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This dissertation consists of three articles. The first introduces a new modeling 

framework to help understand and manage primary insurers’ roles in catastrophe risk 

management. The framework includes a new game theoretic optimization model of primary 

insurer decisions that interacts with a utility-based homeowner decision model, and is integrated 

with a regional catastrophe loss estimation model. Reinsurer and government roles are 

represented as bounds on the insurer-insured interactions. The modeling framework can be used 

to explore two primary questions. First, how should insurers, using a credible assessment of 

natural disaster risk, optimize their catastrophe risk insurance-policy design, portfolio, and risk-

transfer decisions within a context defined by homeowners, reinsurers, and government 

agencies? Second, how do changes in the context affect insurers’ ability to operate successfully? 

Specifically, it provides results that indicate, under equilibrium, the (1) primary insurers’ optimal 

actions and outcomes, (2) homeowners’ optimal actions and outcomes, (3) reinsurers’ outcomes, 

and (4) loss distribution for each stakeholder.  

The second article, using survey data, explores the roles of prior disaster experience and 

risk perception on flood insurance purchase decision-making. The survey was administered by a 

computer-assisted telephone interviewing system in the eastern half of North Carolina. A 

structural equation model was built to understand the direct and indirect effects of different 

variables on one another and on flood insurance purchase decision-making. The article provides 



 

insight on the mediation effect of risk perception, by linking prior disaster experience to the 

undertaking of protective action. It also discusses the implications of this insight for designing 

effective risk communication tools, the timing of risk awareness campaigns, and the provision of 

affordable insurance policies.  

The third article, using the same survey data from the eastern half of North Carolina, 

investigates the relationship between self-insurance and market insurance. An ordered logistic 

model was developed by using revealed preferences about structural retrofit measures and 

standard homeowners’ insurance deductible choices. The article shows that self-insurance and 

market insurance are substitutes and discusses the implications of this finding in terms of setting 

appropriate standard homeowners’ premium and deductible values. 
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CHAPTER 1 

 

MODELING INSURER-HOMEOWNER INTERACTIONS IN MANAGING NATURAL 

DISASTER RISK 

 

ABSTRACT 

The current system for managing natural disaster risk in the United States is problematic 

for both homeowners and insurers. Homeowners are often uninsured or underinsured against 

natural disaster losses, and typically do not invest in retrofits that can reduce losses. Insurers 

often do not want to insure against these losses, which are some of their biggest exposures and 

can cause an undesirably high chance of insolvency. There is a need to design an improved 

system that acknowledges the different perspectives of the stakeholders. In this paper, we 

introduce a new modeling framework to help understand and manage the insurer’s role in 

catastrophe risk management. The framework includes a new game theoretic optimization model 

of insurer decisions that interacts with a utility-based homeowner decision model, and is 

integrated with a regional catastrophe loss estimation model. Reinsurer and government roles are 

represented as bounds on the insurer-insured interactions. We demonstrate the model for a full-

scale case study for hurricane risk to residential buildings in eastern North Carolina; present the 

results from the perspectives of all stakeholders—primary insurers, homeowners (insured and 

uninsured), and reinsurers; and examine the effect of key parameters on the results.  

1.1. INTRODUCTION 

Insurance plays a crucial role in managing regional catastrophe risk, both by spreading 

large losses associated with catastrophic events, and by providing incentives to encourage risk 

reduction efforts. Nevertheless, problems persist in catastrophe insurance markets. Property 
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owners tend not to buy insurance; nor do they invest in pre-event mitigation activities that can 

reduce losses (Kreisel and Landry 2004, Dixon et al. 2006, Kunreuther 2006). As a result, they 

frequently do not have sufficient financial resources to recover and may require relief from the 

government (Kunreuther and Pauly 2004).
 
Major disasters thus are followed by large, unplanned 

government expenditures that create major difficulties for local and state government budgets 

(Kunreuther and Pauly 2004). The current system is problematic for insurers as well, with natural 

disasters being some of their biggest exposures (U.S. GAO 2007).
 
As a result, insurers have 

limited their policy-writing in at-risk regions (U.S. GAO 2007). In the worst case, disaster events 

can cause insolvency, as happened, for example, to eight small Florida insurance companies after 

Hurricane Andrew (Grier 1996). 

In this paper, we introduce a new modeling framework to help better understand and 

manage the insurer’s role in catastrophe risk management. The framework includes a new game 

theoretic optimization model of insurer decisions that interacts with a utility-based homeowner 

decision model, and is integrated with a regional catastrophe loss estimation model. Reinsurer 

and government roles are introduced as exogenous constraints on the insurer-insured 

interactions. We demonstrate application of the model to a full-scale case study for hurricane risk 

to residential buildings in eastern North Carolina, and examine the results from the perspectives 

of all stakeholders—primary insurer, reinsurer, and homeowners (insured and uninsured). The 

modeling framework can be used to examine two main questions:  

 How should insurers optimize their catastrophe risk insurance policy design, portfolio, 

and risk transfer decisions within a realistic context defined by homeowners, reinsurers, 

and government agencies, using an assessment of actual natural disaster risk? 
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 How do changes in that context affect insurers’ ability to operate successfully and 

sustainably? 

The study is novel in integrating game theoretic optimization with a catastrophe loss 

model that provides a credible, disaggregated representation of the risk to be managed, including 

spatial correlation and variability among properties. Compared to previous work, including the 

loss model provides more accurate representation of the insured and uninsured loss distributions 

under different homeowner insurance purchasing decisions, allows the opportunity to design an 

insurance portfolio that combines an appropriate combination of properties, and enables future 

integration within the same framework of the possibility that homeowners could retrofit their 

buildings instead of or in addition to purchasing insurance. By allowing examination of the 

resulting distribution of losses from all perspectives, the framework can provide insights useful 

for public policy as well as the insurance industry. 

Following a literature review in Section 1.2, the modeling framework is introduced in 

Section 1.3. The case study application is presented in Section 1.4, including base case results 

and sensitivity analyses.  

1.2. BACKGROUND 

Seminal work on the economic theory of insurance, including Borch (1962), Arrow 

(1963),
 
and Mossin (1968),

 
provides a theoretical foundation for the strategic behavior of 

insurers that has been further enriched by extensions (Miller 1972, Raviv 1979, Cummins and 

Mahul 2003, Gollier 2000, Louberge 2000).
 
Kelly and Kleffner (2003)

 
examine the interaction 

between the premiums an insurer sets and an individual’s decisions to purchase market insurance 

and/or undertake mitigation. Kousky and Cook (2012) examine the premiums a solvency-

constrained insurer would have to charge given a loss distribution with fat tails, micro-
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correlations, or tail dependence. They find that, faced with those premiums, it may be rational for 

a utility-maximizing homeowner not to purchase insurance. 

The theoretical research is based on stylized models of catastrophe risk that assume a 

smooth aggregated total loss distribution or a distribution of a binary (loss/no loss) variable. 

While this is adequate for addressing many questions, an engineering model can provide a more 

accurate and detailed representation of the risk. Importantly, it can also capture the great 

variability among individual property loss distributions, which is necessary to optimize design of 

a portfolio of insured properties. Use of an explicit loss model also allows joint optimization of 

insurance purchasing and retrofit decisions since the effect of the latter on the distribution of 

insured loss can influence both optimal insurer and homeowner behavior. Despite these benefits, 

loss models have rarely been integrated into the economic catastrophe risk literature. Kleindorfer 

and Kunreuther (1999)
 
and Kunreuther and Michel-Kerjan (2009) have used loss model results 

from engineering modeling firms to investigate the impact of mitigation on insurer losses and 

insolvency probabilities, and on how losses are distributed among stakeholders. In this paper, we 

integrate that type of loss model results with an insurer decision optimization model. Grossi and 

Kunreuther (2005) offer a useful summary of how catastrophe modeling can be integrated with 

insurance management. Hayek and Ghanem (2005) and Hayek (2005) create an insurance 

portfolio optimization model that takes input from a catastrophe model, including disaggregation 

of insured properties by location and building type. They focus on the role of the primary insurer 

and demonstrate the model for a relatively small example (6 locations, 10 structural types, and 

34 earthquake scenarios).   

Finally, researchers at the International Institute for Applied Systems Analysis (IIASA) 

have developed and applied a spatial-dynamic stochastic optimization model to generate 
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insurance strategies (Amendola et al. 2013, Ermoliev et al. 2000, Amendola, Ermolieve, and 

Ermolieva 2000, Amendola et al. 2000, Ermolieva et al. 2003). Specifically, in Ermolieva and 

Ermoliev (2013),
 
the geographic area is divided into cells with random catastrophic events 

simulated over time, and loss estimated for each cell and event. The stochastic optimization 

model solves for a set of decision variables, such as premium and coverage for each cell, and 

amount to transfer to reinsurers. It is solved using methods of adaptive Monte Carlo 

optimization. The IIASA models are similar to what we present, but the specifics differ. In 

particular, we represent the interaction between homeowners and insurers including rules as to 

what homeowners are willing to pay as well and what policies insurers are willing to offer, 

describe the hazard with a complete yet efficient set of thirty-year scenarios of hurricane 

occurrence; and use different solution methods.  

1.3. MODELING FRAMEWORK 

1.3.1. Scope and Main Assumption 

Building inventory. The framework addresses single-family residential buildings only. 

The inventory of residential buildings is divided into groups, where each is defined by its 

geographic area unit or location i (e.g., census tract), building category m, resistance level c, and 

risk region 𝑣. Building categories m are defined based on architectural features and are assumed 

to perform similarly and have similar value (e.g., one-story home with a garage and hip roof). A 

building’s resistance level c represents its vulnerability and is a function of structural details that 

define the probability of damage given wind speed and flood depth. Risk regions 𝑣 are larger 

geographic areas comprised of many area units i. They are defined to allow insurer premiums 

and homeowner risk attitudes to vary geographically, but at greater aggregation than area units. 

The initial building inventory is defined using 𝑋𝑖𝑚𝑐𝑣, the number of buildings of type 𝑖, 𝑚, 𝑐, 𝑣. 
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We assume the building inventory is constant with time. Commercial or other buildings could be 

considered with some modifications. 

Time. The durations of the time steps t vary (a few days to a few weeks). They are 

defined to be short enough so that we can reasonably assume no two hurricanes occur in the 

same time period, and so that the probability a hurricane occurs in one time period is equal 

across time periods. Since hurricane occurrence varies during the year, this means the time 

periods are shorter, for example, in September when hurricanes are more likely than in June 

when they are less likely. Since hurricanes are highly unlikely mid-December to mid-May, we 

omit those months from the year.  

Hazard. The model considers hurricane-related claims only (although it could be 

extended to other hazards), and includes coverage for both hurricane-related wind and storm 

surge flooding. Note that while hurricane-related wind and flood damage are currently insured 

separately in the United States—wind usually (though not always) as part of regular 

homeowner’s policies and flood through the National Flood Insurance Program, in this analysis 

we consider both to assess how they might be managed together, as proposed, for example in 

U.S. GAO (2008). The framework is flexible enough however, that one could run it with only 

wind or only flood coverage as well.  

The hurricane hazard is represented by an efficient set of probabilistic hurricane scenarios 

ℎ ∈ (1, … , 𝐻), defined as tracks with along-track parameters that determine the intensity, 

including central pressure deficit and radius to maximum winds. Each hurricane scenario has an 

associated hazard-adjusted annual occurrence probability P
h
 such that when probabilistically 

combined, the set of hurricane scenarios represents the regional hazard (Apivatanagul et al. 

2011). For each hurricane, wind speeds and surge depths are estimated throughout the study area; 
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in a sense, each hurricane scenario represents all hurricanes that would produce similar wind 

speeds and surge depths in the study area. An efficient set of hurricanes h like this can be 

developed using the optimization-based probabilistic scenario (OPS) method (Apivatanagul et al. 

2011)
 
or possibly the joint probability method-optimal sampling

 
(JPS-OS) (Toro et al. 2010)  or 

other methods (Han and Davidson 2012)
 
aimed at efficient scenario-based representation of 

probabilistic hazard for regional analysis. The occurrence probability for period t is calculated 

from the annual occurrence probability using the historical relative frequency of events over the 

course of the hurricane season (Peng 2013). 

A series of hurricanes in quick succession can create very different outcomes for an 

insurer than the same hurricanes evenly spread over time. We therefore define a long-term (say, 

thirty-year) timeline of hurricanes as a scenario 𝑠 ∈ (1, … , 𝑆). (To avoid confusion, we refer to a 

single hurricane scenario as simply a hurricane h.) Each scenario s is a 1 × 𝑇 vector, where 𝑇 is 

total number of time periods, and for each time period 𝑡, either one of the possible hurricanes h 

occurs, or no hurricane occurs. For ease of notation, we refer to the case of no hurricane as 

ℎ = 𝐻 + 1. Each scenario has an occurrence probability 𝑃𝑠, such that ∑ 𝑃𝑠
𝑠 = 1. The complete 

set of scenarios (on the order of hundreds or a few thousand) is defined so that it has the same 

key characteristics as the full set of (𝐻 + 1)𝑇 scenarios that is theoretically possible. In 

particular, the following should be approximately true: relative frequency of hurricanes ℎ ∈

(1, … , 𝐻) in S scenarios is the same as defined by the P
h
; number of hurricanes per year is 

Poisson-distributed with the parameter determined from the historical record; interarrival times 

of the hurricanes are exponentially distributed with the same parameter determined from the 

historical record; and distribution of total loss from the set of S scenarios is approximately 

normally distributed with mean and standard deviation as determined analytically (Peng 2013).
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Development of these long-term hazard scenarios s is critical to representing the probabilistic 

hazard fully so as to capture the uncertainty that defines the natural disaster risk challenge, yet 

efficiently so that it can be included in the larger framework. This hazard modeling method is an 

important strength of the analysis. 

Stakeholders. The collection of homeowners in the study area are disaggregated based 

on their homes’ location i, building category m, building resistance level c, and risk region 𝑣. 

Since homeowners differ based on their 𝑖, 𝑚, 𝑐, 𝑣 type (and therefore risk), and their risk attitude, 

the model does not assume they will all make the same decisions but instead captures the 

heterogeneous behavior of homeowners. We assume one primary insurer and one layer of 

catastrophe risk excess of loss reinsurance. While catastrophe risk excess of loss reinsurance is 

often combined with per risk excess of loss or quota share, for residential properties at the 

industry level, catastrophe reinsurance is the primary mechanism for transferring risk. The 

government may set constraints on the insurer and/or homeowners. We do not consider the 

government as an insurer or reinsurer, although in real life it sometimes plays that role. Capital 

markets are not considered. 

1.3.2. Overall Modeling Framework 

The interacting models aim to optimize insurer pricing and risk transfer decisions subject 

to a realistic representation of risk and homeowner, reinsurer, government behaviors. The 

framework includes three models and represents four main players (Fig. 1-1). The loss model is a 

simulation that combines hazard, inventory, and damage modules to compute a probability 

distribution of losses for each group of buildings (defined by location i, building category m, 

resistance level c, and risk region 𝑣) and each possible hurricane h in the study area. It is similar 

to regional loss estimation models, such as, HAZUS-MH 2.1 (FEMA 2012) or the Florida Public 
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Hurricane Loss Model (FPHLM 2005). The primary insurer and homeowners play a Stackelberg 

leader-follower game (Von Stackelberg 1934)
 
in which the insurer (leader) determines what 

premiums to charge for policies at a specified deductible, and what reinsurance to purchase, and 

each homeowner (follower, defined by 𝑖, 𝑚, 𝑐, 𝑣) responds by deciding whether or not to 

purchase insurance. Specifically, the primary insurer model is a two-stage stochastic 

optimization in which the objective is to maximize profit, avoid insolvency, maintain sufficient 

yearly profitability (to preserve a high stock value, financial rating, and consumer confidence), 

and maintain sufficient capacity. Each homeowner’s decision-making is modeled as a utility 

maximization. The reinsurer offers reinsurance at a specified price, and the government may set 

constraints on the insurer and/or homeowners, such as, establishing a maximum allowable 

capacity ratio. 

 

Figure 1-1. Structure of interacting models 

 

In the event of a hurricane h, the loss to insured buildings is divided among the 

homeowners, primary insurer, and reinsurer as in Figure 1-2. The variables A, M, and  are the 

attachment point, maximum limit, and co-participation percentage of the reinsurance treaty, 

respectively. In the event of a hurricane h, the homeowners pay the first portion of the loss up to 

the deductible D; the reinsurer pays % of any loss above the attachment point A and up to a 
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maximum limit % of (M-A); and the primary insurer pays the remaining loss. The loss to 

uninsured buildings is paid by the owners of those houses, although the government has an 

interest in reducing the uninsured loss as well.  

