi-
mately centered (in a precisely quantified sense). This result seems to be of independent interest,
and may relate to recent work showing that slight variants of Karmarkar’s projective method (8]
can be viewed as path-following methods (Xiao and Goldfarb [12], Anstreicher [2], Goffin and Vial
[7]). We also give a complementary result for a primal-dual framework. Next, we relate the Roos-
Vial measure of centrality to the quantity in Todd’s algorithm that determines which kind of step
to take. Finally, we adapt the Roos-Vial quadratic convergence result [10] on centering steps to
account for partial projected Newton steps (the resulting convergence is, as expected, only linear).

Section 3 applies these results to the low-complexity algorithm and proves the main result. This
suggests a number of variations to the algorithm which are discussed. The section concludes by
mentioning results of very limited computational testing which indicates that far fewer centering
steps seem to be required in practice (at most one every ten iterations). Finally, section 4 considers

whether this new view of the algorithm can provide alternative proofs of the convergence results



of [11].

2 Preliminary Results
We consider the linear programming problem in standard form :

min ¢’z

(P) Az =b

where A is m x n, and b, ¢ and = are suitably dimensioned, and write its dual as

max by
(D) ATy+s=c
s> 0.

We assume that A has full rank m and that both (P) and (D) have feasible solutions with
strictly positive z and s respectively. This implies that both have optimal solutions with bounded
sets of optimal solutions. In this case, for any g > 0, there is a unique optimal solution to the

barrier problem.
. (clz
mm{—-—l;— -—Zlnx,- Az =0b,z> 0}.
J

If we write this solution as z(x), then it, together with some y(p), s(p), is the unique solution to

Az = b, z>0
ATy+s = ¢ (1)
XSe = pe,

where X and S are the diagonal matrices containing the components of z and s and e denotes the
vector of ones in IR™. The set of all z(u) is called the central path or central trajectory.
Clearly s(p) > 0 so that (y(u),s(#)) is feasible in (D), and (1) is sufficient for (y(p), s(u)) to

be the unique optimal solution to the barrier problem:

max{é%g—(»zj:lnsj ATy +s=c, s>0}.



If the feasible solution set for (P) is bounded, then the primal barrier problem above also has
a unique optimal solution for p < 0, and this is also given by a solution to (1), except that now
s(u) is strictly negative.

Henceforth we suppose we are given some z that is strictly feasible in (P), i.e., Az = b and
£ > 0. We can then seek a pair (y,s) that satisfies (1) as nearly as possible. Roos and Vial [10]
define

6(z,u):=nyl,i;1{uzii—~e“:ATy-{—s:c} 2)

as a measure of proximity of z to z(u).

Let v € (0, 1) be fixed, and suppose AXd =0, |dl] = 1. Let
zt =z +yXd. (3)
We see that z+ is the result of a step of fixed length in the scaled space, since
[X-2* )] = Il = 7.

Our first result shows that such a step cannot degrade the measure of proximity to z(x) by too

much.

Proposition 1 Suppose z is strictly feasible in (P) with §(z, ) < A. Then zt given by (3) is
also strictly feasible in (P) with

§(z* ) <A+v(1+4) (4)

Proof: Clearly Azt = Az = b, since AXd = 0, and X~'z* = e+ vd > 0, since l|d]| = 1 and
0 < v < 1. S0 z% is strictly feasible.
Now let y and s achieve the minimum in (2). Then §(z™, p) < H%ti — || and the maximum

component of -}% — e is at most A in absolute value, so that ”%iu <1+ A. Hence

e =[50
R
s I
< A+9(1+4).
as required. 0



To complement this result we prove a result for a primal-dual framework. Let s be strictly
feasible in (D), i.e., ATy + s = ¢ for some y and s > 0. We now define our measure of proximity
to (z(u), s(i)) as

ro(z ) 1= | 22 =] 5)

Let 75,7 € (0,1) be fixed, and suppose ||dz|| = ld,|| = 1 with AXd, = 0 and d; in the range
space of S~1AT. Let

zt =z 4. Xdg,
(6)
st = s+7,5d;.

