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This dissertation deals with the various statistical guarantees delivered by

ranking-and-selection (R&S) procedures: a class of methods designed for the

problem of selecting the best from among a finite number of simulated systems.

Examples of such guarantees include ensuring that an optimal or near-optimal

system is selected with high probability or that the expected performance gap

between the selected system and the optimal system is below a specified thresh-

old. We explore three fundamental issues concerning R&S guarantees that are

of practical and theoretical interest to the simulation community.

First, we discuss the shortcomings of the popular indifference-zone-inspired

guarantee on the probability of correct selection (PCS) and argue that deliver-

ing a guarantee on the probability of good selection (PGS) is a more justifiable

goal. We present an overview of the PGS guarantee and examine numerous

techniques for proving the PGS guarantee, including sufficient conditions under

which R&S procedures that deliver the IZ-inspired PCS guarantee also deliver

the PGS guarantee.

Second, we study Bayesian R&S guarantees, contrasting them with their fre-

quentist counterparts and investigating the practical implications of this distinc-

tion. R&S procedures deliver Bayesian guarantees by terminating when a poste-

rior quantity of interest—e.g., the posterior PCS or PGS—crosses some thresh-

old. We develop several methods for improving the computational efficiency

of checking this stopping rule when there are a large number of systems and



demonstrate their effectiveness compared to existing approaches.

Third, we study R&S guarantees for the setting in which a R&S procedure

is run after a simulation-optimization search. We show that for searches that

use the observed performance of explored systems to identify new systems, the

simulation replications are conditionally dependent given the sequence of re-

turned systems. We demonstrate that reusing replications taken during a search

as input to a R&S procedure can result in an empirical PCS or PGS below the

guaranteed threshold. Based on these negative findings, we call into question

the guarantees of established R&S procedures that reuse search data.
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CHAPTER 1

INTRODUCTION

In many problems of decision-making under uncertainty, the objective is to

identify a solution that is optimal with respect to some performance measure

of interest. For example, an ambulance fleet operator may wish to locate am-

bulance bases within a metropolitan area so as to minimize the expected call

response time. One approach to solving this kind of optimization problem is to

use stochastic simulation to evaluate the performance of a given feasible solu-

tion. More specifically, for a given arrangement of ambulance bases, a discrete-

event simulation model can be used to simulate the fleet’s operations for, say, a

year’s worth of call times and locations. Simulation can be an appealing method

for problems such as this wherein the complexity of the physical system be-

ing studied does not admit an analytical expression for the objective function.

Examples of approaches to decision-making under uncertainty that use simu-

lation include multi-armed bandits (Bubeck and Cesa-Bianchi, 2012), stochastic

programming (Birge and Louveaux, 2011), approximate dynamic programming

(Powell, 2007), and simulation optimization (Fu, 2015; Fu and Henderson, 2017).

Compared to deterministic-optimization problems, simulation-optimization

problems must deal with the added challenges of random error associated with

evaluating a solution’s performance and limited availability of unbiased gradi-

ent estimates. Moreover, finding a global optimal solution over a large feasible

region is a hard task. A compromise is to restrict attention to a finite set of can-

didate solutions—henceforth referred to as systems or alternatives—and seek to

select the best from among them. Candidate systems can be identified in various

ways: enumeration when the feasible region is small and discrete; discretization
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when the feasible region is continuous; or some form of search. Additionally,

the number of candidate systems should be small enough so that each system

can be simulated to some degree within the available computational budget.

When the performances of different systems are regarded as unrelated to the

systems’ locations in the feasible region (i.e., no structural relationship is as-

sumed), the resulting problem is referred to as ranking and selection (R&S); see

Bechhofer et al. (1995), Kim and Nelson (2006b), and Chen et al. (2015) for intro-

ductory references.

Whereas early R&S problems dealt with physical experiments carried out

on a small number of systems, advances in computing capabilities have made it

tractable to solve R&S problems involving thousands of systems. The ubiquity

of parallel computing environments has further pushed the limits of R&S proce-

dures and motivated the design of efficient procedures that scale well with the

number of systems (Luo et al., 2015; Ni et al., 2017; Hunter and Nelson, 2017).

Commercial simulation software (e.g., Simio 2019) also features implementa-

tions of several R&S procedures, making them widely available to simulation

practitioners.

A major strength of R&S procedures relative to other simulation-

optimization algorithms is their ability to offer finite-time statistical guarantees.

Many other simulation-optimization algorithms, on the other hand, only pro-

vide guarantees on their asymptotic performance, e.g., convergence to a local

optimal solution (Broadie et al., 2011; Chang et al., 2013; Zabinsky, 2015). Upon

termination, R&S procedures can instead deliver statistical guarantees on the

performance of the returned system or subset of systems relative to the best. We

focus on the setting in which the decision-maker specifies a desired guarantee
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and runs a R&S procedure until it has taken a sufficient number of observations

from each system to provide the guarantee.

The dominant paradigm in the R&S literature assumes that observations—

the outputs of simulation replications—are normally distributed. This assump-

tion can be approximately satisfied by batching individual replications into

macroreplications and appealing to the Central Limit Theorem. For settings

in which this assumption is not justified, other procedures that analyze the

large-deviations behavior of the observations have been developed (Glynn and

Juneja, 2004; Hunter and Pasupathy, 2010; Glynn and Juneja, 2018). While we

mainly discuss R&S procedures that assume normality in this dissertation, most

of the conclusions hold even when the normality assumption does not.

Statistical guarantees for R&S procedures come in two flavors: frequentist

and Bayesian. Frequentist guarantees are made with respect to repeated runs of

a given procedure on a fixed problem instance. Bayesian guarantees are instead

made with respect to the decision-maker’s posterior belief about the unknown

problem instance given the collected observations and any prior information.

These two kinds of guarantees are fundamentally different, both in terms of

how they are interpreted and how procedures are designed to deliver them.

Under both the frequentist and Bayesian treatments, there are several com-

mon statistical guarantees for R&S procedures. For example, many R&S pro-

cedures guarantee that the probability of selecting one of the best systems—

referred to as the probability of correct selection (PCS)—exceeds a given thresh-

old 1 − α. Alternatively, some R&S procedures guarantee that the probability of

selecting a system whose performance is within a given tolerance δ of the best—

referred to as the probability of good selection (PGS)—exceeds 1 − α. Another
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popular guarantee is to ensure that the expected opportunity cost (EOC)—the

expected difference in performance between the selected system and the best—

is less than some threshold β. The parameters appearing in these guarantees

(1 − α, δ, and β) are chosen by the decision-maker to reflect his or her tolerance

toward making a suboptimal selection.

The choice of guarantee is a primary consideration in the design and selec-

tion of R&S procedures. This dissertation provides a deeper understanding of

these guarantees by examining three instances where aspects of them have been

overlooked or overvalued. Specifically, we study how the choice of the guar-

antee affects the empirical performance—efficiency and accuracy—of an R&S

procedure. Conversely, we analyze how the way in which an R&S procedure

is run affects its guarantees and their interpretations. We believe that the re-

sults and discussion in this dissertation will be of general interest to simulation

researchers seeking to develop new R&S procedures. Moreover, simulation soft-

ware developers can benefit from considering these principles when choosing

which procedures and guarantees to offer to users.

In Chapter 2, we argue that the PGS guarantee should overtake the popu-

lar indifference-zone-inspired PCS guarantee as the predominant design goal

for frequentist R&S procedures. In Chapter 3, we contrast Bayesian and fre-

quentist R&S guarantees and explore ways to improve the computational effi-

ciency of checking stopping rules that deliver Bayesian guarantees. In Chap-

ter 4, we show that the guarantees of R&S procedures that reuse search data can

be undermined by the fact that data collected during a search are conditionally

dependent—an observation that had until now been overlooked. We outline

several open areas for future research in Chapter 5.
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CHAPTER 2

FIXED-CONFIDENCE, FIXED-TOLERANCE GUARANTEES FOR

RANKING-AND-SELECTION PROCEDURES

The majority of this chapter was submitted for publication at a journal (Eck-

man and Henderson, 2019a).

2.1 Introduction

An early development in R&S was the indifference-zone (IZ) formulation of

Bechhofer (1954), and it has played a dominant role in the design of R&S pro-

cedures ever since; see, for example, the recent procedures of Frazier (2014) and

Zhong and Hong (2017). Under the IZ formulation, procedures are designed to

guarantee that the best system will be chosen with probability exceeding 1 − α

if its performance is at least δ better than those of the other systems, where

both 1 − α and δ are specified by the decision-maker. That is, IZ-inspired proce-

dures guarantee that the probability of correct selection (PCS) is above a speci-

fied threshold whenever the best system is sufficiently better than the others. A

serious shortcoming of this guarantee is that no statement is made about how a

given procedure performs when there are close contenders to the best system.

For such problem instances, it is reasonable to expect that the decision-maker

would be equally satisfied with selecting any system whose performance is, in

some sense, “good.”

A more suitable goal is to guarantee that for any problem instance, a system

with performance strictly within δ of the best will be chosen with probability

exceeding 1 − α. In this case, the value of δ represents the decision-maker’s
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tolerance towards making a suboptimal decision. Compared to the IZ-inspired

PCS guarantee, this guarantee on the probability of good selection (PGS) has

received far less attention in the R&S literature and has often been treated as a

secondary goal. We survey this neglected area of research and argue that the

time is right for the PGS guarantee to displace the IZ-inspired PCS guarantee as

the leading design goal for procedures delivering frequentist, fixed-confidence

guarantees.

With this objective in mind, we explain the flaws of the IZ-inspired PCS

guarantee and how it has come to be misunderstood. We also discuss how

some procedures designed to deliver this guarantee may in fact be inefficient

for problem instances in which there are several near-best systems. Efforts to

show that certain procedures that deliver the IZ-inspired PCS guarantee also

deliver the PGS guarantee have at times relied on erroneous proofs. Moreover,

much of the past research on sufficient conditions under which the IZ-inspired

PCS guarantee implies the PGS guarantee appears to have been overlooked by

the simulation community. We clarify and extend these results and elucidate

the key ideas behind other past proof techniques to present a unified treatment

of the PGS guarantee.

In this chapter, we consider only R&S problems for which the systems have

scalar performances. Although the IZ formulation has been extended to multi-

objective R&S problems (Chen and Lee, 2009; Teng et al., 2010), we do not ad-

dress it in this chapter because—for this class of problems—the definition of

good selection remains unsettled (Branke et al., 2016; Hunter et al., 2019). We

also do not consider R&S problems with stochastic constraints (Andradóttir and

Kim, 2010; Hong et al., 2015). In addition, we focus on the setting of running an
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R&S procedure until a fixed-confidence guarantee can be delivered. In contrast,

many Bayesian R&S procedures are designed to be run until a fixed simulation

budget has been exhausted (Chen et al., 2015).

Although we contend that the PGS guarantee is superior to the IZ-inspired

PCS guarantee, it is not without its own shortcomings. Like the IZ-inspired

PCS guarantee, the PGS guarantee offers no assurance about the performance

of the selected system when it is a bad one. An even stronger goal that partially

addresses this issue is guaranteeing that the expected linear loss—the expected

difference in performance between the chosen system and the best system—

does not exceed some threshold (Chick and Inoue, 2001b). Expected linear loss

(also known as expected opportunity cost) may be a more pertinent metric for

business and engineering decisions, but it can also be difficult to interpret and

analyze. In relation to the PGS guarantee, expected linear loss can be used to

bound PGS from below via Markov’s inequality (Chick and Wu, 2005).

The R&S problem has also been studied from a Bayesian perspective in

which the decision-maker’s uncertainty about the unknown problem instance

is described by a prior distribution (Berger and Deely, 1988; Gupta and Mi-

escke, 1996). By taking observations, the decision-maker is able to update their

beliefs in the form of a posterior distribution that can then be used to make

inferences about selections. The posterior PGS of a given system is defined as

the probability—under the posterior distribution—that the random problem in-

stance is one for which that system is within δ of the best. An important ad-

vantage of the Bayesian formulation is that the posterior PGS of a system can

be computed at any time and used in a stopping condition to deliver a Bayesian

PGS guarantee. Frequentist and Bayesian PGS guarantees are fundamentally
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different; we choose to focus on frequentist PGS guarantee in this chapter to

accentuate its connection to the IZ-inspired PCS guarantee.

A related problem in which delivering fixed-confidence selection guarantees

is a featured goal is the pure exploration problem for multi-armed bandits (Au-

dibert et al., 2010). With a few exceptions (Chandrasekaran and Karp, 2014),

the IZ formulation does not appear in the PCS guarantee studied in this setting

(Garivier and Kaufmann, 2016). Furthermore, the PGS guarantee is referred to

as the probably approximately correct (PAC) selection guarantee where “prob-

ably” refers to the fixed confidence, 1 − α, and “approximately correct” refers to

the fixed tolerance, δ (Even-Dar et al., 2002, 2006). Research in this area has fo-

cused on the design and complexity analysis of efficient selection (Mannor and

Tsitsiklis, 2004; Karnin et al., 2013) and subset-selection procedures (Kalyanakr-

ishnan and Stone, 2010; Kalyanakrishnan et al., 2012; Zhou et al., 2014). An-

other variant of the PAC selection guarantee arises in machine learning and data

mining for the problem of identifying a hypothesis with a low misclassification

probability (Schuurmans and Greiner, 1995; Domingo et al., 2002).

Another approach for—among other things—classifying systems as good or

bad is ordinal optimization (Lau and Ho, 1997; Ho et al., 2000). In the ordinal

optimization paradigm, systems are classified based on the ordering of their

performances, with either the top m systems or top m percent of systems be-

ing designated as good. This ordinal perspective of goodness, however, does

not take into account potentially large differences in the performances of top

systems. In this case, the decision-maker may not be satisfied with selecting a

system that has a high ordering but a poor performance relative to the best. In-

stead, more control over the performance of a selected system can be achieved
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by defining goodness as a cardinal property, i.e., regarding any system whose

performance is within δ of the best as a good system, as we do in this chapter.

The remainder of this chapter is outlined as follows. In Section 2.2, we argue

that the PGS guarantee is superior in many ways to the IZ-inspired PCS guaran-

tee. In Sections 2.3 and 2.4, we present sufficient conditions under which selec-

tion and subset-selection procedures with the IZ-inspired PCS guarantee simul-

taneously deliver the PGS guarantee. In Section 2.5, we review other methods

for proving the PGS guarantee and highlight several technical issues that arise.

We discuss future research directions for the PGS guarantee in Section 2.6.

2.2 The IZ-Inspired PCS Guarantee versus the PGS Guarantee

Before mathematically defining the various fixed-confidence guarantees, we in-

troduce some standard notations for R&S problems. Suppose there are k sys-

tems with performances µ1, . . . , µk where, without loss of generality, we assume

a higher performance is better. We refer to the vector µ = (µ1, . . . , µk) as the con-

figuration of the systems’ performances and use [·] to denote the indices of the

systems when ordered by their performances, i.e., µ[1] ≤ µ[2] ≤ · · · ≤ µ[k]. If some

systems have tied performances, we will assume that the ordered indexing of

the systems is arbitrary and fixed.

We define a selection procedure as one that determines how many obser-

vations should be taken from each system and then ultimately selects a single

system as the best. The index of the selected system, denoted by K, is a random

variable since the observations, and hence the estimators of systems’ perfor-

mances, are themselves random variables. Correct selection is then defined as
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the event CS := {µK = µ[k]}. Under this definition, when there are multiple sys-

tems with performances tied for the best, choosing any of the best systems is

considered a correct selection. A fixed-confidence guarantee on the probability

of correct selection for any configuration takes the form

Pµ(CS) ≥ 1 − α for all µ, (Goal PCS)

where 1 − α ∈ (1/k, 1) is the user-specified confidence and Pµ is the probability

measure induced through the combination of the selection procedure’s sam-

pling and the configuration of the systems’ performances.

Without further assumptions, satisfying Goal PCS can be computationally

expensive. Indeed, when the best system is only slightly better than the second-

best system, a substantial amount of computational effort could be needed to

distinguish between the two systems. From the decision-maker’s perspective, it

seems unreasonable to demand that a procedure makes a correct selection with

high probability for any positive gap in performance. For this reason, selection

procedures are rarely designed to deliver Goal PCS. The procedure of Fan et al.

(2016) comes close; it guarantees that whenever there is a unique best system,

the probability that it will be selected is at least 1 − α. The sampling complexity

necessary to attain Goal PCS has also been studied in the multi-armed-bandit

literature (Kaufmann et al., 2014).

In order to circumvent the issue with Goal PCS, Bechhofer (1954) proposed

the indifference-zone formulation. The idea behind the IZ formulation is to

specify a parameter δ > 0 that divides the space of configurations into the

preference zone PZ(δ) := {µ : µ[k] − µ[k−1] ≥ δ} and the indifference zone

IZ(δ) := {µ : µ[k] − µ[k−1] < δ}. In the preference zone, the best system’s per-

formance is at least δ better than that of the second-best system, whereas in the
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indifference zone, there are systems with performances within δ of the best. Un-

der the IZ formulation, the PCS guarantee states that, only for configurations in

the preference zone, the best system is selected with high probability:

Pµ(CS) ≥ 1 − α for all µ ∈ PZ(δ). (Goal PCS-PZ)

Ever since the conception of the indifference zone, Goal PCS-PZ has been a

popular—though often misinterpreted—goal for selection procedures.

In regards to good selection, the R&S literature has been inconsistent about

whether a system with knife-edge performance µ[k] − δ is considered good or

bad. Although this distinction may appear minor, it is important here that we

consider the IZ formulation when defining good selection. Under the IZ for-

mulation, the PCS guarantee holds whenever µ ∈ PZ(δ), i.e., µ[k] − µ[k−1] ≥ δ.

Thus the events of correct selection and good selection will agree over the en-

tire preference zone if we define good selection as GS := {µK > µ[k] − δ}. Under

this definition, only systems with performances strictly within δ of the best are

considered good. A guarantee on the probability of good selection then has the

form

Pµ(GS) ≥ 1 − α for all µ. (Goal PGS)

Goal PCS implies Goal PGS since all correct systems are good, and Goal PGS

implies Goal PCS-PZ since in the preference zone there is only one good system.

2.2.1 Why Goal PGS is Superior to Goal PCS-PZ

As a stand-alone guarantee, Goal PCS-PZ suffers from several flaws, the fore-

most being that it says nothing about a procedure’s behavior when the config-

uration of systems’ performances is in the indifference-zone. Does it deliver

11



Goal PGS? Does it even terminate in finite time almost surely? This shortcom-

ing of Goal PCS-PZ is critical in practice, where the difference between the per-

formances of the best and second-best systems is unknown and likely cannot be

bounded from below with certainty. Furthermore, for problems with large num-

bers of systems, one might expect that the best system will not be well-separated

from the others, suggesting that for reasonable values of δ, the configuration of

systems’ performances will be in the indifference zone. Likewise, in the case

when an R&S procedure is used to “clean-up” after a simulation-optimization

search (Boesel et al., 2003b), systems with similar performances are likely to be

returned by the search. In this setting, IZ-inspired PCS guarantees are condi-

tional on the random configuration of the returned systems’ performances being

in the preference zone, an event that the decision-maker cannot control or verify

(Eckman and Henderson, 2018).

A related issue with Goal PCS-PZ is the presumption that the configura-

tion is in the preference zone. According to Parnes and Srinivasan (1986), Goal

PCS-PZ would only be useful if either (i) the decision-maker has prior knowl-

edge that the configuration is almost certainly in the preference zone or (ii) in

the event that the configuration is in the indifference zone, the error µ[k] − µK is

unacceptably large with small probability. In the first case, the implicit assump-

tion that the configuration lies in the preference zone suggests that a Bayesian

selection procedure that can exploit this information—via a prior distribution

on µ—may be preferable. In the second case, the decision-maker’s interest in

the linear loss function µ[k]−µK suggests that the expected opportunity cost may

be a more relevant performance metric.

Another concern with Goal PCS-PZ is that the IZ parameter is commonly

12



misinterpreted. Under Goal PGS, δ represents the smallest difference in per-

formance that is worth detecting; it classifies systems that, if selected, would

or would not be acceptable to the decision-maker. Under Goal PCS-PZ, how-

ever, the IZ parameter is only of significance in stating that if the best system

is at least δ better than the others, the decision-maker would only be satisfied

with selecting the best system. In this way, the IZ parameter restricts the set of

problems on which a selection procedure can be relied on to perform well. In

addition, this role of the IZ parameter in Goal PCS-PZ can have adverse conse-

quences. For example, a decision-maker may choose a small value for δ in an

attempt to be more confident that the configuration lies in PZ(δ). Yet by choos-

ing δ to be smaller than their tolerance, the decision-maker will end up with a

more conservative selection procedure (Fan et al., 2016).

Our objective in discussing these flaws is not to argue that Goal PCS-PZ is

without use. Indeed, in Section 2.3 we show that under various conditions it

is equivalent to Goal PGS. We instead assert that Goal PCS-PZ is better suited

as a tool for proving Goal PGS than as a stand-alone goal. Even so, we will

later discuss how some sequential procedures designed to deliver Goal PCS-PZ

can be inefficient for configurations in the indifference zone. One explanation

for the persistence of Goal PCS-PZ is perhaps the relative mathematical ease of

designing procedures to deliver this goal; a lower bound on the difference be-

tween the performances of the best and second-best systems is useful in proving

a PCS guarantee. As we will see, some proofs of Goal PGS deal with technical

challenges that are not present in the proofs of Goal PCS-PZ, such as needing to

account for pairwise comparisons between good and bad systems and not just

those involving the best system.
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Although Goal PGS has none of the aforementioned issues with Goal PCS-

PZ, it is not perfect. In particular, Goal PGS says nothing about what happens

when a good system is not picked. Just how bad are the bad selections of pro-

cedures achieving Goal PGS? Intuitively, one might expect that in this event, a

selection procedure would select slightly bad systems and only rarely select an

extremely bad one. This argument, however, is not altogether different from the

belief that procedures achieving Goal PCS-PZ still make good selections with

high probability for configurations in the indifference zone. On the other hand,

guarantees on the expected opportunity cost offer slightly more control on the

performance of the selected system.

2.2.2 Distributional Assumptions

Before discussing how Goal PCS-PZ can be lifted to Goal PGS, we introduce

some notation and distributional assumptions related to the observations of the

systems’ performances. Let Xi j denote the jth observation from System i for

i = 1, . . . , k. We assume that the vectors of observations X j = (X1 j, X2 j, . . . , Xk j),

for j = 1, 2, . . ., are drawn independently from some joint distribution F having

marginal distributions Fi. Unless otherwise stated, we allow the observations

X1 j, X2 j, . . . , Xk j to be dependent across systems, as would be the case if common

random numbers were used.

The R&S and multi-armed-bandit communities differ in the assumptions

they make about the marginal distributions Fi. Within the R&S community,

a common assumption is that the observations are normally distributed and

the performance measures µi are the corresponding means. This normality as-
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sumption can often be approximately satisfied using batched means as a single

observation and appealing to the Central Limit Theorem. The R&S problem has

also been studied from a large-deviations perspective that does not rely on this

assumption (Glynn and Juneja, 2004). For later research in this direction, see

Broadie et al. (2007), Blanchet et al. (2008), Hunter and Pasupathy (2010), and

Glynn and Juneja (2018). For multi-armed bandit problems, the distributions of

observations are either assumed to have bounded support or to be sub-Gaussian

with a known bound on the variance (Even-Dar et al., 2002, 2006).

To prove sufficient conditions under which Goal PCS-PZ implies Goal PGS,

we require an identifiability assumption on the joint distribution of the obser-

vations.

Assumption 1. The joint distribution F is identifiable with respect to the configuration

µ, i.e., for any joint distributions Fµ and Fµ′ , Fµ = Fµ′ implies µ = µ′.

Unlike other regularity conditions such as normality or bounded support,

Assumption 1 does not control the large-deviations behavior of the observa-

tions. Therefore, under Assumption 1 alone, the sample sizes needed to detect

differences in performance of δ cannot be predetermined. Rather than enabling

the design of procedures achieving Goal PCS-PZ or Goal PGS, our purpose for

Assumption 1 is to ensure that when we later manipulate the configuration, the

probability measure Pµ is unambiguously defined for each µ. An example of a

joint distribution satisfying Assumption 1 is a location parameter family with

respect to µ, e.g., the multivariate normal distribution.

Given the above setup, a selection procedure takes observations Xi j from

all systems and calculates estimators Yi of µi. As an illustration, for the standard

R&S setting with normally distributed observations, the performances µi are the
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means of the marginal distributions Fi, and the estimators Yi are naturally the

sample means. Other examples of estimators include generalized means and

sample quantiles (Dudewicz and Dalal, 1975; Shin et al., 2016). With regards to

the estimators, we make an additional assumption.

Assumption 2. The estimators Y1, . . . ,Yk have a joint probability density function.

Assumption 2 is made as a matter of convenience, so that the event of ties

among estimators occurs with probability zero. We expect that a careful ac-

counting of ties will allow the results of Sections 2.3 and 2.4 to extend to the

case where the estimators are discrete random variables. In support of this, we

provide a proof of Goal PGS for the procedure of Sobel and Huyett (1957) for

Bernoulli observations; see Appendix A.5.

For the conditions that follow in Section 2.3, it will be necessary for us to

make an assumption about the rule for selecting the returned system.

Assumption 3. A selection procedure selects the system with the highest estimator as

the best, i.e., K ∈ arg maxi Yi.

Most frequentist selection procedures in the literature satisfy Assumption 3,

whereas other selection rules have been studied for the Bayesian R&S problem

(Peng et al., 2016). Under Assumptions 2 and 3, we can state that Pµ(Select i) =

Pµ(Yi > Y j for all j , i), even though the event {Select i} may include sample

paths on which Yi = Y j for at least some j , i and System i is ultimately selected

based on certain tie-breaking rules.
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2.3 Goal PCS-PZ Can Imply Goal PGS

2.3.1 Counterexamples

As previously mentioned, Goal PGS implies Goal PCS-PZ. One might wonder

if the converse holds: do all selection procedures that achieve Goal PCS-PZ also

achieve Goal PGS? A supporting intuition is that for configurations in the in-

difference zone, the presence of good systems should make it more likely that

one of them is selected. We show that this is not universally true by presenting

two contrived selection procedures (Procedures 1 and 2) that achieve Goal PCS-

PZ but not Goal PGS. Both procedures fail to deliver Goal PGS because they

are designed to behave very differently when there appear to be multiple sys-

tems with performances that are close to the best. In both counterexamples, it is

assumed that observations from System i are independent and identically dis-

tributed (i.i.d.) from normal distributions with means µi and known common

variance σ2 and that observations across systems are independent.

Procedure 1
Specify a confidence level 1 − α ∈ (1/k, 1) and an IZ parameter δ > 0.
Choose a scalar r > −Φ−1((2k)−1) arbitrarily.
Take n =

⌈
2(hB + r)2σ2δ−2⌉ observations from each system, where hB is the

constant of Bechhofer (1954).
Calculate the sample means Yi = n−1 ∑n

j=1 Xi j as the estimators of the
systems’ performances and denote the ordered estimators by
Y(1) ≤ Y(2) ≤ · · · ≤ Y(k).

If Y(k) > Y(k−1) + rσ
√

2/n, select the system corresponding to Y(k) as the
best.

Otherwise, select a system uniformly at random from those that do not
correspond to Y(k) or Y(k−1).

Proposition 1. Procedure 1 achieves Goal PCS-PZ, but for some values of α and k it

does not achieve Goal PGS.
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The proof of Proposition 1 can be found in Appendix A.1.

Procedure 1 behaves bizarrely: If one estimator is clearly better than the oth-

ers, the procedure selects the best-looking system. But if the top two estimators

are close to each other, the procedure selects from among the worst-looking sys-

tems. The presence of good systems can therefore make it less likely that one of

the good systems is selected. Procedure 1 does not satisfy Assumption 3, so we

present a second counter-example procedure that does.

Procedure 2
Specify a confidence level 1 − α ∈ (1/k, 1) and an IZ parameter δ > 0.
Take

n0 =

⌈
16σ2

δ2

(
Φ−1

(
1 − (1 − α)1/(2k)

2

))2⌉
observations from each system.

