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CHAPTER 1

INTRODUCTION

Overview

This dissertation covers four topics, one per chapter, related to robot locomotion

with a focus on state estimation, path planning, or path following. This research

was conducted at different times during my non-contiguous presence at Cornell

University.

Cornell Ranger

The first two chapters (2 & 3) discuss research done at the Cornell Biorobotics

and Locomotion Lab, headed by Prof. Andy Ruina. Both topics involve work-

ing with the lab’s latest walking robot, Cornell Ranger. A description of Ranger,

including photos, can be found in the beginning of chapter 2. The research

done with Ranger combined theory, simulation, and real world engineering

challenges.

Heel-strike Estimation

Chapter 2 focuses on one aspect of Ranger’s onboard state estimator. Efficient

walking depends on many well coordinated movements. The Biorobotics and

Locomotion Lab’s research indicates that, for robots with actuated feet and ca-

pable of rotating around, that the timing of the ankle to push off against the
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ground is crucial. This is especially true for the robot Ranger. For the most effi-

cient walking, the stance foot (the one on the ground) pushes off just before the

swing foot (previously in the air) impacts the ground. This impact is referred to

as heel-strike.

Humans do not have direct sensors for how high their feet are above the

ground, we do not have sonars or laser range finders in our feet. By learning to

walk as babies, we internalized models which allow us to push off at the right

time to walk efficiently, even with our eyes closed. To match this ability, Ranger

must have an internal state estimator for the timing of heel-strike. Ranger’s

present heel-strike estimator is based on sensors and kinematics alone. Engi-

neering intuition suggests that using some kind of dynamic model for Ranger

could only help its estimator. Such a new, model-based, estimator is proposed

and demonstrated through Matlab simulation in chapter 2.

Self Steering

Chapter 3 describes Ranger’s self-steering, which I, with help from others, im-

plemented. Cornell Ranger was designed to coordinate and control its walking

motion by itself, however it required a human operator to control steering. One

of the challenges of Ranger’s world record setting marathon walk was having

someone constantly steer Ranger. There had been some early work on making

Ranger self steering but other issues took precedence and self-steering was not

used on Ranger’s marathon walk. After the marathon, the lab was invited to

bring Ranger to a robotics exhibition, Robots on Tour, in Switzerland (Spring

2013). This gave us a reason to reinvestigate giving Ranger self-steering capa-
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bilities.

Chapter 3 describes the design, testing, and implementation approach for a

low power, low weight, line-following system. The center-piece of the system is

an off-the-shelf camera board running fast and efficient custom video firmware

(software). For the line-following system to work well, the camera software

needs to reliably detect a line. Chapter 3 explains, in detail, the process of se-

lecting a tape which can be easily applied to a floor, and then how to detect it

with the selected camera board. The final piece of the line-following system is

the algorithm to generate steering commands based on the camera board’s line

detection output. The entire system was tested in Ithaca before taking Ranger

to Robots on Tour in Zurich, Switzerland in the spring of 2013.

Path Planning for a UAV

The rest of my dissertation covers work done before I joined the Biorobotics

and Locomotion lab when I was nominally-advised by Raff D’Andrea, working

Kathy Misovec. Chapter 4 discusses research into path planning for unmanned

air vehicles (UAV’s) and was presented at the 43rd IEEE Conference on Decision

and Control. The work was done in coordination with Alphatech, now part of

BAE Systems.

The researchers at Alphatech formulated a problem related to the detection

of an unmanned air vehicle (UAV) by radar, which is dependent on many vari-

ables including range, altitude, and relative orientation. Given a radar location

and appropriate model for the likelihood of detection, a path plan can be cre-

ated for an unmanned air vehicle which constrains the probability of detection.
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I worked on a path-planning approach that involved using a linearized detec-

tion model. The detection model and the UAV’s dynamics are represented as a

linear program subject to mixed integer constraints. This mixed integer linear

program was solved with commercial software, traditionally used by the Op-

erations Research community. This approach searches for all feasible solutions

and produces the best path plan based on the user specified parameters.

Fast Path Planning

Early in my time at Cornell, I was inspired by the fact that humans learn by

repetition and by using past experiences. Chapter 5 covers one approach to

seeing if it is possible for robots to act in a similar fashion. I found that by

representing past path traversal experiences with matrices, a new path could be

generated without relying on calculations of complex dynamics or control laws.

A paper was written and presented at the 45th IEEE Conference on Decision and

Control, which discussed this approach for using past experience to generate

new paths and control actions. The method relies on using several matrices

to associate each new input value with previous robot states. An example is

provided and analyzed which shows a successful simulated implementation.

Using infrastructure developed for Cornell’s RocoCup team, a real world test of

the approach was conducted. It demonstrated that the implementation not only

worked, but was extremely fast even with limited computational power.
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CHAPTER 2

MODEL-BASED STATE ESTIMATION OF A 2-D BIPEDAL ROBOT

2.1 Abstract

The motivation for the research in this chapter was to answer this question:

Is using combined dynamics and kinematic models for state estimation for a walking

robot more accurate than just relying on just a kinematic model? To study this ques-

tion, simulation of a proxy model of the walking robot was employed. Several

factors affecting the combining of a dynamic model with a kinematic model

were studied. In the end it was determined that optimally combining sensor

data with a dynamic-model predictor just slightly improves state estimation

over just a kinematic model, assuming the statistics of environmental factors

are sufficiently-accurately characterized. For real world implementation, hand

tuning would be required and would only lead to small improvement over a

system that is entirely based on sensors and model kinematics (with no use

made of robot dynamics in the state estimation).

2.2 Background

The Biorobotics and Locomotion Lab at Cornell is trying to make better walking

robots. Two key interests are energy efficiency and robustness. The robot of

concern here is the Cornell Ranger, figure 2.1.

Ranger has a stiff pair of outer legs and a stiff pair of inner legs. Their paired

nature makes four-legged Ranger functionally a planar biped. We’ll refer to
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Figure 2.1: Cornell Ranger in Barton Hall during a record setting 65 km
walk [1] in 2011, before this research was begun. Note the
paired outer legs and paired inner legs making Ranger effec-
tively a planar biped robot.

each pair of legs as a single leg. The feet have a powered push off, then flip up,

at the beginning of leg swing.

A key event in walking is heel-strike, when the swing leg hits the ground.

In Ranger, the stance foot begins to push off from the ground shortly before the

swing-leg heel-strike. This push-off has two purposes. First, energy is added to

the system compensating for collisional losses. Second, pushing off just before

the heel-strike (as opposed to, say, just after heel-strike) reduces the heel-strike
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collisional energetic losses [2]. Experience with Ranger shows that the efficiency

of walking is highly correlated with the timing of the push-off [3]. The most

efficient stride on Ranger occurs about when the push off takes place within a 20

millisecond window before the heel-strike [4]. To push-off within this window,

Ranger’s software makes an estimate of when heel-strike is going to take place.

If this estimate is too far off, the efficiency of Ranger’s walk degrades. More

significantly, the state of the robot during the next step is highly sensitive to the

time of push off at the end of the present step. Errors in push off timing, relative

to heel-strike, lead to erratic walking and possibly falling.

Presently, Ranger estimates when heel-strike is going to occur using the on-

board sensors and simple filtering. Before the work presented in this chapter,

the Ranger estimator only uses a kinematic model of Ranger, θ =
∫
ω · δt (ω is

the sensed angular rate), and not a dynamics model (pendulum ODEs).

This chapter concerns an investigation of the benefits of using, instead of just

kinematics, a dynamics model-based state estimator. Based on simulations, the

possibilities and limitations of this approach are discussed. Understanding the

issues related to using a model-based estimator in Ranger should not only help

any further development of Ranger, but should also give insight into the utility

of using dynamics-based state estimation for future walking robots.

2.3 Heel-strike State Estimation in Ranger

Ranger’s present (before this research) heel-strike estimation software is simple.

It estimates the time to impending heel-strike by estimating the swing foot’s

height above the ground. To estimate the swing-foot’s height, various sensors
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are used. Each set of feet has relatively accurate encoders which provide the

ankle angle, the angle between the foot and the leg. A digital encoder between

the legs provides a relatively accurate measurement of the angle between the

stance leg and the swing leg. In addition there is an inertial measurement unit

(IMU) mounted on the outer legs of Ranger. One of the rate gyros in the IMU

provides a measure of absolute angular velocity, ω, of Ranger’s outer legs from

which the angle, θ, of the outer leg can be found by integration in time, assuming

a good initial condition (to be discussed at length below). This gyro-based angle

estimate is the least accurate part of the sensor chain. Figures 2.2 and 2.4 show

where these sensors are located on the robot.

Figure 2.2: The Cornell Rangerrobot, with main motor and angle-sensor
locations labeled [1].

2.3.1 Ranger Sensor Properties

The digital angle encoders used on each set of feet, and between the legs, have

negligible noise relative to the IMU. They have 13 bit resolution per revolution
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which gives a discretization error of only 2π/213, which is approximately 0.00077

radians, or only 0.044◦. After going through the leg geometry, this leads to

about a (practically speaking, infinitely fine) resolution of swing-leg foot height

of about 0.15 mm foot-height, (using Ranger’s 0.35 m step length).

IM
U

(about 1 hr 45 min total)

Figure 2.3: Raw IMU data plotted in (a) with mean given by C2 and noise
given by C1. In (b) the same data is processed with a 600ms
(300 sample) box-car average, producing the same mean, C2,
but a noise, C3 reduced by a factor of about 17 ≈

√
300.

The rate-gyro in the IMU has two main sources of error, random noise and

bias-drift (a bias which drifts over longer times). These are evident in the sam-

ple data given in figure 2.3 [4]. The top plot, (a), is sample data collected from

the rate gyro as it sat stationary for 105 minutes. The mean of this data, labeled

C2, is the rate-gyro bias and ideally should be constant at zero. The random

noise in (a) has a peak to peak amplitude labeled C1. This data shows the rate

gyro has an almost uncorrelated gaussian noise with a variance of 0.0041 rad/s

[4]. Bias-drift over time is not very evident in the top plot. To better show the

drift, we define bias as the mean sensor reading over the period of one Ranger

step, which is 600 milliseconds. Accordingly, the data was processed with a

9



box car average of 600 milliseconds. Ranger’s controller frequency of 500 Hz

gives a sample time step of 0.002 seconds, so for a 600 millisecond box car, there

are 300 samples. Averaging sets of 300 samples produces figure 2.3 (b). Note

that the mean rate-gyro bias, C2, corresponds to an IMU angular rate mean of

-0.0043 rad/s. This bias drifts slowly over time, (note: the bias at the end of (b) is

close to the mean bias). The peak-to-peak magnitude of noise in (b), labeled C3,

has been reduced in comparison to C1 by approximately 1/
√

300 (≈ 1/17)rad/s,

which is to be expected for uncorrelated random noise. There are ways to com-

pensate for the rate-gyro bias drift if necessary, for example modeling the bias

as a state to be estimated. For the Ranger estimator here, bias is assumed to be

fully compensated one way or another, so we use C2 = 0 for our modeling of the

state estimator.

2.3.2 Present (before this research) Ranger Heel-strike Estima-

tor

Using the sensors, the known geometric parameters of Ranger, and simple kine-

matics, the presently implemented estimator on Ranger assumes a flat walking

surface to estimate the swing leg’s foot’s height above the ground. Because the

angle encoder at the hip joint is comparatively accurate, the relative position

and relative angular velocity of the legs is well measured. For this reason, the

absolute angular velocity of the swing leg can be measured directly with, or de-

rived from, the IMU rate gyro using the leg-relative-angle encoder, depending

on which leg the IMU is on. The orientation of the feet, relative to the legs they

are attached to, is measured using the ankle angle encoder. That is, no mat-
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ter which leg the rate-gyro is on, the estimate the swing-foot height above the

ground, requires the angle θ of the stance leg with respect to gravity, and relative

angle of the ankle and hip. Note again, and ankle angles (angles of feet relative

to legs) are measured relatively accurately by the ankle angle encoders. The

main job of the estimator is to find the absolute angle of the stance leg. It does

so by integrating the stance angle rate measured by the rate gyro on the IMU

(or the IMU with the hip-relative-angle encoder). Note, again, the estimator

uses (and trusts because of its relatively fine resolution) the relative-leg-angle

encoder.

Figure 2.4: Ranger schematic with angles labeled. [4]

To better understand the presently implemented estimator, start with the

following definitions for a given time-step k (k increments every 0.002 seconds)
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and consult figure 2.4

θk = Stance Leg Angle, Relative to Gravity

θ̂k = Estimate of Stance Leg Angle

ωs
k = Gyro-rate derived, or directly measured, Stance-leg angular velocity

ω̂k = Model-based estimate, of stance leg angular velocity

∆t = Time since most recent sensor reading and model-estimate update (typically 0.002s)

The estimator for leg angle takes the basic form:

θ̂k = θ̂k−1 + ωs
k · ∆t (2.1)

However, using the estimator above results in errors from noise in the rate-

gyro readings. To reduce these errors, Ranger presently uses the estimator be-

low:

θ̂k = θ̂k−1 +

(
ω̂k + ω̂k−1

2

)
· ∆t (2.2a)

ω̂k = ωs
k (2.2b)

The equation above can be interpreted two ways. First, it is a trapezoidal

rule for integrating the stance angle rate. Second, because it takes the average of

two angular velocity values, it slightly reduces the affect of noise. In this sense,

it is a two-value box-car filter. A longer box-car filter, which uses more than just

the most-recent two readings (i.e. a higher order filter), could be implemented

for more noise cancellation. Unfortunately, higher order filters also introduce

larger time lag in the estimates. The two-value box-car filter, as in equation

(2.2a), is simple and worked well enough, so a more sophisticated filter was not
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developed. Note that these filters, while smoothing the angular rate signal, do

not improve the accuracy of the estimate of the angle equal to
∫
θ̇ · δt because,

but for the most recent value, the numerical integration is identical using, or not

using, the averaging.

Heel-strike Reset

The stance-leg angle estimator uses integration and thus depends on an initial

condition. An important feature of the present Ranger heel-strike estimator is

the setting, and resetting, of this initial condition using ‘heel-strike resetting’. If

the angular velocity is integrated to produce the angle estimate θ̂k as described

in equation (2.2a), over time, the errors due to integration, and more importantly

drift due to sensor bias, will accumulate and cause errors in the integrated angle

estimate. To prevent the accumulation of error, heel-strike reset is used. Imme-

diately after the swing foot hits the ground (heel-strike), both legs are in contact

with the ground and the swing leg is no longer swinging. This gives the esti-

mator extra information, θ̃k, where θ̃k is the value for θk derived from the unique

geometry that occurs at heel-strike. Ideally, when Ranger has a heel-strike, the

estimator’s value, θ̂k, would simply be replaced with θ̃k (ˆfor estimate,˜for heel-

strike reset). Unfortunately, heel-strike is not gentle. Parts of Ranger, such as

springs, rods, and beams, experience an impact and thus vibrate. This impact

causes the sensors to briefly give highly fluctuating readings. Because of these

fluctuations, sensors that normally give accurate measurement of the joint an-

gles are, just after heel-strike, relatively less accurate. Ranger uses a new value

for the theta estimate, θ̂+
k , using a weighted average of the present value with

the geometrically derived value. Thus θ̃k is calculated by equation (2.3). Unfor-
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tunately, any real ground is not mathematically flat. This is another reason that

the reset value is not reliable to predict swing foot height for the next step. The

nine to one weighting used in equation (2.3) was found through the real world

tuning (experimental trial and error) of Ranger.

θ̂+
k =

(
9

10

)
θ̂−k +

(
1
10

)
θ̃k (2.3)

Where

θ̂−k = Estimate of stance leg angle from integrating up to tk

θ̃k = Derived stance leg angle from double-stance geometry at the present heel-strike

This heel-strike estimator, equations (2.2a) & (2.3), was used during the

world-record-setting marathon walk in May, 2011. It was determined that, with

this estimator, Ranger can estimate swing-foot heigh accurately within ±3 mm,

for its step length of about 35 cm and assuming high accuracy of the joint angle

sensors. This is equivalent to an error in stance leg angle, θ, of about ± 0.009

radians (= 0.003/0.35).

2.3.3 Simplified proxy model

For this study of estimates, we use a simplified, proxy model of Ranger. While

walking, Ranger can be thought of as a double pendulum where the stance leg,

attached with a pivot to the ground, acts as the first link in a double pendulum.

The swing leg, a second link in a double pendulum, is attached to the stance leg

through the hips. For designing some controllers, this double pendulum model

is used [5], however for most controllers a simpler model, an inverted single

pendulum, is used [6]. The majority of Ranger’s mass is its body, the swing

leg and foot mass do not significantly impact the angular velocity of the body.
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These aspects of Ranger can be captured in an inverted single pendulum model.

For controllers, like Ranger’s, that are most concerned with the swing leg’s foot

placement, one needs to know the angle of both the swing and stance legs. As

previously noted, because of the relatively accurate angle encoders, the angle

between the stance leg and the swing leg is well measured, but the absolute

angle and angular velocity of the stance leg is less well known. And estimating

the stance leg angle is the main purpose of the heel-strike estimator we discuss

here. The foot position can then be measured using this angle estimate and

relative angle in the hip joint. The inverted single pendulum model (figure 2.5)

captures the dynamics of Ranger and estimating its state is the most important

task of a heel-strike estimator.

Figure 2.5: Inverted single pendulum model for Ranger does not have to
be uniform or have a single point mass.

