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I analyze the price informativeness of three informed parties’ actions from 1994-2006. 

Consistent with their disparate environments, I find that insiders are more informative 

at longer (12-month) versus shorter (6-month) horizons, while analysts and transient 

institutions are only informative at shorter horizons. When inter-party disagreement 

exists, a party’s informativeness is not only a function of its own strength, but also the 

collective weakness of its counterparts. 

 

Using FERC, PIN, synchronicity and industry delay measures as proxies for a firm’s 

informational environment, I find that while insider signals are unconditionally most 

informative, they are only predictive of future returns when prices are inefficient with 

respect to firm-specific information. Conversely, analysts appear unable to take 

additional advantage of inefficient firm-specific environments, and only appear to be 

predictive of future returns when stock prices are uninformed with respect to industry-

specific information.  

 

Finally, I find that the mandate of Reg FD appears to increase the power of insiders’ 

actions, while decreasing those of their informed counterparts. This evidence suggests 

a decreased level of information asymmetry between individuals and professional 

investors, but not a lower aggregate of level of information asymmetry across the 

firm’s informational environment. 
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I.  Introduction 

A common stock-screening strategy, often referred to as “following the smart 

money”, consists of following the actions of professionals, particularly the trading 

behavior of insiders and transient institutions, and the recommendations of analysts 

(Damodaran, 2003).1 Prior research documents that the actions of these informed 

agents predict future returns.2 Research focused on these information intermediaries 

has also documented the economic incentives and behavioral biases of each group.3 

My study bridges these two areas of the literature to address the following questions: 

(1) How do the distinct environments of these groups affect the horizons over which 

their actions are most informative? (2) Given that all three parties are sophisticated 

and generally informative of future stock returns, what happens when there is a lack of 

consensus? Which signals remain informative of future stock returns, and over what 

horizons? (3) How do different information environments affect the hierarchy of 

informativeness? 

Past research shows that the different pressures faced by various informed 

agents (e.g. incentives to generate trading commissions, incentives to avoid fund 

outflows, fear of litigation risk) lead to predictable differences in preferences for 

particular firm characteristics. The three groups of informed agents in my sample, 

based on 52 quarters of data from 1994 through 2006, exhibit preferences and 

investment philosophies consistent with past research. Analysts and institutions act as 

                                                           
1  Some recent media mentions include: Business Week (2007) and MSN Money (2007) 
http://www.businessweek.com/investor/content/jun2007/pi20070607_123598.htm 
http://moneycentral.msn.com/content/P119359.asp 
2  Examples of literature focusing on the informativeness of informed signals on future stock returns 
include Rozeff and Zaman (1998), Piotroski and Roulstone (2004), Ke and Petroni (2004), Collins, 
Gong and Hribar (2003), Yan and Zhang (2007), Gompers and Metrick (2001). 
3 Examples of literature focusing on the various incentives faced by analysts, institutions and insiders 
include Michaely and Womack (1999), Lin and McNichols (1998), Huddart, Ke and Shi (2007), 
Lakonishok et al (1991), and Shleifer and Vishny (1997). 
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momentum chasers, while insiders act as contrarians. Because the momentum 

phenomenon occurs over a three to twelve month period (Jeegadeesh and Titman, 

1993), and analysts and institutions appear unable to take advantage of a firm’s 

momentum when it is in its early stages, I predict that the signals of analysts and 

institutions will be strongest in predicting stock returns over shorter time horizons 

(three to six months). Conversely, because insiders face litigation risks for trading in 

advance of material news disclosures and are unable to profit from round-trip trades 

within a six month period due to regulatory constraints, I predict that the strength of 

the insider signal will grow with the passing of time, and be at its peak at the 12 month 

time frame (versus three to six months). Results are consistent with predictions for all 

three groups.  

To answer the second question, I compare the informativeness of each party’s 

signal under varying circumstances of disagreement and create a hierarchy based on 

each signal’s ability to deviate from the consensus of the other two parties and remain 

price informative. While insiders possess firm-specific private knowledge, insider 

signals may not always dominate. For example, insider sells tend to be less 

informative, as sales may occur due to rebalancing and liquidity reasons. In addition, 

because insiders must time their trades to minimize the probability of litigation risk, 

their trades are likely to be less informative at shorter horizons, and must be weighed 

against the signals from the two countervailing forces (e.g. analysts and institutions) at 

their optimal horizons for informativeness.  

When inter-party disagreement is high, my results indicate that insiders, when 

buying at the 12 month horizon, are the only group able to disagree with both of its 

counterparts and remain as  informative as a full consensus buy signal. In all other 

scenarios, the disagreeing signal is less informative of future stock returns than a 

consensus signal. The largest attenuations of signal strength come from analysts and 
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institution sell-signals over the 12-month horizon. These results are likely to not only 

be caused by analysts and institutions having weaker signals at the 12 month horizon, 

but also because they are disagreeing with the most powerful signal, the insiders’ buy, 

at its preferred horizon.  When comparing each agent’s buy or sell action across its 

own respective time windows, the attenuation of signal strength is smallest for insider 

buys at 12 months, and for analyst and institution buys at 3 and 6 months. These 

results are consistent with both the signal strength of the deviating agent and the signal 

strength of the two counterparts playing a role in determining informativeness under 

conditions of disagreement. Overall, results suggest the following hierarchy of signals 

among the three groups: insiders’ actions are, on average, most informative of future 

prices, followed by the actions of analysts and finally, institutions.  

To address the third question, I analyze how the degree of informativeness 

between analysts and insiders is affected by different informational environments.  I 

use the probability of informed trade (PIN), future earnings response coefficient 

(FERC), industry delay (IDELAY), and synchronicity (SYNCH) as different proxies 

that capture various aspects of the firm’s informational environment. Overall, my 

results from these analyses indicate that the informativeness of insiders (analysts) is 

conditional on the degree to which firm-specific (industry-specific) information has 

already been impounded into prices. For example, when PIN is low and FERC is high, 

i.e. when prices are more efficient with regards to firm-specific information, the 

insider signal becomes uninformative for predicting future stock prices changes, even 

at the 12-month horizon.  Conversely for analysts, when IDELAY is high, i.e. 

industry-level information is experiencing slow diffusion into prices, the degree to 

which analysts’ actions are informative of future prices increases significantly at all of 

the measured time horizons. 
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Finally, I examine the effect of the passage of Regulation Fair Disclosure (Reg 

FD) on the relative informativeness of each agent’s actions. Given that Reg FD has 

been shown to block private information flows from insiders to other parties prior to 

official disclosure dates, I hypothesize that the reduced quantity of management 

disclosures will hinder analysts’ and institutions’ ability to analyze and convert public 

information into an informational advantage, thereby attenuating each of their signals. 

Results generally confirm these predictions. Consistent with the facts that: (1) a 

lowered frequency of disclosures may decrease the firm-specific informational 

environment and (2) results of my prior analyses indicating that the insider’ signal is 

strongest when firm-specific information is most weakly impounded into prices, I find 

that the predictive ability of the insider signal is amplified in the post Reg FD era, 

raising question as to whether Reg FD has truly reduced the overall level of 

information asymmetry within the marketplace.  

The remainder of my paper is structured as follows. Section II presents a brief 

overview of prior literature regarding financial analysts, corporate insiders, and 

institutional investors as information intermediaries. Section III develops predictions 

about each agent’s ability to predict returns across different horizons. Section IV 

discusses the methodology of the data sources used, sample statistics, and the 

construction of each group’s signal. Section V discusses the results of each agent’s 

informativeness across the various horizons. Section VI peruses the differences in 

informational environments that affect signal predictability. Section VII examines the 

effects of Regulation Fair Disclosure on the signal informativeness of the three parties. 

Section VIII concludes and provides avenues for future research. 
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II. Prior Literature on Institutional Background and Incentives of Informed 

Agents 

 

II.A. Financial Analysts 

Currently, over 4,000 sell-side financial analysts are employed by investment 

banks, brokerage firms, and research boutiques. Analysts assist the price discovery 

process by assimilating information from management guidance, conference calls, 

macro-economic and industry-level analyses, and the analysis of financial statements. 

Since analysts are generally assigned to cover specific sectors or industries, they 

ultimately develop a deeper knowledge of industry and macro-economic forces, 

relative to their counterparts. Analysts then disclose their opinions of a specific firm 

via reports that include price targets, earnings forecasts, and buy/sell 

recommendations.  The information in these reports is then consumed by both 

individuals and institutional investors when making investment decisions. While 

analyst forecasts and buy/sell recommendations have been shown to be value-relevant 

(Brown et al, 1987) and informative in predicting future earnings and stock prices, 

their actions have also been shown to be biased in certain circumstances due to a 

combination of incentives and heuristics. The biases in analyst actions have been 

documented in prior research, and in certain circumstances are likely to hinder their 

ability in predicting future returns.  

For example, analysts have been shown to rely on heuristics, rather than the 

magnitude of market mispricing when issuing stock recommendations.  Specifically, 

Jeegadeesh et al. (2004) show that the value relevance of analysts’ recommendations 

is primarily driven by their tilt towards stocks with strong future growth prospects, 

prior earnings and returns. Bradshaw (2004) shows that long-term growth (LTG) and 
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price to earnings-growth (PEG) multiples projections are far stronger determinants of 

an analyst’s recommendation signal than the difference between a Residual Income 

Model (RIM)-derived intrinsic value and price, despite the fact that the LTG based 

method is least predictive of future abnormal returns.  

Sell-side analysts also face numerous conflicts of interest that can affect the 

accuracy of their decisions. Michaely and Womack (1999) and Lin and McNichols 

(1998) show that analysts covering firms from which they also earn revenues via 

investment banking tend to be overoptimistic in their buy/sell recommendations 

relative to non-affiliated analysts for firms which are undergoing equity offerings, a 

finding experimentally supported by Hunton and McEwen (1997). By nature, firms in 

the underwriting process are characterized by high levels of expected future growth, 

and also add to the analysts’ tilt towards growth firms.  Further, prior papers document 

that, in addition to accuracy, the objective function of analysts includes increasing 

revenues for their respective brokerages through commissions from increased levels of 

trade. Irvine (2000) and O’Brien and Bhushan (1990) both show that increased levels 

of analyst coverage result in higher levels of trading volume. Malmendier and 

Shantikumar (2007) document that stock recommendations are strongly followed by 

small traders, and that analysts are overly optimistic in their attempts to generate 

increased trade while earning favor with management. 