Calculate the sample means Yi = n−1
0

∑n0
j=1 Xi j as the estimators of the

systems’ performances and denote the ordered estimators by
Y(1) ≤ Y(2) ≤ · · · ≤ Y(k).

If Y(k) − Y(k−1) ≥ δ/2, take n1 = d2h2
Bσ

2δ−2e new observations from each
system, where hB is the constant of Bechhofer (1954) with a confidence
of
√

1 − α. Select the system with the highest sample mean based on
the n1 observations.

Otherwise, take n1 = 1 new observation from each system. Select the
system with the highest sample mean based on the single observation.

Proposition 2. Procedure 2 achieves Goal PCS-PZ, but for some values of α and k it

does not achieve Goal PGS.

The proof of Proposition 2 can be found in Appendix A.2.

Procedure 2 also behaves atypically: It uses an initial stage to infer whether

the problem instance is in the preference zone or in the indifference zone. If

it appears to be in the preference zone, a modified version of the procedure of

Bechhofer (1954) is run in a second stage, but if it appears to be in the indiffer-
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ence zone, the second stage takes only a single observation from each system

before making a selection.

Despite the existence of contrived counter-examples, one might yet expect

that “reasonable” selection procedures that achieve Goal PCS-PZ also achieve

Goal PGS. Indeed, many existing procedures achieving Goal PCS-PZ have been

shown to empirically deliver a PGS above 1 − α when run on configurations in

the indifference zone. Finding a counter-example is made all the more difficult

by the fact that many procedures are designed using conservative bounds (e.g.,

Bonferroni’s inequality) that further boost the empirical PGS. Although we are

not aware of any selection procedure in the literature that achieves Goal PCS-

PZ but provably does not achieve Goal PGS, we are concerned by the absence of

proofs of Goal PGS. In the remainder of Section 2.3, we examine ways to rig-

orously prove that some procedures achieving Goal PCS-PZ also achieve Goal

PGS.

2.3.2 Lifting Goal PCS-PZ

An effective approach for extending Goal PCS-PZ to Goal PGS is to relate the

probability of good selection under any IZ configuration with that under a re-

lated PZ configuration. That is, for an arbitrary configuration µ ∈ IZ(δ), one

finds a configuration µ∗ ∈ PZ(δ) for which it can be shown that

Pµ(GS) ≥ Pµ∗(GS), (2.1)

where the notation Pµ and Pµ∗ reflects the dependence of the probability mea-

sures on the configuration. Because µ∗ ∈ PZ(δ), it follows from Goal PCS-PZ

that Pµ∗(GS) = Pµ∗(CS) ≥ 1 − α and so Pµ(GS) ≥ 1 − α. Hence if it can be shown
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that Inequality (2.1) holds for any arbitrary configuration µ ∈ IZ(δ) and its cor-

responding configuration µ∗ ∈ PZ(δ), then Goal PCS-PZ implies Goal PGS.

Some care is needed in constructing the related configuration µ∗, as Inequal-

ity (2.1) should not be expected to hold for an arbitrary choice of µ∗. Intuitively,

the configuration µ∗ should closely resemble µ so that the probabilities of good

selection can be easily compared. When manipulating systems’ performances,

it will be implicitly assumed that the ordered indices [1], . . . , [k] are with respect

to the fixed configuration, µ, unless otherwise stated.

A simple choice for constructing µ∗ is to only increase the performance of

(one of) the best systems until it is exactly δ better than the second best, i.e., set

µ∗[k] = µ[k−1] +δ and µ∗[i] = µ[i] for all i = 1, . . . , k−1 where [k] is the index associated

with (one of) the best systems in µ. While changing the performance of only

one system would seem to simplify the analysis, it actually makes it harder to

compare the PGS under the two configurations. This is because the PGS for a

configuration µ∗ ∈ PZ(δ) is a function of the differences in performances between

the best system and the bad systems, all of which are changed by shifting the

best system’s performance.

A better construction for µ∗ is instead to decrease the performances of the

good systems of µ while holding the performance of (one of) the best systems

fixed. To formalize this idea, let G := {i : µi > µ[k] − δ} and B := {i : µi ≤

µ[k] − δ} denote the sets of indices of the good and bad systems, respectively, for

a configuration µ. The related configuration µ∗ is then described by µ∗i = µi for

i ∈ B ∪ {[k]} and µ∗i = µ[k] − δ for i ∈ G\{[k]}. That is, µ∗ is identical to µ except that

the good systems of µ (other than the best) are now bad systems with knife-edge

performance µ[k] − δ. From this construction, µ∗ ∈ PZ(δ).

20



In Section 2.3.3, we show that under various conditions on selection proce-

dures, Inequality (2.1) is satisfied for any configuration µ ∈ IZ(δ) and this choice

of µ∗.

2.3.3 Sufficient Conditions

Dating back to Fabian (1962), various independent efforts have been made to

identify sufficient conditions under which selection procedures that achieve

Goal PCS-PZ simultaneously achieve Goal PGS. Many of these past results come

from the statistics literature, but it appears that they have until now received lit-

tle attention within the simulation community. Our purpose in reproducing

these results is to create a coherent presentation of their main ideas, call atten-

tion to some of the implicit assumptions that they have relied on, and apply

them to existing selection procedures. In addition, we weaken some of the pro-

posed conditions (e.g., Theorems 1 and 3) and establish analogous conditions

for subset-selection procedures in Section 2.4.

We present two of the most general conditions in Theorems 1 and 2, both of

which deal with probability statements about the ordering of estimators. For

procedures achieving Goal PCS-PZ, each of the two conditions implies Inequal-

ity (2.1) and therefore Goal PGS. The sources and interpretations of the two con-

ditions are discussed in greater detail following the statements of the theorems.

Theorem 1. Let R be a selection procedure achieving Goal PCS-PZ. Then R also

achieves Goal PGS if

(C1) For all subsets A ⊆ {1, . . . , k} and for all pairs of configurations µ and µ̃ such that
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µi = µ̃i for all i ∈ A,

Pµ(Yi > Y j for all j ∈ A\{i}) = Pµ̃(Ỹi > Ỹ j for all j ∈ A\{i}) for all i ∈ A,

where Yi and Ỹi denote the estimators of the performance of System i under con-

figurations µ and µ̃, respectively.

Condition (C1) states that the probability that a system has the highest es-

timated performance among those in an arbitrary subset of systems does not

depend on the true performances of systems not belonging to the subset. It gen-

eralizes two conditions presented by Guiard (1996) that we restate in Corollary

1 as Conditions (C2) and (C3).

Proof. Fix an arbitrary configuration µ and define G, B, and µ∗ accordingly. Let

Y[k] denote the estimator associated with System [k] where the index [k] is with

respect to the configuration µ. Then

Pµ(GS) ≥ Pµ(Y[k] > Yi for all i ∈ B)

= Pµ∗(Y∗[k] > Y∗i for all i ∈ B)

≥ Pµ∗(Y∗[k] > Y∗i for all i , [k])

= Pµ∗(CS)

≥ 1 − α.

The first inequality follows from the definition of good selection, while the

first equality follows from Condition (C1), taking A = B ∪ {[k]}. The second in-

equality follows from including extra conditions and the last inequality follows

from Goal PCS since µ∗ ∈ PZ(δ). �
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Because Condition (C1) may be difficult to verify, we list four conditions in

Corollary 1 that each imply Condition (C1), but may be easier to check. Proofs

of the conditions of Corollary 1 and their relationships (see Figure 2.1) can be

found in Appendices A.3 and A.4.

(C1) (C7)
↗ ↑ ↑

(C3) (C2) (C6)
↑ ↖ ↑ ↗

(C4) (C5)

Figure 2.1: Relations of Conditions of Corollary 1 and Theorems 1, 2, and 3.

Corollary 1. The following conditions each imply Condition (C1):

(C2) Let B1 and B2 be disjoint subsets of {1, 2, . . . , k} and IP ⊆ B1 × B2 be a set of index

pairs (i, j) with i ∈ B1 and j ∈ B2. For all (B1, B2, IP),

Pµ(Yi > Y j, for all (i, j) ∈ IP) ≥ Pµ̃(Ỹi > Ỹ j, for all (i, j) ∈ IP),

for all pairs of configurations µ and µ̃ satisfying µi − µ j ≥ µ̃i − µ̃ j for all (i, j) ∈ IP.

(C3) For all subsets A ⊂ {1, . . . , k}, the joint distribution of the estimators Yi for i ∈ A

does not depend on µ j for all j < A.

(C4) The estimators Y1, . . . ,Yk are mutually independent.

(C5) The joint distribution of the estimators Y1, . . . ,Yk is shift invariant, i.e., for any

pair of configurations µ and µ̃,

Y1 − µ1

Y2 − µ2

...

Yk − µk


d
=



Ỹ1 − µ̃1

Ỹ2 − µ̃2

...

Ỹk − µ̃k


.
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Condition (C2), which corresponds to class FND of Guiard (1996), has two

main aspects. First, as the difference between the performances of systems in-

creases, the probability that the systems with the higher true performances out-

perform the systems with the lower true performances does not decrease. Sec-

ond, for the subset of systems whose performances remain unchanged relative

to each other, the probability that any of the systems in this subset outperforms

the others in the subset is unchanged. As shown in the proof of Corollary 1, it is

because of this second property that Condition (C2) implies Condition (C1).

Condition (C3) corresponds to class F of Guiard (1996) and states that the

joint distribution of the estimators of a subset of systems does not depend on

the true performances of systems outside that subset. This statement stops short

of asserting that the estimators are independent and thereby allows correlated

observations across systems, as would be the case if common random numbers

were used (Clark and Yang, 1986; Nelson and Matejcik, 1995). Furthermore,

Condition (C3) can be applied to show that some selection procedures that use

control-variate estimators achieve Goal PGS, e.g., Procedure 3 of Nelson and

Staum (2006) and the WCS procedure of Tsai (2011).

Condition (C4), which corresponds to class FI of Guiard (1996), is satisfied by

many early multi-stage selection procedures, e.g., the procedures of Dudewicz

and Dalal (1975) and Rinott (1978). Condition (C4) can even be applied to some

procedures for which the estimators are discrete random variables. An example

of this is the procedure of Sobel and Huyett (1957) for selecting the Bernoulli

population with the highest success probability; a proof of the procedure’s PGS

guarantee can be found in Appendix A.5.

Condition (C5) corresponds to class FS in Guiard (1996) and states that the
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joint distribution of the estimators of the systems’ performances is shift invari-

ant with respect to the true performances. That is, when the true performances

of the systems shift by a given amount, the joint distribution of their estima-

tors shifts by the same amount. Condition (C5) does not follow automatically

from an assumption that the joint distribution of the observations is shift invari-

ant with respect to the configuration, as is the case when the observations are

normally distributed and the estimators are the sample means.

Condition (C5) is a slight strengthening of the condition in Theorem 1 of Nel-

son and Matejcik (1995), which makes comparisons with the slippage configu-

ration associated with System [k] being the best, denoted by µsc where µsc
[k] = µ[k]

and µsc
i = µsc

[k] − δ for all i , [k]:

Y[k]

Y[k−1] + (µ[k] − µ[k−1] − δ)
...

Y[1] + (µ[k] − µ[1] − δ)


d
=



Y sc
[k]

Y sc
[k−1]

...

Y sc
[1]


. (2.2)

The left-hand side of Equation (2.2) features estimators under an arbitrary con-

figuration µ and the right-hand side features estimators under the correspond-

ing slippage configuration µsc. In contrast to Equation (2.2), Condition (C5) al-

lows comparisons to be made between the joint distribution of the estimators

under any two configurations, not just those for which the best systems have

the same performance.

Prior to Guiard (1996), many of the conditions proposed for lifting Goal

PCS-PZ to Goal PGS were unnecessarily restrictive. For example, Fabian (1962)

proved that under a certain permutability assumption—one which implies Con-

dition (C5)—procedures achieving Goal PCS-PZ also guarantee the stronger
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probability statement

Pµ(µK ≥ µ[k] − D) ≥ 1 − α for all µ, (2.3)

where D = max{0, δ − (Y(k) − Y(k−1))} and Y(i) denotes the ith-lowest estimator.

Equation (2.3) in turn implies Goal PGS, since D ≤ δ. Giani (1986) later extended

the analysis to a more general selection goal.

Chiu (1974a) required that the probability that the best system outperforms

all of the bad systems, i.e., Pµ(Y[k] > Yi for all i ∈ B), is increasing with respect to

the differences µ[ j+1] −µ[ j] for all j = 1, . . . , |B|, holding all other differences fixed.

Yet the proof of Goal PGS in Chiu (1974a) also implicitly uses the assumption

that Pµ(Y[k] > Yi for all i ∈ B) does not depend on the true means of the other

systems, essentially Condition (C1). As a result, this monotonicity condition

is unnecessary to prove that Goal PCS-PZ implies Goal PGS. The implicit as-

sumption that Condition (C1) holds is also made in the proofs of Chiu (1974b)

and Parnes and Srinivasan (1986).

Feigin and Weissman (1981) and Chen (1982) separately prove that Goal

PCS-PZ implies Goal PGS for the case when the estimators Y1, . . . ,Yk are mu-

tually independent and are from a common family of stochastically increasing

distributions that only differ in their location parameters. Specifically, Chen

(1982) uses a monotonicity lemma developed independently by Alam and Rizvi

(1966) and Mahamunulu (1967) (Lemmas 2.1 and 4.2 therein, respectively) to

show that, for his procedure, PGS is minimized in the slippage configuration.

The additional assumption of a stochastically increasing family of distribution

functions for the estimators is unnecessary since having mutually independent

estimators—Condition (C4)—is sufficient.

As we have shown, Conditions (C1)–(C5) can be used to prove Goal PGS for
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many classical multi-stage selection procedures that determine necessary sam-

ple sizes for all systems and then select one as the best. On the other hand,

Conditions (C1)–(C5) are unlikely to be satisfied for more elaborate selection

procedures that sequentially eliminate (screen out) inferior systems, e.g., the

procedures of Paulson (1964), Kim and Nelson (2001), and Frazier (2014). While

these kinds of sequential selection procedures tend to be more efficient in terms

of the number of observations taken, multi-stage procedures have the advan-

tage of being easily parallelized since they require little communication across

processors, thereby making them appealing for problems with thousands, or

even millions, of systems (Ni et al., 2014, 2017).

Sequential selection procedures that iteratively eliminate systems from con-

tention introduce two issues that make Conditions (C1)–(C5) harder to ver-

ify: the estimators of systems’ performances are no longer well-defined and

are highly dependent across systems. To resolve the first issue, we might set

Yi = −∞ if System i is eliminated, to reflect the fact that System i will not be

selected. Under this definition, however, multiple systems can have estimators

of −∞, thereby complicating the probability statements in Conditions (C1)–(C5).

The second issue of dependent estimators cannot be remedied and immediately

rules out Condition (C4), mutually independent estimators. In addition, shift-

ing the performance of a given system can affect the number of samples taken

from other systems and future elimination decisions, meaning Conditions (C3)

and (C5) can also be ruled out. For similar reasons, Conditions (C1) and (C2) do

not appear to have any better chances of holding for procedures of this kind.

Instead, Condition (C6), presented in Theorem 2, is more likely to be satisfied

for sequential procedures that screen out systems. Theorem 2 is stated without
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proof by Hayter (1994), so we provide one here.

Theorem 2. Let R be a selection procedure achieving Goal PCS-PZ. Then R also

achieves Goal PGS if

(C6) For all systems i = 1, . . . , k, Pµ(Select i) is nonincreasing in µ j for every j , i.

Condition (C6) states that increasing the true performance of any system

does not increase the probability that any other system is selected. It implies

that Pµ(Select i) is nondecreasing in µi—a monotonicity property that one might

expect most selection procedures to satisfy. Unfortunately, directly verifying

Condition (C6) or even formulating stronger conditions that imply it is difficult

(Hayter, 1994). However, some multi-stage procedures, e.g., those of Bechhofer

(1954), Dudewicz and Dalal (1975), and Rinott (1978), can be shown to satisfy

Condition (C6) by using the fact that for these procedures, increasing the per-

formance of a system does not affect the estimation of any other system’s per-

formance, i.e., Condition (C3).

Proof. Fix an arbitrary configuration µ and define G and B accordingly. If |B| =

k − 1, then there is only one good system in µ and so µ ∈ PZ(δ), thus Pµ(GS) =

Pµ(CS) ≥ 1 − α. Otherwise, define a configuration µ(1) such that µ(1)
[|B|+1] = µ[k] − δ

and µ(1)
i = µi for all i , [|B| + 1], i.e., the worst good system is shifted down

to µ[k] − δ, thereby making it a bad system. By definition, selection procedures

select a single system, thus

Pµ(Select [|B|+1])+
∑

i,[|B|+1]

Pµ(Select i) = 1 = Pµ(1)(Select [|B|+1])+
∑

i,[|B|+1]

Pµ(1)(Select i).

(2.4)

By Condition (C6),

Pµ(Select i) ≤ Pµ(1)(Select i),
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for all i , [|B|+1] because the performance of system [|B|+1] has been decreased.

In particular, this holds for all bad systems. Together with Equation (2.4), we

obtain

Pµ(Select [|B|+1])+
∑

i:µi≥µ[|B|+1]
i,[|B|+1]

Pµ(Select i) ≥ Pµ(1)(Select [|B|+1])+
∑

i:µi≥µ[|B|+1]
i,[|B|+1]

Pµ(1)(Select i).

The left-hand side is Pµ(GS) while the right-hand side is Pµ(1)(Select [|B| + 1]) +

Pµ(1)(GS). Then since Pµ(1)(Select [|B| + 1]) ≥ 0, we have

Pµ(GS) ≥ Pµ(1)(GS).

This argument can be repeated to chain together inequalities of the form

Pµ(`−1)(GS) ≥ Pµ(`)(GS),

for ` = 1, . . . , |G|−1 where µ(0) := µ and we recursively define µ(`) by µ(`)
[|B|+`] = µ[k]−δ

and µ(`)
i = µ(`−1)

i for all i , [|B| + `]; i.e., the worst ` good systems of µ have

been made bad. From this definition, µ(|G|−1) = µ∗. Therefore the inequalities all

together yield

Pµ(GS) ≥ Pµ∗(GS) = Pµ∗(CS) ≥ 1 − α.

�

One might naturally expect Condition (C6) to hold for many selection pro-

cedures, including sequential ones that screen out systems. All else being equal,

a given system’s likelihood of being selected should suffer when one of its com-

petitors is made stronger. Despite this appealing intuition, Condition (C6) does

not universally hold for sequential procedures due to the complicated effect that

changing the performances of systems can have on the selection decision. As a

counterexample, consider the standard R&S setting in which the observations
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are normally distributed and the performances are the means. Hayter (1994)

describes the following two-stage selection procedure that simulates systems

independently:

Procedure 3
Take n0 i.i.d. samples for each system.
Eliminate all but the two systems with the highest sample means.
Take n1 additional i.i.d. samples from each of the two surviving systems.
Select the surviving system with the highest overall sample mean.

To show that Procedure 3 can fail to satisfy Condition (C6), consider the case

in which there are three systems with performances µ1 < µ2 < µ3, i.e., System 3 is

the best. Following the argument given by Hayter (1994), we now demonstrate

how, for fixed values of n0 and n1, increasing the performance of System 1 can

actually increase the probability that System 2 is selected, violating Condition

(C6).

For fixed n0 > 0, consider the extreme cases of n1 = 0 and n1 = ∞. (While the

procedure is not implementable for n1 = ∞, it illustrates the case when the sur-

viving systems are heavily sampled.) When n1 = 0, there is no second stage and

the procedure simply selects the system with the highest sample mean based on

the first n0 samples. Since systems are simulated independently, the probabili-

ties of selecting Systems 2 and 3 will decrease as µ1 increases.

On the other hand, when n1 = ∞, the procedure always makes a correct

selection from between whichever two systems survive screening. Therefore the

probability that System 1 is selected is zero, while the probability that System 3

is selected is equal to the probability that System 3 survives screening. System 3

survives screening unless Systems 1 and 2 both advance to the second stage.

Again, since systems are sampled independently, the event that Systems 1 and
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2 both advance increases as µ1 increases. This implies that the probability that

System 3 is selected decreases as µ1 increases. Thus the probability that System 2

is selected must increase as µ1 increases. It is possible to then find a finite value

of n1 for which this relationship holds and thereby conclude that Condition (C6)

does not hold for Procedure 3.

An example of a selection procedure that may violate Condition (C6) is that

of Fairweather (1968), which closely resembles Procedure 3. The NSGS proce-

dure of Nelson et al. (2001) might also fail to satisfy Condition (C6); selecting a

high value of α0 for the screening stage and a small value of α1 for the selection

stage would lead to large second-stage sample sizes, possibly mimicking the

behavior of Procedure 3 for the case n1 = ∞.

The proof of Condition (C6) indicates some ways that the condition can be

weakened while still implying Goal PGS. First, instead of requiring that the

probability of selecting each individual system is monotone with respect to the

performances of other systems, it suffices that the probability of selecting from

among a subset of systems is monotone. Second, this monotonicity condition

only needs to hold for systems that are inferior to System i. Putting these ideas

together, we present a more general condition with greater potential for holding

for sequential selection procedures.

Theorem 3. Let R be a selection procedure achieving Goal PCS-PZ. Then R also

achieves Goal PGS if

(C7) For all systems i = 1, . . . , k, Pµ(Select some j for which µ j < µi) is nonincreasing

in µi.

Proof. The proof follows that of Theorem 2 with a few small changes.
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Fix an arbitrary configuration µ and define G, B, and µ(1) as in the proof of

Theorem 2. Since selection procedures must select a single system,

∑
j:µ j<µ[|B|+1]

Pµ(Select j) +
∑

j:µ j≥µ[|B|+1]

Pµ(Select j) = 1

=
∑

j:µ j<µ[|B|+1]

Pµ(1)(Select j) + Pµ(1)(Select [|B| + 1]) +
∑

j:µ j≥µ[|B|+1]
j,|B|+1]

Pµ(1)(Select j).

By Condition (C7),

∑
j:µ j<µ[|B|+1]

Pµ(Select j) ≤
∑

j:µ j<µ[|B|+1]

Pµ(1)(Select j),

because the performance of system [|B| + 1] has been decreased. Thus

∑
j:µ j≥µ[|B|+1]

Pµ(Select j) ≥ Pµ(1)(Select [|B| + 1]) +
∑

j:µ j≥µ[|B|+1]
j,[|B|+1]

Pµ(1)(Select j).

The left-hand side is Pµ(GS) while the right-hand side is Pµ(1)(Select [|B| + 1]) +

Pµ(1)(GS). Then since Pµ(1)(Select [|B| + 1]) ≥ 0, we have

Pµ(GS) ≥ Pµ(1)(GS).

The rest of the proof follows from that of Theorem 2. �

Condition (C7) states that increasing the performance of a given system does

not increase the probability that an inferior system is selected. This means that

increasing the performance of a bad system so that it becomes a good system

will not decrease the probability that a good system is selected. This condi-

tion resolves the issue with Procedure 3 where increasing the performance of a

system increased the probability that a superior system was selected; this rela-

tionship is permitted under Condition (C7). The proof of Theorem 3 indicates

that Condition (C7) can be further weakened to apply to only systems i ∈ G\{k}

instead of all i = 1, . . . , k.
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Ultimately, Condition (C7) suffers from the same difficulties as Condition

(C6), namely, deriving monotonicity relationships for the probabilities of select-

ing (subsets of) systems. It nonetheless may provide a way forward for checking

whether new or existing procedures deliver Goal PGS.

2.3.4 Sequential Procedures

As pointed out in Section 2.3.3, lifting Goal PCS-PZ to Goal PGS for sequential

selection procedures remains a challenge due to the complicated dependence

among systems’ estimators. One exception is the sequential (non-elimination)

procedure P∗
B of Bechhofer et al. (1968) for the case in which observations are

normally distributed with known, common variance. The P∗
B procedure itera-

tively takes one sample from each system and terminates as soon as the posterior

probability of correct selection exceeds 1−α, selecting the system with the high-

est sample mean. For the P∗
B procedure, the posterior PCS is calculated as if the

true problem instance was a permutation of the slippage configuration, making

it different from the posterior PCS that typically appears in Bayesian R&S pro-

cedures (Branke et al., 2007). The proof that the P∗
B procedure achieves Goal

PCS-PZ makes use of the fact that the posterior PCS in the slippage configura-

tion is a lower bound on the posterior PCS for the unknown, true configuration.

Sievers (1972) and Chiu (1977) proved that the P∗
B procedure also achieves Goal

PGS by establishing that the posterior PCS in the slippage configuration is also

a lower bound on the posterior PGS for the true configuration.

Aside from the P∗
B procedure of Bechhofer et al. (1968) and the Enve-

lope procedure of Ma and Henderson (2017)—both of which do not eliminate
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systems—few sequential selection procedures have been proven to achieve Goal

PGS. For example, the proofs of Goal PGS presented for the KN procedure of

Kim and Nelson (2001), the SSM procedure of Pichitlamken et al. (2006), and the

CCSB procedure of Hong et al. (2015) are incorrect. These proofs all fail to prop-

erly account for the possibility that a good system can eliminate the best sys-

tem early on and then be eliminated by a bad system. Furthermore, the proof

of Goal PGS for the TSSD procedure of Osogami (2009) holds only for some

parameter settings. Some sequential procedures instead asymptotically achieve

Goal PGS, e.g., the bootstrapping procedure of Lee and Nelson (2019) and one of

the indifference-zone-free procedures of Fan et al. (2016). Other recent sequen-

tial selection procedures, e.g., those of Kim and Dieker (2011), Frazier (2014),

and Zhong and Hong (2017), achieve Goal PCS-PZ but lack proofs of Goal PGS.

Alternatively, Kao and Lai (1980), Jennison et al. (1982) and Zhong and Hong

(2018) show that some sequential selection procedures achieving Goal PCS-PZ,

e.g., the procedure of Paulson (1964), can be modified to achieve Goal PGS. The

proposed modifications, however, involve widening the continuation regions,

resulting in procedures that are potentially excessively conservative.

Putting aside the question of whether the aforementioned procedures

achieve Goal PGS, a crucial consideration is whether they would do so effi-

ciently for configurations in the indifference zone. While the sample sizes of

some multi-stage procedures are unaffected by the configuration of the sys-

tems’ performances (Bechhofer, 1954; Dudewicz and Dalal, 1975; Rinott, 1978),

many sequential selection procedures are designed to eliminate systems—or

terminate—when the estimators of pairs or groups of systems become well-

separated. This suggests that these procedures might require more observations

to distinguish between systems with similar performances. For example, the
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BIZ procedure of Frazier (2014) eliminates systems from contention and termi-

nates when the posterior PCS for a surviving system exceeds a threshold. Simi-

larly, the procedure of Kim and Dieker (2011) eliminates systems when a Brow-

nian motion process observed in discrete time exits an elliptical continuation

region. For configurations with multiple best systems, these two procedures

might be expected to take, on average, more observations before these condi-

tions for eliminating systems are met. Other sequential selection procedures

that use pairwise comparisons to eliminate systems, e.g., the KN procedure of

Kim and Nelson (2001) and the procedure of Zhong and Hong (2017), might

also be expected to take more observations for configurations in the indiffer-

ence zone; however, these two procedures exert some control on the maximum

number of observations that are taken before terminating.

These observations suggest that designing a sequential selection procedure

to efficiently deliver Goal PCS-PZ does not ensure that it will perform efficiently

with respect to delivering Goal PGS. Furthermore, the empirical performance of

the EP procedure of Ma and Henderson (2019) demonstrates how a sequential

procedure designed for Goal PGS can be more efficient in the indifference zone

than leading procedures designed for Goal PCS-PZ. This concern about the ef-

ficiency of sequential selection procedures is another reason why we advocate

that Goal PGS supersede Goal PCS-PZ as the primary design criterion for fre-

quentist R&S procedures.
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2.4 Subset-Selection Procedures

In contrast to selection procedures, which choose a single system as the best,

subset-selection procedures return a random subset of systems I ⊆ {1, . . . , k}.