Then we have

Proposition 2 Suppose z and s are strictly feasible in (P) and (D) respectively and §pp (, s, 1) <
A. Then o+ and st given by (6) are also strictly feasible in (P) and (D) respectively and

5PD(I+95+7 /“) < A4 (7:: + s + 7x7s)(1 -+ A)-

Proof: The first part follows easily from the definitions of zt and s*. Also,

+g+
6PD(x+53+’U) = nX al e — C"
"
XS XS XS XS
= H_"’e —e+ Yo d:L‘ + Vs “_"ds + YzVs Dxds
K B H 7
< A+ (1 + A)(')’x + s + T2 Vs ”Da:”)
< A+(1+A) 1+ +727s)s (M
where D, = diag (d;) and “-X“—S-“ < 1+ A as before. o
Similar results hold for
T
' = zs
5o (@,5) 1= 8pp (2,5, =2), ®)
(since 8pp (2, 8) = 775 iEfHXs — pel|, we find then
S (c+, 5+) < A+(7x+75+7x73)(1+A)> )

1 - Y= +Ys (144 — "/;r:'YtSl““A!
n n

or if (6) is replaced by

(10)



but we omit the details. The measure épp(,s) arises in many primal-dual path-following algo-
rithms, and (10) is appropriate when symmetric primal-dual scaling is needed.

Next we relate &(z, 1) to an important parameter in the low-complexity algorithm [11]. For
any vector u € IR", let u, denote its projection into the null space of AX. Let ¢ = Xe, so that —¢&,

is the search direction in the affine-scaling method of Dikin [5].

Let
dg := =3¢y +¢p
and
o := argmin {||dg|| : B € R}. (11)
We also let
s 1= argmin (|dsll : B € By}, (12)

i.e., where 3 is now restricted to be nonnegative.

Proposition 3

a) |ldoll= inf 6(z,u) (13)
pelR
B ldayll= it b n) (14)

The infimum in case (a) (case (b)) is attained iff « (ay) is nonzero, and then the minimizing [t

(1) is given by 1/ (1/ay), and if s (s2) aitains the corresponding minimum in (2), then

= X
d, = ——+e (15)
o
. Xs2
oy = - te). (16)
> >
Proof: For any fixed u we can decompose —)‘;—“ — e into its component in the null space of AX and

its component in the range space of XAT:

The constraint that ATy + s = ¢ (or XATy+ Xs = Xc) for some y can be written as (Xs)p = &-

Xs e“ over such s’s, we choose s so that Xs — (Xs), = p(ep —€), and then

N

Thus to minimize !

Xs _ %

2 e=L e, =—dyy,- 17
7 " P 1/p (17)



The proposition then follows immediately — note that we need to take the infimum over u since

u corresponds to 1/ and a (or ) might be zero. a

The proof of the proposition shows that, if s achieves the minimum in (2) for any p, then
-—-X-uf- + € lies in the null space of AX — see (17).
Now let

zt :x—%—?X(—%-{—e). (18)

If ¥ = 1, then this is the step considered by Roos and Vial [10], which coincides with the projected
Newton step for the primal barrier problem considered above (Gill et al. [6]). Roos and Vial have

shown ([10, Theorem 2.1]) that, if ¥ = 1,
6(z*, u) < 6(z, ). (19)
In order to treat also the low-complexity algorithm, we now consider the case where
_ Xs
7=/|-=2 +e|, (20)
. p
where v € (0, 1) is fixed, so that 2t is the result of a step of fixed length in the scaled space.
Proposition 4 Let zt be given by (18), where ¥ satisfies (20) and 0 < v < 6(z,p1) < 1. Then
§(zt, ) < (1 +7)8(z, 1) = - (21)

Proof: Let us denote é(z, i) by A. Then

|5
“‘-X;‘i —e +~73%9-(—%f +e)n
15 =ll-371

IA

6(zt, 1)

il

IA

Now, for each j,
v Y TjS; Y
1—4+(1+A)<1 - =L+ <1 - =—(1-A).
Ta+aysi- 28 <1-Z0-4)
Since % < 1, the term 1—%—%’—1 isat most 1 — X(1 - A)in absolute value, so that

§(e*,p) < (1 - -Z-(l - A))A =(1+7)A -7

Note that if ¥ = &(z, u) then (21) yields (19).



