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This thesis is concerned with statistical methods that are relevant in the scientific

study of gene expression data. It is customary in these areas to use microarray

technology as a first step in identifying the genes that are differentially expressed

followed by using quantitative polymerase chain reaction (qPCR) as a confirmatory

tool. The first part of thesis addresses statistical analysis for qPCR data, while

the second part of the thesis addresses the so-called large p, small n problem, using

microarray gene expression data as the motivating example.

Description of the gene expression profiles from PCR can be cast within the

more general framework of ancestral inference for branching processes. Accord-

ingly, part one of the thesis is devoted to the study of branching processes initi-

ated by a random number of ancestors. We address issues concerning modeling,

inference, and asymptotic justification of the proposed methodologies.

The second part of the thesis focuses on microarray data, specifically developing

multivariate techniques for identifying differentially expressed genes. The results

can be viewed in the more general context of multiple hypothesis testing or the

multivariate testing problem.
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CHAPTER 1

INTRODUCTION AND ORGANIZATION OF THE THESIS

This thesis is concerned with statistical methods that are relevant in the scientific

study of gene expression data. It is customary in these areas to use microarray

technology as a first step in identifying the genes that are differentially expressed

followed by using quantitative polymerase chain reaction (qPCR) as a confirmatory

tool (Ferré, 1998). While several papers have dealt with the statistical issues for

the microarray problem (Dudoit et al., 2002b), statistical analysis of qPCR data

has received considerably less attention.

This thesis contains two parts: Part 1 (Chapters 2, 3, and 4) addresses statis-

tical analysis of qPCR data, while Part 2 (Chapters 5 and 6) address statistical

issues related to gene expression microarray data. Statistical analysis of qPCR data

can be cast within a more general framework of ancestral inference for branching

processes. Accordingly, Part 1 of the thesis is devoted to the study of branching

processes initiated by a random number of ancestors. We address issues concerning

modeling, inference, and asymptotic justification of the proposed methodologies.

We begin with a brief description of qPCR. The polymerase chain reaction

(PCR) is a biochemical technique used to amplify the number of copies of a specific

DNA fragment. For qPCR, the scientific goal is estimation of the initial number

of molecules present in a genetic material. qPCR is an important and widely

used tool for gene expression experiments (Ferré, 1998; Kubista et al., 2006; Nolan

et al., 2006). A typical PCR experiment is run for 40 cycles; theoretically, the

number of molecules doubles in every cycle. In practice, only some fraction of the

molecules actually replicate in a given cycle. Hence, a supercritical Galton-Watson

branching process with a Bernoulli offspring distribution provides a natural model
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to describe the dynamics of PCR. Under a branching process model, the question

of quantitation is tantamount to estimating the initial number of ancestors of

the process. There are several papers which model PCR as a branching process

and then estimate the initial number of ancestors (Nedelman et al., 1992; Jacob

and Peccoud, 1998; Lalam, 2007; Lalam and Jacob, 2007). This work is based

on observing a single realization of a branching process. In fact, a typical qPCR

experiment produces data from 96 or 384 separate reactions.

Ancestral inference for branching processes is characterized by four parameters:

the ancestor mean, the offspring mean, ancestor variance, and offspring variance.

In Chapter 2, we focus on the binary branching process model suggested by the

PCR dynamics. We propose a new design, namely replicated PCR experiments,

and develop the associated branching process model with random effects to account

for variability between replicates. We develop generalized method of moments es-

timators for the model parameters and establish their consistency and asymptotic

normality. The advantage of our method compared to traditional (non-branching

process) methods, such as the comparative CT and the standard curve method

(Livak, 2001), is that our estimates have smaller bias and tighter confidence inter-

vals. Furthermore, because our method incorporates sources of variability into the

model in a systematic way it yields confidence intervals that attain the nominal

coverage probability. These advantages are illustrated through both simulation

and experimental data.

Chapter 3 develops analysis of variance (ANOVA) models for supercritical

branching processes. These models are useful to compare the expression profiles

of multiple genes or more generally the mean number of ancestors across various

“groups.” The proposed methodology is dependent on the equality of the offspring

2



means. For this reason, we undertake a detailed description of the methodology for

comparison of the ancestral means and offspring means. This paper does not incor-

porate a random effect for replicates; however, it treats branching processes with

unbounded support. The methods are again illustrated through both simulation

and qPCR data.

Chapter 4 focuses on limit theorems for branching processes under minimal

moment conditions. These results, besides being useful for inferential purposes,

develop new aspects of some of the classical martingales studied in the branching

process literature. These results are based on new ideas concerning the harmonic

moments of random variables. We establish the joint asymptotic normality of

the appropriately centered and scaled versions of the estimators of the ancestor

mean, offspring mean, and offspring variance. We show that the asymptotic limit

distributions of the offspring mean and offspring variance are independent while

that of the ancestor mean and ancestor variance are not independent. Furthermore,

the asymptotic limit distributions of appropriately centered and scaled ancestor

mean and offspring mean are independent.

Part 2 of the thesis explores the so-called large p, small n problem, using

microarray gene expression data as the motivating example. Chapter 5 develops a

multivariate technique for identifying differentially expressed genes using the sup-

norm statistic recently studied in Kuelbs and Vidyashankar (2009). Chapter 6

addresses the question of robust and adaptive multivariate methods.

The results presented in Chapters 5 and 6 can be viewed in the more general

context of multiple hypothesis testing or the multivariate testing problem. The

results presented in the thesis are strong competitors for some of the traditionally

available methods in the multivariate literature.
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CHAPTER 2

INFERENCE FOR QUANTITATION PARAMETERS IN

POLYMERASE CHAIN REACTIONS VIA BRANCHING

PROCESSES WITH RANDOM EFFECTS

2.1 Introduction

The polymerase chain reaction (PCR) is a biochemical technique used to amplify

the number of copies of a specific DNA fragment. It is one of the most utilized sci-

entific experiments (Mullis et al., 1994; Kubista et al., 2006; Nolan et al., 2006) with

applications in diverse areas such as forensic science, virology, and gene expression

(Ferré, 1998). We are specifically concerned with quantitative PCR (qPCR), where

the goal is inference concerning the initial number of molecules present in a genetic

material. Informally, our goal is to statistically identify, using Figure 2.2, the ratio

of mean intensities of blue to mean intensities of red in cycle 0 using the data from

cycles 21 through 40.

In this paper, we propose a new replicated design for PCR experiments. We

then develop a novel generalized method of moments approach for inference con-

cerning the initial number of molecules. We establish the asymptotic validity of

our approach and show, using simulations, that our methodology yields results

that are close to the nominal values in small samples. Furthermore, in the analysis

of experimental data, our method yields estimates with a relative bias of approxi-

mately 4.4% compared to traditional methods which yield point estimates with at

least 15% relative bias.
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2.1.1 PCR concepts

We begin with a summary of critical details concerning PCR; see Mullis et al.

(1994) and Ferré (1998) for references and more detailed descriptions. As de-

scribed above, PCR is a biochemical technique for replicating DNA. A PCR vial

contains the following components for DNA duplication: a piece of DNA, large

quantities of nucleotides, large quantities of primer sequence, and the DNA poly-

merase. A single cycle of PCR consists of three steps: denaturing, annealing,

and extension. During the denaturing step, the vial is heated thereby separat-

ing the two DNA chains in the helix. In the annealing step the vial is cooled

causing the primers to anneal to the ends of DNA strands. Finally, in the exten-

sion step the vial is heated again and the polymerase begins adding nucleotides

to the primer and eventually makes a complementary copy of the DNA tem-

plate. This completes the first cycle. At the end of the first cycle, it is be-

lieved that each piece of DNA in the vial has been duplicated. The cycles are

repeated several times. An animation of this process can be found on the website

http://www.sumanasinc.com/webcontent/animations/content/pcr.html.

It is not always the case that at the end of each cycle the number of DNA

molecules have doubled. By the nature of the experiment, it follows that denatur-

ing, annealing, and extension of each template are independent of one another and

hence each template either duplicates or does not duplicate independently of the

other. Since the amount of resources available to all the templates are the same

within a cycle, the probability of duplication, denoted by p, is the same for all the

templates within a cycle. If enough resources are available, then one can assume

that this probability remains constant between cycles. The parameter p is called

the efficiency of the PCR. Thus, under the assumption that enough resources are

5



available during all cycles, the above biochemical process has been modeled as a

single type branching process with offspring distribution P (N1 = 1) = 1 − p and

P (N1 = 2) = p, where N1 is the number of templates at the end of the first cycle

starting with a single template. Early probabilistic results modeling PCR as a

Galton-Watson branching process have been discussed in Krawczak et al. (1989),

Reiss et al. (1990), Hayashi (1990), and Maruyama (1990).

The amount of genetic material from each reaction is measured via the inten-

sity of the fluorescence signal and not the number of molecules; these fluorescence

measurements are available for every cycle of the reaction. The cycles of a PCR

can be classified into three phases depending on the amount and rate of accumu-

lated genetic material. These are (i) the initial phase, (ii) the exponential phase,

and (iii) the plateau phase. Figure 2.1, which plots fluorescence data from three

reactions, illustrates these three phases. An important feature of qPCR is that

fluorescence can only be detected above a given threshold; it is this detection limi-

tation that separates the initial phase from the exponential phase. More precisely,

during the initial phase the product accumulates exponentially but sufficient ge-

netic material is not present for an accurate fluorescence reading. The exponential

phase corresponds to cycles at which sufficient genetic material is available yielding

detectable fluorescence levels. During this phase, the plot of the fluorescence in-

tensity against the cycle number displays an exponential curve. After a few cycles

of exponential growth, the rate of fluorescence accumulation begins to slow down

resulting in linear growth. Beyond this linear phase, the accumulation stops and

intensity plateaus yielding the plateau phase.

The relationship between the number of molecules and the fluorescence inten-

sity is a subject of intense research in biochemistry and related scientific areas.
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Figure 2.1: This figures illustrates the three phases of PCR, plotting log
fluorescence versus cycle number (log Fj vs. j) for three separate
reactions.

The number of molecules N corresponding to a fluorescence intensity F depends

on factors such as amplicon size, polymerase, and the type of dye used (Rutledge,

2004; Alvarez et al., 2007). Under optimal experimental conditions, the number of

molecules is a constant multiple of the intensity and this constant depends on the

PCR system used for the amplification. In fact, Rutledge (2004) established that

N =

(
CF × 9.1× 1011

AS

)
F (2.1)

where AS is the amplicon size and CF is the calibration factor, which represents

the number of nanograms of double-stranded DNA per fluorescence unit (ng/FU).

For statistical purposes it is convenient to view CF as a random variable with

mean c? and variance σ2
CF . Thus, the precision of our inference for quantitation

parameters is dependent on the assumptions concerning c? and σ2
CF . We examine

this question in the simulation section.
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2.1.2 PCR Quantitation

Quantitation, or absolute quantitation, refers to estimation of the copy number, i.e.

the number of DNA molecules in the initial amount of genetic material. One way to

estimate the copy number is to first estimate the fluorescence intensity and convert

it to the number of molecules using (2.1). However, the fluorescence intensity

corresponding to the target is noisy and hence the amplification process is needed

to accumulate sufficient product and use this to estimate the fluorescence intensity

corresponding to the target material. Thus, an understanding of the accumulation

process, its relationship to the target material, and an accurate knowledge of the

parameter c? are needed for absolute quantitation. qPCR experiments have been

performed for estimating the parameter c? (Goll et al., 2006; Ming and Kwok,

2003; Monis et al., 2005).

Relative quantitation is concerned with the estimation of the ratio of the copy

numbers of a target genetic material to that of a reference genetic material. As

in absolute quantitation, this is achieved using the fluorescence intensities of the

accumulated products of the target and reference genetic materials. Under the

assumption that c? is the same for both the amplifications, the estimate of the

ratio does not involve this parameter.

Traditional techniques for quantitation involve a linear or non-linear regres-

sion model for the fluorescence data. These methods are based on either the

log-linear relationship between the initial number of molecules and the threshold

cycle CT or the sigmoidal nature of the cycle number versus the fluorescence in-

tensity curve. The log-linear relationship is developed using a deterministic model

for the amplification of the DNA molecules. Furthermore, this deterministic model

can be obtained as the expectation of the nth generation of the branching process.
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Other contemporary efforts in quantitation involve non-homogeneous models for

the amplification processes. The primary drawback of these approaches is that all

available data are not utilized for statistical analyses. Furthermore, the estimates

of the standard error provided by these techniques are usually incorrect because

they do not account for all sources of variation.

The branching process model described above is more suited for the underlying

count of DNA molecules rather than for the fluorescence data. However, the state

space of the branching process, which describes the number of DNA molecules,

can be estimated using (2.1) or other methods.

2.1.3 Outline

The primary purpose of this paper is to clarify, improve, and address some of the

limitations of the existing statistical methods and models concerning inference for

the quantitation parameters of PCR. Motivated by this, we introduce a mixture

model, namely a collection of conditionally independent branching processes each

initiated by a random number of initial molecules, as a statistical model for data

from PCR experiments. We undertake a systematic asymptotic approach towards

inference. We emphasize here that the asymptotic framework used in this paper

is not intended to understand the behavior of the reactions when infinitely many

cycles are run; rather, we seek to explain several features that arise in a typical

PCR from the behavior of the limits of various statistical quantities encountered

in the data analyses. This is facilitated by the exponential rate of convergence of

various statistics involved in our study. Thus the asymptotic framework serves to

set up standards for comparing various results.
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In Section 2 we describe the data structures encountered in a typical PCR

experiment and the sources of variability associated with them. Additionally, we

develop a hierarchical, non-homogenous binary branching process model for de-

scribing the dynamics of PCR experiments. In Section 3 we state our main re-

sults concerning the quantitation parameters of PCR experiments. We apply our

methodology to simulated data in Section 4 and experimental data in Section 5.

Section 6 contains concluding remarks. The proofs are given in Section 7.

2.2 Data Structures and Statistical Models

We begin with a description of the data for a single real-time qPCR. Let {Fj :

j = 0, 1, 2, · · · } denote the fluorescence intensities at various cycles and {Nj : j =

0, 1, 2, · · · } denote the underlying unobservable branching process initiated by N0

molecules. Let ma = E(N0) and σ2
a = V ar(N0). Let me denote the efficiency

parameter describing the mean splitting rate of the process and σ2
e denote the

variance of the splitting rate. Under the binary splitting model, the efficiency of the

PCR is given by p = me−1 and σ2
e = (me−1)(2−me). Our focus is on the vector

of parameters (ma,me), which we call the quantitation parameters. However,

estimates of the variance parameters σ2
a and σ2

e are needed for standard error

calculations and for other inferential purposes. It is assumed, and experimentally

verified (Goll et al., 2006), that the amount of fluorescence is proportional to the

number of DNA molecules; that is Nj = cFj, where, using (2.1), c = c?×9.1×1011

AS
.

We will assume that c is known even though in several PCR assays c is estimated.

When c is estimated from data, our results will hold conditionally on c, even though

marginal results depend on the variability introduced due to the estimation of c.

We will return to this issue in the simulation section.
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2.2.1 Replicated Experiments

A typical qPCR experiment produces data from either 96 or 384 separate reac-

tions. Replication of the PCR experiment under identical conditions yields data

that can be represented as {Fk,j : k ≥ 1, j ≥ 1}; that is, Fk,j represents the fluores-

cence intensity from the jth cycle of the kth replicate (or well). Let the underlying

unobservable branching process of DNA molecules associated with the fluores-

cence intensities be denoted by {Nk,j, j ≥ 0}. We will assume that the processes

{Nk,j, j ≥ 0} are independent and identically distributed (i.i.d.) for all k ≥ 1,

resulting in Fk,j being i.i.d. random variables in k. Let r(n) denote the number of

replicates. Then the data for the problem are {Fk,j, 1 ≤ k ≤ r(n), j = 1, 2, · · ·n}.
To ensure that these assumptions are satisfied, it is important that replicate ex-

periments be carried out by splitting a master-mix containing all components of

the PCR. This minimizes the unwarranted variability introduced by non-uniform

presence of amplifying substance between replicates.

2.2.2 Dilution Experiments

Another set of experimental data usually collected, is the so-called dilution data.

In such data, the mean initial number of molecules is E(Nk,0) = madk, where dk

are called the dilution constants. The dk’s are controlled by the scientist, modulo

experimental error, and are considered known constants. Contrary to the name,

these constants can take values larger than one. Thus, PCR experiments with

dilution consists of fluorescence data as described in the previous section, but the

initial number of molecules are assumed to be independent but not identically

distributed. Thus the statistical model used for dilution experiments are i.i.d.
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branching processes generated by independent initial random variables rather than

i.i.d. initial random variables. For dk = 1, the dilution data reduce to replicated

data.

2.2.3 Sources of variability and non-homogeneous models

Accuracy of inference concerning the quantitation parameters depends on identify-

ing different sources of variability and controlling for them. In a PCR experiment,

variability is introduced at various stages of the experiment. First, it is impos-

sible to exactly identify the number of DNA molecules even for a known genetic

material. Hence, from a practical perspective, it is convenient to view the initial

number as a random variable and the variance of this random variable determines

the precision of the estimator of ma. Since N0 is unobservable, and the results are

based on accumulated product, the variability in the rate of accumulation plays

an important role. Experimental evidence shows that the rate of accumulation

changes within a reaction and between reactions. The changes within a reaction

are essentially due to various biochemical reasons while the variability between

reactions can be caused due to many factors one of which is the so called pipetting

error.

Variants of simple branching processes have been suggested to model the evolu-

tion of the process across cycles. For example, Schnell and Mendoza (1997) suggest

a kinetic model to describe the PCR dynamics and Jagers and Klebaner (2003a)

use a size-dependent branching process model as a discrete time approximation to

the dynamic model that allows for stochasticity. Lalam et al. (2004a) suggest a

size dependent model for the non-exponential phase and a simple branching pro-

cess model for the exponential phase. Since we focus mainly on the exponential
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phase for quantitation, we deal with the branching process model.

The variability in efficiency between reactions is important and needs to be

addressed. From a statistical modeling perspective, not much information con-

cerning variability within a reaction is available. Hence while non-homogeneous

models can be proposed, it is difficult to ascertain the practical effect of such

modeling. However, the non-homogeneity can be addressed empirically by using

reaction and cycle dependent estimators of efficiency.

On the other hand, information concerning between reaction variability can be

extracted by using either replicated or dilution data. Thus, we account for between

reaction variability, by modeling the efficiency of the exponential phase of the kth

reaction as a random variable pk with some distribution G on (0,1). During the

exponential phase, experimental evidence suggests that the support of G lies in

the interval (1− ε, 1) for some “small” ε. Thus, the model proposed for describing

PCR dynamics is,

pk
i.i.d.∼ G(.), 1 ≤ k ≤ r(n), (2.2)

Nk,0
independent∼ Hk(.), 1 ≤ k ≤ r(n), (2.3)

and, given Nk,0, pk, {Nk,j : j ≥ 1} is a binary branching process initiated by Nk,0

ancestors with splitting probability pk. That is,

Nk,j+1|Nk,j, pk ∼ Nk,j + Bin(Nk,j, pk), for all j ≥ 0, (2.4)

where Bin(Nk,j, pk) is a binomial random variable with parameters Nk,j and pk.

The sequence {pk : k ≥ 1} representing the splitting rate is assumed to be inde-

pendent of the sequence {Nk,0 : k ≥ 1} of initial amounts of genetic materials. We

call this model a branching process model incorporating random effects or more

generally a mixture model using branching processes. Recently, similar ideas have
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been used to model between subject variability. For instance, Altman (2007) stud-

ies hidden Markov models with random effects, and Hyrien and Zand (2008) use

mixture models in multi-type age-dependent branching processes in the context of

CFSE-labeling experiments.

We will use the notation E(Nk,0) = madk, V ar(Nk,0) = σ2
ad

2
k, E(N j

k,0) = mj,0d
j
k,

j = 3, 4, for all k ≥ 1. The behavior of the constants dk will be critical in the small

and large sample study of our methodology. In particular, we will encounter the

behavior of Dj(n) = (r(n))−1
∑r(n)

k=1 dj
k for j = 1, 2, 3, 4. The following condition

concerns the stability of the sequence Dj(n) as n increases and is analogous to

conditions of similar type adopted when studying regression problems.

Condition 1. Assume that Dj(n) → Dj > 0 as n → ∞ for all j = 1, 2, 3, 4.

Furthermore, assume that
∑

k≥1 k−2d2j
k < ∞ for j=1, 2.

Condition 1 will be called the regularity of the dilution constants and we will

assume that this condition holds throughout the paper. The condition on D4(n)

and the convergence of
∑

k≥1 k−2d4
k are needed only for studying the consistency

of the variance estimate.