By and large, the literature on analysts’ behavior documents (1) their 

predilection towards heuristic-based valuations, particularly measures related to future 

growth, (2) the fact that a primary source of analyst generated revenues stems from 

increased trading commissions, and (3) a conflict of interest with investment-banking 

related equity offerings (coupled with the fact that the majority of firms undergoing an 

equity offering are growth firms).  
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II. B. Corporate Insiders 

Corporate insider trading occurs when officers, directors, and employees who 

own more than ten percent of their company’s shares, buy or sell stock in their own 

firm. Due to their internal relationship with the firm, these individuals are privy to 

value-relevant information relative to outsiders, and are thereby advantaged in 

estimating the firm’s intrinsic value (Piotroski and Roulstone, 2005). In addition, 

insiders possess the unique ability to use earnings management to optimally time 

disclosures around their transactions to avoid precipitous drops in stock prices. 

Without constraints, policy-makers have realized that the firm-specific 

informational advantages of insiders (e.g. advance knowledge of material events such 

as mergers and acquisitions, joint ventures, and earnings announcements) would allow 

them to expropriate wealth from other parties.4 Thus, regulators have prohibited trade 

on material non-public information (SEC Rule 10b5-1).  In addition, litigators have 

levied harsh penalties on insiders convicted of exploiting the insider information to 

their financial benefit. Thus, insiders making trading decisions are faced with the 

trade-off between taking advantage of private information and the possibility of 

litigation, reputation, and employment costs.   

Laws designed to constrain insiders from taking advantage of exclusive 

information appear to be at least partially successful. Huddart, Ke, and Shi (2007), 

find that insiders trade to avoid risks associated with regulatory actions, shareholder 

class-action suits, and adverse publicity, often leaving profitable insider trades on the 

table.  If insiders do attempt to act on their firm-specific knowledge, they must do so 

well in advance to avoid scrutiny from litigators.  Ke, Huddart, and Petroni (2003) 

show that insiders sell shares between 3 and 9 quarters prior to a break in a long-term 

                                                           
4 While there have been heated debates on whether the legalization of insider trading would lead to 
enhanced market efficiency and social welfare, I have omitted such discussions within this paper as 
they are beyond the scope of my research.  
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earnings growth streak to avoid scrutiny from the SEC.  By selling so far in advance of 

bad news, insiders forgo the additional momentum profits garnered by earnings 

growth prior to the break of the streak.  

However, insiders’ superior knowledge of future cash flows and earnings 

relative to non-insiders allows them to profit when markets have overreacted to stale 

information, without worries of violating insider trading rules. This argument is 

consistent with prior research documenting the profitability of the contrarian 

investment style of insiders (Rozeff and Zaman, 1998; Lakonishok and Lee, 2001).   

Overall, while prior literature documents that insiders possess specific private 

and value-relevant knowledge about their own firm, insiders are forced to weigh the 

benefits of taking advantage of their inside information against the costs of increased 

scrutiny from third parties such as regulators and litigators. Prior research has shown 

that insiders appear to handle this trade-off in part through the timing of their actions 

by either (1) trading far in advance of significant news events, or (2) trading as 

contrarians following a market overreaction.  

 

II.C. Transient Institutions 

Institutional investors include investment companies, mutual funds, 

brokerages, insurance companies, pension funds, investment banks and endowment 

funds. In general, these firms earn their living by managing large sums of capital for 

investors and taking a percentage of the total assets under management, or a 

percentage of returns over a given benchmark. Unlike analysts and insiders, 

institutions do not possess an explicit informational advantage that they can leverage 

to inform future prices. Thus, in order to maximize their fund’s performance, they 

combine the informational advantages of both insiders and analysts with their own 

analyses. They do this by augmenting their internal research with external reports from 
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sell-side analysts, while also attempting to earn favor from upper-level management 

that could result in exclusive access to firm-specific information.  

Overall, prior literature documents that the actions of institutional investors 

have predictive power for future returns, consistent with these agents being informed 

traders. Gompers and Metrick (2001) show that the quarterly level of aggregate 

institutional ownership is associated with future stock returns. While they attribute this 

in large part to demand shocks resulting from changes in ownership composition, Yan 

and Zhang (2007) show that the predictive power of total institutional ownership is 

driven entirely by changes in short-term institutional ownership. Their study is 

consistent with institutions driving returns due to them being informed investors, and 

not because of the demand shock as posited by Gompers and Metrick.  

Recent papers focusing on the behavior of institutional investors use Bushee’s 

(1998, 2001) classification techniques, which characterize institutions based upon their 

level of portfolio diversification, turnover, and trading sensitivity relative to current 

earnings. Each institution is classified as either a “transient”, “dedicated”, or “quasi-

indexing” institution.  Transient institutions are characterized as typically holding 

stakes in numerous firms, trading frequently, and often basing their trades on current 

earnings or components of such earnings. Of the three institutional classes, they are 

most likely to search for private information, as dedicated and quasi-indexing 

institutions have different primary objectives, and hence have little incentive to search 

for private information. Because this paper examines the informativeness of 

institutions’ trading decisions, it focuses solely on transient institutions, henceforth 

referred to as “institutions.”  

Prior literature regarding the actions of transient investors has shown them to 

be harbingers of both future earnings and abnormal stock returns. Ke and Petroni 

(2004) show that these institutions appear able to predict when a firm will have a 
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break in a string of quarterly earnings increases, and trade at least one quarter prior to 

this event to avoid the upcoming negative stock returns associated with the disclosure 

of the bad news. Collins, Gong, and Hribar (2003) find that transient institutional 

investors exploit the mispricing of accruals to earn abnormal returns. Similarly, Ke 

and Ramalingegowda (2005) document that transient institutions trade to exploit post 

earnings announcement drift, and document arbitrage trades that yield buy and hold 

annualized abnormal returns of 22%.  

Despite being generally informed, institutions face constraints that can create 

preferences for specific firm characteristics, prohibiting them from fully utilizing their 

informational advantages and from optimizing their investment decisions to maximize 

profits.  For example, the clients of institutional investors often have little or no 

knowledge about capital markets. The lack of market knowledge of clients providing 

institutional investors with capital can result in agency issues that can hurt institutions 

when they most aggressively attempt to exploit market mispricings. For example, if an 

investment manager were to purchase undervalued firms in an attempt to exploit 

market mispricing, his clients may only see their funds being allotted to poorly-

performing firms with undervalued multiples primarily derived from deflated stock 

prices. Since stock price reversals often take up to three years (Debondt and Thaler, 

1985), it becomes highly likely that the price will continue to drift negatively before 

reversing its direction.  

While the optimal strategy for institutions in an agency-free world would be to 

trade even more aggressively to exploit the mispricing, the reality is often that 

investors refuse to provide additional capital to the arbitrageurs, and even remove 

capital in fear that they may lose their investment. This separation of “brains and 

capital,” as referred to by Shleifer and Vishny (1997), can prohibit arbitrageurs from 

exploiting long-term mispricings (e.g. value stocks) that may worsen in the short-run, 
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as negative returns can lead to investment outflows when capital is most needed to 

exploit such mispricings. In attempts to avoid these fund outflows, mutual funds 

(O’Neal, 2007) and pension funds (Lakonishok, et al. 1991) have been documented to 

engage in “window dressing,” where firms sell large positions in poorly-performing 

stocks and buy large positions in stocks with strong past returns prior to the quarterly 

and yearly disclosure of portfolio holdings, in an attempt to keep individual investors 

from removing capital from the fund.  

In addition to the “window dressing” problem, institutional investors are often 

constrained by the fiduciary responsibilities they have to prudently invest their 

customers’ capital. Farber (2005) shows fraud to be linked to decreases in institutional 

ownership which are not reversed despite improvements in corporate governance. He 

attributes the lack of increase in institutional ownership to the fact that most 

institutions limit their investments to firms which are deemed to be financially sound. 

Such fiduciary restrictions also limit institutions from pursuing value strategies, often 

composed of purchasing poor past performers, where markets may have overreacted to 

bad news. 

Finally, the sheer volume of shares transacted by institutions on a per trade 

basis also creates a preference for firms with higher levels of liquidity, to reduce 

transaction costs and adverse price impacts caused by information asymmetries with 

the market-maker (Glosten and Milgrom, 1985). In order to be able to quickly transact 

such block trades while minimizing price concessions, institutions prefer liquid stocks 

with higher turnover levels, while avoiding low-priced firms where transaction costs 

can be relatively high (Falkenstein, 1996).  

In sum, institutional investors face a unique environment that includes 

“window-dressing” issues, fiduciary responsibilities to their investors, and 

microstructure concerns. As a consequence, transient institutions prefer shorter-term 
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momentum-based strategies, being net buyers of firms with extreme positive prior 

returns, and net sellers of firms with extreme negative returns. They are also net 

buyers of glamour stocks with higher market-to-book ratios, and net sellers of value 

stocks with lower market to book ratios. They are most likely to prefer heavily traded 

firms both when buying and selling, in order to avoid microstructure-based price 

concessions. 
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III. Relative Signal Informativeness at Different Horizons: Predictions 

 

Section II presents prior literature on the differing environments of the three 

groups of informed agents, discussing how these differences could constrain 

investment decisions and create affinities toward particular firm characteristics.  In 

this section, I use the preceding discussion to predict (1) the horizon at which each 

party’s actions are most likely to be informative of future prices, and (2) the 

circumstances under which each party is likely to remain most informative when 

deviating from a consensus of the other two.   