Usually, propositions 1 and 4 would be enough to analyze the low-complexity algorithm. How-
ever, it may happen at some iteration that & in (11) is zero so that the infimum in (13) is not

attained and (15) does not hold. In order to cover all possible cases we wish to analyze the step
=z +5Xd, (22)
where
7= 7/|ldell (23)
and v € (0,1) is fixed.

Proposition 5 Let z* be given by (22), where ¥ satisfies (23) and 0 < v < l|dal] < 1. Then, if

dt, denotes the do calculated at zt, we have
2l < (1 +7)lidell - (24)

Proof: If a # 0, we can choose 4 = 1/a and then s attaining the minimum in (2) so that (15)

holds. Then z* is also given by (18), so that by proposition 4 we have
I EE ]l < 8z, 1) S (L4716, 1) =7 = (1+7)lldall =7

as desired.
Suppose now & = 0. Then for any 0 < € < 1—||da|| we can choose 4 so that 6(z, p) < ||dal|+€ <
1 and for 8 = 1/p and

we have ||€agl|| < €. Then

il < 6G=*m)

Xts
c JEed
Xs XSd
= —e+y
= 'Xf——e*i"f‘)f—(m éaﬂ)l
s Al L

The first term is at most (1-+7)(||dal|+€)—7 by proposition 4 and the second at most y(1+]||dal|+e€)e
using || X S/p|l < 1+ 8(z, ) + € as before. Since ¢ can be arbitrarily small, the result follows. O



3 Application to Todd’s Low-Complexity Algorithm

We now show how the results in section 2 demonstrate that, after an initial centering phase, Todd’s
algorithm is a path-following method.

First we describe the algorithm. Given a strictly feasible z compute ¢, and e, and hence da
(see the parégraph containing(11)). If ||ds|| is at least a threshold A, set d = da/|ldo]]; else set
d = —¢,/||ep||- The first case is called a constant-cost centering step, while the second is an affine-
scaling step. Then define z+ by (3), so that in the scaled space a step of fixed length 7 is taken
in the direction d. Todd [11] chooses A = .3 and 7 = .2, but it is easy to check that his analysis
requires only trivial changes if A = .25 instead. An affine-scaling step is only taken if l|del] is
sufficiently small; by proposition 3 this means that z is close to some central point z(u) according
to the Roos-Vial measure.

Our main result is:

Theorem 1 Each affine-scaling step in Todd’s low-complezity algorithm is followed by at most
three constani-cost centering steps before another affine-scaling step is taken, for A = .3 or .25

and v = .2.

Proof: We first assume A = .25 and v = .2. Suppose an affine-scaling step is taken at z, so that
|dall < .25. By proposition 3 there is a  so that 6(z, ) < .25. Let the result of the step be z7T.
Then z+ is given by (3) for d = —¢/||&||- Proposition 1 then implies that

§(zt, pu) < .25+ .2(1+.25) = .5.

Let dt denote d, computed at z*+ (and similaﬂy dt+ denote d, computed at ¥, etc.); note
that the corresponding o’s are all different, but our notation ignores this for typographic ease.
Then (13) shows that ||df|| is at most .5. If ld|| is less than .25, then another affine-scaling step
is taken immediately, and there is nothing to prove. Otherwise, certainly ||d%]| > .25 > 7. Then
the step is of the form (22), with ¥ given by (23), and proposition 5 implies that the resulting

iterate, £+, satisfies
i+l < 5(1+.2)—.2= 4.
Again, either an affine-scaling step is taken at £+ or the next iterate zT++ satisfies
ldE++]] < 4(1+.2) —.2 = .28.

Finally, either an affine-scaling step is taken at z+++ or at the next iterate z¥+++, since in the

latter case ||dF+F+|| < .28(1+ .2) — .2 < .25. This concludes the proof for A = 25, IfA=.3



the proof only differs in the bounds: we have dEll < .56, ||dEH]] < .48, |ld&**|| < .38 and

|+ < .26 < .3 o

The theorem suggests several variations of the basic low-complexity algorithm. (Note that Todd
[11] discusses several variations, most of which involve some form of line search, which immediately
precludes close path-following behaviour.)