 

Figure 1-2. Loss structure showing how loss to insured buildings is divided among stakeholders 

 

The models produce many outputs describing the recommended primary insurer and 

homeowner actions, and a probabilistic characterization of the resulting outcomes for the 

primary insurer, homeowners, and reinsurer, as well as how the total hurricane losses are divided 

among the players. 

1.3.3. Primary Insurer Model Formulation 

Loss definitions. The loss to a building in location 𝑖 of category  𝑚 and resistance level 𝑐 

in hurricane h is calculated as:  

𝐿𝑖𝑚𝑐
ℎ = ∑ 𝑅𝑚𝑐

𝛿 𝑎𝑖𝑚𝑐
𝛿ℎ

𝛿              ∀𝑖, 𝑚, 𝑐, ℎ                                           (1-1) 

where 𝑎𝑖𝑚𝑐
𝛿ℎ  is the probability a building of type 𝑖, 𝑚, 𝑐 will experience damage state 𝛿 in 

hurricane ℎ and 𝑅𝑚𝑐
𝛿  is the cost per building to reconstruct building of category m to its original 

building resistance 𝑐 after it has been damaged to damage state 𝛿. Note that combining wind 

speed and flood depth maps for each hurricane h with a damage model that computes damage as 
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a function of wind speed and flood depth results in 𝑎𝑖𝑚𝑐
𝛿ℎ , which is damage indexed by hurricane 

h and location i. Let 𝑋𝑖𝑚𝑐𝑣 be the number of buildings of type 𝑖, 𝑚, 𝑐, 𝑣 and 𝑤𝑖𝑚𝑐𝑣 be binary 

decision variables output from the homeowner model (Section 1.3.4) that equal one if a 

homeowner of type 𝑖, 𝑚, 𝑐, 𝑣 buy insurance and zero otherwise. Summing over all buildings, we 

get 𝐿ℎ, the total loss to insured buildings in hurricane h: 

𝐿ℎ = ∑ 𝐿𝑖𝑚𝑐
ℎ 𝑋𝑖𝑚𝑐𝑣𝑤𝑖𝑚𝑐𝑣             ∀ℎ𝑖𝑚𝑐𝑣                                        (1-2) 

For simplicity, we assume damaged buildings are repaired to their pre-damage condition 

before another hurricane occurs, which implies that the model overestimates losses from 

hurricanes that affect the same properties during the same hurricane season. In practice, this error 

is likely to be modest because it is rare for multiple hurricanes to damage the same properties in 

the same season.   

Deductibles that homeowners pay. When a hurricane h occurs, the actual expenses 

𝐵𝑖𝑚𝑐
ℎ  that an insured homeowner of type 𝑖, 𝑚, 𝑐 pays is the minimum between the loss he 

experiences and the specified per-building deductible d, defined in absolute dollars:  

𝐵𝑖𝑚𝑐
ℎ = min {𝐿𝑖𝑚𝑐

ℎ , 𝑑}             ∀𝑖, 𝑚, 𝑐, ℎ                                       (1-3) 

While we consider only one deductible, it is straightforward to extend this formulation to include 

multiple deductibles. Summing over all buildings, the total amount homeowners pay in 

deductibles in hurricane h is: 

𝐵ℎ = ∑ 𝐵𝑖𝑚𝑐
ℎ 𝑋𝑖𝑚𝑐𝑣𝑤𝑖𝑚𝑐𝑣𝑖𝑚𝑐𝑣              ∀ℎ                                   (1-4) 

Premium collected from homeowners. We assume the homeowner premiums are risk-

based, i.e., they vary by building type 𝑖, 𝑚, 𝑐, 𝑣. Specifically, the premium 𝑝𝑖𝑚𝑐𝑣 collected for a 

building in location i, of category m, resistance level c, and risk region 𝑣 is the expected value of 

the loss to an insured building of type 𝑖, 𝑚, 𝑐, 𝑣 less the deductible, multiplied by one plus the 
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loading factor 𝜏, an assumed input constant, plus the loading factor 𝜆𝑣, a decision variable (Eq. 

1-5). The loading factors 𝜏 and 𝜆𝑣 represent the primary insurer’s administrative cost and profit 

margin, respectively.  

𝑝𝑖𝑚𝑐𝑣 = (1 + 𝜏 + 𝜆𝑣) ∑ 𝑃ℎ
ℎ (𝐿𝑖𝑚𝑐

ℎ − 𝐵𝑖𝑚𝑐
ℎ )   ∀ 𝑖, 𝑚, 𝑐, 𝑣                             (1-5) 

If the model recommends a premium so high that no homeowners will purchase insurance, that 

in effect, represents the insurer’s decision not to offer insurance to buildings of that type. 

Summing over all buildings of type 𝑖, 𝑚, 𝑐, 𝑣, the total annual premium homeowners pay is: 

𝑝 = ∑ 𝑝𝑖𝑚𝑐𝑣𝑖𝑚𝑐𝑣 𝑋𝑖𝑚𝑐𝑣𝑤𝑖𝑚𝑐𝑣                                                 (1-6) 

Loss that catastrophe reinsurer pays. The primary insurer must decide how much risk 

to transfer to the reinsurer, specifically, the attachment point A and maximum limit M it would 

like to set. We define 𝑞ℎ to be the loss above A and below M for hurricane ℎ (Eq. 1-7). If the loss 

exceeds the attachment point A, then 𝛽𝑞ℎ is recovered from the reinsurer and the primary insurer 

pays (1 − 𝛽)𝑞ℎ, where 𝛽 is a specified input constant.  

𝑞ℎ = min{max{𝐿ℎ − 𝐴, 0} , 𝑀 − 𝐴}     ∀ℎ                                              (1-7) 

For a given scenario s and time t, which hurricane h (or no hurricane) happens is known, so we 

can define 𝑒𝑠𝑦, the loss between attachment A and limit M for scenario s and year y in Equation 

1-8, where 𝛾𝑠𝑡ℎ is a binary indicator variable that is one if hurricane h happens in scenario s at 

time t and zero otherwise. Since at most one hurricane can happen in a time period t, ∑ 𝛾𝑠𝑡ℎ
ℎ ≤

1   ∀𝑠, 𝑡. The set 𝜔(𝑦) defines the set of time periods t in year y. 

𝑒𝑠𝑦 = ∑ ∑ 𝛾𝑠𝑡ℎ𝑞ℎ
ℎ𝑡∈𝜔(𝑦)      ∀𝑠, 𝑦                                                      (1-8) 

Reinsurance premium. In each year y, the primary insurer pays the reinsurer a base 

premium b, and in the event of a hurricane h, it also pays a reinstatement premium to reinstate 

the limit M. The base premium is computed as the expected loss the reinsurer is responsible for 
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multiplied by one plus a loading factor 𝜑, plus the standard deviation 𝜎 of the net reinsurer loss 

multiplied by 𝛽 and a user-specified constant 𝑔 (Eq. 1-9) (Kunreuther and Michel-Kerjan 2009). 

𝑏 = (1 + 𝜑)[∑ 𝑃ℎ
ℎ 𝛽𝑞ℎ] + 𝑔𝛽𝜎                                                 (1-9) 

The loading factor 𝜑 represents the reinsurer’s share of the loss adjustment expenses, its own 

expenses, and its profit, and 𝑔 represents the reinsurer’s risk aversion. The 𝜎 is the standard 

deviation over all scenarios s and years y of the reinsurer’s loss, 𝑒𝑠𝑦, less the reinstatement 

premium for scenario s and year y. The reinstatement premium is a pro rata amount of the 

expected reinsurer loss without adjusting for the length of the treaty’s remaining term. That is, it 

equals the expected loss multiplied by the percentage of the original coverage that was used 

(𝑒𝑠𝑦/(𝑀 − 𝐴)). The total reinsurance premium for scenario 𝑠 in year y, therefore, is the sum of 

the base reinsurance premium and the reinstatement payment: 

𝑟𝑠𝑦 = 𝑏 + (
𝑒𝑠𝑦

𝑀−𝐴
) [∑ 𝑃ℎ

ℎ 𝛽𝑞ℎ]     ∀ 𝑠, 𝑦                                        (1-10) 

Primary insurer’s profit and accumulated surplus. Equation 1-11 defines the insurer’s 

net profit, 𝐹𝑠𝑦, in scenario 𝑠 and year y. The terms are, in turn, the total homeowner premiums 

collected, loss adjustment expenses portion of the premiums collected, total actual loss, actual 

deductibles recovered from the homeowners, actual loss recovered from the reinsurer, and 

reinsurance premium.  

𝐹𝑠𝑦  = 𝑝 − 𝜏[∑ 𝑃ℎ
ℎ (𝐿ℎ − 𝐵ℎ)] − ∑ 𝛾𝑠𝑡ℎ𝐿ℎ +  ∑ 𝛾𝑠𝑡ℎ𝐵ℎ

𝑡∈𝜔(𝑦),ℎ + 𝛽𝑒𝑠𝑦 −  𝑟𝑠𝑦   ∀ 𝑠, 𝑦𝑡∈𝜔(𝑦),ℎ      (1-11) 

In reality, the funds available to the insurer at any time would be the policyholder surplus, which 

is defined as the insurer’s admitted assets minus its liabilities, i.e., its net worth. In this model, 

we treat the profit accumulated in previous periods as the policyholder surplus, and thus we 

ignore the effect of investments and other lines of business. We assume the company starts its 

business at time 𝑦 = 0 with a surplus equal to k times the annual premiums received, where k is 
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a user-specified constant (Eq. 1-12). We further assume the primary insurer reallocates surplus 

greater than this amount in each year y by reinvesting in other lines of business or distributing it 

to investors as dividends. The surplus in scenario s and year y then is the minimum of the sum of 

the profit in y and the surplus in 𝑦 − 1, and the maximum allowable surplus 𝑘𝑝 (Eq. 1-13).  

𝐶𝑠0 = 𝑘𝑝,    ∀𝑠                      (1-12) 

𝐶𝑠𝑦 = 𝑚𝑖𝑛 (𝐶𝑠,𝑦−1 + 𝐹𝑠𝑦, 𝑘𝑝)    ∀𝑠, 𝑦                                          (1-13) 

If the accumulated surplus 𝐶𝑠𝑦 in year y equals zero or less, we assume that the insurer becomes 

insolvent, and the profit 𝐹𝑠𝑦 and surplus 𝐶𝑠𝑦 are set to zero for the remaining years (𝑦 + 1, … , 𝑌) 

of the scenario s.  

Insolvency. An important constraint on insurer decisions is that the probability of 

insolvency may not be larger than a user-specified constant 𝛼, where 𝜙𝑠 is a binary indicator 

variable that is one if the insurer becomes insolvent at any time in scenario s and zero otherwise.  

1

𝑆
∑ 𝜙𝑠

𝑠 ≤ 𝛼                       (1-14) 

Capacity ratio. Another primary insurer objective is to maintain a sufficiently low 

capacity ratio. The capacity ratio (also known as leverage ratio) typically represents the insurer’s 

capacity to write business and is defined as the net written premiums divided by the policyholder 

surplus (Eq. 1-15). State insurance regulators often require it to be less than three (Harrison 

2004). We represent this objective as a constraint that the capacity ratio should not exceed a 

user-specified constant 𝜂 for any scenario s and year y. 

𝑝−𝜏[∑ 𝑃ℎ
ℎ (𝐿ℎ−𝐵ℎ)]−𝑟𝑠𝑦

𝐶𝑠𝑦
≤  𝜂   ∀𝑠, 𝑦                                                 (1-15) 

Return on equity. Investors seek a high and stable return on equity (ROE), a measure of 

how efficiently capital is used. We represent this idea as a constraint that the average annual 

ROE for the years Z that the insurer is solvent is at least a user-specified constant 𝜁, where 
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annual ROE is defined as the profit divided by the average surplus over the last two years (Eq. 1-

16).  

1

𝑆𝑍
∑

𝐹𝑠𝑦

0.5(𝐶𝑠,𝑦−1+𝐶𝑠𝑦)
 𝑠,𝑦∈𝑍 ≥  𝜁                                                (1-16) 

Objective function. The objective function is to maximize the total profit over the full 

time horizon, averaged over all scenarios S (Expression 1-17). The model thus chooses values of 

the decision variables 𝜆𝑣, 𝐴 and 𝑀 defining the premium pricing and reinsurance purchase, 

subject to the constraints in Expressions (1-1) to (1-16). In this two-stage structure, 𝜆𝑣, 𝐴 and 𝑀 

are determined in the first stage, and then following the resolution of the uncertainty about which 

long-term scenario s occurs, the losses are computed in the second stage. 

𝑀𝑎𝑥   
1

𝑆
∑ 𝐹𝑠𝑦

𝑠𝑦                         (1-17) 

1.3.4. Home Owner Model Formulation 

Homeowners decide whether to buy the insurance offered by the insurer or not. The 

collection of homeowners in the study area is partitioned based on location i, building category 

m, building resistance level c, and risk region 𝑣. The model defined in Expressions (1-18) to (1-

21) is run separately for each group of homeowners 𝑖, 𝑚, 𝑐, 𝑣, and since the models do not 

interact, the computation can be parallelized. Specifically, the model takes as input the premium 

and deductible payment from the insurer model (𝑝𝑖𝑚𝑐𝑣 , 𝐵𝑖𝑚𝑐
ℎ ), and damage probabilities and 

reconstruction costs (𝑎𝑖𝑚𝑐
𝛿ℎ , 𝑅𝑚𝑐

𝛿 ) from the loss model, then provides as output 𝑤𝑖𝑚𝑐𝑣, binary 

decision variables that equal one if a homeowner of type 𝑖, 𝑚, 𝑐, 𝑣 buys insurance and zero 

otherwise. The homeowner analysis is conducted on an individual building and annual basis. 

 We assume the decision is made by maximizing utility, represented by the function 

𝑈(𝑥) = 1 − 𝑒−𝜃𝑣𝑥, where 𝜃𝑣 is the Arrow-Pratt coefficient of risk aversion for homeowners in 

risk region 𝑣 and 𝑥 is the total homeowner expenditures. The assumption that homeowners are 
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risk averse, 𝜃𝑣 > 0 supports the existence of a voluntary market for insurance given the loading 

factors on the premiums. The homeowner’s objective function (Eq. 1-18) is to maximize the sum 

of the expected utilities over all possible hurricanes h if he buys insurance (first term) and if he 

does not (second term). In the first case, the homeowner pays the premium and loss up to the 

deductible. In the second case, the homeowner pays the loss due to building damage only. Note 

that when ℎ = 𝐻 + 1, no hurricane occurs, and the loss is zero. 

 𝑀𝑎𝑥  𝑤𝑖𝑚𝑐𝑣 [∑ 𝑃ℎ (𝑈(𝑝𝑖𝑚𝑐𝑣 + 𝐵𝑖𝑚𝑐𝑣
ℎ ))ℎ ]   + (1 − 𝑤𝑖𝑚𝑐𝑣) [∑ 𝑃ℎ (𝑈(∑ 𝑅𝑚𝑐

𝛿 𝑎𝑖𝑚𝑐
𝛿ℎ

𝛿 ))ℎ ]  (1-18) 

We assume each homeowner has a maximum budget for homeowner insurance equal to a 

specified percentage 𝜅𝑣 of his home value 𝑉𝑚, assuming the percentage may vary by risk region 

𝑣 (Eq. 1-19). We also assume the insurer will only offer insurance if the premium is greater than 

some specified value 𝜌 (Eq. 1-20). Finally, the 𝑤𝑖𝑚𝑐𝑣 must be zero or one.  

