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Green Functions 
  Free Green Functions reduce the PDEs+BCs to integral 
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Green Functions: Difficulty 

  Homogeneous Green Functions reduce the PDEs+BCs to 
simple integration of known functions (Brutsaert, 1975; 
Yeh, 1981) 
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Ø  Use Google Search “AT123D New Jersey”,  you find:
 Guidance for Using the SESOIL and AT123D Models to Develop Site
 Specific Impact to Ground Water Soil Remediation Standards ...


Ø  In fact, more than 20 states in USA have the similar 
guidelines to use AT123D in conjunction with SESOIL 

Ø  Five dollars make you rich ($5 x 1,000 x 365 x 22 
= $40.15 Millions) 

Ø  A Footnote: Do I have any regret not to market this 
model? Yes, a little bit, but no, in large, because if I did, I 
would not have gone on developing a generic reactive 
chemical transport model named HYDROGEOCHEM that 
has incubated many similar models. 
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Open Channel, 

  Land Surface (bare soil, trees, 
vegetations, and plants) 

  Subsurface Media (Vadose and 

Saturated Zones), and 

  Ponds (Small Shallow), Lakes-
Reservoirs (Small Shallow) 

  Control Structures (weirs, gates, 
culverts, pumps,  levees, and storage 
ponds)  

weirs gates culverts 

  Multi-processes (Hydrologic Cycles) 

  Evaporation, Evapotranspiration, 
Infiltration, and Recharges; 

  Flow and Storage Dynamics in 
Each Medium; and 

  Salinity Transport and Thermal 
Transport 

Watershed Modeling: Multi-media and multi-processes  

pumps levees 
Storage 

ponds 
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  Multi-processes:  Biogeochemical Cycles 
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  Multi-processes:  Biogeochemical Cycles 
  Nitrogen, Phosphorous, Carbon, Oxygen, Metals, etc.;    
  Biota Kinetics (Algae, Phyotoplankton, Zooplakton, Caliform, Bacteria, 

Plants, etc.); and 
  Sediment and Water Quality Transport (Any Number of  Reactive 

Constituents). 
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Watershed Modeling: Three Key Issues 
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1.  Simplified versus Complete Physics 
ü  Dynamic Wave (DYW) 
ü  Diffusive Wave (DIW) 
ü  Kinematic Wave (KIW) 
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1.  Simplified versus Complete Physics 
ü  Dynamic Wave (DYW) 
ü  Diffusive Wave (DIW) 
ü  Kinematic Wave (KIW) 

2.  Physics-based vs Ad hoc Coupling 
ü  Physical Consideration 

•  Direct Connection 
•  Indirect Connection 

ü  Mathematical Representation 
•  Continuity of State Variables 

•  Linkage Term for Fluxes 

   and   S G S GQ Q p p= =

( )( )   and     S G S G G SQ Q Q or Q K p p= = −

Watershed Modeling: Three Key Issues 

3.  Partial versus Complete System Components 
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Example No. 1:  Experimental Benchmark Problems: 
Simplified versus Complete Physics 

Problem Description 
 
One dimensional channel flow benchmark problems 
(MacDonnell et al., 1997) that are slightly modified  
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Case 1: Subcritical Flow 
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Comparison of  Dynamic, Diffusive, and Kinematic Wave Simulations 
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Comparison of  Dynamic, Diffusive, and Kinematic Wave Simulations 

Case 3: Subcritical Flow under Wave-shaped Bottom 
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Comparison of  Dynamic, Diffusive, and Kinematic Wave Simulations 
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Example No. 2:  Overland flow over a porous medium: 
Physics-based Versus Ad hoc Coupling 

Ø  This example is designed to simulate rainfall-runoff over an infiltrating surface to 
demonstrate the inappropriate use of linkage term when there is no physical 
discontinuity at the interface. 



77 

Comparison of  Continuity versus Linkage Approaches 
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Comparison of  Continuity versus Linkage Approaches 

The linkage coefficient k is simply a calibration 
parameter, it has no physical meaning. 

Discharge through Outlet 
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Comparison of  Continuity versus Linkage Approaches 

The linkage coefficient k is simply a calibration 
parameter, it has no physical meaning. 

Discharge through Outlet 

Flux from Land Surface to Subsurface 
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Example No. 3:  South Dade County Watershed: 
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81 

Example No. 3:  South Dade County Watershed: 
Partial versus Complete System Components 

h  Dade model is a large scale 
regional problem, 30 mi by 40 mi. 



82 

Example No. 3:  South Dade County Watershed: 
Partial versus Complete System Components 

h  Dade model is a large scale 
regional problem, 30 mi by 40 mi. 

h  The model domain extends from 
four miles west of the L-67 
Extension dike to the western 
shore of Biscayne bay and from 
one mile north of the Tamiami 
canal south to Florida bay. 



83 

Example No. 3:  South Dade County Watershed: 
Partial versus Complete System Components 

h  Dade model is a large scale 
regional problem, 30 mi by 40 mi. 

h  Vertically, it extends from the land 
surface to the bottom of the 
surficial aquifer. 

h  The model domain extends from 
four miles west of the L-67 
Extension dike to the western 
shore of Biscayne bay and from 
one mile north of the Tamiami 
canal south to Florida bay. 



84 

Example No. 3:  South Dade County Watershed: 
Partial versus Complete System Components 

h  Dade model is a large scale 
regional problem, 30 mi by 40 mi. 

h  Complex hydraulic structure 
operations 

h  Strong interaction of overland 
flow, groundwater flow, and 
canal flow in south Florida 

h  Vertically, it extends from the land 
surface to the bottom of the 
surficial aquifer. 

h  The model domain extends from 
four miles west of the L-67 
Extension dike to the western 
shore of Biscayne bay and from 
one mile north of the Tamiami 
canal south to Florida bay. 



85 

  There are 7 layers in vertical direction: 37,760 nodes, 65,429 elements.  
  Levees are incorporated as part of  subsurface media. 
  Real Time Simulated:  22 days 

Finite element discretization for 3D subsurface media 
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  2D Overland Mesh: 
4,720 Surface Nodes   Canal Network with Structures 

Finite element discretization for 2D overland flow  and canal networks 
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Comparison of  2D-3D interaction and 1D-2D-3D interaction 

There is a significant difference between 2D-3D 
and 1D-2D-3D simulations.  It is thus important to 
consider interactions among all system 
components.  
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Ø  Professor Brutsaert has tremendous impacts on 
both my personal life and my career.  I take it a 
privilege to be one of his students.  

Ø  Green Function, especially the homogeneous 
Green Function, is perhaps one of the most 
versatile means to obtain analytical models. 

Ø  In watershed modeling, three very important 
issues must be considered. Whenever possible, 
1.  complete physics is preferred,  
2.  physics-based coupling must be employed to avoid 

artifact calibration of non-physics parameters, and 
3.  Complete system components are preferred. 

Summaries and Conclusions 