Subset-selection procedures can be used to efficiently screen out inferior sys-

tems when the number of systems is large. Because subset-selection procedures

were developed as an alternative to the indifference-zone formulation, they are

often designed to give guarantees under any configuration. For example, the

subset-selection procedure of Gupta (1965) for known common variance pro-

vides a guarantee of the form

Pµ(CSS) ≥ 1 − α for all µ, (Goal PCSS)

where the event of correct subset selection is defined as CSS := {[k] ∈ I}. This

definition of correct subset selection slightly differs from that of correct selection

for selection procedures. When there is a unique best system, correct subset

selection is the event that it is in the returned subset. When there are multiple

best systems, however, correct subset selection is the event that a particular best

system is in the returned subset. Goal PCSS therefore states that for each best

system, the probability that it will be in the returned subset is at least 1−α. This

is stronger than guaranteeing that at least one of the best systems will be in the

returned subset with probability at least 1 − α.

We can similarly define an IZ-inspired PCSS guarantee:

Pµ(CSS) ≥ 1 − α for all µ ∈ PZ(δ). (Goal PCSS-PZ)

Some subset-selection procedures achieve Goal PCSS-PZ, e.g., the Screen-to-the-

Best procedure of Nelson et al. (2001). Because Goal PCSS-PZ is only with re-

spect to configurations in the preference zone, subset-selection procedures de-
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signed for this guarantee should be less conservative than those designed for

Goal PCSS in the sense that they either return smaller subsets of systems or take

fewer observations.

We define good subset selection as GSS := {∃i ∈ I s.t. µi > µ[k] − δ}, or equiv-

alently GSS := {G ∩ I , ∅}, the event that at least one good system is in the

returned subset. A guarantee on the probability of good subset selection is thus

Pµ(GSS) ≥ 1 − α for all µ. (Goal PGSS)

Since the best system is always a good system, Goal PCSS implies Goal PGSS.

The restricted subset-selection procedure of Sullivan and Wilson (1989) is one

example of a procedure that achieves Goal PGSS. Good subset selection has

alternatively been defined as the event that all of the good systems are in the re-

turned subset (Lam, 1986; Wu and Yu, 2008) or the event that the returned subset

contains only good systems (Desu, 1970; Santner, 1976). Others have studied the

related problem of identifying the top m systems given a fixed sampling budget

(Chen et al., 2008; Jia et al., 2013; Gao and Chen, 2015; Kaufmann et al., 2016;

Zhang et al., 2016).

Subset-selection procedures are many and varied. For instance, some subset-

selection procedures take a fixed number of observations, specified by the

user, while others take a random number of observations over multiple stages.

Subset-selection procedures also differ in their rules for determining the set of

returned systems based on the estimators of the systems’ performances. Some

subset-selection procedures return a fixed number of systems, namely those

with the m highest estimators, i.e., I = {i : Yi ≥ Y(k−m+1)}where Y( j) denotes the jth

lowest estimator and m is specified by the user in advance (Mahamunulu, 1967;

Desu and Sobel, 1968). Other subset selection-procedures return systems whose
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estimators are above a certain threshold that depends on the highest estimator,

i.e., I = {i : Yi ≥ Y(k) − d} for some constant d ≥ 0 (Gupta, 1965; Dudewicz and

Dalal, 1975).

Santner (1975) proposed a formulation known as restricted subset selection

that integrates the fixed-number and fixed-threshold selection rules by defining

the subset of returned systems as

I = {i : Yi ≥ max(Y(k−m+1),Y(k) − d)}.

The cases d = ∞ and m = k reduce to fixed-number and fixed-threshold selection

rules, respectively. The procedure of Sullivan and Wilson (1989) is an example

of a restricted subset-selection procedure.

Other subset-selection procedures employ a selection rule that compares sys-

tems pairwise and retains the subset

I = {i : Yi ≥ Y j −Wi j for all j , i},

where Wi j = W ji ≥ 0 is a function of the observations that yielded Yi and Y j.

In the Screen-to-the-Best procedure of Nelson et al. (2001), Wi j is a function of

the sample variances of Systems i and j. Under this selection rule, we say that

System j eliminates System i, denoted by j→ i, if Yi < Y j −Wi j.

When it comes to proving Goal PGSS for subset-selection procedures that

use pairwise comparisons, an important property is transitive eliminations; i.e.,

if System i eliminates System j and System j eliminates System `, then System

i also eliminates System `. Transitive eliminations imply that for any System

j ∈ Ic, there exists a System i ∈ I such that i → j, a helpful result in proving

Goal PGSS (Nelson et al., 2001). A sufficient condition for transitive elimina-

tions is that Wi j + W j` ≥ Wi` for all i , j , `. This triangle inequality, however,
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is not automatically satisfied for subset-selection procedures that use pairwise

comparisons; for example, it does not hold for the Screen-to-the-Best procedure

when δ > 0.

As in Section 2.3, we present sufficient conditions under which subset-

selection procedures that achieve Goal PCSS-PZ also achieve Goal PGSS. The-

orems 4 and 5 show how Conditions (C3) and (C6) can be adapted to subset

selection; their proofs can be found in Appendices A.6 and A.7, respectively.

Theorem 4. Let S be a subset-selection procedure achieving Goal PCSS-PZ.

If S uses restricted subset-selection with I = {i : Yi ≥ max{Y(k−m+1),Y(k) − d}}, then

S also achieves Goal PGSS if

(C8) For all subsets A ⊂ {1, . . . , k}, the joint distribution of the estimators Yi for i ∈ A

does not depend on µ j for all j < A.

If S uses pairwise comparisons with I = {i : Yi ≥ Y j − Wi j for all j , i} where

Wi j + W j` ≥ Wi` for all i , j , `, then S also achieves Goal PGSS if

(C9) For all subsets A ⊂ {1, . . . , k}, the joint distribution of the terms Yi for i ∈ A and

Wi` for i, ` ∈ A does not depend on µ j for all j < A.

Conditions (C8) and (C9) are satisfied for many subset-selection procedures

because systems are commonly simulated independently, yielding independent

estimators, e.g., the procedures of Mahamunulu (1967), Desu and Sobel (1968),

and van der Laan (1992).

Condition (C6) can also be modified to work for subset-selection procedures

in a way that does not require assumptions about the selection rule, as was the
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case in Theorem 4.

Theorem 5. Let S be a subset-selection procedure achieving Goal PCSS-PZ. Then S

also achieves Goal PGSS if

(C10) For every subset A ⊂ {1, . . . , k}, Pµ(A ∩ I , ∅) is nondecreasing in µi for all i ∈ A

and nonincreasing in µ j for all j < A when all other components of µ are held

fixed.

Condition (C10) is a generalization of Condition (C6) of Theorem 2 since for

singleton subsets A and the choice of I = {i : Yi > Y j for all j , i}, Condition (C10)

reduces to Condition (C6). Condition (C6) alone is not sufficient to lift Goal

PCSS-PZ to Goal PGSS because the proof of Theorem 2 relies on the fact that∑k
i=1 Pµ(Select i) = 1, a statement that no longer holds when (Select i) is replaced

by (i ∈ I).

A property related to Conditions (C10) and (C6) is that of strong monotonic-

ity, as defined by Santner (1975). A subset-selection procedure is said to be

strongly monotone in System i if Pµ(i ∈ I) is nondecreasing in µi and nonincreas-

ing in µ j for all j , i when all other components of µ are held constant. The

condition that a subset-selection procedure is strongly monotone in all systems

i = 1, . . . , k is equivalent to Condition (C10) with the added restriction that A is

a singleton subset, and for the particular choice of I := {i : Yi > Y j for all j , i},

it is equivalent to Condition (C6). That is, Condition (C6) is weaker than the

condition of strong monotonicity in all systems, which in turn is weaker than

Condition (C10).

Subset-selection procedures have also been used for the purpose of screen-

ing out inferior systems before running a selection procedure (Nelson et al.,
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2001; Boesel et al., 2003b). If the observations used for the subset-selection stage

are discarded and new observations are taken for the selection stage, then the re-

sults of Sections 2.3 and 2.4 can be used in tandem to prove an overall PGS guar-

antee. If instead the observations from the subset-selection stage are reused, the

statistical analysis becomes more complicated; see, for example, the results of

Nelson et al. (2001) for Goal PCS-PZ. How the results of Sections 2.3 and 2.4

can be combined in this setting to prove an overall PGS guarantee is left as a

direction for future research.

2.5 Other Proof Methods

Extending Goal PCS-PZ is not the only way to prove Goal PGS for selection

procedures. In this section, we review two other methods that have been used:

multiple comparisons and concentration inequalities. Although these two ap-

proaches make use of fundamental ideas about good selection, they tend to be

inherently conservative. Consequently, using these ideas in designing a selec-

tion procedure to achieve Goal PGS can result in an inefficient procedure.

2.5.1 Multiple Comparisons

In Section 2.3.3, we remarked that Nelson and Matejcik (1995) provide a shift-

invariant assumption resembling Condition (C5) that implies Goal PGS. In their

proof, it is first shown that for a selection procedure achieving Goal PCS-PZ and

satisfying Equation (2.2), the following joint probability statement holds:

Pµ(Y[k] − Yi − (µ[k] − µi) > −δ, for all i , [k]) ≥ 1 − α for all µ. (2.5)
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From Equation (2.2) and Goal PCS-PZ, for an arbitrary configuration µ,

Pµ(Y[k] − Yi − (µ[k] − µi) > −δ, for all i , [k])

= Pµsc(Y sc
[k] − (Y sc

i − µ[k] + µi + δ) − (µ[k] − µi) > −δ, for all i , [k])

= Pµsc(Y sc
[k] − Y sc

i > 0, for all i , [k])

≥ 1 − α.

Goal PGS then follows directly from Equation (2.5):

Pµ(Y[k]−Yi − (µ[k] − µi) > −δ, for all i , [k])

= Pµ(µi > µ[k] − δ + (Yi − Y[k]), for all i , [k])

= Pµ(µi > µ[k] − δ + (Yi − Y[k]), for all i = 1, . . . , k)

≤ Pµ(µK > µ[k] − δ + (YK − Y[k]))

≤ Pµ(µK > µ[k] − δ)

= Pµ(GS),

where the first inequality comes from considering only the statement for i = K,

and the second inequality comes from Assumption 3.

The use of Equation (2.5) in proving Goal PGS indicates that the fixed-

confidence guarantee for good selection is related to the problem of obtaining

fixed-width confidence intervals for the differences in performances between

pairs of systems. Specifically, Equation (2.5) is a joint probability statement

about the differences between each system’s estimator and that of the best. It

is closely related to the idea of constructing simultaneous confidence intervals

for the differences between each system’s performance and the best of the other

systems, i.e., µi − max j,i µ j, for i = 1, . . . , k (Hsu, 1984). In the statistics commu-

nity, this kind of inference is referred to as multiple comparisons with the best

(MCB); see Hsu (1996) and Hochberg and Tamhane (2009) for helpful references.
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Matejcik and Nelson (1995) and Nelson and Matejcik (1995) show that some

IZ-inspired selection procedures, e.g., those of Dudewicz and Dalal (1975),

Rinott (1978), and Clark and Yang (1986), deliver Goal PCS-PZ and simul-

taneously allow MCB inference with the same confidence, thereby achieving

Goal PGS. Nelson and Goldsman (2001) and Ni et al. (2017) also use MCB to

prove Goal PGS for some of their procedures. The selection procedures of Yang

and Nelson (1991) and Nelson and Staum (2006) that use control variates also

achieve Goal PGS as a consequence of MCB. Nelson and Banerjee (2001) use

similar multiple comparisons statements to obtain a lower confidence bound

on PGS after a selection procedure has been run.

Although MCB statements have been used to prove Goal PGS for many se-

lection procedures, this approach has several limitations. First, if the objective

is to design a procedure that achieves Goal PGS, working with MCB statements

will result in conservative—and therefore less efficient—procedures. Second,

ensuring Equation (2.5) holds with a prespecified confidence is hard to achieve

for procedures that take observations sequentially. A recent development in this

area is using bootstrapping to estimate the probabilities of multiple comparison

events and stopping when the estimated probability exceeds 1−α (Lee and Nel-

son, 2019). This bootstrapping approach sacrifices any kind of finite-sample-size

guarantee, but can deliver different asymptotic versions of Goal PGS.

MCB statements can also be used for subset selection. For example, return-

ing the subset of systems whose MCB upper confidence bounds exceed zero will

ensure Goal PCSS, and hence Goal PGSS (Hsu, 1984; Kim and Nelson, 2006b).
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2.5.2 Concentration Inequalities

In the multi-armed bandit community, it is usually assumed that the marginal

distributions Fi have bounded support or are sub-Gaussian with known scale,

i.e., a known upper bound on the variance. These regularity conditions control

the large-deviations behavior of the estimators and therefore allow the use of

concentration inequalities. A standard approach for proving Goal PGS under

these assumptions is as follows: First, use concentration inequalities to bound

the probabilities that the estimators Yi differ from their true parameter values

µi by a fixed amount. Next, obtain a bound on the probability that a given bad

system outperforms the best system. Finally, use a union bound to obtain an

upper bound on the probability of making a bad selection.

As an illustration, consider the standard multi-armed bandit setting where

the observations of each system take values in the interval [0, 1], the perfor-

mance of System i is µi = E[Xi j], and systems are simulated independently.

For this problem, Even-Dar et al. (2006) propose a “Naive” algorithm achiev-

ing Goal PGS that takes n = (2/δ2) ln(2k/α) observations from each system and

selects the system with the highest sample mean, Yi = n−1 ∑n
j=1 Xi j.

For a bad system, i, to be selected instead of the best system, [k], then either

Yi > µi + δ/2 or Y[k] < µ[k] − δ/2, or both. Therefore

Pµ(Yi > Y[k]) ≤ Pµ(Yi > µi + δ/2 or Y[k] < µ[k] − δ/2)

≤ Pµ(Yi > µi + δ/2) + Pµ(Y[k] < µ[k] − δ/2)

≤ 2 exp(−2n(δ/2)2),

where the last inequality is the result of applying Hoeffding’s inequality twice.

From the choice of n, Pµ(Yi > Y[k]) ≤ α/k. Another union bound shows that the
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“Naive” algorithm achieves Goal PGS:

1 − Pµ(GS) ≤ Pµ
(
∪i,[k]{Yi > Y[k]}

)
≤

∑
i,[k]

Pµ(Yi > Y[k]) ≤ (k − 1)
α

k
≤ α.

Aside from Hoeffding’s inequality, other concentration inequalities such as

Chernoff’s bound can be used in the same way if the marginal distributions are

sub-Gaussian with known scale. While concentration inequalities are useful in

the above proof of Goal PGS, this approach still requires the use of the con-

servative Bonferroni inequality to lift statements about pairwise comparisons

to one about good selection. Some multi-armed bandit algorithms for the full-

exploration problem eliminate systems in stages, such as the Successive Elimi-

nation and Median Elimination algorithms of Even-Dar et al. (2006). For these

algorithms, concentration inequalities are used similarly to analyze pairwise

comparisons and then combined with other conservative inequalities to bound

the probability of making a bad selection.

In the R&S literature, the standard assumption that observations are nor-

mally distributed does not by itself allow the use of concentration inequalities,

unless the variances are known or there are known upper bounds on the vari-

ances. Still, the approach of forming confidence bands around each system’s

estimator can be leveraged to yield a proof of Goal PGS, as is done for the Enve-

lope procedure of Ma and Henderson (2017). The Envelope procedure designs

upper and lower confidence limits for the performances of each system in such

a way that with probability exceeding 1 − α, the upper confidence limit of the

true best system stays above its performance and, simultaneously, the lower

confidence limits of the other systems stay below their performances through-

out the entire procedure. The procedure obtains observations from systems and

updates the confidence limits over time. Once the lower confidence limit of the
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estimated best system exceeds the highest upper confidence limit of the other

systems minus δ, the procedure terminates. Selecting the system with the best

estimated performance thereby guarantees that a good selection is made with

probability exceeding 1 − α.

2.6 Conclusion and Future Work

In this chapter, we give a comprehensive overview of fixed-confidence, fixed-

tolerance guarantees, with the objective of reorienting the simulation commu-

nity towards designing R&S procedures with such guarantees. We point out

several flaws of the more-popular IZ-inspired PCS guarantee and clarify suf-

ficient conditions under which it is equivalent to the PGS guarantee. Some

of the sufficient conditions for selection procedures are then adapted to work

for subset-selection procedures. We also survey past results from the R&S and

multi-armed-bandit literature to present a variety of approaches for proving the

PGS guarantee.

A strength of the multi-armed-bandit literature is its analysis of the sam-

pling complexity needed to deliver the PGS guarantee. Section 2.3.4 comes

close to discussing this matter, but very little has been done in the R&S liter-

ature. Nearly matching complexity bounds have been developed by Ma and

Henderson (2019), building on the results of Jennison et al. (1982) and Mannor

and Tsitsiklis (2004), but presumably much more can be done.

It remains an open question whether some of the state-of-the-art selection

procedures designed under the IZ formulation also deliver the PGS guarantee,

possibly as a consequence of verifying Conditions (C6) or (C7). On the other
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hand, rigorously proving or finding empirical evidence that some of these pro-

cedures do not deliver the PGS guarantee is also intriguing. Moreover, there

is an opportunity for designing procedures that sequentially eliminate systems

while delivering the PGS guarantee more efficiently than existing IZ-inspired

procedures. Another approach that merits further investigation is using boot-

strapping to obtain asymptotic guarantees.
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CHAPTER 3

BAYESIAN RANKING-AND-SELECTION GUARANTEES

The majority of this chapter is from a manuscript under preparation (Eck-

man and Henderson, 2019b).

3.1 Introduction

The R&S problem has been extensively studied from two statistical

perspectives—frequentist and Bayesian—that differ conceptually in what is re-

garded as random or fixed; see Kim and Nelson (2006b) and Chick (2006b) for

overviews of these two areas. From the frequentist perspective, the underlying

problem instance is fixed and the alternative selected by the procedure is ran-

dom, the result of the observations drawn from the sampling distribution corre-

sponding to the problem instance. From the Bayesian perspective, the problem

instance is random and the alternative selected by the procedure is fixed, the re-

sult of a deterministic decision made based on the realized observations. Both

treatments of the problem have received considerable attention in terms of de-

signing efficient procedures that offer finite-time statistical guarantees (Kim and

Nelson, 2001; Branke et al., 2007; Chen et al., 2015; Hong et al., 2015).

Three popular criteria for procedures designed under either framework are

the probability of correct selection (PCS), the probability of good selection (PGS),

and the expected opportunity cost (EOC). Under the frequentist framework, the

probability measure associated with these criteria is defined with respect to re-

peated runs of the procedure on a fixed problem instance. Under the Bayesian

framework, it is defined with respect to the posterior distribution on the prob-
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lem instance given the collected observations and any prior information. Much

of the analysis to date on Bayesian R&S procedures considers the setting in

which the simulation budget—the maximum number of replications that can

be taken—is fixed in advance (Chen et al., 2000; Chick and Inoue, 2001a,b; Peng

et al., 2018). In this setting, procedures are designed to maximize the posterior

PCS or PGS or minimize the posterior EOC after exhausting the budget. We in-

stead consider the setting in which the decision-maker specifies a desired guar-

antee and then runs a procedure that takes observations until it can be delivered

(Branke et al., 2007).

The frequentist treatment of the R&S problem dates back to the seminal work

of Bechhofer (1954) and Gupta (1965) on selection and subset-selection proce-

dures, respectively. Under the frequentist framework, R&S procedures are de-

signed to deliver statistical guarantees that hold for a broad class of problem

instances: either all problem instances (Ni et al., 2017; Ma and Henderson, 2019)

or those in the preference zone, i.e., those for which the performances of the best

and second-best alternatives differ by more than some specified amount (Kim

and Nelson, 2001; Frazier, 2014; Zhong and Hong, 2017). Frequentist procedures

are inherently conservative because of their need to guard against worst-case

problem instances, such as the slippage configuration, which are unlikely to

arise in practice (Frazier, 2010).

The Bayesian paradigm offers another way of handling uncertainty in sim-

ulation modeling and analysis (Andradottir and Bier, 2000; Chick, 2006a; Mer-

rick, 2009). The Bayesian treatment of the R&S problem dates back to the work

of Berger and Deely (1988) and Gupta and Kim (1980) on selection and subset-

selection procedures, respectively. Bayesian procedures use the collected obser-
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vations and any prior information to construct a posterior distribution on the

unknown problem instance that is then used to evaluate the quality of a selec-

tion given the evidence. In this way, the statistical guarantees of Bayesian R&S

procedures are for a fixed selection with respect to problem instances weighted

according to the posterior distribution. Bayesian guarantees do not hold for all

fixed problem instances; they instead hold in an average-case sense over prob-

lem instances drawn from the prior distribution, as explained in Section 3.2.2.

A straightforward way of ensuring that a procedure delivers a Bayesian

guarantee is to use a posterior quantity of interest as a stopping rule. For exam-

ple, to deliver a Bayesian EOC guarantee, it suffices for a procedure to terminate

as soon as the posterior EOC of the best-looking alternative drops below a spec-

ified threshold (Branke et al., 2007). The appeal of this approach is that repeat-

edly looking at the data does not invalidate a Bayesian guarantee, as it might for

a frequentist guarantee. Aside from the theoretical convenience of proving their

statistical guarantees, Bayesian R&S procedures have become popular in recent

years because of their efficiency relative to frequentist procedures (Branke et al.,

2007).

Although the frequentist and Bayesian treatments of the R&S problem are

conceptually different, some research has studied their intersection. For exam-

ple, the P∗B procedure of Bechhofer et al. (1968) and the BIZ procedure of Frazier

(2014) deliver a frequentist PCS guarantee via a Bayesian analysis of the pos-

terior PCS where the posterior distribution of the problem instance is over the

space of slippage configurations. In addition, Kadane et al. (1996) and Inoue

and Chick (1998) compare the posterior PCS to frequentist p-values and Deng

et al. (2016) compare Bayesian and frequentist A/B testing.
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Using posterior-based stopping rules to deliver Bayesian R&S guarantees

gives rise to several concerns that we address in this chapter. First, we explore

in greater detail the conceptual and empirical differences between frequentist

and Bayesian guarantees. We discuss how this distinction might factor into a

decision-maker’s choice of guarantee, depending on the situation in which R&S

is used. Second, we investigate the decision of how often and how accurately to

check stopping rules and its impact on the overall efficiency of a procedure. We

present several methods for exactly evaluating the posterior quantity of interest

and efficiently checking stopping rules, especially when the number of alterna-

tives is large. Numerical experiments give a sense of the reduction in the total

number of simulation replications relative to methods in the literature that use

cheaply computable bounds.

The remainder of this chapter is outlined as follows. Section 3.2 introduces

the mathematical notation and distributional assumptions, while defining PCS,

PGS, and EOC under the frequentist and Bayesian frameworks. Section 3.3 justi-

fies the use of posterior PCS, PGS, or EOC as stopping rules and studies the em-

pirical performance of Bayesian procedures with such guarantees. Sections 3.4

and 3.5 highlight the computational challenges of checking the stopping con-

ditions and presents several ways to improve the overall efficiency of Bayesian

procedures. The proposed improvements are evaluated via simulation experi-

ments in Section 3.6. Section 3.7 summarizes our findings and lays out direc-

tions for future research.
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3.2 Frequentist and Bayesian R&S Guarantees

In this section, we formally define frequentist and Bayesian R&S guarantees for

the purposes of comparing and contrasting them.

3.2.1 Frequentist R&S Guarantees

Suppose there are k alternatives under consideration and that the performance

of Alternative i is denoted by wi, for i = 1, . . . , k. We refer to the vector of

performances w = (w1, . . . ,wk) as the problem instance or configuration. From

the frequentist perspective, the problem instance is fixed, but unknown to the

decision-maker and describes a unique probability distribution from which ob-

servations are drawn. We use the notation w[i] to refer to the ith smallest per-

formance where ties in indexing are broken arbitrarily; i.e., the ordered perfor-

mances satisfy the relationship w[1] ≤ · · · ≤ w[k]. Without loss of generality, we

assume that larger performance values are better, hence Alternative [k] is (one

of) the best.

Let D denote the index of the alternative chosen by a R&S procedure. From

the frequentist perspective, D is a random variable since it depends on the ran-

dom observations sampled from the fixed problem instance. Three popular cri-

teria by which frequentist R&S procedures are measured are the following:

• Probability of Correct Selection:

PCS := Pw(wD = w[k]).
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• Probability of Good Selection:

PGS := Pw(wD ≥ w[k] − δ) for a fixed δ > 0.

• Expected Opportunity Cost:

EOC := Ew[w[k] − wD].

The subscript w in the three criteria indicates that the probability or expecta-

tion is taken with respect to the probability distribution associated with w from

which random observations are drawn. In other words, the probabilities and

expectations are defined in the frequentist sense of repeated runs of the selec-

tion procedure on a fixed problem instance. These criteria are mainly used to

design selection procedures that deliver frequentist guarantees or to compare

the empirical performance of R&S procedures.

PCS is the probability that the procedure selects the best or one of the best

alternatives, and PGS is the probability that a δ-optimal alternative is selected.

This definition of PGS differs slightly from that introduced in Chapter 2 when

we examined the indifference-zone formulation. We redefine PGS in this chap-

ter so that we can treat PCS as a special case where δ = 0. Expected oppor-

tunity cost—also referred to as expected linear loss—is the expected difference

between the performance of the best alternative and the selected alternative; i.e.,

the expected optimality gap of the procedure.

Many frequentist R&S procedures deliver statistical guarantees featuring

these criteria:

• Indifference-zone (IZ) PCS Guarantee:

Pw(wD = w[k]) ≥ 1 − α for all w such that w[k] − w[k−1] ≥ δIZ.
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If w[k] − w[k−1] < δIZ, no guarantee is provided.

• PGS Guarantee:

Pw(wD ≥ w[k] − δ) ≥ 1 − α for all w.

• EOC Guarantee:

Ew[w[k] − wD] ≤ β for all w.

For these guarantees, the decision-maker specifies the values of 1 − α, δIZ,

δ and β in advance. In the IZ PCS and PGS guarantees, the threshold 1 − α

reflects the decision-maker’s desired degree of confidence in making a correct

or good selection. The role of the IZ parameter, δIZ, is to specify the problem

instances on which a procedure can be relied upon to select the best alternative

with high probability, whereas the good-selection parameter, δ, represents the

decision-maker’s tolerance towards making a suboptimal decision. The values

of δ and β have clear interpretations in terms of the largest or average difference

in performance to which the decision-maker is indifferent. A reasonable choice

of β is the good-selection parameter, δ, times the allowable probability of making

a bad selection, α (Chen et al., 2015).

To deliver these frequentist guarantees, R&S procedures must guard against

the hardest problem instances, making them inherently conservative. That is,

for easier problem instances, the PCS or PGS may greatly exceed 1 − α, or the

EOC may fall well below the threshold of β, indicating that the procedure has

taken more observations than necessary.
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3.2.2 Bayesian R&S Guarantees

In the Bayesian treatment of the R&S problem, the performances of the alterna-

tives are viewed as random variables rather than unknown constants. To reflect

this difference, we denote the performance of Alternative i by Wi for i = 1, . . . , k.

The random problem instance is denoted by the vector W = (W1, . . . ,Wk) and the

performances are ordered as W[1] ≤ · · · ≤ W[k].

The decision-maker assumes a prior distribution over the space of problem

instances based on previously gathered data or the opinions of subject matter

experts. In the absence of such information, the prior distribution can instead

reflect a general uncertainty about the problem instance (i.e., a noninformative

prior). After taking observations from the alternatives, a Bayesian R&S proce-

dure applies Bayes’ rule to obtain a posterior distribution on the problem in-

stance. The posterior distribution reflects the decision-maker’s remaining un-

certainty about the performances of the alternatives after observing the data

and incorporating any prior beliefs. The posterior distribution can be used to

define Bayesian analogs to the aforementioned frequentist criteria:

• Posterior Probability of Correct Selection of Alternative i:

pPCSi := P(Wi = W[k] | E).