This single inverted pendulum model, a rigid object with a hinge, has sev-

eral advantages over more complex models. By capturing the factors affecting

heel-strike estimation with a simpler dynamics model, the relative effect of each

remaining factor is more apparent and is not masked, or diluted, by behavior of

the dynamics model.
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For purposes of investigating heel-strike state estimators, a proxy model

for this already-simplified inverted pendulum is used. An inverted pendulum

needs a controller to keep it from falling over. By using a simple single, un-

forced, undamped, non-inverted pendulum model for the stance leg, no controller

is needed, fig. 2.6 in our studies. Such a pendulum will continuously swing

by itself around the stable position with no energy dissipation. This simplifies

the description and testing of the state estimation here, and allows a simulation

to focus on the heel-strike estimator, without concern for a controller and any

possible influence a controller could have on the estimator. This is not a model

of Ranger, but a proxy on which to test estimator ideas. While it is interesting

to have a good model for Ranger, for purposes of this study it not necessary. To

investigate the issues related to estimator design, any reasonable model system,

incorporating repeated motions, discrete measurements, and mildly non-linear

dynamics, seems acceptable.

θ

g

m

L

Figure 2.6: Simple, unforced, undamped, non-inverted, pendulum model.
This pendulum model is a proxy for the inverted pendulum of
the stance leg.
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Truth model for simplified proxy model

To generate synthetic data in our estimation simulations we use a model, which

we call the “truth model”. Estimate errors are the difference between the “truth

model” and the estimator outputs. This truth model is based on the funda-

mental differential equations for a simple, unforced, undamped, non-inverted

pendulum as given below. Note that F p(t) is a time varying function that rep-

resents the process noise (such as extraneous torques), which will be discussed

later in detail.

ω̇s = −

(g
L

)
sin θ + F p(t) (2.4a)

θ̇ = ωs (2.4b)

Where

g = gravity constant

L = leg length

θ = Stance Leg Angle Relative to Gravity

ωs = θ̇ = Stance Leg Angular Velocity

F p(t) = Process noise

2.3.4 Why not use a Kalman filter?

A Kalman filter [7], designed to optimally remove noise using dynamic models,

may appear to be a good method for combining a model and sensors to cre-

ate an estimator for Ranger, or for the simplified proxy model described above.

Unfortunately, several properties of Kalman filtering make it a less-than-ideal

approach. A Kalman filter (and its extended versions) works best when sen-
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sor and process noises are Gaussian and uncorrelated. This is not the case for

the model described above, where the sensor noises and process errors are not

strictly Gaussian. They are also not uncorrelated, as the effects of heel-strike

are time correlated to each heel-strike event. In addition, Kalman filters do not

handle model uncertainty well, and our walking does have significant model

uncertainty (e.g., friction). Finally, a typically-formulated Kalman filter will try

to make best estimates at all times. For a walking robot’s heel-strike estima-

tor, the main goal is to have an accurate estimate right before heel-strike. For

these reasons, a direct Kalman filter was not pursued. However, using a linear

combination of model-based and sensor-based estimates is an aspect of Kalman

filtering with merit, and is used in the estimator proposed below. Kalman filters

choose the analytical optimal linear combination to minimize the error in the es-

timate, assuming Gaussian noises. We will choose a numerically-found optimal

linear combination, for the errors of the type we actually have.

2.3.5 Proposed model-based heel-strike estimator

A dynamic model of Ranger, plus initial conditions, could be used by itself to

make heel-strike predictions. If an initial state is known, a perfect model pre-

dicts the future perfectly. However, a perfect model-based prediction is only

good for finite time because any real model is not exact and thus deviates from

reality at least linearly in time. Even if the model was mathematically exact, and

started with the exactly correct initial conditions, model-based estimates would

still drift from truth over time as numerical integration errors would accumu-

late, causing model and reality to diverge. More reasons as to why a system,

and its model-based prediction, can differ, are discussed below.
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In this chapter, we investigate if appropriately combining a model, with the

sensor readings, can produce a better heel-strike estimate than is possible with

just sensors and a kinematic model (as is used in Ranger’s present estimator

discussed in the previous section).

To create a dynamics model-based heel-strike estimator, that combines both

sensor-based and model-based predictions, we start with the fundamental dif-

ferential equations for each. Then we combine them. The simple, unforced, un-

damped, non-inverted pendulum model is described by the differential equa-

tions (2.4) and includes F p(t) which represents the process noise. These equa-

tions are used as the basis for the model-based estimator. However, as we have

no model for F p(t), this term is left out of the estimator equations. The impli-

cations of this omission for the estimator will be discussed later. The purely

model-based estimator is described by the following equations:

ω̇m = −

(g
L

)
sin θm (2.5a)

θ̇m = ωm (2.5b)

Where

θm = Model stance-leg-angle, relative to gravity

ωm = Model stance-leg angular velocity

For a system that has a rate-gyro sensor which produces a value for the angular

velocity, ωs, the purely sensor-based differential equations are as follows.

ωs = Gyro-rate-sensor-derived stance leg angular velocity

ω̇s = nothing, not a concept in the sensor-based estimate (2.6a)

θ̇ s = ωs (2.6b)

The non-existence of equation (2.6a) makes the creation of differential equa-
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tions for an estimator, that combines model and sensor values, a little more

involved. Equations (2.6) can be rewritten using a new variable, ωes, to form

equations (2.7) as follows.

ωes = sensor-based Stance Leg Angular Velocity Estimate

ω̇es = S FD · (ωs − ωes) (2.7a)

θ̇ s = ωes (2.7b)

Equations (2.7) form a first order filter for the sensor output, ωs, where

S FD determines the characteristic decay time, filter decay, which is 1/S FD. As

S FD → ∞ the characteristic decay time goes to zero and equations (2.7) revert to

equations (2.6). As discussed before with equation (2.2a), the (presently imple-

mented) Ranger estimator also filters the sensor data, using a two-value box car

filter. In a similar way, S FD (filter decay) is analogous to (the reciprocal of) the

width of the box in the box-car filter in equation (2.2a). A discussion of the best

values for S FD, is given later.

The differential equations for a pure model estimator, equations (2.5), and for

a pure sensor-based estimator, equations (2.7), can now be combined to produce

differential equations for the proposed combined model and sensor estimator,

in continuous (not yet discretized for time steps),

θ̂ = Estimate of Stance Leg Angle

ω̂ = Estimate of Stance Leg Angular Velocity

˙̂ω = (1 − S MS ) [−
(g
L

)
sin θ̂]︸         ︷︷         ︸

MODEL

+ S MS [S FD(ωs − ω̂)]︸            ︷︷            ︸
SENSOR

(2.8a)

˙̂θ = ω̂. (2.8b)

The factor S MS determines the weighting between the model and the sen-

20



sor. The term model-based estimator will be used to refer to this estimator

(equations (2.8)), which combines sensor data and a dynamics model. Like-

wise, all plots labeled ”Est. Err.” refer to errors in the estimated leg angle data,

θ̂k (equations (2.8)), relative to the truth model θk (equations (2.4)), from this

model-based estimator.

When S MS = 1 (model sensor), equation (2.8a) reverts to equation (2.7a),

the (filtered) sensor-only estimator. Conversely, when S MS = 0, equation (2.8a)

reverts to equation (2.5a), the model-only estimator. For clarity S MS will be re-

ferred to as the model-sensor weighting factor (1 for all sensor, 0 for all model).

To simulate and implement this model-based estimator on Ranger, the dis-

crete versions of equations (2.8) are needed. Assuming a time-step index k and a

fixed time step size ∆t, we use Euler integration for the discrete versions of these

equations. The remainder of this chapter, and the primary topic of interest, is

the properties of these equations compared to using a pure model (or with these

same equations with S MS = 0).

ω̂k+1 = ω̂k +

[
(1 − S MS ) [−

(g
L

)
sin θ̂k]︸          ︷︷          ︸

MODEL

+ S MS [S FD(ωs
k+1 − ω̂k)]︸                ︷︷                ︸

SENSOR

]
∆t (2.9a)

θ̂k+1 = θ̂k + ω̂k · ∆t (2.9b)

These equations are not complete, however, as the initial conditions for the

integration are not yet specified.

Heel-strike Reset

As with the presently implemented heel-strike estimator on Ranger, when heel-

strike occurs, the θ̂+
k is replaced with a new value. Similar to equation (2.3), this
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new value is a combination of θ̂k and θ̃k (estimator and geometry based estimates

at heel-strike), effectively resetting the θ part of the estimator at heel-strike. The

relative weighting of θ̂k and θ̃k is another controllable factor in the model-based

estimator investigated here. In contrast to equation (2.3), used by the present

Ranger estimator, the model-based estimator heel reset equation contains the

free parameter S HR, not necessarily using S HR = 0.1 (as was used in Ranger).

θ̂+
k = (1 − S HR) · θ̂−k + S HR · θ̃k (2.10)

Where

θ̂−k = Estimate of swing leg angle from integrating up to tk

θ̃k = Derived swing leg angle from double-stance geometry

For the proxy truth-model, given a smooth floor, heel-strike occurs when the

simple pendulum is pointed straight down, defined at θ = 0. This happens

twice per period, once in each direction, so the angular velocity is either a max-

imum or minimum value. Figure 2.7 shows a short simulation of a pendulum

swinging with the ”heel-strike” and corresponding velocities marked. When

the floor is not smooth, floor height variations will cause heel-strike to occur at

θ values close to 0, but not exactly 0.

2.3.6 Summary of Estimator Factors

Three different factor values determine the performance of the model-based es-

timator as given in equations (2.9a) and (2.10).

1. The first, S FD, is the filter decay-factor which is related the characteristic

decay time of the sensor filter. S FD can range from zero (infinitely slow

22



0 1 2 3 4 5
−1

0

1

A
n
gl
e
(θ

)

S imulation of Pendulum

0 1 2 3 4 5
−5

0

5

V
el
oc

it
y
(ω

)

Time (s)

“Heel	
  Strike”	
  

Figure 2.7: Simple, unforced, undamped, non-inverted, pendulum simu-
lation with heel-strike, θ = 0, marked with black dots.

decay) to infinity (instantaneous). As we will show, there are practical

bounds on S FD to allow the model-based estimator to work in the context

of the finite-difference calculation.

2. The next factor is S MS , which controls how much the model-based estima-

tor relies on its model versus the sensors. When S MS = 0 only the model is

used, and when S MS = 1 only the sensors are used. The effect of various

error sources, on the model and sensors, will determine the best value for

S MS .

3. The final factor is S HR which is the the heel-strike reset factor. This factor

determines how much of the geometry based, versus the estimator based,

value of θ to use when reseting the estimate of θ at heel-strike. If S HR = 1, a

full reset takes place at each heel strike, it is all geometry based. If S HR = 0,

no heel-strike reset takes place and the angle integration is never reset.
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The value of S HR is determined by the unevenness of the floor. The more

uncertain (uneven) the floor, the smaller S HR should be so that the floor

height is effectively averaged over many steps. This floor-height variation

effects both types of estimators the same way.

2.4 Simulation of the proposed combined estimator

Our hope is that using a dynamics model, in conjunction with sensor data, can

produce an estimator that is better than one which uses just a model, or just

sensors. To gain insight into using such an approach, the simplified Ranger

proxy model described above was used. We think this proxy model captures

the relevant features of Ranger’s walking dynamics, at least for evaluating state-

estimation schemes. A Matlab simulation uses this simplified model to compare

this model-based estimator (using various values for the estimator constants)

with Ranger’s present kinematics-based estimator. In the Matlab simulation, a

Runge Kutta 4th order integration algorithm (RK4) is used to create the ”truth”

in the simulation, and the Euler-Cromer method is used for the model, mimick-

ing calculations that can be done on a robot microprocessor, in the model-based

estimator.

The simulation includes simulations of the noises and other major causes of

error that Ranger’s estimator must contend with, in the real-world. The two

main types of sensor errors are rate-gyro noise and collision induced errors.

The main additional error is “process noise” cause by an assortment of environ-

mental and robot conditions (wind, actuator imperfictions, etc). Finally there

is floor height uncertainty, as no real walking surface is completely flat; the er-
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rors of concern here, a few millimeters, are comparable to height variations on

nominally-flat linoleum floors.

2.4.1 Matlab simulation

Matlab was used to simulate the simple pendulum that represents, in an abstract

proxy way, Ranger. The simulation time step, ∆t, is 0.002 s, which corresponds

to Ranger’s 500 Hz controller frequency. This is the frequency at which Ranger’s

processors run through the controller code. A simple non-inverted pendulum

of length 1 m is unforced and undamped. The user selects an initial angle and

initial velocity. Although an analytic solution is available, it is easier, and just as

good for our purposes, to use for the “truth” model, the motion of the pendu-

lum as simulated using a Runge Kutta 4th order integration algorithm (RK4), as

given below. The estimates from the present Ranger estimator and the model-

based estimator are compared to the values of the truth model. This gives a

measure of how well the estimators function. The process noise, F p(t), will be

discussed later and is added directly in the angular acceleration calculation in

the truth model, as repeated below.

ω̇ = −

(g
L

)
sin θ + F p(t) (Truth Model) (2.11)

θ̇ = ω

Starting from this base, various factors and noises are added to simulate

the actual Ranger walking environment and modeled θ̇ sensor errors. These

noises make estimation of heel-strike less accurate. These factors and noises

were extracted from examining the physical characteristics, and the logged data,

of Ranger while in motion, and while experiencing repeated ground impacts
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during heel-strike. The following sections discuss each source of error in detail,

and how it impacts the simulation and the effectiveness of the present Ranger

estimator and proposed model-based estimator.

2.4.2 Integration errors in the model-based estimator

The Runge Kutta 4 (RK4) algorithm used to calculate the trajectory of the “truth”

model is a fourth order method with truncation error on the order of O(∆t5). For

our ∆t, it gives an error of about 10−9 compared to an accurate Matlab ODE45

simulation (using AbsTol and RelTol set to 10−15). However, for a given step

size, Runge Kutta 4 is more computationally intensive than other methods, e.g.

Euler, Euler-Cromer, etc. The dynamics model used in a model-based estimator

must be fast to be of use for real time estimation on a robot microprocessor. The

normal Euler approximation for a swinging undamped and unforced pendu-

lum, as given below in a generic form, has a well known problem, energy is not

conserved.

g = gravity constant

L = leg length

ω̂k+1 = ω̂k −

(g
L

)
sin θ̂k · ∆t (2.12a)

θ̂k+1 = θ̂k + ω̂k · ∆t (2.12b)

Thus, the equally simple Euler-Cromer method for solving the differential

equations is used for the model in the model-based estimator. While Euler-

Cromer is as simple (hence fast) a calculation as Euler, it does a somewhat better

job of conserving energy [8]. Over one cycle, the energy increase using Euler is

proportional to ∆t but for Euler-Cromer it is proportional to ∆t3 [9]. The only
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term that changes is in equation (2.13b) below, which solves for the new θ̂k+1

using the new ω̂k+1, as opposed to the Euler method, whereas the old ω̂k value

is used.

ω̂k+1 = ω̂k −

(g
L

)
sin θ̂k · ∆t (2.13a)

θ̂k+1 = θ̂k + ω̂k+1 · ∆t (2.13b)

Equation (2.13b) replaces Euler-method equation (2.9b) in our model-based es-

timator formulation. Thus, the discrete version of the differential equations that

describe the proposed model-based estimator, equations (2.14), is given below,

where there is only the slight change in finding θ̂k+1.

ω̂k+1 = ω̂k +

[
(1 − S MS )[−

(g
L

)
sin θ̂k] + S MS [S FD(ωs

k+1 − ω̂k)]
]
∆t (2.14a)

θ̂k+1 = θ̂k + ω̂k+1 · ∆t (2.14b)

θ̂+
k = (1 − S HR) · θ̂−k + S HR · θ̃k (if k = heel-strike) (2.14c)

As figure 2.8 shows, even without heel-strike, this approximation is able to

match the truth model well for a few steps. For this short simulation there are

no noises, and the estimator only uses the model, S MS = 0 (all model, no sensor),

and S HR = 0 (no heel-strike correction). In figure 2.8, the top plot gives the angle

versus time plot for the truth model (the Runge Kutta 4th order solution). Be-

low is a plot of the model-based estimator’s error in angle (relative to the truth

model) versus time starting with perfect initial conditions. After 20 seconds the

error is still less than 10−4. The growth in error is due to the difference between

the accurate RK4 ”truth” solution and the simpler Euler-Cromer solution. As

discussed before, any small difference between the model and truth, such as

period mismatch or wrong phase, will cause the model-based estimate to drift

further and further from truth just as figure 2.8 illustrates.
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Figure 2.8: Plot on top shows the angle versus time data as output by
the pure model-based estimator, S MS = 0 (all model, no sen-
sor), and S HR = 0 (no heel-strike correction). The bottom plot
shows the error, initially small (∼10−4) but growing, between
the model’s estimate and the truth model. This is just the nu-
merical error in the Euler-Cromer integration. To check this
growth, we need a sensor or a reset capability in the integra-
tion.

2.4.3 Sensor errors

The angular-rate sensor error has two major contributors. The first is the inher-

ent electrical sensor noise and drift (the rate-gyro noise). The second is due to

mechanical vibrations exacerbated by heel-strike collisions (the collision noise).