𝑝𝑖𝑚𝑐𝑣 ≤ 𝜅𝑣𝑉𝑚          ∀𝑖, 𝑚, 𝑐, 𝑣                                                (1-19) 

𝑝𝑖𝑚𝑐𝑣 ≥ 𝜌              ∀𝑖, 𝑚, 𝑐, 𝑣                                                 (1-20) 

𝑤𝑖𝑚𝑐𝑣 = {0,1}          ∀𝑖, 𝑚, 𝑐, 𝑣                                              (1-21) 

1.3.5. Solution Procedure 

In the case study, with two risk regions, 𝑣 ∈ [𝐻, 𝐿] (Section 1.4.2), the insurer 

optimization requires solving for four continuous decision variables simultaneously (𝜆𝐻, 𝜆𝐿, A, 

and M). We do so using simulated annealing (SA), an iterative, adaptive, and nondeterministic 

heuristic optimization algorithm that accepts better solutions at all times and worse solutions 

sometimes (Sait and Youssef 1999). The ability to go to a worse solution with a certain 

probability allows the algorithm to escape local maxima and minima. For ease of computation, 

the probability of insolvency, capacity ratio and return on equity constraints are incorporated into 

the objective function as penalties. The initial temperature and decrement factor parameters in 
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the algorithm are determined based on 100 initial evaluations of average change in cost for an 

uphill move. Transitions are made randomly within neighborhoods of +/- 0.2 from the current 

loading factors, λL and λH  and +/- 200 million from the current reinsurance terms, A and M. At 

each iteration, a random number from a uniform distribution is generated and the probability of 

going to a worse solution is computed. As iterations progress, the algorithm accepts worse 

solutions with a lower probability, and towards the end it resembles a greedy search. The 

optimization was implemented in MATLAB (R2011a) and a total of 40 trials of 1000 iterations 

each were executed in parallel on a Unix-based high performance computing cluster, with each 

trial requiring approximately 3.75 hours. The SA algorithm converges well with the last 100 

iterations of each trial exhibiting only 0.01% improvement in the objective function. 

1.4. CASE STUDY APPLICATION 

1.4.1. Purpose and Scope 

A case study was conducted in eastern North Carolina to demonstrate that the models can 

be applied in a full-scale analysis, and to show the type of results it provides and how they can be 

interpreted. The region includes 503 census tracts and covers the low-lying coastal part of the 

state with the most severe hurricane hazard, extending westward to include half of Raleigh, the 

state capital. A tropical storm or hurricane is expected to make landfall on the North Carolina 

coast on average every four years (SCONC 2010). The study focuses on single-family wood-

frame homes, the wind and storm surge flooding hazards (not rainfall-induced flooding), and 

direct losses (structural, non-structural, interior, mechanical, electrical, and plumbing, but no 

contents or additional living expenses). 
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1.4.2. Inputs 

The 2010 census tracts are the basic area unit of study, but each of the 143 census tracts 

that touch the coast was divided into three areas—a zone within one mile of the coastline, a zone 

one to two miles from the coastline, and the remainder of the census tract. The result is 732 

locations i. 

Eight building categories m were defined to represent all combinations of number of 

stories (one or two), garage (yes or no), and roof shape (hip or gable). Each building is defined as 

a collection of components represented in the damage and loss model (e.g., roof covering, 

openings). Each component in turn is made of many component units (e.g., a single window or 

section of roof covering). For each component a few possible physical configurations are 

defined, each with an associated mean component resistance. The building resistance c of each 

building is then defined by the vector of mean resistances of its components. The case study 

includes 192 building resistance levels (Peng 2013). 

The component-based loss simulation model is a combination of a modified Florida 

Public Hurricane Loss Model for the wind- and debris-related damage (FPHLM 2005); and 

Taggart and van de Lindt (2009) and van de Lindt and Taggart (2009) for the flood-related 

damage. Described in detail in Peng et al. (2013)
 
and Peng (2013) the loss model was used to 

compute the damage probabilities (𝑎𝑖𝑚𝑐
𝛿ℎ ) and reconstruction costs (𝑅𝑚𝑐

𝛿 ). The building inventory 

data (𝑋𝑖𝑚𝑐𝑣) was estimated using census data, with total building counts allocated among the 

building resistance levels c based on location (coastal or not) and year built relative to major 

building code and construction practice changes. Building values (𝑉𝑚) were estimated using R.S. 

Means (2009). 
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We define two risk regions 𝑣—within two miles of the coast (high risk) or not (low risk), 

reflecting an assumption that homeowners who live in a particularly high risk areas may have a 

different risk attitude and may be charged a higher premium. The risk aversion parameter values 

𝜃𝑣 used in the homeowner utility model were estimated using National Flood Insurance Program 

data (Gao 2014).
 
Specifically, values of 𝜃𝑣 were chosen so that given our assumed utility model, 

they would result in the penetration rates reported in Dixon et al. (2006). The final base case 

parameter values are 𝜃𝐻 = 3.0(10−5) and 𝜃𝐿 = 1.7246(10−5) for high and low risk areas, 

respectively (and they are varied -100% to +100% in Section 1.4.4). 

We used the set of 𝐻 = 97 probabilistic hurricane scenarios developed in Apivatanagul 

et al. (2011)
 
using the Optimization-based Probabilistic Scenario (OPS) method. The method 

involves first simulating tens of thousands of candidate hurricane scenarios with wind speeds and 

approximate surge depths. In this case, we used the empirical track method (ETM) to generate 

this candidate set of scenarios (Vickery et al. 2000).
 
A mixed-integer linear optimization is then 

used to select a subset of scenarios and assign hazard-consistent annual occurrence probabilities 

to each so that the regional wind speed and coastline surge depth hazard curves estimated by the 

hurricanes in the reduced set match the “true” wind and coastline surge depth hazard curves 

based on the complete candidate set. Finally, a surge model is used to estimate accurate surge 

depths for the reduced set of events. For each scenario, open terrain 3-second peak gust wind 

speeds and surge depths were computed throughout the study region using the storm surge and 

tidal model ADCIRC (Westerink et al. 2008). This set of scenarios was shown to result in errors 

small enough to be inconsequential for regional loss estimation (Apivatanagul et al. 2011). We 

reevaluated the flood depths at more coastal locations than in Apivatanagul et al. (2011) to 

improve the geographic resolution. Using those hurricanes, we simulated a set of 𝑆 = 2000 
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thirty-year scenarios that represent the full set of possible scenarios and confirmed that they have 

minimal error in the characteristics listed in Section 1.3.2 (see Peng 2013 for more detail). There 

are twenty time steps per year and 𝑇 = 600 time steps per scenario s.  

Other input parameter values include deductible 𝑑 = $2500, co-participation factor 

𝛽 = 95%, primary insurer administrative loading factor 𝜏 = 0.35 (personal communication, 

John Aquino, WillisRe), reinsurer loading factor 𝜑 = 0.1, reinsurer risk attitude 𝑔 = 0.1 (varied 

from 0 to 0.3 in Section 1.4.4), factor defining allowed surplus 𝑘 = 3 (varied from 0 to 3 with 

𝑔 = 0.3 in Section 1.4.4), maximum allowable thirty-year probability of insolvency 𝛼 = 0.1, 

maximum allowable capacity ratio 𝜂 = 3, minimum allowable average annual return on equity 

𝜁=0.05, minimum premium required 𝜌 = $100, and homeowner insurance budgets of 𝜅𝐻 = 5% 

and 𝜅𝐿 = 2.5% of building value for high and low risk homeowners, respectively. 

1.4.3. Base Case Results 

The modeling framework can be used to explore two primary questions. First, how 

should insurers optimize their catastrophe risk insurance policy design, portfolio, and risk 

transfer decisions within a context defined by homeowners, reinsurers, and government agencies 

using a credible assessment of natural disaster risk? Second, how do changes in the context affect 

insurers’ ability to operate successfully? Specifically, it provides results that indicate under 

equilibrium the (1) primary insurer’s optimal actions and outcomes, (2) homeowners’ optimal 

actions and outcomes, (3) reinsurer’s outcomes, and (4) loss distribution for each stakeholder. 

We discuss these results in Section 1.4.3, and then consider the effect of changes to the 

homeowners’ risk attitudes, reinsurer risk attitude, and insurer surplus policy in Section 1.4.4. 

Note that it is important to look at the full set of results because they interact, and because while 

a solution may look appealing to one stakeholder, it may not to another. (Note also that these 
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results differ from the current market because they reflect insurance for both wind- and flood-

related hurricane hazards, and a different regulatory setting for the insurer and homeowners.) 

1.4.3.1. Primary insurer’s actions and resulting outcomes 

For the base case, the results suggest the primary insurer should use profit loading factors 

of 𝜆𝐻 = 1.48 and 𝜆𝐿 = 1.24, respectively. This means they would make on average 148% and 

124% profit per dollar insured in the high and low risk areas, respectively. These loading factors, 

together with the administrative loading factor 𝜏 and the expected loss result in average 

premiums of $2574 and $404, and penetration rates of 16% and 5% in the high and low risk 

areas, respectively.  

The results also indicate that the insurer should buy reinsurance with an attachment point 

of 𝐴 = $0.25 billion and a maximum limit of 𝑀 = $2.75 billion. On Figure 1-3, which shows 

the probability density function (PDF) of annual loss to insured buildings, one can see that the 

recommended attachment point and maximum limit cover most but not all of the tail of that 

distribution. In fact, there is an 89% chance that the reinsurance will be activated at least once in 

a thirty-year scenario, and it may be activated as many as seven times or more with a probability 

of 1% (Fig. 1-4). Together these results highlight the important role reinsurance plays, especially 

in helping the insurer remain below its maximum allowable probability of insolvency. In Section 

1.4.4, the influence of the reinsurer’s risk attitude further emphasizes that point. 
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Figure 1-3. PDF of annual loss to insured buildings, with model-recommended attachment point 

and maximum limit 

 

 

Figure 1-4. PDF of number of times reinsurance is activated over a period of thirty years 

 

With those primary insurer actions (and the homeowners’ responses), the model provides 

the resulting outcomes for the insurer. The insurer achieves an average annual profit of $56.9 

million, and the scenario analysis allows us to see the variation surrounding the average results 

as well. The results show that in 72% of years (i.e., when there is no hurricane), the profit is $78 

million, but there is a 9.4% chance that the annual profit will be negative (i.e., the insurer will 
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lose money), in fact up to $6.5 billion if the most severe hurricane occurs. It is important to note 

that these profits are obtained while meeting the specified constraints on probability of 

insolvency, return on equity, and capacity ratio. In the base case, the probability of insolvency 

over thirty years is 0.033, equivalent to 0.001 per year and well below the assumed maximum 

allowable 0.1. Looking more closely at the 62 out of 2000 thirty-year scenarios in which the 

insurer goes insolvent shows that the primary predictor of insolvency is experiencing at least one 

hurricane that causes a very large loss (as opposed to many or closely-spaced events, for 

example). While the average number of hurricanes is actually larger among solvent scenarios 

than the insolvent scenarios (10 vs. 5), the maximum single-event losses are much larger for 

insolvent scenarios than solvent scenarios (Fig. 1-5). In fact, given a single-event total insured 

loss greater than $3 billion, there is a 95% chance of insurer insolvency. The average annual 

return on equity is 11%, above the desired minimum value of 5%. Finally, due to the assumed 

maximum allowable annual surplus, the average annual capacity ratio is 0.17, well below the 

maximum allowable of three. 

 

Figure 1-5. PDF of the maximum total insured loss in a single hurricane, for scenarios in which 

the insurer becomes insolvent and scenarios in which it remains solvent  
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1.4.3.2. Homeowners’ actions and resulting outcomes 

In the base case, 16% and 5% of homeowners in the high and low risk regions, 

respectively purchase insurance. More specifically, Figure 1-6 shows the geographic distribution 

of insurance penetration. Disaggregating by building category m also reveals that being two 

stories (vs. one), having a gable (vs. hip) roof, and not having a garage are all associated with 

increased likelihood of buying insurance (Fig. 1-7). The homeowner’s decision to buy insurance 

depends on his initial loss distribution, risk attitude, and budget. It turns out that the pattern of 

insurance purchase in this case can largely be explained by the initial loss distributions, in 

particular the mean and coefficient of variation (COV) of loss. In Figure 1-8, each home making 

the corresponding decision—insure or do nothing—was plotted as a point on the associated 

graph based on the COV and mean of its loss distribution. For clarity, the scatterplots were then 

translated into the heat maps shown, in which a darker shade indicates a higher density of points. 

Homeowners with lower mean and coefficient of variation of loss tend to not buy insurance. The 

relatively high participation in the southwestern part of the study area, for example, is due to a 

relatively high COV of loss in that location. The pattern relates to the fact that insurance removes 

the tail of the loss distribution since it is certain that if a hurricane occurs the homeowner will not 

have to pay more than the deductible, so it is most useful when the variability in loss is highest. 
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Figure 1-6. (a) North Carolina (b) percentage of homes in each area i that buy insurance in the 

base case. 

 

 

Figure 1-7. Percentage of homes of each building category m that buy insurance in the base case  

(H and G indicate hip and gable roof, respectively)  
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Figure 1-8. Coefficient of variation of loss vs. mean loss per home, for (a) insured and (b) 

uninsured homes. 

 

We can now examine the resulting outcomes for the homeowners. Figure 1-9 shows the 

benefit of investment for the average uninsured and insured homeowners in terms of change in 

the inverse cumulative distribution function (CDF) of their annual expenditures, where 

expenditures include any premium, deductible, or loss due to damage. It shows that the initial 

expenditure distribution has a fatter tail for those who choose to insure, but after insurance, that 

tail is removed for the insured homeowners, so that their probability of spending more than 

$4,500 becomes zero (Fig. 1-9b). Peng (2013) examines homeowner insurance purchase 

decisions in more depth, including their interaction with retrofit decisions.  

 

Figure 1-9. Inverse CDFs for per-home total expenditures for (a) uninsured and (b) insured 

homeowners. 
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1.4.3.3. Reinsurer’s resulting position 

While the modeling framework does not optimize the reinsurer’s decisions, it does allow 

examination of how the recommended insurer and homeowner actions affect the reinsurer. 

Normalizing the initial balance to zero at 𝑦 = 0, Figure 1-10 shows the reinsurer’s accumulated 

profit over the thirty years (i.e., premiums received from the insurer minus loss paid) for the 

2000 scenarios. Figure 1-10 suggests that on average the reinsurer will end up with $1.2 billion 

profit after thirty years, but there is a 22% chance it would conclude the thirty years with a net 

loss. These results suggest that the arrangement described in the base case is reasonable from the 

reinsurer’s perspective as well as the insurer’s and homeowners’. 

 

Figure 1-10. Accumulated reinsurer profit vs. time 
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primary insurer, reinsurer, insured homeowners, and uninsured homeowners, are $21, $36, $18, 

and $537 million dollars, respectively. Variability is important as well, and comparing the PDF 

of losses paid by each group (Fig. 1-11) shows that while the insurer and insured homeowners 

successfully shorten the tails of their loss distributions, the reinsurer and especially uninsured 

loss still have the potential to be very large. This analysis highlights the importance of 

considering the situation from all perspectives since a solution can look appealing for one 

stakeholder but not another.  

 

 

Figure 1-11. PDF of annual loss paid by (a) insured homeowners, (b) insurer, (c) reinsurer, and 

(d) uninsured homeowners  
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actions and resulting outcomes. Here we investigate the sensitivity of results to (1) homeowners’ 

risk attitudes, 𝜃𝐻 and 𝜃𝐿, (2) reinsurer’s risk aversion 𝑔, and (3) amount of surplus profit the 

primary insurer can retain each year, k. 

We first examine results when homeowner risk attitudes, 𝜃𝐻 and 𝜃𝐿, are multiplied by a 

factor from zero to two. Figure 1-12 shows that the insurance penetration for high and low risk 

regions are both quite sensitive to homeowner risk attitudes. When the multiple equals one and 

𝜃𝐻 and 𝜃𝐿 are at their base case values, the slopes of the curves are about 40% and 18%, 

respectively, so a -25% to +25% change in the risk attitude parameter can change the insurance 

penetration from 6 % to 26% for the high risk region and from 1% to 10% for the low risk 

region. As 𝜃𝐻 and 𝜃𝐿 increase and homeowners become more risk averse, the insurer is able to 

increase its profit loading factors 𝜆𝐻 and 𝜆𝐿 (up to 3.8 and 3.4, respectively, when the multiple is 

two), and the insurer profit and return on equity increase as well.  

 

Figure 1-12. Insurance penetration rate for high and low risk regions vs. homeowner risk 

attitude, in terms of multiples of the base case values 𝜃𝐻 and 𝜃𝐿 
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Since the insurer relies on reinsurance to maintain a sufficiently low probability of 

insolvency, the cost of reinsurance, which is largely driven by the reinsurer’s risk aversion 

parameter 𝑔 (Eq. 1-9), can be important as well. As 𝑔 increases, the maximum limit of the 

reinsurance treaty M decreases, providing the insurer less protection from large losses (Fig. 1-

13a). As a result, above 𝑔 = 0.15, the thirty-year probability of insolvency increases 

dramatically, exceeding the allowable threshold of 0.1 when 𝑔 > 0.19 (Fig. 1-13b). When the 

reinsurer becomes sufficiently risk averse, the insurer’s derived demand for reinsurance cannot 

support the reinsurance premium therefore opting not to protect against insolvency. Figure 1-14 

shows that as the reinsurer risk aversion increases, the penetration rate decreases and therefore, 

the insurer’s average annual profit decreases as well.  