As discussed earlier, past literature documents the preferences of analysts and 

institutions for firm characteristics such as momentum and market-to-book, and the 

contrarian preferences of insiders relative to these two groups. A few other points are 

worth noting.  First, insiders do not suffer from the performance based arbitrage 

problem faced by institutions.  While both groups attempt to arbitrage mispricing in 

order to create profit, insider trades are financed with personal capital, often as part of 

their compensation package, while institutions typically exploit mispricing by using 

the capital of less sophisticated investors.  Thus, unlike institutions, insiders are not 

constrained from pursuing value strategies.  Second, while institutions are free to 

exploit short-term anomalies such as post-earnings announcement drift (Bernard and 

Thomas, 1990), and post-revision drift (Gleason and Lee, 2003), Rule 16(b)-6 in SEC 

act of 1934 prohibits insiders from profiting on any round trip trades where the 

holding period is less than six months.  Given that momentum profits are primarily 

documented over short-to-intermediate time horizons, this “short-swing rule” adds 

another constraint to insiders wishing to execute such momentum strategies.   
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 The above arguments, coupled with insiders’ possession of superior 

knowledge regarding the future cash flows and earnings of their firms (Piotroski and 

Roulstone, 2005), suggest that insiders who trade optimally to maximize profitability 

while minimizing litigation risk should trade as “late-stage” contrarians, implying that 

they should not only trade following market overreactions, but that they should also 

take advantage of their superior knowledge of when a market correction is expected to 

occur. Since price momentum follows a market correction, and the timing of the 

insiders’ trades should enable them to take full advantage of such momentum, I expect 

the insider signal to become more informative over longer horizons.   

  As previously discussed, both analysts and institutions prefer firms with 

similar characteristics. Owing to trade generating incentives, investment-banking 

conflicts of interest, and general biases in their valuation methods, analysts appear 

partial towards stocks with high-levels of future growth and strong prior price 

momentum. Institutions, albeit for different reasons such as performance-based 

arbitrage issues and “window-dressing”, also share preferences for momentum and 

growth.  Given that the momentum phenomenon has been documented to occur over a 

3 to 12 month horizon (Jegadeesh and Titman, 1993), and that analysts and institutions 

apparently act after a firm has already exhibited signs of positive momentum, I expect 

the actions of analysts and institutions to be more informative over shorter horizons, 

leading to the following relative predictions:  

� Insiders’ actions are most price informative over longer (12-month) 

horizons, while analysts’ and institutions’ actions are most price 

informative over shorter (6-month) horizons. 

Earlier discussions suggest that informed parties will not always act in tandem. 

How is the informativeness of each group affected when there is a lack of unanimity? 

To the best of my knowledge, this question remains unresolved. In a world free of 
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insider trading constraints, insiders’ private information advantages shown in past 

literature (Piotroski and Roulstone, 2005) would result in insider trading signals 

dominating those of their two counterparts, rendering the above empirical question 

trivial. However, due to litigation risk concerns and insider-trading restrictions such as 

the “short-swing rule,” as previously discussed, whether insiders are consistently able 

to reveal their private information through their actions is unclear. Furthermore, 

insiders may exhibit overconfidence (Malmendier and Tate, 2005), overoptimism 

(Heaton, 2002), or subjective biases resulting in an overweighting of their own private 

information and an underweighting of non-firm specific information (Daniel, 

Hirshleifer, and Subrahmanyam, 1998). These factors potentially attenuate the 

informativeness of the insider signal. Finally, the trading horizon at which each signal 

is strongest must be considered. While the insider signal is expected to be relatively 

stronger at longer horizons, the signals of analysts and institutions should be relatively 

stronger at shorter-horizons. If the returns to insiders’ actions are measured at their 

non-preferred horizon, insiders’ signals may not predict future returns when opposing 

the two counterforces.  

  I base my predictions regarding the informativeness of each party’s signal 

under conditions of inter-party disagreement on the following four premises: 

 

i. Due to exclusive access to firm-specific information, insiders have a general 

informational advantage over analysts and institutions. 

ii. Owing to insiders’ contrarian behavior, the informativeness of their signal is 

expected to be stronger at longer (12-month) versus the shorter three- and six- 

month windows. 
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iii. Insiders’ BUY signals are more predictive of returns than their SELL signals 

as insiders may sell for non-informative reasons related to liquidity, 

rebalancing, and taxes (Lakonishok and Lee (2001)). 

iv. Analysts and institutions are momentum-style traders. Since momentum exists 

as a short-intermediate term phenomenon (Jeegadesh and Titman, 1993), the 

strength of their signals is likely to attenuate over time, and should be strongest 

at the three- or six- month time horizons. 

  

The basis for whether or not each party’s action is likely to be informative hinges upon 

two primary forces: (1) the strength of the deviating signal over a particular time 

horizon, and (2) the relative weakness of the countervailing forces. Overall, I predict 

that: 

 

� The most probable scenario where a deviating party remains informative is 

when insiders are buying against a consensus sell of the other two parties, and 

returns are being predicted over longer horizons. 

� The actions of both analysts and institutions are likely to be less informative at 

longer horizons, when they deviate from a consensus of the other two parties. 

� Analysts or institutions who deviate from the other two parties are likely to 

have the worst outcomes when they issue sell signals, and returns are being 

compounded over the longest horizon. 

� Deviating insider buy signals are still likely to be informative at shorter 

horizons.   

 

The first prediction arises from the expectation that the predictive power of 

insider actions is strongest for buy signals at longer horizons, while the deviating 
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signals from analysts and institutions are weakest at these horizons. The second 

prediction is derived from the argument that neither analysts nor institutions are likely 

to prevail against insiders at the latter’s advantaged horizons. The third prediction 

stems not only from the same logic as the second argument, but also from the fact that 

the insider’s informational advantage should be strongest when buying over the 12 

month horizon. The final prediction is derived primarily from the general dominance 

of the insider signal, and hence, is made with less confidence, because insiders are 

competing against the countervailing actions of analysts and institutions at the latter’s 

advantaged horizons.  
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IV. Data Sources, Signal Construction and Sample Characteristics 

 

IV. A. Data Sources 

To examine the behavior of each entity, I use quarterly data, spanning 1994-

2006, from the CDA/Spectrum database (Form 13F disclosures of institutional 

holdings), the filings of insider trades (SEC Forms 3, 4, 5), and the Institutional 

Brokers Estimate System (IBES) database. The 13F form reports all institutions with 

more than $100 million of total holdings,5 or with common-stock positions within a 

specific firm of more than 10,000 shares or $200,000. Forms 3, 4 and 5 are obtained 

from the Securities and Exchange Commission (SEC) Ownership Reporting System 

data file. This database contains transactions by all insiders who are subject to 

disclosure as mandated by the SEC Act of 1934, Section 16(a), which mandates the 

reporting of all trades by any person who is either directly or indirectly the owner of 

more than 10 percent of any specific equity security by the tenth day of the calendar 

month after the trading month. The IBES stock recommendations database dates back 

to 1994, and includes the stock recommendations of financial analysts, as self-reported 

by over thousands of brokerages from the largest global houses to smaller regional and 

local shops.  

In order to examine returns under varying levels of disagreement, there must 

exist a disclosure for each signal, as well as corresponding Compustat quarterly data 

and Center for Research in Security Prices (CRSP) monthly files for each firm in order 

to control risk over the 12 month horizons. Analyses are restricted to U.S. firms listed 

on the NYSE, AMEX, or NASDAQ stock exchanges. After filtering for missing 

                                                           
5 Other types of security holdings that contribute to the “total holdings” disclosure threshold include 
convertible bonds, stock options, and preferred stock. 
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observations, removing observations where firms do not report in consecutive periods, 

and deleting stocks with share prices of less than $3 to avoid undue noise in estimating 

returns (Conrad and Kaul, 1993), my sample set consists of 59,008 firm-quarter 

observations. 

 

IV. B. Signal Construction 

The analysts’ signal, ANA henceforth, is constructed on a quarterly basis in a 

manner similar to Jegadeesh, Kim, Krische and Lee (2004), who find the consensus 

change in quarterly recommendations to be more informative than the consensus level 

of the recommendation. I reverse code the variable from each recommendation by 

subtracting the level of the recommendation from 5, such that a strong buy is now 

coded as 4,  a buy is coded as 3, a hold as 2, a sell as 1, and a strong sell is coded as 0. 

The quarterly consensus change is taken as the difference between the mean 

recommendations of the current and prior quarters. If a firm does not have analyst 

coverage for consecutive quarters, it is removed from the sample. Each signal is then 

converted into a non-parametric percentile rank in order to account for the right 

skewness of these signals as documented by Piotroski and Roulstone (2004). In the 

event that two firms have the same magnitude of consensus change in 

recommendation, the firm’s signal is considered to be stronger if its current level of 

consensus has a higher rank. 

Because Yan and Zhang (2007) document that long-term buy-and-hold style 

institutional trading is not related to future stock returns, I use Bushee’s (1998, 2001) 

institutional investor classifications6 to parse out institutional trades by “dedicated” 

                                                           
6 Bushee’s classification techniques use factor analysis to characterize institutions based upon portfolio 
diversification, portfolio turnover, and trading sensitivity relative to current earnings, labeling them as 
either “transient”, “dedicated”, or “quasi-indexing” institutions. Dedicated institutions tend to prefer 
longer-term holdings and these institutions often tilt their holdings toward “prudent” stocks (Del 
Guercio 1996). These institutions are characterized by “relationship investing,” which reduces their 
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and “quasi-indexing” institutions.7 Transient investors are characterized as typically 

holding stakes in numerous firms (higher diversification) and trading frequency 

(higher turnover), often basing their trades on current earnings or components of such 

earnings (higher earnings trading sensitivity). The transient institutional signal, TI, is 

calculated as the difference in shares held by transient institutions from the preceding 

to the current quarter, divided by the number of shares outstanding in the preceding 

quarter, as reported in Form 13F.  Similar to ANA, the TI signal is also converted into 

percentile ranks over the entire sample period. 

The corporate insider signal, CI, is computed as in Lakonishok and Lee (2001), 

as the difference between the number of purchases and the number of sales, divided by 

the total number of purchases and sales, for each reporting period where there is at 

least one insider trade. For consistency, each signal is converted into a nonparametric 

variable by ranking the variable into deciles over the entire sample period.  For firms 

with signals of -1 or +1, the signal is considered to be stronger when the dollar amount 

traded is larger relative to the total market value of equity for the firm at the end of the 

quarter. 

 

IV. C. Sample Characteristics 

Table 1 shows annual univariate statistics taken from the final sample of firms. 