• Posterior Probability of Good Selection of Alternative i:

pPGSi := P(Wi ≥ W[k] − δ | E).

• Posterior Expected Opportunity Cost of Alternative i:

pEOCi := E[W[k] −Wi | E].
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The probabilities and expectations that appear in the Bayesian criteria are

with respect to the posterior distribution given the evidence (simulated data)—

denoted by E—and the prior distribution. Furthermore these posterior quanti-

ties are defined in terms of selecting a given alternative, as designated by the

subscript index. To better distinguish the frequentist and Bayesian criteria, we

append a lowercase “p” to the abbreviations for posterior quantities. While this

choice of notation is unconventional, we feel that it avoids unnecessary con-

fusion. In contrast to their frequentist counterparts, the Bayesian criteria are

properties of the evidence instead of properties of the procedure and thus can

be calculated within a procedure; we discuss ways to calculate, estimate, and

bound them in Sections 3.4 and 3.5.

For a given Alternative i, pPCSi is the probability under the posterior dis-

tribution that the random problem instance is one for which Alternative i is

(one of) the best. Similarly, pPGSi is the posterior probability that the random

problem instance is one for which Alternative i is δ-optimal. Lastly, pEOCi is the

expected optimality gap associated with selecting Alternative i over all problem

instances weighted according to the posterior distribution.

Under the Bayesian framework, the index of the selected alternative, D, is

determined by the (fixed) observed data and the prior distribution. We will

assume that Bayesian R&S procedures do not use randomized selection rules,

i.e., given the observed data, D is deterministic. In the event of ties in posterior

quantities, we will assume that there is a ranking of the alternatives’ indices—

fixed a priori—that is used to break ties. The three Bayesian criteria admit R&S

guarantees with respect to the selected alternative:
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• pPCS Guarantee:

pPCSD ≥ 1 − α.

• pPGS Guarantee:

pPGSD ≥ 1 − α.

• pEOC Guarantee:

pEOCD ≤ β.

Instead of referring to a fixed problem instance, Bayesian R&S guarantees

involve an expectation over the unknown problem instance. More specifically,

these Bayesian guarantees state that given the evidence, the posterior probabil-

ity that the selected alternative is correct or δ-optimal is at least 1 − α, or that

the posterior expected optimality gap of the selected alternative is below β. To

perhaps belabor a point that will be important later, a Bayesian guarantee will

not deliver a frequentist guarantee that holds for all problem instances.

Even though Bayesian guarantees are not stated with respect to a fixed prob-

lem instance, they can still be interpreted in a frequentist sense. For repeated runs

of the following two-step process, the selected alternative will satisfy a compa-

rable guarantee.

1. Generate a random problem instance from the prior distribution.

2. On the problem instance, run a given R&S procedure with a Bayesian

guarantee.

For example, if a Bayesian R&S procedure with the pPGS guarantee is run in

Step 2, then for repeated runs of the two-step process, the selected alternative
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will be δ-optimal with probability exceeding 1−α. This frequentist interpretation

follows from the law of total expectation:

P(WD ≥ W[k] − δ) = E[P(WD ≥ W[k] − δ | Eτ)] ≥ E[1 − α] = 1 − α,

where Eτ is the evidence collected by the time at which the procedure termi-

nates, τ, and E denotes the expectation under the probability measure in which

the problem instance is drawn from the prior distribution and observations

are sampled from the probability distribution associated with that problem in-

stance. Similar conclusions hold if Bayesian R&S procedures delivering the

pPCS and pEOC guarantees are used in Step 2.

A similar derivation appears in the proofs of the P∗B and BIZ procedures of

Bechhofer et al. (1968) and Frazier (2014). Both procedures deliver frequentist

IZ PCS guarantees, but do so by tracking the pPCS given that the true problem

instance is in the slippage configuration, i.e., there is a unique best alternative

whose performance is exactly δIZ better than all of the others. Under a uniform

prior distribution on the set of k slippage configurations, pPCSi is exactly the

posterior probability of the slippage configuration for which Alternative i is the

best. Further details for how this special choice of prior distribution leads to the

IZ PCS guarantee can be found in Sections 3.1 and 3.2 of Bechhofer et al. (1968)

and the proofs of Lemma 8 and Theorem 1 of Frazier (2014).

This analysis shows that if the prior distribution correctly describes the pro-

cess that generates the problem instance, a Bayesian R&S procedure will deliver

an average-case guarantee. A pertinent question that we do not address in this

chapter is: How should we value Bayesian R&S guarantees when the prior is

poorly chosen? Section 3.7 of Berger (1993) offers some insight on this impor-

tant issue.
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3.2.3 Frequentist and Bayesian R&S Guarantees in Different

Situations

In this section, we examine how the conceptual differences between frequentist

and Bayesian R&S guarantees might lead a decision-maker to favor one type of

guarantee over the other, depending on the situation. We consider three situa-

tions in which R&S procedures may be used.

R&S for a one-time, expensive decision. Consider a decision with expen-

sive implications, e.g., opening a new fulfillment center or hospital ward, that

will presumably be made only once. The significant financial cost associated

with the decision justifies an investment of time and resources to design and

run a simulation model to solve the optimization problem. After the simulation

model has been developed, verified, and calibrated, and the feasible alterna-

tives have been identified, the problem instance for the resulting R&S problem

can be viewed as fixed, but unknown.

Given the important ramifications of this one-time decision, it would be nat-

ural for a decision-maker to be especially averse to making a costly mistake. In

this case, a decision-maker might be reassured by a frequentist guarantee that

holds for all problem instances, even if the hardest problem instances are very

unlikely. The decision-maker may also be more willing to incur the longer run

times of frequentist R&S procedures relative to Bayesian R&S procedures.

R&S for repeated decisions. Suppose that the decision-maker wishes to

solve a sequence of related problems using R&S. In this setting, a common sim-

ulation model is used for the problems, but its input parameters reflect the most

up-to-date conditions of the physical system being modeled. If the conditions of
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the physical system evolve according to some exogenous process, the sequence

of problem instances can be viewed as a stochastic process. This observation

suggests that Bayesian guarantees may be better-suited for this application of

R&S. However, it is important to consider how the decision-maker specifies the

prior distribution.

If the prior distribution incorporates the decision-maker’s knowledge of the

exogenous process and the relationship between the input parameters and the

problem instance, the frequentist interpretation of Bayesian R&S guarantees

may align well. For instance, for a long sequence of decisions made using a

Bayesian R&S procedure with the pPGS guarantee and a common prior distribu-

tion, one would expect that about (1−α)×100% of them would be δ-optimal. Us-

ing a frequentist R&S procedure with the PGS guarantee would instead ensure

that each decision is δ-optimal with probability exceeding 1 − α, independent

across decisions. A common prior distribution, however, would not represent

the uncertainty about a specific problem instance, given the current conditions

of the system. Alternatively, the prior distribution could be updated over time

based on observations taken while solving past R&S problems. In this way,

Bayesian R&S procedures offer a convenient means of learning the relationship

between the input parameters and the problem instance.

R&S after search. Suppose that a simulation-optimization search is run to

identify a set of promising alternatives and then a R&S procedure is used to

“clean up” afterwards (Boesel et al., 2003b). Since the resulting problem instance

is random, the frequentist interpretation of Bayesian guarantees is appealing,

provided that the prior distribution accounts for the process that generates the

problem instance—in this case, the simulation-optimization search. Coming
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up with an informative prior about the random problem instance returned by

a search is nontrivial; the prior would have to combine information about the

objective function and how the search operates. Frequentist R&S guarantees

are another option, but it is very unlikely that a search will return the kind of

worst-case problem instances that they are designed to guard against. Instead,

one would expect a search to return a problem instance with several good alter-

natives.

Another related issue is the reuse of observations collected during the search,

either in the first stage of a frequentist R&S procedure or in the prior distribution

of a Bayesian R&S procedure. In either case, reusing search data is problematic,

since search observations are conditionally dependent given the set of returned

alternatives (Eckman and Henderson, 2018).

3.2.4 Issues with Posterior PCS

Returning to the Bayesian R&S guarantees introduced in Section 3.2.2, we bring

attention to two serious issues with the pPCS guarantee that the pPGS guarantee

avoids. Eckman and Henderson (2019a) have previously argued, for different

reasons, that the PGS guarantee is superior to the IZ PCS guarantee.

The first concern is that for the pPCS guarantee, the decision-maker insists

on selecting the best alternative with high probability and will not be satisfied

with selecting a suboptimal alternative, no matter how close its performance is

to the best. By this reasoning, extremely small differences in performances are

worth detecting, even at great computational expense. Consequently, when the

difference between the performances of the best and second-best alternatives is
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small, a Bayesian R&S procedure will take many more observations (on aver-

age) before the pPCS of any alternative rises above 1 − α. It is hard to justify

expending so much computational effort to detect differences that are of less

than practical significance. This insistence on finding the optimal solution to

the R&S problem also ignores the fact there there is inherently some degree of

error associated with the simulation model. On the other hand, the pPGS guar-

antee takes a more lenient approach, allowing the decision-maker to specify a

tolerance in performance to which he or she is indifferent.

The second concern with the pPCS guarantee stems from the case in which

multiple alternatives are tied for the best. While it would be convenient to as-

sume that practical problems do not have multiple alternatives with tied per-

formances, some do. For example, the prototypical buffer-allocation problem of

Pichitlamken et al. (2006) has multiple optimal solutions due to symmetries in

the tandem-queuing system; see Ni et al. (2017) for a detailed description. In ad-

dition, min-max problems that arise in distributionally robust optimization can

have multiple solutions with the same performance due to the inner maximum.

For problem instances in which there are multiple optimal solutions, simulating

until the pPCS of one of the alternatives exceeds 1 − α will take a long time. A

procedure that delivers the pPCS guarantee will therefore be chasing noise and

will only terminate when a large-deviations event occurs.

The Bayesian resolution to this issue is that for continuous posterior distri-

butions (e.g., multivariate normal), the probability that the performances of two

or more alternatives are tied is zero. And if it were known in advance that cer-

tain alternatives had the same performances, perhaps due to symmetry, that

information could be incorporated into the prior distribution. The cost of this
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approach, however, is the loss of conjugacy—updating the posterior distribu-

tion would become computationally intensive. Moreover, determining that two

alternatives have the same performance or that a problem has a unique optimal

solution is nontrivial, especially when there are many alternatives.

Despite these concerns with the pPCS guarantee, many Bayesian R&S proce-

dures designed for a fixed-budget setting use pPCS as the overall performance

criteria (Branke et al., 2007; Peng et al., 2016; Russo, 2016). Some Bayesian R&S

procedures also use the pPCS criteria to allocate simulation replications across

alternatives (Chen et al., 2000). An interesting, open question is how the sam-

pling efficiency of Bayesian R&S procedures is affected by the use of pPCS in

their allocation rules, especially on problem instances with tied alternatives.

3.2.5 Assumptions

Thus far we have defined frequentist and Bayesian criteria without imposing

any distributional assumptions on the observations of the alternative’s perfor-

mances or the decision-maker’s beliefs. We now make several standard assump-

tions so that we can derive specific results for checking stopping rules involving

pPCS, pPGS, and pEOC. If these assumptions do not hold, we still expect that

many of our main conclusions will, e.g., the potential benefits of numerically

integrating posterior quantities of interest, even though the proposed methods

may not.

Let Xi j denote the jth observation from Alternative i.

Assumption 4. For any i = 1, . . . , k and any j ≥ 1, Xi j is normally distributed with

mean wi and variance σ2
i .
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Assumption 5. For any i = 1, . . . , k, the observations Xi1, Xi2, . . . are independent.

Assumption 6. For any j ≥ 1, the observations X1 j, . . . , Xk j are independent.

Assumption 7. The decision-maker has independent prior beliefs about the perfor-

mances of alternatives.

Assumption 4 is commonly made in the simulation community and can be

partially justified by batching observations as the batched means will be ap-

proximately normally distributed. The R&S problem has also been studied for

Bernoulli-distributed observations, e.g., Even-Dar et al. (2006) and Russo (2016),

and from a large-deviations perspective (Glynn and Juneja, 2004; Hunter and

Pasupathy, 2010; Glynn and Juneja, 2018).

Assumption 5 is easily satisfied when observations are generated via

stochastic simulation. In addition, this independence assumption implies that

the observations are exchangeable, a necessary assumption for the upcoming

derivation of the posterior distribution.

Assumption 6 rules out the use of common random numbers (CRN) in gen-

erating observations. While CRN are helpful in comparing the performances

of alternatives, their use in a R&S procedure complicates the statistical analy-

sis under both the frequentist (Nelson and Matejcik, 1995) and Bayesian (Chick

and Inoue, 2001a; Fu et al., 2004; Gorder and Kolonko, 2019) paradigms. In the

Bayesian treatment, CRN pose two notable challenges concerning the number

of observations taken from each alternative. First, updating the posterior distri-

bution when sample sizes are unequal requires careful attention and account-

ing; see Gorder and Kolonko (2019). Second, under the reference prior, at least

k observations must be taken from each alternative to ensure that the sample
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covariance matrix is invertible (Chick and Inoue, 2001a).

Assumption 7 is another standard assumption in the literature, although the

setting of correlated beliefs has also been well studied (Frazier et al., 2009; Xie

et al., 2016). Assumptions 6 and 7 are typically made for analytical convenience

as together they imply that the posterior distribution of W is the product of

the marginal posterior distributions of Wi for i = 1, . . . , k. However, enforcing

independent beliefs in the prior distribution requires discarding any available

structural information about the optimization problem, e.g., convexity or sym-

metry. In doing so, the decision-maker sacrifices prior knowledge about the

relationships among alternatives for computational convenience.

Given Assumptions 4–7, we now mathematically describe the conjugate

prior and posterior distributions. We will find it easier to work with the pre-

cisions λi = 1/σ2
i for i = 1, . . . , k. The (joint) conjugate prior distribution for

the mean and precision of Alternative i is normal-gamma: Λi ∼ G(α0
i , β

0
i ) and

Wi | λi ∼ N(µ0
i , 1/(ν

0
i λi)) where the gamma distribution G(α, β) has mean α/β and

variance α/β2. (This α parameter should not be confused with the one that ap-

pears in the pPCS and pPGS guarantees.) The prior hyperparameters α0
i , β

0
i , µ

0
i ,

and ν0
i are specified by the decision-maker.

After observing samples xi1, . . . , xini from Alternative i, the posterior distri-

bution of Wi and Λi is normal-gamma given by:

Λi ∼ G

α0
i +

ni

2
, β0

i +
1
2

ni∑
j=1

(xi j − x̄i)2 +
niν

0
i

ν0
i + ni

(x̄ − µ0
i )2

2

 and

Wi|λi ∼ N

(
ν0

i µ
0
i + ni x̄i

ν0
i + ni

,
1

(ν0
i + ni)λi

)
,

where x̄i = n−1
i

∑ni
i=1 xi j (Degroot, 2004). The marginal posterior distribution of the
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performance of Alternative i is given by

Wi ∼ t2α0
i +ni

ν0
i µ

0
i + ni x̄i

ν0
i + ni

,
β0

i + 1
2

∑ni
j=1(xi j − x̄i)2 +

niν
0
i

ν0
i +ni

(x̄i−µ
0
i )2

2(
α0

i + ni
2

) (
ν0

i + ni

)
 =: tνi(µi, σ̂

2
i ),

where tν(µ, σ2) denotes the distribution of a three-parameter Student-t random

variable Z = µ + σTν where Tν is a Student-t random variable with ν degrees of

freedom (Chick and Inoue, 2001b). We will refer to µi and σ̂2
i as the posterior

mean and variance of the performance of Alternative i and use subscript (·) to

denote the ordered indices of the posterior means, i.e., µ(1) ≤ µ(2) ≤ · · · ≤ µ(k) and

Alternative (k) is the best-looking alternative.

The reference prior is specified by the prior hyperparameters µ0
i = ·, ν0

i = 0,

α0
i = −1/2 and βi

0 = 0 for all i = 1, . . . , k. Under the reference prior, the

marginal posterior distribution for the performance of Alternative i becomes

Wi ∼ tni−1(x̄i, s2
i /ni) where s2

i is the sample variance of the ni observations taken

from Alternative i. When the variances σ2
i are known, the conjugate prior dis-

tribution for the performance of Alternative i is Wi ∼ N(µ0
i , 1/λ

0
i ) where λ0

i is a

prior hyperparameter, and the posterior distribution is

Wi ∼ N

(
σ2

i /λ
0
i

σ2
i + n/λ0

i

(
µ0

i λ
0
i +

ni x̄i

σ2
i

)
,

σ2
i /λ

0
i

σ2
i + ni/λ

0
i

)
.

Under the reference prior (µ0
i = ·, λ0

i = 0), the posterior distribution is Wi ∼

N(x̄i, σ
2
i /ni).

As can be seen from the above formulae, using conjugate prior distributions

greatly simplifies the task of updating the posterior distribution. When conju-

gate prior distributions are not used, the posterior distribution can still be com-

puted numerically; pPCS, pPGS, and pEOC can then be calculated via Markov

Chain Monte Carlo.
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3.3 Posterior-Based Stopping Rules

In this section, we discuss how R&S procedures that take observations sequen-

tially can deliver the Bayesian guarantees described in Section 3.2.2. We first in-

troduce an important principle from Bayesian statistics which shows that these

guarantees hold after terminating a procedure when the posterior quantity of

interest crosses some threshold.

3.3.1 Stopping Rule Principle

The Stopping Rule Principle states that given observed evidence, inference

about an unknown parameter of interest should not depend on the rule used

to terminate an experiment (Berger, 1993). In other words, an experimenter can

ignore the stopping rule when carrying out a statistical analysis after an ex-

periment. The sequential tests supported by the Stopping Rule Principle have

the upside of taking only as many samples as necessary, in contrast to fixed-

sample-size tests. While the Stopping Rule Principle has convenient practical

ramifications, the idea remains disputed by frequentist statisticians; see, for ex-

ample, the sequence of psychology articles: Yu et al. (2014), Sanborn and Hills

(2014), Rouder (2014), and Sanborn et al. (2014). A/B testing is another field in

which the frequentist and Bayesian guarantees of continuously monitored tests

are actively studied (Johari et al., 2015; Deng, 2015; Deng et al., 2016; Dmitriev

et al., 2017; Johari et al., 2017).

Because an experimenter’s choice of stopping rule can influence his or her

conclusions, the Stopping Rule Principle can appear counter-intuitive (Berger,
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1993). We bring up a well-studied example that illustrates the seeming paradox

of the Stopping Rule Principle. Consider an experimenter who samples inde-

pendent random variables X1, X2, . . . that are eachN(θ, 1) and wishes to report a

credible interval for the unknown parameter θ. Suppose that the experimenter

stops sampling the first time, n, at which |
∑n

j=1 X j| ≥ 2
√

n and—based on a nonin-

formative prior—reports the 95% credible interval of (Xn−1.96/
√

n, Xn+1.96/
√

n).

For this choice of stopping rule, the experiment will terminate in finite time

almost surely, even when θ = 0 (by the Law of the Iterated Logarithm). How-

ever, the credible interval will have a coverage probability of zero at the point

θ = 0, even if the true parameter value was θ = 0. The Bayesian resolution to

this paradox is that the value of θ = 0 is very unlikely to produce the data ob-

served at the time of stopping, and if the experimenter were to put a positive

prior probability on θ = 0, the coverage issues would disappear. We will see

later in Section 3.3.2 that a similar situation arises for Bayesian R&S procedures

that use pPCS in a stopping rule.

The Stopping Rule Principle has several remarkable consequences in the

context of Bayesian R&S procedures. First, the rule used to terminate a Bayesian

R&S procedure does not affect the calculation of any posterior quantity, mean-

ing that pPCS, pPGS, and pEOC can appear in stopping rules (Chick and Inoue,

2001b; Chick, 2006b; Chen et al., 2015):

• pPCS Stopping Rule: Terminate when pPCSi ≥ 1 − α for some i = 1, . . . , k

and select Alternative i.

• pPGS Stopping Rule: Terminate when pPGSi ≥ 1 − α for some i = 1, . . . , k

and select Alternative i.

• pEOC Stopping Rule: Terminate when pEOCi ≤ β for some i = 1, . . . , k and
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select Alternative i.

Chick et al. (2010) refer to these kinds of stopping rules as adaptive stopping

rules because they depend on the observations collected, as opposed to the rule

of stopping when a fixed budget has been exhausted. We choose to call them

posterior-based stopping rules to emphasize that they involve quantities calcu-

lated from the posterior distribution of the problem instance. The significance

of being able to compute (and recompute) posterior quantities in the stopping

rules and still deliver Bayesian guarantees cannot be understated. Unless spe-

cial care is taken, repeatedly looking at the data in this way can invalidate fre-

quentist guarantees; sequential analysis methods are a notable exception (Wald,

1973).

A second important consequence of the Stopping Rule Principle is that since

Bayesian R&S guarantees follow from the stopping rule, the user has complete

flexibility in allocating simulation replications across alternatives. These stop-

ping rules can therefore be used in conjunction with popular allocation rules:

e.g., value-of-information (VIP), optimal computing budget allocation (OCBA),

Thompson sampling (TS), and knowledge-gradient (KG). Allocation rules are

also allowed to use posterior quantities; e.g., OCBA and TS rules use the pPCS

of alternatives (Chen et al., 2000; Russo, 2016) and some VIP rules use the pEOC

of alternatives, or approximations thereof (Chick and Inoue, 2001b).

3.3.2 Visualization

To illustrate posterior-based stopping rules, we consider a selection procedure

that iteratively takes one observation from each alternative until it can deliver
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a given Bayesian R&S guarantee. For the purposes of this example, we will as-

sume that there are k = 2 alternatives with a common known variance σ2 and

that the reference prior is used. Under Assumptions 4–7, the posterior distribu-

tion of the performance of Alternative i—after taking n observations from each

alternative—is given by Wi ∼ N(x̄i, σ
2/n) for i = 1, 2 and

pPCSi = Φ

 x̄i − x̄ j√
2σ2/n

 , (3.1)

pPGSi = Φ

 x̄i − x̄ j + δ√
2σ2/n

 , and (3.2)

pEOCi =

√
2σ2

n
φ

 x̄i − x̄ j√
2σ2/n

 − (x̄i − x̄ j)Φ

 x̄ j − x̄i√
2σ2/n

 , (3.3)

where j , i and φ(·) and Φ(·) are the probability density function (pdf) and

cumulative distribution function (cdf) of a standard normal random variable

(Branke et al., 2005). Equation (3.3) follows from Equation (3.7) (see Section 3.5)

for the case νi j = ∞.

When the problem instance is viewed as fixed and the sample means are

viewed as random variables, the difference of the partial sums,
∑n

j=1

(
X1 j − X2 j

)
=

n(X̄1 − X̄2), is a Brownian motion with drift w1 − w2 and diffusion 2σ2 observed

at discrete points in time, n = 1, 2, . . .. The posterior-based stopping rules of

Section 3.3.1 are therefore tantamount to terminating the procedure when this

difference-of-partial-sums process first exits a continuation region.

For k = 2, the alternative with the higher posterior mean—in this case the

higher sample mean—will have the higher pPCS and pPGS and the lower pEOC.

Thus the stopping rules can be expressed in terms of |n(X̄1 − X̄2)|, implying that

the boundaries of the procedure’s continuation region will be symmetric.

Analytically inverting Equations (3.1) and (3.2) for pPCSi = 1−α and pPGSi =
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 pPCS = 1 - 
 pPGS = 1 - 

Figure 3.1: Continuation regions for the pPCS and pPGS stopping rules for
equal allocation across two alternatives with common known variance and the
reference prior.

1 − α gives the following descriptions of the pPCS and pPGS stopping rules for

this equal allocation scheme:

1. pPCS stopping rule: Terminate when |n(X̄1 − X̄2)| ≥
√

2nσ2Φ−1(1 − α).

2. pPGS stopping rule: Terminate when |n(X̄1 − X̄2)| ≥
√

2nσ2Φ−1(1 − α) − δn.

As depicted in Figure 3.1, the continuation region for the pPCS stopping rule

gives rise to an open procedure (i.e., one with unbounded run-lengths), whereas

the continuation region for the pPGS stopping rule gives rise to a closed proce-

dure. The formula for the pPGS stopping rule also indicates that increasing
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 pEOC = 

Figure 3.2: Continuation region for the pEOC stopping rule for equal allocation
across two alternatives with common known variance and the reference prior.

δ narrows the continuation region, causing the procedure to terminate earlier.

The continuation region for the pPGS stopping rule closely resembles that of the

frequentist procedure of Zhong and Hong (2017)—at least for the case k = 2—

except that for their procedure, the α term is replaced with an α/n term that

“spends” the probability of making an incorrect selection over time. In contrast,

for k = 2, the continuation region of the frequentist BIZ and P∗B procedures of

Frazier (2014) and Bechhofer et al. (1968) is described by a constant boundary:

terminate when

|n(X̄1 − X̄2)| ≥
σ2

δIZ
ln

(
1 − α
α

)
.

Equation (3.3) for pEOC cannot be analytically inverted when set equal to β;

72



instead, we numerically invert it. Figure 3.2 shows that the continuation region

for the pEOC stopping rule gives rise to a closed procedure.

3.3.3 Empirical Performance

We explore how Bayesian R&S procedures that use posterior-based stopping

rules perform with respect to the frequentist criteria of PCS, PGS, and EOC for

fixed problem instances. Extensive experiments of this kind have been carried

out to compare the performance and efficiency of Bayesian and frequentist R&S

procedures for different parameter settings (Branke et al., 2005, 2007). The pur-

pose of our own limited experiments is to illustrate how the empirical perfor-

mance of these procedures varies depending on the problem instance.

We continue to use the setup assumed in Section 3.3.2: two alternatives with

common known variance, with the added assumption that σ2 = 1. We imple-

ment the equal allocation procedure that uses the reference prior and terminates

when a given posterior-based stopping rule is first satisfied. Upon stopping,

the procedure selects whichever alternative satisfies the stopping rule or the one

with the higher posterior mean if both alternatives satisfy the stopping rule. For

each stopping rule, we run 10,000 macroreplications of the procedure on fixed

problem instances with differences in performances (w1 − w2) ranging from 0.05

to 1.

We first test the pPGS stopping rule with 1 − α = 0.95 and δ = 0, 0.05, 0.10,

and 0.25—the case of δ = 0 corresponds to the pPCS stopping rule. The empirical

PGS is calculated as the proportion of runs for which the procedure makes a δ-

optimal selection relative to the fixed problem instance.
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Figure 3.3: Empirical PGS for the pPGS stopping rules for equal allocation
across two alternatives with common known variance and the reference prior.

The curves in Figure 3.3 show that when the true difference in performances

is slightly greater than δ, the empirical PGS is less than 1 − α, whereas when the

true difference in performances is large, the empirical PGS is above 1 − α. In

other words, for problem instances in which there is only one good alternative,

and it is hard to distinguish between the two alternatives, the procedure is less

likely to make a good selection. While it is unsurprising that a Bayesian pro-

cedure performs worse for these kinds of hard problem instances (frequentist

procedures tend to behave in the same way), it is noteworthy that for a range of

problem instances, the empirical PGS is below 1− α. For a procedure with a fre-

quentist PGS guarantee, on the other hand, the empirical PGS curve would sit

above 1 − α for all problem instances. Figure 3.3 demonstrates how a Bayesian
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Figure 3.4: Empirical EOC for the pEOC stopping rules for equal allocation
across two alternatives with common known variance and the reference prior.

R&S guarantee does not hold for all problem instances. Instead, the average

empirical PGS of a Bayesian R&S procedure—where the average is taken over

the prior distribution—will be above 1 − α.