2.3 Inference for Copy Number

2.3.1 Moments and Martingales

It is instructive to write down the model in a more transparent form as follows:

Nk,j+1 =

Nk,j∑

l=1

ξk,j,l, (2.5)
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where the random variable ξk,j,l represents whether the lth DNA strand in the jth

cycle of the kth reaction splits or not. In terms of the random variables ξk,j,l, our

assumption states that for every fixed k and pk, the random variables are i.i.d.

with distribution

P (ξk,j,l = 2|pk) = pk P (ξk,j,l = 1|pk) = 1− pk. (2.6)

Thus, E(ξk,j,l|pk) = 1 + pk ≡ mk and V ar(ξk,j,l|pk) = pk(1 − pk) ≡ σ2
k. We will

use the notation Ek(.) to denote the conditional expectation E(.|pk) and V ark(.)

to denote the conditional variance V ar(.|pk). Hence, it follows that

Ek(Nk,j+1) = Ek(Ek(Nk,j+1|Nk,j)) = mkEk(Nk,j). (2.7)

Iterating the above identity, it follows that

Ek(Nk,j+1) = mj+1
k madk. (2.8)

In the case of fluorescence data, (2.8) and (2.1) imply that Ek(Fk,j+1) = c−1mj+1
k madk.

Thus, conditioned on the random effect pk, Vk,j ≡ m−j
k Nk,j is a positive martingale

sequence with respect to the sigma field containing information up to (j−1) cycles

and the value of the random effect. A consequence of this observation is that as

j → ∞, Vk,j converges to V ?
k , where V ?

k > 0 (Athreya and Ney, 1972). Further-

more, since Vk,j has uniformly bounded marginal and conditional moments of at

least order four (Lemma 6), the sequence {V 2
k,n : n ≥ 1} is uniformly integrable

and hence Vk,n converges in L2 to V ?
k .

The moments of the limit random variable V ?
k will play an important role in

our analyses. It is easy to see that the marginal and the conditional means of V ?
k
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coincide and are given by madk. Next,

V ark(V
?
k ) = Ek(V ark(V

?
k |Nk,0)) + V ark(Ek(V

?
k |Nk,0)) (2.9)

= Ek(Nk,0
σ2

k

mk(mk − 1)
) + V ark(Nk,0) (2.10)

= madk
σ2

k

mk(mk − 1)
+ σ2

ad
2
k, (2.11)

where the last equality follows from the assumed independence of Nk,0 and pk. Now,

since the conditional expectation of V ?
k is madk, the variance of the conditional

expectation is zero. Hence, using σ2
k = pk(1 − pk) and mk = 1 + pk, the marginal

variance of V ?
k is given by

ω2
k = madkE(

1− p1

1 + p1

) + σ2
ad

2
k, (2.12)

where we used that pk’s have the same distribution. The marginal variance of the

limiting random variable V ?
k depends on the reaction only via the dilution factor

used in that reaction.

2.3.2 Absolute Quantitation

Information about ma is contained both in Nk,0 and in V ?
k . Let us assume, for the

moment that dk = 1. If one can obtain a random sample of size r from Nk,0, then

the resulting sample mean is an unbiased estimator of ma. The variance of this

estimator is then r−1σ2
a and the problem would be completely resolved. However,

since it is not possible to obtain observable samples from Nk,0, one could use in-

stead the sample mean of a random sample from V ?
k to estimate ma. The variance

of this estimator would be r−1(σ2
a + maE(1−p1

1+p1
)). Since V ?

k are unobservable, once

again this recipe is not feasible. The discussion however suggests that if one were

to average observable data over replicates then it is plausible that consistent esti-

mators of ma may exist. Since, one can obtain fluorescence data at every cycle, it
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is natural to use data from the cycles in the exponential phase to obtain estimators

of ma. Thus, the first step is to identify cycles belonging to the exponential phase.

It is common to associate cycles in the exponential phase with a parameter

called CT . CT is defined to be that cycle at which the accumulated product crosses

a specified threshold. This threshold is a user defined quantity. In Section 5 we

propose an alternative method to identify the cycles in the exponential phase. Let

τk and nk denote the first and last cycles of the exponential phase, respectively,

in the kth reaction. Then, the cycles in the exponential phase of that reaction

can be denoted by τk, τk+1, · · ·nk. To make the conditions more transparent when

studying asymptotics, we will take nk = n and τk = τ . This does not entail any

loss of generality and also minimizes cumbersome notation. Alternate conditions

involving ∧r(n)
k=1nk and ∧r(n)

k=1τk can be written down for large sample analysis. In

our data analysis, we do not make this assumption.

Since more than one cycle is involved during the exponential phase, we consider

the total accumulated fluorescence during the exponential phase, namely

Yk,n =
n∑

j=τ

Fk,j. (2.13)

Our formulation of the inference problem in terms of the generalized method of

moments technique will involve the behavior of Yk,n and not Fk,n . The proposition

below describes the asymptotic behavior of Yk,n for every reaction k.

Proposition 1. Under the assumptions of our model, conditioned on the random

effect pk, with probability one

lim
n→∞

Yk,n

mn
k

= c−1(
mk

mk − 1
)V ?

k . (2.14)

Motivated by the above proposition, we consider the following generalized
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method of moments estimator of ma, given by

m̃a,n =
c

r(n)D1(n)

r(n)∑

k=1

p̃k,n

m̃n+1
k,n

Yk,n, (2.15)

where p̃k,n is an estimator of the efficiency for the kth reaction and m̃k,n = 1 +

p̃k,n. For replicated data, Dj(n) ≡ 1. The estimator m̃a,n takes into account the

variability in amplification rates between cycles and scales the product from the kth

reaction by the amplification rate of that reaction. The factor c is needed to convert

the fluorescence information into number of molecules. As one would expect,

the asymptotic properties of m̃a,n depend on the properties of the estimator of

efficiency. While several estimators for efficiency are available, we use the weighted

conditional least squares estimator of the reaction efficiency since it is based on

the total accumulated fluorescence during the exponential phase. The estimator is

given by,

p̃k,n =

∑n−1
j=τ (Fk,j+1 − Fk,j)∑n

j=τ Fk,j

=
Yk,n − Fk,τ − Yk,n−1

Yk,n−1

. (2.16)

The challenge to studying the asymptotic properties of our estimators is related

to the phenomenon called the propagation of variability. The power of n in the

estimators increase the variability, and the rate of convergence of p̃k,n to pk when

raised to the nth power becomes a critical issue. We develop a novel method

to address this issue using harmonic moments (see Lemmas 1, 3, and 4). Our

first result describes the consistency and asymptotic normality properties of our

estimator of ma.

Theorem 1. Assume that the dilution constants are regular and define DL =

D1D
−1
2 . Let the number of replicates r(n) be such that r(n) →∞ with r(n)n−1 → 0

as n →∞. Then, m̃a,n is a strongly consistent estimator of ma. Furthermore,

√
r(n)D1(n)(m̃a,n −ma)

d→ H, (2.17)
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where H ∼ N(0, σ2
L), where σ2

L = maE(1−p1

1+p1
) + DLσ2

a.

Thus, it follows from the theorem that

m̃a,n
¦∼ N(m̃a,n,

σ̃2
L,n

r(n)D1(n)
), (2.18)

where σ̃2
L,n is an estimate of the variance based on the data. When p1 ≡ 1, then

the genetic material exactly doubles in each cycle, and the only variation in the

estimation comes from the variability in the initial amount of genetic material. If

σ2
a = 0, then one can quantitate exactly and the results reduce to classical results

from the PCR literature. Of course, neither of these are feasible and the above

theorem shows the precise nature of the variability in the quantitation process,

providing a decomposition along the lines of classical analysis of variance. Finally,

notice that for the replicated data structure (D1(n), DL) = (1, 1) and the limiting

variance does not involve the dilution parameters.

2.3.3 Relative Quantitation

We now turn to relative quantitation. In this case, we have two sets of genetic

materials, the calibrator and the target. We will add a subscript C and T to our

notation to distinguish between data collected from calibrator and target materi-

als. Hence Fk,j,C and Fk,j,T will represent the fluorescence from the jth cycle of the

kth reaction from the calibrator and target materials, respectively. The unobserv-

able branching process associated with these fluorescence data will be denoted by

Nk,j,C and Nk,j,T respectively. Let E(Nk,0,C) = ma,Cdk and E(Nk,0,T ) = ma,T dk.

Let σ2
a,Cd2

k and σ2
a,T d2

k denote the variance of N0,C and N0,T , respectively. To com-

plete the description of the model, we will assume that {pk,C , pk,T : k ≥ 1} to be
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a collection of independent random variables with distribution GC(.) and GT (.)

respectively and that the support of GC and GT are (1− ε, 1).

In relative quantitation, the object of interest is R, where

R =
ma,T

ma,C

. (2.19)

Analogous to the absolute quantitation case, we can define the non-parametric

maximum likelihood estimator of the reaction efficiency using the accumulated

fluorescence as follows:

p̃k,n,C =
Yk,n,C − Fk,τ,C − Yk,n−1,C

Yk,n−1,C

, p̃k,n,T =
Yk,n,T − Fk,τ,T − Yk,n−1,T

Yk,n−1,T

. (2.20)

This yields, m̃k,n,I = 1 + p̃k,n,I and m̂k,n,I = 1 + p̂k,n,I for I = C, T . Hence, one can

now estimate the ratio R using

R̃n =
m̃A,n,T

m̃A,n,C

, (2.21)

where

m̃a,n,T =
1

r(n)

r(n)∑

k=1

p̃k,n,T

m̃n+1
k,n,T

Yk,n,T , m̃a,n,C =
1

r(n)

r(n)∑

k=1

p̃k,n,C

m̃n+1
k,n,C

Yk,n,C . (2.22)

Our main result concerning the relative quantitation is given below.

Theorem 2. (Relative Quantitation) Under the assumptions of Theorem 1, R̃n is

a strongly consistent estimator of R. Furthermore,

√
r(n)D1(n)(R̃n −R)

d→ G2, (2.23)

where G2 ∼ N(0, σ2
R). The limiting variance σ2

R is given by

σ2
R = R2(σ2

L,T +
σ2

L,C

m2
a,C

), (2.24)

where

σ2
L,I = ma,IE(

1− p1,I

1 + p1,I

) + DLσ2
a,I , I = C, T, (2.25)

and DL is as in Theorem 1.
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2.3.4 Bias Correction

The estimator of ma proposed in the previous section can be improved by account-

ing for the cycles during the initial noisy phase. To address this issue, we observe

that the mean fluorescence during the exponential phase of the kth reaction is

given by c−1mn+1
k (mk− 1)−1(1−m

τ−(n+1)
k ). Since, (1− m̃

τ−(n+1)
k,n ) converges to one

exponentially fast, one can show that the bias corrected estimator

m̃(b)
a,n =

c

r(n)D(n)

r(n)∑

k=1

p̃k,n

m̃n+1
k,n

(1− m̃
τ−(n+1)
k,n )−1Yk,n, (2.26)

inherits the asymptotic properties of m̃a,n. For this reason, we use and recommend

this estimator for data analysis.

2.3.5 Inference for PCR Efficiency

As seen in the previous section, inference for quantitation depends critically on the

estimator of the efficiency of the PCR experiment. As described so far in the text,

there are two notions of efficiency; the reaction efficiency (conditional efficiency)

and the marginal efficiency. The reaction efficiency is useful for quantitation pur-

poses and is estimated as the conditional weighted least squares estimator and

is given by the (2.16). The following proposition describes the asymptotic limit

distribution of p̃k,n.

Proposition 2. Under the assumptions of our model, for every fixed k,

√
Yk,n−1(p̃k,n − pk)

d→ H2, (2.27)

where P (H2 ≤ x) =
∫ 1

1−ε
Φ( x

t(1−t)
)dG(t).
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The marginal efficiency, which is helpful in determining the efficiency of the

PCR equipment, is defined to be Ep1. The estimator of marginal efficiency, is

obtained by averaging the reaction efficiencies and is given by

p̃n,pool =
1

r(n)

r(n)∑

k=1

p̃k,n. (2.28)

Our next result is concerned with strong consistency and asymptotic normality

of the estimator of marginal efficiency.

Theorem 3. Under the assumptions of Theorem 1, p̃n,pool is a strongly consistent

estimator of the overall efficiency of the PCR, namely E(p1). Furthermore,

√
r(n)(p̃n,pool − E(p1))

d→ H1, (2.29)

where H1 ∼ N(0, σ2
G), where σ2

G is the variance of the random variable p1.

We notice that the rate of convergence is only
√

r(n) for marginal efficiency

where as it is “exponential” for the reaction efficiency.

2.3.6 Estimation of Variability

Estimation of the variability is important for performing inference concerning the

quantitation parameters. In this section we provide consistent estimators of the

limiting variance σ2
L and that of σ2

a. We begin with σ2
L. Define

σ̃2
L,n =

c2

r(n)D1(n)

r(n)∑

k=1

(
p̃k,n

m̃n+1
k,n

Yk,n − m̃a,ndk)
2, (2.30)

and

θ̃1,n =
1

r(n)

r(n)∑

k=1

1− p̃k,n

1 + p̃k,n

θ̃2,n =
1

r(n)

r(n)∑

k=1

p̃k,n

1 + p̃k,n

. (2.31)

22



Theorem 4. Under the assumptions of Theorem 1, σ2
L,n is a consistent estimator

of σ2
L. Furthermore, θ̃1,n and θ̃2,n are consistent estimators of E(1−p1

1+p1
) and E( p1

1+p1
)

respectively.

An immediate consequence of Theorem 4 is the following corollary concerning

consistent estimation of σ2
a.

Corollary 1. Define

σ̃2
a,n =

σ̃2
L,n − m̃a,nθ̃1,n

DL,n

, (2.32)

where DL,n = D2(n)D−1
1 (n). Then, σ2

a,n is a consistent estimator of σ2
a.

2.4 Simulation Experiment

In this section we describe our simulation results to evaluate the performance of

the proposed methodology and compare them with other procedures studied in the

literature. The results in this section are based on 5000 simulations.

We compare our branching process estimator to two common techniques for

relative quantitation, the comparative CT method and the standard curve method.

Both methods summarize the PCR with the single value CT . The comparative CT

method assumes perfect doubling for both the target and calibrator and estimates

R using the formula R̂ = 2CT,C−CT,T , where CT,C is the CT value for the calibrator

and CT,T is the CT value for the target. In the presence of replicates, we use

the averaged values of CT,C and CT,T in the above formula for R̂. The standard

curve method requires a third collection of reactions, in addition to the target and

calibrator, referred to as the standard data; the standard data is dilution data.

The technique is to fit a simple linear regression of the CT values, corresponding
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to different dilutions of the standard, to the log of the dilution constants. Now,

using the estimated regression line together with the CT,T and CT,C values one can

determine the log of the dilution constants corresponding to CT,T and CT,C . The

ratio of these dilution constants are then used to obtain an estimate of R. In the

presence of replicates, we repeat the estimation of the log dilution constants for

each replicate and then average these for the target and the calibrator separately.

Now, the ratio of these averages is used as an estimate of R. The ABI User’s

Manual (Livak, 2001) provides a complete description of both of these methods.

We generate data from three different models. We use the notation X ∼
Bern(p) to mean that P (X = 2) = 1 − P (X = 1) = p. The first model we study

is an example of the random effect model proposed in the paper; specifically we

use a beta distribution to describe the random effect.

Model 1. (Random effects). For I = C, T , let Fk,j,I = Nk,j,I , where Nk,j,I has

offspring distribution Bern(pk,I), with pk,I ∼iid Beta(90, 10).

We also wish to address the robustness of our procedure to certain model

assumptions. First we consider the impact of random environments (Smith and

Wilkinson, 1969). In the current paper, we assume that the splitting probability

remains constant across cycles, for a given replicate. However, it is frequently

argued in the PCR literature that the splitting probability varies across cycles as

a function of the remaining product. To address this issue, we study the following

random environment model.

Model 2. (Random environments). For I = C, T . Fk,j,I = Nk,j,I , where Nk,j,I has

offspring distribution Bern(pk,j,I), with pk,j,I ∼iid Beta(90, 10).

As discussed in Section 2, the fluorescence constant c varies within and between
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reactions. It is difficult to quantify the magnitude of this variability. To identify

how this variability can affect our results, we consider the following model involving

random fluorescence coefficients.

Model 3. (Random fluorescence coefficient). For I = C, T . Fk,j,I = ck,j,INk,j,I ,

where Nk,j,I has offspring distribution Bern(pk,I), with pk,I ∼iid Beta(90, 10). And

ck,j,I ∼ gamma(1, 10−3), i.e. Eck,j,I = 1 and var(ck,j,I) = 10−3.

In all three models, Nk,0,T ∼ Poiss(103) and Nk,0,C ∼ Poiss(102); hence the

true value for relative quantitation is 10.

We compare three inferential methods: the branching process method, which

is developed in this paper (see results in Table 2.1), the comparative CT method

(Table 2.2) and the standard curve method (Table 2.3). All of the results are based

on n = 20 cycles and r(n) = 20 replicates. For the branching process estimator,

generations 15 to 20 are used. For calculating CT the threshold which marks the

beginning of the exponential phase is set at F ? = 106, i.e. CT ≡ inf
{
j : Fj > F ?

}
.

The standard curve method additionally requires the use of standards. In

each simulation three replicates of a five fold dilution series were used to form the

standard curve. More specifically, the initial number for the dilution series is a

Poisson random variable with means 80, 400, 2000, 10, 000 and 50, 000.

Since the asymptotic behavior of the estimators is unknown for the CT method

and the standard curve method we use the bootstrap method (by resampling re-

actions) to construct confidence intervals for the quantitation parameters. All

confidence intervals presented are 95% confidence intervals; all bootstrap confi-

dence intervals are based on 2000 bootstrap samples. The bootstrap sample size

was taken to be r(n).
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The comparative CT method does not perform well under any of the three

models. In contrast, the branching process estimator performs well under all three

models. For the branching process estimator the increased variability present in

Model 2 and Model 3 is reflected in increased variance of the point estimate and

increased length of the confidence intervals.

Finally, we comment on the coverage of the confidence intervals for the branch-

ing process method (see Table 2.1). The confidence intervals based on the t distri-

bution have the best coverage (closest to the nominal 95%), whereas the bootstrap

confidence intervals have the worst coverage. One possible cause for the subop-

timal bootstrap coverage is the random effect. Marginally the data is i.i.d. but

conditionally (because of the random effect) it is not. It is possible that a weighted

resampling scheme would improve the bootstrap coverage. We are currently inves-

tigating this issue.

2.5 Analysis of Experimental Data

The PCR data analyzed in this section were collected from a ABI Prism 7700

Sequence Detection System. We collected data on four replicates from an eight

point dilution series. Let LH1 denote the first term in the dilution series and LH8

denote the eighth term. The master mix for LHi is obtained from the master

mix of LHi−1 using a dilution factor of 2.9505. Thus, if ma,LH1 = ma, then

ma,LHi
= ma

2.9505i−1 i = 2, ..., 8. Additionally, we collected 12 more replicates for

LH1 and LH2 yielding a total of sixteen replicates from each these two groups.

In this data analysis we proceed as if LH1 is the target group and LH2 is the

calibrator group. Thus, the desired answer for relative quantitation is 2.9505.
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Table 2.1: Branching process estimator. Point mean and Point var give the
mean and variance of the point estimates, over the 5000 simula-
tions. For the confidence intervals, Cov gives the simulated cover-
age and mean gives the mean length of the confidence interval over
the 5000 simulations. B is for the bootstrap confidence interval;
G is for the confidence interval based on asymptotic normality; t
is for the confidence interval based on asymptotic normality, using
the t distribution.

Model 1 Model 2 Model 3

Point mean 10.0014 10.0310 10.0831

Point var 0.0581 0.3759 1.1992

B Cov 0.9292 0.9278 0.9286

B Mean 0.9098 2.2771 4.1704

G Cov 0.9374 0.9374 0.9416

G Mean 0.9331 2.3357 4.2485

t Cov 0.9528 0.9536 0.9580

t Mean 0.9964 2.4943 4.5369

Table 2.2: Comparative CT estimator. Point mean and Point var give the
mean and variance of the point estimates, over the 5000 simula-
tions. B Cov gives the simulated coverage of the bootstrap confi-
dence interval, and B mean gives the mean length of the confidence
interval over the 5000 simulations.