On average, insiders appear to be net sellers of stock. This is consistent with past 

research, and may be because the data reported only reflects shares transacted on the 

open market, which are unlikely to reflect shares gifted to insiders as part of their 

compensation plans. Consistent with prior literature, analysts show optimism in their 

                                                                                                                                                                       

incentives to search for private information. Quasi-indexing firms have a primary objective of 
diversification, and are thus less likely to base their trades on information.   
7 In untabulated analyses, I partition the trades from dedicated and quasi-indexing institutions separately 
to determine whether their net trades are predictive of future returns, and find the informativeness of 
each group to be insignificantly different from zero at 3, 6, and 12-month time horizons. 
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consensus, as firms on average are rated as buy firms. The change in consensus 

recommendation, or the level of upgrade or downgrade between quarters, is nearly 

zero, with the exception of the year 2002, where the average change in consensus 

decreases by 0.10. It is also interesting to note that the mean consensus 

recommendation decreases from 2.97 in 2001, to 2.67 in 2006. This decrease 

coincides with the passing of the Sarbanes-Oxley Act (SOX) (passed in July of 2002), 

which could be consistent with SOX leading to improved financial reporting quality, 

and a subsequent decrease in the consensus recommendation.  On average, transient 

institutions are net buyers, reflecting the overall growth in institutional money 

management over time. In the far right column, inter-party disagreement is calculated 

as the variance across decile ranked signals, after scaling each signal such that it 

obtains a value between zero and one. Disagreement appears to decrease from the 

years 2002-2006, perhaps consistent with Sarbanes-Oxley Act resulting in improved 

disclosure that could decrease disagreement amongst the three parties. It is interesting 

to note that this proxy for inter-party disagreement is negatively correlated (ρ = -0.29, 

p-value < 0.0001) with the standard deviation of analysts’ consensus 

recommendations, a common proxy for information uncertainty. This is consistent 

with inter-party disagreement stemming from the differing environments of the three 

parties, rather than merely general ambiguity about a firm’s future. Pearson 

correlations (untabulated) between the informed parties’ signals show that insider 

signals are negatively correlated with both analysts (ρ = -0.0430, p-value < 0.0001) 

and institutions (ρ = -0.1057, p-value < 0.0001), while analysts’ recommendation 

changes and institutions’ net shares traded have a positive correlation (ρ = 0.0898, p-

value < 0.0001). These correlations are consistent with past literature as discussed in 

Section II. 
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Next, I examine whether each informed party’s signal exhibits the preferences 

for particular firm characteristics suggested by past research and the discussion in 

Section II. Figure 1 plots momentum in the form of prior 6 month returns, against each 

party’s signal strength, as reported by deciles. Consistent with prior literature, 

analysts’ and transient institutions’ signals are correlated with positive prior returns, 

and insiders appear to exhibit contrarian philosophies.8 At the extreme deciles for 

BUY signals, institutions have the strongest preferences for positive momentum, 

followed by analysts, and then insiders. Conversely, at the extreme deciles for SELL 

signals the opposite is observed. Finally, note the diametrically opposed preferences of 

insiders and institutions for high momentum stocks. The extreme quintiles for 

institutional buying behavior and insider selling behavior appears strikingly similar. 

Institutions buy firms with returns of 2.71% compounded monthly over the prior six 

months, while insiders sell firms with monthly returns of 2.30%. 

Figure 2 plots the market-to-book ratio, a proxy for glamour (high M/B) and 

value (low M/B) against the signal strength deciles. Overall, insiders exhibit the 

strongest buying preferences for firms with the lowest levels of market to book, while 

analysts and institutions exhibit a higher affinity for buying glamour firms. At the 

univariate level, the relative difference between institutions and analysts is largest at 

the extreme buying decile. Finally, the extreme insider selling decile and institutional 

buying decile are again similar, with insiders selling glamour firms with an average 

market-to-book ratio of 3.51 and institutions buying glamour firms with an average 

market-to-book ratio of 3.49. 

Figure 3 plots signal strength deciles against the preceding six-month total 

trading volume scaled by total shares outstanding. Consistent with the discussion in 

Section II, the buying and selling behavior of institutions suggests strong preferences 

                                                           
8 3-Month and 12-Month BHAR’s show similar patterns. 
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for liquidity.  Their U-shaped plot indicates that the largest levels of net buying/selling 

occur when past trading volume has been high. Analysts also show U-shaped 

preferences in their stock recommendation behavior with regards to trading volume. 

Finally, insiders tend to sell most strongly when volume is high, and buy most 

strongly when volume is low, perhaps consistent with high-volume firms being 

correlated with investor overreaction and firm overvaluation (Miller, 1977).  

Overall, this analysis is consistent with expectations derived from past 

literature. Insiders appear to be contrarians who favor low volume, neglected value 

stocks with poor past returns. Conversely, the behavior of analysts and institutions 

appears to favor firms with high momentum and high expected growth.  

To supplement these univariate analyses, I examine the relative preferences of 

each informed party for the above firm characteristics within a multivariate 

framework.  Due to the non-linear U-shaped distribution for volume, I divide each 

signal into two partitions by the median signal value, and designate each half as either 

a favorable or unfavorable signal for each party depending upon whether that group’s 

signal is above or below the median value. For variables in the unfavorable partitions, 

I multiply the rank signal by -1, such that the coefficients on the independent variables 

now proxy for increases in net selling/downgrading behavior. I then run each of the six 

dependent variables (Analyst Favorable, Analyst Unfavorable, Institution Favorable, 

Institution Unfavorable, Insider Favorable, Insider Unfavorable) on the predicted 

variables, while using size as a general control.  

Table 2 summarizes these results by showing the coefficients of the key 

variables in each of the six regressions. The differences between coefficients for 

momentum, book-to-market, and volume across each group are significant at the 0.01 

level.9 Results of multivariate regressions are consistent with the earlier results.  One  

                                                           
9 Test Statistic is calculated according to Clogg, Petkova and Haritou (1995). 
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Table 2.  Multivariate Analysis of Relative Preferences for Volume, B/M, and 

Momentum for Informed Parties 
 

0 , 6 1 , 12 2 3/t t t t t t t tSignal Volume Momentum B M Sizeα β β β β ε− −= + + + + +
 

 

PANEL A: FAVORABLE SIGNALS 

  
ANA TI CI ANA - CI TI - CI TI - ANA 

VOLUME 0.00202*** 0.00421*** -0.0003302*** 0.002350*** 0.004540*** 0.002190*** 

B/M -0.61698*** -1.54654*** 2.01024*** -2.627220*** -3.556780*** -0.929560*** 

MOMENTUM 0.13486 1.80527*** -2.27198*** 2.406840*** 4.077250*** 1.670410*** 

SIZE 2.46627*** -0.43121*** -3.19219*** 5.65846*** 2.76098*** -2.89748*** 

       

PANEL B: UNFAVORABLE SIGNALS 

  
ANA TI CI ANA - CI TI - CI TI - ANA 

VOLUME 0.00009011 0.00532*** 0.00192*** -0.001830*** 0.003400*** 0.005230*** 

B/M -0.17249*** 0.51121*** -3.23554*** 3.063050*** 3.746750*** 0.683700*** 

MOMENTUM 0.06366 -1.21541*** 1.21882*** -1.155160*** -2.434230*** -1.279070*** 

SIZE -2.86346*** 0.17009*** -2.9832*** 0.11974* 3.15329*** 3.03355*** 

 

Volume is calculated as the aggregated number of shares traded in the prior six months, divided by the 
number of shares outstanding at the start of each quarter. Book-to-market is calculated as the log (Book 
Value of Equity/Market Value of Equity) at the start of each quarter. Momentum is calculated as the 
compounded raw returns using CRSP monthly data over the prior 12 months. Size is taken as the log 
(Market Value of Equity) at the beginning of each quarter, and is used as a control.  
 
Panel A indicates the regression coefficient for each characteristic when regressed on the party’s signal. 
(Un)Favorable signals are those (below) above the median signal rank, calculated as discussed in 
Section IVB. In Panel B, the ranked signal is multiplied by -1, such that coefficients on the independent 
variables now proxy for increases in net selling/downgrading behavior. Two-tailed statistical 
significance levels at 1%, 5%, and 10% are indicated as ***, **, and * respectively, based on t-statistics 
calculated with Newey-West autocorrelation consistent standard errors. 
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interesting phenomenon that emerges from this analysis, however, is that transient 

institutions appear to act as “ultra-momentum” style investors. Of the three entities, 

they most strongly prefer buying high volume, high momentum, and glamour stocks. 

Insiders have buying preferences diametrically opposed to those of institutions. 

Analogously, the analysis of the “negative” signals shows that institutions are most 

likely to be net sellers of stocks with the worst past returns, the lowest M/B (ultra-

value firms), and the highest levels of volume.  Again, insiders’ selling preferences are 

in direct contrast to those of institutions. Of the three groups, the firms that they sell 

most strongly have the highest levels of M/B (ultra-glamour firms) and highest levels 

of past returns.  Finally, the actions of analysts appear less extreme than those of 

institutions, falling between the actions of institutions and insiders.  

Why is it that institutions appear to have similar, but more extreme, 

preferences for momentum and glamour, relative to analysts? One possibility lies in 

their reliance on sell-side analysts’ in making their trading decisions. Cheng, Liu, and 

Qian (2006) note that only 5% of institutions rely exclusively on “buy-side” reports. 