First, Roos-Vial’s quadratic convergence result [10] (see (19)) implies that, when taking constant-
cost centering steps, a full projected Newton step (7 = 1in (18)) is generally preferable to a partial
one (7 < 1). Indeed, the proof above shows that, if A = .25 is chosen as the threshold, at most
one such centering step is necessary after each affine-scaling step, since (.5)? = 25. (If A = .3, at
most two such steps are necessary.) The next result shows that these steps do not invalidate the

complexity analysis in [11].

Theorem 2 If the basic algorithm is modified so that full projected Newton steps are taken when-
ever ||dy|| lies between .25 and .9 (and the threshold is set at A = .25), then it still only requires
O(y/nt) iterations to attain precision t given a suitable initial point z9. Moreover at most one

such step is required after each affine-scaling step before another affine-scaling step is taken.

Proof: We only need to prove the first part. The complexity analysis in [11] is based on showing
that the potential function

‘Pn«}-\/;{(za s):=(n+ vn)ln zTs — Zln z; - Zlnsj
J J

decreases by a constant (at least .02) at each iteration.

In the initial centering phase of the algorithm (until |ldall drops below .25), the quadratic
convergence result shows that there are at most four steps where the full projected Newton step is
taken. Each of these can only increase the potential function by a constant, using lemma 2 of [11].
Thereafter, every modified step is immediately preceded and followed by an affine-scaling step, at
which ¢, is decreased by at least .02. Hence it suffices to show that these modified steps do
not increase the potential.

But in a modified step, we have chosen v equal to § := ||dq||. Then lemma 2 of [11] shows that
the potential function decrease is at least 6% — §2/2(1 — 6). But, after the initial centering phase,

§ is at most .5 so that the decrease is nonnegative. a

Next, we prove that longer steps, with v = .4, can be taken if ||dq|| is very small, and this is

easy to obtain with quadratic convergence. Hence we can modify the algorithm as follows :



o if |da|| > .9, take a constant-cost centering step with ¥ = .4 (partial projected Newton step);
o if ||da]| € [.0625,.9), take a full projected Newton step (constant cost centering step);
o if ||d,|| < .0625, take an affine-scaling step with v = .4.

After the inital centering phase, each affine-scaling step will be followed by at most two full pro-
jected Newton steps before another affine-scaling, step, since after such a step, lldall < .0625 +
.4(1 4+ .0625) < .5 by proposition 1 and ((.5)2)2 = .0625. Moreover, these full projected New-
ton steps will not increase the potential function, by the argument in the proof above, while the

argument in [11] shows that the affine-scaling steps decreases it by at least

44/(4)? — (0.625)2 — (.4)%/2(1 — .4) > .02.

Finally, we know that path-following algorithms usually only consider positive values of u.
Here, however, ¢ may be negative. Since « corresponds to 1/u, this seems unatural. Indeed, it
is possible to replace dy by Jaz in the basic algorithm of [11] and in all the variants considered
above without sacrificing anything. Instead of d5¢, = 0, we have d%_cp <0, so that the centering
direction taken is a direction of nonincreasing cost. Since Ja?_ makes a non-obtuse angle with any
ds, B > 0, the argument in [11] still shows that a constant decrease in the potential function can
be achieved. And the proofs of proposition 5 and theorem 1 carry over with obvious changes; for
instance, ||dq || < .25 shows that there is a positive p with 8(z, p) < .25.

We have done some computational testing of the basic algorithm in [11] as well the variants
described above, using MATLAB 3.5¢ [9]. The problems, of sizes 50 X 100 up to 300 x 600, were
randomly generated as described in [11]. The testing has been extremely limited, because these
short-step algorithms require several hundred steps to converge; we have run at most two problems
of each size. Nevertheless, in these runs, after the inital centering phase the algorithms using
threshold .25 or .3 never require further centering steps, while those with threshold .0625 require
at most one centering step every ten iterations, with none needed after the first one hundred
iterations.