Rate-gyro noise

Generally, rate-gyro absolute-angle sensors are much less accurate than relative-

angle encoders. Both the present Ranger estimator, and the proposed model-

based estimator, must contend with rate-gyro inaccuracies. To simulate the out-
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put of this sensor, the truth model output is combined with simulated sensor er-

ror noise to create the simulated sensor reading. Because gyro-bias drifts slowly,

so is assumed to be negated, the additive gyro noise is a random variable with

gaussian distribution (on Ranger the standard deviation is 0.0041 rad/s, see fig-

ure 2.3) and bias = 0.

ωs
k = ωk − mean sensor noise + bias︸︷︷︸

0

This ωs
k sensor value is then used to test the presently implemented Ranger

estimator equation (2.2a). Similarly ωs
k is also used with our new model-based

estimator, equation (2.14a).

The effects of rate-gyro noise can be seen in figure 2.9 below, which shows

the output of two short simulations, using the present Ranger estimator, where

the only noise or error is the rate gyro noise. In the simulation, the present

Ranger heel reset value, S HR = 0.1, was used. A noise with a larger standard

deviation ofσ = 0.0051rad/s, which is even larger than Ranger’s rate-gyro noise,

was used in the simulation.

Collision-noise error

Another cause of error is the noise generated at each heel-strike. After the ini-

tial impact, components, such as springs and beams within Ranger, continue

to vibrate. The effect of the heel-strike collision on the leg angle-encoder has

been discussed, and explains why the heel-strike reset requires equation (2.3), a

weighted combination of the estimated and geometrically derived θ, even if the

floor is exactly flat.
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Figure 2.9: The presently implemented Ranger estimator, applied to the
simple pendulum model, where the sensor is only affected by
gyro noise. The heel-strike reset is S HR = 0.1 There is no model
(only sensor) being used in the Ranger estimator, that is S MS =

1. The top plot is the angle as estimated by Ranger, the second
plot shows the error when compared to the truth model. The
third plot is the estimated angular rate ω and the forth plot is
the estimator rate error, relative to the truth model. Note that
the angle error is as large as about 3 × 10−4, corresponding to
about 0.1 mm error in foot height.

The collisions also affect the rate gyro. On Ranger, the corresponding error

has been characterized as having a maximum amplitude of 0.5 rad/s and dies

down to almost zero within one quarter of a swing phase [4]. Each noise error

value also has a 0.995 correlation with the previous value, 0.002 seconds earlier

[4]. In the simulation, error values are generated corresponding to collision

noise and added to the rate gyro sensor values.

The effects of collision noise can be seen in figure 2.10 below, which shows

the output of a short simulation using the presently implemented Ranger esti-

mator, where the only error is sensor error, due to collision noise. The present
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Ranger heel reset value, S HR = 0.1 and a noise amplitude of 0.5rad/s were used

in the simulation.
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Figure 2.10: Ranger Estimator results with S HR = 0.1 and collision noise
error has a maximum amplitude 0.5rad/s. As in figure 2.9, the
sensor is only affected by gyro noise. The top plot is the true
angle, θ, and the second plot is the estimator angle error, θ− θ̂.
The third plot is the true angular rate, ω, and the fourth plot
is the estimator error for the angular rate, ω − ω̂. Note angle
errors up to about 10−3, corresponding to foot-height errors of
about 0.3 mm.

2.4.4 Process-noise error

Process noise is represented by the F p(t) term, first introduced in equation (2.4a).

This noise accounts for the errors observed in the logged Ranger data; these are

not attributed to any of the sources previously discussed. Process noise has

several causes, including wind, environmental disturbances, internal bumping

of the motors, and motor non-linearities. This noise is directly added to the truth

model via the F p(t) term in the Runge Kutta 4 (RK4) truth calculation presented
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earlier in equation 2.11. It is modeled as a constant disturbance torque that lasts

for a short period of time before randomly changing amplitude. The magnitude

of the process noise, and duration that the process noise, is held constant as will

be discussed later. Because process noise directly affects the system, it is roughly

equivalent to un-modeled dynamics for the proposed model-based estimator.

2.4.5 Floor Uncertainty

If the floor is perfectly flat and smooth and geometric calculations are accurate,

it is clear that at heel-strike the estimated swing leg angle, θ̂, should be com-

pletely replaced with the geometrically derived value, θ̃. This behavior corre-

sponds to S HR = 1 as seen in equation (2.14c). The converse, completely ignoring

θ̃, corresponds to S HR = 0 and, ultimately with long time, ever growing errors.

Unfortunately the floor is never perfectly flat and the geometry based calcula-

tion to find θ̃ is never perfect due to the angle sensor errors and floor roughness.

Choosing a value for S HR, which combines θ̂ and θ̃, in a model-based estimator

is affected by the relative errors in θ̂ and θ̃. Also, in selecting a value for S HR, the

weighting of the model component and the filter component, S MS , is important

as the choice of S MS affects the error in θ̂.

The error in the geometrically derived angle, θ̃, is modeled as an equivalent

floor roughness, the floor height variation at heel-strike. The floor height is

sampled from a uniform distribution from zero to a fixed maximum magnitude.

This height error is converted into the equivalent θ value assuming a leg length

of 35 cm, approximating Ranger’s leg length, and is added to estimators’ error

at heel-strike.
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2.4.6 Summary of estimator error sources

There are several sources of errors for the model-based estimator and the purely

sensor-based estimator. The model-based estimator is affected by model in-

tegration error (very small) and by process noise (large). Their are two main

types of sensor error, rate-gyro noise and collision error. Both the model-based

estimator and the sensor-based estimator are affected by sensor noise, but the

sensor-based estimator is affected to a much larger degree as the model-based

estimator can use its internal model to mitigate sensor errors. Floor uncertainty,

the last source of error, affects both types of estimators in the same way. In the

next section we investigate how to choose the values of estimator factors to best

mitigate the sources of estimator errors.

2.5 Investigating best values for S FD, S MS , & S HR

The proposed model-based estimator, equations (2.14), has three user defined

factors, S FD (Filter Decay), S MS (Model-Sensor Ratio), & S HR (Heel-Strike Re-

set). The effects of integration error, sensor error, and process noise error, on the

model-based estimator are investigated in this section of the chapter. By study-

ing these effects we gain insight into the relationship between the factors and

their individual and relative sensitivities to the various errors.
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2.5.1 Filter Decay, S FD

To begin examining values for the relative filter decay parameter, S FD, first note

that S FD concerns only the sensor aspect of the model-based estimator, so sen-

sor noise is our main concern in this section. The best value of S FD (the one

minimizing the estimator error) is mainly unaffected by process noise, which

is modeled as a constant torque that is applied for a set amount of time before

changing value. We model the process noise to be low frequency, held constant

for a relatively long amount of time compared to the constantly noise perturbed

sensor signal. A filter which best mitigates the high frequency sensor noise, a

low pass filter, has little affect on the process noise. In selecting the best value of

S FD, our concern is high frequency sensor noise, not the low frequency process

noise.

Finding the best value of S FD starts with equation (2.14a) using S MS = 1 (no

model, only sensor). Equation (2.14a) becomes the following.

ω̂k+1 = ω̂k + [S FD · (ωs
k+1 − ω̂k)]∆t

= (1 − S FD∆t) · ω̂k + (S FD∆t) · ωs
k+1 (2.15)

We use the above expression to calculate the effect of S FD in simulation.

First, we find the range of S FD values, for which the sensor filter is stable.

Note, the expression (2.15) is a 1st order difference equation with respect to

the filter estimate ω̂k. In order for the equation to be stable, the linear coefficient

(1−S FD), the eigenvalue, of the equation, has to be smaller than 1 in magnitude.1

1More generally, for a digital filter to be stable the poles of the difference equation must lie
within the unit circle [10], which is equivalent to noting that the eigenvalues must be less than
one in magnitude
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Therefore we get,

|1 − S FD∆t| < 1 ⇒

−1 < 1 − S FD∆t < 1 ⇒

0 < S FD <
2
∆t

For all the simulations presented here, ∆t = 0.002, giving the lower and upper

bounds of S FD as,

0 < S FD < 1000/s

These bounds are confirmed in figure 2.11 below, which contains two simulated

outputs of the model-based estimator. The simulations are each only two sec-

onds long, have S MS = 1 (all filter, no model), S HR = 0 (no heel-strike resetting),

and no process or sensor noises or model errors. In one simulation (middle plot)

S FD = 0 and there is no filtering and the estimator produces only a constant out-

put (we set ω̂0 = 0). In another (bottom plot) S FD = 1005 and the estimator

output diverges and starts to grow without bound - the filter is unstable.

Best Value for S FD

With the bounds (0 < S FD <
2
∆t ) established, the filter can be tested in simula-

tion with S FD value varying from the lower bound to upper bound to see which

value of S FD produces the smallest angle estimate error. The angle-estimate er-

ror is measured by taking the mean of all the estimated foot-height errors at

heel-strike. The results of a parameter study are in figure 2.12. Each simulation

was run for 3000 seconds with no noise or other error sources. In each simula-

tion both the Ranger estimator and the model-based estimator were used, while

the S FD value was varied from 33 to 983 in increments of 50. The present Ranger

estimator produced the same results in each run (because it does not use the S FD
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Figure 2.11: The estimator filters the rate data from the gyro/sensor, ωs,
with a first order filter, and then integrates it to produce the
estimate of the angle, θ̂. S FD acts as the coefficient of a filter for
ω. If this filter coefficient is too large, S FD > 1000, it causes the
output of the filter to increase with time, the filter is numeri-
cally unstable. This is shown in the bottom plot. If the filter
coefficient is set to zero, S FD = 0, there is no useful output at
all as shown in the middle plot. The top plot is the true an-
gle, θ. All plots are the result of a two-second long simulation,
with no process or sensor noise and no model error.

parameter), however, the model-based estimator had its smallest error around

S FD = 333 and the error curve is quite shallow after this point. Based on this

plot we can expect that the S FD that gives the minimal error in most cases, de-

pending on the different combinations of noises and floor uncertainties, will be

in the 333 neighborhood.
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Figure 2.12: The figure above shows the optimal filter factor, S FD, value to
produce minimum error in angle estimate for the case of no
sensor noise, process noise, or floor uncertainty. Simulations
were run for 3000 seconds with S FD varying from 33 to 983
in increments of 50. The mean absolute error for heel-strike is
plotted for the various S FD values for the model-based estima-
tor and the present Ranger estimator, which has a fixed S FD

value. Because the Ranger estimator’s fixed S FD value, the
Ranger estimator error is a constant line in the plot, while the
proposed estimator does best when S FD is around 333. Due to
the shallow nature of the curve around S FD = 333 we expect a
range of optimal S FD in the 333 neighborhood.

2.5.2 Model-to-sensor ratio, S MS

The model-to-sensor ratio factor, S MS , as first given in equation (2.8a) on page

20, determines the weighting between the model and the filtered sensor in the

proposed model-based estimator. When S MS = 0 only the model is used and

when S MS = 1 only the sensor is used, with values in between combining the

two. Intuitively, whichever is more accurate on its own, the model or sensor,
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should have the larger weighting. As described previously, process noise de-

grades the accuracy of the model where as sensor error degrades the accuracy

of the filtered sensor output. Through simulation, we will see how the optimal

S MS is influenced by the relationship between process noise and sensor error. In

all the simulations in this section S FD = 333 will be used based on our results

in section 2.5.1. For S HR a value of 0.1 will be used to stay consistent with the

presently implemented Ranger estimator. Later, we will look at the affects of

varying S HR..

Process noise is modeled as a torque (normalized by the moment of inertia)

that is directly added to the truth model, as shown in equation (2.4a). We as-

sume that this normalized torque is a piece-wise constant random variable. It

has a random constant magnitude for a fixed period of time before randomly

changing value for the next time interval. Thus, the torque is described by two

parameters, the maximum allowed magnitude and the fixed period of time it

is held constant. Nominal values based on our experience with Ranger are

maximum magnitude of 0.5 rad/s2 and fixed time period of 0.25 seconds. In

the simulations below, examining process noise’s effect on S MS , the maximum

magnitude varies from 0.1 to 0.9 rad/s2 in 0.2 increments. The fixed time period

varies from 0.1 to 0.4 seconds in 0.1 increments.

Sensor error is produced by a combination of rate-gyro noise, which is

present throughout the step, and collision noise, which is large after heel-strike

but then dies down. Nominal values based on experience with Ranger are rate

gyro noise standard deviation of 0.0041 rad/s and collision noise error maxi-

mum amplitude of 0.5 rad/s. In the simulations below the rate gyro noise stan-

dard deviation will range from 0.001 to 0.007 rad/s in 0.002 increments. The
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collision noise error maximum amplitude ranges from 0.1 to 0.9 rad/s in 0.2 in-

tervals.

Process noise effects on S MS

S MS and Process Noise
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Figure 2.13: The figures above show the best model-sensor ratio, S MS , to
produce the minimum error in the angle estimate in the pres-
ence of process and sensor noise. The sensor noise was held
fixed at its nominal value (rate gyro standard deviation =
0.0041 rad/s and collision-noise error maximum amplitude =
0.5 rad/s), while the process noise is varied. Process noise
has two parameters, time period and maximum magnitude.
In the plots above only the maximum magnitude of process
noise varied, ranging from 0.1 to 0.9 rad/s2 in 0.2 increments,
while process time period was always 0.1 seconds. The best
estimate for S MS in each case is marked with an asterisk. Note
that the graph is flat, minimum possible error at the optimal
S MS is not much different from the error in the case when no
model was used. In all the simulations S HR = 0.1 was used, to
match Rangers present estimator.

First, we examine the process noise’s effect on S MS . To accomplish this we

do several simulations, each 3000 seconds long, where the sensor noise char-

acterizations are fixed, but process noise parameters vary. Figure 2.13 shows

how the mean estimator angle-error at heel-strike changes as S MS is varied from

0 to 1 in 0.1 increments, and process noise magnitude varies from 0.1 to 0.9,
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while process noise time period is held fixed. Each curve corresponds to a dif-

ferent value of the process noise magnitude. The value of S MS that gives the

smallest model-estimate error, for the given curve, is marked with an asterisk

and will be referred to as S ∗MS . Keep in mind that in all these simulations the

sensor error-statistics are fixed to nominal values. Examining figure 2.13, we

note that when the maximum process noise amplitude is small (bottom curves),

a small S MS produces the best estimate. However, the left plot clearly shows

large error when S MS = 0, i.e. when no sensor data is used. This pure-model

error would drift to larger and larger values if the time of test was arbitrarily

extended, because it has no reset at heel-strike So, because of process noise, a

pure model-based estimator always benefits from being combined with some

filtered sensor data, at least for heel-strike reset.

The set of simulations in figure 2.13 were repeated with different fixed pro-

cess noise time periods, ranging from 0.1 to 0.4 in steps of 0.1 seconds, generat-

ing four plots as shown in figure 2.14. The plots show that as the process noise

time periods increases, so does the mean absolute error right before heel-strike

and that the S MS values that gives the best result also increase.

In figure 2.15 the asterisks in each plot from figure 2.14 are taken and plotted

together. Each curve on figure 2.15 corresponds to a single plot on figure 2.14,

i.e. to a fixed time period. The lines show the relationship between the optimal

S MS (along the y axis) and process noise amplitude (along the x axis) for process

noise time period (each line). The larger the process noise time period (which

corresponds to noise auto-correlation), the larger the amount of noise because

it reduces self cancellation. Note that when the process noise is small, both in

magnitude and time period, the model part of the estimator is more heavily
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Figure 2.14: Figure above shows the best model sensor ratio, S MS , to pro-
duce the minimum error in the angle estimate in presence of
process and sensor noises. The sensor noise is held fixed at its
nominal value (gyro deviation = 0.0041 rad/s, collision noise
amplitude = 0.5 rad/s), while both the process noise param-
eters were varied. Note that the graph is flat, minimum pos-
sible error at the optimal S MS is not much different from the
error in the case when the sensor is used alone (right edge of
graphs)

favored, S ∗MS is small for all the lines. However, as the process maximum ampli-

tude initially increases, the variability of S ∗MS also increases, but as it continues

to get larger the S ∗MS values no longer increase.

Sensor Error affects on the best S MS

To examine the sensor error’s affect on the best S MS we repeat the simulations,

but the process noise properties are kept the same throughout while the sen-

sor noise properties are altered. In these simulations S MS is varied from 0 to 1

in smaller 0.05 increments while the collision noise error maximum amplitude
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Figure 2.15: Figure above shows the optimal values of model sensor ratio
S MS needed to produce the lowest error in angle estimate, as
a function of process noise parameters. The process noise pa-
rameters are its amplitude and process noise time period. The
sensor noise is fixed at its nominal value. The figure shows
the expected result that as process noise increases, the sensor
is favored over the model (S MS goes to 1). However, note that
the actual errors in the angle estimates are not very different
for each of these cases, as was seen in figure 2.14

varies from 0.1 to 0.9 in 0.2 intervals. In the following simulations, the process

noise has a fixed nominal value. Note the relatively flat nature of the lines in

figure 2.16. This indicates that S MS can vary widely with little impact on the

model-based estimator’s performance (mean absolute error).