Rather, the majority use a combination of reports from buy-side (exclusive private 

information) and sell-side analysts (information available for public consumption), 

and weight each report depending on its strength and accuracy.  In order to do so, 

institutions must wait for the production, disclosure and assimilation of sell-side 

reports prior to making their trades.  If the weight of the sell-side analyst report is 

sufficiently large in the institutions’ trading decision, then the observed actions of the 

institutions appear to mimic analysts’ actions, after controlling for such delays.10   

                                                           
10 Note that because buy-side analysts’ reports are private, an asymmetry in information disclosure 
exists, and sell-side analysts would be unable to use such information in their stock recommendations in 
a similar fashion. 
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Given that the preferred characteristics of analysts and institutions are largely similar, 

the lag from institutions prior to their trades cause them to appear as “ultra-

momentum” investors relative to analysts.   
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V. Relative Signal Informativeness at Different Horizons: Results 

 

Table 3 reports mean size-adjusted11,12 buy and hold abnormal returns over 

three, six, and twelve month time horizons within each decile of signal strength for 

analysts, institutions, and insiders. Hedge portfolio returns are calculated as the 

difference between the BUY (highest quintile ranking) and SELL (lowest quintile 

ranking) portfolios. A summary of these univariate results is as follows: (1) hedge 

portfolio returns created from insiders’ signals are superior to those of analysts’ and 

institutions’ at all time horizons. (2) Consistent with prior research, the returns for 

insiders are driven largely by the BUY portfolio. (3) Confirming predictions in Section 

III, the magnitudes of the insiders’ hedge returns continue to grow with time, earning 

2.86% over the first six-months and 4.31% over the second six-months of the 12-

month window, while institutions and analysts have the highest magnitude of hedge 

portfolio returns at the 6 month horizon, with returns becoming insignificantly 

different from zero at the longest, 12-month, horizon. Overall, the evidence of insider 

superiority increasing over time is consistent with them being contrarians that buy 

late-stage losers and are able to extract the full benefits of the momentum cycle over 

the longest time periods.  Evidence of hedge returns for analysts and institutions only 

being significant at 3 and 6 months is also consistent with their preferences for 

momentum stocks, and their delayed buying behavior relative to insiders. 

 

 

                                                           
11 Size Adjusted Buy and Hold Abnormal Returns (BHAR) are created by calculating each firm’s 
monthly abnormal return by subtracting the average return for firms in the same NYSE size decile, then 
compounding the corresponding abnormal returns over the specified horizon period. If a firm delists, 
CRSP delisting returns are used, which are calculated by comparing the value after delisting against the 
price on the security's last trading period. 
12 Similar inferences are obtained when reporting returns with market-adjusted and raw returns. 
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Table 4 compares the predictive power of each party’s signal when all three 

signals are used in tandem. For ease of interpretation, I divide the decile rank of each 

signal by 9, such that the independent variable for signal strength now ranges between 

0 and 1. The coefficient for each party’s signal now represents the signal’s ability to 

predict future returns in percentage terms. Following prior literature (Fama and 

French, 1992), (Jegadeesh et al, 2004) size, book to market, momentum, market beta, 

and share turnover are used as controls for expected returns. Size is taken as the log 

(Market Value of Equity) at the beginning of each quarter. Book-to-market is 

calculated as the log (Book Value of Equity/Market Value of Equity) at the start of 

each quarter. Momentum is controlled for as a prior 6-month return, as well as a prior 

return in months seven through twelve. Beta is calculated using CAPM over a 36-

month rolling window, while share turnover is calculated as the sum of volume over 

the trailing 6 months divided by total shares outstanding at the beginning of the period. 

Inferences from the multivariate analyses, after controlling for the aforementioned 

firm characteristics, yield similar conclusions to those in Table 3. The relative 

magnitudes of each signal’s coefficient confirms the superiority of the insider signal, 

with the insider advantage being most evident at the twelve month horizon, and 

institutions being the least predictive at all three time horizons. Consistent with the 

prior univariate analysis and the momentum-like preferences of analysts and 

institutions, Table 4 shows that the coefficients on institutions’ and is largest at the six 

month horizon, and insignificant at 12 months, while analysts’ ability to predict 

returns at the 12-month period becomes only marginally significant at the 10% 

confidence level. The monotonic increase in the insider signal coefficient over time is 

consistent with their “late-stage” contrarian behavior.  
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Table 5 presents results regarding the relative informativeness of each party’s 

signal under conditions of inter-party disagreement. For each party, I code signals into 

two partitions of BUY and SELL signals, based upon whether their signal rank is 

above or below the median. These signals are then used to create the disagreement 

portfolios. I measure the informativeness of each party’s signal by examining the 

differences in means of size-adjusted BHAR’s for each disagreement portfolio versus 

a control group where a full consensus exists. For example, I measure the incremental 

informativeness of an insider BUY signal as the hedge portfolio where insiders are 

issuing BUY signals, and analysts and institutions are issuing SELL signals, less the 

consensus control portfolio where all three groups are issuing BUY signals. Given that 

the consensus buy yields the largest BHAR’s over all three periods, the strongest 

deviating buy signals will have the smallest negative values when the consensus BUY 

is subtracted from the deviating BUY signal. Similarly, after subtracting the consensus 

SELL from the disagreeing SELL, the strongest SELL signal will have the smallest 

positive values. Figure 4 illustrates these ideas graphically for disagreeing BUY 

signals at a given time horizon. 

Table 5 shows the insider/buy/12-month deviations to be the most informative 

signal. Size-adjusted BHAR’s from this portfolio earn 4.38%, which is statistically 

identical to a full-consensus buy signal, i.e. the difference between the disagreeing 

insider/buy and the consensus buy is 0.00%. Similarly, analyst/buy and institution/buy 

deviations are most informative at the 3 month horizon, exhibiting -1.87% and -1.95% 

less than a consensus buy, respectively. The degree of informativeness for both 

analysts/buy and institutions/buy markedly decreases at longer horizons. The returns 

of disagreeing analysts/buy signals relative to a full consensus are -2.89% and -2.35% 
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Table 5.  Hedge Portfolio Returns of Informed Signals Under Inter-Party 

Disagreement  

    

Return 

Horizon 

Size-

Adjusted 

Future 

Returns 

t-stat 

Lesser Return of 

Disagreeing BUY 

vs Consensus 

BUY 

t-stat 

  
Consensus 

BUY 

3 Month 1.75% 5.59***   

  6 Month 3.19% 6.20***   

  12 Month 4.38% 5.24***   

P
A
N
E
L
 A
: 
D
E
V
IA

T
IN

G
 

B
U
Y
 S
IG

N
A
L
S
 

CI 

3 Month 0.64% 2.67*** -1.11% -2.85*** 

6 Month 1.06% 2.64*** -2.13% -3.31*** 

12 Month 4.38% 5.04*** 0.00% 0.00 

ANA 

3 Month -0.13% -0.42 -1.87% -4.32*** 

6 Month 0.31% 0.72 -2.89% -4.28*** 

12 Month 2.03% 2.95*** -2.35% -2.16** 

TI 

3 Month -0.20% -0.73 -1.95% -4.70*** 

6 Month -0.37% -0.91 -3.56% -5.50*** 

12 Month 0.53% 0.84 -3.86% -3.74*** 

   

Return 

Horizon 

Size-

Adjusted 

Future 

Returns 

t-stat 

Lesser Return of 

Disagreeing 

SELL vs. 

Consensus SELL 

t-stat 

  
Consensus 

SELL 

3 Month -0.62% -2.52**     

  6 Month -0.04% -0.09     

  12 Month 0.54% 0.87     

P
A
N
E
L
 B
: 
D
E
V
IA

T
IN

G
 

S
E
L
L
 S
IG

N
A
L
S
 CI 

3 Month 0.63% 2.23** 1.24% 3.18*** 

6 Month 1.18% 2.77*** 1.22% 2.02** 

12 Month 2.21% 2.97*** 1.67% 1.64 

ANA 

3 Month 1.58% 4.60*** 2.19% 5.25*** 

6 Month 2.29% 4.67*** 2.33% 3.71*** 

12 Month 5.73% 6.35*** 5.19% 4.78*** 

TI 

3 Month 1.07% 3.92*** 1.69% 4.53*** 

6 Month 1.49% 3.62*** 1.52% 2.65*** 

12 Month 4.85% 5.50*** 4.31% 3.87*** 
This table reports hedge portfolio returns using the means of size-adjusted buy-and-hold abnormal 
returns, calculated as described in Barber, Lyon, and Tsai (1999), over three, six, and twelve month 
horizons when one group’s action deviates from the actions of the other two. In Panel A, the deviating 
party has a BUY signal, where the other two parties issue SELL signals within the same quarter. In 
Panel B, the deviating party has a SELL signal, where the other two party members issue BUY signals 
within the same quarter. BUY (SELL) signals are those that fall into the highest (lowest) quintile of 
signal ranks for each informed party within the given period. Hedge portfolio returns for each group are 
calculated in panel A (B) as the difference between deviating signal portfolios and the full-consensus 
SELL (BUY) portfolios.   Statistical significances at 1%, 5%, and 10% are reported as ***, **, and *, 
respectively.



 

 

 

                         

 

F
ig
u
re
 4
. 
 M

ea
su
ri
n
g
 I
n
cr
e
m
en
ta
l 
In
fo
rm

a
ti
v
en
es
s 
u
n
d
er
 D
is
a
g
re
e
m
en
t 
a
t 
a
 G

iv
en
 T
im

e 
H
o
ri
z
o
n

37 

In
si

d
er

/B
U

Y
  

lo
ss

 
o

f 
in

fo
rm

at
iv

en
es

s 
u
n
d

er
 d

is
ag

re
em

en
t 

A
n
al

y
st

/B
U

Y
  

lo
ss

 
o

f 
in

fo
rm

at
iv

en
es

s 

u
n
d

er
 d

is
ag

re
em

en
t 

In
st

it
u
ti

o
n
/B

U
Y

  
lo

ss
 o

f 
in

fo
rm

at
iv

en
es

s 

u
n
d

er
 d

is
ag

re
em

en
t 

C
o

n
se

n
su

s 
B

U
Y

 =
  

(A
N

A
 =

 B
U

Y
, 

C
I 

=
 B

U
Y

, 
T

I 
=

 B
U

Y
) 

In
si

d
er

 B
U

Y
 =

  
(A

N
A

 =
 S

E
L

L
, 

C
I 

=
 B

U
Y

, 
T

I 

=
 S

E
L

L
) 

A
n
al

y
st

 B
U

Y
 =

  
(A

N
A

 =
 B

U
Y

, 
C

I 
=

 S
E

L
L

, 
T

I 
=

 S
E

L
L

) 

In
st

it
u
ti

o
n
 B

U
Y

 =
  

(A
N

A
 =

 S
E

L
L

, 
C

I 
=

 S
E

L
L

, 
T

I 
=

 B
U

Y
) 

L
ar

g
es

t 
B

u
y
-a

n
d

-H
o

ld
 

S
iz

e 
A

d
ju

st
ed

 R
e

tu
rn

  

S
m

al
le

st
 B

u
y
-a

n
d

-H
o

ld
 

S
iz

e 
A

d
ju

st
ed

 R
et

u
rn

  



 38 

at 6 and 12 months, respectively, while the  returns of disagreeing institutions/buy 

signals relative to a unanimous buy signal are -3.56% and –3.86% at 6 and 12 months, 

respectively. These results may be attributable to the fact that transient institutions and 

analysts prefer late-stage winners, leaving them closest to an impending reversal, and 

thus making them less informative even at mid-stage horizons.  Insider/buy deviations 

at the 3 and 6 month horizons remain most informative when compared to their 

counterparts, confirming the dominance of the insider buy signal over the combined 

sell signals from analysts/institutions even at the momentum traders’ preferred 

horizons. 