Figure 3.3 also shows how as δ increases, the empirical PGS curve shifts

downward for problem instances in which the difference in performances is

at least δ. This is explained by the fact that increasing δ causes the procedure

to stop earlier, making the procedure less likely to make a good selection when

there is only one good alternative. The same behavior can be observed for the

empirical PGS of frequentist R&S procedures with PGS guarantees since larger

values of δ tend to correspond to taking fewer observations.
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We also test the equal allocation procedure using the pEOC stopping rule for

β = 0.05, 0.10, and 0.25. For a given problem instance, the empirical EOC was

calculated as the average optimality gap between the selected alternative and

the best. Figure 3.4 shows that for procedures using the pEOC stopping rule

with β = 0.05 and β = 0.10, the empirical EOC exceeds β for a range of problem

instances and is below β when the difference in performances is relatively small

or large. The empirical EOC curve has this shape because for problem instances

in which it is hard to make a correct selection (i.e., those with small differences

in performances), making an incorrect selection is not heavily penalized under

the linear loss function. Even though the procedure has the longest run-lengths

in these problem instances, its empirical EOC is low. On the other hand, for

problem instances in which it is easy to make a correct selection, an incorrect

selection is rare.

3.3.4 Relating Posterior PCS to Frequentist PCS

For the equal allocation procedure using the reference prior, the pPCS of the

alternative with the highest posterior mean has a special relationship to the PCS

of the procedure. In the following discussion, we generalize to the case where

there are k alternatives and assume that there is a unique best alternative.

Consider a procedure that takes n observations from each alternative and

selects the alternative with the highest sample mean. The frequentist PCS of

this procedure is equal to the probability that Alternative [k] has the highest

sample mean. For Alternative i, its sample mean, X̄i, is normally distributed
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with mean wi and variance σ2/n, hence

PCS = Pw(X̄[k] > X̄i for all i , [k])

= Ew

[
Pw(X̄[k] > X̄i for all i , [k] | X̄[k])

]
= Ew

∏
i,[k]

Pw(X̄i ≤ X̄[k] | X̄[k])


=

∫ ∞

−∞

∏
i,[k]

Φ

(
z +

w[k] − wi

σ/
√

n

) φ(z) dz. (3.4)

Recall that under the reference prior, the posterior distribution of Wi is

N(x̄i, σ
2/n). Given n observations from each alternative, the pPCS of the alterna-

tive with the highest posterior mean, Alternative (k), is

pPCS(k) = P(W(k) > Wi for all i , (k) | E)

= E
[
P(W(k) > Wi for all i , (k) | W(k),E) | E

]
= E

∏
i,(k)

P(Wi < W(k) | W(k),E) | E


=

∫ ∞

−∞

∏
i,(k)

Φ

(
z +

x̄(k) − x̄i

σ/
√

n

) φ(z)dz. (3.5)

The only difference between Equations (3.4) and (3.5) is that w[k] − wi is re-

placed by x̄(k) − x̄i. This can be explained by the fact that the posterior distribu-

tion for the problem instance and the distribution of the sample means resemble

each other: both are multivariate normal distributions with the same diagonal

covariance matrix, but one is centered at (w1,w2, . . . ,wk) while the other is cen-

tered at (x̄1, x̄2, . . . , x̄k).

This observation is closely related to the problem of estimating the PCS of

a selection procedure after it has been run (Venter, 1989; Bofinger, 1990; Sohn

and Kang, 1992). For the purposes of this discussion, we put aside concerns
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about the validity or interpretability of such estimates of the PCS; see Bofinger

(1994) for more on this matter. Olkin et al. (1976, 1982) proposed an estimator

for the frequentist PCS that amounts to plugging the sample means into Equa-

tion (3.4); i.e., the estimator is exactly pPCS(k) as in Equation (3.5). Asymptoti-

cally, this estimator coincides with the frequentist PCS, but Faltin and McCul-

loch (1983) found it to be seriously flawed for finite sample sizes. In particular,

they observed that the estimator is biased high when the performances of the

top alternatives are close together and biased low when their performances are

well-separated. When the differences in true performances are small, the sam-

ple means are likely to be more spread out than the true performances, making

the problem instance look easier than it is. Plugging in the differences between

the best sample mean and the others will therefore lead to a high estimated PCS.

This “means-spreading” phenomenon has also been observed for the prob-

lem of estimating the run-time of a given R&S procedure (Ma and Henderson,

2018). A naive approach is to take a preliminary round of simulation replica-

tions from each alternative and then run the R&S procedure using synthetic

observations drawn from a multivariate normal distribution corresponding to

the observed sample means and variances. Ma and Henderson (2018) observed

that the average run-time computed using this approach is biased low because

the sample means tend to be more spread out than the true means. Thus for

especially hard problem instances, e.g., the slippage configuration, the problem

instance looks like one for which the R&S would take fewer observations before

terminating.
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3.4 Checking the pPCS and pPGS Stopping Rules

In this section and the next, we explore ways to improve the computational

efficiency of R&S procedures that deliver Bayesian guarantees via a posterior-

based stopping rule. As mentioned previously, simulation replications can be

allocated in any way without affecting Bayesian guarantees. Instead of study-

ing how best to allocate simulation replications, we concentrate on how best to

check the stopping rule. In particular, we focus on the computational cost of

checking the stopping rule and its impact on the sampling efficiency of a proce-

dure.

For R&S procedures that deliver Bayesian guarantees, two critical decisions

are how frequently to check the stopping rule and how much computational

effort to spend checking it. Together, these choices determine how much time it

takes to run a procedure. At one extreme, one could allocate simulation repli-

cations one at a time and precisely calculate the posterior quantity of interest of

every alternative after every replication. Though this approach would ensure that

the procedure does not take any unnecessary simulation replications, it would

be expensive in terms of the computational overhead. At the other extreme,

simulation replications could be allocated in large batches and a cheap bound

could be calculated for the posterior quantity of interest of (say) only the best-

looking alternative. This approach will be cheaper in terms of overhead, but will

amount to more simulation time. In studying these trade-offs, we will assume

that the time required to run a simulation replication is long enough—perhaps

on the order of tens of seconds—to justify expending some nontrivial amount

of time checking the stopping rule.
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The pPCS and pPGS stopping rules give rise to different computational chal-

lenges than the pEOC stopping rule, so we choose to consider them separately.

Throughout this section and the next, we maintain Assumptions 4–7 and as-

sume that a conjugate prior is used.

Recall that for Alternative i,

pPCSi = P(Wi ≥ W j for all j , i | E) and pPGSi = P(Wi ≥ W j − δ for all j , i | E).

In this section, we focus our discussion on the pPGS and treat the pPCS as a

special case (δ = 0).

Computing pPGSi involves evaluating a k-dimensional integral of the joint

posterior distribution of W1, . . . ,Wk over a polyhedron described by the k − 1

inequalities Wi ≥ W j − δ for j , i. Alternatively, pPGSi can be expressed as

a k − 1-dimensional integral with respect to the positively correlated random

variables W j − Wi for j , i. When the number of alternatives is small (fewer

than 25), both integrals could be evaluated numerically using quadrature, e.g.,

MATLAB’s mvncdf function if the variances are known. As the number of alter-

natives increases, this approach quickly becomes computationally intractable.

Checking the pPGS stopping rule requires frequently computing the pPGS of

one or more alternatives. For problems with even a modest number of alterna-

tives, other methods for evaluating the pPGS of alternatives are necessary. We

explore two: cheaply computable lower bounds and numerical integration of

an equivalent one-dimensional integral.
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3.4.1 Which Alternatives to Evaluate

Given the computational expense of computing the pPGS of an alternative, it

is worthwhile to find ways to reduce the number of alternatives for which the

pPGS must be evaluated to check the stopping rule. This motivates two impor-

tant questions: Which alternatives can have the highest pPGS? Can the highest

pPGS of these alternatives exceed 1 − α?

To answer these questions, we first rule out alternatives that cannot satisfy

the pPGS stopping rule by coming up with a simple upper bound on the pPGS

of alternatives whose posterior means are not within δ of the best. Recall that

the posterior mean of Alternative i is denoted by µi.

Proposition 3. If µi < µ(k) − δ, then pPGSi < 1/2.

Proof. For an Alternative i satisfying µi < µ(k) − δ,

pPGSi = P(Wi ≥ W j − δ for all j , i | E)

≤ P(Wi ≥ W(k) − δ | E)

= P(W(k) −Wi ≤ δ | E) < 1/2,

where the last inequality comes from the fact that W(k) − Wi is symmetrically

distributed with mean µ(k) − µi > δ. �

Proposition 3 implies that only alternatives whose posterior means are

within δ of the best can satisfy the pPGS stopping rule when 1 − α ≥ 1/2. Sim-

ilarly, in this high-confidence setting, only the alternative with the highest pos-

terior mean can satisfy the pPCS stopping rule. Proposition 3 holds even when

Assumptions 6 or 7 do not, since W(k) −Wi is still symmetrically distributed.
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We further reduce the number of alternatives for which we need to calcu-

late the pPGS by identifying sufficient conditions under which the pPGS of an

alternative is greater than that of another. The motivating idea is to use the pos-

terior means and variances of alternatives to construct a quasi-Pareto frontier.

There is then no need to calculate the pPGS of dominated alternatives because

some other alternative has a higher pPGS—if a dominated alternative satisfies

the pPGS stopping rule, so does the alternative that dominates it.

Peng et al. (2016) show that if the posterior means of all alternatives are

equal, the alternative with the highest posterior variance has the highest pPCS;

see Proposition A.2 therein. When trying to select the alternative with the high-

est pPCS, it is also suggested (without proof) that one should favor alternatives

that have high posterior means and variances. Proposition 4 formalizes this

assertion and extends it to the pPGS criterion. Its proof can be found in Ap-

pendix B.1.

Proposition 4. Suppose that the variances are known. For any pair of Alternatives i

and j satisfying µi ≤ µ j − δ/2 and σ̂2
i ≤ σ̂2

j (where at least one inequality is strict),

pPGSi < pPGS j.

When the variances are known, combining Propositions 3 and 4 provides a

method for reducing the number of alternatives for which the pPGS needs to be

evaluated in order to check the pPGS stopping rule:

1. Eliminate from consideration all alternatives whose posterior means are

at least δ below that of Alternative (k).

2. Among the alternatives still in consideration, construct the quasi-Pareto

frontier and eliminate from consideration any dominated alternatives.
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3. For the alternatives still in consideration, evaluate their pPGS.

When the variances are unknown, this method may still be used as a heuris-

tic for eliminating alternatives from consideration. If the alternative with the

highest pPGS is accidentally eliminated from consideration, the procedure may

fail to identify when the pPGS stopping rule is first satisfied. The procedure’s

Bayesian guarantee, however, will not be invalidated. Moreover, since the alter-

native with the highest posterior mean will always remain in consideration, this

method will entail taking no more observations than the approach of tracking

a lower bound on the pPGS of only the alternative with the highest posterior

mean (Branke et al., 2007).

3.4.2 Cheap Lower Bounds

One approach that avoids calculating the pPGS of an alternative is to instead

compute a cheap lower bound for it. Terminating a procedure when this lower

bound exceeds 1−α will still yield a Bayesian guarantee. This approach has the

appeal of cutting down on the overhead, but any slack in the bound will likely

cause the procedure to take additional replications relative to the approach of

exactly calculating the pPGS.

One example of a cheap lower bound on the pPGS follows from Bonferroni’s

inequality:

pPGSi = P(Wi ≥ W j − δ for all j , i | E) ≥ 1 −
∑
j,i

P(Wi < W j − δ | E) =: pPGSBonf
i .

When the variances are unknown, the terms P(Wi < W j − δ | E) for j , i in-

volve the cdf of the difference of two Student t-distributed random variables
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with possibly different degrees of freedom. The approximation of Welch (1938)

can be used to simplify this computation; see Chick and Inoue (2001b) for more

details. The pPGSBonf bound holds even when Assumptions 4–7 do not. In par-

ticular, the bound is still valid when W1, . . . ,Wk are not independent under the

posterior distribution, i.e., when the procedure uses CRN.

Another cheap bound on the pPGS can be derived from Slepian’s inequality

(Slepian, 1962). Although Slepian’s inequality is stated in terms of indepen-

dent normal random variables—which would be the case for W1, . . . ,Wk if the

variances were known—we show in Proposition 5 that it can be applied to al-

ternatives with δ-optimal posterior means when the variances are unknown.

Branke et al. (2007) have used Slepian’s bound on the alternative with the high-

est posterior mean, but we provide a rigorous proof of our more general result

in Appendix B.2.

Proposition 5. For an Alternative i satisfying µi ≥ µ(k) − δ,

pPGSi = P(Wi ≥ W j − δ for all j , i | E) ≥
∏
j,i

P(Wi ≥ W j − δ | E) =: pPGSSlep
i .

The restriction in Proposition 5 to alternatives whose posterior means are

within δ of the best is not a limitation, since Proposition 3 implies that when

1 − α > 1/2, these are the only alternatives for which we need to evaluate the

pPGS.

Whereas the expression for the pPGS deals with the maximum of the k − 1

positively correlated random variables W j − Wi for j , i, the expression for the

pPCSSlep bound resembles the maximum of k − 1 independent random variables.

In this way, Slepian’s inequality ignores the positive correlations and treats the

terms in the pPGS expression as independent, thereby replacing a joint proba-
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bility statement with a product of marginal ones. Peng et al. (2018) claim that

the correlations of W j −Wi for j , i that are ignored by Slepian’s inequality are

unimportant in a high-confidence setting (when 1 − α is close to one) but can

make a difference in a low-confidence setting.

Various Bayesian R&S procedures use the pPGSBonf (Chen et al., 2000) or

pPGSSlep (Chick and Inoue, 2001b) bounds (with δ = 0) to allocate simulation

replications. Other procedures have used these bounds as stopping rules. For

example, the procedure of Gorder and Kolonko (2019) for CRN terminates when

pPGSBonf
(k) first exceeds 1−α while the procedures of Branke et al. (2005, 2007) ter-

minate when pPGSSlep
(k) first exceeds 1 − α.

As an illustration of the potential slack in the pPGSBonf and pPGSSlep bounds,

we consider a slippage configuration of posterior means, i.e., µ(k) = µ j + ∆ for

all j , (k) for some ∆ > 0, with a common posterior variance σ̂2. For this

configuration, pPCS(k) = 1 − α if ∆ = hB

√
2σ̂2 − δ (provided δ is small enough so

that ∆ is positive), where hB(1−α, k) is the 1−α quantile of the maximum of a k−1-

dimensional multivariate normal vector with zero means, unit variances, and

common pairwise correlations of 1/2; see Bechhofer (1954) and Kim and Nelson

(2006b). On the other hand, it can be checked that pPGSBonf
(k) = 1 − (k − 1)Φ(−hB)

and pPGSSlep
(k) = Φ(hB)k−1.

Figure 3.5 shows pPGSBonf
(k) and pPGSSlep

(k) when pPGS(k) = 1 − α = 0.90, 0.95,

and 0.99 for the slippage configuration of posterior means for different numbers

of alternatives. Several trends are evident in Figure 3.5. First, both pPGSBonf
(k)

and pPGSSlep
(k) become less tight as the number of alternatives increases. Second,

the slack in both bounds is greater (in an absolute sense) for values of 1 − α

farther from one. Third, pPGSBonf
(k) appears to be a looser bound than pPGSSlep

(k) ,
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Figure 3.5: pPGSBonf
(k) and pPGSSlep

(k) in a slippage configuration of posterior means
in which pPGS(k) = 1 − α for 1 − α = 0.90, 0.95, and 0.99.

with the difference in the bounds growing with the number of alternatives; for

1 − α = 0.99, the bounds are roughly equivalent.

3.4.3 Numerical Integration

Given the potential slack in the pPGSBonf and pPGSSlep bounds depicted in Fig-

ure 3.5, we return to the challenge of calculating the pPGS in a way that is cheap

to compute and scales well with the number of alternatives. The approach we

take relies on the observation of Peng et al. (2016) that pPGSi can be expressed as
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a one-dimensional integral by conditioning on the performance of Alternative i:

pPGSi = P(Wi ≥ W j − δ for all j , i | E)

= E
[
P(Wi ≥ W j − δ for all j , i | Wi,E) | E

]
= E

∏
j,i

P(W j ≤ Wi + δ | Wi,E) | E


=

∫ ∞

−∞

∏
j,i

FW j |E(w + δ)

 fWi |E(w)dw, (3.6)

where fWi |E(·) and FWi |E(·) are the marginal posterior pdf and cdf of Wi.

The integrand in Equation (3.6) is the product of k − 1 cdfs and a pdf, all of

which are either for normal or Student t-distributed random variables. Equation

(3.6) thereby avoids the need to approximate the difference of two Student t-

distributed random variables with different degrees of freedom, as was the case

for the pPGSBonf and pPGSSlep bounds.

To give a sense of the computational time associated with evaluating Equa-

tion (3.6), we use MATLAB’s integral function to perform the numerical in-

tegration for values of k ranging from 10 to 100000. For each value of k, we

generate 10000 random posterior distributions according to µi ∼ N(0, 25) and

σ̂2
i ∼ ChiSquared(4), independent for all i = 1, . . . , k, and compute the pPGS of

Alternative 1. Table 3.1 reports the average times (according to MATLAB’s tic

and toc functions).

Table 3.1: Computational time to numerically integrate Equation (3.6) for the
pPGS for 10000 random problem instances for different numbers of alternatives.
All times are accurate to within ±0.002 seconds.

Number of Alternatives 10 100 1000 10000 100000
Average Time (seconds) 0.012 0.013 0.018 0.069 0.478

The average times in Table 3.1 suggest that even for fairly large numbers
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of alternatives, the pPGS can be quickly computed. When the number of alter-

natives is small (< 100), it may not be worthwhile to implement the methods

proposed in Section 3.4.1 for reducing the number of alternatives for which the

pPGS is calculated. Depending on the time required to simulate one replication,

numerical integration may be too slow for very large numbers of alternatives

(> 100000), as each evaluation of the pPGS takes at least half a second and will

need to be performed many times on many alternatives. For such large prob-

lems, approximating the pPGS using Monte Carlo integration of Equation (3.6)

may be a viable alternative. We defer our discussion of Monte Carlo methods to

Section 3.7. In Section 3.6, we demonstrate the potential savings in the number

of observations taken from numerically integrating Equation (3.6) in conjunc-

tion with the method presented in Section 3.4.1.

3.5 Checking the pEOC Stopping Rule

Recall that the pEOC of Alternative i is defined as pEOCi = E[W[k] − Wi | E].

Computing pEOCi involves evaluating a k-dimensional integral of the function

W[k] −Wi times the joint posterior pdf of W over a union of half-spaces given by

∪ j,i{W j − Wi ≥ 0}. Repeatedly computing pEOC as a k-dimensional integral is

likely too time-intensive, even for small numbers of alternatives. We present a

sequence of ideas—similar to those in Section 3.4—for efficiently checking the

pEOC stopping rule: identifying which alternatives can have the lowest pEOC

and examining different approaches for evaluating that pEOC.

In contrast to the analysis of the pPGS stopping rule, determining which

alternative has the lowest pEOC is straightforward. Proposition 6 formalizes a
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well-known result.

Proposition 6.

pEOC(k) = min
1≤i≤k

pEOCi.

Proof. For an arbitrary Alternative i,

pEOCi = E[W[k] −Wi | E] = E[W[k] | E] − E[Wi | E].

Since the term E[W[k] | E] is independent of i, the alternative with the highest

posterior mean, Alternative (k), will have the lowest pEOC. �

Proposition 6 implies that to check the pEOC stopping rule, a procedure

needs to compute the pEOC for only the alternative with the highest posterior

mean. The result of Proposition 6 holds regardless of the form of the posterior

distribution, i.e., even when Assumptions 4–7 are not satisfied.

3.5.1 Cheap Upper Bounds

As was the case with the pPGS, computing a cheap upper bound on the pEOC of

an alternative and terminating when it drops below β will result in a procedure

delivering the pEOC guarantee. Branke et al. (2005) provide one such bound,

though their name for it is somewhat of a misnomer:

pEOCi = E[max
j,i

(W j −Wi)+ | E] ≤ E

∑
j,i

(W j −Wi)+ | E


=

∑
j,i

E[(W j −Wi)+ | E] =: pEOCBonf
i .
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The pEOCBonf bounds holds even when Assumptions 4–7 do not, meaning

that it can be applied when CRN are used. Branke et al. (2005) derive approxi-

mations of the terms summed in pEOCBonf
i for the case when variances are un-

known:

E[(W j −Wi)+ | E] ≈
√
σ̂2

j + σ̂2
i Ψν ji

 µi − µ j√
σ̂2

j + σ̂2
i

 , (3.7)

where

ν ji =

(
σ̂2

j + σ̂2
i

)2

(σ̂2
j)2/ν j + (σ̂2

i )2/νi
,

and

Ψν[s] =

∫ ∞

u=s
(u − s)φν(u)du =

ν + s2

ν − 1
φν(s) − sΦν(−s),

and φν(·) and Φν(·) are the pdf and cdf of a Student t-distributed random vari-

able with ν degrees of freedom. Thus Ψν[s] offers a closed-form expression for

E[X − s]+ where X is a Student t-distributed random variable with ν degrees of

freedom.

By expressing the pEOC in terms of an integral of the pPGS, we present an

upper bound on the pEOC derived from Slepian’s inequality that is—to the best

of our knowledge—the first of its kind. Our approach uses the fact that the

expected value of the nonnegative random variable W[k] − Wi can be written as

an integral over its complementary cdf:

pEOCi = E[W[k] −Wi | E]

=

∫ ∞

0
P(W[k] −Wi > δ | E) dδ

=

∫ ∞

0
P(Wi < W j − δ for some j , i | E) dδ

=

∫ ∞

0

[
1 − P(Wi ≥ W j − δ for all j , i | E)

]
dδ

=

∫ ∞

0

[
1 − pPGSi

]
dδ, (3.8)
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where pPGSi is implicitly a function of δ. Proposition 5 implies that for the

alternative with the highest posterior mean, pPGS(k) ≥ pPGSSlep
(k) for all δ ≥ 0.

Substituting the definition of pPGSSlep
(k) into Equation (3.8) gives

pEOC(k) ≤

∫ ∞

0
[1−pPGSSlep

(k) ] dδ =

∫ ∞

0

1 −∏
j,(k)

P(W(k) ≥ W j − δ | E)

 dδ =: pEOCSlep
(k) .

The integrand in pEOCSlep
(k) contains a product of k − 1 cdfs and should there-

fore take roughly as long to numerically integrate as Equation (3.6). One minor

difference is that the cdfs in pEOCSlep
(k) deal with the difference of two normal or

Student t-distributed random variables, necessitating some form of analytical

(e.g., Welch 1938) or numerical approximation when the variances are unknown

and the sample sizes are unequal. In contrast, the cdfs in Equation (3.6) are for

normal or Student t-distributed random variables.

To illustrate the potential slack in the pEOCBonf
(k) and pEOCSlep

(k) bounds, we

again take the approach of evaluating them for slippage configurations of pos-

terior means with a common posterior variance. We use a line search to identify

the spacing of posterior means for which pEOC(k) = β for the settings of β = 0.05,

0.1, and 0.25 and compute pEOCBonf
(k) and pEOCSlep

(k) for the posterior distributions.

Figure 3.6 shows that the tightness of both bounds deteriorates as the number

of alternatives increases, with the pEOCBonf
(k) bound faring worse. The quality

of the bounds also appears to suffer for larger values of β. In many instances,

the absolute error of these bounds is several times larger than the true value

of pEOC(k), suggesting that the use of these conservative bounds as surrogates

for pEOC(k) may cause a procedure to take significantly more replications than

are necessary to deliver the pEOC guarantee. This conjecture is borne out in the

experimental results of Section 3.6.
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Figure 3.6: pEOCBonf
(k) and pEOCSlep

(k) in a slippage configuration of posterior means
in which pEOC(k) = β for β = 0.05, 0.10, and 0.25.

3.5.2 Numerical Integration

We now turn our attention to ways to compute the pEOC without resorting to

evaluating a k-dimensional integral. The proof of Proposition 6 indicates that

one way to compute pEOCi is to calculate E[W[k] | E] and then subtract the pos-

terior mean E[Wi | E] = µi. Under the posterior distribution, the pdf of W[k] is

given by fW[k] |E(w) =
∑k

i=1 fWi |E(w)
∏

j,i FW j |E(w). One can thus calculate

E[W[k]|E] =

∫ ∞

−∞

w
k∑

i=1

fWi |E(w)
∏
j,i

FW j |E(w) dw

=

k∑
i=1

∫ ∞

−∞

w

∏
j,i

FW j |E(w)

 fWi |E(w) dw. (3.9)
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Each of the k integrals in Equation (3.9) resembles that of Equation (3.6) with

δ = 0 and an extra w multiplied in the integrand. We evaluate Equation (3.9)

for the same experimental setup of random problem instances and report the

timing results in Table 3.2. Unsurprisingly, the computational times are roughly

equivalent to k times the computational times in Table 3.1. For more than a

modest number of alternatives, numerically integrating Equation (3.9) becomes

too expensive for the purposes of checking the pEOC stopping rule.

Table 3.2: Computational time to numerically integrate Equation (3.9) for the
pEOC for 10000 random problem instances for different numbers of alterna-
tives. All times are accurate to within ±0.05 seconds.

Number of Alternatives 10 100 1000
Average Time (seconds) 0.12 1.314 18.54

Another approach to computing pEOCi is to substitute Equation (3.6) for

pPGSi into Equation (3.8) to yield a two-dimensional integral:

pEOCi =

∫ ∞

0

1 − ∫ ∞

−∞

∏
j,i

FW j |E(w + δ)

 fWi |E(w) dw

 dδ

=

∫ ∞

0

∫ ∞

−∞

1 −∏
j,i

FW j |E(w + δ)

 fWi |E(w) dw dδ. (3.10)

Table 3.3: Computational time to numerically integrate Equation (3.10) for the
pEOC for 1000 random problem instances for different numbers of alternatives.
All times are accurate to within ±0.05 seconds.

Number of Alternatives 10 100 1000
Average Time (seconds) 2.27 2.88 5.17

Table 3.3 shows that the computational time for evaluating Equation (3.10)

scales better with k than does evaluating Equation (3.9), but for small numbers

of alternatives it is more intensive.
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3.6 Experimental Results

In this section, simulation experiments give a sense of the potential savings from

using the methods proposed in Sections 3.4 and 3.5 to exactly check the pPGS

and pEOC stopping rules. As mentioned earlier, there is a tradeoff between the

the computational time spent checking the stopping rule and the total number

of observations taken by a procedure. In the following experiments, we report

the total number of observations taken by a procedure. Overall savings in terms

of a procedure’s run-time can be worked out by comparing the computational

times reported in Sections 3.4 and 3.5—along with the frequency with which the

stopping rule is checked—to the time required to generate a simulation replica-

tion and the number of observations taken.

Let Nnew be the (random) number of observations taken by a procedure us-

ing the methods described in Sections 3.4 and 3.5. For comparison, we use the

approach of Branke et al. (2007) for checking the stopping rules: terminating

when pPGSSlep
(k) ≥ 1 − α or terminating when pEOCBonf

(k) ≤ β; let Nstandard be the cor-

responding number of observations taken. Because of the slack in the pPGSSlep

and pEOCBonf bounds, Nnew ≤ Nstandard almost surely.

The run-lengths of a given procedure can vary greatly from run to run and

from problem to problem. To facilitate meaningful comparisons across different

procedures and settings, we consider the relative (as opposed to the absolute)

difference in the number of observations taken by a procedure when using the

aforementioned approaches. That is, we let (Nstandard − Nnew)/Nstandard represent

the fractional savings from exactly checking the stopping rule. The distribution

of (Nstandard − Nnew)/Nstandard describes the savings that can occur from run to run
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with the average fractional savings being a useful summary statistic.