A set of four plots is shown in figure 2.16. Each plot corresponds to a

different simulated rate-gyro standard deviation, and each curve to a differ-

ent collision-noise error maximum-amplitude. In these four plots, the asterisks

show the smallest mean absolute error right before heel-strike (hence, the best

S MS ) for each combination of sensor noise parameters (different rate gyro stan-

dard deviations and collision noise amplitude). In figure 2.17, the asterisks in

each plot are taken and plotted together, where the x axis is the collision noise
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Figure 2.16: Figure above shows the optimal model-sensor ratio, S MS , to
produce the minimum error in the angle estimate, in the pres-
ence of process and sensor noises. The process noise is held
fixed at its nominal value (amplitude = 0.0041 rad/s2, ampli-
tude time = 0.5 rad/s2), while both the parameters of the sen-
sor noise are varied. The parameters of sensors are gyro noise
amplitude and the collision noise amplitude. Note that the
graph is flat, except for high sensor noise values. The flat
graph shows that the minimum possible error, at the optimal
S MS , is not much different from the error in the case if the
sensor is used alone. As the sensor noise values get higher
the trade-off between sensor and process noise becomes more
clear. The model is favored relatively more, although never at
the expense of total neglect of the sensors.

maximum amplitude, and the y axis is the S ∗MS , the S MS value that gave the best

result. This produces four lines, one for each rate gyro standard-deviation of

0.001, 0.003, 0.005, and 0.007 rad/s. Note, when the sensor error is large, both in

rate-gyro error and collision-noise magnitude, the model part of the estimator

is better, S ∗MS is small. Also, once the rate gyro error gets larger (larger standard
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Figure 2.17: The figure above shows the optimal values of model sensor
ratio S MS needed to produce the lowest error in angle esti-
mate, as a function of sensor noise parameters. The sensor
noise parameters are the rate gyro amplitude standard devi-
ation and collision noise maximum magnitude. The process
noise is fixed at its nominal value. The figure shows the ex-
pected result that sensor noise increases, the models is favored
over the sensor (S MS goes to 0). However, note that the ac-
tual errors in the angle estimates are about the same except
when the collision noise becomes higher. The relatively over-
lapping nature of the lines show that the S MS does not depend
as much on the gyro noise amplitude, as much as it depends
on the collision noise amplitude.

deviation), the affect of varying collision amplitude magnitude decreases (the

lines appear to converge as collision-noise max-amplitude increases).

2.5.3 Heel-Strike Reset, S HR

The longer the simulation runs, the more the integration error, the sensor er-

ror, the model error, and the process noise error accumulate. But, at heel-strike,

more information is available to the estimator. The leg angle can be estimated
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based on geometry alone, using the relatively accurate joint sensors and assum-

ing a flat and smooth ground. This extra, periodically available, information can

be used to constrain the accumulation of errors. The heel-strike factor, S HR, de-

termines how to combine θ̂ at heel-strike (the estimated θ) and θ̃ (the geometry

derived value at heel-strike) to get a better estimate. The present Ranger esti-

mator combines two parts, a sensor filter and the heel-strike information, using

a hard coded S HR value of 0.1 (where 0 means no reset and 1 is a full reset).

However, the proposed model-based estimator combines three parts, a model,

a filter, and the heel-strike information, using both S HR and S MS .

Two sets of simulations were conducted with a different fixed maximum

magnitude random floor error but varying S MS and S HR. In each set there are

four combinations of error, low sensor error and low process noise, low sensor

and high process, high sensor and low process, and finally high sensor error

and high process process noise. In one set of simulations the floor roughness

was small, 1 mm, and in the other the floor roughness was large, 4 mm. For

each specific combination of sensor error, process noise, and floor roughness,

simulations were run where S MS varied from 0 to 1 in 0.05 intervals and S HR

varied from 0 to 1 in 0.05 intervals. For each S MS , the value of S HR which gave

the smallest estimator error was recorded as S ∗HR.

In the plot on the right in figure 2.18 all the S ∗HR values (y axis) are plotted

versus the S MS values (x-axis) for each of the four combinations of sensor error

and process noise, yielding a plot with four lines. In the right plot of 2.18 the

floor aways had a large roughness of 4mm. Floor roughness translates into a θ

error when heel-strike occurs. As expected due to the large floor roughness, the

θ̃ at heel-strike is not very useful and the S ∗HR are mostly smaller than S HR = 0.1
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Figure 2.18: Four cases showing which S HR value gave the lowest esti-
mator error for S MS ranging from 0 to 1. The four cases are
the combination of low or high levels of sensor error com-
bined with either low or high levels of process noise. Low
sensor error is when the rate gyro standard deviation is 0.001
rad/s and the collision maximum amplitude is 0.1 rad/s where
as high sensor error has a rate gyro standard deviation of
0.004 rad/s and collision amplitude of 0.5 rad/s. Low process
noise is when the process noise fixed time interval is 0.1 s and
the maximum process magnitude is 0.1 rad/s2. High process
noise has a fixed time interval of 0.25 s and maximum pro-
cess magnitude of 0.5 rad/s2. In both cases, when S MS is small
the low process noise made the model more desirable, as in-
dicated with a higher S HR value. The large the floor height
variation, the quicker S HR goes to zero as S MS goes to one.

presently used in Ranger. The two lines with large process noise required the

most heel reset, despite the rough floor, when S MS is small. This follows from

the fact that small S MS means the model-based estimator is weighing the model

more than the filter, and the model is most affected by process noise. Conversely,

the two lines with low process noise require less heel-strike resetting when S MS

is small. In all four cases, once S MS moves away from zero, meaning more of

the filter output is used in the estimate, only a very small heel reset is desirable,

again because the floor is very rough.
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The interaction between S MS on heel-strike S HR is clearer in the case when

the floor roughness is small. The two plots in figure 2.18 give the results of

the same simulations, except the floor roughness was always small, maximum

height change of 1 mm, for the simulations in the left plot. When S MS is small

(more model), the value of S ∗HR is driven by the amount of process noise. The

two cases with large process noise are close to each other with large S ∗HR values.

As S MS increases, favoring the filter output more in the model estimate, the lines

with the same level of sensor error approach each other. The two lines with high

sensor error require a larger S ∗HR than the lines with low sensor error.

Figure 2.18 confirms the basic intuition that the optimal amount of heel-

strike reset, S HR is dependent on the relative errors in the model-based estimator

output and the floor roughness. The figures also support the choice of a small

heel reset, S HR = 0.1, used on the present Ranger estimator. Recall that no model

is used in the present Ranger estimator, i.e. S MS = 1. They make clear the impor-

tance of having some sense of the relative error sizes induced by either process

noise or sensor error.

2.6 Results

In the previous section, the values of S FD, S MS , and S HR were investigated and

considered individually. To produce the best model-based estimator, all the fac-

tors need to be optimized simultaneously, in the same simulation. In this section

we put all the factors together and vary them to see under what conditions the

model-based estimator does best, and how it compares to the present Ranger

kinematic estimator. This is accomplished through simulations in which all the
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factors and noises are varied together, and then comparing results.

2.6.1 Confirmation of Best S FD

Above, it was found that S FD in the neighborhood of 333 produced the best re-

sults in the model-based estimator. To get a sense of the best values of S FD for

all conditions a multi-factor simulation was run. In this simulation the collision

maximum amplitude was varied from 0.0 to 0.8 rad/s, the process fixed time

varied from 0.1 seconds to 0.5 seconds, the process maximum amplitude varied

from 0.0 to 0.08 rad/s2, gyro noise standard deviation varied from 0.0 to 0.008

rad/s, and the floor noise varied from 0 to +/- 4 mm. For each of these combina-

tions numerous simulations were run where the S MS and S HR varied from 0 to 1

and S FD varied from 33 to 633. The simulation with the lowest mean absolute er-

ror was found and the factors which produced this best model-based estimator

was recorded. In figure 2.19 below, a plot is shown with all the best simulation

results giving their error (y axis) and the S FD (x axis) that produced that smallest

error. The figure confirms that for all different sources of error, the combination

of factors that produce the best estimator all usually had S FD = 333. This con-

firms our earlier results that for the model-based estimator with the structure

described in this chapter, the best value of S FD is 333, or in the 333 neighbor-

hood.
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Figure 2.19: Initial large set of simulations, for each simulation the com-
bination of S HR, S MS , and S FD which gave the smallest error
was recorded and the error and corresponding S FD plotted
above. Therefore, a ”+” in the plot represents the best S FD

for one combination of error source values. The plot confirms
that the vast majority of smallest model-based estimator er-
rors were given when, at least approximately, S FD = 333.

2.6.2 Multi-factor Simulation Results

Using the large data set generated by the multi-noise and multiple valued S FD,

S MS , and S HR simulation, it is possible to finally get a sense of the usefulness

of a model-based estimator compared to a purely sensor-based estimator. To

compare the two, it have to find the best performing versions of each, for each

combination of noises and disturbances. Note that a non-smooth floor, which

introduces a floor height error at each heel-strike, affects both estimators in the

same way. Process noise has a large detrimental affect on the model-based es-

timator as the model does not account for process noise. Conversely, sensor

noises affect the sensor-based estimator much more than the model-based esti-
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mator (which has uses both a model and sensors). The two types of sensor noise

are the gyro noise (which is always present while the robot is walking) and col-

lision noise (which occurs immediately at heel-strike and then dies down). In

figures 2.20 and 2.21 the affect of process noise is compared to collision noise

where as in figures 2.22 and 2.23, process noise is compared to gyro noise. There

is nothing to be gained by comparing collision noise and gyro noise as they are

both sensor noises, and without process noise the model-based estimator is fa-

vored with big sensor noises.

The plots illustrate that it takes very little process noise to degrade the

model-based estimator’s performance to almost the same level as the sensor-

based estimator’s performance. As process noise gets very large, the model-

based estimator becomes a more sensor-based estimator as S MS will go to 1

(pure sensor). For this reason, a properly tuned, model-based estimator will

always be just as good as, or a little better than, a purely sensor-based estimator.

It is important to note that the model-based estimator has to be properly tuned,

meaning the best possible value for S FD. In the simulations used to generate

figures 2.20, 2.21, 2.22, and 2.23, ALL possible values of S FD, S MS , and S HR were

used to find the best possible combination of values. In a real world setting

the best possible combination would not be known because the exact nature of

the various noises and sources of errors would not be known. For this reason

a model-based estimator would need to be ”tuned” through trial and error to

find the best S FD, S MS , and S HR values.

In comparing figures 2.20, 2.21, 2.22, and 2.23, the over-riding affect of floor

height noise is clear. The advantage a model-based estimator might have over

a sensor-based estimator is overshadowed by the errors induced by the floor
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uncertainty. In fact, once any estimator’s error is reliably smaller than the varia-

tion of floor height, not much is gained by improving estimation accuracy. That

is, the present Ranger functions as well as it does given its present sensor only

based heel-strike estimator.

2.7 Conclusions

The present Ranger estimator works well enough for Ranger to walk for record

setting distances. The proposed model-based estimator can improve upon the

present Ranger estimator, to a small extent, but by one or two percent, not by

orders of magnitude, at least in real world cases (where the sensor errors are

not large). Compare the lengths of the dashes in Figure 2.23 with the height of

the points As the results above illustrate, to implement a model-based estimator

it is important to know, from experience or experimentation, the characteristics

of the various sources of errors. Undoubtedly for a real world implementation

there would be some fine tuning of the model-based estimator factors through

trial and error. Given the small improvement in performance, it will rarely be

worth the extra time, effort, and wear and tear on the robot, required to tune

a model-based estimator compared to tuning a simpler sensor-based estimator.

In short, the simple conclusion from this chapter: it is not worth changing from

sensor-and-kinematics-based estimation to encorporating the model-based esti-

mation considered here.
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Figure 2.20: Large set of simulations with process noise and collision
noise, with no gyro noise, and a completely smooth floor with
no height variations (no floor noise). The process noise mag-
nitude and collision maximum magnitude were allowed to
vary and all combinations of S FD, S MS , and S HR were run.
The combination that produced the lowest estimator errors,
for each combination of noises, were recorded and plotted
above. The model-based estimator error is given with the as-
terisks and sensor-based estimator with the square. A line
connects the the two for the same combination of noises to
facilitate comparing them. It is interesting to note that when
there is no process noise the model-based estimator does very
well, but with just a little process noise the model-based es-
timator’s performance degrades, so that it is not significantly
better than the sensor-based estimator, no matter how large
the collision noises.
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Figure 2.21: Illustration of a large set of simulations, with process noise
and collision noise, with no gyro noise, and a rough floor
with height variations in the ± 4mm range. The process-noise
magnitude and collision maximum-magnitude noise were al-
lowed to vary and all combinations of S FD, S MS , and S HR were
run. The combination that produced the lowest estimator er-
rors, for each combination of noises, were recorded and plot-
ted above. The model base estimator error is given with the
asterisks and sensor-based estimator with the square. A line
connects the the two for the same combination of noises to
facilitate comparing them. It is interesting to note that the
error induced by the rough floor in both estimators is much
larger than the errors caused by process noise and collision
noise when there was no floor noise, as shown in figure 2.20.
This plot clearly indicates that when the floor is not smooth,
there is little advantage in using a model-based estimator. Re-
member that the model-based estimator performance in this
plot was produced with the best possible combination of S FD,
S MS , and S HR.
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Figure 2.22: Large set of simulations with process noise and gyro noise,
with no collision noise, and a completely smooth floor with
no height variations (no floor noise). The process noise mag-
nitude and gyro noise were allowed to vary and all combina-
tions of S FD, S MS , and S HR were run. The combination that
produced the lowest estimator errors, for each combination
of noises, were recorded and plotted above. The model base
estimator error is given with the asterisks and sensor-based
estimator with the square. A line connects the the two for the
same combination of noises to facilitate comparing them. It
is interesting to note that when there is no process noise the
model-based estimator does very well, but with just a little
process noise the model-based estimator’s performance de-
grades, so that it is not significantly better than the sensor-
based estimator, no matter how large the gyro noises.
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Figure 2.23: Large set of simulations with process noise and gyro noise,
with no collision noise, and a rough floor with height varia-
tions in the +/- 4mm range. The process noise magnitude and
gyro noise were allowed to vary and all combinations of S FD,
S MS , and S HR were run. The combination that produced the
lowest estimator errors, for each combination of noises, were
recorded and plotted above. The model base estimator error is
given with the asterisks and sensor-based estimator with the
square. A line connects the the two for the same combination
of noises to facilitate comparing them. It is interesting to note
that the error induced by the rough floor in both estimators is
much larger than the errors caused by process noise and gyro
noise when there was no floor noise, as shown in figure 2.22.
This plot clearly indicates that when the floor is not smooth,
there is little advantage in using a model-based estimator. Re-
member that the model-based estimator performance in this
plot was produced with the best possible combination of S FD,
S MS , and S HR.
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CHAPTER 3

WALKING ROBOT VISION SYSTEM FOR PATH FOLLOWING

3.1 Introduction

This chapter discusses the process and challenges in developing a path follow-

ing vision system for a walking robot. The background and history of the effort

are given to explain the motivation for the task. The following topics are then

covered in detail:

• Camera Board Hardware

• Floor Line Creation

• Interfacing the Robot and Vison System

• Results and Conclusions

3.1.1 Background

Cornell Ranger is a dynamic walking robot that is almost completely au-

tonomous with all walking control and batteries carried onboard. In early May

of 2011, during Ranger’s world record setting marathon walk, human steering

was required. The steering input was done by a human operator via a wireless

controller, of the type often used by model aircraft hobbyists. At least one oper-

ator had to follow Ranger at all times, close to 31 hours, while Ranger walked

almost 308 laps around Cornell’s Barton Hall running track. Figure 3.1, a photo

from the marathon walk, shows a human steering Ranger via the large black

R/C controller. The need for an R/C controller detracts from the sense of com-

56



plete autonomy.

Ranger is capable of turning because the inner legs can rotate relative to the

body and outer legs. While the inner legs are swinging and Ranger is standing

on its outer legs, no turning is taking place. This causes a turning lag time if

a turn is commanded via the R/C controller while the inner legs are swinging.

Accounting for this requires some skill on the part of the human operator. How-

ever, during the long straight sections of the Barton track, little steering input

was required. From a human factors perspective, this was a difficult situation

as it entailed stretches of boredom punctuated with short, stressful, moments of

concentration. This experience reinforced an earlier notion that enabling Ranger

self steering would be useful, despite the fact that it is not directly tied to dy-

namic walking, the main focus of the Biorobotics and Locomotion lab. Later,

in Spring of 2013, Ranger was invited to participate in ”Robots on Tour” being

hosted by the University of Zurich [11]. There was interest in having Ranger

walk during this event, and the organizers designed the exhibition space to in-

clude a track for Ranger. Participation in Robots on Tour gave urgency to adding

self steering to Ranger. While we were able to accomplish Ranger self steering,

as detailed in this chapter, Ranger was not able to walk continuously through-

out all of Robots on Tour. The failure was not due to problems with self steering,

but to other hardware difficulties.

3.1.2 Initial Efforts

The earliest effort to enable Ranger self-steering, before the May 2011 marathon

walk, tried to use the unique colors and features of the Barton track. As figure
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Figure 3.1: Ranger in early May of 2011 during world record setting
marathon walk with undergraduate researchers Lauren Min
(left) and Violeta Crow (right). Violeta is holding the R/C con-
troller used to steer Ranger around the Barton Hall track.

3.1 indicates, the track floor is multicolored. The red-brown lanes are separated

by white lines, and the areas outside the lanes are green. It was theorized that

by adding two RGB digital color sensors (ADJD-S371-QR999), one pointed left

and one pointed right, the change in color, from red-brown to green, could be

detected and then used to steer Ranger around the track [12]. Several obstacles

were encountered during this early effort, the largest being the reliable detec-

tion of the color difference by the RGB digital color sensor under different con-

ditions. Variable lighting affected the contrast between the green and red-brown

areas of the track. The lab was unable to get the sensor to reliably distinguish

between the two as lighting conditions changed.