With regards to sell signals under conditions of disagreement, insiders’ had the 

most informative signal at all three horizons when compared to their collective 

counterparts. The difference between sell-signal disagreement strength across parties 

is strongest at the 12 month horizon. At this horizon, insider signals earn 1.67% less 

than a consensus sell signal, while analyst and institution signals earn 5.19% and 

4.31% less than a consensus sell signal, respectively. With respect to analysts’ and 

institutions’, both groups performed most poorly at the 12-month horizons, again 

consistent with prior predictions that fighting against the insider buy at the 12-month 

horizon would lead to a weak signal.   

 The overarching theme from this analysis of inter-party disagreement is that 

the ability to deviate and remain predictive of future returns relies on two factors: (1) 

the strength of the deviating signal over the particular time horizon, and (2) the 

relative weakness of the countervailing forces. The insider signal is dominant under all 

time horizons, and most dominant when buying and returns are calculated over a 12-

month time horizon. Other parties actions’ have greater informativeness when 

insiders’ countervailing actions are mitigated because they are selling, or because 

returns are being predicted over shorter time horizons. 
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 VI. Factors Influencing the Hierarchy of Informativeness 

 

Results in the preceding section confirm the superiority of the insider signal, 

followed by analysts and institutions. The following subsections investigate the impact 

of various firm and industry-specific factors on the relative hierarchy of signal 

informativeness. In general, I argue that each of these parties has a relative advantage 

with respect to a particular type of information, and attempt to show that when such 

information has already been impounded into prices, the actions of these groups 

become significantly weakened in predicting future returns. Because prior literature 

has shown institutional investors to take advantage of private communications with 

insiders, while also using analysts’ opinions in making their trading decisions, it 

remains ambiguous whether institutions have a relative advantage about a particular 

source of information. Therefore, I make no hypotheses regarding how the variables 

for price informativeness will affect transient institutions’ signals, and focus my 

analyses primarily on the hierarchy between analysts and insiders.13 

 

VI.A. Predicted Effects of Firm-Specific Price Informativeness on Insiders’ 

Predictive Ability  

Piotroski and Roulstone (2005) show that insiders’ trades reflect their 

privileged knowledge of future firm-specific information, in the form of future cash 

flows and earnings. Assuming that the insiders’ dominant signal in predicting future 

returns, as shown in Section V, is driven by firm-specific information, then the 

implicit assumption underlying the hierarchy between these informed agents is that 

                                                           
13 Despite the lack of direct hypotheses for institutions, in untabulated analyses, I run regressions with 
identical form to those found in section VI, with the institutional signal as an additional control 
variable. Results related to both economic significance and statistical validity remain unchanged. 
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firm-specific information, in general, is more responsible for driving stock prices than 

industry or common, macro-level information. In this section, I use two different 

proxies for the informational environment to examine how the relative hierarchy 

between insiders and analysts is affected when a firm’s stock price differs by the 

degree to which it is reflective of firm-specific information. 

In general, I argue that because the strength of the insider signal is more likely 

to rely on firm-specific information, the insider’ signal will be mitigated if the firm’s 

stock price is already reflective of such firm-specific information. Conversely, since 

analysts depend largely on industry and macro-level information in signaling their 

opinions to the market, their signals will be less affected under these conditions.  

 The two measures of price informativeness used in my subsequent analyses are 

the probability of informed trade (PIN) and future earnings response coefficient 

(FERC). I briefly detail each variable prior to discussing how the informed signals’ 

will be expected to differ across the various information regimes. 

 

VI.A.1.  Probability of Informed Trade (PIN) 

 The PIN variable was developed by Easley, Kiefer, and O’Hara (EKO, 1997) 

within a microstructure trade model to measure the probability that a given trade is 

driven by private information, and has since been used in other studies as a proxy for 

information asymmetry  (Brown, Hillegeist, and Lo, 2004; Brown and Hillegeist, 

2007) . The model can be summarized as follows: Over a trading day, prices converge 

to their full information levels as private information is fully revealed through the 

trades of informed traders, thus the market maker is able to draw inferences about the 

presence of private information based on the observed order flow imbalance. PIN is 

calculated as follows:  

PIN = αµ / (αµ  + εs + εb),  
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where α is the probability of a private information event at the start of the trading day, 

µ is the arrival rate of orders motivated by private information, and εs and εb is the 

arrival rate of orders from uninformed sellers and buyers, respectively. Thus, the 

numerator equals the number of trades based on private information, while the 

denominator proxies for the total number of trades from both informed and 

uninformed investors. Intuitively, the ratio then calculates the probability that the trade 

is based on private information. 

Thus, assuming PIN is an effective proxy for information asymmetry, I predict 

that the insider signal will be significantly less predictive of future returns when PIN is 

low. In addition, since analysts appear to form their signals from common, public 

information, I expect the strength of their signals to be relatively unaffected by the 

PIN variable.  

I use quarterly estimated PIN data of the EKO model, graciously provided by 

Stephen Brown, from 1994-2006. These PIN estimations cover stocks in the NYSE, 

AMEX, and NASDAQ markets, and require a minimum number of 30 active trading 

days within a given quarter to provide a reliable estimate. I remove all corner solutions 

inherent in the computation of PIN from my sample, as these estimates are likely to be 

unreliable results from the optimization process. I create a dummy-variable with the 

PIN data from the prior quarter of each firm, assigning the subset of firms with the 

lowest levels of PIN with a value of one, and a value of zero to the remainder of the 

firm-years.14 

 

                                                           
14

 For robustness, I also estimate PIN using an average of each firm’s PIN in the trailing 12 months. 

Results occur without any major changes in statistical inference, and are available upon request. 
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VI.A.2. Future Earnings Response Coefficient (FERC) 

FERC is a measure of stock price informativeness that was developed by 

Collins, Kothari, Shanken, and Sloan (1994). This approach measures the amount of 

future earnings information that has already been impounded into current stock prices 

by examining the degree to which future earnings load on regressions of yearly stock 

returns, after controlling for the firm’s past and present levels of earnings, and the 

firm’s future returns. If the coefficient on future earnings is high, then prices are more 

informative of future earnings.  

The structural models used in computing FERC follow Lundholm and Myers 

(2002), who modify the original CKSS specification by aggregating the future 

earnings to create a more powerful test, as follows: 

Rit = a + boXit-1 + b1X it + b2(X it+1 + X it+2 + X it+3) + b3R it+3 + ε it 

 

Xit+k is the annual earnings per share , while R it is a firm’s annual return beginning at 

time t, and R it+3 is a three year future return for the firm. R it+3 is used to control for an 

errors-in-variables problem involved in using realized earnings as expected earnings. 

b2 is the future earnings response coefficient. If b2 is high, then stock returns are more 

strongly informative of future earnings.  

FERC has been used within a number of disclosure papers as a proxy for stock 

price informativeness of future earnings. In general, the literature shows that firms 

with higher quality or more frequent disclosures have informational environments that 

are more revealing of firm-specific information, thereby resulting in higher FERC 

values. Gelb and Zarowin (2002) and Lundholm and Myers (2002) both document this 

linkage by showing that firm’s with higher AIMR-FAF annual disclosure ratings have 

stock prices that are more informative of firm-specific information, as measured by 

higher FERC values.  Tucker and Zarowin (2006) document a positive relationship 
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between income smoothing and FERC, and conclude that income smoothing increases 

the revelation of future earnings in current returns. Choi et al. (2008) find a positive 

association between FERC and the frequency and precision of management forecasts, 

while Orpurt and Zang (2009) measure FERC in order to show that the direct method 

of cash-flow disclosures increases stock price informativeness over firms that derive 

their cash flow statements using the indirect method. My use of the future earnings 

response coefficient differs from that of previous literature. While prior research 

measures changes in FERC as the dependent variable, I use FERC as an independent 

variable proxying for the firm-specific informational environment and then measure 

the difference in the two informed parties’ signals in predicting future returns.  

Assuming that FERC is an effective proxy for the degree to which future firm-

specific information is impounded into stock prices, my predictions for the impact of 

FERC on analysts’ and insiders’ signals are opposite to the prior PIN predictions. 

Specifically, when FERC is high, I predict that the insiders’ advantage of future firm-

specific information will be less useful as such information is already impounded into 

stock prices, thereby leading to an attenuation of the insider signal. Extracting from 

prior literature, since the analysts’ advantage appears to be derived from intra-industry 

information, I expect the analysts’ signal to be less attenuated relative to the insiders’ 

signal. 

I estimate the future earnings response coefficients with yearly Compustat and 

CRSP monthly stock files. Following Tucker and Zarowin (2006), I scale all EPS 

variables by the stock price at the beginning of the fiscal year, and truncate the highest 

and lowest 1% of the distribution across the entire domain of independent variables. I 

then run rolling panel regressions for the trailing 36-months15 of data across each 

                                                           
15 In untabulated sensitivity tests, I also run the FERC analysis using rolling regressions of the prior 48 
and 60 months, and also change the number of years of aggregated future earnings to 4 and 5 years. 
Results of such analyses are statistically similar, and hence, unreported.  
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industry, as specified by SIC two-digit industry code.16 To remain consistent in my 

analyses, I create a dummy variable equal to one for the top quintile of industry-years 

for b2 (the future-earnings response coefficient), and equal to zero for the remaining 

firms. 