We test the proposed methods on three allocation rules: equal alloca-

tion (EA), Thompson sampling (TS), and optimal computing budget allocation

(OCBA). While EA can be inefficient—it continues to sample alternatives that

are clearly inferior—it provides a baseline for potential savings. The TS rule

allocates the next simulation replication in proportion to the pPCS of each al-

ternative. This can be achieved by generating a random problem instance from

the posterior distribution and choosing to take the next simulation replication

from the alternative with the highest performance. For the pPGS stopping rule,

the OCBA rule chooses the alternative that would yield the highest value of

pPGSSlep
(k) if an extra observation were taken from it and the posterior mean were

unchanged. Likewise, for the pEOC stopping rule, the OCBA rule chooses the

alternative that would yield the lowest value of pEOCBonf
(k) ; see Branke et al. (2007)

for full details. We run the Thompson sampling and OCBA rules fully sequen-

tially, i.e., taking one observation at a time, and check the stopping rule after

every allocation decision.

To speed up the numerical experiments, we use a conditional Monte Carlo

method referred to as splitting (Asmussen and Glynn, 2007). On a given

macroreplication of a procedure, the stopping rule that uses the exact pPGS or

pEOC will be satisfied before the stopping rule that uses the pPGSSlep
(k) or pEOCBonf

(k)

bounds. When the exact stopping condition is met, we record the observations

collected by that time. We then split the macroreplication by generating s inde-

pendent realizations of the rest of the procedure that each run until the pPGSSlep
(k)

or pEOCBonf
(k) stopping condition is met. In this way, one macroreplication yields

s observations of the fractional savings. While this method is not guaranteed to
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reduce the variance of the Monte Carlo estimator of the average fractional sav-

ings, it allows us to quickly generate identically distributed (albeit dependent)

observations of the fractional savings. In our experiments, we run m = 100

macroreplications of the procedures with s = 50 splits for a total of 5000 obser-

vations of the fractional savings. These observations are plotted in histograms

to illustrate the distribution of the fractional savings.

In our experiments, we test the procedures on a fixed problem instance with

k = 50 alternatives whose performances are in a slippage configuration with a

spacing of w[k] − wi = 1 for all i , [k]. Admittedly, the slippage configuration

is unlikely to arise in practice. It does however offer an indication of the great-

est savings from exactly checking the stopping rule because of the slack of the

pPGSSlep
(k) or pEOCBonf

(k) bounds in this configuration. We chose the values of δ = 1,

1 − α = 0.90 and β = 0.25.

Figures 3.7, 3.8, and 3.9 show the fractional savings from exactly checking

the pPGS stopping rule when using the different allocation rules. In Figure 3.7,

we see that the potential savings when using the EA rule are greater than those

when using more sophisticated allocations. This can be explained by the fact

that failing to stop as soon as possible incurs a cost of at least k additional obser-

vations. While the average fractional savings for the TS and OCBA rules seem

modest (≈ 5%), the histograms in Figures 3.8 and 3.9 show that the upper tails

of the fractional savings exceeds 10% for a nontrivial proportion of runs.

Figures 3.10, 3.11, and 3.12 show the fractional savings from exactly check-

ing the pEOC stopping rule. Compared to the experiments for the pPGS stop-

ping rule, the average fractional savings for the pEOC stopping rule are roughly

three times greater. This observation is likely explained by the looseness of the
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Figure 3.7: Histogram of fraction savings for equal allocation for the pPGS stop-
ping rule with 1−α = 0.90 in a slippage configuration. Average fraction savings
are 13.55% with 95% CI [11.59%, 15.50%].

Figure 3.8: Histogram of fraction savings for Thompson sampling for the pPGS
stopping rule with 1 − α = 0.90 in a slippage configuration. Average fraction
savings are 6.44% with 95% CI [5.08%, 7.81%].
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Figure 3.9: Histogram of fraction savings for OCBA for the pPGS stopping rule
with 1−α = 0.90 in a slippage configuration. Average fraction savings are 4.45%
with 95% CI [3.15%, 5.75%].

pEOCBonf
(k) bound, as depicted in Figure 3.6. Figure 3.10 for the EA rule shows the

potential for three- and four-fold savings in the number of observations just by

exactly evaluating pEOC instead of the pEOCBonf
(k) bound. The fractional savings

for the TS or OCBA rules likewise have the potential for significant savings.

3.7 Conclusion

In this chapter, we study R&S procedures that deliver Bayesian guarantees by

tracking a posterior quantity of interest—such as the pPGS or pEOC—and termi-

nating when it has crossed a threshold. We discuss interpretations of Bayesian

R&S guarantees and how they differ from frequentist guarantees, both in terms

of their empirical performance and their efficacy in a variety of decision-making

98



Figure 3.10: Histogram of fraction savings for equal allocation for the pEOC
stopping rule with β = 0.25 in a slippage configuration. Average fraction savings
are 36.10% with 95% CI [33.14%, 39.06%].

Figure 3.11: Histogram of fraction savings for Thompson sampling for the
pEOC stopping rule with β = 0.25 in a slippage configuration. Average frac-
tion savings are 18.59% with 95% CI [16.68%, 20.49%].
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Figure 3.12: Histogram of fraction savings for OCBA for the pEOC stopping rule
with β = 0.25 in a slippage configuration. Average fraction savings are 14.65%
with 95% CI [13.18%, 16.13%].

settings. We also call attention to the negative consequences of the pPCS guar-

antee, namely its tendency to cause a procedure to incur long run-lengths for

little gain in performance.

A crucial consideration in running a Bayesian R&S procedure is how to

check the stopping rule. For the pPGS stopping rule, we devise several methods

for restricting attention to a small set of alternatives that could satisfy the stop-

ping rule. We also investigate ways to exactly compute the pPGS and pEOC of an

alternative and demonstrate the looseness of cheap bounds on these quantities

for problems with large numbers of alternatives. Numerical experiments indi-

cate that implementing these methods can translate into savings in the number

of simulation replications a procedure takes. While savings in random problem

instances tend to be modest, they can be large on occasion, with the pEOC stop-

ping rule showing greater potential savings. Depending on the time needed to

100



generate a simulation replication, even a small reduction in the number of sim-

ulation replications can translate to a meaningful reduction in the run time of a

procedure.

In future work, we hope to explore the potential for using Monte Carlo meth-

ods to “pre-check” stopping rules. Specifically, only when a Monte Carlo esti-

mate of the pPGS or pEOC crosses the desired threshold does one use numerical

integration to exactly evaluate the posterior quantity of interest and check the

stopping rule. A straightforward application of Monte Carlo methods would

be to generate random problem instances from the posterior distribution of W

and average the estimates 1{Wi ≥ W[k] − δ} for pPGSi and W[k] −Wi for pEOCi. The

variances of these Monte Carlo estimators may be further reduced by using con-

ditional Monte Carlo schemes that exploit properties of elliptical distributions

to estimate integrals over intersections or unions of half-spaces (Jian and Hen-

derson, 2017; Ahn and Kim, 2018). Alternatively, Monte Carlo integration could

be used to estimate the one- and two-dimensional integrals in Equations (3.6),

(3.9), and (3.10).

As R&S methods have come to be used to tackle problems with thousands

of alternatives, an area of active research is the design of parallelizable proce-

dures. Bayesian procedures naturally require some degree of synchronization

to compute posterior quantities of interest given the most current data. While it

makes sense to run simulation replications in parallel across processors, we see

little benefit from parallelizing the operation of checking a stopping rule.

Subset selection is a related R&S approach wherein a procedure returns a

subset of alternatives from which the decision-maker can make a final decision

based on secondary performance measures or other factors. Natural analogs
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to the pPCS and pPGS criteria are the posterior probabilities that a given sub-

set contains an optimal or δ-optimal alternative. In this setting, a procedure

may take observations until it can identify a fixed-size subset of alternatives for

which the relevant posterior probability exceeds 1 − α. A procedure can oth-

erwise terminate at any time and then identify a subset (of uncontrolled size)

satisfying the guarantee. An interesting, open question is how to identify the

smallest subset of alternatives for which the posterior probability that it con-

tains a δ-optimal alternative is at least 1 − α.
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CHAPTER 4

REUSING SEARCH DATA IN RANKING AND SELECTION

The majority of this chapter appeared as Eckman and Henderson (2018).

4.1 Introduction

Real-world simulation optimization problems often feature a large, possibly un-

countable, number of systems and a limited computational budget with which

to evaluate them. To have any hope of tackling such problems, practitioners

must restrict their attention to evaluating only a subset of systems. In the ab-

sence of structural information about the objective function, candidate systems

are usually identified via sampling or search.

Whereas sampling methods, e.g., random sampling, Latin hypercube sam-

pling, and orthogonal designs, determine a set of candidate systems without

regard to observed performance, search methods move from system to system,

taking replications and using the observed performance of explored systems to

identify the next system to evaluate. As a result, search methods are expected to

return better systems than sampling. Search methods used in simulation opti-

mization problems range from the naive, e.g., random search, to more advanced

methods combined with optimization, e.g., stochastic approximation, sample

average approximation; see, for example, Chapters 18, 20, and 21 of Henderson

and Nelson (2006) and Chapters 10, 11, and 12 of Fu (2015) for more discussion.

As pointed out by Boesel et al. (2003b), heuristic search methods, e.g., sim-

ulated annealing, Nelder-Mead, and tabu search, do not typically guarantee

convergence to the globally optimal system, and procedures with guarantees of
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converging to a local optimum often require the simulation budget to approach

infinity. In either case, no finite-time guarantee is made with respect to identi-

fying the best system among those explored. To obtain a statistical guarantee of

this kind, ranking-and-selection (R&S) procedures can be applied on the set of

candidate systems (Boesel et al., 2003b).

R&S procedures have been embedded within various search methods to pro-

vide some degree of statistical control at each iteration of the search; examples

include nested partitions (Olafsson, 1999), simulated annealing (Ahmed and

Alkhamis, 2002), and pattern search (Sriver et al., 2009), all of which do not

reuse past replications. In contrast, Boesel et al. (2003a,b) examine how R&S

procedures can be applied on a database of explored systems to “clean up” af-

ter search. Boesel et al. (2003a) outline how simulation optimization software

can be configured to permit R&S after search while Boesel et al. (2003b) further

elucidate selection and subset-selection procedures that reuse replications taken

during a heuristic search. The procedures give guarantees on the probability

of correct selection for instances in which the configuration of the returned sys-

tems is in the preference zone, i.e., the best system is at least δ better than the

others.

It is enticing to reuse the replications gathered during a search as input to

a R&S procedure, especially when generating simulation replications is com-

putationally expensive. Nevertheless, search data violates one of the key as-

sumptions of most R&S procedures: that replications are independent within

and across systems. More specifically, since the identities of new systems de-

pend on the observed performance of previously explored systems, the replica-

tions taken during search are conditionally dependent given the sequence of returned
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systems. This conditional dependence causes issues when attempting to make

guarantees conditional on the output of a search.

Even though this dependence issue may be known to the R&S commu-

nity, existing procedures that reuse search data are not designed to address it.

Through simulation experiments, we demonstrate how this dependence can un-

dermine the guarantees of R&S procedures that reuse search data. For practical

simulation optimization problems, we find that the dependence in the search

data likely does not lead to violated guarantees for such procedures. However,

this conclusion is a result of the conservative inequalities used in the design of

the procedures, and not of any focused effort to account for the dependence of

the search data.

Similar issues will arise for other applications of R&S procedures in which

search data is reused. In this setting, a notable R&S procedure that reuses previ-

ously collected replications is Sequential Selection with Memory (SSM) (Pichit-

lamken et al., 2006). SSM provides a guarantee on the probability of selecting the

best candidate system in a given search iteration and has been applied within

random search (Pichitlamken et al., 2006) and nested partitions for discrete opti-

mization (Pichitlamken and Nelson, 2003). See Pichitlamken and Nelson (2001)

for an earlier presentation of SSM.

Hong and Nelson (2007) address a related setting in which systems are re-

vealed in batches by a generic “system-generating algorithm” that can be con-

sidered a search. In this framework, selection decisions are made at each itera-

tion and early selection decisions are intended to direct the search in identifying

new systems. In making each selection decision, the proposed procedures reuse

the replications of systems returned in earlier batches. These procedures pro-
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vide guarantees over the selection decisions at each search iteration as well as

an overall guarantee on the system ultimately selected.

The remainder of this chapter is outlined as follows. In Section 4.2, we rig-

orously define the types of guarantees that arise from applying R&S after sam-

pling or search and discuss conditions under which these guarantees hold. In

the process, we explain why guarantees based on the indifference-zone formu-

lation are unsatisfactory. In Section 4.3, we present a search-like method, called

Adversarial Search, in which an adversary introduces new systems in a way that

exploits the conditional dependence of search data. In Section 4.4, we test sev-

eral selection and subset-selection procedures that reuse the replications taken

by Adversarial Search. We also test a subset-selection procedure that reuses

data from a more-realistic search. In Section 4.5, we summarize our findings

and outline open research questions.

4.2 R&S after Sampling or Search

We consider the optimization problem maxx∈Θ µ(x) where Θ is a space of systems,

presumably large, and µ : Θ 7→ R is an objective function. Here x represents a

vector of decision variables, e.g., simulation parameters, and is henceforth re-

ferred to as a system. In keeping with convention, we use x when the identity of

a system is fixed and X when it is a random variable. At a given system x, the ob-

jective function can only be estimated from noisy replications Y j(x), j = 1, 2, . . .,

satisfying µ(x) = E[Y j(x)]. We further assume that the replications are of the

form Y j(x) = µ(x) + σ(x)ξ j where σ(x) represents the variability at system x and

the random error terms ξ j ∼ N(0, 1) are independent and identically distributed
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(i.i.d.). In this chapter, we consider only R&S procedures for which the random

error terms ξ j are independent across systems. In Section 4.5, we briefly mention

how our results can be extended to R&S procedures that make use of common

random numbers.

4.2.1 Sampling vs. Search

We use the term sampling to describe methods that choose systems X1, . . . , Xk ∈

Θ without the need to take any replications, where k is specified in advance

by the decision-maker. More precisely, sampling methods are of the form Xi ∈

mFi−1, i.e., Xi is measurable w.r.t. Fi−1, for i = 1, . . . , k, where Fi−1 is the sigma-

field generated by {X1, . . . , Xi−1,U0, . . .Ui−1} (all information obtained just prior to

the identification of system Xi) and Ui−1 represents an (optional) random input

associated with identifying system Xi. In other words, each system returned

by a sampling method is a deterministic function of the sequence of previously

returned systems and the random inputs used to identify them.

In contrast, we define search methods to be those that on the ith iteration

take n0i replications of a system Xi and identify the (i + 1)st system based

on these replications and those of previously explored systems. More pre-

cisely, let Y(Xi) :=
[
Y1(Xi), . . . ,Yn0i(Xi)

]T be the vector of n0i replications of sys-

tem Xi and let Ȳ(Xi) := (n0i)−1 ∑n0i
j=1 Y j(Xi) denote the sample mean of these repli-

cations; thus Ȳ(Xi) is a conditionally unbiased estimator of g(Xi) conditioned

on Xi. Then search methods are of the form Xi ∈ mGi−1, i.e., Xi is measure-

able w.r.t. Gi−1, for i = 1, . . . , k, where Gi−1 is the sigma-field generated by

{X1, . . . , Xi−1,Y(X1), . . . ,Y(Xi−1),U0, . . . ,Ui−1}. By containing all of the search data

107



Y(X1), . . . ,Y(Xi−1), the sigma-field Gi−1 is very general; all of the search methods

we consider use only the sample means Ȳ(X1), . . . , Ȳ(Xi−1).

By using the replications Y(X1), . . . ,Y(Xi−1) to choose system Xi, search meth-

ods may return better systems than sampling methods. However, this improve-

ment in the quality of returned systems comes at a cost: the replications taken

during search are dependent. In particular, because the identity of a new sys-

tem is dependent on the observed performance—and not just the identities—of

previously explored systems, the search data are conditionally dependent given the

sequence of returned systems.

To help illustrate this dependence, consider a small example in which only

two systems X1 and X2 are returned by a search. Their replications are

Y j(X1) = µ(X1) + σ(X1)ξ1 j for j = 1, . . . , n01,

Y`(X2) = µ(X2) + σ(X2)ξ2` for ` = 1, . . . , n02,

where ξi j denotes the random error term of the jth replication of the ith returned

system. Although the random error terms ξ1 j and ξ2` are independent for all j

and `, the replications Y j(X1) and Y`(X2) are dependent because the identity of

the second system X2 depends—through the search—on the identity of the first

system X1 and its replications Y(X1). Furthermore, when we condition on the

identities of the returned systems, i.e., the event {X1 = x1, X2 = x2}, the fact that

X2 = x2 provides information about the replications Y j(X1) and the error terms

ξ1 j, j = 1, . . . , n01. Because of this information about the observed performance of

system X1, the replications Y1(X1), . . . ,Yn01(X1) are conditionally dependent given

the sequence of returned systems. We will discuss in Section 4.2.4 how this

conditional dependence can affect the guarantees of R&S procedures that reuse

search data.
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In the preceding argument, by comparing the replications of systems X1 and

X2, we implicitly assumed knowledge of the order in which the systems were

returned by the search. While this information is often available in practice,

we argue that knowledge of the order of returned systems is not necessary for

search data to be conditionally dependent. That is, if the returned systems were

randomly permuted after the search, so that their initial ordering was no longer

known, the search data would still be dependent conditioned only on the iden-

tities of the returned systems. As justification for this claim, all of the R&S

procedures tested in this chapter—and almost all R&S procedures in general—

are invariant under permutation, i.e., they make the same selection decisions

regardless of the order in which the systems are labeled. Our experimental re-

sults for these procedures when reusing search data (see Section 4.4) show lower

probabilities of correct and good selection compared to the case of independent

data.

4.2.2 Guarantees of R&S Procedures

We introduce notation necessary for describing aspects of R&S procedures. Let

X := {x1, . . . , xk} ⊆ Θ denote a fixed set of systems and define the vectors µ :=

[µ(x1), . . . , µ(xk)]T and Σ := [σ2(x1), . . . , σ2(xk)]T . Thus µ and Σ are the means and

variances, respectively, of the normal distributions from which replications of

systems x1, . . . , xk are drawn. Let x[i] denote the ith system when the systems

are ordered by the objective function µ, i.e., µ(x[1]) ≤ µ(x[2]) ≤ · · · ≤ µ(x[k]). We

assume that larger objective function values are better, hence system x[k] is (one

of) the best.
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The vector µ is referred to as the configuration of the systems. Under the

indifference-zone formulation of Bechhofer (1954), the decision-maker specifies

a parameter δ > 0 that partitions the space of configurations into the preference

zone and the indifference zone. The preference zone is defined as PZ(δ) := {µ :

µ(x[k])−µ(x[k−1]) ≥ δ} and the indifference zone IZ(δ) is defined as its complement.

We consider two kinds of R&S procedures: selection and subset-selection

procedures. Selection procedures ultimately select a single system, denoted xK ,

whereas subset-selection procedures return a subset of systems I ⊆ X. Under

both approaches, guarantees are defined with respect to the events of correct

selection (CS), i.e., selecting or preserving the best system, and good selection

(GS), i.e., selecting or preserving a system whose performance is strictly within

δ of the best. For selection procedures, we define correct and good selections

as CS := {µ(xK) = µ(x[k])} and GS := {µ(xK) ≥ µ(x[k]) − δ}. For subset-selection

procedures, we likewise define correct and good selections as CS := {x[k] ∈ I}

and GS := {∃x ∈ I s.t. µ(x) > µ(x[k]) − δ}.

R&S procedures often give guarantees on the probability of correct selection

(PCS) based on the indifference-zone formulation:

P(µ,Σ)(CS) ≥ 1 − α for all µ ∈ PZ(δ), (4.1)

for 1/k < 1 − α < 1 where P(µ,Σ) is the probability measure with respect to the

normal distributions specified by the elements of µ and Σ. That is, for any con-

figuration in the preference zone, the R&S procedure guarantees a lower bound

on PCS. Some procedures also give guarantees on the probability of good selec-

tion (PGS) (Bechhofer, 1954; Dudewicz and Dalal, 1975; Rinott, 1978), regardless

of whether the configuration is in the preference zone:

P(µ,Σ)(GS) ≥ 1 − α for all µ. (4.2)
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Guarantee (4.2) implies Guarantee (4.1) because in PZ(δ) the only good system

is the best system.

4.2.3 PGS and PCS Guarantees after Sampling or Search

In the R&S literature, the set of systems under consideration is usually fixed in

advance, as in Section 4.2.2. We consider extensions of Guarantees (4.1) and (4.2)

to instances in which the set of systems X—and hence the configuration µ—is

not fixed, but is instead random, namely, the output of a sampling or search

method. We first ask the motivating question: what are meaningful guarantees

on PGS and PCS when a R&S procedure R is run after an arbitrary sampling or

search method S identifies a set of candidate systems?

For PGS, one might be interested in the guarantee that for an instance of the

combined procedure S + R, a good selection is made with probability ≥ 1 − α,

i.e.,

P(GS after S) ≥ 1 − α. (4.3)

Guarantee (4.3) is particularly relevant in practical problems for which the com-

bined procedure S + R is run only once. In contrast to P(µ,Σ), the probability

measure P in Guarantee (4.3) is defined with respect to the replications taken by

R and the replications and random inputs of S; hence we will refer to Guarantee

(4.3) as an “overall” guarantee.

The analogous overall PCS guarantee is given by

P(CS after S | µ(X) ∈ PZ(δ)) ≥ 1 − α, (4.4)

where µ(X) denotes the configuration of the random set of returned systems X.
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Guarantee (4.4) is restrictive in the sense that it is only over instances in which

the configuration of the returned systems is in the preference zone. When using

search methods on practical problems, this is likely a rare event because search

methods typically return systems with similar performance as they approach a

local optimum. This is especially the case for problems in which the space of

systems and the objective function are continuous. Furthermore, the decision-

maker has little control over whether a search returns a configuration in PZ(δ)

and no way of verifying this event with certainty. For these reasons, we strongly

believe that PCS guarantees based on the indifference-zone assumption are in-

appropriate for the setting of R&S after search.

Guarantees (4.3) and (4.4) appear to be difficult to prove directly, the main

obstacle being the probability measure P. Whereas the probability measure P(µ,Σ)

of Guarantees (4.1) and (4.2) is specific to the set of systems, P is defined on

a greatly enlarged probability space. Proving statements involving P may re-

quire knowledge of the likelihood that S returns an arbitrary set of systems—

knowledge that is unavailable to us.

A more promising approach to proving Guarantees (4.3) and (4.4) is to con-

dition on the set of returned systems X. This yields the conditional guarantees

P(GS after S | X) ≥ 1 − α for all X, (4.5)

P(CS after S | X) ≥ 1 − α for all X s.t. µ(X) ∈ PZ(δ). (4.6)

By the law of total expectation, Guarantees (4.5) and (4.6) imply Guarantees (4.3)

and (4.4), respectively. Conditioning on the set of systems X has the advantage

of fixing the distribution of the replications taken byR. Therefore the probability

measure in Guarantees (4.5) and (4.6) more closely resembles P(µ,Σ) of Guarantees

(4.1) and (4.2).
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Proposition 7 makes use of this observation to establish conditions under

which Guarantee (4.5)—and hence Guarantee (4.3)—follows from Guarantee

(4.2). An analogous result for the PCS guarantees follows from the same proof.

Although Proposition 7 is trivial to prove, it is important because it shows how

R&S procedures can be used safely after sampling or search.

Proposition 7. Suppose that a R&S procedure R takes as input a random set of systems

X returned by a sampling or search method S, where X contains a fixed number of

systems. If R does not reuse any replications taken by S, but instead takes its own

(new) replications and guarantees

P(µ,Σ)(GS) ≥ 1 − α for all µ,

then

P(GS after S | X) ≥ 1 − α for all X.

Proof. After running S, the set of returned systems X is fixed. Therefore the

replications taken by R are drawn from fixed distributions parameterized by

the mean vector µ(X) and variance vector Σ(X). It follows that for all X,

P(GS after S | X) = P(µ(X),Σ(X))(GS) ≥ 1 − α.

�

An obvious deficiency of Proposition 7 is that R does not use any of the

replications taken by S. When S is a sampling method, any replications that

may have been collected during S can in fact be reused in R without affect-

ing Guarantees (4.5) and (4.6) since, conditional on the set of returned systems,

these replications are statistically identical to those taken by R, namely, i.i.d. and

independent across systems. The more complicated case of reusing replications

when S is a search method is discussed in the next section.
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4.2.4 Reusing Search Replications

Reusing search data in a R&S procedure is desirable since computational effort

has already been expended to generate them. For example, in parallel comput-

ing environments, great efficiency can be gained by having processors commu-

nicate the observed performance of explored systems to other processors to help

with screening and search.

When a R&S procedure reuses search replications, Guarantees (4.5) and (4.6)

are harder to prove directly because the selection decisions now depend on the

data Y(X1), . . . ,Y(Xk), replications we have shown to be dependent. A potential

approach to proving Guarantees (4.5) and (4.6) is to further condition on Gk,

i.e., the sigma-field generated by the sequence of returned systems, the search

replications, and the random inputs used to identify the returned systems. Con-

ditioning on Gk simplifies the probability measure over the selection decisions.

However, this approach also runs into a major problem: guarantees conditional

on Gk will not hold in the almost-sure sense for any fixed R&S procedure that

takes a finite number of samples. For sets in Gk corresponding to realizations

of the search in which the good systems perform poorly, the resulting PCS and

PGS will be reduced. As normal random variables, the sample means of the

good systems can be made arbitrarily negative. Thus the corresponding PCS

and PGS can almost always be made arbitrarily small, so that eventually their

guarantees are violated.

With no apparent approach to directly prove Guarantees (4.5) and (4.6), it

is natural to wonder if they in fact hold for existing R&S procedures that reuse

search data. To address this question, we attempt to find instances of optimiza-

tion problems and searches for which Guarantees (4.3) and (4.4) are violated,
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thereby implying that Guarantees (4.5) and (4.6) are violated.

4.3 Adversarial Search

We present a search-like method, Adversarial Search (AS), that is designed to

exploit the dependence of the search data in a way that misleads R&S proce-

dures. AS is designed to amplify the difficulties in ensuring Guarantees (4.3)

and (4.4) in a contrived manner. Later we will do the same for a more-realistic

search procedure.

A detailed description of AS is given in Algorithm 1. In short, AS introduces

a δ-better system (relative to the current best) when the best system thus far

looks best, i.e., has the highest sample mean, and a δ-worse system otherwise.

Algorithm 1: Adversarial Search (AS)
Data: An integer k > 1 and initial system X1 (either fixed or random).
Result: A sequence of systems X2, . . . , Xk.
Take replications Y j(X1), j = 1, . . . , n01, and calculate Ȳ(X1);
i∗true ← 1 (index of system with highest true performance µ(Xi));
i∗obs ← 1 (index of system with highest observed mean Ȳ(Xi));
for i← 2 to k do

if i∗obs = i∗true then
Introduce a system Xi s.t. µ(Xi) = µ(Xi∗true

) + δ;
i∗true ← i;

else
Introduce a system Xi s.t. µ(Xi) = µ(Xi∗true

) − δ;
end
Take replications Y j(Xi), j = 1, . . . , n0i, and calculate Ȳ(Xi);
if Ȳ(Xi) > Ȳ(Xi∗obs

) then
i∗obs ← i;

end
end

The intuition behind AS is as follows. When the best system thus far has
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the highest observed performance, AS introduces a new best system, thereby

leaving the previous best system as a tough competitor. And when the best

system thus far does not have the highest observed performance, systems that

are δ worse than the best system are introduced, thereby leaving the best system

as a weak competitor. In this way, AS attempts to return configurations with

search data for which the best system does not look best.

Every set of systems returned by AS has a unique best system that is at least

δ better than all of the others, i.e., µ(X) ∈ PZ(δ) for every X. Therefore the events

of correct selection and good selection are equivalent—as are Guarantees (4.3)

and (4.4)—when applying a R&S procedure after AS.

We call AS a “search-like” method because it relies on two unworkable as-

sumptions that are beyond our formal definition of search: (i) a sufficiently large

space of systems from which to draw systems of a given performance and (ii)

knowledge of the objective function. Although AS does not satisfy our defi-

nition of search, it can serve as a near-worst-case benchmark for testing if the

guarantees of R&S procedures reusing search data are robust to all optimization

problems and all search methods. This claim is justified by the observation that

there exist instances of optimization problems and search methods that behave

exactly the same as AS.