Model 1 Model 2 Model 3

Point mean 12.1523 12.0897 12.1486

Point var 0.8215 0.1488 0.8298

B Cov 0.3664 0 0.3782

B Mean 3.4412 1.4760 3.4678
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Table 2.3: Standard curve estimator. Point mean and Point var give the
mean and variance of the point estimates, over the 5000 simula-
tions. B Cov gives the simulated coverage of the bootstrap confi-
dence interval, and B mean gives the mean length of the confidence
interval over the 5000 simulations.

Model 1 Model 2 Model 3

Point mean 9.9212 9.9776 9.8900

Point var 0.6624 0.1428 0.6591

B Cov 0.8504 0.8472 0.8406

B Mean 2.4744 1.1253 2.4842

Traditionally biological labs use the so-called standard curve method for quan-

titation. To compare our methods to the standard curve method, we use two eight

point dilution series to form the standard curve; this yields 14 replicates of LH1

and LH2 to compute the estimator of R. The data for the LH1 and LH2 reactions

are displayed in Figure 2.2. In our analysis we excluded data from one of the

reactions for LH2, since it did not reach the appropriate CT level. Similarly, we

excluded data from an LH1 replicate since its CT value was much larger than those

of other replicates.

2.5.1 Branching Process Method

Our methodology requires identification of the exponential phase. The strategy

is to choose those cycles which yield a fluorescence of at least F ? and per-cycle

amplification of at least mc. The following algorithm identifies the cycles of data

belonging to the exponential phase. In our analyses we chose F ? = 0.2 and mc =

1.5. The choice of F ? was suggested by the manufacturers of the equipment.
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2.5.2 Results

Replicate Data. In this section we provide the conclusions of our analyses using

the replicate data. The point estimate of R was 2.8221 and the 95% confidence in-

terval using the asymptotic Gaussian limit was (1.8624, 3.7817). The confidence in-

terval based on the asymptotic t distribution was determined to be (1.7719, 3.8722).

Even though this analysis suffices, we developed bootstrap intervals so as to com-

pare them with the other methods. The 95% bootstrap confidence interval using

2000 resampling of the reactions was determined to be (1.6870, 3.6013).

Dilution Data. The dilution data yields R̃n = 2.4185 and the 95% confi-

dence interval based on the asymptotic Gaussian distribution to be (1.6153, 3.2216)

while that based on the t distribution to be (1.5450, 3.2919). The 95% bootstrap

confidence interval based on 2000 resampling of reactions was determined to be

(0.9829, 3.3616).

Other Methods. As mentioned previously, two of the methods used in bio-

logical labs are the so-called CT method and the standard curve method. Using

the CT method R̃n = 3.3108. The 95% bootstrap confidence interval using 2000

resampling of the reactions was determined to be (2.7935, 3.7477). The corre-

sponding values for the standard curve method were determined to be 3.5558 and

(2.8646, 4.1355).

From the data analysis, it is clear that the proposed branching process method

using replicate data yields point estimates with smaller bias than the other meth-

ods. Furthermore, in contrast to the traditional methods, the confidence intervals

based on our branching process method are supported by asymptotic theory.
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Figure 2.2: Plot of cycle number versus log fluorescence (j vs. log Fj ) for
all 16 replicates of LH1 (in blue) and all 16 replicates of LH2 (in
red).

2.6 Discussion and Concluding Remarks

In this paper we suggested a new design namely, replicated PCR experiments for

quantitation. We developed branching process models with random effects to ac-

count for various sources of variability present in the PCR. Next, we developed a

novel generalized method of moments approach for inference concerning the quan-

titation parameters and established consistency and asymptotic normality of these

estimators. In our simulations we evaluated the behavior of our methodology under

scenarios that are considerably different from the assumed model and illustrated

the robust behavior of our proposed methodology. Data analysis reveals these

aspects discovered in our theory and simulations.

Even though we do not advocate the use of dilution data, the methods of the

paper show how to use such information if one has access only to dilution data.

Frequently, this is encountered in various biological labs and the methods of this

paper show one can get some quantitative information concerning the parameters
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of interest.

The advantage of the methods proposed in this paper compared to other ex-

isting methods like comparative CT and the standard curve method is that our

estimates have smaller bias and the confidence intervals supported by asymptotic

theory. Additionally, analysis of calibrated experimental data using our method

yields point estimates with smaller relative error (4.5%) compared to traditional

methods (15%).

2.7 Proofs

In this section we present the proofs of our main theorems. Without loss of gener-

ality we will assume that c = 1 since otherwise all our estimates hold with a factor

of c. Under this simplification, Yk,n represents total number of molecules in the

reaction during the exponential phase, namely Yk,n =
∑n

j=τ Nk,j. In the following

C (or Cε) denotes a generic constant that could change between successive lines

and between successive inequalities.

Proof of Proposition 1. Conditioned on the random effect pk, Nk,n is an

Galton-Watson process with finite conditional and marginal second moments. The

proof then follows using the Toeplitz lemma and Theorem 8.1 of Harris (2002).

The proof of Theorem 1 involves several steps and hence we proceed by proving

several lemmas. Our first lemma is concerned with the behavior of the harmonic

moment of Nk,n.
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Lemma 1. Let r ≥ 1. Under the assumptions of our model,

E(
1

N r
k,n

) ≤ (1− 1

2
E(p1))

n. (2.33)

Proof: It is sufficient to consider the case Nk,0 = 1 and r = 1, since N r
k,n ≥ Nk,n

for all r ≥ 1 and Nk,n =
∑Nk,0

l=1 Nk,n,l ≥ Nk,n,1, where Nk,n,j is the number of DNA

templates in the nth cycle initiated by the jth template in the 0th cycle of the kth

reaction. Now,

E(
1

Nk,n

|Nk,0 = 1) = E(
1

Nk,n−1

E(
1

N−1
k,n−1Nk,n

|Nk,n−1)|Nk,0 = 1) (2.34)

≤ E(
1

Nk,n−1

|Nk,0 = 1)E(
1

Nk,1

|Nk,0 = 1), (2.35)

where the last step follows using the inequality concerning the arithmetic mean

and harmonic mean. Now iterating the above inequality, it follows that

E(
1

Nk,n

|Nk,0 = 1) ≤ (E(
1

Nk,1

|Nk,0 = 1))n. (2.36)

Now, observe that

E(
1

Nk,1

|Nk,0 = 1) = E(E(
1

Nk,1

|Nk,0 = 1, pk)) (2.37)

= E(1− pk +
1

2
pk)) = (1− 1

2
E(p1)) < 1, (2.38)

where the last inequality follows from E(p1) > 0. This completes the proof of

Lemma 1.

Our next lemma is concerned with the bound on the E(
√

Yk,n−1(m̃k,n−mk))
2r.

Lemma 2. Under the assumptions of our model, there exists a universal constant

C such that

E(
√

Yk,n−1(m̃k,n −mk))
4 ≤ Cn4. (2.39)
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Proof: We note that

√
Yk,n−1(m̃k,n −mk) =

√
Yk,n−1(

Yk,n − Fk,τ

Yk,n−1

−mk) (2.40)

=
n∑

j=τ

Nk,j+1 −mkNk,j√
Nk, j

wk,n,j, (2.41)

where

w2
k,n,j =

Nk,j

Yk,n−1

. (2.42)

Thus, setting Xk,j =
Nk,j+1−mkNk,j√

Nk,j
, we have that

(
√

Yk,n−1(m̃k,n −mk))
4 ≤ n4(

1

n− τ

n−1∑
j=τ

|Xk,j|)4 (2.43)

≤ n4


 1

n− τ

n−1∑
j=τ

X4
k,j


 , (2.44)

where the last inequality follows from Jensen’s inequality for convex functions.

Now, conditioned on the random effect pk and Nk,j−1, the numerator of Xk,j is

Bin(Nk,j−1, pk)−Ek(Bin(Zk,j−1, pk)|Zk,j−1). Now, using the formula for the fourth

central moment of a binomial random variable, it follows that

Ek(X
4
k,j|Nk,j−1)

4 = N−1
k,j−1pkqk(3Nj,k−1pkqk − 6pkqk + 1), (2.45)

where qk = 1− pk. Hence, since (1− ε) ≤ pk ≤ 1, it follows that

Ek(X
4
k,j|Nk,j−1, pk) ≤ 3(pk(1− pk))

2 + 1 (2.46)

≤ 3ε2 + 1. (2.47)

Now taking expectation with respect to Nk,j−1 and with respect to the distribution

of the random effect, it follows that

E(X4
k,j) ≤ 3ε2 + 1. (2.48)

Finally, taking expectation in (3.4), and using (2.48) it follows that

E(
√

Yk,n−1(m̃k,n −mk))
4 ≤ n4(1 + 3ε2). (2.49)
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This completes the proof of the lemma.

Our next lemma is concerned with the almost sure behavior of ∨r(n)
k=1(

m̃k,n−1

mk−1−1
− 1).

Lemma 3. Under the conditions of Theorem 1, it happens with probability one

that

lim
n→∞

√
r(n)D1(n) max

1≤k≤r(n)
|m̃k,n − 1

mk − 1
− 1| = 0. (2.50)

Proof: It is sufficient to show that for all η > 0

∑
n≥1

r(n)max1≤k≤r(n)P (|m̃k,n −mk

pk

| > η√
r(n)D1(n)

) < ∞. (2.51)

By Markov’s inequality,

P (|m̃k,n −mk

pk

| > η√
r(n)D1(n)

) ≤ (

√
r(n)D1(n)

η
)2E|m̃k,n −mk

pk

|2 (2.52)

≤ (

√
r(n)D1(n)

η(1− ε)
)2E|m̃k,n −mk|2 (2.53)

≤ (

√
r(n)D1(n)

η(1− ε)
)2dn(1)dn(2), (2.54)

where

dn(1) = (E(|
√

Yk,n−1(m̃k,n −mk))
4|)1/2, and dn(2) = E(

1

Y 2
k,n−1

)1/2, (2.55)

and the last inequality follows by first multiplying and dividing by
√

Yk,n−1 inside

the expectation in (3.4) and then applying the Cauchy-Schwarz inequality. Now

by Lemma 2, dn(1) ≤ Cn2, where C is a deterministic constant. By Lemma 1, it

follows that E(dn(2)) ≤ Cγn where 0 < γ < 1. Thus,

P (|m̃k,n −mk

pk

| > η√
r(n)

) ≤ C(

√
r(n)D1(n)

η(1− ε)
)2n2γn.

Thus, it follows from the regularity of the dilution constants and that r(n)n−1 → 0
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that

∑
n≥1

r(n)max1≤k≤r(n)P (|m̃k,n −mk

pk

| > η√
r(n)

) ≤ C
∑
n≥1

r2(n)D1(n)n2γn

≤ C
∑
n≥1

n4γn < ∞,

where the finiteness is established using the ratio test.

Lemma 4. Under the conditions of Theorem 1, with probability one

lim
n→∞

√
r(n)D1(n) max

1≤k≤r(n)
|(m

n
k

m̃n
k

− 1)| = 0. (2.56)

Proof: It is sufficient, using Borel-Cantelli, to show that for any η > 0,

∑
n≥1

r(n) max
1≤k≤r(n)

P (|(m̃k,n

mk

)n − 1)| > η√
r(n)D1(n)

) < ∞. (2.57)

We will now obtain estimates on P (|( m̃k,n

mk
)n − 1)| > η√

r(n)D1(n)
). To this end, it is

easy to see that

P (|(m̃k,n

mk

)n − 1)| > η√
r(n)D1(n)

) = Jn(1) + Jn(2), (2.58)

where

Jn(1) = P (m̃k,n −mk > mka1(n)) (2.59)

Jn(2) = P (m̃k,n −mk < mka2(n)), (2.60)

a1(n) = (1+ η√
r(n)D1(n)

)
1
n − 1 and a2(n) = (1− η√

r(n)D1(n)
)

1
n − 1. We will deal with

Jn(1) as the proof of the other term is similar. By Markov’s inequality,

Jn(1) ≤ E(
Ek(|m̃k,n −mk|)

mka1(n)
) (2.61)

≤ 1

(2− ε)a1(n)
E|mk,n −mk| (2.62)

≤ (E(|√Yk,n−1|m̃k,n −mk|)2)
1
2

(2− ε)a1(n)
(E(Y −1

k,n−1))
1
2 (2.63)

≤ C

(2− ε)a1(n)
n2γn (2.64)
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Using the mean value theorem and r(n) ≤ n, one can show that a−1
1 (n) ≤ Cn2.

Using this estimate and the ratio test it follows that
∑

n≥1 Jn(1) < ∞. A similar

calculation for Jn(2) then yields the lemma.

Lemma 5. Under the conditions of Theorem 1, for l=1, 2, with probability one,

lim
n→∞

1

r(n)D1(n)

r(n)∑

k=1

| Yk,n

(1 + pk)n
− Vk)(

pk

1 + pk

)|l = 0, (2.65)

where Vk = V ?
k ( mk

mk−1
).

Proof: Let θk = pk

1+pk
. We begin by developing an estimate of V ar[(

Yk,n

(1+pk)n −
Vk)θk]. Using Vk = V ?

k

∑
j≥0 m−j

k and a change of variables, it follows that

Yk,n

(1 + pk)n
− Vk =

n−τ∑
j=0

(Vk,n−j − V ?
k )m−j

k − V ?
k

∑
j≥n+1−τ

m−j
k (2.66)

= Jn(1, k)− Jn(2, k) (2.67)

Thus,

V ar[(
Yk,n

mn
−Vk)θk] = V ar(Jn(1, k)θk)+V ar(Jn(2, k)θk)−2Cov(Jn(1, k)θk, Jn(2, k)θk).

(2.68)

Now, setting S(k, n, j) = θk

∑
j≥n+1−τ m−j

k

V ar(Jn(2, k)θk) = V ar(E(V ?
k S(k, n, j)|pk)) + E(V ar(V ?

k S(k, n, j)|pk))

≤ E(S2(k, n, j)(m2
ad

2
k + V ark(V

?
k ))). (2.69)

Now, using mk ≥ (2−ε) and θk ≤ 1, it follows that S2(n, k, j) ≤ ((1−ε)(2−ε)n)−1.

Using this estimate in (2.69) it follows that

V ar(Jn(2, k)θk) ≤ ((1− ε)(2− ε)n)−1(m2
ad

2
k + ω2

k). (2.70)

We next study the behavior of V ar(Jn(1, k)θk). Now, using conditioning it follows

that

V ar(Jn(1, k)θk) = E(V ar(
n−τ∑
j=0

(Vk,n−j − V ?
k )m−j

k θk)|pk)). (2.71)
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Now,

V ar(
n−τ∑
j=0

(Vk,n−j − V ?
k )m−j

k θk|pk) = Jn(1, 1, k) + Jn(1, 2, k), (2.72)

where

Jn(1, 1, k) =
n−τ∑
j=0

V ar(Vk,n−j − V ?
k |pk)m

−2j
k θ2

k, (2.73)

and

Jn(1, 2, k) =
n−τ∑
j=0

n−τ∑

j 6=l=0

θ2
k

mj+l
k

Cov(Vk,n−j − V ?
k , Vk,n−l − V ?

k |pk). (2.74)

Using the branching property it follows that,

V ar(Vk,n−j − V ?
k |pk) ≤ Cεmadk(2− ε)n−j, (2.75)

where Cε is a finite positive constant independent of k. Now, using this estimate

and that θk ≤ 1 it follows that

Jn(1, 1, k) ≤ Cεmadk(2− ε)−n. (2.76)

Now, we deal with Jn(1, 2, k). Using the Cauchy-Schwarz inequality and (2.75) it

follows that

|Cov(Vk,n−j − V ?
k , Vk,n−l − V ?

k |pk)| ≤ Cεmadk(2− ε)n−(j+l)/2. (2.77)

Using this estimate and θk ≤ 1 it follows that

Jn(1, 2, k) ≤ Cεmadk(2− ε)−n. (2.78)

Now, combining the estimates for Jn(1, 1, k) and Jn(1, 2, k) we get

V ar(Jn(1, k)θk) ≤ Cεdk(2− ε)−n. (2.79)

Again using the Cauchy-Schwarz inequality and θk ≤ 1, it follows that

Cov(Jn(1, k)θk, Jn(2, k)θk|pk) ≤ Cε(2− ε)−n(C1,εd
2
k + C2,εd

3
k)

1/2. (2.80)
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Thus combining all the estimates, taking expectation with respect to the distri-

bution of pk, summing over k and using the Cauchy-Schwarz inequality, one can

show, using the regularity of the dilution constants, that

r(n)∑

k=1

V ar[(
Yk,n

mn
k

− Vk)θk] ≤ C3,εr(n)(2− ε)−n. (2.81)

Next, we obtain an estimate of |E[(
Yk,n

mn
k
− Vk)θk]|. Again, using the decomposition

(2.67) and E(Jn(1, k)θk) = 0, it follows that

|E[(
Yk,n

mn
k

− Vk)θk]| ≤ |E(θkmadk

∑
j≥n+1

m−j
k )| ≤ C4,ε(2− ε)−ndk. (2.82)

Now, using (2.81), (2.82), and the regularity of the dilution constants it follows

that

E(

r(n)∑

k=1

θk(
Yk,n

mn
k

− Vk))
2 =

r(n)∑

k=1

V ar[(
Yk,n

mn
k

− Vk)θk] + (

r(n)∑

k=1

E[(
Yk,n

mn
k

− Vk)θk])
2

≤ C5,εr(n)(2− ε)−n, (2.83)

where 0 < C5,ε < ∞ is some constant depending on ε. Finally, using Markov’s

inequality and (2.83) it follows that for l = 1, 2,

P (
1

r(n)
|

r(n)∑

k=1

θk(
Yk,n

(1 + pk)n
− Vk)|l > η) ≤ 1

η2r(n)
E|

r(n)∑

k=1

θk(
Yk,n

mn
k

− Vk)|2

≤ C5,ε(2− ε)−n. (2.84)

Since the RHS of (2.84) is summable, (2.65) follows using the Borel-Cantelli lemma.

Our next lemma is concerned with the moment behavior of the limit random

variable V ?
k when the process is initiated by a single ancestor.

Lemma 6. Let Nk,0 = 1 for all k ≥ 1. Then there exists a finite positive constant

C such that E(V ?4
1 ) ≤ C.
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Proof: First note that for all k and j E(Vk,j) = 1. Also using the representation

Nk,j+1 = Nk,j + Bin(Nk,j, pk), where Bin(Nk,j, pk) is a binomial random variable

(given Nk,j and p), one can show that

E(V 2
k,j) ≤ E(V 2

k,j−1) + E(
1

mj
k

). (2.85)

Now, iterating the above and using Tonelli’s theorem, it follows that

E(V 2
k,j) ≤

∑

l≥0

E(
1

ml
k

) = E(
1 + pk

pk

) ≡ C < ∞. (2.86)

We next show that E(V 3
k,j) is uniformly bounded. Using the representation of Vk,j

alluded to above and the uniform boundedness of the first and second moments it

follows that

E(V 3
k,j) ≤ E(V 3

k,j−1) + E(
C

mj
k

). (2.87)

The uniform boundedness follows by iteration and summing as before. Now, using

the uniform boundedness of V 3
k,j and using the fourth moment of a binomial random

variable one can show that

E(V 4
k,j) ≤ E(V 4

k,j−1) + E(
C

mj
k

). (2.88)

Iterating and summing, it follows that E(V 4
k,j) is uniformly bounded. Now it follows

using Jensen’s inequality, uniform boundedness of the fourth moment of Vk,n, and

that V ?
k − Vk,n are identically distributed in k that

E(V ?4
k ) ≤ 4(sup

n≥1
E(V 4

k,n) + E|V ?
1 − V1,n|4) ≤ C + E|V ?

1 − V1,n|4, (2.89)

where C is some finite positive constant. Thus, to complete the proof of the lemma,

it is sufficient to show that the second term of the RHS of (2.89) is bounded in

n. We will actually show that E|V ?
1 − V1,n|4 → 0 as n → ∞. To this end,

it is sufficient to show that {V1,n : n ≥ 1} is a Cauchy sequence in L4 space.

Now, using conditioning, the Marcinkiewicz-Zygmund inequality for independent
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random variables (Chow and Teicher, 1997) and the branching property, it can be

seen that

E(|V1,k+n − V1,n|4|p1) ≤ (2
√

2)4E(N
1/2
1,n )m−4n

1 E|V1,k − 1|4 (2.90)

≤ (2
√

2)4E|V1,k − 1|4(2− ε)−7n/2. (2.91)

Now, using the uniform boundedness of the fourth moments of V1,k and that 0 <

ε < 1, it follows first by taking expectations with respect to the distribution of p1

and then taking the supremum over k that

sup
k≥1

E|V1,k+n − V1,n|4 ≤ C(2− ε)−7n/2, (2.92)

establishing the L4 convergence of Vk,n to V ?
k .