 

VI.B. Results of Firm-Specific Price Informativeness Analyses 

I analyze the effects of both proxies for the informational environment on the 

analysts’ and insiders’ signals by running the following panel data regressions using 3, 

6, and 12-month future size adjusted returns (SAR) as the dependent variables. The 

specification contains interactions for price informativeness, as shown below: 

 

SARitn = a + b1ANAit + b2ANAit*INFOit + b3CIit + b4CIit*INFOit + b5INFOit + 

b6BEMEi,t + b7SIZEit + b8MOM6RETit + b9MOM7RET12it + b10TURNit + 

b11BETAit + εit 

Control variables for firm-characteristics remain the same as those in the prior 

analyses. SARitn, where n= {3,6,12} denotes future returns over a 3, 6, or 12 month 

time window.  As previously discussed, INFO is a dummy with a value of 1 for firms 

with the lowest-quintile of PIN’s within the prior quarter in the first set of analyses, 

and for firms in the highest-quintile of FERC’s compiled over a 36 month rolling 

regression in the second set of analyses. Thus, in both cases, the coefficients on 

interaction variables for the PIN and FERC dummies with the insider signal is 

expected to be negative, while the coefficients of interaction variables for the PIN and 

FERC dummies with the analysts’ signal is expected to be insignificant and less 

negative when compared to that of the insiders’ coefficient. 

                                                           
16 FERC can also be estimated on a firm-by-firm basis. While these results (not reported) have similar 
inferences, estimating FERC by SIC code allows me to keep a larger number of firm-quarters, hence 
increasing the statistical power of the analyses.   
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Results of analysis from the preceding equation are shown in Table 6 and 

Table 7. Overall, both sets of results confirm the predictions of the differential effects 

of PIN and FERC on the analyst’s and insider’s signals. As conjectured for firms with 

the lowest levels of PIN, the insider signal is significantly attenuated at the 3, 6, and 

12 month return intervals, earning 2.3%, 2.9%, 7.4% less than firms where PIN is not 

in the lowest quintile. Conversely, the analyst signal is only significantly weakened at 

the three-month horizon, at -1.6%. Across all three horizons, firms with the lowest 

levels of PIN weaken the power of the insiders’ signal more than that of the analysts’ 

signal. 

 In the FERC analysis, the magnitude to which the insiders’ signal is 

diminished is significantly negative at -3.7%, -7.1%, and -8.3% for 3, 6, and 12 month 

horizons, respectively, while the coefficient of ANA*FERC is only marginally 

negative at the 6 month horizon (p=0.08), and insignificantly negative at 3 and 12 

months. Summing the coefficients on CI + CI*FERC to show the magnitude of the 

insiders’ signal when FERC is high reveals their predictive ability to be insignificantly 

different from zero at all three time horizons. Evidence from both sets of analyses 

supports two overarching themes. First, insiders’ appear to be largely reliant on their 

firm-specific informational advantages in predicting future returns. Under 

environments where stock prices appear to be efficient with respect to the pricing of 

future  
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earnings, or when incoming flows of private information are infrequent, the insider 

signal—while most robust in the unconditional analyses, becomes unable to predict 

future abnormal returns. Second, the analysts’ signal appears to be unimpacted by 

these partitions for firm-specific informational efficiency, implying that the predictive 

ability of their aggregate actions is derived elsewhere. In the following section, I test 

the level to which analysts’ signals rely on industry-level informational efficiency in 

predicting future returns. 

 

VI.C. Predicted Effects of Industry Information Diffusion Rates on Analysts’ 

Predictive Ability 

 As previously discussed in Section II, analysts are generally assigned to cover 

a specific group of firms that operate within a given sector or industry, thereby 

allowing them to develop an expert knowledge of the valuation inputs for their 

assigned firms.  Piotroski and Roulstone (2004) show that the stock recommendations 

of analysts impound industry and market level information into stock prices, as 

measured by firm-level synchronicity.  In this section, I examine how the predictive 

ability of analysts is affected by the efficiency at which a firm assimilates industry-

level information into prices. In particular, I argue that when a firm’s stock price is 

more delayed with respect to the absorption of industry-level information, prices 

become less reflective of future cash flows related to industry dynamics. Given 

previous discussions regarding the analyst expertise of industry-specific information, 

when the speed of information diffusion into prices is slower, the magnitude of 

industry-level information impounded into prices is lower, thereby making the 

aggregate actions of analysts more value-relevant, and resulting in their signals being 

more predictive of future stock returns. Conversely, with no priors regarding industry-
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specific expertise for insiders, the magnitude of the insider signal should remain 

unchanged across changes in industry diffusion rates. 

 Hou (2007) examines the speed of industry information diffusion amongst 

firms, and finds that firms with higher-levels of industry delay tend to be characterized 

as smaller firms with higher levels of analyst dispersion, lower levels of trading 

volume, and lower levels of market share within their given industry.  Hou notes that 

while slow information diffusion could be caused by a firm’s neglected information 

environment, it could also result from other sources, such as noise traders, limited 

investor attention or processing power, short-sell constraints, microstructure frictions, 

and other institutional constraints. I construct a variable that measures the degree of 

market-efficiency for industry-level information in a manner similar to Hou and 

Moskowitz (2005), using the following equation: 

 

FirmRETit = a + b1 MktRETjt + b2 MktRET jt-1 + b3 MktRET jt-2 + b4 IndRETkt 

          + b5 IndRET kt-1 + b6 IndRETkt-2 + εit 

 

VI.D. Results of Industry Information Diffusion Analyses 

Using the aforementioned equation, I run firm-by-firm rolling regressions over 

the prior 36 months for each company’s monthly raw return on the CRSP value-

weighted return, the SIC two digit industry-return, and the two monthly lags for both 

the market and industry returns. The sum of the two lagged industry coefficients 

represents the level of industry delay for each firm. Similar to section VI.B., I assign a 

value of 1 (high levels of IDELAY) for the quintile of firms with the highest value of 

the summed coefficients, and assign a value of 0 to the remaining firms. I run the 

following specification for 3, 6, and 12 month future size-adjusted returns: 
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SARitn = a + b1ANAit  + b2ANAit*IDELAYit + b3CIit + b4 CIit*IDELAYit + 

b5IDELAYit + b6BEMEit + b7SIZEit + b8MOM6RETit + b9MOM7RET12it + 

b10TURNt + b11BETAit + εit 

 

By construction, higher magnitudes of IDELAY signify that stock prices have slower 

absorption rates when responding to changing industry dynamics. In these cases, the 

analysts’ reports should contain more value-relevant information. Thus, as previously 

mentioned, the analysts’ signal should be significantly more predictive of future 

returns when IDELAY is high, compared to their signals when prices are more 

efficient with regards to industry information, i.e. when IDELAY is low. Conversely, 

because insiders are specialized in firm-specific information and are not considered to 

be experts at analyzing industry and macro-level information, the magnitude of their 

predictive ability should remain unchanged by the IDELAY variable.  

Table 8 shows the results for the industry delay analyses. Regressions confirm 

prior conjectures. When IDELAY is low, the magnitude of the coefficient for the 

analysts’ signal is only marginally significant, earning 0.6%, 0.9%, and 0.9% size-

adjusted returns over the 3, 6, and 12 month horizons, respectively. However, in the 

upper quintile of firms where industry information is delayed, the analysts’ signals 

increase to 3.8%, 5.0%, and 6.4%, and are statistically significant at all of the tested 

horizons. Results are consistent with the supposition that the industry expertise of sell-

side financial analysts drives the predictive ability of their signals, and that their 

signals are enhanced under conditions where market prices are inefficient with respect 

to the industry-level information. Regarding insiders, their signal remains strongly 

predictive of future returns when IDELAY is low, with magnitudes similar to those of 

the unconditional analyses (Table 4), and is not significantly changed when IDELAY 

is high. Overall, the combination of the results of Table 8 with the prior analyses in  
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Section VI.B remains consistent with the premise that the insider dominance in 

predicting future stock prices originates from knowledge of idiosyncratic information, 

while analyst predictive ability appears to be derived primarily from industry-level 

information. 

 

VI.E. Predicted Effects of Firm-Level Synchronicity on the Insider-Analyst 

Signal Hierarchy 

The overall landscape that emerges from the results discussed in Sections VI.B 

and VI.D illustrates the reliance of the insider’ signal on firm-specific information, 

and the analyst’ signal on common, industry-level information in predicting future  

abnormal returns. In a final set of analyses, I test how the relative hierarchy between 

analysts and insiders is dependent upon the synchronicity of a firm’s stock prices. 

Synchronicity, calculated as the R-squared of market/industry model asset pricing 

regressions for a given firm, has been used in prior literature as a measure of whether 

stock prices are efficient with respect to firm-specific or market and industry 

information (Durnev et al., 2003; Durnev et al., 2004), as well as common-information 

(Chan and Hameed, 2006). In these papers, low R-squared’s are indicative of a 

company where firm-specific information has been impounded more heavily into 

stock prices, whereas high R-squared’s are indicative of a firm where common 

information has been impounded more strongly into stock prices. Therefore, while 

proxies in prior tests only reflected the efficiency of one specific type of information, 

synchronicity reflects relative levels of efficiency for firm-specific versus market and 

industry information, making it a unique setting to test the signal hierarchy between 

analysts and insiders. 
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When synchronicity is high, the firm’s returns are largely explained with 

industry and market returns, implying that the firm’s environment is more reflective of 

systematic information than firm-specific information.  Since insiders are most 

advantaged with regards to firm specific information, I predict that the insider signal 

will be more powerful when synchronicity is higher. In addition, since the value-

relevant information produced by analysts has already been reflected in prices when 

synchronicity is high, I expect that their signal will be relatively weakened when 

compared to conditions of lower synchronicity. It is interesting to note that these 

synchronicity analyses result in hypotheses that predict opposite signs on the 

interactions of ANA and CI with SYNCH, where as other previous analyses predicted 

significance in one group’s interaction, but non-significance in the other group’s 

interaction with the different proxies for informational advantage.  