To demonstrate, consider an example in which there are four systems in Θ.

Without loss of generality, let them be labeled 1, 2, 3, and 4 with performances

µ(1) = 0, µ(2) = 0, µ(3) = δ and µ(4) = 2δ. Suppose that the simulation budget

allows only three of the four systems to be evaluated, i.e., k = 3. We consider

a particular search method over these four systems. First, Systems 2 and 3 are

evaluated by taking n02 and n03 samples, respectively. If System 2 has a higher
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sample mean, System 1 is next evaluated by taking n01 samples, and if System 3

has a higher sample mean, System 4 is next evaluated by taking n04 replications.

One possible reasoning for identifying the third system in this fashion is that

the decision-maker believes System 1 will have performance similar to System 2

while System 4 will have performance similar to System 3. One can verify that

this search method behaves exactly the same as AS when letting X1 = 2 w.p. 1.

In this fashion, one can construct similar optimization problems and search

methods that mimic AS for larger numbers of returned systems (k > 3). Hence

finding violated guarantees in our experiments with AS will show that the guar-

antees of R&S procedures that reuse search data do not hold for all optimization

problems and all search methods.

4.4 Experiments with Reusing Search Replications

In Sections 4.4.1 and 4.4.2, we present experimental results for two selection

procedures (Bechhofer and Rinott) and two subset-selection procedures (Mod-

ified Gupta and Screen-to-the-Best). Although these procedures are not specif-

ically designed to be used on search data, we believe they effectively illustrate

the negative impact that dependent search data can have on PCS guarantees.

Some of the R&S procedures that have been proposed for use after search (e.g.,

Screen-and-Continue of Nelson et al. (2001) and Screen-Restart-and-Select and

Sort-and-Iterative-Screen of Boesel et al. (2003b)) are built around combinations

of the Screen-to-the-Best and Rinott procedures. Therefore our findings provide

some insight into the performance of such procedures.

We test the four procedures under two settings: (i) when applied after AS,
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reusing search data, and (ii) on a fixed set of systems in the slippage config-

uration (SC): µ(x[i]) = µ(x[k]) − δ for 1 ≤ i < k. For the R&S procedures we

consider, PCS is minimized in the slippage configuration; therefore testing the

slippage configuration gives a lower bound on PCS for the procedures when

applied after sampling. For both settings, we perform 10 000 macroreplications

at each value of k and calculate the empirical PCS—an unbiased estimate of the

left-hand sides of Guarantees (4.3) and (4.4). In Section 4.4.3, we test a subset-

selection procedure that reuses replications from a realistic search.

In all of our experiments, we choose a desired PCS of 1 − α = 0.95 and fix an

indifference-zone parameter δ = 1, an initial sample size n0 = 10, and a common

variance σ2 = 1. Although a common variance is unrealistic for simulation

optimization problems, we should expect the guarantees of R&S procedures

that reuse search data to hold even in this stylized setting.

4.4.1 Selection Procedures

In our experiments, we test the procedure of Bechhofer (1954) for common,

known variance and the procedure of Rinott (1978) for uncommon, unknown

variances. We choose to test the latter because it is easier to implement than

the procedure of Dudewicz and Dalal (1975) that also handles uncommon, un-

known variances. The Bechhofer procedure is designed to ensure a tight PCS of

1−α in the slippage configuration while the Rinott procedure is more conserva-

tive because it must allow for unequal, unknown variances.

We focus on single- and multi-stage selection procedures—of which the

Bechhofer and Rinott procedures are two examples—because all of the required
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replications can be taken during the search. On the other hand, fully sequential

procedures take replications from systems one at a time. Some fully sequen-

tial procedures, e.g., Kim and Nelson (2001) and Frazier (2014) for unknown

variances, can be easily incorporated into a selection-after-search framework by

taking only n0 replications of each system during the search. For other fully se-

quential procedures that do not require an initial sample size of n0 replications

from each system, e.g., Frazier (2014) for the case of common, known variance,

it remains an open question how they might be applied in conjunction with

search.

The details of the two selection procedures we test are as follows:

Bechhofer Take N = d(2h2
Bσ

2)/δ2e replications of each system where hB is the

α-upper quantile of the maximum of a k− 1 dimensional multivariate nor-

mal vector with means 0, variance 1, and pairwise correlations 1/2. The

constant hB can be derived from the values of N tabulated in Table 2.1 on

page 19 of Bechhofer et al. (1995). Select the system with the highest sam-

ple mean.

Rinott Take n0 replications of each system and calculate S 2
i , the sample variance

of System i based on the initial replications. Take additional replications

so that System i has a total of Ni replications where

Ni = max
{

n0,
⌈h2

RS 2
i

δ2

⌉}
and hR = h(k, 1 − α, n0) is the solution to∫ ∞

0

∫ ∞

0
Φ

 h√
ν (1/x + 1/y)

 fν(x)dx

k−1

fν(y) dy = 1 − α,
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where ν = n0 − 1 and fν is the probability density function (p.d.f.) of a

chi-squared random variable with ν degrees of freedom. The constant hR

is tabulated in Table 2.13 on pages 62–63 of Bechhofer et al. (1995). Select

the system with the highest overall sample mean.

When testing the Bechhofer and Rinott procedures applied after AS, we con-

sider two cases: (i) “AS All”: all of the required replications are taken during

AS, i.e., n0i = Ni for i = 1, . . . , k, and (ii) “AS n0”: only n0 replications of each sys-

tem are taken during AS and the remaining replications are taken afterwards,

i.e., n0i = 10 for i = 1, . . . , k.
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Figure 4.1: Empirical PCS of the Bechhofer procedure in the slippage configura-
tion (SC) and when applied after AS, reusing replications taken during search.
Based on the usual normal confidence intervals, the empirical PCS of the Bech-
hofer procedure is accurate to within ±0.01.

In Figure 4.1, the empirical PCS for the Bechhofer procedure reusing repli-
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cations from AS quickly falls below the guaranteed PCS of 0.95. The empirical

PCS for the case of taking n0 replications during AS deteriorates more rapidly

than when all of the replications are taken during AS. One possible explanation

is that after taking only n0 replications, the initial ranking of systems is more

variable and so AS likely returns less-favorable configurations of systems, such

as the slippage configuration.
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Figure 4.2: Empirical PCS of the Rinott procedure in the slippage configura-
tion (SC) and when applied after AS, reusing replications taken during search.
Based on the usual normal confidence intervals, the empirical PCS of the Rinott
procedure is accurate to within ±0.005.

The conservativeness of the Rinott procedure is evident in Figure 4.2 where

the empirical PCS for the slippage configuration increases to above 0.995 as the

number of returned systems increases to 1000. The empirical PCS for the Rinott

procedure applied after AS initially decreases until around 50 to 100 returned

systems before increasing again. This trend suggests that the conservativeness
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of the Rinott procedure offsets most of the impact of AS on decreasing PCS.

Although the empirical PCS for both cases of the Rinott procedure applied after

AS never drops below the desired PCS of 0.95, it stays below the empirical PCS

of the slippage configuration.

4.4.2 Subset-Selection Procedures

We also test subset-selection procedures, which were first developed by Gupta

(1965) as an alternative to the indifference-zone formulation of Bechhofer (1954).

Since we wish to handle the cases of correct selection and good selection simul-

taneously, we will rely on variations of the Gupta procedure that provide PCS

guarantees when the indifference-zone assumption is satisfied. That is, they

deliver the guarantee

P(µ,Σ){x[k] ∈ I} ≥ 1 − α for all µ ∈ PZ(δ).

Two such procedures are as follows:

Modified Gupta A modified version of the original Gupta procedure for com-

mon, known variance σ2 that uses a different “yardstick” based on the

indifference-zone assumption. Take n0 replications from each system and

return the set of systems

I = {Xi : Ȳ(Xi) ≥ Ȳ(X j) − (W − δ)+ for all j , i},

where W = hBσ
√

2/n0, and hB is Bechhofer’s constant, as mentioned in Sec-

tion 4.4.1. This procedure was developed by van der Laan (1992), but the

original version did not have the necessary positive-part operator in the
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term (W −δ)+. A complete proof of the procedure’s PCS guarantee is given

in the appendix.

Screen-to-the-Best An extension of Gupta’s procedure to handle unknown and

uncommon variances developed by Nelson et al. (2001). Take n0 replica-

tions from each system and return the set of systems

I = {Xi : Ȳ(Xi) ≥ Ȳ(X j) − (Wi j − δ)+ for all j , i},

where

Wi j = t

S 2
i

n0
+

S 2
j

n0

1/2

and t = t(1−α)1/(k−1),n0−1 is the upper (1−α)1/(k−1) quantile of a t distribution with

n0 − 1 degrees of freedom. The Screen-to-the-Best procedure was further

extended to unequal sample sizes (Boesel et al., 2003b), but we do not

consider the extension here.

The Modified Gupta procedure is designed to be tight in the slippage con-

figuration while the Screen-to-the-Best procedure is more conservative.

As seen in Figure 4.3, the empirical PCS for the Modified Gupta procedure

after AS quickly drops below the desired PCS of 0.95. The empirical PCS further

deteriorates as the number of systems increases, even to the point where PCS is

only about half of its guaranteed value!

In Figure 4.4 the empirical PCS of the Screen-to-the-Best procedure after AS

stays well below the empirical PCS of the slippage configuration, dropping to

just above its guarantee of 0.95 at around 100 systems, before increasing again.

Nevertheless, we suspect that there exist problem instances and parameter set-
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Figure 4.3: Empirical PCS of the Modified Gupta procedure in the slippage con-
figuration (SC) and when applied after AS, reusing replications taken during
search. Based on the usual normal confidence intervals, the empirical PCS of
the Modified Gupta is accurate to within ±0.01.

tings for which the PCS for Screen-to-the-Best will fall below its guaranteed

level.

4.4.3 A Realistic Search

The AS framework in Sections 4.4.1 and 4.4.2 is clearly unrealistic, yet effec-

tive at showing that R&S guarantees can suffer from reusing search data. We

now consider a more-realistic optimization problem and search method and

study the performance of a subset-selection procedure that reuses the repli-

cations from search. The optimization problem we consider is to maximize
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Figure 4.4: Empirical PCS of the Screen-to-the-Best procedure in the slippage
configuration (SC) and when applied after AS, reusing replications taken during
search. Based on the usual normal confidence intervals, the empirical PCS of the
Screen-to-the-Best procedure is accurate to within ±0.01.

µ(x) = dlog2 xe on the interval [1/16, 16], a step-like function with ever-widening

steps whose values range on the integers from −4 to 4, as plotted in Figure 4.5.

We assume that replications taken at a point x are normally distributed with

mean g(x) and variance 1.

The search method we consider first evaluates the system x1 = 0.75 by taking

n0 = 10 samples. Each new system is chosen uniformly at random from an

interval of width 2 centered around the system with the highest sample mean

among the explored systems, but otherwise independently of past observations.

When the search attempts to return a system from outside the interval [1/16, 16],

the nearest endpoint is returned as the next system. In this way, the search finds
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Figure 4.5: The true objective function µ(x) = dlog2 xe.

new systems from within a neighborhood of the system with the best observed

performance.

We tested the Modified Gupta subset-selection procedure for 100 000

macroreplications and calculated the overall PGS and PCS of Guarantees (4.3)

and (4.4), respectively, at a range of values of k. The empirical PCS of Guarantee

(4.4) was averaged over only the macroreplications for which the configuration

of the returned systems was in the preference zone. For k < 10, this amounted to

roughly 1 in 4 macroreplications, while for k = 100, it was roughly 1 in 100. As

seen in Figure 4.6 the empirical PGS remains well above its guaranteed level of

0.95, while the empirical PCS in the preference zone falls below this threshold.

The experimental results suggest that the event of the returned configuration
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Figure 4.6: The empirical PCS and PGS of the Modified Gupta procedure when
applied after AS, reusing replications taken during search. Based on the usual
normal confidence intervals, the empirical PCS of the Modified Gupta proce-
dure is accurate to within ±0.003 for k ≤ 10 and accurate to within ±0.03 for
k ≥ 80.

being in the preference zone makes correct decisions less likely. And indeed, the

structure of the objective function is responsible. When the search returns a con-

figuration in the preference zone, it means that only one system was simulated

from the highest explored “step” of the objective function. Because the search

looks for new systems in an interval centered around the best-looking system,

returning a configuration in the preference zone likely means the true best sys-

tem did not have the highest sample mean immediately after it was evaluated.

For this reason, the probability of correct selection suffers in these instances.
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4.5 Conclusion

In this chapter, we consider the framework of applying a R&S procedure on a

random set of systems returned by a sampling or search method. We formulate

purposeful guarantees on PCS and PGS and showed how they can immediately

follow from the traditional guarantees of R&S procedures. We then argue that,

in this setting, PGS guarantees are superior to PCS guarantees based on the

indifference-zone assumption.

We study issues that arise from reusing replications taken during search as

input to a R&S procedure. We explain how search methods inherently produce

replications that are conditionally dependent on the sequence of returned sys-

tems, an aspect that has been overlooked in the proofs of existing procedures

that reuse search data. Furthermore, we design a search-like method that ex-

ploits this dependence to demonstrate how the PCS and PGS of R&S procedures

can suffer as a consequence.

In our experiments, we observe empirical PCS well below the guaranteed

level for R&S procedures with tight guarantees, e.g., Bechhofer and Modi-

fied Gupta. For more conservative procedures that handle unequal and un-

known variances, e.g., Rinott and Screen-to-the-Best, we also observe lower-

than-expected PCS, but not enough to violate the guarantees. These results sug-

gest that for practical simulation optimization problems, the procedures pro-

posed in the literature that reuse search replications can likely be performed

with little fear of encountering violated guarantees. Since realistic simulation

optimization searches return systems with ever-similar performance, we believe

that PGS guarantees will in practice be robust to reusing search data.
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How R&S procedures might be designed to safely reuse search data while

offering provable guarantees remains an open question. One way forward may

be procedures with asymptotic PCS and PGS guarantees, e.g.,KN+ andKN++

of Kim and Nelson (2006a).

Because search methods can yield replications that are conditionally depen-

dent within a given system—as discussed in Section 4.2.1—our findings should

extend to R&S procedures that make use of common random numbers, e.g.,

Nelson and Matejcik (1995). For similar reasons, one might expect green simu-

lation estimators to be biased when the systems have been identified via search

(Feng and Staum, 2017).
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CHAPTER 5

CONCLUSION

Much of the R&S literature focuses on the design of procedures that effi-

ciently deliver a statistical guarantee specified by a decision-maker. We instead

direct our attention to the guarantees themselves. While R&S guarantees are

usually taken for granted, we hope to convey the importance of carefully choos-

ing the guarantee. The choice of guarantee determines how a procedure takes

observations, how it uses those observations to make a selection, and what

kinds of assurances are provided to decision-makers regarding the quality of

their selection.

In examining R&S guarantees, we observe that prevalent guarantees do not

always align well with a decision-maker’s goals. For instance, the IZ-inspired

PCS guarantee is conditional on an untenable assumption about the unknown

problem instance. In addition, the posterior PCS guarantee can cause a proce-

dure to take many observations to detect differences in performances that are

practically insignificant.

We advocate for the frequentist PGS and Bayesian posterior PGS guarantees

which accommodate the decision-maker’s tolerance with respect to a system’s

performance. For the PGS guarantee, there is an opportunity to design pro-

cedures that sequentially eliminate systems while performing efficiently in the

indifference zone. Bootstrapping and other approaches that asymptotically de-

liver the PGS guarantee also merit further study. For the posterior PGS guaran-

tee, evaluating the posterior PGS for problems with an extremely large number

of systems remains computationally challenging.
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In both the frequentist and Bayesian treatments, subset selection—returning

a subset of system, rather than a single system—deserves greater attention. Sub-

set selection is used for a variety of purposes, such as screening out inferior sys-

tems before running a selection procedure, or for instances in which the num-

ber of alternatives is large, but the available simulation budget is small. An

intriguing problem in this space is identifying the smallest subset that contains

a near-optimal system with high posterior probability. Evaluating this posterior

probability gives rise to its own interesting computational considerations.

Another fascinating research question that we reopen is how to deliver fre-

quentist R&S guarantees when a procedure reuses search observations. The

answer could have profound implications for procedures that sequentially se-

lect systems based on the performances of others. Integrating R&S and search in

this way—perhaps while exploiting structural information about the objective

function—could dramatically strengthen the delivered guarantees.
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APPENDIX A

PROOFS OF CHAPTER 2

A.1 Proof of Proposition 1

Proof. We first prove that Procedure 1 achieves Goal PCS-PZ.

We modify a proof for the procedure of Bechhofer (1954), shown in Kim and

Nelson (2006b). For any arbitrary µ ∈ PZ(δ),

Pµ(CS) = Pµ(Select [k])

≥ Pµ

(
Y[k] − Yi

σ
√

2/n
> r for all i , [k]

)
= Pµ

(
Yi − Y[k] − (µi − µ[k])

σ
√

2/n
< −r −

µi − µ[k]

σ
√

2/n
for all i , [k]

)
≥ Pµ

(
Yi − Y[k] − (µi − µ[k])

σ
√

2/n
< −r +

δ

σ
√

2/n
for all i , [k]

)
= P

(
Zi < −r +

δ

σ
√

2/n
for all i , [k]

)
≥ P(Zi < hB for all i , [k])

= 1 − α,

where (Zi : i , [k]) have a joint multivariate normal distribution with means 0,

variances 1, and common pairwise correlations 1/2. The first inequality comes

from the fact that System [k] will be selected if Y[k] > maxi,[k] Yi + rσ
√

2/n. The

second inequality comes from the fact that µ[k] − µi ≥ δ since µ ∈ PZ(δ). The

last inequality follows from the relationship between r, n and hB and the last

equality follows from the definition of hB by Bechhofer (1954).

We next show that Procedure 1 does not achieve Goal PGS for k > 2.
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Consider the configuration µ̃ defined by µ̃k = µ̃k−1 and µ̃i = µ̃k − ∆ for i =

1, . . . , k − 2 where ∆ > δ. That is, Systems k and k − 1 are tied as the best and

Systems 1 through k − 2 are all bad. From this construction, µ̃ ∈ IZ(δ).

1 − Pµ̃(GS) = Pµ̃(Select neither k − 1 nor k)

≥ Pµ̃

(
|Yk − Yk−1|

σ
√

2/n
< r and max(Y1, . . . ,Yk−2) < min(Yk−1,Yk)

)
≥ 1 − Pµ̃

(
|Yk − Yk−1|

σ
√

2/n
≥ r

)
− 2(k − 2)Pµ̃(Y1 > Yk)

= 1 − 2Φ(−r) − 2(k − 2)Pµ̃

(
Yk − Y1 − (µk − µ1)

σ
√

2/n
< −

µk − µ1

σ
√

2/n

)
= 1 − 2Φ(−r) − 2(k − 2)Φ

(
−∆

σ
√

2/n

)
.

The first inequality follows from the fact that one of the systems 1 through k − 2

will be selected if systems k − 1 and k have the two highest estimators and they

are within rσ
√

2/n of each other. The second inequality follows from applying

Boole’s inequality over the intersection of {|Yk − Yk−1| < rσ
√

2/n} and the 2(k − 2)

events contained in {max(Y1, . . .Yk−2) ≤ min(Yk−1,Yk)}.

We can now take r so large that 2Φ(−r) is as small as desired. Fixing r also

fixes the sample size n. We can then take ∆ so large that 2(k − 2)Φ(−∆/(σ
√

2/n))

is as small as desired. Thus we can make 1 − Pµ̃(GS) arbitrarily close to 1, while

retaining Goal PCS-PZ. �

A.2 Proof of Proposition 2

Proof. We first prove that Procedure 2 achieves Goal PCS-PZ.

Fix an arbitrary configuration µ ∈ PZ(δ) and consider the event

A = {|Yi − µi| ≤ δ/4 ∀i = 1, . . . , k} ,
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where the first-stage estimators Yi are distributed as Yi ∼ N(µi, σ
2/n0). On the

event A, (k) = [k], (k − 1) = j for some j , [k], and for these two systems,

Y(k) − Y(k−1) = Y[k] − Y j = (Y[k] − µ[k]) − (Y j − µ j) + (µ[k] − µ j) ≥ −δ/4 − δ/4 + δ = δ/2.

Therefore A ⊆ {Y(k) − Y(k−1) ≥ δ/2}.

By the independence of the first-stage estimators,

Pµ(A) = Pµ (|Yi − µi| ≤ δ/4 ∀i = 1, . . . , k)

=

k∏
i=1

Pµ (|Yi − µi| ≤ δ/4)

= Pµ
(∣∣∣N(0, σ2/n0)

∣∣∣ ≤ δ/4)k

= Pµ

(
|N(0, 1)| ≤

δ

4σ/
√

n0

)k

=

(
1 − 2Φ

(
−δ

4σ/
√

n0

))k

.

From the choice of n0,

Pµ(A) =

(
1 − 2Φ

(
−δ

4σ/
√

n0

))k

≥

(
1 − 2Φ

(
−δ

4σ

(
4σ
δ

Φ−1
(
1 − (1 − α)1/(2k)

2

))))k

=

(
1 − 2

(
1 − Φ

(
Φ−1

(
1 − (1 − α)1/(2k)

2

))))k

=

(
1 − 2

(
1 + (1 − α)1/(2k)

2

))k

=
√

1 − α.

Therefore Pµ(Y(k) − Y(k−1) ≥ δ/2) ≥ Pµ(A) ≥
√

1 − α.

When Y(k) − Y(k−1) ≥ δ/2, the first-stage observations are ignored and Bech-

hofer’s procedure is run with the confidence parameter
√

1 − α. Since Bech-

hofer’s procedure delivers Goal PCS-PZ, Pµ(CS | Y(k) − Y(k−1) ≥ δ/2) ≥
√

1 − α.
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All together,

Pµ(CS) = Pµ(CS | Y(k) − Y(k−1) ≥ δ/2)Pµ(Y(k) − Y(k−1) ≥ δ/2)

+ Pµ(CS | Y(k) − Y(k−1) < δ/2)Pµ(Y(k) − Y(k−1) < δ/2)

≥
(√

1 − α
) (√

1 − α
)

= 1 − α.

We next show that Procedure 2 does not achieve Goal PGS for some values

of α and k. Set α = 1/3 and consider the configuration µ̃ defined by µ̃k = µ̃k−1 and

µ̃i = µ̃k − δ for i = 1, . . . , k− 2. On the event A, {(k), (k− 1)} = {k, k− 1} and for these

two systems,

Y(k) − Y(k−1) = |Yk − Yk−1| ≤ |Yk − µ̃k| + |Yk−1 − µ̃k−1| + |µ̃k − µ̃k−1| ≤ δ/4 + δ/4 + 0 = δ/2.

Since the event {Y(k) − Y(k−1) = δ/2} occurs with probability zero,

Pµ̃(Y(k) − Y(k−1) ≥ δ/2) ≤ Pµ̃(Ac) ≤ 1 −
√

1 − α ≤
1
3
.

Using simulation, one can find a large enough value of k such that when

taking only a single observation from each system,

Pµ̃(max{Yk−1,Yk} > max{Y1, . . . ,Yk−2}) <
1
3
,

which implies that for this choice of k, Pµ̃(GS | Y(k) − Y(k−1) < δ/2) < 1/3.

All together,

Pµ̃(GS) = Pµ̃(GS | Y(k) − Y(k−1) ≥ δ/2)Pµ̃(Y(k) − Y(k−1) ≥ δ/2)

+ Pµ̃(GS | Y(k) − Y(k−1) < δ/2)Pµ̃(Y(k) − Y(k−1) < δ/2)

< (1)
(
1
3

)
+

(
1
3

)
(1) =

2
3

= 1 − α.

�
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A.3 Proof of Corollary 1

We prove the result of Corollary 1 for each of the four conditions.

Direct proofs that selection procedures achieving Goal PCS-PZ and satisfy-

ing either Condition (C2) or (C3) also achieve Goal PGS can be found in those

of Lemmas 2 and 1, respectively, of Guiard (1996). Instead, we show that Con-

ditions (C2) and (C3) each imply Condition (C1).

A.3.1 Proof that Condition (C2) implies Condition (C1)

Proof. Fix an arbitrary subset A and configurations µ and µ̃ as specified in the

statement of Condition (C1). Fix an arbitrary i ∈ A and set B1 = {i}, B2 = A\{i},

and IP = {(i, j) : j ∈ B2}, i.e. IP = B1 × B2. Then for all index pairs (i, j) in IP,

µi − µ j = µ̃i − µ̃ j since i, j ∈ A. Thus by Condition (C2),

Pµ(Yi > Y j for all j ∈ A\{i}) ≥ Pµ̃(Ỹi > Ỹ j for all j ∈ A\{i}).

Since the choice of i ∈ A was arbitrary, we simultaneously have that

Pµ(Yi = max
j∈A

Y j) ≥ Pµ̃(Ỹi = max
j∈A

Ỹ j), for all i ∈ A. (A.1)

where we have used the fact that ties in the estimators Y j occur with probability

zero. Summing both sides of (A.1) over all i ∈ A gives 1 = 1. Thus it must be the

case that

Pµ(Yi > Y j for all j ∈ A\{i}) = Pµ̃(Ỹi > Ỹ j for all j ∈ A\{i}) for all i ∈ A.

Since the choices of A, µ, and µ̃ were arbitrary, we have proven the result. �
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A.3.2 Proof that Condition (C3) implies Condition (C1)

Proof. Fix an arbitrary subset A and configurations µ and µ̃ as specified in the

statement of Condition (C1). Take S = A. Since µ and µ̃ only differ for indices

i < A, Condition (C3) implies that YA
d
= ỸA where YA (respectively ỸA) denotes the

vector of estimators Yi (Ỹi) for i ∈ A. Therefore

Pµ(Yi > Y j for all j ∈ A\{i}) = Pµ̃(Ỹi > Ỹ j for all j ∈ A\{i}) for all i ∈ A.

Since the choices of A, µ, and µ̃ were arbitrary, we have proven the result. �

A.3.3 Proof that Condition (C4) implies Condition (C1)

Proof. From Condition (C4), the estimators Y1, . . . ,Yk are mutually independent

and so the joint distribution of the estimators is the product of the marginal dis-

tributions. Therefore for an arbitrary subset A ⊆ {1, . . . , k}, the joint distribution

of Yi for i ∈ A is the product of the marginal distributions for Yi for i ∈ A. The

remainder of the proof follows from that of Condition (C3). �

A.3.4 Proof that Condition (C5) implies Condition (C1)

Proof. Fix an arbitrary subset A and configurations µ and µ̃ as specified in the

statement of Condition (C1). By Condition (C5), YA − µA
d
= ỸA − µ̃A where µA is

the vector of components µi for i ∈ A. Since µi = µ̃i for all i ∈ A, µA = µ̃A and so

YA
d
= ỸA. Therefore

Pµ(Yi > Y j for all j ∈ A\{i}) = Pµ̃(Ỹi > Ỹ j for all j ∈ A\{i}) for all i ∈ A.

Since the choices of A, µ, and µ̃ were arbitrary, we have proven the result. �
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A.4 Relationships of Conditions in Corollary 1

We prove the four relationships in Figure 2.1 that were not proven in Corollary

1, namely (i) (C4) implies (C3), (ii) (C5) implies (C6), (iii) (C5) implies (C2), and

(iv) (C5) implies (C3).