Lemma 7. Under the conditions of Theorem 1, with probability one,

lim
n→∞

1

r(n)D1(n)

r(n)∑

k=1

V ?
k = ma, (2.93)

and

1√
r(n)D1(n)

r(n)∑

k=1

(V ?
k −madk)

d→ G1, (2.94)

where G1 ∼ N(0, σ2
L) and σ2

L is defined in Theorem 1.

Proof. Note that the random variables V ?
k are independent with mean madk and

variance ω2
k. Thus, by regularity of the dilution constants, it follows that

∑

k≥1

E(Vk −madk)
2

k2
=

∑

k≥1

ω2
k

k2
< ∞. (2.95)

Hence, by Loeve’s generalization of Kolmogorov’s laws of large numbers (Chow

and Teicher, 1997), it follows that 1
r(n)

∑r(n)
k=1 V ?

k converges almost surely to ma.

To establish the asymptotic normality, we will verify the Liapounov condition for

40



independent random variables. To this end, we consider E|V ?
k −madk|3. By the

branching property and using E(Nk,0) = madk, it follows that

E|V ?
k −madk|3 = E|(

Nk,0∑
j=1

(V ?
k,j − 1) + (Nk,0 − E(Nk,0)|3 (2.96)

≤ 4(E|
Nk,0∑
j=1

(V ?
k,j − 1)|3 + E|(Nk,0 − E(Nk,0)|3), (2.97)

where V ?
k,j are independent random variables (and independent of Nk,0) with E(V ?

k,j) =

1. Now, by first conditioning on Nk,0 and then using conditional Jensen’s inequality

it follows that

E|
Nk,0∑
j=1

(V ?
k,j − 1)|3 ≤ E(N3

k,0E(| 1

Nk,0

|
Nk,0∑
j=1

(V ?
k,j − 1)|3|Nk,0)). (2.98)

Now, using the independence of V ?
k,j and Nk,0 and that for each fixed k, EV ?3

k,j =

EV ?3
k,1, it follows that

E|
Nk,0∑
j=1

(V ?
k,j − 1)|3 ≤ E(N3

k,0)E(V ?3
k,1) (2.99)

≤ CE(N3
k,0) = Cm3,0d

3
k, (2.100)

where the last inequality follows from Lemma 6 and the parametrization for the

third moment. Hence,

(
1

r(n)
)

3
2

r(n)∑

k=1

E|
Nk,0∑
j=1

(V ?
k,j − 1)|3 ≤ C(

1

r(n)
)

1
2 D3(n). (2.101)

Now, by the regularity of the dilution constants, {D3(n) : n ≥ 1} is a bounded

sequence. This implies that

lim
n→∞

(
1

r(n)
)

3
2

r(n)∑

k=1

E|
Nk,0∑
j=1

(V ?
k,j − 1)|3 = 0. (2.102)

Now, using the fact that

lim
n→∞


 1

r(n)D1(n)

r(n)∑

k=1

ω2
k


 = σ2

L, (2.103)
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the lemma follows.

Proof of Theorem 1. First we express m̃a,n as

m̃a,n −ma = Tn(1) + (Tn(2)−ma), (2.104)

where

Tn(1) =
1

r(n)D1(n)

r(n)∑

k=1

Yk,n

(1 + pk)n
(

pk

1 + pk

)((
p̃k,n

pk

)(
(1 + pk)

n+1

(1 + p̃k,n)n+1
)− 1), and

Tn(2) =
1

r(n)D1(n)

r(n)∑

k=1

Yk,n

(1 + pk)n
(

pk

1 + pk

).

We begin with a decomposition for Tn(2) to obtain an expression for Tn(2)−ma.

Tn(2)−ma = Tn(3) + Tn(4), (2.105)

where

Tn(3) =
1

r(n)D1(n)

r(n)∑

k=1

(
Yk,n

mn
k

− Vk)(
pk

mk

), and (2.106)

Tn(4) =
1

r(n)D1(n)

r(n)∑

k=1

(V ?
k −madk). (2.107)

Returning to Tn(1) we have

|Tn(1)| ≤ max
1≤k≤r(n)

|( p̃k,n

pk

)(
(1 + pk)

n+1

(1 + p̃k,n)n+1
− 1)|Tn(2). (2.108)

Now by Lemma 5, Tn(3) converges to zero with probability one and by Lemma

7, Tn(4) converges to 0 with probability one. Combining the results we get that

|Tn(2)−ma| converges to zero with probability one. Also, we obtain the convergence

to zero of |Tn(1)| using Lemma 3 and Lemma 4. This yields the strong consistency

of m̃a,n. To establish the asymptotic normality, first note that by Lemma 7,

(r(n)D1(n))1/2Tn(4)
d→ N(0, σ2

L). (2.109)
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Define θk ≡ pk

1+pk
. For any η > 0, using Chebychev’s inequality

P (|(r(n)D1(n))1/2Tn(3)| > η) ≤ 1

η2r(n)D1(n)
(E

r(n)∑

k=1

θk(
Yk,n

mn
k

− Vk))
2

→ 0,

where the last convergence follows form (2.83). Finally, using Lemma 3 and Lemma

4, it follows that (r(n)D1(n))1/2Tn(1) converges to zero in probability. Combining

the convergences, asymptotic normality follows using Slutsky’s lemma.

Proof of Theorem 2. Theorem 2 follows by an application of delta method

to the function f(x, y) = x
y
.

Proof of Proposition 2. Conditioned on the random effect, the process

{Nk,n : n ≥ 1} is a branching process with offspring distribution 1 + X, where

X ∼ Ber(pk) denotes a Bernoulli random variable with P (X = 1|pk) = pk. Hence,

it follows that

lim
n→∞

P (
√

Yk,n−1(m̃k,n −mk) ≤ x|pk) = P (N(0, pk(1− pk)) ≤ x|pk). (2.110)

Thus by the bounded convergence theorem, it follows that

lim
n→∞

E(P (
√

Yk,n−1(m̃k,n −mk) ≤ x|pk)) =

∫ 1

1−ε

Φ(
x

t(1− t)
)dG(t). (2.111)

The proposition follows since the random variables pk are identically distributed.

Proof of Theorem 3. First we rewrite

1

r(n)

r(n)∑

k=1

(p̃k,n − E(p1)) =
1

r(n)

r(n)∑

k=1

(p̃k,n − pk) +
1

r(n)

r(n)∑

k=1

(pk − E(p1))

= Tn(1) + Tn(2)

and verify that Tn(1) → 0 with probability 1. Now by Chebychev’s inequality and
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the independence of (p̃k,n − pk) in k,

P (|Tn(1)| > η) ≤ η−2E(T 2
n(1)) = η−2(V ar(Tn(1)) + (E(Tn(1)))2) (2.112)

≤ C

r2(n)
(

r(n)∑

k=1

(E(p̃k,n − pk)
2 + (E(p̃k,n − pk)

2)1/2), (2.113)

where the last inequality follows by bounding the variance term by the second

moment and using the Cauchy-Schwarz inequality on the expectation term. Now,

E(p̃k,n − pk)
2 = E(m̃k,n −mk)

2 (2.114)

= E((m̃k,n −mk)
2Yk,nY

−1
k,n ) (2.115)

≤ (E(m̃k,n −mk)
4Y 2

k,n))1/2(E(Y −2
k,n ))1/2, (2.116)

where the last inequality follows from the Cauchy-Schwarz inequality. Now apply-

ing Lemma 1 and Lemma 2 it follows that for some 0 < C < ∞ and 0 < γ < 1

E(p̃k,n − pk)
2 ≤ Cn2γn/2. (2.117)

Now using this estimate in (2.113) it follows that P (|Tn(1)| > η) is bounded above

by Cn2γn/4. By ratio test, the above probability sums there by yielding the almost

sure convergence to 0 of Tn(1). Since Tn(2) is a sum of i.i.d. random variables with

finite second moments, the theorem follows via the law of large numbers and central

limit theorem for i.i.d. random variables.

Proof of Theorem 4. The estimator of variance can be expressed as

σ̃2
L,n =

1

r(n)D1(n)

r(n)∑

k=1

(Tn(1, k) + Tn(2, k) + Tn(3, k))2, (2.118)

where

Tn(1, k) = (
Yk,np̃k,n

m̃n+1
k,n

− V ?
k ), (2.119)

Tn(2, k) = V ?
k −madk and Tn(3, k) = (ma − m̃a,ndk). (2.120)
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One can show using the Cauchy-Schwarz inequality and Lemma 5 that the cross-

product terms in the expansion of (3.21) converge to zero with probability one.

Furthermore, normalized sums of squares of Tn(3, k) converges to zero with prob-

ability one by regularity of the dilution constants and strong consistency of m̃a,n.

Also the normalized sums of squares of Tn(1, k) converges to zero by Lemma 5.

Finally, by using the arguments in Lemma 7 and the regularity of the dilution con-

stants it follows that normalized sums of squares Tn(2, k) converges to σ2
L. This

yields the strong consistency of σ̃2
L,n. Strong consistency of θ̃1,n and θ̃2,n follow

from Lemma 5 and the strong law of large numbers for i.i.d. random variables

(1− pk)
−1(1 + pk).

Proof of Corollary 1. The proof follows from the strong consistency of σ2
L,n

m̃a,n, θ̃1,n, the regularity of the dilution constants , and the definition of σ2
L.
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CHAPTER 3

ANALYSIS OF VARIANCE MODELS RELATED TO ANCESTRAL

INFERENCE FOR SUPERCRITICAL BRANCHING PROCESSES

3.1 Introduction

This paper is concerned with analysis of variance (ANOVA) models for comparing

the means of the ancestor distributions in supercritical branching processes initi-

ated by a random number of ancestors. We present applications of our method-

ology to analysis of data from quantitative polymerase chain reaction (qPCR)

experiments. We begin with a brief description of the PCR experiment. PCR is

a biochemical technique used to amplify the number of copies of a specific DNA

fragment. This paper specifically investigates qPCR, where the scientific goal con-

cerns the estimation of the initial number of molecules present in a genetic material.

qPCR is an important tool for gene expression experiments (Ferré, 1998; Kubista

et al., 2006; Nolan et al., 2006). A typical qPCR experiment is run for 40 cycles;

theoretically, the number of molecules doubles in every cycle. In practice, only

some fraction of the molecules actually replicate in a given cycle. Hence, a super-

critical Galton-Watson branching process with a Bernoulli offspring distribution

provides a natural model to describe the dynamics of PCR. Under a branching

process model, the question of quantitation is tantamount to estimating the initial

number of ancestors of the process. There are several papers which model PCR

as a branching process and then estimate the initial number of ancestors (Nedel-

man et al., 1992; Jacob and Peccoud, 1998; Lalam, 2007; Lalam and Jacob, 2007).

These works are based on observing a single realization of a branching process. In

fact, a typical qPCR experiment produces data from 384 separate reactions. In
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the present paper, we work with replicated qPCR experiments, where replicates

(or i.i.d. branching processes) are observed for several experimental groups.

Specifically, we address the a sample problem, where a denotes the number

of groups. Multiple-sample problems are important from a scientific perspective,

allowing scientists to address canonical questions, such as “is gene X expressed

significantly more in males than females,” or an extension of such questions to a

finite number of experimental groups. Assuming a branching process model, PCR

is governed by two distributions: (i) the ancestor distribution, which characterizes

the initial number of particles in each process, and (ii) the offspring distribution,

which characterizes the dynamics of the reaction. In this paper, we address testing

for the equality of the offspring mean and the ancestor mean across experimental

groups.

We begin with a brief review of one-way ANOVA problems for independent

data. In a classical one-way ANOVA model with homoscedastic normal errors,

the F statistic for testing the equality of means is defined as the ratio of mean

regression sum of squares to mean error sum of squares. In this case, the statistic

has an exact null distribution, namely the F distribution with degrees of freedom

determined by the number of treatments and the sample size. The F test is ro-

bust to the normality assumption if the number of observations in each group is

large. Specifically, with a fixed number of groups and each group size going to

infinity, under the null hypothesis, the properly scaled F statistic has a limiting χ2

distribution (Arnold, 1980; Ito, 1980). Under heteroscedasticity, this result breaks

down. A consequence of heteroscedasticity when using the F statistic for testing

the equality of means is the loss of power (Krutchkoff, 1988, 1989). Argaç (2004)

describes several corrections for the classical F test under heteroscedasticity and
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performs extensive simulations to test their performance. The conclusion of the

analysis is that there does not exist a ‘best’ method for addressing heteroscedastic-

ity. Other works concerning heteroscedastic one-way models include Lee and Ahn

(2003), Kulinskaya et al. (2003), and Krishnamoorthy et al. (2007). As discussed

below, the issue of unequal variance is of primary importance in the present paper;

the ANOVA problem we consider inherently involves heteroscedasticity.

Finally, we briefly mention some work on ANOVA models for dependent data.

Bedall (1978) considers simulation experiments for Markov chain data. Brillinger

(1980) considers various ANOVA problems for stationary time series data. More

recently, De Iorio et al. (2004) developed ANOVA models for dependent random

measures, while Mykland and Zhang (2006) consider ANOVA for diffusions Itô

processes.

The rest of this paper is organized as follows. Section 2 defines the notation and

assumptions used throughout the paper. Section 3 contains our result concerning

the behavior of the F statistic for testing the equality of the offspring means. Sec-

tion 4 is devoted to the study of the ANOVA model for ancestor means. In Section

5 we present algorithms for implementing our methodology. The methodology is

then implemented in Section 6 on simulated data and Section 7 on experimental

data. The proofs are contained in Sections 8 and 9.
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3.2 Notation and assumptions

3.2.1 Notation for the branching process data

We observe data from a independent groups of branching processes; each group

is defined by an ancestor distribution, which describes the initial number of par-

ticles of the branching process, and an offspring distribution, which describes the

dynamics of how the branching process grows over time. To be precise, fix i,

1 ≤ i ≤ a, and define two independent collections of random variables both dis-

tributed on the positive integers N, the ancestor collection {Zi,j(0) : 1 ≤ j ≤ ri(n)}
and the offspring collection {ξi,j,k(n) : n ≥ 1, 1 ≤ i ≤ ri(n), k ≥ 1}. For

each i, {Zi,j(0) : 1 ≤ j ≤ ri(n)} is a collection of independent and identically

distributed (i.i.d.) random variables with mean mA,i ≡ E Zi,j(0) and variance

σ2
A,i ≡ var(Zi,j(0)); similarly, for each i, {ξi,j,k(n) : n ≥ 1, 1 ≤ j ≤ ri(n), k ≥ 1} is

a collection of i.i.d. random variables with representation ξi, mean mo,i ≡ Eξi and

variance σ2
o,i ≡ var(ξi). The branching process is defined recursively as

Zi,j(n + 1) =

Zi,j(n)∑

k=1

ξi,j,k(n),

where ξi,j,k(n) is interpreted as the number of children produced by the kth parent

in the nth generation of the jth replicate from group i.

We assume that the data from each group is independent. That is, we assume

that the ancestor collections, {Zi,j(0) : 1 ≤ j ≤ ri(n)}, are independent random

variables across i and the offspring collections, {ξi,j,k(n) : n ≥ 1, 1 ≤ i ≤ ri(n), k ≥
1}, are independent across i. Summarizing, {Zi,j(n) : 1 ≤ j ≤ ri(n)} denotes a

collection of i.i.d. branching processes initiated by a random number of ancestors

Zi,j(0), and the data from different groups are independent.

49



The data from each replicate is observed starting at some (non-random) gen-

eration τi,j until generation ni,j. To make the conditions more transparent when

studying asymptotics, we will assume ni,j = n and τi,j = τ . This assumption

does not entail any loss of generality and also minimizes cumbersome notation.

Alternate conditions involving ∧i,jni,j can be written down for large sample anal-

ysis. However, in our data analysis, we do not make this assumption; instead,

we allow each replicate to have its own starting and ending observation time. To

summarize, the data for the problem are the generation sizes starting at some

generation τ going to n generations, namely {Zi,j(k) : τ ≤ k ≤ n, 1 ≤ j ≤ ri(n)},
1 ≤ i ≤ a. For a given replicate, we define the sum of the observed generation

sizes by Yi,j(n) ≡ ∑n
k=τ Zi,j(k).

For asymptotic analysis, we need assumptions concerning the moments of the

ancestor and offspring distributions. We assume that both ancestor and offspring

distributions (of all of the groups) have finite second moments.

Assumption 1. For each group i, EZ2
i,j(0) < ∞ and Eξ2

i < ∞.

Our results hold for both balanced and unbalanced data, but we do need to

control the relative growth of the replicates in the unbalanced case. Additionally,

we assume that the number of replicates goes to infinity slower than n. The

following assumption makes these comments explicit.

Assumption 2. As n →∞,

1. min1≤i≤a ri(n) →∞,

2. For each i, 1 ≤ i ≤ a, ri(n)
n
→ 0,

3. ri(n)
rj(n)

→ 1.
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As is discussed below, the limiting distribution of the F statistic is a linear

combination of χ2
1 random variables, where the constants are the relative sizes of

the group variances. To make this idea precise, we use the notation of Marden

(1995) (p.58) to define the following distribution. For any (possibly singular)

k × k matrix Λ, let χ2[Λ] denote the distribution of
∑k

i=1 λiX
2
i , where λi’s are

the eigenvalues of Λ, and Xi are i.i.d. standard Gaussian random variables. The

centering matrix also plays a role in the limiting distribution of the F statistic.

Let Ia be the a × a identity matrix, let Ja be the a × a matrix whose entries are

all unity, and define Ca ≡ Ia − 1
a
Ja. We also use the notation diag (x1, ..., xa) to

represent an a× a diagonal matrix with diagonal elements x1, ..., xa.

3.3 ANOVA for the offspring mean

In this section, we develop a test statistic for testing the null hypothesis

H0 : m0,1 = m0,2 = · · ·m0,a.

This problem, besides being of inherent interest, plays an important role in testing

the equality of ancestor means.

Following the ideas from the independent data, we begin by developing the

analogous quantities for testing H0. First consider the case of estimating the

offspring mean from the observation of a single branching process {Zk : τ ≤ k ≤ n}.
For this data the non-parametric maximum likelihood estimator for the offspring

mean is
∑n

k=τ+1 Zk∑n−1
k=τ Zk

(Guttorp, 1991). The (random) sample size for this problem is

thus
∑n−1

k=τ Zk.

Under the present data structure, the non-parametric maximum likelihood es-
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timator for the offspring mean of group i is

m̂o,n,i ≡
∑ri(n)

j=1

(
Yi,j(n)−Zi,j(τ)

)
∑ri(n)

j=1 Yi,j(n− 1)
,

with sample size wn,i ≡
∑ri(n)

j=1 Yi,j(n− 1). Hence, under H0, a natural estimator

of the overall mean across all of the groups is

m̂o,n ≡ 1

wn

a∑
i=1

wn,i m̂o,n,i,

where wn ≡
∑a

i=1 wn,i. We now define analogs of the standard ANOVA quantities

in this context: treatment sum of squares (SST), mean treatment sum of squares

(MST), error sum of squares (SSE), and the mean squared error (MSE). First,

define the SST as the variation between the individual group means and the overall

mean,

SSTo,n ≡
a∑

i=1

wn,i

(
m̂o,n,i− m̂o,n

)2
.

Define the SSE, which measures the within group variation, as the weighted sum

of the group variances, namely

SSEo,n ≡
a∑

i=1

(ri(n)−1) σ̂2
o,n,i,

where the group variance estimator is given by

σ̂2
o,n,i ≡

1

ri(n)−1

ri(n)∑
j=1

1

n− τ

n−1∑

k=τ

Zi,j(k)

(
Zi,j(k + 1)

Zi,j(k)
− m̂o,n,i

)2

.

Now define the appropriate averaged quantities for MST and MSE,

MSTo,n ≡ 1

a− 1
SSTo,n, MSEo,n =

1

R(n)− a
SSEo,n,

where R(n) =
∑a

i=1 ri(n). Finally define the F statistic

Fo,n =
MSTo,n

MSEo,n

.
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Additionally, it is useful to define the average (over the a groups) of the ancestor

mean and offspring variance,

m̄A ≡ 1

a

a∑
i=1

mA,i, σ̄2
o ≡

1

a

a∑
i=1

σ2
o,i .

We now state the result which describes the limiting behavior of Fo,n under the

null hypothesis.

Theorem 5. Let Assumptions 1 and 3 hold. Then under H0 ,

(a− 1) Fo,n
d−→χ2[LaΣoL

t
a] as n →∞,

with Σo ≡ 1
σ̄2

o
diag

(
σ2

o,1, ..., σ
2
o,a

)
and La ≡ Ia − 1

a m̄A
sas

t
a, where

sa ≡
(√

mA,1, ...,
√

mA,a

)t
.

