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Enabling foundation work by Brutsaert in hydrologic
processes for watershed modeling, to just list a few:

B Hydrologic Cycle: Brutsaert and Parlange, 1998
B Evaporation: Brutsaert, 1982 (a classic book)

B Vapor and Heat Fluxes: Brutsaert, 1975a; Brutsaert
and Sugita, 1992

B Evapotranspiration: Brutsasert, 1975b; Brutsaert
and Strickner, 1979

H Infiltration: Brutsaert, 1966, 1967

B Groundwater Flow: Brutsaert Copez, 1994, 1998

B Overland Flow: Brutsaert and Neber, 1977

B Open Channel Flow-Green Function: Brutsaert, 1975
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B Teacher and Students: Prof. Brutsaert has always considered
himself a friend rather than a boss to his students. This has
had a great influence on me on how I have gotten along with
all students whom I have graduated at Penn State and UCF.

B Boy and Girl Friends: Whenever I felt low about my

girlfriend, Prof. Brutsaert’s wisecracks and comforting advice
were always a source of help in easing my emotions.
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advised in many occasions: in your life, you must develop your own
areas of interest beyond the PhD program. | can proudly report that |
have been successful in this regard. | have developed over 100
computational models, none of which is an atmosphere model, a
subject of my PhD dissertation.

B Serve the Society: | was reminded in many occasions: return what
you have learned, researched, and created to society. | consider
myself doing pretty well in this regard. | have foregone opportunities
to make millions of dollars, making my computer codes available to

almost anyone at no charge. .
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m Itis applicable to all three types of PDEs governing
environmental flow and transport phenomena (Greenberg,
1971; Brutsaert, 1975): Hyperbolic, Parabolic, and Elliptic.

B The key to apply Green Functions is the ability to come up

with the fundamental solution. Basically, there are two types
of Green Functions

B Free Green Functions and

B Homogeneous Green Functions.
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@ Green Functions: Difficulty

B Homogeneous Green Functions reduce the PDEs+BCs to
simple integration of known functions (Brutsaert, 1975;
Yeh, 1981)

m 96
on

mG =0 onDirichlet Boundary .

— 0 on Neumann Boundary
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> Use Google Search “AT123D New Jersey”, you find:

Guidance for Using the SESOIL and AT123D Models to Develop Site
Specific Impact to Ground Water Soil Remediation Standards ...

> In fact, more than 20 states in USA have the similar
guidelines to use AT123D in conjunction with SESOIL
> Five dollars make you rich ($5 x 1,000 x 365 x 22

= $40.15 Millions)

> A Footnote: Do | have any regret not to market this
model? Yes, a little bit, but no, in large, because if | did, |
would not have gone on developing a generic reactive
chemical transport model named HYDROGEOCHEM that

has incubated many similar models.
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Attachment 1
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B Multimedia (Multi-system
Components):

& Dentric Streams-Rivers-Canal-
Open Channel,

¢ Land Surface (bare soil, trees,
vegetations, and plants)

¢ Subsurface Media (Vadose and
Saturated Zones), and
¢ Ponds (Small Shallow), Lakes-

Reservoirs (Small Shallow)

¢ Control Structures (weits, gates,
culverts, pumps, levees, and storage
ponds)
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B Multi-processes (Hydrologic Cycles)
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Infiltration, and Recharges;

>— River Network

Estuaries
Ocean

—

|

recipitation Excess

Infiltration

N

— =

———

l Precipitation

V11 1 i

Interception

Evaporation
verland flow P

Transpiration

v

Soil Evaporation

Surface runoff

K]iul&\ieepage Runboff

rompt Subsurface Runoff

Tickled Seepage Runoff
Delayed Subsurface Runoff «—

«—

50

Groundwater Runoff Groundwater Runoff




\"

B Multimedia (Multi-system
Components):

& Dentric Streams-Rivers-Canal-
Open Channel,

¢ Land Surface (bare soil, trees,
vegetations, and plants)

¢ Subsurface Media (Vadose and

Saturated Zones), and

¢ Ponds (Small Shallow), Lakes-
Reservoirs (Small Shallow)

¢ Control Structures (weits, gates,
culverts, pumps, levees, and storage
ponds)

B Multi-processes (Hydrologic Cycles)

€ Evaporation, Evapotranspiration,
Infiltration, and Recharges;

€ Flow and Storage Dynamics in
Each Medium; and

|

recipitation Excess

Infiltration

N

——— S, ——
l Precipitation

verland flow

K]iul&\ieepage Runboff

rompt Subsurface Runoff

Groundwater Runoff

Interception

Soil Evaporation

Surface runoff

>— River Network

Estuaries
Ocean

: Evapotranspirfation

f

Evaporation

Transpiration

v

Tickled Seepage Runoff
Delayed Subsurface Runoff «—

Groundwater Runoff —€—

51




\"