A.4.1 Proof that Condition (C4) implies Condition (C3)

Proof. From Condition (C4), the estimators Y1, . . . ,Yk are mutually independent

and so the joint distribution of the estimators is the product of the marginal dis-

tributions. Therefore for an arbitrary subset A ⊂ {1, . . . , k}, the joint distribution

of Yi for i ∈ A is the product of the marginal distributions for Yi for i ∈ A. This

joint distribution thus does not depend on µ j for j < A, hence Condition (C3) is

satisfied. �

A.4.2 Proof that Condition (C5) implies Condition (C6)

Proof. Fix an arbitrary configuration µ and arbitrary system i ∈ {1, . . . , k}. For

arbitrary ` , i, define µ̃ = µ + εe` for ε > 0 where e` is k-vector of zeros with a

one as the `th element. By Condition (C5), Y + εe`
d
= Ỹ where Y (respectively Ỹ)

is the complete vector of estimators Yi (Ỹi) for i = 1, . . . , k. Thus

Pµ̃(Select i) = Pµ̃(Ỹi > Ỹ j for all j , i) = Pµ(Yi > Y j for all j , i, ` and Yi > Y` + ε)

which is nonincreasing in ε. Since increasing ε is equivalent to increasing the

true mean of the `th system, we have shown that Pµ(Select i) is nonincreasing
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in µ` for all ` , i. Then since the choice of i was arbitrary, we have proven the

result. �

A.4.3 Proof that Condition (C5) implies Condition (C2)

Proof. Define arbitrary B1, B2, and IP as in the statement of Condition (C2). Us-

ing the substitutions Z = Y − µ and Z̃ = Ỹ − µ̃,

Pµ̃(Ỹi > Ỹ j, for all (i, j) ∈ IP) = P(Z̃i + µ̃i > Z̃ j + µ̃ j, for all (i, j) ∈ IP)

= P(Z̃i + (µ̃i − µ̃ j) > Z̃ j, for all (i, j) ∈ IP)

≥ P(Z̃i + (µi − µ j) > Z̃ j, for all (i, j) ∈ IP),

where the last inequality follows from the fact the µ̃i− µ̃ j ≥ µi−µ j for all (i, j) ∈ IP.

From Condition (C5), Z̃ d
= Z. Thus

P(Z̃i + (µi − µ j) > Z̃ j, for all (i, j) ∈ IP) = P(Zi + (µi − µ j) > Z j, for all (i, j) ∈ IP)

= Pµ(Yi > Y j, for all (i, j) ∈ IP).

Putting everything together, we have

Pµ̃(Ỹi > Ỹ j, for all (i, j) ∈ IP) ≥ Pµ(Yi > Y j, for all (i, j) ∈ IP).

Since the choice of B1, B2 and IP was arbitrary, Condition (C2) holds. �

A.4.4 Proof that Condition (C5) implies Condition (C3)

Proof. From Condition (C5), the random vector Z = Y − µ has a distribution

H(z) that does not depend on µ. Thus for an arbitrary set A, the distribution of

ZA := (Zi : i ∈ A) does not depend on any µ j for j < A. Therefore Condition (C3)

is satisfied. �
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A.5 Proof of PGS Guarantee of Sobel and Huyett (1957) Proce-

dure

Sobel and Huyett (1957) presented tables for the common number of observa-

tions needed from each of k systems with Bernoulli-distributed rewards in order

to select the system with the highest success probability µi with high probabil-

ity. The procedure takes n observations from each system, calculates the aver-

age number of successes, i.e., Yi = n−1 ∑n
j=1 Xi j, and selects the system with the

highest estimator. In the event of ties, it selects at random from among the tied

systems. The procedure is designed to deliver Goal PCS-PZ.

Systems are sampled independently and therefore the estimators are inde-

pendent, implying that Condition (C4) is satisfied. Yet the result of Corollary

1 cannot be immediately applied since the sample means of Bernoulli observa-

tions are discrete random variables, violating Assumption 2. Most of the proof

that Condition (C4) and Goal PCS-PZ imply Goal PGS can still be used in this

setting, but the issue of tied estimators must be handled.

Proof. Let Z = (Z1, . . . ,Zk) be a random permutation of (1, . . . , k) that is generated

before the experiment. Thus Z is independent of the observations Xi j and the es-

timators Yi. When there are multiple systems that are tied for having the largest

estimator, the procedure will select the one having the highest Zi among them.

Because the permutation Z is chosen uniformly at random, this tie-breaking rule

is equivalent to choosing uniformly from among the tied systems.

Fix an arbitrary configuration µ ∈ IZ(δ). Because of the restrictions that µi ∈

[0, 1] for all i = 1, . . . , k, it must be the case that µ[k] ≥ δ, otherwise all systems
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would be good. For this configuration, µ, define G, B, and µ∗ accordingly. From

the definition of the event of good selection for the procedure,

Pµ(GS) ≥ Pµ
(
{Y[k] > Yi for all i ∈ B}

∪ {Y[k] ≥ Yi for all i ∈ B and Y[k] = Y j for some j ∈ B

and Z[k] > Zi for all i ∈ T ([k]) ∩ B}
)
, (A.2)

where T ([k]) denotes the set of systems other than system [k] whose estimators

are tied with Y[k], i.e., T ([k]) := {i , [k] : Yi = Y[k]}.

The first term on the right-hand side of Inequality (A.2) is the event that

System [k] clearly outperforms all of the bad systems. Thus no matter the per-

formance of the other good systems, a bad system will not be selected. The

second term on the right-hand side of Inequality (A.2) is the event that the best

system performs no worse than all the bad systems, ties at least one of them,

and is preferred to all tying bad systems based on the tie-break ranking.

By Condition (C4), the joint distribution of the estimators Yi for i ∈ B ∪ {[k]}

does not depend of the performances µ j for j ∈ G\{[k]}. Consequently, the distri-

bution of T ([k])∩B also does not depend on the performances µ j for j ∈ G\{[k]}.

Therefore we can relate the probability of the event in Inequality (A.2) under

configuration µ to that of a similar event under configuration µ∗:

Pµ
(
{Y[k] > Yi for all i ∈ B}

∪ {Y[k] ≥ Yi for all i ∈ B and Y[k] = Y j for some j ∈ B

and Z[k] > Zi for all i ∈ T ([k]) ∩ B}
)

= Pµ∗
(
{Y∗[k] > Y∗i for all i ∈ B}

∪ {Y∗[k] ≥ Y∗i for all i ∈ B and Y∗[k] = Y∗j for some j ∈ B

and Z[k] > Zi for all i ∈ T ∗([k]) ∩ B}
)
,
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where Y∗i is the estimator of System i under configuration µ∗ and T ∗([k]) is the

random set of systems tied with System [k] under configuration µ∗. Here the

index [k] is still with respect to the systems’ performances in configuration µ

and not µ∗.

In addition,

Pµ∗
(
{Y∗[k] > Y∗i for all i ∈ B}

∪ {Y∗[k] ≥ Y∗i for all i ∈ B and Y∗[k] = Y∗j for some j ∈ B

and Z[k] > Zi for all i ∈ T ∗([k]) ∩ B}
)

≥ Pµ∗
(
{Y∗[k] > Y∗i for all i , [k]}

∪ {Y∗[k] ≥ Y∗i for all i , [k] and Y∗[k] = Y∗j for some j , [k]

and Z[k] > Zi for all i ∈ T ∗([k])}
)
. (A.3)

We justify Inequality (A.3) by showing that every outcome on the right-hand

side is contained in the event on the left-hand side. For the first term on the

right-hand side of Inequality (A.3),

{Y∗[k] > Y∗i for all i , [k]} ⊆ {Y∗[k] > Y∗i for all i ∈ B}.

For the second term on the right-hand side of Inequality (A.3), we separate out-

comes into two cases. If Y∗[k] = Y∗j for some j ∈ B, then the outcome belongs to

the event

{Y∗[k] ≥ Y∗i for all i ∈ B and Y∗[k] = Y∗j for some j ∈ B

and Z[k] > Zi for all i ∈ T ∗([k]) ∩ B}.

If instead Y∗[k] , Y∗j for any j ∈ B, then the outcome belongs to the event

{Y∗[k] > Y∗i for all i ∈ B}.
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Finally, from the definition of correct selection and Goal PCS-PZ,

Pµ∗
(
{Y∗[k] > Y∗i for all i , [k]}

∪ {Y∗[k] ≥ Y∗i for all i , k and Y∗[k] = Y∗j for some j , [k]

and Z[k] > Zi for all i ∈ T ∗([k])}
)

= Pµ∗(CS) ≥ 1 − α.

Altogether, we have shown that Pµ(GS) ≥ 1 − α, i.e., the procedure of Sobel

and Huyett (1957) achieves Goal PGS. �

A.6 Proof of Theorem 4

We prove the two conditions in Theorem 4 separately.

Proof. Proof of Condition (C8) in Theorem 4 for restricted subset-selection. Fix

an arbitrary configuration µ and define the subsets G and B and the configura-

tion µ∗ accordingly. Then

1 − α ≤ Pµ∗(CS) = Pµ∗(GS)

= Pµ∗{Y∗[k] ≥ max{Y∗(k−m+1),Y
∗
(k) − d}}

≤ Pµ∗{Y∗[k] ≥ max{Y∗〈|B|−m+2〉,Y
∗
〈|B|+1〉 − d}},

where Y∗
〈 j〉 is the jth lowest among those for systems belonging to the subset

B ∪ {[k]}. Taking A = B ∪ {[k]} in Condition (C8),

Pµ∗{Y∗[k] ≥ max{Y∗〈|B|−m+2〉,Y
∗
〈|B|+1〉 − d}} = Pµ{Y[k] ≥ max{Y〈|B|−m+2〉,Y〈|B|+1〉 − d}}.
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We now partition the event on the right-hand side to factor in the estimators Yi

for i ∈ G\{[k]}.

{Y[k] ≥ max{Y〈|B|−m+2〉,Y〈|B|+1〉 − d}}

= {Y[k] ≥ max{Y〈|B|−m+2〉,Y〈|B|+1〉 − d} and Y[k] ≥ Y j ∀ j ∈ G\{[k]}}

∪ {Y[k] ≥ max{Y〈|B|−m+2〉,Y〈|B|+1〉 − d} and ∃ j ∈ G\{[k]} s.t. Y j > Y[k]}. (A.4)

For the first event on the right-hand side of Equation (A.4),

{Y[k] ≥max{Y〈|B|−m+2〉,Y〈|B+1|〉 − d} and Y[k] ≥ Y j ∀ j ∈ G\{[k]}}

⊆ {Y[k] ≥ max{Y(k−m+1),Y(k) − d}} = {[k] ∈ I}.

For the second event on the right-hand side of Equation (A.4), let j′ =

arg max j∈G\{[k]} Y j, the system in G\{[k]}with the highest estimator. Then

{Y[k] ≥max{Y〈|B|−m+2〉,Y〈|B|+1〉 − d} and ∃ j ∈ G\{[k]} s.t. Y j > Yk}

⊆ {Y j′ ≥ max{Y(k−m+1),Y(k) − d}} = { j′ ∈ I}.

Since j′ ∈ G\{[k]}, both events on the right-hand side of Equation (A.4) are con-

tained in the event of good selection. Thus

Pµ{Y[k] ≥ max{Y〈|B|−m+2〉,Y〈|B|〉 − d}} ≤ Pµ(GS),

from which it follows that Pµ(GS) ≥ 1 − α for every µ. �

Proof. Proof of Condition (C8) in Theorem 4 for pairwise comparisons. Fix an

arbitrary configuration µ and define the subsets G and B and the configuration

µ∗ accordingly. Then

1 − α ≤ Pµ∗(CS) = Pµ∗(GS)

= Pµ∗{Y∗[k] ≥ Y∗j −W∗
[k] j for all j , [k]}

≤ Pµ∗{Y∗[k] ≥ Y∗j −W∗
[k] j for all j ∈ B}

= Pµ{Y[k] ≥ Y j −W[k] j for all j ∈ B},
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where the last equality follows from Condition (C8) with A = B ∪ {[k]}.

We now partition this last event based on the estimators Yi and the terms

W[k]i for i ∈ G\{[k]}:

{Y[k] ≥ Y j −W[k] j for all j ∈ B}

= {Y[k] ≥ Y j −W[k] j for all j ∈ B and Y[k] ≥ Yi −W[k]i for all i ∈ G\{[k]}}

∪ {Y[k] ≥ Y j −W[k] j for all j ∈ B and ∃i ∈ G\{[k]} s.t. Y[k] < Yi −W[k]i}. (A.5)

For the first event on the right-hand side of Equation (A.5),

{Y[k] ≥ Y j −W[k] j for all j ∈ B and Y[k] ≥ Yi −W[k]i for all i ∈ G\{[k]}}

= {Y[k] ≥ Y j −W[k] j for all j , [k]}

= {[k] ∈ I}.

For the second event on the right-hand side of Equation (A.5), let i′ :=

arg maxi∈G\{[k]}{Yi : Y[k] < Yi − W[k]i}, the index of the system with the highest

estimator among those in G\{[k]} that eliminate System [k]. Following an ar-

gument similar to that given by Nelson et al. (2001), we claim that there exists

no other system in G\{[k]} that eliminates System i′. Towards a contradiction,

suppose there was such a System i′′. To eliminate System i′, its estimator Yi′′

would have to be greater than Yi′ . By the transitive property of eliminations,

System i′′ would also eliminate System [k]. But from how i′ is defined, it has the

highest estimator among the systems in G\{[k]} that eliminate System [k]. There-

fore System i′ is not eliminated by any other i ∈ G\{[k]}. By a similar transitive

argument, one can show that there exists no system in B that eliminates System

i′ since that system would also have eliminated System [k]. Therefore we can
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conclude that System i′ will be retained in the set I,

{Y[k] ≥ Y j −W[k] j for all j ∈ B and ∃i ∈ G\{[k]} s.t. Y[k] < Yi −W[k]i}

⊆ {∃i′ ∈ G\{[k]} s.t. i′ ∈ I}

Both events on the right-hand side of Equation (A.5) are contained in the

event of good selection. Altogether, we have

Pµ{Y[k] ≥ Y j −W[k] j for all j ∈ B} ≤ Pµ(GS),

from which it follows that Pµ(GS) ≥ 1 − α for every µ. �

A.7 Proof of Theorem 5

Proof. Fix an arbitrary configuration µ and define the subsets G and B and the

configuration µ∗ accordingly. Then

1 − α ≤ Pµ∗(CS) = Pµ∗(GS) = Pµ∗{[k] ∈ I} ≤ Pµ∗{∃i ∈ G s.t. i ∈ I}.

Let µ(0) := µ and for ` = 1, . . . , |G| − 1 recursively define the related configuration

µ(`) by µ(`)
[|B|+`] = µ[k] − δ and µ(`)

i = µ(`−1)
i for all i , [|B| + `]. Repeatedly applying

Condition (C10) with A = G yields a chain of inequalities,

Pµ∗{∃i ∈ G s.t. i ∈ I} = Pµ(|G|−1){∃i ∈ G s.t. i ∈ I}

≤ Pµ(|G|−2){∃i ∈ G s.t. i ∈ I}

≤ · · ·

≤ Pµ(1){∃i ∈ G s.t. i ∈ I}

≤ Pµ{∃i ∈ G s.t. i ∈ I}

= Pµ(GS).
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from which it follows that Pµ(GS) ≥ 1 − α for every µ. �
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APPENDIX B

PROOFS OF CHAPTER 3

B.1 Proof of Proposition 4

Let Y := max`,i, j W`, the highest performance of the alternatives, excluding Al-

ternatives i and j. From the definition of the pPGS:

pPGSi = P(Wi ≥ Y − δ,Wi ≥ W j − δ | E)

= P(Wi ≥ Y − δ | Wi ≥ W j − δ,E)P(Wi ≥ W j − δ | E), (B.1)

pPGS j = P(W j ≥ Y − δ,W j ≥ Wi − δ | E)

= P(W j ≥ Y − δ | W j ≥ Wi − δ,E)P(W j ≥ Wi − δ | E). (B.2)

We show that pPGSi < pPGS j by proving that the two terms in Equation (B.1)

are each less than their corresponding terms in Equation (B.2).

For the second terms,

P(Wi ≥ W j − δ | E) = P(W j −Wi ≤ δ | E) = P(N(µ j − µi, σ̂
2
i + σ̂2

j) ≤ δ) = Φ

δ − µ j + µi√
σ̂2

i + σ̂2
j


≤ Φ

δ − µi + µ j√
σ̂2

i + σ̂2
j

 = P(N(µi − µ j, σ̂
2
i + σ̂2

j) ≤ δ) = P(Wi −W j ≤ δ | E)

= P(W j ≥ Wi − δ | E).

For the first terms, we condition on the value of the difference between Wi

and W j:

P(Wi ≥ Y−δ | Wi ≥ W j−δ,E) =

∫ ∞

−δ

P(Wi ≥ Y−δ | Wi−W j = z,E) fWi−W j |E(z) dz, (B.3)
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where fWi−W j |E(·) is the pdf of Wi −W j | E. Relating Equation (B.3) to the integral

that arises from the first term in Equation (B.2) involves several steps. First, we

relate the pdf of Wi − W j | E to that of W j − Wi | E via a shift. Next, we show

that Wi | {Wi − W j = z,E} is stochastically monotone increasing in z. Finally, we

show that for z ≥ 0, Wi | {Wi − W j = z,E} is first-order stochastically dominated

by W j | {W j −Wi = z,E}.

For the first step, Wi −W j | E ∼ N(µi − µ j, σ̂
2
i + σ̂2

j) and W j −Wi | E ∼ N(µ j −

µi, σ̂
2
i + σ̂2

j). Thus the pdf of W j − Wi | E is identical to that of Wi − W j | E, but

shifted 2(µ j − µi) to the right, i.e., fWi−W j |E(z) = fW j−Wi |E(z + 2(µ j − µi)).

By substitution into Equation (B.3),

P(Wi ≥ Y−δ | Wi ≥ W j−δ,E) =

∫ ∞

−δ

P(Wi ≥ Y−δ | Wi−W j = z,E) fW j−Wi |E(z+2(µ j−µi)) dz,

(B.4)

For the second and third steps, we consider the joint distribution of Wi and

Wi −W j given E: Wi

Wi −W j

 ∼ MVN

 µi

µi − µ j

 ,
λ

2
i λ2

i

λ2
i λ2

i + λ2
j


 =:MVN


ν1

ν2

 ,
Σ11 Σ12

Σ21 Σ22


 .

The conditional means and variances of Wi given Wi − W j = z and E can be

obtained from the conditional formula for the multivariate normal distribution:

E[Wi | Wi −W j = z,E] = ν1 + Σ12Σ
−1
22 (z − ν2)

= µi −
σ̂2

i

σ̂2
i + σ̂2

j

(z − (µi − µ j))

=
σ̂2

j

σ̂2
i + σ̂2

j

µi +
σ̂2

i

σ̂2
i + σ̂2

j

µ j +
σ̂2

i

σ̂2
i + σ̂2

j

z,
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Var[Wi | Wi −W j = z,E] = Σ11 − Σ12Σ
−1
22 Σ21

= σ̂2
i − σ̂

2
i

 1
σ̂2

i + σ̂2
j

 σ̂2
i

= σ̂2
i

1 − σ̂2
i

σ̂2
i + σ̂2

j


=

σ̂2
i σ̂

2
j

σ̂2
i + σ̂2

j

.

Hence

Wi | {Wi −W j = z,E} ∼ N

 σ̂2
j

σ̂2
i + σ̂2

j

µi +
σ̂2

i

σ̂2
i + σ̂2

j

µ j +
σ̂2

i

σ̂2
i + σ̂2

j

z,
σ̂2

i σ̂
2
j

σ̂2
i + σ̂2

j

 , (B.5)

and similarly

W j | {W j −Wi = z,E} ∼ N

 σ̂2
j

σ̂2
i + σ̂2

j

µi +
σ̂2

i

σ̂2
i + σ̂2

j

µ j +
σ̂2

j

σ̂2
i + σ̂2

j

z,
σ̂2

i σ̂
2
j

σ̂2
i + σ̂2

j

 . (B.6)

Because the conditional distributions in Equations (B.5) and (B.6) have the

same variance—which is not a function of z—and different means, two forms

of stochastic dominance can be shown. First, we see from Equation (B.5) that

Wi | {Wi −W j = z,E} is stochastically monotone in z. In other words, for values z1

and z2 satisfying z1 < z2,

Wi | {Wi −W j = z1,E} ≤st Wi | {Wi −W j = z2,E},

where ≤st denotes first-order stochastic dominance. This means that for any

value y,

P(Wi ≥ y | Wi −W j = z1,E) ≤ P(Wi ≥ y | Wi −W j = z2,E).

Thus for the random variable Y , which is independent of Wi and W j,

P(Wi ≥ Y | Wi −W j = z1,E) ≤ P(Wi ≥ Y | Wi −W j = z2,E).

Second, it follows from Equations (B.5) and (B.6) that for z > 0,

Wi | {Wi −W j = z,E} ≤st W j | {W j −Wi = z,E}.
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Hence for z > 0,

P(Wi ≥ Y | Wi −W j = z,E) ≤ P(W j ≥ Y | W j −Wi = z,E).

Applying these two properties to Equation (B.4) yields,

P(Wi ≥ Y − δ | Wi ≥ W j − δ,E)

=

∫ ∞

−δ

P(Wi ≥ Y − δ | Wi −W j = z,E) fW j−Wi(z + 2(µ j − µi)) dz

≤

∫ ∞

−δ

P(Wi ≥ Y − δ | Wi −W j = z + 2(µ j − µi),E) fW j−Wi(z + 2(µ j − µi)) dz

≤

∫ ∞

−δ

P(W j ≥ Y − δ | W j −Wi = z + 2(µ j − µi),E) fW j−Wi(z + 2(µ j − µi)) dz.

(B.7)

By a change of variables and adding a positive term to the integral in Equa-

tion (B.7),

P(Wi ≥ Y − δ | Wi ≥ W j − δ,E) ≤
∫ ∞

2(µ j−µi)−δ
P(W j ≥ Y − δ | W j −Wi = z′,E) fW j−Wi(z

′) dz′

<

∫ ∞

−δ

P(W j ≥ Y − δ | W j −Wi = z′,E) fW j−Wi(z
′) dz′

= P(W j ≥ Y − δ | W j ≥ Wi − δ,E).

Having shown that P(Wi ≥ W j − δ | E) < P(W j ≥ Wi − δ | E) and

P(Wi ≥ Y − δ | Wi ≥ W j − δ,E) < P(W j ≥ Y − δ | W j ≥ Wi − δ,E),

it follows from Equations (B.1) and (B.2) that pPGSi < pPGS j.

B.2 Proof of Proposition 5

To prove Proposition 5, we will make use of the following two results:
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Lemma 1. (Slepian, 1962) Let Z1, . . . ,Zd be normally distributed random variables

with Cov(Zi,Z j) ≥ 0 for all i, j. For any constants c j, j = 1, . . . , d,

P

 d⋂
j=1

{Z j ≥ c j}

 ≥ d∏
i=1

P(Z j ≥ c j).

Lemma 2. (Tamhane, 1977) Let V1, . . . ,Vk be independent random variables. For any

nonnegative, real-valued functions g j(v1, . . . , vk) for j = 1, . . . , d that are each nonde-

creasing in each of their arguments,

E

 d∏
j=1

g j(V1, . . . ,Vk)

 ≥ d∏
j=1

E[g j(V1, . . . ,Vk)].

We now prove Proposition 5.

Proof. Under Assumptions 4–7,

Wi | {λi,E} ∼ N

(
ν0

i µ
0
i + ni x̄i

ν0
i + ni

,
1

(ν0
i + ni)λi

)
,

and therefore

Wi −W j | {λi, λ j,E} ∼ N

ν0
i µ

0
i + ni x̄i

ν0
i + ni

−
ν0

jµ
0
j + n j x̄ j

ν0
j + n j

,
1

(ν0
i + ni)λi

+
1

(ν0
j + n j)λ j

 .
From the definition of pPGSi,

pPGSi = P

⋂
j,i

{Wi −W j ≥ −δ} | E

 .
Conditioning on the posterior precisions Λ1, . . . ,Λk allows Lemma 1 to be ap-

plied with Z j = Wi −W j | {λ1, . . . , λk,E}:

P

⋂
j,i

{Wi −W j ≥ −δ} | E

 = E

P
⋂

j,i

{Wi −W j ≥ −δ} | Λ1, . . . ,Λk,E

 | E


≥ E

∏
j,i

P
(
Wi −W j ≥ −δ | Λ1, . . . ,Λk,E

)
| E


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Since µi − µ j ≥ −δ for all j , i, the functions

g j(λ1, . . . , λk) = P
(
Wi −W j ≥ −δ | λ1, . . . , λk,E

)
,

are nonnegative and nondecreasing in λ1, . . . , λk for all j , i. By Lemma 2,

E

∏
j,i

P
(
Wi −W j ≥ −δ | Λ1, . . . ,Λk,E

)
| E

 ≥∏
j,i

E
[
P
(
Wi −W j ≥ −δ | Λ1, . . . ,Λk,E

)
| E

]
=

∏
j,i

P
(
Wi ≥ W j − δ | E

)
.

�
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APPENDIX C

PROOFS OF CHAPTER 4

In this appendix we prove the validity of the Modified Gupta procedure,

namely, that it satisfies

P(µ,Σ){x[k] ∈ I} ≥ 1 − α for all µ ∈ PZ(δ),

where Σ is a vector whose elements are all σ2.

Fix an arbitrary set of systems {x1, . . . , xk} with configuration µ ∈ PZ(δ) and

a common, known variance σ2 < ∞. The procedure takes n0 i.i.d. replications

Y1(xi), . . . ,Yn0(xi) for i = 1, . . . , k and computes the corresponding sample means

Ȳ(xi) for i = 1, . . . , k. The Modified Gupta procedure preserves a set of systems I

such that for each system i ∈ I,

Ȳ(xi) ≥ max
j,i

Ȳ(x j) − (W − δ)+,

where W = hBσ
√

2/n0 and hB is Bechhofer’s constant. Note that the positive part

operator on the term (W − δ)+ is needed to ensure that at least one system—the

one with the largest sample mean—is included in the set I.

We follow the proof of Gupta’s procedure presented by Kim and Nelson
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(2006b) and modify where necessary:

P(µ,Σ){x[k] ∈ I} = P(µ,Σ)

{
Ȳ(x[k]) ≥ max

j,k
Ȳ(x[ j]) − (W − δ)+

}
= P(µ,Σ)

{
Ȳ(x[k]) ≥ max

j,k
Ȳ(x[ j]) −

(
hBσ

√
2/n0 − δ

)+
}

= P(µ,Σ)

{
Ȳ(x[k]) ≥ Ȳ(x[ j]) −

(
hBσ

√
2/n0 − δ

)+

for all j , k
}

= P(µ,Σ)

 Ȳ(x[ j]) − Ȳ(x[k]) −
(
µ(x[ j]) − µ(x[k])

)
σ
√

2/n0

≤

(
hB −

δ

σ
√

2/n0

)+

−

(
µ(x[ j]) − µ(x[k])

)
σ
√

2/n0
for all j , k


≥ P(µ,Σ)

 Ȳ(x[ j]) − Ȳ(x[k]) −
(
µ(x[ j]) − µ(x[k])

)
σ
√

2/n0

≤ hB −
δ +

(
µ(x[ j]) − µ(x[k])

)
σ
√

2/n0
for all j , k


≥ P(µ,Σ)

{
Z j ≤ hB for all j , k

}
= 1 − α ,

where the variables Z1, . . . ,Zk−1 are distributed according to a multivariate nor-

mal with means 0, variances 1, and common pairwise correlations 1/2. The last

equality follows from the definition of Bechhofer’s constant hB.
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ings of the 27th Conference on Learning Theory (COLT), pages 394–407.

Chang, K. H., Hong, L. J., and Wan, H. (2013). Stochastic trust-region response-

surface method (STRONG)—A new response-surface framework for simula-

tion optimization. 25(2):230–243.

Chen, C.-H., Chick, S. E., Lee, L. H., and Pujowidianto, N. A. (2015). Rank-

ing and selection: Efficient simulation budget allocation. In Fu, M., editor,

Handbook of Simulation Optimization, pages 45–80.

Chen, C.-H., He, D., Fu, M., and Lee, L. H. (2008). Efficient simulation budget

allocation for selecting an optimal subset. INFORMS Journal on Computing,

20(4):579–595.
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Kaufmann, E., Cappé, O., and Garivier, A. (2014). On the complexity of A/B

testing. In Florina Balcan, M., Feldman, V., and Szepesvári, C., editors, Pro-
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