 

Figure 1-13. (a) Attachment point A and maximum limit M and (b) thirty-year probability of 

primary insurer insolvency vs. reinsurance risk aversion parameter g 

 

0 0.1 0.2 0.3
0

1

2

3

4
(a)

Reinsurance risk aversion parameter, g

R
ei

n
su

ra
n

ce
 t

re
at

y 
p

ar
am

et
er

s
(i

n
 $

 b
ill

io
n

s)

 

 

A

M

0 0.1 0.2 0.3
0

0.1

0.2

0.3

0.4

0.5
(b)

Reinsurance risk aversion parameter, g

Th
ir

ty
-y

ea
r 

p
ro

b
ab

ili
ty

o
f 

in
so

lv
en

cy



 

31 

 

 

Figure 1-14. (a) Insurance penetration rates and (b) average annual primary insurer profit vs. 

reinsurance risk aversion parameter  
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Figure 1-15. (a) Attachment point A and maximum limit M and (b) insurance penetration rate for 

high and low risk regions vs. maximum surplus 
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asymmetric information, competition among insurers, and regulator decision-making 

endogenous to the modeling. 
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CHAPTER 2 

 

THE ROLES OF PRIOR DISASTER EXPERIENCE AND RISK PERCEPTION ON FLOOD 

INSURANCE PURCHASE DECISION-MAKING 

 

ABSTRACT 

The low penetration rate of the flood insurance market in the United States has led to 

considerable attempts to understand the underlying factors that influence individuals to take ex 

ante protective actions. Better understanding of these factors has policy implications for both the 

structuring of the insurance market and for developing effective risk communication tools. This 

article explores the factors that influence flood insurance purchase decision-making. Specifically, 

the study tests the mediation effect of affect variables such as worry and fear between prior 

hurricane and hurricane-induced flood hazard experiences and flood insurance purchase 

decision-making. Using phone-survey data (n=318) from eastern North Carolina, we built a 

structural equation model to understand the direct and indirect effects of different variables on 

one another and on flood insurance purchase decision-making. The results of this analysis show 

that prior hazard experience and length of tenure positively influence flood insurance purchase 

decisions through the mediation effect of risk perceptions. The study also found that white males 

are less risk averse and that both income and proximity to hazard affect flood insurance purchase 

decision-making. The chi square p-value of the model is 0.72, which is significant. Finally, we 

discuss the policy implication of our findings. 

2.1. INTRODUCTION 

In spite of attempts to increase the adoption of household flood insurance, the penetration 

rate (proportion of people who have insurance) remains low (Dixon et al. 2006). This reality has 
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resulted in frequent and large uninsured losses. These losses have led to considerable attempts to 

understand the underlying factors that influence individuals to take ex ante protective actions. 

Better understanding has policy implications for both the structuring of the insurance market and 

for developing effective risk communication tools. This paper contributes to the literature 

attempting to understand the factors and constraints that impact the decision process around 

flood insurance.  

More than 39% of the US population lives in coastal counties, and approximately 3% are 

exposed to at least a 1% annual probability of coastal flood hazard (Crowell et al. 2010, NOAA 

2013). If we apply these rates to current population estimates, this means that almost 9.5 million 

people have a one in 100 chance of flooding each year. In spite of the availability of flood 

insurance through the National Flood Insurance Program (NFIP), only approximately 60% of 

people who live in a Special Flood Hazard Zone (SFHA) with risks of coastal flooding carry 

insurance (Dixon et al. 2006), meaning that almost 3.8 million people are uninsured. Since the 

inception of the NFIP in 1968, subscription has been a major problem. One reason for the 1994 

reform act was to increase market penetration by requiring mortgage lenders to include flood 

insurance as part of loan qualifications (Blanchard-Boehm et al. 2001). Nonetheless, even the 

mortgage requirement has not improved the flood insurance penetration rate. A recent study on 

the effects of Hurricane Sandy in New York City and New Jersey revealed that 80% of 

households and 95% of small businesses were uninsured, although many are eligible to receive 

subsidized rates (Aerts et al. 2014).  

Some researchers have used survey data to attempt to understand the factors that 

influence flood hazard adjustment decisions–both insurance purchase and mitigation (e.g., 

Blanchard-Boehm et al. 2001, Brilly and Polic 2005, Peacock 2003, Peacock et al. 2005, Lindell 
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and Hwang 2008, Botzen et al. 2009, Botzen and Van den Bergh 2012). Others have developed 

theoretical frameworks such as the Protective Action Decision Model (PADM), the Theory of 

Reasoned Action (TRA), the Theory of Planned Behavior (TPB), the Person Relative to Event 

Theory (PrE), and the Protective Motivation Theory (PMT), to understand the variables that 

form risk perceptions and lead to protective actions (Lindell and Hwang 2008).  

Previous studies have found recurring factors, such as risk perception and proximity to 

hazard, to have significant effects on protective action (e.g., Brilly and Polic 2005, Landry and 

Jahan-Parvar 2011). Research results on the effects of other variables, such as age, income, and 

other socio-demographics, have been mixed. For example, whereas Dohmen et al. (2011) found 

age to be a significant factor, Botzen and Van den Bergh (2012) did not.  

Using survey data, this study focuses on the role of six factors in influencing flood 

insurance adoption rates in the eastern part of North Carolina. The factors considered are (i) prior 

hazard experience, (ii) risk perception, (iii) socio-demographic characteristics, (iv) proximity to 

hazard, (v) the role of government aid, and (vi) tenure.  

Most studies have used single-equation models to analyze data (e.g., Peacock 2003, 

Peacock et al. 2005), and a few have employed multiple-equation models and structural equation 

models (e.g., Lindell and Hwang 2008, Zaalberg et al. 2009) to better understand the causal 

relationship between the different factors. In this study, we build a structural equation model 

using stated flood insurance purchase data to better understand the causal relationship between 

different factors and their combined effect on flood insurance purchase decisions. Structural 

equation models have numerous advantages compared to single-equation models. First, they 

allow latent constructs to represent feelings that are hard to measure with single variables. 

Second, they allow the inclusion of mediation effects. For example, prior hazard experience 
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might not directly lead to protective action, but it can lead to a high degree of hazard risk 

perception, which in turn might lead to taking protective action. Structural equation models can 

easily incorporate these types of indirect or mediated effects. Third, in structural equation 

models, path diagrams make it convenient to easily illustrate relationships and causal effects. 

After the theoretical and empirical studies that serve as a basis for our hypotheses are 

introduced in Section 2.2, the hypotheses are given in Section 2.3. The survey instrument, the 

variables, and the analytical approach are detailed in Section 2.4. Results are given in Section 

2.5, followed by discussion and conclusions in Sections 2.6 and 2.7, respectively. 

2.2. THEORETICAL AND EMPIRICAL STUDIES 

Currently, there is no consensus regarding how households process risk and take 

protective action. In the broadest sense, the factors that influence protective decision-making can 

be grouped into “situational” and “cognitive” categories (Tobin 1997). Situational factors include 

physical conditions, such as proximity to the hazard, and socio-demographic features, such as 

age, income, and so forth. Cognitive factors include personality characteristics and risk attitudes. 

Tobin (1997) argues that these factors can influence responses individually, in combination, or in 

sequence and that their interactions can persist or change over time. 

Broad theoretical frameworks, although important for understanding the fundamental 

relationship between different factors, are difficult to use in empirical analysis. For example, 

because of their breadth, TRA, TPB, and the expectancy theory have limited ability to identify 

measurable variables that positively correlate with protective measures (Lindell and Hwang 

2008). Lindell and Hwang (2008) also discuss the merits of more focused theoretical models, 

such as PMT and PrE, which account for self-efficacy.  
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Several empirical studies are based on theoretical frameworks (e.g., Lindell and Hwang 

2008, Bubeck et al. 2012). For example, Lindell and Hwang (2008) extend the PADM proposed 

by Lindell and Perry (Lindell and Perry 1992, Lindell and Perry 2003) in a multistage, multi-

equation analysis that proposes a causal chain of the many factors that lead to a household 

protective-action decision. 

Several hazard-adjustment empirical studies have also been conducted (e.g., Blanchard-

Boehm et al. 2001, Brilly and Polic 2005, Peacock 2003, Peacock et al. 2005, Lindell and Hwang 

2008, Botzen et al. 2009, Botzen and Van den Bergh 2012, Browne and Hoyt 2000). Although 

no single framework or empirical study explains every complex process in protective decision-

making, recurring themes in the empirical findings have helped researchers and policy makers to 

understand why some people choose not to buy insurance. Some of these findings include the 

following: people ignore risk below a certain threshold (Weinstein 1984, Kunreuther 1996); 

government aid lowers people’s incentives to purchase flood insurance (Browne and Hoyt 2000); 

risk perceptions are associated with protective actions (Ge et al. 2011); prior hazard experiences 

are predominantly responsible for risk perception (Hertwig et al. 2004, Siegrist and Gutscher 

2008, Holmes et al. 2013); and people think that insurance is a bad investment unless they reap 

its benefits through a payout (Michel-Kerjan and Kunreuther 2011). 

2.3. HYPOTHESES 

The following sections discuss the proposed hypotheses regarding the effects of six 

factors on homeowner flood insurance purchase decisions: (i) prior hazard experience, (ii) risk 

perception, (iii) socio-demographic characteristics, (iv) proximity to hazard, (v) the role of 

government aid, and (vi) tenure. These hypotheses are based on previous theoretical and 

empirical studies. 
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2.3.1. Prior Hazard Experience 

Tversky and Kahneman (1974) show that there is a heuristic effect to decision-making 

and that our past experience significantly shapes our current risk perceptions. Insurance uptake 

increases immediately after a natural disaster. For example, Browne and Hoyt (2000) found that 

recent flood experience is significantly associated with flood insurance purchases.  

Krantz and Kunreuther (2007) found that prior hazard experience affects risk perception, 

even though it affects neither the cost of insurance nor the probability of an adverse effect. 

Similarly, Brilly and Polic (2005) found that experience with a flood influences risk perception. 

Hertwig et al. (2004) argue that this phenomenon is due to variation of probability weighing and 

found that people who have experienced flooding over-weigh the probability of occurrence, 

whereas those who have not experienced flooding under-weigh the likelihood. This result shows 

the profound effect that prior experience could have in shaping risk perception and initiating 

protective action. The effects of personal experience on responses to other types of natural 

disasters, such as wild fires, are similar. For example, Holmes et al. (2013) found that only 

respondents with prior experience were willing to pay more for protection. According to Siegrist 

and Gutscher (2008), the high risk perception of people who have experienced a flood hazard is 

due to the negative affect that the experience creates. In this study, we hypothesize as follows: 

H1. Prior hurricane experience is measured by number of hurricanes and level of prior 

hurricane damage experienced. 

H2. Higher hurricane experience is positively associated with higher hurricane risk 

perception. 
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2.3.2. Risk Perception 

Fear and affect have been found to significantly influence perceived risk (Slovic et al. 

2004). Findings from experimental studies such as the work of Keller et al. (2006) have also 

corroborated these relationships. Past experience appears to have a strong influence on negative 

affect, which leads to a perception that the risk is more severe (Siegrist and Gutscher 2008). 

Based on these studies, we state the following three hypotheses: 

H3. Hurricane risk perception is manifested by individuals’ level of worry and emotion. 

H4. Higher hurricane risk perception is positively associated with higher storm related 

flooding risk perception. 

H5. Higher flood risk perception is positively associated with flood insurance purchase 

decision-making. 

2.3.3. Socio-demographic Characteristics 

Conducting a comprehensive literature review of gender-difference experiments, Croson 

and Gneezy (2009) found significant differences between males and females, with females being 

more risk averse. Several other studies have also found that women are generally more risk 

averse (Flynn et al. 1994, Lindell and Hwang 2008, Botzen et al. 2009, Ge et al. 2011). Using 

1500 individual surveys on environmental health risks, Flynn et al. (1994) found that white 

males are less risk averse than white females, but no significant difference was found between 

non-white male and female respondents. Moreover, the study found no significant difference 

between white females and all non-whites. The authors suggest that the underlying cause of the 

significant difference in the white males’ attitude could be due to sociopolitical factors.  

Race has been found to influence risk perception and protective actions. The predominant 

finding is that minorities are more risk averse but are less likely to take protective actions 
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(Fothergill et al. 1999, Peacock 2003, Lindell and Hwang 2008, Ge et al. 2011). There are 

numerous suggested reasons for this, including lower access to scarce resources such as loans 

(Flynn et al. 1994, Peacock 2003).  

Age also seems to affect both risk perception and protective action, but research results 

are not always consistent. For example, Dohmen et al. (2011) found that risk aversion increases 

with age, whereas Botzen and Van den Bergh (2012) found no statistical significance. Ge et al. 

(2011) found that age was not significant in the whole range, but when they used a dichotomous 

variable with 65-years-of-age as a cutoff, they found a significant difference in both risk 

perception and the taking of protective measures. Those above 65-years-of-age had high risk 

perception but took less protective measures, especially if high costs were involved (Peacock 

2003, Ge et al. 2011). Reliance on fixed incomes by those over 65 has been offered as an 

explanation of this result. 

Most studies have found that more education is directly related to low risk perception 

(Fothergill et al. 1999, Botzen et al. 2009, Ge et al. 2011), but some have found no significant 

relationship (e.g., Bubeck et al. 2012).  

Browne and Hoyt (2000) found that property owners with higher incomes are more likely 

to buy insurance and to choose higher coverage. Similarly, Landry and Jahan-Parvar (2011) 

found that residents with higher incomes insure more than do those with lower incomes, 

although the results are not monotonic and significant over the entire range. Bubeck et al. (2012) 

found that income only marginally influences mitigation decisions.  

Although a higher income seems to encourage protective action, it is not always 

necessarily positively correlated with high risk perception. For example, Botzen et al. (2009) and 
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Ge et al. (2011) found that high income is associated with low risk perception. Based on these 

studies, we state the following four hypotheses: 

H6. A white-male indicator is negatively associated with flood risk perception.  

H7. Age is positively associated with flood risk perception.  

H8. Education is negatively associated with flood risk perception. 

H9. Higher income is positively associated with flood insurance purchase decision-

making. 

2.3.4. Proximity to Hazard 

Proximity to hazard affects both insurance purchase decisions and risk perception 

(Landry and Jahan-Parvar 2011, Brilly and Polic 2005). Landry and Jahan-Parvar (2011) found 

that distance from a coast is negatively related to insurance purchases. Brilly and Polic (2005) 

found that location is highly related to risk perception. The level of risk perception, however, 

might not necessarily be equivalent to an expert’s assessment of risk (Botzen et al. 2009). 

Similarly, Lindell and Earle (1983) found that people believe that risk from environmental 

hazards decreases with distance. Using these studies, we hypothesize as follows: 

H10. Proximity to hazard is positively associated with flood insurance purchase decision-

making. 

2.3.5. Government Aid 

Expectation of government aid could lead to low mitigation or protective action (Bubeck 

et al. 2012). Fatalism seems to have the same effect as the expectation of government aid. For 

example, respondents who believe that flooding is beyond human control seem to have lower 

perceptions of flood risk (Brilly and Polic 2005). Brilly and Polic (2005) also provide a 

theoretical explanation for how these two attitudes affect insurance purchase decisions. In 
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contrast, Bubeck et al. (2012) explain that these attitudes serve as coping mechanisms that 

modify risk perception and link it to protective action. Their review of risk perception and other 

factors influencing flood mitigation found no theoretical or empirical evidence to support a direct 

relationship between risk perception and mitigation. They argue that the interaction of risk 

perception with coping mechanisms explains the protective actions that people take. In this 

study, we hypothesize as follows:  

H11. Expectation of government aid is negatively associated with flood insurance 

purchase decision-making. 

2.3.6. Tenure 

Past tenure length has been found to influence both risk perception and flood insurance 

purchase decisions. For example, past tenure is associated with exposure to hazard, which, in 

turn, affects both risk perception and protective action (Ge et al. 2011). Future expected tenure 

also affects protective action. Studies have found that people who intend to live for a long time in 

a particular house are more likely to invest in expensive mitigation measures (Lindell and Hwang 

2008). Nonetheless, other studies found both past and future tenure to be non-significant 

(Bubeck et al. 2012). In this study, we hypothesize as follows: 

H12. Past tenure is positively associated with hurricane experience. 

H13. Future tenure is positively associated with flood insurance purchase decision-

making. 