Remark 1. The results of the paper can be proved under more general conditions,

but Assumption 2 helps to simplify the exposition. For instance, we could instead

assume, ri(n)
rj(n)

→ cij, for some constant cij > 0. These constants would show up

in the limiting distribution, and thus our results would only be useful in the case

where the constants are known (for instance if a scientist decided to collect twice

as many replicates on a certain group, it would be possible to modify the results to

account for this).

We now develop the analogues of the ANOVA test for equality of ancestor

means.

3.4 ANOVA for the ancestor mean

In this section we develop a test statistic test for the null hypothesis

H0,A : mA,1 = mA,2, = · · ·mA,a.
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The development relies on the classical martingale limit associated with a super-

critical branching process. We review the key ideas here. It is well-known (Athreya

and Ney, 1972) that there is a limiting random variable W , obtained by scaling

the size of the nth generation by its mean. Information concerning the ancestor

distribution is contained in W , and hence W is a critical object of study. To be

specific, we define Wi,j(n) ≡ Zi,j(n)

mn
o,i

. For each fixed i and j, Wi,j(n) is a positive

martingale and hence has a limit Wi,j which is non-degenerate under a finite sec-

ond moment assumption. In fact, for each fixed (n, i), Wi,j(n) are i.i.d. (across j),

and hence, the limit random variables Wi,j are i.i.d (across j).

The key result that will be useful for our purpose is that the moments of Wi,j

are functions of the moments of the ancestor and offspring distributions, namely,

E Wi,j = mA,i, σ2
W,i =

mA,i σ
2
o,i

mo,i(mo,i−1)
+ σ2

A,i, (3.1)

where σ2
W,i ≡ var(Wi,j). Therefore, if Wi,j were observable the ANOVA problem for

the mean of the ancestor distributions would reduce to the case of (non-Gaussian,

heterogenous) independent data. As mentioned above, the observed data for each

group i is in fact {Zi,j(k) : τ ≤ k ≤ n, 1 ≤ j ≤ ri(n)}. The following result is

well-known (Guttorp, 1991)

Yi,j(n)

mn
o,i

a.s.−−→ mo,i

mo,i−1
Wi,j . (3.2)

In light of (4.1) and (3.2), it is instructive to define V̂i,j(n) ≡ m̂o,n,i−1

m̂n+1
o,n,i

Yi,j(n).

Now, under the assumption of the equality of the offspring means across the

groups, the estimate of mo,i can be improved by “borrowing strength” across the

groups. Namely, the idea is to replace the estimator m̂o,n,i with the pooled esti-

mator of the offspring mean m̂o,n, which was defined in Section 3.3. Specifically,

define Ṽi,j(n) ≡ m̂o,n−1

m̂n+1
o,n

Yi,j(n).
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For the question of ancestor inference, the effective sample size for each group

is simply the number of replicates in that group. Borrowing ideas from classical

ANOVA theory we define the relevant quantities that facilitate construction of the

F statistic for testing H0,A, namely the group means, the overall mean, the error

sum of squares, the treatment sum of squares, and the F statistic. Let

V̄i·(n) ≡ 1

ri(n)

ri(n)∑
j=1

V̂i,j(n), V̄··(n) ≡ 1

R(n)

a∑
i=1

ri(n)∑
j=1

V̂i,j(n),

SSEA,n =
a∑

i=1

ri(n)∑
j=1

(
V̂i,j(n)− V̄i·(n)

)2

, SSTA,n ≡
a∑

i=1

ri(n)
(
V̄i·(n)− V̄··(n)

)2
,

and

FA,n =
MSTA,n

MSEA,n

,

where MSEA,n ≡ 1
R(n)−a

SSEA,n and MSTA,n ≡ 1
a−1

SSTA,n. Finally, we define a

variance estimator for each group and the average variance over all a groups,

σ̂2
W,n,i ≡

1

ri(n)

ri(n)∑
j=1

(
V̂i,j(n)− V̄i·(n)

)2

, σ̄2
W ≡ 1

a

a∑
i=1

σ2
W,i .

And for the case of Ṽi,j(n) we define all of the analogous quantities, denoting

them with a tilde.

Ṽi·(n) ≡ 1

ri(n)

ri(n)∑
j=1

Ṽi,j(n), Ṽ··(n) ≡ 1

R(n)

a∑
i=1

ri(n)∑
j=1

Ṽi,j(n),

˜SSEA =
a∑

i=1

ri(n)∑
j=1

(
Ṽi,j(n)− Ṽi·(n)

)2

, ˜SSTA ≡
a∑

i=1

ri(n)
(
Ṽi·(n)− Ṽ··(n)

)2

,

˜MSEA ≡ 1

R(n)− a
˜SSEA, ˜MSTA ≡ 1

a− 1
˜SSTA, F̃A,n =

˜MSTA

˜MSEA

,

and

σ̃2
W,n,i ≡

1

ri(n)

ri(n)∑
j=1

(
Ṽi,j(n)− Ṽi·(n)

)2

.

We now state our main results concerning the hypothesis test for H0,A.
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Theorem 6. Let Assumptions 1 and 3 hold. Then, under H0,A

(a− 1) FA,n
d−→χ2[CaΣCt

a], as n →∞,

where Σ ≡ 1
σ̄2

W
diag

(
σ2

W,1, ..., σ
2
W,a

)
.

Theorem 7. Let Assumptions 1 and 3 hold. Then under H0 and H0,A

(a− 1) F̃A,n
d−→χ2[CaΣCt

a], as n →∞

where Σ ≡ 1
σ̄2

W
diag

(
σ2

W,1, ..., σ
2
W,a

)
.

Remark 2. It is worthwhile to consider when the homogeneity assumption is rea-

sonable. First remember, that homogeneity only needs to hold under the null hy-

pothesis. Also, using (4.1), recall that σ2
W,i is a function of the ancestor mean,

offspring mean, and offspring variance. If the ancestor distribution is a paramet-

ric family characterized by its mean, and additionally (mo,i, σ
2
o,i) = (mo, σ

2
0), for

all i, then under the null hypothesis, σ2
W,i = σ2

W (for all i). This situation is ap-

proximately true for PCR data. In that case, the offspring distribution (for all

groups) is Bernoulli, so that if efficiency of the replication is equal across groups,

then (mo,i, σ
2
o,i) = (mo, σ

2
0), for all i.

3.5 Implementation of the test procedures

As mentioned in the introduction and discussed in several references the problem

with ANOVA models under heterogenous variances is power (Krutchkoff, 1988;

Argaç, 2004). As will be seen in the simulation section, the procedures obtain

close to the nominal size. The difficulty is to chose the most powerful procedure.

For concreteness, we focus our comments on testing the ancestral mean equality
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with the statistic FA,n. The algorithms we discuss are naturally extended for the

statistics F̃A,n and Fo,n.

Argaç (2004) contains a nice summary of many of the commonly used pro-

cedures for correcting for heterogeneity. In the discussion, Argaç concludes that

there is no ‘best’ way to account for heterogeneity. In fact, he writes “due to

the non-standard assumptions...we make, there does not appear to be any sys-

tematic pattern in the simulations, and thus we cannot provide the reader with

a general recommendation or a simple take-home message.” In his simulations,

Cochran’s test is often the most powerful procedure; however, the results are not

size-adjusted. This difficulty in evaluation is not surprising, since, as many authors

have pointed out, the ANOVA model under heterogeneity is a Behrens-Fisher type

problem. Interestingly, Argaç does not mention a procedure based on some analog

of Theorem 6. Lee et al. (2007) prove an analog of Theorem 6 for heterogenous

Gaussian data and provide a numerical method for computing the associated crit-

ical values.

We consider two basic procedures: the classical F-test and a procedure based

on Theorem 6, which we refer to as the Monte-Carlo G-test. For the classical

F-test we proceed ignoring the issue of variance heterogeneity; H0 is rejected (at

level α) if FA,n > Fa−1,R(n)−a,1−α, where Fν1,ν2,1−α represents the 1 − α percentile

of the Fν1,ν2 distribution. Theorem 6 gives an asymptotic result which we can

use directly to test the null hypothesis of equal ancestor means. Of course, the

limiting distribution depends on the eigenvalues of CaΣCt
a, which involves the

unknown group variances. We will thus focus on computing the eigenvalues of

CaΣ̂nC
t
a, where Σ̂n ≡ 1

σ̄2
W,n

diag
(
σ̂2

W,n,1, ..., σ̂
2
W,n,a

)
. Finally, the test is performed

by rejecting (at level α) if (a − 1) FA,n > χ2[CaΣ̂nC
t
a, 1 − α], where χ2[Λ, 1 − α]
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represents 1 − α percentile of the χ2[Λ] distribution. The percentiles of the χ2[Λ]

distribution are determined using Monte-Carlo methods; recalling the definition of

χ2[Λ] this involves determining the eigenvalues of Λ and simulating independent

standard Gaussian pseudo-random variates. When the test is performed in this

manner, we refer to it as the Monte Carlo G-test. Alternative numerical procedures

are available. Lee et al. (2007) provide a non-random numerical algorithm for

computing the critical values of a related test procedure. Strawderman (2004)

studies the more general problem of computing tail probabilities for absolutely

continuous distributions. We do not consider these methods in our analysis.

We make a brief comment on the eigenvalues of CaΣCt
a. In the equal variance

case, Σ = Ia, hence CaΣCt
a = CaC

t
a = Ca. It is well-known (Moser, 1996) that

Ca has one zero eigenvalue and a− 1 eigenvalues equal to unity. It is easy to show

that rank
(
CaΣCt

a

)
= a−1. And thus we need to approximate the a−1 non-zero

eigenvalues of CaΣ̂nC
t
a.

3.6 Simulations

In this section we explore the size and power of ANOVA tests for differences in

the ancestor means. We compare the performance of the classical F-test with the

ANOVA G-test (based on Theorem 6).

All of the results in this section are based on 5000 simulations; additionally,

the Monte Carlo G-test results are based on M = 2000 Monte Carlo samples.

Throughout this section the size level is fixed at α = .05. Also, the branching

processes are observed for generations τ = 10 to n = 20.
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We begin by assessing size and power under asymptotic homogeneity with

balanced data for three groups. The offspring distribution is Bernoulli (on {1, 2})
and the ancestor distribution is Poisson. The results of the simulation assessing

size for varying numbers of replicates, offspring means, and ancestor means are

shown in Tables 3.1 and 3.2. For tests of power, all three groups have the same

Bernoulli offspring distribution, and a Poisson ancestor distribution with varying

means. We vary the means in the following way. First fix the mean of one group at

mA,1, now let the means of group two and three be given by mA,1− δ and mA,1 + δ,

respectively, for varying values of δ. The results of these simulations are shown in

Figure 3.1.

Next we consider the case of (asymptotic) heterogeneity. Again, we consider

three groups all with Poisson ancestor distributions and Bernoulli offspring dis-

tributions. The difference here is the three groups have different offspring means,

1.5, 1.8 and 1.95. The size of these simulations, for various parameter values, are

given in Table 3.3.

In the simulations considered, both tests achieve close to the nominal size;

however, in every comparison the classical F -test is closer to the nominal value of

.05. On the other hand, the Monte Carlo G-test is always more powerful than the

classical F -test.

3.7 Data analysis

The PCR data analyzed in this section were collected from a ABI Prism 7700

Sequence Detection System. The data comes from the Luteinizing hormone taken

from a mouse pituitary gland. We collected data on 16 replicates from three
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Table 3.1: F test for mA.

mA = 10

replicates p = .98 p = .95 p = .5 p = .1

10 0.0472 0.0536 0.0504 0.0481

20 0.05 0.0518 0.0524 0.0463

30 0.0476 0.053 0.0488 0.0457

mA = 50

replicates p = .98 p = .95 p = .5 p = .1

10 0.0516 0.052 0.0512 0.0524

20 0.0518 0.0454 0.0552 0.051

30 0.0474 0.0496 0.054 0.0482

mA = 100

replicates p = .98 p = .95 p = .5 p = .1

10 0.0496 0.0528 0.048 0.0494

20 0.0526 0.0494 0.0544 0.0508

30 0.0502 0.048 0.0494 0.055

different dilutions. Let LH1, LH2 and LH3 denote the three dilutions. The master

mix for LHi is obtained from the master mix of LHi−1 using a dilution factor of

2.9505. Thus, if ma,LH1 = ma, then ma,LHi
= ma

2.9505i−1 i = 2, 3.

The data are plotted in Figure 3.2; on the log scale, the three groups are visually

separated in the exponential phase. In our analysis we excluded data from one of

the reactions for LH2, since it did not reach the appropriate CT level. Similarly,

we excluded data from one LH1 replicate since its CT value was much larger than

those of the other LH1 replicates.
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Table 3.2: Monte Carlo G test for mA.

mA = 10

replicates p = .98 p = .95 p = .5 p = .1

10 0.0648 0.0638 0.0576 0.0597

20 0.0586 0.055 0.054 0.0606

30 0.053 0.0528 0.0534 0.0544

mA = 50

replicates p = .98 p = .95 p = .5 p = .1

10 0.0588 0.0684 0.0614 0.0626

20 0.0588 0.0516 0.061 0.056

30 0.0532 0.0592 0.0604 0.0486

mA = 100

replicates p = .98 p = .95 p = .5 p = .1

10 0.0632 0.0654 0.0586 0.0634

20 0.0596 0.0568 0.0568 0.0604

30 0.0554 0.0542 0.0516 0.0562

Our methodology requires identification of the exponential phase. The strategy

is to choose those cycles which yield a fluorescence of at least F ? and per-cycle

amplification of at least mc. The following algorithm identifies the cycles of data

belonging to the exponential phase. Recall that CT ≡ inf
{
j : Fj > F ?

}
. In our

analyses we chose F ? = 0.2 and mc = 1.5. The choice of F ? was suggested by the

manufacturers of the equipment.

First we consider pairwise comparisons. We quantitate LH1 relative to LH2;

and then quantitate LH3 relative to LH2. Using the standard PCR terminology,
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Table 3.3: F and Monte-Carlo G-test for mA. The ancestor distribution is
Poisson and the offspring distribution is Bernoulli. But the three
groups have different offspring means: 1.5, 1.8 and 1.95.

F -test

replicates mA = 10 mA = 20 mA = 30

10 0.0508 0.053 0.0532

20 0.0482 0.0556 0.052

30 0.0472 0.0514 0.0524

Monte Carlo G-test

replicates mA = 10 mA = 20 mA = 30

10 0.0672 0.0678 0.0618

20 0.058 0.0572 0.058

30 0.0554 0.0536 0.054

LH1 and LH3 are target groups, and LH2 is the calibrator. Note that the optimal

point estimates are: 2.9505 for LH1 versus LH2 and 1
2.9505

= 0.3389 for LH3 versus

LH1. For LH1 versus LH2, the point estimate is 2.8221 with a 95% bootstrap

confidence interval of (1.6870, 3.6013). For LH3 versus LH2, the values are 0.4136

and (0.2061, 0.5417). The bootstrap confidence intervals were based on 2000 boot-

strap resamples of the reactions. Notice, that the two confidence intervals do not

overlap.

Next we consider comparing the three groups using the methods presented in

this paper. The F-statistic takes the value F = 49.9477. Both the classical F-

test (p < 10−6) and the Monte Carlo G-test (p = 0) reject the null hypothesis of

equality of the ancestor means across the three groups. The Monte Carlo procedure

is based on M = 2000 Monte-Carlo samples.
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(c) ri(n) = 30 for i = 1, 2, 3

Figure 3.1: Simulated power versus δ. All three groups have the same
Bernoulli offspring distribution with success probability p = .9.
The three groups each have an ancestor distribution given by
max(1, Poiss(λi)), for different values of λi. The first group has
λ1 = 10; the rates for the other two groups are given by λ1 − δ
and λ1 + δ.

3.8 Proofs of initial results

Before proving Theorems 5, 6, and 7, we need to establish some preliminary results.
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Figure 3.2: Plot of cycle number versus log fluorescence (j vs. log Fj ) for all
16 replicates of LH1 (in blue), LH2 (in red), and LH3 (in green).

3.8.1 Initial Propositions

Before proving the key ANOVA theorems (Theorems 5, 6, and 7) we need to

establish several intermediate results; first proving limit results for the offspring

distribution estimators and then for the ancestor distribution estimators.

We begin by stating three propositions. First we state a harmonic moment

result which is an immediate corollary of Theorem 1 in Ney and Vidyashankar

(2003).

Proposition 3. Let Assumption 1 hold. Fix r ≥ 1. For each group i, there exists

a Ci > 0 and a γ ∈ (0, 1) such that

E
(
Y −r

i,j (n)
)
≤ Ciγ

n.

The following result central limit theorem result is proved using a standard

characteristic function argument.

Proposition 4. Let {Xn,i} be a collection random variables with EXn,i = 0. Addi-

tionally, for each fixed n,
{
Xn,i : i ≥ 1

}
are i.i.d. with finite variance var

(
Xn,i

)
=
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σ2
n. If σ2

n → σ2 and kn →∞ as n →∞, then

1√
kn

kn∑
i=1

Xn,i
d−→N(0, σ2).

Finally, we state a result which summarizes some important estimates concern-

ing the covariance of the martingale sequence.

Proposition 5. Let Assumption 1 hold. Fix group i, let Ci,k k = 1, 2, 3, be positive

constants. We have,

var
(
Wi,j(n)−Wi,j

)
=

Ci,1

mn
o,i

,

∣∣∣cov
(
Wi,j(n)−Wi,j,Wi,j(`)−Wi,j

)∣∣∣ ≤ Ci,2

m
(n+`)/2
o,i

,

∣∣∣cov
(
Wi,j(n)−Wi,j,Wi,j

)∣∣∣ ≤ Ci,3

m
n/2
o,i

.

3.8.2 Limit Results Related to the Offspring Distribution

Estimators

We begin by proving estimates for the non-parametric maximum likelihood esti-

mator of the offspring mean based on a single replicate (Guttorp, 1991). To be

precise define

m̂o,n,i,j ≡ Yi,j(n)−Zi,j(τ)

Yi,j(n− 1)
.

Lemma 8. Let Assumption 1 hold. For each ε > 0, there exists a C > 0 and a

γ ∈ (0, 1) such that

P
(∣∣m̂o,n,i,j −mo,i

∣∣ > ε
)
≤ Cnγn.
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Proof. We begin by proving the following estimate. There exists a C > 0, such

that

E

[√
Yi,j(n− 1)

(
m̂o,n,i,j −mo,i

)]2

≤ Cn2. (3.3)

To this end, we note that

√
Yi,j(n− 1)

(
m̂o,n,i,j −mo,i

)
=

√
Yi,j(n− 1)

(
Yi,j(n)−Zi,j(τ)

Yi,j(n− 1)
−mo,i

)

=
n∑

k=τ

Zi,j(k + 1)−mo,i Zi,j(k)√
Zi,j(k)

wi,j(n, k),

where

w2
i,j(n, k) ≡ Zi,j(k)

Yi,j(n− 1)
.

Thus, setting Xi,j(k) =
Zi,j(k+1)−mo,i Zi,j(k)√

Zi,j(k)
, we have that

(√
Yi,j(n− 1)

(
m̂o,n,i,j −mo,i

))2

≤ n2


 1

n− τ

n−1∑

k=τ

∣∣Xi,j(k)
∣∣



2

≤ n2


 1

n− τ

n−1∑

k=τ

X2
i,j(k)


 ,

where the last inequality follows from Jensen’s inequality for convex functions.

Taking expectations gives (3.3).

By Markov’s inequality,

P
(∣∣m̂o,n,i,j −mo,i

∣∣ > ε
)

≤ 1

ε
E

∣∣m̂o,n,i,j −mo,i

∣∣

≤ ε−2
√

dn (1) dn (2), (3.4)

where

dn (1) =

[
E

[√
Yi,j(n− 1)

(
m̂o,n,i,j −mo,i

)]2
]1/2

and

dn (2) =

[
E

(
Y −1

i,j (n− 1)
)]1/2

.
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The last inequality follows by first multiplying and dividing by
√

Yi,j(n− 1) inside

the expectation in (3.4) and then applying the Cauchy-Schwarz inequality. The

result now follows from Proposition 3 and (3.3).

Next we consider the maximum deviation, across all replicates, of m̂o,n,i,j from

mo,i. Namely, define

M?
n,i ≡ max

1≤j≤ri(n)

∣∣m̂o,n,i,j −mo,i

∣∣ .

Lemma 9. Let Assumptions 1 and 3 hold. Then, with probability one,

lim
n→∞

M?
n,i = 0.