Another considered solution was to use the Global Positioning System (GPS)
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to allow Ranger to know its own location at all times. If also given a precise map

of the track, Ranger could steer itself around the track. Unfortunately GPS is not

feasible for indoor locations, like Barton. The use of pseudo-satellite beacons to

allow such a GPS solution to work indoors was considered but dismissed as im-

practical. Such a solution, like many other indoor navigation solutions, requires

a significant investment in hardware, setup time, and the ability to position the

hardware throughout the walking space. In addition, there were concerns that

the large number of electronics and robotic systems present at the Robots On

Tour conference would interfere with these wireless based indoor navigation

systems. For these reasons, it was decided to revisit the idea of using a vision

system on Ranger, thus eliminating the need for external sensing or computing.

3.2 On Board Camera

In late 2012, a review of present robotic vision systems was conducted. Many

sophisticated robotic vision systems were found. Cornell’s own SkyNet, which

competed in Darpa’s Urban Grand Challenge, has a vision system that allowed

the vehicle to navigate a difficult and dynamic environment [13]. Unfortunately

these vision systems suffered from multiple issues that made them unsuitable

for Ranger, specifically weight, size, large power requirements, and cost. Ranger

was designed to minimize energy use. Given Ranger’s 16 watts total usage for

walking, sensing, and control, adding, for example, a 5 watt vision system, such

as the Microsoft Kinect [14], would kill its record breaking abilities.

On the other extreme are simple cameras which are small and low power.

Driven by the mobile device industry (mobile phones and tablets), many light,
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small, and low power, off the shelf camera options are available. However,

these cameras are primarily optics packages designed for integration into the

electronics of a mobile device. Their use would necessitate interfacing with

Ranger’s onboard processors, requiring advanced device drivers or an addi-

tional processing board. The largest concern was the time and effort needed to

design, from scratch, a capable vision system which uses little energy. Fortu-

nately, a good solution was found in the area of small, self built, robotic systems

created by hobbyists and academics.

3.3 CMUcam4

There is a growing community of hobby roboticists, and companies and orga-

nizations who support their efforts. The CMUcam project (www.cmucam.org)

is one such organization. They have developed a series of open source pro-

grammable embedded color vision sensors. The stated goal of these sensors is

to make them low-cost, low-power, and suitable for mobile robots at the hobby-

ist level [15]. We purchased a CMUcam4, as shown in figure 3.2, for US $100 to

investigate its possible use on Ranger.

3.3.1 General Specifications

The CMUcam4 packages an OmniVision 9665 CMOS camera and a Parallax

P8X32A (Propeller chip) microprocessor on one board which is Arduino Shield

compatible. The CMUcam4 comes ready to use, but it is also possible to cus-

tomize it by changing the Propeller chip’s firmware. The CMUcam4 board can
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Figure 3.2: Picture from cmucam4.org showing the CMUcam4 basic board
and provided connectors for user to customize board.

be connected to a computer’s USB port using a Prop Plug, shown in figure 3.3.

Once connected, proprietary software can be used to download new firmware

directly to the Propeller chip. Parallax, the maker of the Propeller chip, supplies

the Parallax Propeller Tool for Microsoft Windows platform machines [17]. For

MacOS and Linux machines, Brad’s Spin Tool is available on-line from a third

party [18].

With its original firmware, or once it has custom firmware, the CMUcam4

board is ready to go and has ample input/output options available while it

is in use. Depending on their requirements, the user can select input/output

options and then solder the corresponding connectors to the board. In addition
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Figure 3.3: Propeller Plug tool used to connect the CMUcam4 board to a
laptop via USB port.

to normal digital signal outputs, the CMUcam4 has outputs suitable for driving

digital servo motors with pulse width modulated signals. This was helpful for

integration onto Ranger, as described later. The board also contains a place to

solder an RCA jack, allowing the CMUcam4 to be connected to an external TV

monitor. These features are shown on the schematic given in figure 3.4. When

active the entire package typically uses 227.5 mW, an acceptable power drain on

Ranger’s batteries [19]. Its small size and low weight also makes it well suited

for use on Ranger.

The board comes with the Propeller chip preprogramed with the firmware

necessary to drive the CMOS camera and process the output various ways. The

majority of users connect the CMUcam4 to an Arduino micro-controller, and

then use the supplied Arduino interface library to communicate with the board

to receive camera data or issue board commands. For Ranger, the use of an Ar-

duino in addition to the CMUcam4 was undesirable as energy and weight of

the vision system needed to be minimized. In addition to the weight and power
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Figure 3.4: Schematic of CMUcam4 with relevant I/O portions empha-
sized [20].

penalty, adding an Arduino would also increase the complexity of the vision

system. It was decided to use the CMUcam4 board directly with Ranger by

taking advantage of the Propeller chip and the servo-control outputs. This ne-

cessitated making important alterations to the supplied Propeller micro-control

code, the firmware, of the CMUcam4 board.
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3.3.2 Firmware Rewrite

The firmware supplied on the Propeller chip of the CMUcam4 board already

does many crucial tasks. The most important is interfacing with the OmniVision

9665 CMOS camera. The camera needs constant power and constant control sig-

nals to enable it to function properly and provide raw vision data. This low level

camera code was kept unchanged in the firmware. The supplied firmware also

takes the raw output of the camera and processes it into a suitable RCA signal

for output to an external TV monitor. The ability to use an external monitor was

crucial in testing and debugging and was left in the firmware code.

In addition, the Propeller chip runs the software necessary to allow an ex-

ternal Arduino micro-controller to receive data and send commands. This ca-

pability was not needed for Ranger and removed. Also removed was the auto

color calibration done upon power up. Calibrating the camera is a crucial, but

difficult, part of making the CMUcam4 board truly useful. It makes sense to sell

the board with self calibration software that runs automatically on power up.

This allows someone without a background in electronics or programming to

use the CMUcam4 quickly without much effort. For our purposes this self cali-

bration made the board less useful as its characteristics would be determined by

lighting, and other environmental conditions, at power up. Self calibration on

power up causes the camera board to function differently each time it is turned

on. This code was replaced with hard coded calibration values as discussed

below.

The board comes with a demonstration program that is activated after power

up by pressing the user button, shown in the upper right corner of figure 3.4.

Once activated, the demonstration program automatically analyzes the color of
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the pixels in the center of the camera’s view for several seconds. When this

is done, the demonstration program switches to continuous tracking. During

tracking, all pixels from the camera’s CCD are analyzed and the ones matching

the initial color are noted. The centroid of these pixels is calculated. While the

centroid is not in the center of the camera’s view, control commands are found

using a proportional integral derivative (PID) controller. The outputs of the

PID controller are x and y servo positions which are encoded on pulse width

modulated (PWM) servo command signals. These signals are sent to the two

dedicated servo outputs, one for x and one for y, on the CMUcam4 board. If

the board and servos are connected properly to a frame that is free to rotate

around its x and y axis, the servo commands from the PID controller will move

the frame until the centroid is in the center. If the color being followed is a line

on the walking surface, such as one of the white lane lines on the Barton track,

Ranger could follow the line and steer itself around the track. For this reason,

the demo program served as a template for writing the Ranger Line Following

(RLF) firmware.

To create the Ranger Line Following (RLF) firmware, the automatic color

analysis was removed and replaced with hardcoded color tracking values. The

code that tracks the color pixels’ centroid across the camera’s view was altered

so that it would track the color only along the x axis within a window that is in

the middle third of the camera’s view as illustrated in figure 3.5. The reasoning

for this is given in the discussion of calibration and testing. Figure 3.6 shows

the TV output from the CMUcam4 board running the Ranger Line Detection

firmware when a line is detected. The y axis is of no use when following a line.

The centroid’s x position is then used to generate a servo output. Unlike the

demo program that used a PID controller, the servo output of the RLF firmware
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Figure 3.5: Depiction of the camera view shown. Ranger Line Following
(RLF) firmware’s interpretation of the view which outputs the
x coordinate of the centroid.

Figure 3.6: TV output from CMUcam4 board running Ranger Line Follow-
ing firmware with line detected.

was changed to simply be a value indicating to Ranger where the tracked line

was located within the camera view, or if no line was visible. This was done

so that Ranger’s far more powerful processors could be used to run a custom
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steering control algorithm, which is discussed below. The Ranger Line Follow-

ing (RLF) firmware code is available online [16].

3.3.3 Ranger Line Following Firmware Testing

Before altering Ranger’s hardware or software to accommodate the CMUcam4

board, it was important to test the board with our Ranger Line Following (RLF)

firmware to see if its performance would be adequate. The easiest solution was

to create the hand held test box, shown in figure 3.7. The CMUcam4 board was

mounted to the front of the box. A 2.4 inch LCD TV was mounted to the back of

the box and connected to the CMUcam4 via the RCA jack. The TV shows exactly

what the camera board is seeing and could be used to verify if the color calibra-

tion was working properly. The RLF firmware marks the centroid of the color

being tracked with a red ”+” and all pixels that match the color are white and

all other pixels are black. To see if the RLF was properly encoding the centroid’s

coordinates into PWM signals, two servo motors were attached to the side of

the box and connected to the servo output of the CMUcam4 board. Batteries to

power the board, the TV, and the servos, were located inside of the box. The test

box was useful for fast and easy firmware editing and board testing iterations.

This proved helpful when testing and calibrating various tapes, as described

below.
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Figure 3.7: The front (left) and back (right) of the test box created for the
CMUcam4.

3.4 Creating the Line

Once the CMUcam4 test box was completed, focus shifted to how to make the

best line for tracking. The organizers of Robots on Tour had selected a refur-

bished warehouse as the venue for the event. The walking surface was a sealed

cement slab and permanent changes were not allowed. This eliminated the use

of paint as it would be too difficult to remove after the event. Tape then became

the best option.

3.4.1 Selecting Tape

Detectability by the vision system was the most important criteria in selecting

a tape to make the line for Ranger to follow. The tape had to be detectable in

varying lighting conditions. The first tape test involved tapes in an assortment

of colors and textures. The Bovay Laboratory Complex, located in the basement
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of Thurston Hall at Cornell University, has a cement floor that is similar to the

one at the Robots on Tour venue. Many tape samples were taken to the Bovay

Laboratory and placed on the floor. The test box was then used to see how well

the CMUcam4 and the RLF firmware could see the tapes at a distance and angle

consistent with use on Ranger. With proper color calibration, all the tapes were

visible in well lit conditions. Unfortunately varying the lighting greatly affected

how well they could be tracked. It was thought that on a grey cement floor,

light shiny tape would be easy to detect. Surprisingly at first, it was observed

that the least affected by the lighting changes were the darkest tapes with matte

finishes.

Advantages of Black

With further thought it became clear that, because of the physics of light and

color, black tape would generally be the best choice for the line. Black tape ab-

sorbs light, the more light it absorbs, the darker it appears. Even as the ambient

light increases, black tape remains black. White and color tape reflect light and

their brightness depends on the ambient light. The more light, the brighter they

appear, but black always remains black. In the theoretical case where we have

an infinitely black tape that absorbs all light, it is always possible, no matter the

lighting conditions, to adjust a camera’s exposure level to distinguish between

the black tape and any background. This is can be illustrated with histograms

of real black tape. In figure 3.8, a black tape sample is placed over a white

background and a dark grey background. The histogram for the image shows

distinct peaks at three tones. From left (darkest) to right (lightest), they corre-

spond to the black tape, the grey background, and the white background. For
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comparison, in figure 3.9 the white background has been removed and the cam-

era exposure has been altered. With the change in exposure, the peak for the

black tape is still on the far left, but the grey background now appears lighter

in the photo and its peak has shifted further away, towards the center of the

histogram. With a theoretical perfect black tape, the left most peak would stay

all the way at zero no matter the lighting conditions and the camera exposure

could be adjusted to separate it from its background. With real tape, there are

practical limits. Notice that the left most peak in figure 3.9 shifted to the right

and is wider. If the black tape and the background are too close in color, as

the exposure is adjusted the peaks would spread out and possibly overlap. The

overlap would make it more difficult to distinguish the two and reliably detect

the tape. With this understanding of why black tape was the best choice, the

next step was to find the blackest feasible tape.

Figure 3.8: Black tape sample on grey and white backgrounds(left). His-
togram with peaks, left to right, for the tape, grey background,
and white background (right).

Candidate Products

Many activities rely on having black material that absorbs light. The two most

common are photography and astronomy. Both these fields rely on the detection
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Figure 3.9: Black tape sample on grey backgrounds(left). Histogram with
peaks, left to right, for the tape and grey background (right).
Note that due to camera exposure differences, the peak for the
same grey background as in figure 3.8 has shifted to the right.

and focusing of light. Many products exist to cater to their needs and an assort-

ment of samples were obtained to determine suitability for use with Ranger.

The best product at absorbing light was ProtoStar flocked paper [21] which is

often used inside of telescopes. Unfortunately it was at least twice as expensive

as the other candidate tapes. The flocked paper was sold in rolls that are 30

inches wide and up to 500 inches long, so cutting them it into a usable width

would take some effort. For these two reasons the ProtoStar flocked paper was

no longer considered. The initial candidate samples that were chosen all had

acceptable cost, availability, durability, and usability. These candidates, shown

in figure 3.10, were Duve Pro Duvetyne tape [22], Shurtape photo black tape

[23], black masking tape, and gaffer’s tape.

The best way to evaluate the candidate tapes was to take a picture of them

in the same frame so they would be in the same lighting conditions. Then using

image editing software, such as iPhoto, the histogram of the photo could be

produced and the relative darkness of each sample could be compared. An

example of this is shown in figure 3.11 along with the corresponding histogram.

Note that the auto exposure levels are shown at the bottom of the histogram.
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Figure 3.10: From left to right, the candidate tapes considered for use dur-
ing Robots on Tour: Duvetyne tape, Shurtape, masking tape,
and gaffer’s tape.

The black triangle gives the darkest level, the white triangle gives the lightest

level, and the grey triangle in between represents middle grey. The histogram

clearly shows five distinct peaks. The one farthest to the right is the lightest and

corresponds to the background. The four peaks left of center on the histogram

each represent a different tape. Each vertical division on the histogram roughly

corresponds to a doubling of light intensity, so the background luminosity is

eight times as bright as the lightest tape.

By adjusting the auto exposure levels in the histogram it can be shown that

the peak further to the left, the darkest, corresponds to the Duvetyne tape,

which is on the far left of the photo. Figure 3.12 shows the same photo as fig-

ure 3.11, however the auto exposure levels have been adjusted in the histogram.

Now the lightest level is just to the right of the darkest peak and middle grey

is just to the left of the darkest peak. Adjusting the auto exposure levels causes

the three samples on the left of the photo to appear white and the Duvetyne to
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Photo of tape samples, from left to right:
Duvetyne tape, Shurtape, masking tape, and gaffer’s tape.

Figure 3.11: Corresponding histogram of the photo of tape samples above
with unaltered auto exposure.

appear grey. This change confirms that the Duvetyne tape corresponds to the

darkest peak on the histogram and that it is about twice as dark as the second

darkest tape sample.

Duve Pro Duvetyne Tape was chosen as it was the darkest of the candidate

tapes, with the best light absorbing properties as shown on the histogram. It is
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Photo of tape samples, from left to right:
Duvetyne tape, Shurtape, masking tape, and gaffer’s tape.

Figure 3.12: Corresponding histogram of the photo of tape samples above
with altered auto exposure.

a fabric tape that comes in rolls that are 2 inches wide. It’s felt like texture helps

it absorb more light than the other tapes and have the blackest appearance in a

wide variety of lighting conditions.
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3.4.2 Calibration

Once the Duvetyne tape was selected, the Ranger Line Following (RLF)

firmware was hard coded with the calibration values that best allowed the

CMUcam4 to detect the tape in various lighting conditions. The calibration pro-

cess was straight forward, but required a few steps. The original demo firmware

was reinstalled onto the CMUcam4 board. It has the code to enable the camera

to take photos which are stored to a microSD card. The test box was used to take

photos of Duvetyne tape in various lighting conditions. These files were then

transferred to a computer where software was used to analyze the photos. An

example of a photo taken with the CMUcam4 is given in figure 3.13. Using the

histogram function on a simple image editing program, the RGB component his-

tograms were generated as shown in figure 3.13. The histograms indicate that

the black tape has red, green, and blue components in the mid-30’s. A perfectly

black tape would have all zero values. For comparison, the light background

(speckled grey linoleum) in the same photo has component values in the 160 to

170 range.

In different lighting conditions the auto exposure caused the same tape to

have pixels with higher or lower red, green, and blue components. Because of

this variation, the analysis had to be done in different conditions. For the RLF to

work well it was important that a set of threshold values was selected that was

between the tape’s RGB component values and the floor’s values, for a large

range of lighting conditions. This set of threshold values was then hard coded

in the Ranger Line Following software. When the RLF is running, each pixel of

the camera output is analyzed to determine its RGB components. Any pixels

whose three components are lower than the corresponding RGB thresholds, is
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Figure 3.13: Picture of Duvetyne tape taken with CMUcam4 board’s cam-
era along with associated histograms: brightness, red, green,
and blue.

considered part of the tape. The x coordinate of the centroid of all the pixels that

are part of the tape is encoded on the PWM servo output. If too few pixels are

below threshold, a special value is sent to the servo output to signal to Ranger

that the tracking has failed.