2.4. METHOD 

2.4.1. Data Collection 

This analysis was developed by using a quantitative dataset created at the University of 

Delaware, Disaster Research Center (DRC), as part of the National Institute of Standards and 
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Technology (NIST)-funded project, “Modeling Natural Disaster Risk Management: A 

Stakeholder Perspective,” during the fall of 2012 and spring of 2013. The data were collected by 

telephone interviews, with an instrument that aimed to better understand household decisions 

regarding hurricane insurance and mitigation. The instrument included questions based on 

current social science, engineering, and economics insights on these hazard adjustments. The 

survey’s major topics include 1) prior hazard experience; 2) information about the location and 

structure of the respondents’ homes; 3) information on length of residence and attachment to 

place; 4) an inventory of prior insurance and retrofit decisions regarding wind and flood; 5) an 

assessment of hurricane risk perception; 6) data on prior experiences with and impacts from 

hurricanes; 7) a set of randomly assigned scenarios that explored the impact of different premium 

and deductible combinations on insurance purchases; 8) a set of randomly assigned scenarios 

that explored the impact of different potential incentives on the likelihood of adopting mitigation 

measures; 9) demographic and socioeconomic variables. The final instrument included just over 

100 possible questions, but skip patterns insured that respondents answered only questions 

relevant to their own specific experience. With these skips in place, the mean time to completion 

for this survey was 27 minutes.  

Our sample for the survey included 50% listed household numbers, 25% random digit 

dial (RDD) landline numbers, and 25% RDD cellphone numbers. The numbers came from 49 

counties
1
 in the eastern half of North Carolina. During the initial moments of the survey, we 

screened for home ownership and included only homeowners in our sample, given the nature of 

the topic. Given the nature of the retrofits being explored, we also screened for home type. 

                                                 
1 Beaufort, Bertie, Bladen, Brunswick, Camden, Carteret, Chowan, Columbus, Craven, Cumberland, Currituck, 

Dare, Duplin, Edgecombe, Franklin, Gates, Granville, Greene, Halifax, Harnett, Hertford, Hoke, Hyde, Johnston, 

Jones, Lee, Lenoir, Martin, Moore, Nash, New Hanover, Northampton, Onslow, Pamlico, Pasquotank, Pender, 

Perquimans, Pitt, Richmond, Robeson, Sampson, Scotland, Tyrrell, Vance, Wake, Warren, Washington, Wayne, 

Wilson. 
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Residents with single family homes, manufactured homes, and duplexes were eligible to take the 

survey, whereas those with townhouses, apartments, and condominiums were excluded because 

of the significant structural differences. We also asked for the person who makes insurance and 

home-repair or improvement decisions to answer the survey questions. If an adult or a decision-

maker was not available, appointments were made to complete the survey at another time. We 

purchased the sample from Genesys, a third-party sample provider. The listed numbers came 

from a database of the listed telephone directory. For RDD numbers, the Genesys system uses 

RDD procedures to generate random phone numbers based on a set of all telephone exchanges 

using the area codes and zip-code combinations matching the counties identified above. After 

obtaining the initial numbers, we had Genesys purge business and disconnected numbers from 

the initial sample. To purge the business numbers, a database composed of non-residential 

yellow-page businesses was utilized. The distinction of non-residential is important because over 

one million households nationwide use their residential phone number for business purposes as 

well. The generated sample was compared to this database, and any matching telephone numbers 

were purged from the sample. The remaining numbers not purged from the sample were then 

examined to determine if they were disconnected. 

The survey was administered by using a computer-assisted telephone interviewing 

(CATI) system in operation at the DRC, with paid graduate and undergraduate students 

providing the labor for the project. All students were trained on both the system and the 

instrument to ensure that they understood both the questions and the underlying concepts that 

each question was intended to tap. Our call center was activated at different times of the day, 

with a focus on calling between 2:00 pm and 8:45 pm Monday through Thursday and on 

Saturdays from noon to 4:00 pm. Each phone number was called up to ten times to make contact 
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with the residence and to attempt the interview. Special attention was given to training the 

interviewers to convert soft refusals. In addition, an incentive was offered: the participants who 

completed the survey were entered into a drawing with a one in 100 chance of winning an iPad 

Mini. The final number of observations, after ineligible respondents were removed, was 358, and 

our cooperation rate for the sample overall was 23%. 

The data were then cleaned to remove the respondents who failed to answer all hurricane- 

and flood risk perception and flood insurance purchase questions. Moreover, only respondents 

whose primary residence is in the area were included in the analysis, given that there could be 

significant variation in risk perception when the home is a secondary home or a rental property. 

The final data that were used in the analysis include 318 observations. Nonetheless, these data 

also had missing values, as shown in Tables 2-1 and 2-2. With regard to the most common type 

of data-handling methodologies, listwise and pairwise deletions do not use the full data set and 

are ineffective, given the limited dataset available in this study. In addition, the listwise deletion 

methodology is known to result in larger standard error estimates, which in turn lower the power 

of hypotheses tests (Allison 2003). Although the pairwise deletion methodology uses more data, 

compared with the listwise, the standard error estimates are not consistent, which creates doubt 

regarding the validity of confidence intervals and hypotheses tests (Allison 2003). Hence, the 

data were multiple imputed in order to use the full data set. As recommended by Schafer and 

Olsen (1998), a total of five imputations were carried out in Amelia II, a program for missing 

data, in R (Honaker et al. 2011). Amelia uses a bootstrapping based algorithm to impute data. 

Figure 2-1 shows the geographic distribution of the 83% of the survey respondents in eastern 

North Carolina who gave their full address.  
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Figure 2-1. (a) Study area comprising the eastern half of the state, and (b) geographic distribution 

of the survey respondents who gave their address 

 

2.4.2. Variables 

This section describes the variables used in this analysis and the transformations applied. 

It is sub-divided into sections on prior hazard experience, risk perception, socio-demographic 

characteristics, proximity to hazard, government aid, tenure, and flood insurance purchase 

variables. Tables 2-1 and 2-2 provide the descriptive statistics of the categorical and continuous 

variables used in this analysis, respectively. 

2.4.2.1. Prior hazard experience 

The number of hurricanes experienced (X1) measures the number of hurricanes that a 

respondent has personally experienced. To meet the normality assumption, a log transform of 

this variable is used in the analysis. The highest degree of property damage (X2) that the 

respondent has experienced during any prior hurricane event is measured on a Likert scale of 1 to 

Virginia 

South Carolina 
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5. The first and the last scales are verbally anchored, where 1 means “no damage”, and 5 means 

“complete destruction”. This scale is collapsed into a binary response by combining responses 

from 1 to 3 together and 4 and 5 together. This is done because of the limited number of 

observations available for the analysis; by estimating two parameters instead of five for each 

variable, more relevant factors can be incorporated into the analysis.  

2.4.2.2. Risk perception  

The levels of worry (X4) and emotion (X5) about hurricanes are measured on a Likert 

scale of 1 to 5, where 1 means “never worry”, whereas 5 means “constantly worry” or “dread”, 

respectively. Similarly, these variables are collapsed into a binary, with 1 to 3 being in one 

category and 4 and 5, which represent extreme worry or dread, in another. The level of worry 

about floods (Y1) is also measured on a Likert scale of 1 to 5 and is transformed in the same 

fashion.  

2.4.2.3. Socio-demographic characteristics 

The role of race and gender are taken into account in combination, by creating a binary 

indicator for “white male” (X6), where 1 represents “white male,” and 0 represents all other 

respondents. Age (X7) is measured as a continuous variable. Education level is measured in nine 

categories ranging from elementary school to graduate school. This is transformed into a binary 

variable (X8), with those holding an associate’s degree or above grouped together. Income is 

measured as a categorical variable, with eight non-overlapping ranges, from less than $15,000 to 

greater than $250,000. It is similarly transformed to a dichotomous variable (X10), with $75,000 

as a cutoff. The reason for these transformations is, again, the limited number of observations 

available to estimate a parameter for each category. 
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2.4.2.4. Proximity to hazard 

Proximity to hazard (X9) is measured as a binary variable, where 1 represents people who 

are not eligible for the North Carolina Coastal Property Insurance Pool (CPIP), and 0 represents 

those who are eligible. This variable measures how close respondents are to the coast. 

2.4.2.5. Government aid 

The participants were asked if it was likely that they would be eligible for government 

aid in the event of a hurricane disaster. This variable is measured on a Likert scale of 1 to 3, 

representing “not at all likely”, “somewhat likely”, and “very likely”, respectively. The result is 

then transformed into a dichotomous variable (X11) by collapsing 2 and 3 into one response. 

2.4.2.6. Tenure 

Length of tenure in years (X3), which represents overall past exposure to hurricanes, is 

measured as a continuous variable. Length of expected future stay in home (X12) is also 

measured as a continuous variable. 

2.4.2.7. Flood insurance purchase decisions 

Each flood insurance purchase question has three choices, of which two represent buying, 

albeit at different deductible and premium values, and one represents not buying. The 

respondents were asked a total of four questions, with different combinations of deductible and 

premium values. Because we are interested in insurance buying decision-making, the responses 

are combined into a binary of whether a respondent expressed intent to buy or not. One of these 

repeated questions could be used as the flood purchase decision variable, but to ensure that the 

effects of variations in premium and deductible levels are accounted for in this analysis, we use 

two (X13 and X14) of the four repeated measures. 
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Table 2-1. Descriptive statistics of categorical variables used in the model 

  Frequency     Frequency 

X9 -Proximity to hazard 

 
X11 -Government aid 

Eligible for CPIP 92 

 

Not at all likely 139 

Not eligible for CPIP 221 

 

Somewhat likely 88 

Missing 5 

 

Very likely 61 

X4 -Worry about hurricanes 

 

Missing 30 

1 Never worry 67 

 
X13 -Flood insurance purchase Q1 

2 90 

 

Will not buy 106 

3 93 

 

Will buy 173 

4 39 

 

Missing 39 

5 Constantly worry 26 

 
X14 -Flood insurance purchase Q2 

Missing 3 

 

Will not buy 102 

Y1 -Worry about floods 

 

Will buy 177 

1 Never worry 185 

 

Missing 39 

2 72 

 
X8 -Education 

3 37 

 

Elementary school only 3 

4 11 

 

Some high school, did not finish 10 

5 Constantly worry 12 

 

Completed high school 50 

Missing 1 

 

Some college but didn't finish 46 

X5 -Emotion 

 

2-year college degree/A.A/A.S. 33 

1 Not worried about hurricanes 69 

 

4-year college degree/B.A./B.S. 79 

2 101 

 

Some graduate work 9 

3 72 

 

Completed masters or prof. degree 52 

4 31 

 

Advanced graduate work or Ph.D. 13 

5 Dread hurricanes 41 

 

Missing 23 

Missing 4 

 
X10 -Income 

X2 -Prior damage level 

 

Less than 15,000 9 

No damage 128 

 

15,000 to 35,000 28 

2 124 

 

35,000 to 50,000 31 

3 28 

 

50,000 to 75,000 49 

4 8 

 

75,000 to 100,000 46 

Complete destruction 5 

 

100,000 to 150,000 46 

Missing 25 

 

150,000 to 250,000 15 

X6 -White male 

 

Over 250,000 13 

No 192 

 

Missing 81 

Yes 105 

   Missing 21       
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Table 2-2. Descriptive statistics of continuous variables used in the model 

  Mean Std. Dev Missing 

X1 -Number of hurricane experiences 6.00 6.22 19 

X3 -Past tenure in home 18.48 12.98 8 

X12 -Future stay in home 34.31 19.80 20 

X7 -Age 58.73 13.24 29 

 

2.4.3. Analytical and Solution Procedures 

We base our analysis on the theoretical and empirical studies discussed in Section 2.2. 

Using a structural equation model, we test the hypothesized causal relationships, as discussed in 

Section 2.3, among different factors and their combined effect on flood insurance purchase 

decisions. The model is built around six factors: (i) prior hazard experience, (ii) risk perception, 

(iii) socio-demographic characteristics, (iv) proximity to hazard, (v) the role of government aid, 

and (vi) tenure.  

Structural equation models, sometimes also called simultaneous equation models, are 

multivariate regression models. They are different from regular multivariate regression in that 

the dependent variable in one equation can be the independent variable in another. This feature 

allows the variables to simultaneously influence one another either directly or through 

intermediaries (Fox 2002).  

Structural equation models have several advantages compared to single-equation models. 

First, they allow latent constructs with multiple variables to represent feelings that are hard to 

measure with a single variable. For example, it is difficult to measure overall hurricane risk 

perception by using only a single variable. In this analysis, we use both worry and emotion levels 

to construct this latent variable. Second, structural equation models allow the inclusion of the 

mediation effect of variables. This is important for analyzing the interrelationship among 

variables, including indirect effects on one another. The third advantage of using structural 
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equation models is that path diagrams make it convenient to easily illustrate relationships and 

causal effects. 

In this analysis, we use structural equation models because our primary objective is to 

understand the simultaneous relationship among the different variables described in Section 2.4.2 

and their combined effect on flood insurance purchase decisions. In particular, we analyze, 

through the mediation effect of risk perception, the effect of prior hazard experience on flood 

insurance purchase decisions. Previous studies have mostly been limited to multivariate analyses 

(e.g., Peacock 2003, Peacock et al. 2005). Only a few studies have investigated the 

interrelationship between different factors and mediation effects on people’s actions, using 

multistage, multi-equation models or structural equation models (e.g., Lindell and Hwang 2008, 

Bubeck et al. 2012, Zaalberg et al. 2009). Lindell et al. (2008) found that hazard experience has 

both direct and mediated effects (through perceived personal risk) on taking protective measures. 

Bubeck et al. (2012) found that coping mechanisms, such as fatalism and expectation of 

receiving government aid, serve as intermediary variables between risk perception and protective 

action. Zaalberg et al. (2009) found several affect and coping variables that mediated between 

past hazard experience and the taking of protective action. In this study, we extend this work by 

separating hurricane and flood risk perception, and test Hypothesis 3, which says that higher 

hurricane risk perception leads to higher storm related flooding risk perception. Thus, we have 

two intermediary variables–hurricane risk perception and hurricane-induced flood risk 

perception–that link past hazard experience and flood insurance purchase decision-making.  

Structural equation modeling requires temporal ordering to represent causal relationships; 

hence, the use of cross-sectional data becomes problematic unless the time sequence of the 

variables is evident. In this study, we asked about residents’ past experience, their current risk 
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perception, and their future mitigation plans to account for the time sequence and satisfy the 

temporal ordering requirement.  

Structural equation models require a large sample size. This is particularly true when one 

attempts to represent complex relationship and causality effects, such as insurance purchases or 

mitigation actions. Usually, a typical sample size in studies with a structural equation model 

analysis is approximately 200 observations, and the minimum recommended sample size-to-

parameter ratio is 10 (Kline 2011). In this study, we use 318 observations. Figure 2-2 depicts the 

hypothesized structural equation model that was built based on the theoretical and empirical 

discussions in Section 2.2 and the hypotheses in Section 2.3. 

 
Figure 2-2. Hypothesized structural equation model for flood insurance purchase decision-

making 

 

In Figure 2-2, ƞ1, ƞ2, and ƞ3 are latent constructs that represent past hurricane experience 

appraisal, hurricane risk perception, and flood insurance purchase decision-making, respectively. 

ξ represents the error terms of the variables that construct the latent variables. Similarly, ζ 

represents the error terms of the latent and intermediary variables. The λs are parameters to be 

estimated for the variables that make the latent variables, and the ϒs are parameters for the 
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causal relationship among latent and observed variables. The observed variables (X1-14 and Y1) 

are defined in Section 2.4.2. 

Prior overall hurricane experience (ƞ1) is measured by the number of hurricane hazard 

experiences (X1) and the prior level of damage (X2), as hypothesized in H1. We use both 

variables because experiencing a natural disaster without incurring any damage sometimes 

causes a false sense of security (Ge et al. 2011). Length of tenure (X3), which could serve as a 

surrogate for exposure to hurricane hazard, is expected to influence the overall hurricane 

experience (ƞ1), as hypothesized in H12. Prior hazard experience (ƞ1), in turn, is expected to 

determine residents’ hurricane-risk perception (ƞ2), as stated in Hypothesis 2. Hurricane-risk 

perception (ƞ2) is measured by levels of worry (X4) and emotion (X5) (Hypothesis 1) and is 

expected to be positively associated with storm related flood risk perception (Y1) (Hypothesis 4). 