B Multimedia (Multi-system
Components):

& Dentric Streams-Rivers-Canal-
Open Channel,

¢ Land Surface (bare soil, trees,
vegetations, and plants)

¢ Subsurface Media (Vadose and

Saturated Zones), and

¢ Ponds (Small Shallow), Lakes-
Reservoirs (Small Shallow)

¢ Control Structures (weits, gates,
culverts, pumps, levees, and storage
ponds)
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B Multi-processes: Biogeochemical Cycles
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B Multi-processes: Biogeochemical Cycles
¢ Nitrogen, Phosphorous, Carbon, Oxygen, Metals, etc.;

¢ Biota Kinetics (Algae, Phyotoplankton, Zooplakton, Caliform, Bacteria,
Plants, etc.); and

¢ Sediment and Water Quality Transport (Any Number of Reactive
Constituents).

BIOGEOCHEMICAL PROCESSES
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Example No. 1: Experimental Benchmark Problems:
Simplified versus Complete Physics

i\

Problem Description

One dimensional channel flow benchmark problems
(MacDonnell et al., 1997) that are slightly modified

Case . Manning' | Upstream | Downstream
NG Channel Flow Conditions sn BC BC
Rectangular, B = |Subcritical, approaches Q=20 3
1 20 m, L =100 m |[critical near ends Q05 m°/s h=0.748409 m
Subcritcal at inflow
= ’ =20 .
2 RectangEIar, B supercritical at outflow, 0.02 Q 3 Not required
20m, L=100 m . ) m~/s
critical section halfway
Trapezoidal, B = . .
3 |10 m, S (H:V) = csjgbt‘;]”t'f:f'”gzc"'a”ory 003 |Q=20m¥| h=1.125m
2:1, L =500 m PP
Trapezoidal, B = Subcritical at inflow,
4 [10m, s (Hv)= |nydraulicjumpatG00m 003 | 272 |h=1349963 m
_ _ distance, subcritical at m-/s
1:1, L =1000 m
outlfow
B = Bottom Width, S = Side Slope, H = Horizontal, V = Vertical, L = Channel Length




@ Comparison of Dynamic, Diffusive, and Kinematic Wave Simulations

R Benchmark 1

Dynamic Wave
—&— Diffusive Wave
—¢— Kinematic Wave

Water depth (m)

0.7 T | T | T
0 200 400 600 800 1000

Distance (m)



Comparison of Dynamic, Diffusive, and Kinematic Wave Simulations

1.0 Case 2: Mixed Subcritical and Supercritical Flow
Poeao Benchmark 2
0.9 — —— Dynamic Wave
—_ —o— Diffusive Wave
E g S —»— Kinematic Wave
- S
)
2
8 08~ g
| 99 Q
()
whed
“ —
=
0.7 — NN
eec\\\
- i ;:'E;}:\ ‘
0.6 . | : | : | , I . |
0 200 400 600 800 1000

Distance (m)



Comparison of Dynamic, Diffusive, and Kinematic Wave Simulations

Case 3: Subcritical Flow under Wave-shaped Bottom
Benchmark 3

Dynamic Wave
7 —&— Diffusive Wave
—¢— Kinematic Wave

Water depth (m)

Distance (m)
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Comparison of Dynamic, Diffusive, and Kinematic Wave Simulations

Water depth (m)

N Case 4: Flow with Hydraulic Jump
8 Benchmark 4 -
1.2 Dynamic Wave
—O&— Diffusive Wave 7, -
i —— Kinematic Wave f )
1.0 f
0.8 — N
0.6 — -
! | ! | ! | ! | ! |
0 200 400 600 800

Distance (m)

1000
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Example No. 2: Overland flow over a porous medium:
Physics-based Versus .44 /oc Coupling

» This example is designed to simulate rainfall-runoff over an infiltrating surface to
demonstrate the inappropriate use of linkage term when there is no physical
discontinuity at the interface.

rainfall rate:
4.0e5 m's

overland outlet

initial water table:

5 m below land surface



@ Comparison of Continuity versus Linkage Approaches




@ Comparison of Continuity versus Linkage Approaches

2.0 4

—+— No inlitration
—— linkagqe term (k=5.5€4)

8.0 A

7.0 - /

e Linkaye tern (k=5.5E )
< linkage term (k=3.0F 3)

»  continuous coupling

QO ym~1s
-
)

3.0 4
20 4

Discharge through Outlet

20000 J00.00 400.00 500.00 00.00 10000 800.00 Q00.00 100000
Simulation Time (minutes)




@ Comparison of Continuity versus Linkage Approaches

Total Exchange Flux {(m*3!:

10

0O

—=— Continuous coupling
—— Linkage term {(k=5.5E-6)
—«— Linkage term {(k=3.0E-3)

Flux from I.and Surface to Subsurface

11800 16800

21800 26800

Time (seconds)

79



Example No. 3: South Dade County Watershed:

Partial versus Complete Svstem Components

South Florida Project Boundaries for Dade Model

Canal

Surficial Material

Miami Oolite
Biscayne /
Aquifer T—— rt Thompson Formation

Upper Clastic Unit

;’g%e;rgé n— G)’ay limestone




@ Example No. 3: South Dade County Watershed:
Partial versus Complete System Components

° Dade model is a large scale
regional problem, 30 mi by 40 mi.

< &)
ekt JEN
2

T AL, Sl Ot A

South Florida Project Boundaries for Dade Model

Surficial Material Canal |

Miami Oolite
Biscayne /
Aquifer T—— rt Thompson Formation

Upper Clastic Unit

;g%z’gé n— G}’ay limestone




@ Example No. 3: South Dade County Watershed:

Partial versus Complete Svstem Components

° Dade model is a large scale
regional problem, 30 mi by 40 mi.

°* The model domain extends from
four miles west of the L-67
Extension dike to the western
shore of Biscayne bay and from
one mile north of the Tamiami
canal south to Florida bay.

South Florida Project Boundaries for Dade Model

Surficial Material:

Miami Oolite
Biscayne /
Aquifer T—— it Thompson Formation

Upper Clastic Unit

Tamiami

Rl | Gray Limestorie




@ Example No. 3: South Dade County Watershed:

Partial versus Complete Svstem Components

° Dade model is a large scale
regional problem, 30 mi by 40 mi.

°* The model domain extends from
four miles west of the L-67
Extension dike to the western
shore of Biscayne bay and from
one mile north of the Tamiami
canal south to Florida bay.

South Florida Project Boundaries for Dade Model

° Vertically, it extends from the land
surface to the bottom of the
surficial aquifer.

~ Canal ;

Miami Oolite
Biscayne /
Aquifer T—— it Thompson Formation

Upper Clastic Unit

Tamiami

e —____, Gray Limestone




@ Example No. 3: South Dade County Watershed:

Partial versus Complete Svstem Components

° Dade model is a large scale
regional problem, 30 mi by 40 mi.

°* The model domain extends from
four miles west of the L-67
Extension dike to the western
shore of Biscayne bay and from
one mile north of the Tamiami
canal south to Florida bay.

° Vertically, it extends from the land
surface to the bottom of the
surficial aquifer.

®* Complex hydraulic structure
operations

°* Strong interaction of overland
flow, groundwater flow, and
canal flow in south Florida

South Florida Project Boundaries for Dade Model

Surficial Material.

Miami Oolite
Biscayne /
Aquifer T——— rt Thompson Formation

Upper Clastic Unit



@ Finite element discretization for 3D subsurface media

B There are 7 layers in vertical direction: 37,760 nodes, 65,429 elements.
B Levees are incorporated as part of subsurface media.

B Real Time Simulated: 22 days

South Dade Mesh

Katerials
0l-Leke Flirt Merl

Tensams _Tras]_Dike
L=30_Dike

L-EM_Dike
Lowk-¥iani_Dolite

¥ 4720 Nodes in Surface Mesh
T 37760 Nodes
£ 85429 Elements




@ Finite element discretization for 2D overland flow and canal networks

B 2D Overland Mesh: .
4,720 Surface Nodes B Canal Network with Structures

y
%
L ¥
:
»
-
§ig
»
i %
N
J
A




@ Comparison of 2D-3D interaction and 1D-2D-3D interaction

Water Depth (Ft} : 168,000 Water Depth (Ft} : 5040,000
5.50 4.50
5.00 4,00
4,50

.50
4,00
3.50 3.00
3.00 2.50
2.50 2,00
2,00 1,50
1.50 1,00
1.00 .
0.50 0,50
0.00 0.00

Dade Model
Coupled 2D-3D
Water Depth

Dade Model
Coupled 1D, 2D & 3D
Water Depth Contours
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Summaries and Conclusions §

» Professor Brutsaert has tremendous impacts on
both my personal life and my career. | take it a
privilege to be one of his students.

» Green Function, especially the homogeneous
Green Function, is perhaps one of the most
versatile means to obtain analytical models.

» In watershed modeling, three very important
Issues must be considered. Whenever possible,

1. complete physics is preferred,

2. physics-based coupling must be employed to avoid
artifact calibration of non-physics parameters, and

3. Complete system components are preferred.