 

VI. F. Results of Firm-Level Synchronicity Analyses 

Remaining consistent with prior methodology in Section VI, I calculate the 

relative amount of industry and macro-level versus firm-specific information already 

impounded in prices at any given point by measuring firm-level synchronicity over the 

preceding 36 months via firm-specific rolling regressions, following the methodology 

used by Piotroski and Roulstone (2004).17 Specifically, I calculate synchronicity using 

the following equation: 

 

FirmRET it = a + b1 MaRETjt + b2 MaRETjt-1 + c1IndRETkt + c2 IndRET kt-1 + εit 

 

                                                           
17 Piotroski and Roulstone show that analysts (insiders) tend to impound more macro-level (firm-
specific) information into prices. Other synchronicity determinants include the overall level of firm 
diversification, the level of intra-industry competition, and the volatility of the firm’s earnings stream. 
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FirmRET is the monthly raw return of the firm, while MaRET is the value-weighted 

market adjusted return from the CRSP monthly stock file.  IndRET is the industry 

return, and is calculated as the value weighted monthly average for all the firms within 

a given 2-digit SIC code.  Synchronicity is measured as the R-squared of the 

regression. I rank the synchronicity scores into quintiles, and create a binary variable 

with a value of 1 for firms in the upper quintile, and a value of zero for all of the 

remaining firms in the sample. I then run the same set of regression analyses as in the 

prior tests, using SYNCH as the interaction variable. 

Table 9 generally confirms the differing informational advantages of insiders 

and analysts in each subsample, and illustrates how synchronicity, as a proxy for the 

existing information environments, can sway the magnitudes of each entity’s 

predictive power in opposing directions.  When synchronicity is high, the interaction 

on SYNCH and the insider signal is directionally positive at the 3 and 6 month 

horizons, and significantly positive at 12 months. For analysts, the interaction on 

SYNCH and the analysts signal is significantly negative at the 3 month horizon, and 

directionally negative at 6 and 12 months. At the 3-month horizon, the interaction 

coefficient on ANA*SYNCH is significant, negative and larger in magnitude than on 

the main effect. Thus, when synchronicity is high, these results indicate a complete 

loss of predictive power for analysts, even at their preferred horizon. At the 12-month 

horizon, the insider signal earns abnormal returns of 11.5% when synchronicity is 

high, an increase in signal strength of 7.7% when compared to lower synchronicity 

firms. Given that prior literature has considered synchronicity to be a noisy signal, i.e. 

the residual in the asset pricing model could proxy for noise as well as firm-specific 

information (Teoh et al, 2008), (Ashbaugh-Skaife, et al 2006), it is not surprising to 

see the interaction coefficient for both parties to only be significant at each parties’ 

preferred horizon. Overall, the results from the synchronicity analysis add further  
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 56

robustness to prior results using PIN, FERC, and IDELAY as interaction variables, 

and illustrate the reliance of each party’s signal on a particular type of information.  
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VII.  Predicted Effects of Regulation Fair Disclosure on Informed Signals 

Reg FD was adopted by the SEC on October 23, 2000 in order to eliminate the 

release of selective disclosure by management, so as to reduce information 

asymmetries between smaller individual investors and professionals. The intent of the 

ruling was to obligate all publicly traded companies to disclose material information to 

all investors simultaneously, preventing managers from leaking information to 

analysts and institutions before a public disclosure, and decreasing the level of 

information asymmetry within the marketplace. Opponents of Reg FD, however, 

argued that if the disclosing of material information via public channels was costly, 

then Reg FD could have the unintended effect of decreasing the overall quantity of 

disclosures, thereby increasing the level of information asymmetry between informed 

and uninformed investors.  

Overall, evidence on the effectiveness of Reg FD on disclosure and 

information asymmetry appears to be mixed. Sidhu et al. (2008), show that adverse 

selection costs measured from the bid-ask spread increased approximately 36% after 

the passing of Reg FD. Duarte et al. (2008) find that Reg FD increases firms’ costs of 

capital by 10-19 basis points per annum. Wang (2007) documents that roughly half of 

the firms that rely on private earnings guidance as a path of disclosure replace such 

guidance with nondisclosure in the years following Reg FD. These studies imply an 

increase in information asymmetry in the post-FD era. Conversely, prior research by 

Francis, Nanda and Wang (2006) and Ke, Petroni, and Yu (2007) has studied the 

effects of Reg FD on analysts and transient institutional investors. These studies 

conclude that the passing of Reg FD reduces the magnitude and frequency of private 

disclosures from insiders to analysts and institutions, and implies that Reg FD is 
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effective in curtailing information leakages from management to informed agents, 

resulting a more level playing field between institutions and individual investors.  

One explanation for such paradoxical results could be as follows. Information 

asymmetries between professional and individual investors may be diminished after 

the passage of Reg FD, while information asymmetry between insiders and the 

remainder of market participants (both individual and professional investors) 

increases. I test this hypothesis directly, using the same design as prior tests in 

Sections VI. Specifically, if decreases in private disclosures result in an increase in 

information asymmetry between insiders and the other informed agents, I predict that 

the degree of insider dominance over institutions and analysts will increase in the post-

FD era. 

Using the same structural model as prior analyses, I assign a value of one to 

Reg FD over the years 2001-2006, and zero for all prior years.  Control variables 

remain unchanged. I examine the interactions of the three informed parties with Reg 

FD over the three, six, and twelve month horizons and report my findings in Table 10. 

Overall results are consistent with my predictions. Most notably, insiders gain 

significant predictive power across all three time windows, with the effect being most 

pronounced at the 3-month horizon. On the contrary, the interaction coefficients for 

analysts and institutions are negative at all six horizons, and are highly significant 

(p<0.01) for analysts at 6 and 12 month windows. Overall, Reg FD appears consistent 

with the loss of overall information flow from insiders to outsiders, resulting in 

increased insider’ predictive abilities at the expense of  analysts’ and institutions’ 

signals. 
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VIII. Conclusion and Future Research Suggestions 

 

In this paper, I contribute to the existing literature on information 

intermediaries. I focus on sell-side analysts, corporate insiders, and transient 

institutional investors, and analyze (1) the horizons over which each group impounds 

information into prices, (2) the circumstances under which each group remains most 

informative when the level of inter-party disagreement is high, and (3) the effects of 

differing informational environments with respect to firm and industry-specific 

information on the signal strength of analysts and insiders. Indirectly, my results are 

also likely to interest individual investors and money managers who trade by 

following “smart money” strategies, by offering insight into the interpretation of 

divergent signals from informed agents. 

Overall, I find that the signals of analysts and institutions are predictive of 

future prices only over shorter horizons, with analysts only marginally informative and 

institutions being completely uninformative at a 12-month horizon. Conversely, the 

insider signal strengthens with the passing of time, and is strongest at 12 months. Both 

of these results are consistent with each group’s environment influencing their 

investment philosophies, i.e. insiders being forced to act as contrarians due to 

litigation risk and trading constraints, and analysts and institutions acting as 

momentum investors due to incentives to generate trade and “window-dress,” 

respectively.  

Regarding disagreement among informed agents, my tests indicate that the 

insider buy signal is most dominant, particularly at the 12-month window, where the 

informativeness of their signal is equivalent to a full consensus buy. In all other 

scenarios, the disagreeing parties’ signal is less predictive of future returns than the 
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full-consensus group.  Under disagreement, the informativeness of each group’s signal 

is positively correlated with (1) the relative strength of its signal over the given time 

horizon and (2) the relative weakness of the two countervailing forces.   Overall, the 

informativeness of deviating agents is highest for analysts and institutions at the 3 and 

6 month periods, and for insiders at the 12 month period.  The hierarchy among these 

three groups show that insiders’ actions appear most informative in predicting returns, 

followed by analysts, and finally, transient institutions. 

A more detailed look at analysts’ and insiders’ signals reveals stylistic 

differences in the processes by which each agent informs future prices. For example, 

the normally dominant insider signal can be rendered insignificant if stock prices are 

efficient with respect to idiosyncratic-level information. Conversely, analysts’ signals 

appear to be bolstered when industry-level information diffuses slowly into market 

prices, thereby making market prices less efficient with respect industry information. 

These results illustrate that insiders (analysts) have primary advantages in either 

obtaining or assimilating firm (industry)-specific information, and that these 

comparative advantages have significant effects on the strength of each group’s signal 

in forecasting future returns. My final analysis indicates that while Regulation-FD 

may have leveled the playing field between professional and individual investors by 

preventing insiders from leaking information to institutions, reduced levels of 

management disclosure from this rule appears to have increased the predictive power 

of insiders’ actions in the post-FD regime. If this is the case, then an unintended 

consequence of Reg FD may be that the overall levels of firm-specific informativeness 

in stock prices may have decreased, resulting in higher and not lower overall levels of 

information asymmetry in the marketplace.  

The documentation of inter-party disagreement itself should interest 

researchers attempting to learn the intricacies of the price discovery process. Such tri-
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modal disagreement could have implications for market efficiency by implicitly 

suggesting that arbitrageurs may create their own limits-to-arbitrage by trading in non-

concerted directions, thereby prolonging, rather than correcting market mispricings. If 

this is indeed the case, then it would be interesting to study how the divergence of 

opinion could impede the speed of arbitrage following public information releases.  If 

news is released, and arbitrageurs issue conflicting signals, price may be slower in 

converging to value, thereby making market anomaly strategies (e.g. momentum, post-

earnings announcement drift, accrual fixation) more profitable and more easily 

executable.  

Another avenue for future research involves investigating how differences in 

each party’s relative aversion for idiosyncratic risk may result in inter-party 

disagreement. Assuming that a firm’s risk profile increases over time (e.g. due to 

restatement or acquisition of a higher-risk firm), how would each party react?  

Analysts may choose to downgrade a stock because their recommendations are 

primarily written for individuals who are impacted by idiosyncratic risk (Goetzmann 

and Kumar, 2007; Malmendier and Shanthikumar, 2007).  Insiders are also likely to be 

undiversified individuals, and may choose to sell shares for diversification purposes.  

Conversely, transient institutions are more likely to be well diversified, and may 

choose to increase their holdings since their return/risk profile would not be adversely 

affected.  
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