Proof. Fix ε > 0. Let α(n) = P
(∣∣m̂o,n,i,j −mo,i

∣∣ > ε
)
. Then, using the fact

an − bn = (a− b)
∑n−1

k=0 akb(n−1)−k,

∑
n≥1

P
(
M?

n,i > ε
)

=
∑
n≥1

1− [
1− α(n)

]ri(n)

=
∑
n≥1

α(n)

ri(n)−1∑

`=0

(
1− α(n)

)`

≤
∑
n≥1

C ri(n) nγn,

for some γ ∈ (0, 1), using Lemma 8. But, using the ratio test,
∑

n≥1 ri(n) nγn < ∞,

hence the desired result follows from the Borel-Cantelli lemma.

Next we prove analogous results for the variance estimator. First define a

variance estimator, in the case the mean is known,

σ2
o,n,i ≡

1

ri(n)

ri(n)∑
j=1

σ2
o,n,i,j,

where

σ2
o,n,i,j ≡

1

n− τ

n−1∑

k=τ

Zi,j(k)

(
Zi,j(k + 1)

Zi,j(k)
−mo,i

)2

.

We first state a result which considers the moments of this estimator.
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Proposition 6. Assume EZ2
0 < ∞ and Eξ2 < ∞.

E
(
σ2

o,n,i,j

)
= σ2

o,i, var
(
σ2

o,n,i,j

)
=

an

(n + 1)2
,

where

an ≡ 2(n + 1) σ2
o,i +C

n∑

k=τ

E
(
Z−1

i,j (n)
)

,

and C = var
(
ξi −mo,i

)2 − 2 σ2
o,i.

Proof. The result follows from a minor modification of the moment arguments

given in the proof of Theorem 1 in Dion (1975).

To prove a result for the variance estimator, which is analogous to Lemma 9,

define the following quantity,

V ?
n,i ≡ max

1≤j≤ri(n)

∣∣∣σ2
o,n,i,j −σ2

o,i

∣∣∣ .

Lemma 10. Let Assumptions 1 and 3 hold. Then, as n →∞,

V ?
n,i

P−→ 0. (3.5)

It immediately follows, that

σ2
o,n,i

P−→σ2
o,i . (3.6)

Proof. Fix ε > 0. Let α(n) = P

(∣∣∣σ2
o,n,i,j − σ2

o,i

∣∣∣ > ε

)
. Then, using the fact an −

bn = (a− b)
∑n−1

k=0 akb(n−1)−k,

P
(
V ?

n,i > ε
)

= 1− [
1− α(n)

]ri(n)

= α(n)

ri(n)−1∑

k=0

(
1− α(n)

)k

≤ ri(n) α(n).
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But, using Chebyshev’s inequality and Proposition 6

α(n) = P

(∣∣∣σ2
o,n,i,j −σ2

o,i

∣∣∣ > ε

)

≤ Cvar(σ2
o,n,i,j).

But using Assumption 3, ri(n) var(σ2
o,n,i,j) → 0.

Now σ2
o,n,i = 1

ri(n)

∑ri(n)
j=1 σ2

o,n,i,j, so (3.6) follows immediately from (3.5).

We now state the key limit result needed to prove Theorem 5.

Lemma 11. Let Assumptions 1 and 3 hold. For each i, as n →∞,

(
m̂o,n,i, σ̂

2
o,n,i

)
P−→(mo,i, σ

2
o,i)

and
√

An,i

(
m̂o,n,i−mo,i

) d−→N(0, σ2
o,i),

where

An,i ≡
ri(n)∑
j=1

Yi,j(n− 1) .

Proof. We begin by proving consistency of m̂o,n,i. We have that

0 ≤
∣∣m̂o,n,i−mo,i

∣∣ =

∣∣∣∣∣∣

ri(n)∑
j=1

Yi,j(n− 1)∑ri(n)
`=1 Yi,`(n− 1)

(
m̂o,n,i,j −mo,i

)
∣∣∣∣∣∣

≤ M?
n,i .

The result now follows from Lemma 9.

Next consider the consistency of σ̂2
o,n,i. Basic algebra yields,

σ̂2
o,n,i = σ2

o,n,i + Jn,1− Jn,2,
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where,

Jn,1 ≡ (m̂o,n,i−mo,i)
2 1

ri(n)(n− τ)

ri(n)∑
j=1

n−1∑

k=τ

Zi,j(k),

and

Jn,2 ≡ 2(m̂o,n,i−mo,i)
1

ri(n)(n− τ)

ri(n)∑
j=1

n−1∑

k=τ

Zi,j(k)

(
Zi,j(k + 1)

Zi,j(k)
−mo,i

)
.

Now Lemma 10 gives that σ2
o,n,i

P−→ 0; similar arguments show Jn,i
P−→ 0, for i = 1, 2.

Finally, we prove the asymptotic normality result. Basic algebra yields,

√
An,i

(
m̂o,n,i−mo,i

)
=

1√
mA,n−1,i

Tn,

where

Tn =





1√
ri(n)

ri(n)∑
j=1

√
Vi,j(n− 1)

√
Yi,j(n− 1)

(
m̂o,n,i,j −mo,i

)


 .

But from Corollary 2 mA,n,i
a.s.−−→mA,i. Thus by Slutsky’s Theorem, it is sufficient

to prove

1√
ri(n)

ri(n)∑
j=1

√
Vi,j(n− 1)

√
Yi,j(n− 1)

(
m̂o,n,i,j −mo,i

) d−→N(0,mA,i σ
2
o,i). (3.7)

But (3.7) follows immediately from Proposition 4 and standard moment calcula-

tions.

3.8.3 Limit Results Related to the Ancestor Distribution

Estimators

Asymptotic theory for the estimator of the ancestor mean relies critically on the

behavior of the following term

θn,i ≡
(

m̂o,n,i−1

mo,i−1

)(
mo,i

m̂o,n,i

)n+1

.
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Before we address this term, we need an estimate for E
∣∣m̂o,n,i−mo,i

∣∣.

Lemma 12. Let Assumptions 1 and 3. Fix a group i. There exists a Ci > 0 and

a γi ∈ (0, 1), such that

E
∣∣m̂o,n,i−mo,i

∣∣ ≤ Cinγn
i .

Proof. Basic algebra gives,

∣∣m̂o,n,i−mo,i

∣∣ ≤
ri(n)∑
j=1

1√
Yi,j(n− 1)

·
√

Yi,j(n− 1)
∣∣m̂o,n,i,j −mo,i

∣∣ (3.8)

The result now follows from (3.3) (see the proof of Lemma 8), (3.8), the Cauchy-

Schwartz inequality, and Proposition 3.

The next result proves that θn,i converges to unity, with probability one.

Lemma 13. Let Assumptions 1 and 3. Then as n →∞,

√
ri(n)

∣∣∣∣∣∣

(
mo,i

m̂o,n,i

)n

− 1

∣∣∣∣∣∣
a.s.−−→ 0, (3.9)

and
√

ri(n)
∣∣θn,i − 1

∣∣ a.s.−−→ 0. (3.10)

Proof. We begin by proving (3.9). Fix ε > 0 and define ψn,i ≡ mo,i

m̂o,n,i
Notice that

P

(√
ri(n)

∣∣∣ψn
n,i − 1

∣∣∣ > ε

)
= P

(
ψn

n,i > 1 +
ε√

ri(n)

)
+ P

(
ψn

n,i < 1− ε√
ri(n)

)

≡ an,1 + an,2 .

From the Borel-Cantelli lemma it is sufficient to prove
∑

n≥1 an,` < ∞, for ` = 1, 2.
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To this end, define bn = (1 + ε√
ri(n)

)−1/n and use Markov’s inequality to obtain

P

(
ψn

n,i > 1 +
ε√

ri(n)

)
= P

(
ψ−1

n,i < bn

)

≤ P
(∣∣m̂o,n,i−mo,i

∣∣ > mo,i(1− bn)
)

≤ 1

mo,i(1− bn)
E

∣∣m̂o,n,i−mo,i

∣∣

≤ Cnγn

mo,i(1− bn)
,

for some γ ∈ (0, 1), using Lemma 12. But, using the ratio test,
∑

n≥1
nγn

1−bn
< ∞.

A similar argument gives,
∑

n≥1 an,2 < ∞.

Notice (3.10) follows immediately from (3.9) and the consistency of m̂o,n,i (see

Lemma 11).

Lemma 14. Let Assumptions 1 and 3. Then

∑
n≥1

var
(
Vi,j(n)−Wi,j

)
< ∞ (3.11)

and as n →∞, for ` = 1, 2,

1

ri(n)

ri(n)∑
j=1

(
Vi,j(n)−Wi,j

)` a.s.−−→ 0. (3.12)

Proof. In what follows, it is helpful to define Vi,j ≡ Wi,j
mo,i

mo,i−1
and θ ≡

(
mo,i−1

mo,i

)
.

We begin by developing an estimate for var
(
Vi,j(n)−Wi,j

)
. To this end, note that

Vi,j(n)−Wi,j =

(
Yi,j(n)

mn
o,i

− Vi,j

)(
mo,i−1

mo,i

)
, (3.13)

and

Yi,j(n)

mn
o,i

− Vi,j =
n−τ∑

k=0

(
Wi,j(n− k)−Wi,j

)
m−k

o,i − Wi,j

∑

k>n−τ

m−k
o,i

≡ Jn,j(1)− Jn,j(2). (3.14)
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Now, using (3.13), (3.14), and the standard formula for var(X − Y ), yields

var
(
Vi,j(n)−Wi,j

)
= θ2

(
var

(
Jn,j(1)

)
+ var

(
Jn,j(2)

)− 2Cov
(
Jn,j(1), Jn,j(2)

))

≡ θ2
(
an,1 + an,2−2 an,3

)
. (3.15)

We proceed to prove (3.11), by showing that
∑

n≥1 an,` < ∞, for ` = 1, 2, 3.

First consider an,1. It is helpful to define Xn,k ≡
(
Wi,j(n− k)−Wi,j

)
. Now,

var(Jn,j(1)) = var




n−τ∑

k=0

Xn,k m−k
o,i


 = Jn,j(1, 1) + Jn,j(1, 2) (3.16)

where

Jn,j(1, 1) ≡
n−τ∑

k=0

var
(
Xn,k m−k

o,i

)
=

n−τ∑

k=0

m−2k
o,i var

(
Xn,k

)

and

Jn,j(1, 2) ≡
n−τ∑

k=0

∑

` 6=k

Cov
(
Xn,k m−k

o,i , Xn,` m−`
o,i

)
=

n−τ∑

k=0

∑

` 6=k

m
−(k+`)
o,i Cov

(
Xn,k, Xn,`

)
.

But using Proposition 5,

Jn,j(1, 1) =
n−τ∑

k=0

m−2k
o,i var

(
Xn,k

)
= C m−n

o,i

n−τ∑

k=0

m−k
o,i , (3.17)

and
∣∣∣Cov

(
Xn,k, Xn,`

)∣∣∣ ≤ Cm
−(n−(j+`)/2)
o,i . (3.18)

Hence, using (3.18),

∣∣Jn,j(1, 2)
∣∣ =

n−τ∑

k=0

∑

` 6=k

m
−(k+`)
o,i

∣∣∣Cov
(
Xn,k, Xn,`

)∣∣∣

≤ C m−n
o,i ·

n−τ∑

k=0

∑

` 6=k

m
−(j+`)/2
o,i .

Combining the above estimates yield

∣∣var(Jn,j(1))
∣∣ ≤

∣∣Jn,j(1, 1)
∣∣ +

∣∣Jn,j(1, 2)
∣∣

≤ C1 m−n
o,i

n−τ∑

k=0

m−k
o,i + C2 m−n

o,i ·
n−τ∑

k=0

∑

` 6=k

m
−(j+`)/2
o,i , (3.19)
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and the two sums in (3.19) are finite.

The calculation for an,2 is trivial; the calculation for an,3 follows using Propo-

sition 5 and similar arguments given for an,1. Hence, (3.11) follows.

We now proceed to prove (3.12). First consider ` = 1. Using similar argument

which were given to prove (3.11) and the ratio test, we have

∑
n≥1

EX2
n

r2
n

< ∞, (3.20)

where

Xn ≡
ri(n)∑
j=1

(
Vi,j(n)−Wi,j

)
.

Fix ε1 > 0. Using Markov’s inequality,

P




∣∣∣∣∣∣
1

ri(n)

ri(n)∑
j=1

(
Vi,j(n)−Wi,j

)
∣∣∣∣∣∣
> ε1


 = P

(
X2

n > ε2
1r

2
n

) ≤ EX2
n

ε2
1r

2
n

.

The result for ` = 1 now follows using (3.20) and the Borel-Cantelli lemma. The

result for ` = 2 follows similarly.

Define mA,n,i ≡ 1
ri(n)

∑ri(n)
j=1 Vi,j(n), then as an immediate corollary of Lemma 14

we have.

Corollary 2. Let Assumption 3 hold and assume EZ2
0 < ∞ and Eξ2 < ∞. Then

as n →∞,

mA,n,i
a.s.−−→mA,i .

Lemma 15. Let Assumptions 1 and 3. Then as n →∞,

1

ri(n)

ri(n)∑
j=1

(
V 2

i,j(n)−W 2
i,j

)
a.s.−−→ 0.
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Proof. To this end, fix ε > 0 and note that

P




∣∣∣∣∣∣
1

ri(n)

ri(n)∑
j=1

(
V 2

i,j(n)−W 2
i,j

)
∣∣∣∣∣∣
> ε


 ≤ P


 1

ri(n)

ri(n)∑
j=1

∣∣∣V 2
i,j(n)−W 2

i,j

∣∣∣ > ε




≤ 1

ε
E

∣∣∣V 2
i,j(n)−W 2

i,j

∣∣∣

≡ an.

But using arguments similar to those given in the proof of Lemma 15, yields
∑

n≥1 an < ∞. Thus, the result follows from the Borel-Cantelli lemma.

Lemma 16. Let Assumptions 1 and 3 hold. For each i, as n →∞,

(
V̄i·(n), σ̂2

W,n,i

)
P−→

(
mA,i, σ

2
W,i

)

and
√

ri(n)
(
V̄i·(n)−mA,i

) d−→N(0, σ2
W,i).

Proof. The consistency of V̄i·(n) follows immediately from Lemmas 13 and 14. In

fact, asymptotic normality follows along the same lines because Lemma 13 shows

that θn is
√

ri(n) consistent.

Next consider the consistency of σ̂2
W,n,i, which can be expressed as

σ̂2
W,n,i =

1

ri(n)

ri(n)∑
j=1

(
Tn,j,1 + Tn,j,2 + Tn,j,3

)2
, (3.21)

where

Tn,j,1 ≡ V̂i,j(n)−Wi,j, Tn,j,2 ≡ Wi,j −mA,i, Tn,j,3 ≡ mA,i− V̄i·(n) .

The strong law of large numbers yields,

1

ri(n)

ri(n)∑
j=1

T 2
n,j,2

a.s.−−→σ2
W,i .
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Hence, we proceed to showing the remaining terms in the expansion of (3.21)

converge to zero with probability one. Using Lemmas 13 and 14,

1

ri(n)

ri(n)∑
j=1

T 2
n,j,1

a.s.−−→ 0.

Finally, we get

1

ri(n)

ri(n)∑
j=1

T 2
n,j,3

a.s.−−→ 0,

immediately from the strong consistency of V̄i·(n). Finally, using the Cauchy-

Schwarz inequality combined with similar arguments given above, the cross-product

terms in the expansion (3.21) converge to zero with probability one.

Lemma 17. Let Assumptions 1 and 3 hold. Additionally, assume mo,i = mo. For

each i, as n →∞,
(
Ṽi·(n), σ̃2

W,n,i

)
P−→

(
mA,i, σ

2
W,i

)

and
√

ri(n)
(
Ṽi·(n)−mA,i

)
d−→N(0, σ2

W,i).

Proof. This follows from similar arguments used to prove Lemma 16.

3.9 Proofs of main results

In this section we prove Theorems 5, 6, and 7.

3.9.1 Proofs For mo,i ANOVA

In this section we prove Theorem 5. We begin by proving two key lemmas which

give the limit behavior for the MSE and MST terms.
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Lemma 18. Let Assumptions 1 and 3 hold. As n →∞,

MSEo,n
P−→ σ̄2

o .

Proof. This follows immediately from Lemma 11 and the fact that ri(n)
rj(n)

→ 1 (see

Assumption 3).

Lemma 19. Let Assumptions 1 and 3 hold. Additionally, assume mo,i = mo for

all i, then, as n →∞,

a∑
i=1

wn,i

σ̄2
o

(
m̂o,n,i− m̂o,n

)2 d−→TtT,

T ∼ Na(0,LaΣoL
t
a), where Σo and La are defined as in Theorem 5.

Proof. Define, Xn ≡ (Xn,1, ..., Xn,a)
t and Tn ≡ (Tn,1, ..., Tn,a)

t, where

Xn,i ≡
√

wn,i

σ̄o

(
m̂o,n,i−mo

)
,

and

Tn,i ≡
√

ri(n)

σ̄o

(
m̂o,n,i− m̂o,n

)
.

Basic algebra, yields Tn = La,nXn, where

(La,n)i,j =





wn−wn,i

wn
if i = j,

−wnj

wn

√
wni

wnj
if i 6= j.

As n → ∞, using the fact that ri(n)
rj(n)

→ 1, La,n
P−→La and, using Lemma 16,

Xn
d−→N(0,Σo). Now, using Slutsky’s theorem and the continuous mapping theo-

rem,
a∑

i=1

wn,i

σ̄2
o

(
m̂o,n,i− m̂o,n

)2
= Tt

nTn
d−→TtT.
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Proof of Theorem 6. First notice that

(a− 1) Fo,n =
Tn

MSEo,n / σ̄2
o

,

where

Tn =
a∑

i=1

wn,i

σ̄2
o

(
m̂o,n,i− m̂o,n

)2
.

Thus, using Slutsky’s theorem and Lemma 18, it is sufficient to prove Tn
d−→χ2[LaΣoL

t
a].

But this follows immediately from Lemma 19 and the following fact (see Marden

(1995), p. 300 Lemma 12.6). Let X ∼ Np(0,V) and let A be a symmetric p × p

(possibly singular) matrix, then XtAX ∼ χ2[AV].

Remark 3. We finish the above proof by quoting Lemma 12.6 in Marden (1995).

Using modified arguments we could instead have utilized results for quadratic forms

of Gaussian random vectors with singular covariance matrices (Styan, 1970; Mathai

and Provost, 1992).

3.9.2 Proofs For mA,i ANOVA

In this section we prove Theorems 6 and 7. We again proceed by first proving limit

results for the MSE and MST terms.

Lemma 20. Let Assumptions 1 and 3 hold. As n →∞,

MSEA,n
P−→ σ̄2

W .

Proof. This follows immediately from the fact that, for each i, σ̂2
W,n,i

P−→σ2
W,i (see

Lemma 16) and ri(n)
rj(n)

→ 1 (see Assumption 3).
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Lemma 21. Let Assumptions 1 and 3 hold. Additionally, assume mA,i = mA for

all i, then, as n →∞,

a∑
i=1

ri(n)

σ̄2
W

(
V̄i·(n)− V̄··(n)

)2 d−→TtT,

with T ∼ Na(0,CaΣCt
a), where Σ ≡ 1

σ̄2
W

diag
(
σ2

W,1, ..., σ
2
W,a

)
.

Proof. Define, Xn ≡ (Xn,1, ..., Xn,a)
t and Tn ≡ (Tn,1, ..., Tn,a)

t, where

Xn,i ≡
√

ri(n)

σ̄W

(
V̄i·(n)−mA

)
,

and

Tn,i ≡
√

ri(n)

σ̄W

(
V̄i·(n)− V̄··(n)

)
.

Basic algebra, yields Tn = Ca,nXn, where

(Ca,n)i,j =





R(n)−ri(n)
R(n)

if i = j,

− rj(n)

R(n)

√
ri(n)
rj(n)

if i 6= j.

As n → ∞, using the fact that ri(n)
rj(n)

→ 1, Ca,n → Ca and, using Lemma 16,

Xn
d−→N(0,Σ). Now, using Slutsky’s theorem and the continuous mapping theo-

rem,
a∑

i=1

ri(n)

σ̄2
W

(
V̄i·(n)− V̄··(n)

)2
= Tt

nTn
d−→TtT.

We now provide the proofs of the main results.