3.5 Ranger Interface

Once the CMUcam4 was reliably tracking a line created with the Duvetyne tape,

it had to be integrated with Ranger’s hardware and software. Not only did it

need to work on Ranger, but work in a way to allow for quick and easy switch-
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ing between self steering and human steering.

3.5.1 Hardware and Mounting

A suitable location on the front of Ranger’s center body segment was found.

The board was mounted to this location but at an angle determined to give the

camera a view of the walking surface several feet in front of Ranger, a roughly

45◦ angle. While Ranger is walking, the camera’s view of the floor also changes

as the inner legs are attached to the center body segment. When the inner legs

are swinging forward, the camera sees further ahead. When the inner legs are

stationary, the camera looks directly in front of Ranger. To minimize the chance

of seeing Ranger’s own feet, or looking too far ahead, the Ranger Line Following

code uses a window that is only one third of the camera’s total view. The camera

board mount (left) and a close up of the camera board (right) are shown in figure

3.14.

Figure 3.14: Side view of the camera board mounted on Ranger (left) and
a close up front view (right).

In the close up photo of figure 3.14, two wire connectors are shown; one is
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to power the board, and the other connects the servo output to one of Ranger’s

ports on its dedicated I/O board. While powered, the board is constantly run-

ning the Ranger Line Following software and constantly outputting the x coor-

dinate of the line, or a flag value if no line is visible.

3.5.2 Software and User Interface

The picture on the left in figure 3.15 shows the R/C controller with the steering

selection switch and steering joystick labeled [24]. These were chosen to al-

low the R/C controller to be held with the operator’s left hand while using the

switch and joystick with their right hand. When the steering selection switch

is flipped toward the front of the controller, pointing towards the operator, the

R/C steering commands from the joystick are used by Ranger. When the switch

is pushed back, away from the operator, Ranger steers itself. No matter the

steering selection switch position, Ranger is constantly receiving a signal from

the CMUcam4, either containing the location of the line, or a flag indicating no

line is visible. This is done so that as soon as the switch goes from operator con-

trol to Ranger steering control, Ranger is ready to self steer using RLF output

from the CMUcam4 board.

If self steering is being used and line tracking is lost, it is vital for the operator

to know immediately so they can take over steering control. For this reason all

six of the rear facing status LED’s flash red if the CMUcam4 board loses track of

the line. This is shown in the photo on the right in figure 3.15.
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Figure 3.15: The R/C controller with steering selection switch and steering
joystick labeled (left). All of Ranger’s rear LED light panel
flashing red to signal line tracking failure (right).

3.5.3 Steering Algorithm

The CMUcam4 board, running the RLF firmware, is a line detection sensor

which produces one sensor value, the position of the line relative to Ranger.

Using this sensor value, x, Ranger’s on board processors produce a steering

command to make Ranger follow the line. This steering command, θ, is found

using a steering algorithm designed by Prof. Ruina. The algorithm combines

the present sensor value with the previous sensor value and the previous steer-

ing command. If a, b, and c, are all weighting factors, then equation 3.1 shows

how the steering command at time step k is calculated.

θ = steering angle

x = position of line (x coordinate of centroid)

θk = a · xk−1 + b · xk + c · θk−1 (3.1)

A Matlab simulation was used to find good values for a, b, and c. The sim-

ulation contains a simple model of Ranger including random sensor noise and
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steering bias. The model accounts for the height of the camera, the angle of

the camera from vertical, the camera’s look ahead distance, and Ranger’s step

length. In the simulation, Ranger takes 200 steps using a single set of weight-

ing factors, and at each step Ranger’s distance from the line is measured. The

simulation was run 1000 times with random weighting factors, a, b, and c, each

time. The weighting factors from the best performing steering equation, where

Ranger stayed closest to the line, were saved. This random search approach

found the initial values used for the steering equation. The Matlab steering sim-

ulation code is available online [25].

Several experiments were done with Ranger at the venue the day before

Robots on Tour. Through these experiments, the weighting factors were tuned,

which allowed Ranger to follow a line smoothly and with minimal control ef-

fort. When following a straight line, the control algorithm which minimized

overshoot was judged to be the best. To turn, Ranger uses energy to power

its steering motor. Minimizing overshoot reduces the number of steering com-

mands, saving energy and wear and tear on Ranger.

3.6 Results and Conclusions

The first test of Ranger’s line following capability was performed at the local

Home Depot. The floor at Home Depot is a sealed cement surface, like the

Robots on Tour venue in Zurich and the Bovay lab at Cornell. The test took

place late at night when the store was not crowded. A curved tape line was put

down with the same 9 meter turn radius that Ranger would need to handle at

Robots on Tour. The self steering system worked well with Ranger often able to
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keep the line between its two inner feet as seen in figure 3.16. One advantage of

Home Depot is that it is uniformly well lit and, because of the lack of windows,

the lighting does not change throughout the day or night.

Figure 3.16: Ranger self steering test conducted at the Ithaca Home Depot.

In March of 2013, Ranger was packed up and taken to Zurich to participate

in Robots on Tour. Figure 3.17 shows part of Ranger’s track around the outside

of the exhibition space. The vision system worked well and Ranger was able

to completely self steer for much of the exhibition. The only vision problems

occurred at lighting extremes. At night, there was one dark corner where the

overhead lighting was deficient and Ranger would lose line tracking. Thicken-

ing the line with extra tape helped Ranger distinguish between the line and the

floor in the darkness. During the day, there was a short period of time where

the bright sun was in a location such that Ranger’s own shadow contrasted

enough with the floor to cause confusion. One way to address these problems

in the future would be to have lighting that is more uniform. Due to mechan-
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ical problems unrelated to the path following vision system, Ranger was not

able to walk continuously throughout all of Robots on Tour. However, at dif-

ferent times throughout Robots on Tour, Ranger self steered for several con-

secutive laps around the exhibition track without operator intervention. Given

the constantly changing environment in Zurich, Ranger’s self steering capabil-

ity worked remarkably well considering its low power, weight, and processing

capabilty.
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Figure 3.17: Part of Ranger’s track at Robots on Tour in Zurich, Switzer-
land.
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CHAPTER 4

PATH PLANNING USING MIXED INTEGER LINEAR PROGRAMMING

4.1 Introduction

Optimal path planning for Unmanned Air Vehicles (UAVs) is a difficult task

due to the intrinsically non-convex nature of path optimization. Recently, new

approaches have been used which utilize techniques traditionally used in the

field of Operations Research. By using linearized dynamic models and mixed

integer constraints, researchers have used Mixed Integer Linear Programming

(MILP) for different path planning applications [26] [27] [28] [29] [30] [31] [32].

MILP problem formulations can be solved using commercial software that em-

ploys a branch and bound algorithm. This algorithm, by looking at all path

possibilities, returns the optimal solution, if one exists.

Previous efforts [26] [27] have concentrated on path planning for multiple

vehicles and multiple goals. Constraints have included time to waypoints and

total effort, or fuel. In this paper the MILP approach for path planning is ex-

panded to include constraints derived not only from the relationship, but also

the interactions, between the UAV and adversaries.

Radar guided surface to air missiles (SAMs) are a major threat to UAVs.

While the loss of a UAV does not result in a human casualty, it can jeopardize

the mission and results in the loss of an important battlefield resource. Knowl-

edge of a SAM’s location and a good model of its attack capabilities can be used

to create a UAV path plan with acceptable risk. A good model for a SAM’s

probability of detecting a UAV takes many factors into consideration. The most
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basic is distance between the SAM and the UAV. Another important factor in

determining whether a SAM site detects a UAV is the signature presented by

the UAV to the SAM’s radar. Once detected, it is possible for a UAV to avoid

destruction by taking advantage of the possibility of lock loss. Lock loss occurs

when radar detects a UAV but is unable to continue detection, or lock on, long

enough for a SAM to be fired at the UAV.

Non-convexities, path dependencies, and sharp gradients, are introduced

to the path generation problem when taking into account UAV flight dynamics,

the probability of radar detection based on UAV state, and the occurrence of lock

loss. Such problems have been previously approached using a gradient descent

based method which can result in local minima [33]. Discrete approximations

to continuous shortest paths have also been investigated in relation to SAM

avoidance [34]. The approach outlined in this paper uses a linearized model

of the probability of detection, lock loss phenomenon, and UAV dynamics, to

create a large MILP formulation. Once solved, this MILP formulation results in

the global solution. Examples of possible path plans, as a function of acceptable

probabilities of detection, are also presented.

4.2 General Problem Formulation

The model is based on the Open Experimental Platform (OEP) developed by

Boeing [35]. Throughout this report, it is assumed that the aircraft maintains a

fixed altitude and that the radar is on the ground. The model is presented in

three parts: the vehicle dynamics, the probability of detection model, and the

lock loss model.
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4.2.1 Vehicle Dynamics

The inputs to the aircraft model include measurements of the aircraft position

and velocity as well as the destination waypoint position. A constant speed for

travel between waypoints is also input. The output for the aircraft model is

the aircraft position and attitude in inertial coordinates (north, east, up). The

model is highly simplified and does not accurately portray the true physics of

the aircraft. However, the model was developed for research in mission plan-

ning systems, and it is assumed that these planning controls will be designed

and tested in conjunction with more complex models of the vehicles and their

flight management systems. The model assumptions include constant altitude

(2D) flight, instantaneous changes in speed, heading and bank angle, and sim-

plified turning assumptions. During turns the bank angle is ±45◦, while during

stead level flight, the bank angle is zero. The following equations are used for

the aircraft state for ti ≤ t ≤ ti+1 where ti denotes when the UAV is at waypoint i

x(t) = x(ti) + U(ti) cos(ψ(ti))(t − ti)

y(t) = y(ti) + U(ti) sin(ψ(ti))(t − ti)

h(t) = h(ti)

ψ(t) = ψ(ti+1)

φ(t) =
π

4
δpt −

π

4
δnt (4.1)

where x, y, and h are the aircraft positions along the north, east, and up axes,

respectively and U(t) is the speed. The heading and bank angles are ψ and φ

respectively. The integer variables, δpt and δnt, are defined for positive (right)
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and negative (left) turns as follows.

δpt = 1↔ t ≤ ti + Tturn and ψ(ti+1) − ψ(ti) ≥ ε

δnt = 1↔ t ≤ ti + Tturn and ψ(ti+1) − ψ(ti) ≤ −ε

where ε is a small positive constant. The heading, ψ(ti), is the angle between the

nose and north and is positive clockwise about the up axis and is defined below.

ψ(ti) = tan−1
(

y(ti+1) − y(ti)
x(ti+1) − x(ti)

)
The steady level flight turn rate equation is used to compute the turn time, Tturn,

as follows

Tturn =
| ψ(ti+1) − ψ(ti) |

g tan( π4 )
U(ti)

To compute the magnitude of the turn angle, the dot product between the ve-

locity vector, v(ti) = vx(ti)[x] + vy(ti)[y], and the difference between the destination

waypoint and the present waypoint

∆R = (x(ti+1) − x(ti))[x] + (y(ti+1) − y(ti))[y]

is used as follows

cos(| ψ(ti+1) − ψ(ti) |) =

min

1,
vx(ti)(x(ti+1) − x(ti)) + vy(ti)(y(ti+1) − y(ti))√

(vx(ti))2 + (vy(ti))2

·
1√

(x(ti+1) − x(ti))2 + (y(ti+1) − y(ti))2

 (4.2)

For the sign of the turn angle, the cross product is used. Specifically if

y(ti+1)vx(ti) − x(ti+1)vy(ti) > 0, then the change in turn angle is negative, ψ(ti+1) −
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ψ(ti) = −|ψ(ti+1) − ψ(ti)|. This is a ”left” turn, and is achieved by rolling the

aircraft with roll angle, φ = −45◦, with the left wing down. Similarly if

y(ti+1)vx(ti) − x(ti+1)vy(ti) < 0, then the change in turn angle is positive, ψ(ti+1) −

ψ(ti) = |ψ(ti+1) − ψ(ti)|. This is a ”right” turn, and is achieved by rolling the air-

craft with roll angle, φ = 45◦, with the right wing down.

Note that there could be cases where there is no turn. This happens if the

turn angle is less than a small amount specified in the OEP. Also, there could be

cases where the turn time is greater than or equal to time between waypoints

ti+1 − ti. In this case, the OEP model assumes turning for the entire segment.

y

x

waypoint i-1

waypoint i

waypoint i+1
]y[ ))y(t-)(y(t]x[ ))x(t-)(x(tR i1ii1i ++

+=∆

]y[ )(tv]x[ )(tv)v(t iyixi +=

Figure 4.1: The turn angle is computed from the velocity vector and the
vector between the destination and present waypoints.

4.2.2 Probability of Detection

The second component of the model is the detection model. This model com-

putes the probability of detection of a UAV by an opponent SAM radar. The

inputs of the detection model are the outputs of the aircraft model, specifically,
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the aircraft position and attitude. The positions of opponent radars are also in-

put if the aircraft is within an engagement range of the radar. For each radar,

the signature and probability of detection of the aircraft is included in the out-

put of the detection model. Signature is an intermediary variable that is related

to radar cross section.

For each radar, a vector from the aircraft to the radar is transformed to air-

craft body axis. This vector is then transformed to spherical coordinates for

azimuth (Az), elevation (El) and range (R).

The signature is computed with a table look-up as function of azimuth and

elevation. The tables used in this paper are shown in Table 1 and Table 2. Note

that the signature model has sharp changes between azimuths magnitudes be-

tween 30o and 31o and also between 159o and 1600. When the nose of the aircraft

points directly to the radar or directly away from the radar, and the elevation

magnitudes are relatively low, there is a region of low signature. The probabil-

ity of detection is computed as a function of signature and range using another

table look-up. For the probability of detection model, note that probability of

detection increases with increasing signature and decreasing range. To deter-

mine probability of detection as a function of signature and range, interpolation

is used. The maximum and minimum probability of detection are .99 and .01,

respectively.

In the OEP, a random number, uniformly distributed between 0 and 1 is gen-

erated. If this number is greater than or equal to the probability of detection, the

UAV is detected. If the generated number is less than the probability of detec-

tion, the UAV is not detected. We assume that the problem is deterministic, and

that a detection occurs if the probability of detection is greater than a threshold
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Table 4.1: Signature is a function of azimuth and elevation

Az

0 ± 30 ± 31 ± 159 ± 160 ± 180

90◦ 1e0 1e0 1e0 1e0 1e0 1e0

45◦ 5e-3 5e-3 1e0 1e0 5e-3 5e-3

20◦ 5e-4 5e-4 5e-1 5e-1 5e-4 5e-4

El 0◦ 5e-5 5e-5 5e-1 5e-1 5e-5 5e-5

−20◦ 5e-4 5e-4 5e-1 5e-1 5e-4 5e-4

−45◦ 5e-3 5e-3 1e0 1e0 5e-3 5e-3

−90◦ 1e0 1e0 1e0 1e0 1e0 1e0

value.

4.2.3 Lock Loss

A mixed logical dynamical (MLD) representation of the lock loss model is pre-

sented here and shown in figure 4.2. Define four states: disengage, engage,

launch and damage. The integer, binary variables δe, δLL, δlaunch, δdamage are used

to signal events that transition the opponent SAM radar system from one state

to another. When δe = 1, the opponent SAM engages the UAV. The variables

δLL, δlaunch, δdamage are used in conjunction with timers described below for lock

loss, launch and time-to-target. When a timer surpasses a threshold value, a

change in state is triggered. When the lock loss timer exceeds threshold TLL, the

variable δLL is set to 1 and the state transitions to disengage. When the engage

timer exceeds Teng, the variable δlaunch is set to one, indicating that the SAM is
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Table 4.2: Probability of Detection Table: This table relates signature, range
in km, and probability of detection.

Probability of Detection

.99 .5 .1 .01

1 380 481.2 555.6 656.6

1e-1 213.7 270.6 312.5 369.2

1e-2 120.2 152.2 175.7 207.6

Signature 1e-3 67.6 85.6 98.8 116.8

1e-4 38 48.1 55.6 65.7

1e-5 21.4 27.1 31.2 36.9

1e-6 12 15.2 17.6 20.8

launching a missile at the UAV. When the time-to-target timer exceeds Ttarget, the

variable δdamage is set to one, indicating that the missile has had enough time to

reach the target. These conditions are detailed by the following logical equa-

tions described below:

δe = 1↔ engagement conditions met

δLL = 1↔ xLL ≥ TLL

δLaunch = 1↔ xeng ≥ Teng

δdamage = 1↔ xlaunch ≥ Ttarget

(4.3)

The variables xLL, xeng, and xlaunch are the timer variables, and are updated

using the equations below.
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Figure 4.2: Lock Loss four state model.

A clock is defined with the equation below.

t( j + 1) = t( j) + Ts j = 0, 1, 2, ...

t(0) = 0 (4.4)

Where Ts is the sample time.

For the lock loss timer, if there is no detection, the lock loss timer is incre-

mented. If there is a detection, the lock loss timer is reset to zero. The lock loss

threshold, TLL, in (4.3) is specified in the OEP model.

xLL(t( j + 1)) = xLL(t( j))(1 − δe) + (1 − δe) (4.5)

The engage timer increments when the system is engaged and is reset to zero if

there is a lock loss event.

xeng(t( j + 1)) = (xeng(t( j)) + δe)(1 − δLL) (4.6)
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Similarly, the launch timer increments when a launch has occurred and is reset

to zero if there is a lock loss event.

xlaunch(t( j + 1)) = (xlaunch(t( j)) + δlaunch)(1 − δLL) (4.7)

4.3 MILP Problem Formulation

In this section, a MILP representation of the problem is presented. The first

subsection pertains to developing a vehicle dynamics model that is suitable for

the MILP approach. The second subsection addresses the detection model, and

the third pertains to the lock loss model.