Storm related flood risk perception is expected to be associated with socio-demographic 

characteristics, such as the “white-male” indicator (X6), age (X7), and education level (X8), as 

hypothesized in H6, H7, and H8, respectively. Finally, flood risk perception (Y1), proximity to 

hazard (X9), income (X10), likelihood of receiving government aid (X11), and expected future 

stay in the home (X12) are expected to affect flood insurance purchase decision-making (ƞ3) 

(hypotheses H5, H10, H9, H11 and H13, respectively), which is measured by repeated stated 

flood insurance choice preferences (X13 and X14). This flood insurance purchase decision-making 

latent construct is similar to a latent growth curve, except that there is no time lapse because it is 

simply a repeated measure; hence, the slope is zero, but the mean measures the stated preference 

toward flood insurance purchases. Equations 2-1 to 2-10 represent these relationships. 

X1=λ1ƞ1+ ξ1                                    (2-1) 

X2=λ2ƞ1+ ξ2                                    (2-2) 



 

61 

 

ƞ1= ϒ1X3+ζ1                                   (2-3) 

X4=λ3ƞ2+ ξ3                                   (2-4) 

X5=λ4ƞ2+ ξ4                                   (2-5) 

ƞ2= ϒ2 ƞ1+ ζ2                                   (2-6) 

Y1= ϒ3 ƞ2+ ϒ4X6 +ϒ5X7+ ϒ6X8+ζ3                                   (2-7) 

X13=λ5ƞ3+ξ5                                   (2-8) 

X14=λ6ƞ3+ξ6                                        (2-9) 

ƞ3= ϒ7Y1 +ϒ8X9+ ϒ9X10+ϒ10X11+ϒ11X12+ ζ4                                   (2-10) 

 

The model fitting is run in lavaan 0.5-17, an R package for structural equation modeling 

(Rosseel 2012). The package is free and works on continuous, ordered, and binary variables. For 

categorical variables, which are used in this study, lavaan uses the weighted least square mean 

and variance adjusted (WLSMV) estimator. A package called semTools (Contributors 2014) is 

used to pool the parameters and standard errors of the imputed data set, by using Rubin’s method 

(Rubin 1987). Chi square of the model fit is computed according to the methodology of Li et al. 

(1991). 

2.5. RESULTS 

This section discusses the results of the analysis and the subsequent modification of the 

initial specification, and it presents an equivalent model that can equally represent the hypotheses 

stated in Section 2.3. 

The model shown in Figure 2-2 has a robust chi square p-value of 0.362, which is 

significant. Nonetheless, some of the parameter estimates, as shown in Table 2-3, are not 

significant. The table shows four types of parameter estimates: latent variables, regressors, 

intercepts, and thresholds. The estimated parameters for the observed variables that construct 
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latent variables are given in the first category. The effect of the observed variables on latent or 

other observed variables is given by the estimated parameters under the second category: 

regressors. The intercept category applies only to continuous variables that construct latent 

variables; in our case, the only such variable is the number of hurricane experiences. Finally, the 

thresholds give the cutoffs for categorical variables that construct latent variables and serve as 

intermediary variables. 

The results show that the prior hurricane experience appraisal construct (ƞ1) is significant: 

the prior damage level parameter (λ1) is fixed to 1 for identification, and the number of hurricane 

experiences parameter (λ2) is significant at the 10% level (p-value of 0.07). The parameter for 

tenure length in home (ϒ1) is significant at a p-value of 0.078. The hurricane risk perception 

construct (ƞ2) is also significant; the parameter for worry (λ3) is fixed to 1, and the parameter for 

emotion (λ4) is significant at a p-value of 0. The effect of prior hazard experience (ƞ1) on 

hurricane risk perception (ƞ2) is significant at a p-value of 0.023. 

The effect of being a white male (ϒ4) is barely significant at the 10% level (p-value 

0.097) but, as expected, reduces flood risk perception (Y1). Nonetheless, the effect of hurricane 

risk perception (ϒ3) on flood risk perception (Y1) is highly significant at a p-value of 0. Age and 

education were found to be not significant. It should be noted that this does not mean that these 

factors do not influence flood protection decisions, but it simply means that they were not 

significant in these data and the hypothesized structural equation model. Additionally, it is 

important to note that structural equation modeling is an empirical tool. Although 318 

observations are sufficient for the model shown, the actual flood insurance decision processes 

might require a more complex structure, perhaps by including more data points and additional 
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information on important factors such as information acquisition, processing, and media effect 

(Kano 2009).  

The flood insurance purchase construct (ƞ3) is significant at a p-value of 0. This result is 

perhaps not surprising given that it is made from repeated measurements. The parameters for 

flood risk perception, proximity to hazard, and income are all significant at a p-value of 0.009, 

0.001, and 0.022, respectively. The sign of all the parameters also supports the hypotheses stated 

in Section 2.3. Nonetheless, two factors, government aid and future tenure, are not significant. 

Moreover, the thresholds for prior damage level, one of the two stated flood insurance purchase 

decisions and flood risk perceptions, are not significant, which indicates that the model needs to 

be modified. Table 2-3 summarizes the results. 

Table 2-3. Initial structural equation model results 

 
Estimate Std.err Z-value P(>|z|) 

Latent variables: 

ƞ1: Past hurricane experience appraisal 

λ1: X1-Number of hurricane experiences 0.255 0.141 1.815 0.07* 

λ2: X2-Prior damage level 1 
   

ƞ2: Hurricane risk perception 

λ3: X4-Worry about hurricane 1 
   

λ4: X5-Emotion  1.139 0.174 6.527 0*** 

ƞ3: Flood insurance purchase decision 

λ5: X13-Stated flood insurance purchase decision 1 
   

λ6: X14-Stated flood insurance purchase decision 0.997 0.183 5.456 0*** 

Regressions: 

ƞ1: Past hurricane experience appraisal 

ϒ1: X3-Time in home 0.013 0.007 1.764 0.078* 

ƞ2: Hurricane risk perception 

ϒ2: ƞ1-Past hurricane experience appraisal 0.829 0.364 2.278 0.023** 

Y1: Worry about flood 

ϒ3: ƞ2-Hurricane risk perception 0.706 0.109 6.496 0*** 

ϒ4: X6-White Male -0.334 0.201 -1.659 0.097* 

ϒ5: X7-Age -0.004 0.008 -0.484 0.629 

ϒ6: X8-Education 0.088 0.228 0.388 0.698 

ƞ3: Flood insurance purchase decision 

ϒ7: Y1-Worry about flood 0.247 0.095 2.609 0.009*** 
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ϒ8: X9-Proximity to hazard -0.564 0.167 -3.378 0.001*** 

ϒ9: X10-Income 0.501 0.22 2.284 0.022** 

ϒ10: X11-Government aid 0.057 0.088 0.644 0.52 

ϒ11: X12-Future stay in home -0.002 0.004 -0.549 0.583 

Intercepts: 

X1-Number of hurricane experiences 0.519 0.124 4.199 0 

Thresholds: 

X2-Prior damage level 0.975 0.921 1.059 0.29 

X4-Worry about hurricane 1.198 0.556 2.154 0.031** 

X5-Emotion  1.215 0.595 2.044 0.041** 

X13-Stated flood insurance purchase decision -0.926 0.497 -1.862 0.063* 

X14-Stated flood insurance purchase decision -0.524 0.485 -1.08 0.28 

Y1-Worry about flood 0.609 0.578 1.053 0.292 

      * Significant at 0.1; ** Significant at 0.05; *** Significant at 0.01 

 

The structural equation model was modified by removing the parameters that were not 

significant, namely, age (X7), education (X8), likelihood of receiving government aid (X11), and 

expected future tenure (X12). This is a minor modification and does not significantly change the 

underlying theory of how prior hazard experience, risk perception, socio-demographic 

characteristics, proximity to hazard, and tenure influence flood insurance decision-making. The 

modified diagram is shown in Figure 2-3. The resulting model fit is chi square p-value of 0.72, 

which is a significant increase from the initial model. Additionally, all the parameters are 

significant and have the expected signs. All the intercepts and thresholds are also significant. 

Table 2-4 shows the unstandardized parameter estimates and the standardized errors, along with 

the p-value for each estimated parameter. 
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Figure 2-3. Modified hypothesized structural equation model for flood insurance purchase 

decision-making 

 

Table 2-4. Modified structural equation model results 

  Estimate Std.err Z-value P(>|z|) 

Latent variables: 

ƞ1: Past hurricane experience appraisal 

λ1: X1- Number of hurricane experiences 0.259 0.139 1.866 0.062* 

λ2: X2- Prior damage level 1       

ƞ2: Hurricane risk perception 

λ3: X4-Worry about hurricane 1 

   λ4: X5-Emotion  1.09 0.158 6.894 0*** 

ƞ3: Flood insurance purchase decision 

λ5: X13- Stated flood insurance purchase 

decision 1 

   λ6: X14-Stated flood insurance purchase 

decision 1.019 0.213 4.787 0*** 

Regressions: 

ƞ1: Past hurricane experience appraisal 

ϒ1: X3- Time in home 0.012 0.006 1.916 0.055* 

ƞ2: Hurricane risk perception 

ϒ2: ƞ1-Past hurricane experience appraisal 0.959 0.453 2.115 0.034** 

Y1: Worry about flood 

ϒ3: ƞ2-Hurricane risk perception 0.679 0.105 6.442 0*** 

ϒ4: X6-White Male -0.384 0.192 -1.996 0.046** 

ƞ3: Flood insurance purchase decision 

ϒ7: Y1- Worry about flood 0.243 0.091 2.655 0.008*** 

ϒ8: X9-Proximity to hazard -0.567 0.161 -3.525 0*** 

ϒ9: X10-Income 0.377 0.151 2.505 0.012** 
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Intercepts: 

X1: Number of hurricane experiences 0.729 0.048 15.312 0*** 

Thresholds: 

X2: Prior damage level 0.876 0.227 3.864 0*** 

X4: Worry about hurricane 0.826 0.234 3.524 0*** 

X5: Emotion  1.573 0.406 3.871 0*** 

X13: Stated flood insurance purchase 

decision -0.855 0.222 -3.845 0*** 

X14: Stated flood insurance purchase 

decision -0.808 0.208 -3.884 0*** 

Y1: Worry about flood 0.461 0.209 2.203 0.028** 

                   * Significant at 0.1; ** Significant at 0.05; *** Significant at 0.01 

   

This structural equation model is one of many plausible ways to represent the relationship 

between different factors that affect flood insurance purchase decision-making. Alternative 

structural equation models can be developed to represent the fundamental theory tested in this 

study, i.e., that prior hurricane hazard experience affects flood insurance purchase decision-

making through the mediation effect of both hurricanes and hurricane-induced flood risk 

perceptions. One such model is shown in Figure 2-4. In this model, the number of hurricane 

hazards experienced (X1), the level of prior damage (X2), and past tenure (X3) are directly 

regressed to hurricane-risk perception (ƞ2), instead of these variables constructing an overall 

prior hurricane hazard experience latent variable. Although the number of hurricane experiences 

(X1) and prior damage level (X2) were significant, past tenure (X3) was not; hence, the model 

was re-specified by removing past tenure (X3). The final alternative model is significant, with a 

chi square p-value of 0.16. This construct is equally valid compared to the model given in Figure 

2-3 but does not account for how the length of exposure to a hurricane hazard might influence 

risk perception. The chi square p-value for the alternative model is also lower than the p-value of 

the model shown in Figure 2-3. Presenting equivalent models such as the one in Figure 2-4 

allows us to acknowledge that there are other alternative explanations of the data and helps us to 

avoid confirmatory bias (Kline 2011).  
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Figure 2-4. Alternative structural equation model for flood insurance purchase decision-making 

 

2.6. DISCUSSION 

The results of this analysis support past theoretical and empirical findings on the effects 

of prior hazard experience, length of tenure, race, gender, income, and proximity to hazard on 

flood insurance purchase decision-making. The results also show that prior hurricane hazard 

experience affects flood insurance purchase decision-making through the mediation effect of 

both hurricanes and hurricane-induced flood risk perceptions. 

The role of prior hurricane hazard experience is in line with several studies that 

determined that past experience raises risk perception (Hypothesis 2) and the likelihood of taking 

protective measures (Baumann et al. 1978, Zaleskiewicz et al. 2002, Lindell and Hwang 2008, 

Zaalberg et al. 2009). Past tenure length is significant in the model and, as expected, is positively 

associated with overall hazard experience (Hypothesis 12). This is because tenure length 

increases the probability of exposure to natural hazards, as suggested by Ge et al. (2011).  

Past experience alone, however, does not necessarily directly influence insurance 

purchase or any other protective action. Slovic et al. (2004) argue that although past experience 

makes it easy to recall or imagine the damage, it is the affect tagged with it that leads to 

protective action. Similarly, Siegrist et al. (2008), conducting face-to-face interviews with 201 
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people who had never experienced a flood hazard, found that the people could imagine their 

house being destroyed by a flood but could not imagine the negative affect associated with it. 

The study found that negative affects such as fear and helplessness were underestimated by this 

group. Zaalberg et al. (2009), using a structural equation model, found a strong mediation effect 

of affect variables in linking prior hazard experience and protective action. The results of this 

analysis are aligned with this evidence concerning the mediation effect of affect variables in 

linking prior experience and flood insurance purchase decision-making (hypotheses H2, H4, and 

H5). 

Not everyone who has previously experienced a hurricane or a hurricane related flood 

hazard event takes protective measures. Negative emotion is a necessary but not a sufficient 

factor, and there are other factors at play, such as doubt about the effectiveness of measures and 

their high costs (Siegrist and Gutscher 2008). In this study, doubt about the effectiveness of flood 

insurance translates to doubt about the NFIP, as flood insurance is not provided by private 

insurers. Several studies investigate the effects of race and gender on people’s trust of 

institutions and risk perceptions. Almost all studies find white males to be different in terms of 

risk perception (Slovic 2000). Flynn et al. (1994) and Finucane et al. (2000) attribute the low risk 

perception attitude of white males to their trust of experts, institutions, and authorities. This 

finding could be explained by white males’ greater involvement in managing institutions, 

compared to women and non-white men. In our model, the white-male effect on flood risk 

perception (Hypothesis 6) is negative compared to the rest of the respondents, in line with 

previous studies. 

In this analysis, we find that an income cutoff of $75,000 is significant, with the higher 

income positively influencing flood insurance purchase decisions (Hypothesis 9). This 
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corroborates other studies that found income to have an important role in insurance purchase 

decision-making (e.g., Browne and Hoyt 2000, Michel-Kerjan and Kousky 2010). This result is 

not surprising, as the cost of protective measures is an important factor that influences insurance 

purchase decisions (Siegrist and Gutscher 2008).  

Proximity to hazard, measured by whether people lived in the counties in which the CPIP 

is offered or not, was significant in this study (Hypothesis 10). People on the coast are evidently 

more exposed to hurricane-induced floods, and the results of this analysis suggest that the 

respondents’ appraisal of the risk is correlated with experts’ risk assessment, which is in line 

with Siegrist and Gutscher’s (2006) findings. 

2.7. CONCLUSION 

This article explores the factors that influence flood insurance purchase decisions. The 

structural equation model reveals a plausible relationship among different factors and shows 

how, in combination, they affect flood insurance purchase decision-making. Past experience of 

hurricane hazard (both frequency and level of damage) and tenure length are strong factors that 

affect flood insurance purchase decisions, through the mediation effect of hurricane and 

hurricane-induced flood risk perceptions, which are measured by levels of fear and worry. 

The implication of this relationship is enormous in terms of both designing an effective 

risk communication system and the strategic timing of risk awareness campaigns. People who 

have experienced hurricanes can recall the associated anxiety and worry, but those with no 

experience cannot. Hence, the biggest question in risk communication is how to raise the 

awareness and risk perception of people who have never experienced natural disaster so that they 

can protect themselves through insurance or other protective measures.  
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Based on the mediation effect of the affect variables revealed in this analysis, it is 

recommended that risk communication strategies invoke negative affects to be successful. Other 

studies have reached similar conclusions, such as Keller et al. (2006) and Siegrist et al. (2008). 

This strategy can be achieved by using graphics and pictures to communicate risk (Stone et al. 

2003) or by using more advanced 3D risk communication technologies that target numerous 

senses, as suggested by Zaalberg and Midden (2010). Effective risk communication is especially 

important for people who have never experienced floods, as it is difficult for them to predict 

future affects resulting from severe events (Siegrist and Gutcher 2008).  