Proof of Theorem 6. This result follows immediately from Lemmas 20 and 21 and

the argument given in the proof Theorem 5.
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Proof of Theorem 7. We omit the proof of Theorem 7. This proof follows using a

standard modification of the arguments used to prove Theorem 6. Namely, one

first proves analogs of Lemmas 20 and 21; then the result follows using Lemma 17

and similar arguments given in the proof for Theorem 5
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CHAPTER 4

LIMIT THEOREMS FOR A SUPERCRITICAL BRANCHING

PROCESS INITIATED BY A RANDOM NUMBER OF

ANCESTORS

4.1 Introduction

We study supercritical branching processes initiated by a random number of an-

cestors. Given data from branching process replicates, each governed by the same

offspring distribution and initiated by a random number of ancestors, we seek to

estimate the moments of the ancestor and offspring distributions.

This problem is motivated by quantitative polymerase chain reaction (qPCR),

an important and widely used tool for gene expression experiments (Ferré, 1998;

Kubista et al., 2006; Nolan et al., 2006). The polymerase chain reaction (PCR) is

a biochemical technique used to amplify the number of copies of a specific DNA

fragment; the goal of qPCR is estimation of the initial number of molecules present

in a genetic material. A typical PCR is run for 40 cycles; theoretically, the number

of molecules doubles in every cycle. In practice, only some fraction of the molecules

actually replicate in a given cycle. Hence, a supercritical Galton-Watson branch-

ing process with a Bernoulli offspring distribution provides a natural model to

describe the dynamics of PCR. Early probabilistic results modeling PCR as a

Galton-Watson branching process have been discussed in Krawczak et al. (1989),

Reiss et al. (1990), Hayashi (1990), Maruyama (1990), and Sun (1995), among

others. More recent works, such as Jagers and Klebaner (2003b), Lalam et al.

(2004b), Piau (2002, 2004, 2005), have considered generalizations of the Galton-

Watson process to model PCR.
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Aside from the connection to PCR, the study of ancestral inference is important

in the general context of inference for branching processes. Denote the mean and

variance of the offspring distribution as (mo, σ
2
o), similarly denote the mean and

variance of the ancestor distribution as (mA, σ2
A) (our notation is made precise in

Section 4.2.1 below). Inference for (mo, σ
2
o) when Z0 ≡ 1 (Harris, 1948; Nagaev,

1967; Heyde, 1974; Dion, 1975; Guttorp, 1991), Z0 ≡ r(n), r(n) →∞ as n →∞,

(Duby and Rouault, 1982; Yanev, 1975, 1985), and when Z0 is random (Dion and

Yanev, 1994, 1995, 1997; Stoimenova, 2005) is well-studied in the literature. Dion

and Yanev (1994) contains an excellent review of this work. However, relatively

little is known concerning inference for mA and σ2
A, under general conditions on

the offspring distribution. We fill this gap in the supercritical context by studying

the inference for the parameter vector
(
mo, σ

2
o ,mA, σ2

A

)
.

Ancestral inference has not been studied in the subcritical or critical cases. In

the subcritical case, Rubin and Vere-Jones (1968) and Hoppe (1980) discuss the

impact of the ancestor distribution on the Yaglom conditional limits. But the work

does not discuss estimation of the initial number of particles.

Because of the connection to PCR, recently there has been considerable work

for estimating the initial number of particles in a supercritical Galton-Watson pro-

cess (with a Bernoulli offspring distribution), including Jacob and Peccoud (1998),

Lalam (2007), Lalam and Jacob (2007), and Piau (2008). Jacob and Peccoud

(1998) consider a single realization of a modified branching process. In their model,

there is an unobserved supercritical branching process that experiences binomial

emigration. The observation process is the number of emigrants from each gen-

eration, as opposed to the actual population size. Both Lalam and Jacob (2007)

and Piau (2008) consider a Bayesian solution to the problem based on observing
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a single realization of a branching process with a Bernoulli offspring distribution.

Finally, Lalam (2007) studies a hidden Markov model formulation of the problem

incorporating the fact that in qPCR experiments only the fluorescence is observed

not the actual number of molecules in each cycle.

The above work is based on observing a single realization of the branching

process. Also, with the exception of Jacob and Peccoud (1998), it is based on

the Bernoulli offspring distribution. Our paper is based on observing branching

process replicates and our results are true under more general conditions for the

offspring and ancestor distribution.

Our work also highlights inference for the distribution of the martingale limit W

(see Section 4.2.2 for more details). As is discussed below, inference for the ancestor

distribution is achieved via inference for the limiting random variable W . Now,

EW = mA, additionally, let σ2
W denote the variance of W . We prove consistency

and joint asymptotic normality (after appropriate scaling and centering) of an

estimator for the vector
(
mo, σ

2
o ,mA, σ2

W

)
.

The remainder of this paper is organized as follows. Section 2 develops the

notation and states the main results. The results are then proved in Sections 3

through 7.
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4.2 Definitions and main results

4.2.1 Notation

Define two independent collections of random variables both distributed on the

positive integers N, the ancestor collection {Z0,i : 1 ≤ i ≤ r(n)} and the offspring

collection {ξn,i,k : n ≥ 1, 1 ≤ i ≤ r(n), k ≥ 1}. {Z0,i : 1 ≤ i ≤ r(n)} is a

collection of independent and identically distributed (i.i.d.) random variables with

representative Z0; unless otherwise stated we assume EZ2
0 < ∞ and define mA ≡

EZ0 and σ2
A ≡ var(Z0). {ξn,i,k : n ≥ 1, 1 ≤ i ≤ r(n), k ≥ 1} is a collection of i.i.d.

random variables with representative ξ; again unless otherwise stated we assume

Eξ2 < ∞ and define mo ≡ Eξ and σ2
o ≡ var(ξ). As is standard we define each

collection of branching processes recursively as

Zn+1,i =

Zn,i∑

k=1

ξn,i,k,

where ξn,j,k is interpreted as the number of children produced by the kth parent in

the nth generation of the ith branching process. Summarizing, {Zn,i : 1 ≤ i ≤ r(n)}
denotes a collection of i.i.d. branching processes initiated by a random number of

ancestors Z0,i. At times we will refer to a generic branching process {Zn : n ≥ 1}
which is initiated by Z0 ancestors and whose offspring distribution is described

by ξ. We emphasize that our assumption P (ξ ∈ N) = 1, implies that we are

exclusively studying supercritical branching processes which diverge to infinity

with probability one.

The data for the problem are the generation sizes from the (n − 1)th and nth

generations, namely {(Zn−1,i, Zn,i

)
: 1 ≤ i ≤ r(n)}; the vector notation Zn =

(
Zn,1, ..., Zn,r(n)

)
denotes all of the nth generation data.
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4.2.2 Motivating the estimators

It is well-known (Athreya and Ney, 1972) that there is a limiting random variable

W obtained by scaling a supercritical branching process by its mean. Information

concerning the ancestor distribution is contained in W , and hence W is a critical

object of study. To be specific, we define, for 1 ≤ i ≤ n, Wn,i ≡ Zn,i

mn
o

. For i,

Wn,i is a positive martingale and thus there exists a random variable W(i) for

which Wn,i
a.s.−−→W(i). In fact, because Wn,i are i.i.d. (across i), the limits W(i) are

i.i.d. Fortunately, results exist which connect the moments of W1 to the moments

of ξ (and Z0). From the Kesten-Stigum Theorem (Kesten and Stigum, 1966),

EW1 < ∞ if and only if Eξ log ξ < ∞ (and EZ0 < ∞). Athreya (1971) extended

this result to show that for k > 1, EW k
1 < ∞ if and only if Eξk < ∞ (and

EZk
0 < ∞). Using the Lp Martingale Convergence Theorem, it is easily shown

that the the moments of Z0 are functions of the moments of W (and the offspring

parameters), namely

mA = EW, σ2
A = σ2

W − mA σ2
o

mo(mo−1)
, (4.1)

where σ2
W ≡ var(W ). Hence we proceed by estimating mA, σ2

W ,mo, σ
2
o . As is stan-

dard for supercritical branching processes (Guttorp, 1991) we employ a weighted

least squares estimator for mo; we use (asymptotically) unbiased estimating equa-

tions for mA, σ2
W , σ2

o . Define m̃A,n ≡ 1
rn

∑rn

i=1 Wn,i, the resulting estimating equa-
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tions are

1

rn

rn∑
i=1

(
Wn,i−mA

)
= 0

1

rn

rn∑
i=1

[(
Wn,i− m̃A,n

)2 − σ2
W

]
= 0

rn∑
i=1

√
Zn−1,i

(
Zn,i√
Zn−1,i

−mo

√
Zn−1,i

)
= 0

1

rn

rn∑
i=1


Zn−1,i

(
Zn,i

Zn−1,i

−mo

)2

− σ2
o


 = 0.

Solving these estimating equations yield,

m̂o,n ≡
∑rn

i=1 Zn,i∑rn

i=1 Zn−1,i

,

σ̂2
o,n ≡

1

rn

rn∑
i=1

Zn−1,i ·
(

Zn,i

Zn−1,i

− m̂o,n

)2

,

m̂A,n ≡ 1

rn

rn∑
i=1

Ŵn,i,

and

σ̂2
W,n =

1

rn

rn∑
i=1

(
Ŵn,i− m̂A,n

)2

,

where

Ŵn,i ≡ Zn,i

m̂o,n
n .

Finally, based on (4.1), define the estimator of the ancestor variance as

σ̂2
A,n = σ̂2

W,n−
m̂A,n σ̂2

o,n

m̂o,n

(
m̂o,n−1

) .

4.2.3 Consistency and asymptotic normality results

This section gives the consistency and asymptotic normality of the estimators

defined above. The results require that we control the rate at which rn goes to ∞,
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basically requiring that rn does not increase exponentially. We make this explicit

with the following assumption.

Assumption 3. rn →∞ as n →∞, such that rn

rn−1
→ 1.

First we state our consistency result.

Theorem 8. Let Assumption 3 hold and assume EZ2
0 < ∞ and Eξ2 < ∞. Then

as n →∞

(m̂o,n, m̂A,n)
a.s.−−→(mo,mA), (σ̂2

o,n, σ̂
2
A,n)

P−→(σ2
o , σ

2
A).

The next result gives the joint asymptotic normality.

Theorem 9. Let Assumption 3 hold and EZ4
0 < ∞ and Eξ4 < ∞. Define

Tn,1 =
√

rn

(
m̂A,n−mA

)
,

Tn,2 =
√

rn

(
σ̂2

W,n−σ2
W

)
,

Tn,3 =

√√√√
rn∑
i=1

Zn−1,i

(
m̂o,n−mo

)
,

Tn,4 =
√

rn

(
σ̂2

o,n−σ2
o

)
,

and Tt
n =

(
Tn,1, Tn,2, Tn,3, Tn,4

)
. As n →∞, Tn

d−→N(0,Σ), where

Σ =




σ2
W µW,3 0 0

µW,3 µW,4− σ4
W 0 0

0 0 σ2
o 0

0 0 0 2σ4
o




Remark 4. Under a two moment hypothesis, EZ2
0 < ∞ and Eξ2 < ∞, we obtain

the joint asymptotic normality of the centered and scaled means m̂o,n and m̂A,n.

87



The asymptotic normality of σ̂2
A,n follows from the above theorem.

Corollary 3. Assume the conditions of Theorem 9. Then,

√
rn

(
σ̂2

A,n− σ2
A

)
d−→N(0, v),

where

v =

(
σ2

o

mo (mo−1)

)2

σ2
W + µW,4− σ4

W −2

(
σ2

o

mo (mo−1)

)
µW,3 .

4.3 Initial estimates

In this section we provide results which are needed in the proofs below. The follow-

ing result is standard (Athreya and Ney, 1972); we quote it here for convenience.

Proposition 7. Let EZ2
0 < ∞ and Eξ2 < ∞. Then

V ar
(
Wn,1−W(1)

)
= E

(
Wn,1−W(1)

)2
=

C

mn
o

.

The following harmonic moment result is used to prove the other two results

in this section.

Lemma 22. Let EZ2
0 < ∞ and Eξ2 < ∞. Then, for some γ ∈ (0, 1) and some

C ∈ (0,∞),

E

(
1∑rn

i=1 Zn,i

)
≤ E

(
1

Zn,1

)
≤ Cγn.

Proof.
∑rn

i=1 Zn,i > Zn,1 a.s. so that the first inequality is trivial. Also EZn,1 ≥
E

(
Zn,1

∣∣Z0,1 = 1
)
. But Theorem 1 in Ney and Vidyashankar (2003) gives, for some

γ ∈ (0, 1) and some C ∈ (0,∞), E
(
Zn,1

∣∣Z0,1 = 1
)
≤ Cγn.
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We consider the deviation of the mean estimators
Zn,i

Zn−1,i
from mo, namely define

M?
n ≡ max

1≤i≤rn

∣∣∣∣∣
Zn,i

Zn−1,i

−mo

∣∣∣∣∣ .

Lemma 23. Let Assumption 3 hold. Let EZ2
0 < ∞ and Eξ2 < ∞. Then, with

probability one,

lim
n→∞

M?
n = 0.

Proof. Fix ε > 0. Let α(n) = P

(∣∣∣Zn+1,1

Zn,1
−mo

∣∣∣ > ε

)
. Then, using the fact an −

bn = (a− b)
∑n−1

k=0 akb(n−1)−k,

∑
n≥1

P
(
M?

n+1 > ε
)

=
∑
n≥1

1− [
1− α(n)

]rn

=
∑
n≥1

α(n)
rn−1∑

k=0

(
1− α(n)

)k

≤
∑
n≥1

Crnγ
n,

for some γ ∈ (0, 1), using Lemma 22. But, using the ratio test,
∑

n≥1 Crnγ
n < ∞,

hence the desired result follows from the Borel-Cantelli lemma.

It is also important to consider the ratio of the offspring mean to the estimator

of the offspring mean, raised to the nth power. Specifically, we consider the behavior

of θn
n, where θn ≡

(
mo

m̂o,n

)
.

Lemma 24. Let Assumption 3 hold. Let EZ2
0 < ∞ and Eξ2 < ∞. Then as

n →∞,

√
rn |θn

n − 1| a.s.−−→ 0

Proof. Fix ε > 0. Notice that

P
(√

rn |θn
n − 1| > ε

)
= P

(
θn

n > 1 +
ε√
rn

)
+ P

(
θn

n < 1− ε√
rn

)

≡ an,1 + an,2 .
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From the Borel-Cantelli lemma it is sufficient to prove
∑

n≥1 an,i < ∞. To this

end, define bn = (1 + ε√
rn

)−1/n and use Chebychev’s inequality to obtain

P

(
θn

n > 1 +
ε√
rn

)
= P

(
θ−1

n < bn

)

≤ P
(∣∣m̂o,n−mo

∣∣ > mo(1− bn)
)

≤ var(m̂o,n)

(mo(1− bn))2

≤ Cγn

(mo(1− bn))2
,

for some γ ∈ (0, 1), using the fact that var
(
m̂o,n

)
= CE

(∑rn

i=1 Zn,i

)−1
and

Lemma 22. But, using the ratio test,
∑

n≥1
γn

(1−bn)2
< ∞.

∑
n≥1 an,2 < ∞ fol-

lows similarly.

We use the following (minor) generalization of the central limit theorem for

i.i.d. random vectors in our asymptotic normality proofs.

Lemma 25. Let {Xn,i} be a collection random vectors with Xn,i ∈ Rp and EXn,i =

0. Additionally, for each fixed n,
{
Xn,i : i ≥ 1

}
are i.i.d. with finite covariance

cov
(
Xn,i

)
= Σn. If Σn → Σ and kn →∞ as n →∞, then

1√
kn

kn∑
i=1

Xn,i
d−→Np(0,Σ).

Proof. Fix λ ∈ Rp. By the Cramér-Wold device, it is sufficient to prove

λt


 1√

kn

kn∑
i=1

Xn,i


 d−→N(0, λtΣλ).

Let Xn,i,j be the jth component of Xn,i, then

λt


 1√

kn

kn∑
i=1

Xn,i


 =

1√
kn

kn∑
i=1

Tn,i,
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where Tn,i ≡
∑p

j=1 λjXn,i,j. Hence, for each fixed n, Tn,i are i.i.d. random variables

with E(Tn,1) = 0 and var(Tn,1) = λtΣnλ.

Let φTn be the characteristic function of 1√
kn

∑kn

i=1 Tn,i and φn be the character-

istic function of Tn,1. Expanding φn in terms of its first two moments yields yields

(Chow and Teicher (1997) p. 295)

φTn (t) =

(
φn

(
t/

√
kn

))kn

=

(
1 +

−t2ET 2
n,1

2kn

+ o
(
k−1

n

)
)kn

→ exp

(
−t2λtΣλ

2

)
,

because ETn,1 = 0 and ET 2
n,1 = λtΣnλ → λtΣλ.

4.4 Moment estimation for the martingale limit

We present results concerning the estimation of the first two moments of W . These

results are of interest in themselves and are also needed for proving the consistency

and asymptotic normality results stated in Section 4.2.3. First consider the quan-

tities based on the i.i.d. martingale limits W(i). Define the sample average and

variance as

mA,n ≡ 1

rn

rn∑
i=1

W(i), σ2
W,n ≡

1

rn

rn∑
i=1

(
W(i)−mA,n

)2
.

The law of large numbers and central limit theorem for i.i.d. data yield (under the

correct moment assumptions for Z0 and ξ) consistency and asymptotic normality

of mA,n and σ2
W,n. Next consider the analogous quantities based on Wn,i,

m̃A,n ≡ 1

rn

rn∑
i=1

Wn,i, σ̃2
W,n ≡

1

rn

rn∑
i=1

(
Wn,i− m̃A,n

)2
.

The next lemmas gives consistency results for these moment estimators.

Lemma 26. Let EZ2
0 < ∞ and Eξ2 < ∞. As n →∞,

m̃A,n,
1

rn

rn∑
i=1

W 2
n,i, σ̃

2
W,n


 a.s.−−→ (

mA, EW 2, σ2
W

)
.
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Proof. We begin by proving m̃A,n
a.s.−−→mA. First note that,

m̃A,n =
1

rn

rn∑
i=1

(
Wn,i−W(i)

)
+ mA,n .

As discussed above, the law of large numbers yields mA,n
a.s.−−→mA. Thus, to com-

plete the result it is sufficient to show that as n →∞,

1

rn

rn∑
i=1

(
Wn,i−W(i)

) a.s.−−→ 0.

We have

P


 1

rn

∣∣∣∣∣∣

rn∑
i=1

Wn,i−W(i)

∣∣∣∣∣∣
> ε


 ≤ var

(∑rn

i=1 Wn,i−W(i)

)

r2
nε

2

=
var

(
Wn,i−W(i)

)

rnε2
=

C

rn mn
o ε2

.

The result follows from Borel-Cantelli.

We prove the result for 1
rn

∑rn

i=1 W 2
n,i using the same basic argument. By the

law of large numbers, 1
rn

∑rn

i=1 W 2
(i)

a.s.−−→EW 2, so it is sufficient to prove

1

rn

rn∑
i=1

(
W 2

n,i−W 2
(i)

)
a.s.−−→ 0.

To this end, fix ε > 0 and note that

P




∣∣∣∣∣∣
1

rn

rn∑
i=1

(
W 2

n,i−W 2
(i)

)
∣∣∣∣∣∣
> ε


 ≤ P


 1

rn

rn∑
i=1

∣∣∣W 2
n,i−W 2

(i)

∣∣∣ > ε




≤ 1

ε
E

∣∣∣W 2
n,1 −W 2

1

∣∣∣

≤ Cε

(
1

mn
o

+
1

m
n/2
o

)
.

Thus, the result follows from Borel-Cantelli.

Finally, note that σ̃2
W,n

a.s−→σ2
W follows immediately from the results for m̃A,n

and 1
rn

∑rn

i=1 W 2
n,i.
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Now we are ready to prove the consistency of the estimators.

Lemma 27. Let Assumption 3 hold. Let EZ2
0 < ∞ and Eξ2 < ∞. As n →∞,

m̂A,n
a.s.−−→mA .

Proof. Notice m̂A,n = 1
rn

∑rn

i=1 Wn,i θ
n
n = θn

n ·
∑rn

i=1 Wn,i. Thus, consistency follows

from Lemmas 24 and 26.

Lemma 28. Let Assumption 3 hold and EZ2
0 < ∞ and Eξ2 < ∞. As n →∞,

σ̂2
W,n

a.s.−−→σ2
W .

Proof. Basic algebra yields,

σ̂2
W,n =

1

rn

rn∑
i=1

(
Wn,i− m̃A,n

)2
+

1

rn

rn∑
i=1

(
Ŵn,i−Wn,i

)2

+
2

rn

rn∑
i=1

(
Ŵn,i−Wn,i

) (
Wn,i− m̃A,n

)− (
m̃A,n− m̂A,n

)2

≡ σ̃2
W,n + Jn,1 + Jn,2− Jn,3 .