In order to represent the model described in the previous section as a Mixed

Integer Linear Programming (MILP) problem, several simplifications are made.

The MILP formulation, like the model, assumes the UAV maintains constant

altitude. In addition, the bank angle of the UAV is always zero. This simplifi-

cation is valid if the turn time is small compared to the size of the discrete time

steps used in MILP.

4.3.1 Dynamics Constraints

The total flight time is represented throughout the formulation as T discrete

time steps, which is a parameter the user specifies in the input data file. The

UAV is given T time steps to reach the desired end point.

There are T values for the UAV’s x, y position. These T values are indexed
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with variable k. At any individual time step, k, the UAV’s position at that time

step, x[k] and y[k], is calculated to be the sum of the starting x and y position,

called x0 and y0, plus each velocity component, vx[k] and vy[k] multiplied by the

length of time of each time step, which is a constant Ts, for all values of k from

zero to the present time step. Written as equations this gives:

x[k] = x0 +

k∑
j=0

(vx[ j] · Ts) (4.8)

y[k] = y0 +

k∑
j=0

(vy[ j] · Ts) (4.9)

Velocity components, vx and vy, must be constrained so that the magnitude of

the velocity vector is not greater than the maximum velocity of the UAV, vmax.

Calculating the total velocity, using vx and vy results in a nonlinear function,

due to the square root. For a MILP representation a linearized approach must be

taken to constrain vx and vy. One such approach, outlined in [27], is to constrain

vx and vy separately to be less than some vm.

| vx |≤ vm and | vy |≤ vm (4.10)

Plotted on a vx versus vy graph, as in Fig. 4.3, these constraints create a box that

is inscribed by the circle corresponding to all feasible vx and vy values. This box

is a poor approximation to the circle.

To achieve a better approximation to the circle, more constraints can be

added.

vx[k] sin
(
2πm
M

)
+ vy[k] cos

(
2πm
M

)
≤ vmax cos

(
π

M

)
(4.11)

This constraint has to hold for all integer values of m in the set from 1 to M,
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vy

Figure 4.3: Polygon circle approximation for M = 4 and M = 8.

where M is the number or sides of the polygon approximation of the circle.

Because the polygon approximation is inscribed by the circle, vmax must be mul-

tiplied by the cosine factor. Without this factor, the circle would be inscribed by

the polygon and there would be vx and vy combinations allowed by the approx-

imation, which combine to produce a v greater than vmax. This is easiest to see

in the case where M equals four because there is a large difference between the

box inscribed by the circle, and the box that inscribes the circle.

The above constraints only ensure that vmax is not violated. To find the actual

velocity at any time step k, v[k], the vx and vy components must be used. Nor-

mally, calculating the magnitude of a vector from its components relies on the

nonlinear square root.

v[k] =

√
(vx[k])2 + (vy[k])2 (4.12)
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A linear approximation uses three constraints and several binary variables, bv.

For any time step k and for all m in the range of 1 to M, where L is an arbitrarily

large number:

vx[k] sin
(
2πm
M

)
+ vy[k] cos

(
2πm
M

)
≤ v[k] (4.13)

(
vx[k] sin

(
2πm
M

)
+ vy[k] cos

(
2πm
M

))
· 1.01 (4.14)

≥ v[k] − L(1 − bv[k,m])

and

M∑
j=1

bv[k, j] = 1 , bv[k, j] ∈ { 0, 1} (4.15)

The true value of v[k], corresponding to the UAV velocity, will satisfy these con-

dition for only one value of m. First equation 4.13 constrains v[k] to be a value

that is bigger than any possible combination of vx[k] and vy[k], for any value

m. Equation 4.14 also constrains v[k] to be smaller than any combination mul-

tiplied by 1.01, or else the corresponding binary variable, bv[k], must be zero.

With no other constraints, many values of v[k] could satisfy equations 4.13 and

4.14 by having all zero values of bv[k]. To prevent this, equation 4.15 constrains

bv[k] such that it must be non-zero for one m value. This m corresponds to one

of the corners of the M sided polygon appoximation. When bv[k] does equal 1,

equations 4.13 and 4.14 can only be satisfied with a v[k] which is a close approx-

imation to the actual velocity value.
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The heading value is important in determining the radar signature of the

aircraft. The heading angle is tracked with a variable which will later be con-

strained to ensure that a small enough cross section is presented to any radar to

avoid detection. Given the model for UAV dynamics, it can be assumed that the

UAV always faces the direction it is traveling. Therefore the heading is related

to the velocity vector. In finding v[k] there are m binary variables, bv[k], for each

time step k. These variable all equal zero except for the one that corresponds to

the m which relates how vx[k] and vy[k] combine to form v[k]. This value of m is

directly related to the heading angle of the UAV using the following

M∑
j=1

bv[k, j] · j ·
360
M

= heading angle (4.16)

To force the UAV to go from its starting position to the final, or desired position,

more constraints and binary variables are necessary. Again assuming that L is

an arbitrary large value we can write the following:

x[k] − x f ≤ L · (1 − b f [k]) (4.17)

x[k] − x f ≥ −L · (1 − b f [k]) (4.18)

y[k] − y f ≤ L · (1 − b f [k]) (4.19)

y[k] − y f ≥ −L · (1 − b f [k]) (4.20)

and
T∑

j=1

b f [ j] = 1 , b f [ j] ∈ { 0, 1} (4.21)

The first four constraints force b f [k] to be 0 unless the UAV is at the final

location, x f and y f , in which case b f [k] can be 1. The final constraint says that

when the binary variable b is summed over the entire time of the flight, it must

equal 1. These constraints force the UAV to the final position.
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None of the constraints presented so far force the UAV to reach the final

position as quickly as possible. To do this the final step is to create a definition

for what makes a path optimal. This is done with MILP by creating a metric that

characterizes each path and then either minimizing or maximizing that metric.

Note that in the constraints to force the UAV to the final position, b f [k] only

equals 1 when the UAV is at the final position and that k is a time step index.

The optimal path is one for which the k is the smallest. This can be represented

by defining the cost as:

T∑
k=1

b f [k] ·
k∑
1

Ts

 = cost (4.22)

Thus the optimal path is the one that satisfies all other constraints and has

the lowest cost.

4.3.2 SAM Constraints

Given a model for a SAM’s ability to detect a UAV, several more constraints

can be placed on the UAV’s path to reduce the probability of detection to a

predetermined acceptable level.

As described in the model, two important parameters in determining a

SAM’s impact on the UAV’s path is the distance between the two, and the UAV’s

signature to the SAM’s radar. The calculations in the model for distance and az-

imuth are nonlinear. The following MILP formulation is an equivalent linear

approximation.

Distance between a UAV and SAM is an important factor in determining the

probability of detection. The distance can be found, and then constrained, in
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a similar fashion as maximum velocity, using constraints and binary variables.

For any time step k, where L is an arbitrarily large number the distance, dist[k],

is constrained as follows,

x[k] sin
(
2πm
M

)
+ y[k] cos

(
2πm
M

)
≤ dist[k] (4.23)

(
x[k] sin

(
2πm
M

)
+ y[k] cos

(
2πm
M

))
· 1.01 (4.24)

≥ dist[k] − L(1 − bd[k,m])

and

M∑
j=1

bd[k, j] = 1 , bd[k, j] ∈ { 0, 1} (4.25)

x[k] and y[k] are combined so that they are less than or equal to dist[k] yet

are greater than or equal dist[k] when multiplied by 1.01. This must hold for all

values of m, where m ranges from 1 to M. The binary variables are used to pick

out the one true value of distance that makes the two constraints true.

Another factor in determining whether a SAM detects a UAV is if the UAV

is nose in or nose out relative to the SAM. Nose in refers to when the UAV’s

exposure to radar is minimal. Nose out refers to when the exposure is greater.

This is determined by comparing the UAV’s heading angle and the line of sight

(LOS) angle between the SAM and the UAV. The LOS angle can be found from

the x, y, and distance in the same way that heading was found from vx, vy, and

velocity. Using equations 4.25, 4.26, and 4.27 to find the non-zero value of bd[k]

the line of sight angle is given by
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M∑
j=1

bd[k, j] · j ·
360
M

= Line of Sight angle (4.26)

With the line of sight angle and the previously calculated heading angle, the

azimuth angle at any time step k, can be found by comparing the two. The line

of sight angle and the heading angle are each one of M discrete values, where

M is the size of the polygon approximation. A static M by M table can be used

to find the azimuth angle as a function of both the line of sight angle and the

heading angle. To illustrate, consider if the UAV has a heading of 0◦, heading

north, the azimuth table entry would be 180◦ if the line of sight value is also

zero; the UAV is north of the SAM and heading away. However if the line of

sight value is 180◦, than the azimuth angle would be 0◦, the UAV is south of the

SAM and heading directly towards it. To access the correct table entry binary

variables blos and bh are used as indices.

The next factor to consider is elevation angle between the UAV and the SAM.

Because a constant altitude is assumed, the elevation angle is simply a function

of range.

dist · tan(elevation) = altitude (4.27)

However tangent is a non-linear function. Because the elevation table given in

the model for SAM detection is discrete, a discrete linear approximation can be

used for the tangent function in this case. For any time step, k, an index, d, that

ranges from 1 to the size of the tangent approximation array, and the binary

variables bel can be used to create the following constraints:
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alt ≤ dist[k] · eltable[d + 1] + M · (1 − bel[k, d]) (4.28)

alt ≥ dist[k] · eltable[d] − M · (1 − bel[k, d]) (4.29)

and

elsize∑
d=1

bel[k, j] = 1 , bel[k, j] ∈ { 0, 1} (4.30)

elsize∑
d=1

bel[k, d] · d ·
180
elsize

= el[k] (4.31)

Using elevation, azimuth, and acceptable probability of detection set by the

user, the tables given in section 2.2 can be used to find the minimum safe dis-

tance between the UAV and the SAM radar. In the MILP formulation the two ta-

bles given in section 2.2 are combined into one three dimensional table. First the

elevation angle is used to find the correct azimuth versus probably of detection

sub-table. Then the azimuth variable is used with the user supplied, discrete,

probability of detection threshold variable, to look up the minimum distance.

The final MILP constraint is that the UAV distance from the SAM is greater than

this look up distance. This constraint is consistent with the assumption that if a

path violates the probability of detection threshold, a detection is assured. This

simplification is necessary to eliminate the random element of SAM radar de-

tection. Due to this assumption, for any path to be valid it must be true that for

any given time the distance between the UAV and the SAM is greater than the

look up distance based on all the factors.
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4.3.3 Lock-Loss Constraint

The MILP formulation of lock loss assumes that the first time the UAV is de-

tected, the lock loss timer is activated. During the lock loss time if the vehicle

continues to be detected, a SAM is fired and the UAV is destroyed. If the UAV is

not detected for as long as the lock loss time, than the engage timer is reset and

it takes another detection to start it again. This means that a UAV can take ad-

vantage of lock loss by flying a path that may allow it to be detected, but not for

longer than the lock loss time limit. In MILP this can be specified using binary

variables. Suppose the lock loss time is 4 time steps. The distance constraint is

changed to include bll, binary variables for the lock loss such that at any time

step k and for L being an arbitrary large number:

dist[k] + (L · bll[k]) ≥ table value for distance (4.32)

If the distance at time k, is less than the table value for distance, this constraint

can only be true if bll[k] is 1, otherwise it can be 0. To ensure lock loss the final

constraint is added, assuming the lock loss time is 4:

3∑
j=0

bll[k + j] = 3 , bll[k + j] ∈ { 0, 1} (4.33)

Which states that for any time, k, and the next 3 consecutive time steps, bll must

be equal to zero once. This can only happen if for any 4 consecutive time steps,

the distance between the UAV and the SAM is greater than the table value at

least once. This ensures that the UAV is not detected for any longer than the

lock loss time.
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4.4 Implementation

The AMPL modeling language is well suited for representing the optimizations

presented above. With AMPL two files are used, the model file details the vari-

ous constraints. Another file holds the model data. Thus data can be changed,

such as starting point or UAV velocity, without changing the constraints. The

optimization problem coded in the two AMPL files is solved with ILOG CPLEX

[36]. The output values are saved to a third file, which can be opened in Matlab

for data analysis. The following examples were solved on a 1.8 GHz Pentium II

computer with 512 MB of RAM, running the Windows XP operating system.

4.5 Examples

4.5.1 Single UAV vs. Single SAM

Using the data in the tables presented in Tables I and II a single UAV was started

at position xo = 350 and yo = 125. The UAV was given a final destination of x f

= 340 and y f = 0. A single SAM was placed at the origin and an acceptable

probability of detection of 0.5 was used. The MILP formulation of this path

planning problem contains 15363 binary variables, 72 linear variables and 10359

linear constraints. As shown in figure 4.4, the UAV does not fly directly to the

final position, but instead must stay far enough away from the SAM until it

reaches a position where it can turn towards the SAM site and approach the

final position. The circle in the figure represents the minimum distance the UAV

must maintain if it has a high signature, corresponding to a nose out orientation.
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The circle appear elliptical due to the unequal scaling of x and y. The UAV only

turns toward the destination when doing so will provide a small cross section

to the SAM’s radar, allowing it to get closer without violating the acceptable

probability of detection.
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Figure 4.4: UAV path, SAM at origin and Probability of Detection = 0.5

For size comparison, a two UAV scenario, with the second UAV at xo = -350

and yo = 125, resulted in a MILP formulation containing 25037 binary variables,

116 linear variables, and 14354 linear constraints.

4.5.2 Effects of Probability of Detection

By varying the acceptable probability of detection, a more direct path plan can

be generated. Two additional path plans were calculated using all the same

parameters as the example given above, except that the probability of detection
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threshold values of 0.6 and 0.7 were used. All three paths are plotted in figure

4.5, which clearly shows that when a higher risk of detection is acceptable, the

UAV can use a more direct and risky path. The additional circles correspond to

the smaller minimum distance for high signature approaches. The smaller the

probability threshold, the closer the UAV can be to the SAM at the origin while

presenting it with a high signature.
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Figure 4.5: UAV paths, SAM at origin and Probability of Detection = 0.5,
0.6, and 0.7

4.5.3 Calculation Time

Each path given in figure 4.5 took approximately 3 minutes to compute. This

time was needed by the CPLEX solver to find all feasible solutions. Due to the

large and complex nature of the MILP formulation there are many branches for

the solver to traverse in search of the optimal solution. While not fast enough
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for realtime applications, it should be noted that this calculation time is greatly

influenced by the computational capabilities of the computer used to solve the

MILP. Realtime application may be possible with a computer optimized to solve

CPLEX problems.

4.5.4 Effects of Lock Loss

Shown in figure 4.6 is the same path plan from figure 4.4, with a 0.5 probability

of detection. Also shown is another path that takes advantage of the lock loss,

where the lock loss time is set to four time steps. This means as long as the UAV

is not detected for four consecutive time steps, the UAV will not be destroyed.

Due to the extra complexity that the lock loss modeling adds to the MILP for-

mulation the computation time increased to approximately 3.5 mintues.
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Figure 4.6: UAV paths, lock loss and non-lock loss with Probability of De-
tection = 0.5, SAM at origin.
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4.6 Conclusion

As the use of UAVs increases, so does the importance of efficient path plans. In

complex situations, such as the threat of a SAM, finding a feasible path plan can

be difficult, knowing it is also optimal, even more so. The MILP approach out-

lined in this paper finds the most efficient path. Due to the computation time,

the approach outlined above is best suited as a top level path planning algo-

rithm. It may also be possible to use this algorithm in a receding horizon fash-

ion, where new path plans are generated for shorter intermediary waypoints

and recalculated as new sensor information is available.

The MILP approach given in this paper does not require the path planning

to be computed by the vehicle itself. One possible scenario could entail using a

computational facility to solve the MILP and calculate a path plan that is then

sent over a communications link to a UAV.
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CHAPTER 5

PATH GENERATION USING MATRIX REPRESENTATIONS OF

PREVIOUS ROBOT STATE DATA

5.1 Introduction

Humans do not move by calculating on a conscious level the physics behind

motion. Humans do not throw a ball by calculating a force and angle, taking

into account the effects of gravity. Humans learn by repetition and using past

experience as a template to create input-output mappings. It is possible for

robots to act in a similar fashion. Instead of generating paths by performing

complex computations, a robot can use past travel experiences. Such a memory

based approach does not rely on developing an accurate physics or dynamics

model of the robot and its environment. In the same way that a human does

not calculate the moment of inertia of an arm swinging around a shoulder joint,

a robot does not need to calculate how a control action will affect its dynamics.

In both cases, by using past experiences, the result of an action can be predicted

without calculation

An example of this approach can be seen by examining how a human learns

to throw a ball at a target. The first time they are presented with this challenge,

it takes many tries to learn the sequence of muscle contractions that allow the

ball to travel with the correct trajectory. Once they have learned to throw a ball

with satisfactory results, the appropriate body motions, or control inputs, are

remembered. If given a heavier ball to throw, a human simply makes adjust-

ments to the remembered body motion from their previous experience, instead

of re-learning how to throw all over again. While it may take a few tries to learn
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how to hit the target with the heavier ball, they will learn this new task much

quicker than before because they have their past experience to rely on. Similarly

for path planning, if a robot has successfully traversed a path in the past, there

is a way to encode this experience to allow future use. Given the task of gener-

ating a new path plan which is similar, but not identical, to a previous path, a

robot can use past experience to quickly form a solution.