The results of this analysis also have policy implications for the strategic timing of risk 

awareness campaigns. Numerous studies have found that people take more protective action in 

the immediate aftermath of a disaster (e.g., Kunreuther 1978, Browne and Hoyt 2000), 

suggesting that the negative affect associated with a hazard experience fades with time. Based on 

the findings of this study on the role of affect variables on flood insurance purchase decision-

making, we recommend that risk awareness campaigns be conducted in the period immediately 

following a flood event. Burn (1999) makes a similar recommendation based on a flood risk 

perception study of the Red River flood of 1997.  

Finally, because income is a significant factor, the issue of affordability must be 

addressed. The NFIP provides subsidies, but this alone has not helped to increase the insurance 

market penetration rate, and many who are eligible go uninsured (Aerts et al. 2014). In the past, 

there have been proposals to redesign the flood insurance market by introducing risk based 

premiums and a subsidy in the form of vouchers for low income households, to address the issue 

of affordability without necessarily encouraging risky behaviors (Michel-Kerjan and Kunreuther 

2011), but so far, improvement in this regard has been slow. In light of this, we recommend that 
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the issue of affordability be addressed not only through subsidies but also through a 

comprehensive evaluation of the current flood insurance market.  
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CHAPTER 3 

 

HURRICANE RISK MANAGEMENT THROUGH SELF-INSURANCE AND MARKET 

INSURANCE 

 

ABSTRACT 

People tend to hold low deductible policies from market insurance (insurance from an 

insurance company) by paying actuarially unfair premiums, and they underinvest in self-

insurance (an ex ante structural retrofit measure that reduces the severity of loss). Such decisions 

can be suboptimal, and given limited budgets for undertaking protective action, it is important 

that homeowners optimally invest in retrofit and insurance. Using phone-survey data (n=140), 

this article investigates the relationship between self-insurance and market insurance decisions. 

We built an ordered logistic model by using revealed preferences about structural retrofit 

measures and standard homeowners’ insurance deductible choices, to understand the effect of 

physical mitigation on the insurance market. We found that self-insurance and market insurance 

are substitutes, and factors such as the number of adults in the household, race, the number of 

prior hurricane experiences, and education level have significant effects on deductible choices. 

Finally, we discuss the implications of these results in terms of setting appropriate standard 

homeowners’ premium and deductible values. 

3.1. INTRODUCTION 

The relationship among market insurance, self-insurance, and self-protection has been of 

great interest to economists. Ehrlich and Becker (1972), in their seminal work, define self-

insurance as a mitigation measure that reduces the severity of loss, whereas self-protection is 

viewed as a measure that reduces the probability of loss. For example, raising a structure to 
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protect it from flooding would be considered self-protection, whereas installing shutters to 

protect it from hurricanes would be considered self-insurance. Market insurance is an insurance 

policy offered by a private insurance company. Within the realms of market insurance, there has 

also been an effort to understand peoples’ risk appetite based on the policy or deductible level 

they choose (e.g., Cohen and Einav 2005, Sydnor 2006). This article investigates the relationship 

between self-insurance and market insurance decisions, using revealed preferences about 

structural retrofit measures and standard homeowners’ insurance deductible choices. 

In the United States, standard homeowners insurance is available through private 

companies. To qualify for mortgages, most people must purchase standard homeowners 

insurance, but homeowners have the option of choosing deductible levels and/or coverage limits. 

Deductibles serve as a protection against moral hazard (Kunreuther 1998) by ensuring that 

homeowners are liable for a fraction of losses, and hence discourage risky behavior. Many 

studies have consistently found that people choose lower deductibles, in spite of being required 

to pay actuarially unfair premiums for the additional coverage (e.g., Cohen and Einav 2005, 

Sydnor 2006, Barseghyan et al. 2013). Such choices are suboptimal and have important policy 

implications. 

Given budget limitations for protective action, it is important that homeowners optimally 

invest in structural retrofit measures and insurance. Whereas most studies examine the 

relationship between mitigation and insurance purchase from a mitigation decision-making point 

of view, by investigating the effect of deductible choice (independent variable) on the decision to 

mitigate (dependent variable) (e.g., Carson et al. 2013, Burrus et al. 2008), we focus on the effect 

of having a retrofitted structural feature (independent variable) on the deductible choice 
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(dependent variable). The motivation is to investigate the role of physical mitigation, beyond 

reducing the severity of loss, in order to improve the insurance market. 

In this study, we specifically investigate the role of five structural retrofit measures on 

homeowner insurance deductible choices, using survey data from the eastern half of North 

Carolina. These measures are (i) high-wind shingles and synthetic water barriers on the roof, (ii) 

spray adhesive to the underside of the roof in the attic, (iii) hurricane straps to improve the 

connection between roof and walls, (iv) hurricane shutters, and (v) impact-resistant windows and 

doors. In addition, we also test the effects of prior hurricane experience, level of worry about 

hurricanes, proximity to hazard, education, race, income, and number of adults and children in 

the household. 

The rest of the article is organized as follows: Section 3.2 covers the literature review. 

Section 3.3 then details the different hypotheses tested. After Section 3.4 presents the survey 

instrument, the variables used, and the analytical and solution approaches adopted, the results are 

presented in Section 3.5. Finally, Sections 3.6 and 3.7 provide the discussion and conclusion, 

respectively. 

3.2. BACKGROUND 

Researchers have been interested in understanding consumers’ deductible choices across 

different industries, including the automobile (e.g., Cohen and Einav 2005, Barseghyan et al. 

2013), flood (e.g., Michel-Kerjan and Kousky 2010), and standard homeowners insurance 

markets (e.g., Sydnor 2006, Barseghyan et al. 2013). For example, Sydnor (2006), using 

homeowners insurance data, found that 83% of consumers chose a deductible lower than the 

maximum allowed and that they paid 400% to 500% of the expected value for the additional 

coverage provided by the lower deductible. Cohen and Einav (2005), using a data set from an 
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auto-insurance company, analyzed choices made from an individual-specific menu of four 

deductible-premium combinations. They found that people held lower deductible values and paid 

actuarially unfair premiums. Michel-Kerjan and Kousky (2010) analyzed purchase decisions of 

flood insurance in Florida and found that 97% of customers chose a deductible lower than the 

maximum, with 80% actually choosing the lowest deductible.  

Schindler (1994) argues that the tendency to choose low deductibles has undesirable 

consequences for both the individual consumer and society as a whole. From the consumer side, 

choosing a low deductible means overpaying, as the premium associated with low deductibles is 

actuarially unfair. He explains that this is equivalent to buying something you do not need. From 

the insurer side, low deductibles increase administrative costs because small-amount claims 

require the same investigative and paperwork operations as large claims do, and this cost is 

eventually passed to the consumer, which in turn affects the whole market.  

In addition, people have limited resources and budgets for protective measures. For 

example, evidence shows that immediately after flooding, people increased their standard 

homeowner policy deductible level and used the savings to buy flood insurance (Asservatham et 

al. 2014), which suggests that people allocate an overall budget to protective actions. Our study 

is similar to that of Asservatham et al. (2014), which investigates the effect of a flood event on 

standard homeowners’ deductible choices, except that instead of examining a flood event, we 

look at the effect of structural retrofit measures on homeowners’ deductible choices. 

Schindler (1994) offers four potential reasons for consumers’ tendency to choose low-

deductible insurance. The first is the desire for flat-rate payments, i.e., people prefer a sure 

outcome over a gamble. The second is lack of information, which is lack of awareness of 

potential savings from choosing higher deductibles. The third is desire for a good deal, which 
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might underestimate the recurring nature of the premium payment, and the fourth is the desire to 

make mandatory insurance more palatable. The argument here is that when insurance is required 

by law, perhaps the low deductible and the small claims help to reassure consumers that the 

insurer will live up to its promises. This is similar to the argument by Michel-Kerjan and 

Kunreuther (2011) that people think insurance is a bad investment unless they reap its benefits. 

The role of deductible choice in mitigation decision-making has been widely studied 

(e.g., Carson et al. 2013, Burrus et al. 2008). Nonetheless, the role of mitigation in deductible 

choice has not been adequately addressed. We argue that this is important, beyond the need to 

understand the effect of undertaking mitigation on the insurance market, because it accounts for 

the temporal sequencing of activities. In most cross-sectional stated-preference data such as ours, 

the actual timing of the structural retrofit measure and of the insurance decision is unclear, which 

makes it difficult to infer the causal relationship between these measures. Nonetheless, because 

mitigation efforts are typically undertaken infrequently and insurance contracts are renewed 

yearly, it is reasonable to assume that the deductible level choices revealed are the respondents’ 

choices in the year in which the survey was conducted, whereas the mitigation measures were 

performed in the past. Bubeck et al. (2012) discuss the importance of using panel data to fully 

capture the temporal variation of risk aversion and the relationship between different protective 

actions. By using the deductible choice as a dependent variable, we indirectly account for the 

temporal ordering of events.  

3.3. HYPOTHESES 

This section expands the background literature in Section 3.2 by discussing specific 

concepts related to deductible choice and develops a set of hypotheses. 
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3.3.1. Mitigation and Risk Aversion 

Ehrlich and Becker (1972) studied the interactions among market insurance, self-

insurance, and self-protection. They found that market insurance, which is a policy from an 

insurance company, and self-insurance are always substitutes, whereas market insurance and 

self-protection are complements. They argue that optimal decisions about market insurance 

should be viewed in the context of the interaction among these three types of insurance and 

protective measures. Dionne and Eeckhoudt (1985) extend this work by examining the role of 

risk aversion in how consumers make optimal choices among market insurance, self-insurance, 

and self-protection. They found that an increase in risk aversion leads to an increase in the level 

of self-insurance, but this is not always true for self-protection. Briys and Schlesinger (1990), 

examining the interaction among risk aversion, self-insurance, and self-protection, concluded 

that self-insurance reduces risk, whereas self-protection does not. 

Several empirical studies have used deductible level choices in market insurance as a way 

to infer the risk appetite of individuals (e.g., Cohen and Einav 2005, Sydnor 2006). These studies 

have concluded that the higher the risk aversion, the lower is the deductible value chosen. As 

suggested by Dionne and Eeckhoudt (1985), it is reasonable to state that people who have high 

risk aversion would invest in self-insurance, and as a result, their risk would be reduced, as 

determined by Briys and Schlesinger (1990). This reduction in risk would then be revealed by 

higher market insurance deductible levels that these people hold, as argued by Sydnor (2006). 

Following this deductive reasoning, we hypothesize that 

H1: People who live in a retrofitted home hold higher market insurance deductible levels. 

That is, these two risk management measures are substitutes (this hypothesis is used an 

underlying logic for some of the remainder of the hypotheses) 
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H2: People who worry more about hurricanes hold a lower market insurance deductible 

level. 

3.3.2. Prior Hazard Experience  

Using data from individuals whose standard homeowners insurance excludes wind, 

Petrolia et al. (2013) found that past wind damage experience leads to a higher likelihood of 

buying wind insurance. Baumann and Sims (1978) found that people who had previously 

experienced flood damage were more likely to buy flood insurance. Krantz and Kunreuther 

(2007) and Siegrist and Gutscher (2008) determined that prior hazard experience affects risk 

perception, and the latter attribute this phenomenon to the negative affect that the experience 

creates.  

At least two plausible explanations can be drawn from these findings. The first is that if 

people with prior hazard experience have high risk perceptions, then they would most likely 

choose lower deductible values. However, this reasoning does not take into account the role of 

mitigation. A second logical explanation is that people who have experienced a hazard would 

have already undertaken mitigation measures to lower their risk. Petrolia et al. (2013) and 

Peacock (2003), using survey data, found that those who have experienced hurricanes in the past 

have undertaken more mitigation, which lends support to the second explanation. Following this 

analysis, we hypothesize that 

H3: People who have had more hurricane experience hold higher market insurance 

deductible levels. 

3.3.3. Proximity to Hazard 

Burrus et al. (2002) argue that if hurricane-strike probabilities increase, a wealth-

maximizing homeowner would drop insurance and invest in mitigation, which suggests that as 
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risk increases, there is a shift from market insurance to self-insurance. Michel-Kerjan and 

Kousky (2010) found that more homeowners in flood-prone areas chose a higher deductible 

value of flood insurance, even though approximately 80% of all the people who bought flood 

insurance chose the lowest available level. If we look at this phenomenon solely through a risk-

perception prism, it seems an anomaly because it implies that the risk perception of people is 

lower compared to their risk exposure. Michel-Kerjan and Kousky (2010) suggest that this could 

be a result of a cost-minimization strategy by homeowners who live in high-risk areas, in 

response to being required by law to buy flood insurance. This cost-minimization argument can 

be extended to standard homeowner insurance deductible decision-making, as premiums 

associated with low deductibles are expensive in high-risk areas, and this insurance is usually 

required for mortgage purposes. It is also possible that people who live in high-risk areas 

mitigate more and, hence, would tend to choose higher deductible values. Following this 

reasoning, we hypothesize that 

H4. People who live in high-risk areas hold higher market insurance deductible levels. 

3.3.4. Number of Children 

Carson et al. (2013) found that the likelihood to mitigate is positively related to the 

number of children in a household. This is explained by a strong desire to protect young children 

from harm and is in line with Kunreuther and Kleffner’s (1992) argument that people mitigate 

not only to reduce financial losses but also to prevent injury and death. Using these studies and 

assuming that market insurance and self-insurance are substitutes (as stated in Hypothesis 1), we 

hypothesize that 

H5. Households with more children hold higher market insurance deductible levels. 
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3.3.5. Education 

Ge et al. (2011), using household survey data from Florida, found that a higher level of 

education is associated with lower risk perception. Botzen et al. (2009), using survey data on 

approximately 1,000 homeowners in the Netherlands, came to the same conclusion. Nonetheless, 

some studies have not found a relationship between education and risk perception (e.g., Bubeck 

et al. 2012). Burrus et al. (2008) found that highly educated people undertake more mitigation. 

Again, assuming that market insurance and self-insurance are substitutes (Hypothesis 1), we 

hypothesize that 

 H6. People with higher education hold higher market insurance deductible levels. 

3.3.6. Income 

The effect of income on risk perception seems to be similar to the effect of education. For 

example, both Ge et al. (2011) and Botzen et al. (2009) found that higher income is associated 

with lower risk perception. In spite of this inverse relationship between income and risk 

perception, several studies have found higher income to be associated with mitigation (e.g., 

Browne and Hoyt 2000, Landry and Jahan-Parvar 2011, Burrus et al. 2008). The reason could be 

that those with higher income invest in mitigation and, hence, exhibit lower risk aversion, which 

is in line with Briys and Schlesinger’s (1990) explanation of the relationship between mitigation 

and risk aversion. Both the low risk aversion and the higher probability of undertaking mitigation 

lead to less dependence on insurance, as explained by Dionne and Eeckhoudt (1985) and Ehrlich 

and Becker (1972), respectively. Nonetheless, some studies such as that of Burrus et al. (2008) 

have not found the relationship between income and mitigation to be significant. In this analysis, 

we hypothesize that 

H7. People with higher income hold higher market insurance deductible levels. 
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3.3.7. Race 

Several studies have found that minorities have high risk aversion but that this does not 

necessarily translate to undertaking mitigating action (Fothergill et al. 1999, Peacock 2003, 

Lindell and Hwang 2008, Ge et al. 2011). For example, Peacock (2003) found that African 

Americans/Blacks were less likely to install wind shutters, compared to other races. Ge et al. 

(2011) argue that ethnic minorities have historically had less access to loans, which can be 

important for financing expensive mitigation measures. Considering these results and assuming 

that market insurance and self-insurance are substitutes (Hypothesis 1), we state the following 

hypothesis: 

H8. African Americans/Blacks hold lower market insurance deductible levels. 

3.3.8. Number of Adults 

Bubeck et al. (2012) discuss how, after weighing the threat they face, people evaluate the 

benefits of mitigation actions and one’s ability to carry them out. The authors refer to one’s 

ability to successfully undertake a protective action as “self-efficacy” and found that high self-

efficacy leads to taking more protective action. We argue, based on this, that having more adults 

in a household increases the probability of the household’s self-efficacy and undertaking 

protective action. Assuming that market insurance and self-insurance are substitutes (Hypothesis 

1), we hypothesize that 

H9. Households with more adults hold higher market insurance deductible levels. 

3.4. METHOD 

3.4.1. Data Collection 

A survey of households was conducted by the Disaster Research Center (DRC) of the 

University of Delaware, during the fall of 2012 and spring of 2013. The survey has six modules: 
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(i) Introduction and screening module, which includes questions that were used to determine 

eligibility; (ii) Background information module, covering questions about physical 

characteristics of the building, type of mitigation undertaken, and insurance policy bought; (iii) 

Risk perception and hazard experience module, which asks residents about their level of worry 

and emotion towards hurricanes and floods as well as the number of hurricanes and the levels of 

prior damage that they have experienced; (iv) Protective action module, with questions aimed at 

understanding people’s intentions to insure and/or mitigate in the future; (v) Utility module, with 

hypothetical lottery questions that help to understand people’s risk appetite; and (vi) Socio-

demographic module, covering data such as age, income, and education.  