Our analysis does not anticipate this behaviour. Since our proposition 1 holds for steps of fixed
length in the scaled space in any direction, while the affine-scaling step is in fact close to being
parallel to the central trajectory, it is not surprising that fewer centering steps are required than
indicated by the theory. However, there seems to be in addition some automatic self-centering,
rather than the slow drift away from centrality that we would expect, and we do not yet understand

this.

10



4 Convergence Rate

From the results of section 3 we can view the basic low-complexity algorithm as a predictor-
corrector path-following method. The question then arises as to whether we can recover the
convergence results of [11] using tools familiar in path-following methods. That is, can we show
directly that each affine-scaling (predictor) step decreases the primal gap (from the current primal
objective value to the optimal value), the duality gap, or the barrier parameter p, by a factor
(1 — constant//n)? We have not been able to do so; the analysis in [11] using the primal-dual
function appears to be the only way to show that O(y/nt) iterations suffice to attain precision t,
i.e., a primal gap no more than 2~*. In this section we give the results we have been able to obtain.

First, we note that Dikin [5] for v = 1 and Barnes [3] for v < 1 showed that the affine-scaling
method with fixed step length 7 in the scaled space had an asymptotic convergence rate for the
primal gap that is linear, with convergence ratio 1 — v/y/m — m, in the nondegenerate case. The

same result holds here. If z¥+1 is the result of an affine-scaling step from z* we have
cT(a*+ - 2F) = 1|l | (25)

and

Tk — Tz (Xo)T(X~1zF - X~ 12%)

c(e—X"1z*)

< liglllle = X127, (26)

where X = diag(z*). Since z¥ — z*, and z* has n — m zero and m positive components, the last

norm converges to /n — m, so

Tt Te gl x -
Tk — Tz~ Tk — T — Vn—m+er’

where ¢, — 0. In the low-complexity algorithm, we expect that this inequality is in fact close
to tight, since z* is close to the central path and we would expect that the direction towards the
optimal solution in the scaled space, X~1z* —e, is close to the affine-scaling direction in this space,
—&p. Indeed, from results in Adler and Monteiro [1], it is easy to see that for z* on the central
path, these directions converge as z¥ — z*.

A similar result holds for the duality gap with respect to s, where s attains the minimum in

(2) for 4 = 1/, and we assume & > 0. We have

s
m

Proposition 6 Suppose 1 Xs e“ = HJGH <A<l Then

(zF+1)T's 51 v+ A

(z¥)Ts = YNV (28)

11



Proof: From (25) we have

(&*0Ts leall _ ., Gl

(«*)Ts — (z5)Ts ~ a(zk)Ts’

(29)

Now [l lies in [llepll — A, llepll + A}, since
ll—acp, +epll = llaXs —el| < A,

and a(2*)Ts = T (aXs) liesin [n — Ay, n+ A\/ﬁ] for the same reason. Since ||| < llell = v/n,

the result follows. a

As long as |lep|| > 1 > A, (29) implies

(zFt)Ts < 1-A
(z¥)Ts — TRt AR

so that we might expect at least convergence with ratio (1 — constant/n). In fact, we can prove

this for the primal gap, using the following extension of theorem 2.1 of Barnes, Chopra and Jensen
[4]:
Proposition 7 Suppose ||do|| = llagy + €| <A <5 and a > 0. Then

T .k+1 _ CTLC*
crT TeT 1L (30)
cTgk — cTp* 4n

Proof: From (25) and (26), we only need to show that e — X—1z*| < 4n. Now let
N = ! -1
s::-&X (e——ep—i-acp)?_—&(l-—A)X e>0

and note that (X3), = ¢, so § is a feasible dual slack. It follows that the duality gap between z*

and § is no greater than that between z* and 5, so that

1 1
&-(1 —A)Tx 1z <5z < Tz = a—eT(e —ep + aCp)

< Zn+ava).

Since X—lz* > 0, this shows that | X~1z*|| < ﬂi’f—;@- < 3n; since |le]| = v/n < n, this gives the

desired inequality. o

Unfortunately, (30), together with theorem 1, if we assume we start with a point z% that gives
|lda]l < .5 and that all o’s are positive, only yields a bound of O(nt) iterations to attain precision

t, as in the results of Barnes, Chopra and Jensen [4].

12
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