As with humans, there is no guarantee that this solution will be optimal, but

it need not rely on heavy mathematical modeling or calculation.

5.1.1 Hierarchical Bayesian Model

There are several theories on how the human brain and nervous system func-

tion to allow fluid motion and learning from past exerience. A recent one is

presented by Jeff Hawkins in his book “On Intelligence.” [37] In the book, it is

theorized that the human brain creates and remembers series of sequences that

are associated together at each level of the brain. This approach can be repre-

sented with a Hierarchical Bayesian Network model. Such a model was used

to demonstrate an effective image recognition system, using training images to

teach the network what different images are, and how they may vary in size,

shape, and orientation, and yet still be the same type [38]. This approach not

only accurately recognized varying images, but was able to fill in holes in test

images to make them better match the type of image that they were categorized

as [39].
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5.1.2 Simplicity & Speed

This approach shows great promise in illustrating how the brain may function.

The formulation relies on Bayesian belief propagation equations which use mes-

sage passing between nodes to propagate beliefs [40]. Unfortunately this exten-

sive message passing and the numerous required matrices make it ill-suited for

real time use with present computer technology. Because silicon based comput-

ers work in a fundamentally different way than neuron based organic brains,

they can not implement algorithms in the same way and at the same speed. For

real-time path planning, a different approach is required that still encompasses

the same idea of utilizing past experience. Presented below is a system that

uses matrices to capture past experience, but runs fast enough to enable real

time path planning. For purposes of this research, a path is defined as travel-

ing from a start point to an end point and finishing with a specific orientation

without regard to obstacle or terrain issues. This system approach benefits from

the concept of associating various inputs to form representations of past expe-

riences. However by using fewer matrices and fewer levels, it does not suffer

from the extensive message passing and speed problems of Bayesian networks.

5.1.3 Outline

In the next section, the system configuration is described with a discussion of

an appropriate coordinate frame. The assumed robot dynamics are given, as is

a description of the discretization used. A simple example illustrates the funda-

mentals of the approach. In the third section, results are given and discussed.

This section includes a description of the real world system used and several
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plots of both the training paths, and the paths generated by the approach. Con-

cluding remarks and ideas for future work are presented in section four.

5.1.4 Robot Kinematics

The discussion below assumes a traditional kinematic unicycle robot, one which

can only travel in the direction it is heading. In cartesian coordinates, the dy-

namics of such a robot are given by the following equations:

ẋ = v cos θ

ẏ = v sin θ

θ̇ = ω

Here v and ω are the control variables.

5.2 System Configuration

The system must have previous path data before being able to generate new

paths. Previous path data is composed of robot state values along a viable path.

This data is contained in matrices which are then used to associate incoming

robot state data with the closest state data stored from any previous path. The

control effort from this stored closest state data is then applied as the present

control effort. After exerting this control effort, a new set of robot state informa-

tion is taken and again compared against the matrix. This process is explained

in greater detail below.
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5.2.1 Coordinate Frame

As a robot moves from a start position to an end position, it creates a path con-

necting the two. At each point along the path, the robot has a specific state.

This state is composed of the robot’s position, orientation, and the commanded

control effort used to move the robot along the path. The position state can be

given in various coordinate frames. For this research a world coordinate frame

fixed at the end point is best. With such a coordinate frame, the robot’s present

position is described relative to the ending point, specifically the distance away

and the difference between present and desired robot heading. By using an end

point centered coordinate frame, relating the robot state to the end state, the

same dynamics are true even if the absolute position of the robot changes, as

long as the relative position of the robot to the endpoint does not.

This assumes a uniform environment without obstacles or varying terrain,

otherwise the dynamics of a robot traveling between two points may change.

A robot will travel a different path between two points if the points are trans-

lated to a location where an obstacle falls between the points. Given a uniform

environment, translating or rotating a path does not change the robot’s position

states or its dynamic states along the path.

The control efforts at each point are the commands used by the robot to move

itself at that point in the path. The form of the control commands depend on the

specifics of the robot. At the lowest level, the robot’s controller may produce

exact voltage values to be sent to each motor. Alternatively, a very high level

controller may just determine way points to the final destination. An interme-

diate level is one where the robot determines a desired velocity vector to travel.

This velocity vector is composed of a magnitude and an angle relative to the
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robot’s present heading, θ.

Each point along a path then has five state values associated with it as il-

lustrated in figure 5.1. In the figure, distance is represented with d, heading θ,

heading offset ψ = θ − ψ f , commanded velocity magnitude v, and velocity ro-

tation ω. As shown in the figure, ψ f is ninety degrees, which means the robot

should reach the end point facing up.

Figure 5.1: At any point along a path a robot has five state values, distance
d, heading θ, heading offset ψ, velocity v, and velocity angle ω.
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5.2.2 Training Data Discretization

Several viable robot paths are needed. These training paths are analogous to

throwing a ball several times to learn how to throw it to hit a target. To keep the

training data a finite size, different points along the length of each path must

be selected. At each point, the complete vehicle state (position d, heading θ,

heading offset ψ, velocity magnitude v, and velocity rotation ω) are recorded.

If there are 5 training paths with 100 points on each path, that would give 500

distinct robot states. For each parameter a discretization scheme is needed. For

the angles this is straight forward as each angle can vary from +pi to -pi. The

range of possible values can be discretized to the desired fidelity. A coarse dis-

cretization would be [−π, −3π
4 , −π2 ,

−π
4 , 0,

π
4 ,

π
2 ,

3π
4 ]. A finer discretization would be

[−π, −9π
10 ,

−8π
10 , ..., 0, ...,

8π
10 ,

9π
10 ]. For both distance and velocity magnitude values, a

discretization would have to be chosen that spans the range of values of all the

distinct robot state values. Once discretization schemes are selected for each

parameter, the robot states are processed so that each parameter in a state is

rounded to the nearest discretization value for that parameter.

Example - State Discretization

In the following example we have three training paths with three path points

each. The states at a path point are represented as ppath#,point# = [d, θ, ψ, v, ω]

Path 1
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p1,1 = [3.2,−π,−π, 2,−π]

p1,2 = [2.4,
−6.2π

10
,
−8.8π

10
, .9,
−8.6π

10
]

p1,3 = [1.1,
−π

10
,
−5.7π

10
, .2,
−5.8π

10
]

Path 2

p2,1 = [3.6,
5π
10
, 0, 2.6, 0]

p2,2 = [2.1,
2π
10
,
−3.3π

10
, 1.7,

−3.4π
10

]

p2,3 = [0.8, 0,
−4.9π

10
, 0.3,

−4.8π
10

]

Path 3

p3,1 = [2.9,
−7.7π

10
,
π

10
, 2.2,

π

10
]

p3,2 = [1.5,
−3π
10

,
−4.3π

10
, 1.3,

−4.2π
10

]

p3,3 = [0.2, 0,
−5π
10

, 0.4,
−4.9π

10
]

Now discretize the state values such that the permissible values are

d = [0, 1, 2, 3, 4]

θ = [−π,
−9π
10

,
−8π
10

, ..., 0, ...,
8π
10
,

9π
10

]

ψ = [−π,
−9π
10

,
−8π
10

, ..., 0, ...,
8π
10
,

9π
10

]

v = [0, 0.5, 1, 1.5, 2, 2.5, 3]

ω = [−π,
−9π
10

,
−8π
10

, ..., 0, ...,
8π
10
,

9π
10

]

Using this discretization the path points become

Path 1
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p1,1 = [3,−π,−π, 2,−π]

p1,2 = [2,
−6π
10

,
−9π
10

, 1,
−9π
10

]

p1,3 = [1,
−π

10
,
−6π
10

, 0,
−6π
10

]

Path 2

p2,1 = [4,
5π
10
, 0, 3, 0]

p2,2 = [2,
2π
10
,
−3π
10

, 2,
−3π
10

]

p2,3 = [1, 0,
−5π
10

, 0,
−5π
10

]

Path 3

p3,1 = [3,
−8π
10

,
π

10
, 2,

π

10
]

p3,2 = [2,
−3π
10

,
−4π
10

, 1,
−4π
10

]

p3,3 = [0, 0,
−5π
10

, 0,
−5π
10

]

As will be shown below, this discretization and enumeration of the path pa-

rameter states can now be used to assign control effort based on new position

inputs.

5.2.3 Input Matrix & Processing

New paths can be generated by taking input parameters and associating them

with previous path points. The input parameters are the robot position states,
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d, θ, ψ. For each of these position states, an input matrix is created. These

input matrices have a row for each possible robot state as described above, and

one column for each discrete value of either d, θ, or ψ. For the example given

above, the three paths have three points each, so there are nine robot states. The

discretization of d has five values, so the input matrix for d would be nine by

five. The input matrix is filled by placing a 0.5 in the column of each row that

corresponds to the exact d, θ, or ψ value that composes that state. A 0.25 is then

placed in the columns adjacent to this column. This is done to account for the

possibility that a specific state may correspond to slightly different d, θ, or ψ

values. For the d input matrix, the first row would correspond to the first point

on Path 1, which has a discretized value of 3. Thus the first row of the d input

matrix, Md, would be [0 0 .25 5 .25].

Once these matrices are constructed they can be used to generate control

commands for the robot. The first step is to measure the d, θ, ψ for a robot

that is trying to get to the final position. A column vector is created with the

length of the discrete parameter values and contains two values associated with

how close the measurement is to the discrete values. For instance, using the

possible distances from the example above, d = [0 1 2 3 4], if a distance of 3.2 is

measured, the associated column vector would be [0 0 0 0.8 0.2]T . This column

vector reflects that the measured value is between 3 and 4, but closer to 3. A

matrix multiplication is then done between the input matrix and this column

vector. The resulting row vector, λd, has the length of the number of possible

states. A corresponding row vector, λθ and λψ are created in the same way for

the measured θ and ψ.
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5.2.4 Control Output

The lambda row vectors are combined by doing an element by element mul-

tiplication to create one lambda. The largest element is found and this value

corresponds to the most likely robot state associated with the inputs d, θ, and

ψ. The velocity magnitude and rotation velocity with this state are then used as

the control outputs to the robot.

Example - Creating Control Outputs from State Inputs

Continuing with the example given above, there are 9 path points and distance

is discretized as d = [0, 1, 2, 3, 4]. The input matrix for distance has a row for

each path point, p. Using the method described earlier, column values for each

row are assigned. The input matrix for the example above would be

Md =



0 0 0.25 0.5 0.25

0 0.25 0.5 0.25 0

0.25 0.5 0.25 0 0

0 0 0 0.25 0.5

0 0.25 0.5 0.25 0

0.25 0.5 0.25 0 0

0 0 0.25 0.5 0.25

0 0.25 0.5 0.25 0

0.5 0.25 0 0 0


Multiplying Md by the column vector [0 0 0 .8 .2]T , which was derived from

the input d = 3.2, gives a λd of [0.45 0.2 0 0.3 0.2 0 0.45 0.2 0]T ;
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In a similar fashion a Mθ and Mψ are created and multiplied by the column

vector derived from an inputs θ and ψ to produce a λθ and λψ.

If λθ = [0 0 0 0.3 0.2 0.1 0.4 0.3 0.1]T and λψ = [0 0 0 0.3 0.1 0.1 0.5 0.2 0.1]T , then

multiplying λd element by element by λθ and λψ gives [0 0 0 0.027 0.004 0 0.09

0.012 0]T .

Because the seventh element, 0.09, is the largest the seventh path position, in

this case p3,1 = [3, −8π
10 , 2,

π
10 ], is chosen and the control efforts are v = 2 and ω = π

10 .

These control commands are used by the robot and a new input d, θ, and ψ are

measured. The process repeats to generate the next set of control efforts. Note

that there is no restriction that consecutive control efforts must come from the

same previous path.

5.3 Real World and Simulation Results

The approach was validated through both simulated and real world implemen-

tation. The simulation results are given below and were generated with Cornell

University’s Robocup simulator. Cornell’s Robocup system was used for real

world testing.

5.3.1 Robocup System

Cornell’s Robocup team has competed in the RoboCup Small-Sized League

since 1999 and has won the international championship four times. The system

consists of a playing field, robots, an overhead vision system, and computer
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hardware and software [41]. The availability and sophistication of the Cornell

Robocup infrastructure made it ideal for testing this new path generation ap-

proach. The Robocup robots can travel omni-directionally, able to move in a

direction other than the one they are presently facing, which is an important

competitive ability. For the purposes of this research, the robots were made to

behave in a kinematic unicycle manner.

5.3.2 Simulation

As part of the Robocup system, the Cornell team developed a Robocup simula-

tor [42]. Figure 5.2 shows a partial screen capture of the simulator. Note that in

this picture only one robot is on the field, Robot 0 of the blue team, the rest are

on the sideline at the the top of the screen. Robot 0 is below the ball at the center

of the field and is facing up.

Figure 5.2: Screen capture of Cornell’s Robocup simulator. Robot 0 is in
the center below the ball facing the top.
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Training Paths

This simulator contains several robot skills which are used by the robot team

members during competition. These skills use one of several sophisticated path

generation algorithms based on traditional approaches to robot dynamics and

control. One of these path generation algorithms were used to create training

paths. The training paths all start with the robot on the right side of the field

facing toward the ball at the center of the field. The robot then travels to the

ball, ending with the orientation shown in figure 5.2. Training paths on the left

side of the field are unnecessary due the symmetric nature of the field. Different

behavior between the left and right sides of the field is possible as long as the

training data reflects this difference. Figure 5.3 gives a plot of all the training

paths used. These training paths were chosen to cover the entire half field. Note

that there are larger gaps between the top and bottom paths and the middle

three paths. This leads to behavior that is described below. There is no require-

ment that the training paths do not cross. Even if two paths cross, the robot state

at the crossing point is different for each path because the robot orientation is

different. If the robot finds itself near this crossing point, the robot state with

the closer orientation will be selected as the closest match.

The total field is roughly 5 meters long and 3 meters wide. The training

paths show that the omni directional capability of the robots is not exploited.

Using omni directional capabilities would allow the Robocup robot to take a

more direct approach to the ball and change orientation independently of the

path heading.

The training paths resulted in 126 path position states. The following di-

cretizations were used,
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Figure 5.3: Plot of training data. Training paths on the right half of the
field.

d = [1.6 1.5 1.4 1.3 ... 0.4 0.3 0.2 0.1]

θ = [0 0.1 0.2 ... 3.0 3.1 3.2]

This resulted in a Md matrix of size 126 by 16 and a Mθ of 126 by 32.

Generated Paths

Using the 126 position states and the Md and Mθ generated from the training

data, many different path generations were run. Figure 5.4 through figure 5.9

show different sample paths that the robot traveled.

In figure 5.4, the robot starts off directly below the ball but is slightly offset

from a position used in a training path. The robot is given the same commands
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Figure 5.4: Sample path showing course correction near ball.

Figure 5.5: Sample path showing path switching.

that were used in the training path which results in a straight up path that is

parallel to the training path. Once the robot gets close to the ball, it becomes

closer to a state from another training path and the commanded velocity finally

corrects for the offset.

Figure 5.5, figure 5.6, and figure 5.7 also show evidence of this path switch-

ing. The robot starts by using the control commands of one training path, but

then switches control as it approaches another training path. It switches back

123



Figure 5.6: Sample path.

Figure 5.7: Sample path.

and forth between states from either training path as it approaches the ball.

The path shown in figure 5.8 is very smooth. The robot starts at a point that

is near the top training path. As it approach the ball it remains closest to this

same training path and thus uses the control commands corresponding to this

path. This illustrates that increasing the number of training paths and spreading

them uniformly would allow for smoother generated paths.
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Figure 5.8: Sample path.

Figure 5.9: Plot of training data in blue and several generated paths in red
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Figure 5.10: Cornell Robocup team member.

Figure 5.9 is a plot showing the original training paths in blue and several

generated paths in red. It is clear on this plot that as a generated path starts

approaching a different training path, the control efforts change and creates a

bump in the generated path. In several cases, it is this bump that acts as a

correction to force the robot to take a more direct approach to the ball. In other

cases, the change causes the robot to approach the original training path and

another switch occurs. More training paths would be needed to minimize these

bumps and generate smoother paths.

5.3.3 Real World

The path generation method was also tested with a Cornell Robocup robot, an

example of which is shown in figure 5.10. The robot was successfully able to

generate and follow a correct path plan to the center of the field where the ball

was located. This demonstrates that the generation method could be executed

quickly enough for real time application for fast moving robots.
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5.4 Conclusions and Future Work

Generating a path plan based on previous successful paths is here demonstrated

to be feasible. Doing so has the advantage of being independent of the methods

used to create the training paths. The training paths could be generated by

different algorithms. They could also be generated directly by a human operator

of a robot. A situation can be envisioned in which a complicated machine could

be guided by a human being a few times, and then left to operate by itself based

on the human training runs. This would avoid the time and cost of developing

and coding a traditional algorithm based on system dynamics.

The next step in this process is to devise a way to allow a robot to create its

own training data. In much the same way that a human baby learns to walk by

initial trial and error a robot could create a successful solution to a path problem.

Then, again like a child, it could practice and learn from experience how to

expand and refine its movements.
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