The survey was conducted over the phone and took 27 minutes, on average, to complete. 

Listed household numbers (50%), random digit dial landline numbers (25%), and random digit 

dial cell phone numbers (25%) were sampled from 49 counties
2
 in the eastern half of North 

Carolina. The samples were purchased from Genesys, a third party sample provider, and a 

computer-assisted telephone interviewing (CATI) system was used to administer the survey. 

Participants who completed the survey were entered into a drawing, as an incentive, with a 1 in 

100 chance of winning an iPad mini. There are 358 observations, with an overall cooperation 

rate of 23%. 

The analysis is limited to single family and duplex homes, as the structural retrofit 

measures in this analysis are not applicable to mobile or manufactured homes. Renters were 

removed from the analysis, as they do not make mitigation and insurance related decisions. 

Similarly, residents who indicated the house as their secondary residence were removed, as they 

                                                 
2 Beaufort, Bertie, Bladen, Brunswick, Camden, Carteret, Chowan, Columbus, Craven, Cumberland, Currituck, 

Dare, Duplin, Edgecombe, Franklin, Gates, Granville, Greene, Halifax, Harnett, Hertford, Hoke, Hyde, Johnston, 

Jones, Lee, Lenoir, Martin, Moore, Nash, New Hanover, Northampton, Onslow, Pamlico, Pasquotank, Pender, 

Perquimans, Pitt, Richmond, Robeson, Sampson, Scotland, Tyrrell, Vance, Wake, Warren, Washington, Wayne, 

Wilson. 
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are not directly affected by hurricane events. In addition, only respondents with standard 

homeowners insurance were kept in the analysis, as the objective is to look at variation in 

deductible choices, and it would be difficult to compare results from separate policies, such as 

the National Coastal Property Insurance Pool (CPIP). The final data comprise 264 observations. 

Nonetheless, many respondents only partially answered the survey questions, and hence, the 

final number of valid observations depends on the variables kept in the final model. Figure 3-1 

shows the distribution of the survey respondents in the study area who gave their full addresses. 

 
Figure 3-1. (a) Study area comprising the eastern half of the state and (b) geographic distribution 

of the survey respondents who gave their full addresses.  

 

3.4.2. Variables 

In the survey, the deductible values reported by respondents ranged from $100 to $5000. 

A total of 14 deductible levels were reported, and given the limited data set available, it would be 

Virginia 

South Carolina 
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impossible to estimate a parameter for each of these levels. For this reason, the deductible levels 

were grouped into three categories (Y): $100-$500, $1000-$1500, and $2000-$5000. 

The respondents were asked if, to the best of their knowledge, their homes had a specific 

structural retrofit feature that would protect it against wind hazard. The binary variables used in 

the analysis represent the following five protective features: (i) high-wind shingles and a 

synthetic water barrier on the roof (X1), (ii) spray adhesive applied to the underside of the roof in 

the attic (X2), (iii) a hurricane strap to improve the connection between the roof and walls (X3), 

(iv) hurricane shutters (X4), and (v) impact-resistant windows and doors (X5). 

The level of worry (X6) about hurricanes is measured on a Likert scale of 1 to 5, where 1 

means “never worry” and 5 means “constantly worry”. Due to sample size limitations and the 

statistical significance of the results, this was collapsed into a binary variable, with responses 1-3 

and 4-5 grouped in different categories. Proximity to hazard (X7) is represented as a binary 

variable by categorizing respondents based on their eligibility for the CPIP. This variable serves 

as a proxy to determine how close to the ocean respondents live.  

Education (X8) and income (X9) were measured in nine and eight categories, respectively. 

The education categories range from elementary school to advanced graduate work, whereas the 

income categories range from less than $15,000 to more than $250,000. In this analysis, due to 

data sample size limitations and the nominal nature of the data, we use a cutoff point to see if 

these variables are significant beyond a certain level. For education, completion of a four-year 

degree and beyond is considered one category, and income of $75,000 or more is considered a 

separate category. Similarly, race is converted into a dichotomous variable representing African 

Americans/Blacks and others (X10).  
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Finally, the numbers of prior hurricanes experienced (X11), number of children (X12), and 

number of adults (X13) were measured as continuous variables. Tables 3-1 and 3-2 show the 

descriptive statistics of the categorical and continuous variables of the 264 observations, 

respectively. 

Table 3-1. Descriptive statistics of categorical variables 

  Freq. Perc.   Freq. Perc. 

Y - Deductible Choice Category 
 

X7 - Proximity to hazard 
 

$100 - $500 83 31.4% Eligible for CPIP 59 22.3% 

$1000 - $1500 74 28.0% Not eligible for CPIP  205 77.7% 

$2000 - $5000 26 9.8% Missing 0 0.0% 

Missing 81 30.7% X8 - Education 
 

X1 - High-wind shingles 
 

Elementary school only 1 0.4% 

Have 86 32.6% Some high school, did not finish 8 3.0% 

Do not have 99 37.5% Completed high school 35 13.3% 

Do not know 70 26.5% Some college but didn't finish 35 13.3% 

Missing 9 3.4% 2-year college degree/A.A/A.S. 23 8.7% 

X2 - Spray adhesive on roof 
 

4-year college degree/B.A./B.S. 65 24.6% 

Have 36 13.6% Some graduate work 9 3.4% 

Do not have 138 52.3% Completed masters or prof. degree 46 17.4% 

Do not know 80 30.3% Ph.D. 11 4.2% 

Missing 10 3.8% Refused 6 2.3% 

X3 - Hurricane strap 
 

X9 - Income 
 

Have 49 18.6% Less than $15,000 6 2.3% 

Do not have 162 61.4% $15,000 to $35,000 16 6.1% 

Do not know 43 16.3% $35,000 to $50,000 25 9.5% 

Missing 10 3.8% $50,000 to $75,000 40 15.2% 

X4 - Hurricane shutters 
 

$75,000 to $100,000 34 12.9% 

Have 18 6.8% $100,000 to $150,000 41 15.5% 

Do not have 232 87.9% $150,000 to $250,000 12 4.5% 

Do not know 4 1.5% Over $250,000 12 4.5% 

Missing 10 3.8% Do not know 8 3.0% 

X5 - Impact-resistant windows and doors 
 

Refused 45 17.0% 

Have 94 35.6% Missing 25 9.5% 

Do not have 132 50.0% X10 - Race 
 

Do not know 28 10.6% White 183 69.3% 

Missing 10 3.8% African American/Black 24 9.1% 
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X6 - Worry about hurricanes 
 

Asian 2 0.8% 

1 Never worry 53 20.1% American Indian 4 1.5% 

2 77 29.2% Pacific Islander 8 3.0% 

3 75 28.4% Multi-Racial 3 1.1% 

4 28 10.6% Other 15 5.7% 

5 Constantly worry 19 7.2% Refused 25 9.5% 

Missing 12 4.5% Missing 62 23.5% 

 

Table 3-2. Descriptive statistics of continuous variables  

  Observation Missing Mean Std. Dev. Median 

X11 - Number of hurricanes experienced 235 29 5.87 6.25 4 

X12 - Number of children 233 31 0.48 0.91 0 

X13 - Number of adults 233 31 2.03 0.81 2 

 

3.4.3. Analytical and Solution Procedures 

The hypotheses stated in Section 3.3 are tested using an ordered logistic model in 

STATA-13, a data analysis and statistical software. Because deductible levels are discrete and 

ordered, we model the choices as being determined by utility thresholds. The utility U

determines a person’s opinion and is given as a combination of observed and unobserved 

components, as in Equation 3-1 (Train 2003). In this equation, x represents the variables, and   

and k represent the parameters to be estimated. In our analysis, there are three categories of 

deductibles: $100-$500, $1000-$1500, and $2000-$5000; hence, there are two cutoff points: 

k1and k2. The probability of choosing the lowest deductible is shown in Equation 3-2. The 

probability of choosing the second lowest category of deductible can be calculated by taking the 

difference in probabilities, as shown in Equation 3-3. The same analogy can be extended to 

calculate the probability of choosing the other deductible category. The second reason for using 

an ordered logit model instead of, for example, an ordered probit model is that the ordered logit 

model allows easy interpretation of the marginal effects of the variables by taking the exponent 
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of the coefficients. The model was built by adding and dropping variables based on p-value. The 

final model consists of all variables that are significant at a p-value of 0.1. 
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3.5. RESULTS 

Proximity to hazard (X7), income (X9), level of worry (X6), number of children (X12), and 

the first four structural retrofit features––(i) high-wind shingles and synthetic water barrier on the 

roof (X1), (ii) spray adhesive applied to the underside of the roof in the attic (X2), (iii) hurricane 

strap to improve the connection between the roof and walls (X3), and (iv) hurricane shutters 

(X4)––were not significant in the analysis. The results of the analysis are shown in Table 3-3. 

The final model is based on 140 observations, as listwise deletion was employed to handle 

missing data. The signs of all the coefficients are in line with the hypotheses given in Section 

3.3. Residents with impact-resistant windows and doors (X5) tend to choose higher deductibles, 

compared to those who live in houses with no such protective features. Similarly, households 

with more adults (X13), higher education (X8), and those who have experienced many hurricanes 

(X11) in the past seem to choose higher deductible values. On the other hand, African 

Americans/Blacks (X10) preferred lower deductibles. Although the signs give a sense of the 

general direction of the choices, the marginal effects of these variables on deductible choices 

actually show the magnitude of these variables’ effects on the probability of choosing one of the 

deductible levels. 
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Table 3-3. Ordered logit model results  

  Coef. Std. Err. z P>|z| 

X5 - Impact-resistant windows and doors 0.79 0.35 2.24 0.025 

X11 - Number of hurricane experiences 0.06 0.03 2.19 0.029 

X8 - Education (At least 4-year degree) 0.58 0.35 1.67 0.095 

X13 - Number of adults 0.56 0.23 2.46 0.014 

X10 - Race (African American/Black) -1.47 0.67 -2.19 0.028 

 

The marginal effect of having impact-resistant windows and doors is shown in Figure 3-

2. The figure shows changes in the probabilities of choosing different deductible levels as a 

result of having impact-resistant windows and doors, while keeping all other variables at their 

mean values. The change in probabilities is quite evident, with a drop in the probability of 

choosing the lowest deductible category and an increase in the probabilities of choosing the two 

higher deductible categories. With impact-resistant windows and doors, the probability of 

choosing a deductible level of between $100 and $500 drops from 54% to 36%, and the 

probability of choosing the deductible category of $1000-$1500 increases from 35% to 42%. The 

greatest gain in probability is for the highest deductible category of $2000-$5000, which 

increases from 11% to 21%.  

The number of hurricanes experienced seems to have a substantial effect on deductible 

choice. The results of the analysis show that as people experience more hurricanes, they tend to 

choose higher deductibles. Figure 3-3 shows the relationship between the number of hurricanes 

experienced and the probability of deductible choice. The probability of choosing the lowest 

deductible category continuously decreases as the number of hurricanes experienced increases. 

For the first 20 hurricane events, the probabilities of choosing the two higher deductible 

categories increases, but as the number of hurricanes goes beyond 20, the only increasing 

probability is that of the highest deductible category. For example, if one has experienced 25 

hurricanes as opposed to five hurricanes, the probability of choosing a deductible level between 



 

95 

$100 and $500 is lower by 24%, whereas the probabilities of holding the $1000-$1500 and 

$2000-$5000 deductibles are higher by 5% and 19%, respectively.. 

 

Figure 3-2. Deductible choice probability changes due to having impact-resistant windows and 

doors 

 

 

Figure 3-3. The effect of prior hurricane experience on homeowners’ insurance deductible 

choices 
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The marginal effect of the number of adults was also calculated. The more adults in the 

household, the more likely it is that higher deductible levels are chosen. For example, for a 

household with four adults, the probabilities of choosing deductible categories of $1000-$1500 

and $2000-$5000 are 12% and 23% higher, respectively, than those of a household with just one 

adult. On the other hand, the probability of choosing the $100-$500 deductible category is lower 

by 35%. Figure 3-4 shows the relationship between the number of adults and the probability of 

choosing different deductible levels.   

 
 

Figure 3-4. The effect of the number of adults in a household on homeowners’ insurance 

deductible choices 
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level between $100 and $500, compared with the rest of the respondents. Figures 3-5 and 3-6 

show the effects of education and race on homeowners’ insurance deductible choices, 

respectively. 

 

Figure 3-5. The effect of education on homeowners’ insurance deductible choices 

 

 

 

Figure 3-6. The effect of race on homeowners’ insurance deductible choices 
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3.6. DISCUSSION 

This analysis reveals that having impact-resistant windows and doors is associated with 

choosing higher deductible values (Hypothesis 1). This relationship is in line with Ehrlich and 

Becker’s (1972) finding that self-insurance and market insurance are substitutes.  

Installing impact-resistant windows and doors on a typical single-family home could cost 

on the order of $15,000. Given that this mitigation measure is expensive, our results are in line 

with those of Carson et al. (2013), who found that people hold high deductibles if they have 

invested in high expenditure mitigation. Burrus et al. (2008) also found that mitigation increases 

as homeowners’ deductibles increase.  

The substitution between self-insurance and market insurance implies that there is a 

budget constraint, and spending a substantial amount of money on mitigation would mean that 

there is less for insurance purchases. For example, Aseervatham et al. (2014), using national and 

state level data, found that in the aftermath of flood events, people changed their homeowners-

insurance deductible to higher levels and used the savings to buy flood insurance.  

Several studies, such as those of Krantz and Kunreuther (2007), Hertwig et al. (2004), 

Brilly and Polic (2005), and Siegrist and Gutscher (2008), have found that the number of hazards 

experienced leads to an increase in risk aversion, which, along with other factors, might lead to 

taking protective action. In this analysis, we found that people who have experienced more 

hurricanes held higher deductible values (Hypothesis 3), which translates to having lower risk 

aversion. A plausible way of explaining our findings is that people who have experienced 

hurricanes might actually be the ones who have invested in mitigation (e.g., Petrolia et al. 2013, 

Peacock 2003) and, hence, have lower risk aversion, which is evident by their high deductible 
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choices. The inability to directly capture this temporal relationship is the major shortfall of using 

cross-sectional data. 

The number of adults in the household was found to have a significant effect on the 

deductible choice (Hypothesis 9). The findings show that households with more adults feel less 

need to rely on insurance, which suggests that they are more able to cope with or avoid the risk 

(Bubeck et al. 2012). Our results show that African Americans/Blacks seem to choose lower 

deductibles, compared to others (Hypothesis 8). This result signifies the importance of 

addressing the problem of access to loans for expensive mitigations, which has been discussed in 

previous studies (e.g., Ge et al. 2011). Finally, having at least a four-year degree is associated 

with holding a higher deductible value (Hypothesis 6). Several studies have also found education 

to be positively associated with mitigation (e.g., Burrus et al. 2008). Hence, this result supports 

the hypothesis that self-insurance and market insurance are substitutes. 

In this analysis, proximity to hazard, income, level of worry, number of children, and 

four of the five structural retrofit measures were not significant. It is important to note that this 

does not mean that these variables are not influential factors but only shows the limitation of the 

data set. 

3.7. CONCLUSION 

The results of this analysis show that certain structural retrofit measures and deductible 

choices are substitutes, and this has substantial policy implications in terms of setting appropriate 

premium and deductible values. For example, subsidized premiums reduce the incentive to 

mitigate because a subsidy allows people to afford low deductible policies, and most mitigation 

measures do not reduce damage costs to levels below subsidized deductibles (Burrus et al. 2002). 

Several other studies have found similar results: Kunreuther and Kleffner (1992) show that if 
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homeowners are fully insured, they are less willing to voluntarily reduce their risk; Kleffner and 

Kelly (2001) show that homeowners invest less in mitigation if premiums are not risk-based. It is 

important to note that people have a general tendency to choose low deductibles, even in 

unsubsidized markets (e.g., Cohen and Einav 2005). Underpricing premiums, in addition to this 

general tendency, leads people to choose low deductible policies and, hence, less mitigation. The 

results from this article suggest not only premiums should be risk-based but that policies with 

high deductibles should be readily available so that consumers optimally invest in both self-

insurance and market insurance. 
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