From Lemma 26, σ̃2
W,n

a.s.−−→σ2
W ; combining Lemmas 26 and 27 Jn,3

a.s.−−→ 0. Thus, to

complete the proof, we show Jn,i
a.s.−−→ 0, i = 1, 2. We begin with Jn,1,

Jn,1 ≤ (θn
n − 1)2 1

rn

rn∑
i=1

W 2
n,i

a.s.−−→ 0,

using Lemmas 24 and 26.

Finally, consider Jn,2. Applying Cauchy-Schwartz yields,

1

2

∣∣Jn,2

∣∣ ≤ |θn
n − 1|


 1

rn

rn∑
i=1

W 2
n,i




1/2 
 1

rn

rn∑
i=1

(
Wn,i− m̃A,n

)2




1/2

a.s.−−→ 0,

using Lemmas 24 and 26.
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4.5 Proof of Theorem 8

We proceed to prove consistency for the offspring moment estimators.

In the following lemma we prove a consistency and asymptotic normality result

for m̂o,n. The asymptotic normality result is used to prove the consistency of σ̂2
o,n.

Lemma 29. Let Assumption 3 hold. Additionally, assume EZ2
0 < ∞ and Eξ2 <

∞. Then as n →∞,

m̂o,n
a.s.−−→mo

and √√√√
rn∑
i=1

Zn−1,i

(
m̂o,n−mo

) d−→G,

where G ∼ N(0, σ2
o).

Proof. We begin by proving consistency. We have that

0 ≤
∣∣m̂o,n+1−mo

∣∣ =

∣∣∣∣∣∣

rn∑
i=1

Zn,i∑rn

j=1 Zn,j

(
Zn+1,i

Zn,i

−m

)∣∣∣∣∣∣
≤ M?

n+1 .

The result now follows from Lemma 23.

Next consider the asymptotic normality. Define

Yn,i ≡
√

Wn,i

√
Zn,i

(
Zn+1,i

Zn,i

−mo

)
.

Notice that for each fixed n, Yn,1, Yn,2, ... are i.i.d. with EYn,1 = 0 and EY 2
n,1 =

σ2
o EW . Thus,

√√√√
r(n+1)∑

i=1

Zn,i

(
m̂o,n+1−mo

)
=

√
1

m̃A,n


 1√

r(n + 1)

r(n+1)∑
i=1

Yn,i


 d−→N(0, σ2

o),

using Lemmas 25 and 26 and Slutsky’s Theorem.
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Lemma 30. Let Assumption 3 hold. Additionally, assume EZ2
0 < ∞ and Eξ2 <

∞. Then as n →∞,

σ̂2
o,n

P−→σ2
o .

Proof. Begin by considering the consistency result. Algebra yields,

σ̂2
o,n+1− σ2

o =
1

rn

rn∑
i=1


Zn,i

(
Zn+1,i

Zn,i

−mo

)2

− σ2
o


 + (m̂o,n+1−mo)

2 1

rn

rn∑
i=1

Zn,i

− 2(m̂o,n+1−mo)
1

rn

rn∑
i=1

Zn,i

(
Zn+1,i

Zn,i

−mo

)

≡ Jn,1 + Jn,2 + Jn,3 .

Lemma 29 (combined with similar arguments used in the proof of the lemma)

imply Jn,2
P−→ 0 and Jn,3

P−→ 0.

Finally we prove Jn,1
P−→ 0 by showing its characteristic function converges to

unity. Notice that Jn,1 = 1
rn

∑rn

i=1 Yn,i, where

Yn,i ≡

Zn,i

(
Zn+1,i

Zn,i

−mo

)2

− σ2
o


 .

Notice that for each fixed n, Yn,1, Yn,2, ... are i.i.d. with EYn,1 = 0. Let φn be

the characteristic function of Yn,1, and φJn be the characteristic function of Jn,1.

Expanding φn in terms of EYn,1 (Chow and Teicher (1997) p. 295 ) yields

φJn (t) =

(
φn

(
t

rn

))rn

=
(
1 + o

(
r−1
n

))rn → 1.

Proof of Theorem 8. The result follows from Lemmas 27, 28, 29, 30.
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4.6 Proof of Theorem 9

We now consider the joint asymptotic normality results. To ease notation we define

the properly centered and scaled quantities that we will consider, namely,

Xn,1 ≡ √
rn

(
m̂A,n−mA

)

Xn,2 ≡
√

r(n)
(
σ̂2

W,n− σ2
W

)

Xn,3 ≡
√√√√

rn∑
j=1

Zn−1,j ·
(
m̂o,n−mo

)

Xn,4 ≡
√

r(n)
(
σ̂2

o,n− σ2
o

)
.

The necessary calculations are greatly simplified if the ancestor estimators are

expressed in terms of data from generations (n−1, n), while the offspring estimators

are expressed in terms of data from generations (n, n + 1). The following lemma

facilitates this idea.

Lemma 31. Assume the conditions of Theorem 9. Then as n →∞,

Xn+1,1−Xn,1
P−→ 0

Xn+1,2−Xn,2
P−→ 0.

Proof. First consider Xn,1. We begin by proving,

Xn,1 =
1√
rn

rn∑
i=1

(
W(i)−mA

)
+ op(1). (4.2)

To this end note that

√
rn

(
m̂A,n−mA

)
=

1√
rn

rn∑
i=1

(
W(i)−mA

)
+

1√
rn

rn∑
i=1

(
Wn,i−W(i)

)
θn

n

+
1√
rn

rn∑
i=1

W(i) (θn
n − 1)

=
1√
rn

rn∑
i=1

(
W(i)−mA

)
+ Tn,2 + Tn,3 .
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We proceed to show Tn,i
P−→ 0, i = 2, 3. Consider Tn,2,

∣∣Tn,2

∣∣ ≤ θn
n

1√
rn

rn∑
i=1

∣∣Wn,i−W(i)

∣∣ .

From Lemma 24, θn
n

a.s.−−→ 1 and

P




rn∑
i=1

∣∣Wn,i−W(i)

∣∣ > ε
√

rn


 ≤ P

(
∣∣Wn,1 −W1

∣∣ >
ε√
rn

)

≤ rn

ε2
V ar

(
Wn,1 −W1

)
.

Applying Proposition 7 gives 1√
rn

∑rn

i=1

∣∣Wn,i−W(i)

∣∣ P−→ 0. Hence, Tn,2
P−→ 0.

Now consider Tn,3. Applying the law of large numbers and Lemma 24 yields

∣∣Tn,3

∣∣ ≤ √
rn |θn

n − 1| · 1

rn

rn∑
i=1

W(i)
a.s.−−→ 0.

Using (4.2), to prove Xn+1,1−Xn,1
P−→ 0, it is sufficient to show that

Dn ≡ 1√
r(n + 1)

r(n+1)∑
i=1

(
W(i)−mA

)− 1√
rn

rn∑
i=1

(
W(i)−mA

) P−→ 0.

To this end note that

Dn =

(
1√

r(n + 1)
− 1√

r(n)

)
rn∑
i=1

(
W(i)−mA

)

+
1√

r(n + 1)

r(n+1)∑

i=r(n)+1

(
W(i)−mA

)
.

It is straightforward to show that these two sums converge in probability to zero.

Using the same argument given above, to prove Xn+1,2−Xn,2
P−→ 0, it is suffi-

cient to prove

Xn,2 =
1√
rn

rn∑
i=1

[(
W(i)−mA

)2 − σ2
W

]
+ op(1).
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To this end note that

√
rn

(
σ̂2

W,n− σ2
W

)
=
√

rn

(
σ̃2

W,n− σ2
W

)
+ Jn,1 + Jn,2 + Jn,3,

where

Jn,1 ≡ √
rn

(
m̃A,n− m̂A,n

)2
,

Jn,2 ≡ 1√
rn

rn∑
i=1

(
Ŵn,i−Wn,i

)2

,

Jn,3 ≡ 2√
rn

rn∑
i=1

(
Ŵn,i−Wn,i

) (
Wn,i− m̃A,n

)
.

We proceed to show that Jn,i
P−→ 0, i = 1, 2, 3. Jn,1

P−→ 0 follows easily from

Lemmas 24 and 26.

Consider Jn,2.

Jn,2 ≤ √
rn (θn

n − 1)2 1

rn

rn∑
i=1

W 2
n,i

P−→ 0,

using Lemmas 24 and 26.

Finally, Jn,3
P−→ 0 using the same arguments as above.

Finally, note that

√
rn

(
σ̃2

W,n− σ2
W

)
=

√
rn

(
σ2

W,n−σ2
W

)

+
√

rn

(
mA,n− m̃A,n

)2
+

1√
rn

rn∑
i=1

(
Wn,i−W(i)

)2

+
2√
rn

rn∑
i=1

(
W(i)− m̃A,n

) (
Wn,i−W(i)

)

≡ √
rn

(
σ2

W,n−σ2
W

)
+ Jn,4 + Jn,5 + Jn,6 .

Jn,i
P−→ 0, i = 4, 5, 6, using similar arguments given above.

The next lemma expresses the four main quantities in terms which allow the

application of Lemma 25.
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Lemma 32. Assume the conditions of Theorem 9. Then as n →∞,

Xn+1,1 =
1√
rn

rn∑
i=1

(
Wn,i−mA

)
+ op(1)

Xn+1,2 =
1√
rn

rn∑
i=1

[(
Wn,i−mA

)2 − var(Wn,i)
]

+ op(1)

Xn+1,3 =
1√
rn

rn∑
i=1




√
Wn,i

mA

√
Zn,i

(
Zn+1,i

Zn,i

−mo

)
 + op(1)

Xn+1,4 =
1√
rn

rn∑
i=1


Zn,i

(
Zn+1,i

Zn,i

−mo

)2

− σ2
o


 + op(1).

Proof. Using a similar argument given in the proof of Lemma 31, gives

Xn,1 =
1√
rn

rn∑
i=1

(
Wn,i−mA

)
+ op(1).

The desired result now follows from Lemma 31. A similar argument yields the

result for Xn+1,2.

Next consider Xn+1,3. Algebra yields,

Xn+1,3 =

√
1

m̃A,n

1√
r(n + 1)

r(n+1)∑
i=1


√

Wn,i

√
Zn,i

(
Zn+1,i

Zn,i

−mo

)
 .

But m̃A,n
a.s.−−→mA (Lemma 27), and using Lemma 25,

1√
r(n + 1)

r(n+1)∑
i=1


√

Wn,i

√
Zn,i

(
Zn+1,i

Zn,i

−mo

)
 d−→N(0,mA σ2

o)

therefore as n →∞,

Xn+1,3 =
1√

r(n + 1)

r(n+1)∑
i=1




√
Wn,i

mA

√
Zn,i

(
Zn+1,i

Zn,i

−mo

)
 + op(1).

Define,

Jn,i ≡
√

Wn,i

mA

√
Zn,i

(
Zn+1,i

Zn,i

−mo

)
.
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The desired result follows because

1√
r(n + 1)

r(n+1)∑
i=1

Jn,i − 1√
rn

rn∑
i=1

Jn,i
P−→ 0,

which is proven using similar arguments given in the proof of Lemma 31.

Finally we consider Xn+1,4. Algebra yields,

Xn+1,4 =
1√

r(n + 1)

r(n+1)∑
i=1


Zn,i

(
Zn+1,i

Zn,i

−mo

)2

− σ2
o




+ (m̂o,n−mo)
2 1√

r(n + 1)

r(n+1)∑
i=1

Zn,i

− 2(m̂o,n−mo)
1√

r(n + 1)

r(n+1)∑
i=1

Zn,i

(
Zn+1,i

Zn,i

−mo

)2

≡ Tn,1 + Tn,2 + Tn,3 .

Using similar arguments given in the proof of Lemma 30, Tn,2
P−→ 0 and Tn,3

P−→ 0.

Therefore,

Xn+1,4 =
1√

r(n + 1)

r(n+1)∑
i=1


Zn,i

(
Zn+1,i

Zn,i

−mo

)2

− σ2
o


 + op(1).

Again, the desired result follows using similar arguments given in the proof of

Lemma 31.

The next lemma supplies the necessary moment calculations needed for the

application of Lemma 25.

Lemma 33. Assume the conditions of Theorem 9. Define

Vn,i =
(
Vn,i,1, Vn,i,2, Vn,i,3, Vn,i,4

)t
,
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where

Vn,i,1 ≡ Wn,i−mA

Vn,i,2 ≡ (
Wn,i−mA

)2 − var
(
Wn,i

)

Vn,i,3 ≡
√

Wn,i

mA

√
Zn,i

(
Zn+1,i

Zn,i

−mo

)

Vn,i,4 ≡

Zn,i

(
Zn+1,i

Zn,i

−mo

)2

− σ2
o


 .

For each fixed n,
{
Vn,i : i ≥ 1

}
are i.i.d. with EVn,1 = 0 and

cov
(
Vn,1

) →




σ2
W µW,3 0 0

µW,3 µW,4−σ4
W 0 0

0 0 σ2
o 0

0 0 0 2σ4
o




Proof. Standard calculations give EVn,1 = 0 and var
(
Vn,1,3

)
= σ2

o . The Lp mar-

tingale convergence theorem yields var
(
Vn,1,1

) → σ2
W , var

(
Vn,1,2

) → µW,4− σ4
W .

A conditioning argument gives var
(
Vn,1,4

)
= 2σ4

o + CE
(
Z−1

n

)
, where

C = var
(
(ξ −mo)

2
)
− 2σ4

o

(see the proof of Theorem 1 in Dion (1975) for details). Therefore, var
(
Vn,1,4

) →
2σ4

o .

We proceed to compute each pair of covariances. Again using, the Lp martingale

convergence theorem yields cov(Vn,1,1, Vn,1,2) → µW,3. Using the branching prop-

erty, cov(Vn,1,1, Vn,1,3) = cov(Vn,1,1, Vn,1,4) = cov(Vn,1,2, Vn,1,3) = cov(Vn,1,2, Vn,1,4) =

0. Finally, using the branching property,

cov(Vn,1,3, Vn,1,4) =

√
1

mA

m−n/2
o E


Z2

n,1

(
Zn+1,1

Zn,1

−mo

)3



=

√
1

mA

m−n/2
o E (ξ −mo)

3 → 0.
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Finally, we prove Theorem 9.

Proof of Theorem 9. The result follows from Lemmas 25, 32, and 33 and Slutsky’s

Theorem.

4.7 Proof of Corollary 3

Now we prove Corollary 3.

Proof of Corollary 3. Basic algebra yields,

√
rn

(
σ̂2

A,n− σ2
A

)
=

√
rn

(
σ̂2

W,n−σ2
W

)
− Cηn,1ηn,2

√
rn

(
m̂A,n−mA

)

− C mA

√
rn

(
ηn,1ηn,2 − 1

)
,

where

C ≡ σ2
o

mo (mo−1)
, ηn,1 ≡

σ̂2
o,n

σ2
o

, ηn,2 ≡
m̂o,n

(
m̂o,n−1

)

mo (mo−1)
.

We finish the proof by showing

√
rn

(
ηn,1ηn,2 − 1

) P−→ 0 (4.3)

and

√
rn

(
σ̂2

W,n−σ2
W

)
− Cηn,1ηn,2

√
rn

(
m̂A,n−mA

) d−→N(0, v), (4.4)

where v =
(

σ2
o

mo(mo−1)

)2

σ2
W + µW,4− σ4

W −2
(

σ2
o

mo(mo−1)

)
µW,3.
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First consider (4.3). Define Rn,1 ≡ m̂o,n−1

mo−1
and Rn,2 ≡ m̂o,n

mo
. Algebra yields,

√
rn

(
ηn,1ηn,2 − 1

)
=

(
ηn,1Rn,1 − ηn,1Rn,2

)√
rn

(
m̂o,n−mo

)

+ mo ηn,1

√
rn

(
Rn,1 −Rn,2

)

+ ηn,1

√
rn

(
Rn,2 − 1

)
.

Standard arguments show that all three of these terms converge in probability to

zero.

Because ηn,1ηn,2
P−→ 1 to prove (4.4), it is sufficient to prove

√
rn

(
σ̂2

W,n− σ2
W

)
− C

√
rn

(
m̂A,n−mA

) d−→N(0, v).

But this follows immediately from Theorem 9 and the Cramér-Wold device.
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CHAPTER 5

MULTIVARIATE METHODS FOR DIFFERENTIALLY

EXPRESSED GENES

5.1 Introduction

Gene expression microarray data are difficult to analyze because they are char-

acterized by high dimensions and small sample sizes (Leung and Cavalieri, 2003).

Because standard notation denotes the number of arrays (available samples) as

n and the number of genes (dimension of the data) as p, this problem is often

referred to as the large p, small n or high-dimensional, low sample size problem.

While microarrays are perhaps the prototypical large p, small n, problem, it is in

fact a problem encountered in several scientific areas (Donoho, 2000; Johnstone,

2001; Kosorok and Ma, 2007).

A variety of procedures have been proposed for identifying differentially ex-

pressed genes (DEGs). There are methods based on modified t-statistics, fold

change methods, linear models, and Bayesian analysis. Dudoit et al. (2002b) pro-

vides a nice survey of these commonly used statistical methods; Dudoit and van der

Laan (2008) is also a useful resource for this material.

A major drawback of the methods given above is that they are all essentially

univariate. Multivariate analysis seems to be the right framework for analyzing

gene expression data because it allows the statistician to account for correlation

among the genes. In fact, Szabo et al. (2003), Lu et al. (2005), and Kim et al.

(2005) have all utilized this idea and developed multivariate procedures based

on Hotelling’s T 2 statistic to identify DEGs in two-sample problems. Recently,
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Tsai and Chen (2009) extended these ideas to the k sample problem (k ≥ 2) by

a proposing a modified multivariate analysis of variance solution to the problem;

additionally, their work addresses the important question of identifying associations

in gene pathways.

In the present paper we develop a multivariate procedure for identifying DEGs

in both the one- and two-sample settings. Our procedure is based on a multivariate

test for the mean vector suggested by Kuelbs and Vidyashankar (2009). In simu-

lation studies, their test works well (in terms of both power and size) in the large

p, small n setting. Using this test we develop a screening algorithm for identifying

DEGs. For concreteness, assume we have a data set consisting of 2000 genes. The

basic idea is that we replace 2000 univariate tests with tens of multivariate tests,

thus mitigating the problem of multiple comparisons.

The remainder of this paper is organized as follows. The next section discusses

the basic testing procedure for the one- and two-sample problems and Section 5.3

describes the screening algorithm. The simulations are described in Sections 5.4,

5.5, and 5.6. Finally, we analyze the ApoAI knockout data (Callow et al., 2000)

in Section 5.7.

5.2 Sup-Norm Test Statistic

We first present the one-sample formulation of the problem. This then easily

extends to the two-sample problem.
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5.2.1 One-Sample Formulation

To explain the multivariate test developed in Kuelbs and Vidyashankar (2009) we

first recall some definitions from vector analysis. Let x be a vector in Rp. For

1 ≤ ρ ≤ ∞, the `ρ norms are defined by

‖x‖ρ =





(∑
j≥1 |xj|ρ

) 1
ρ

if 1 ≤ ρ < ∞,

max1≤j≥p |xj| if ρ = ∞

(see for example Friedman (1982)). As is common, we refer to the `∞ norm as the

sup-norm.

The statistic is based on the following intuitively appealing idea. For each

gene, compute the average expression level across the patients; assuming there

are p genes the resulting mean vector will be an element of Rp. When concerned

with finding differentially expressed genes it is natural to compute the maximum

of suitable “averages” of gene expressions. This argument suggests using the sup-

norm. In fact, simulation results presented in Kuelbs and Vidyashankar (2009)

suggest the superiority of the sup-norm over other `ρ norms.

We introduce notation to make the above idea mathematically precise. We

assume that there are n arrays and p genes. Let Xi,j represent the expression level

of gene j from array i. Then, Xi = (Xi,1, ..., Xi,p)
t represents the expression data

for array i. We assume that X1, ...,Xn are independent and identically distributed

(iid) random vectors with mean µ. Furthermore, let X̄ denote the p dimensional

vector of averaged expression levels; more precisely, X̄ =
(
X̄1, ..., X̄p

)t
, where

X̄j = 1
n

∑n
i=1 Xi,j, j = 1, ..., p. To test the null hypothesis, H0 : µ = µ0, Kuelbs

and Vidyashankar (2009) consider statistics of the form, Tρ ≡ ‖√n
(
X̄− µ0

) ‖ρ.

We focus on T∞, which we refer to as the sup-norm (SN) statistic.
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Under suitable regularity conditions, Kuelbs and Vidyashankar (2009) prove

the asymptotic normality (in large p, small n framework) of
√

n
(
X̄− µ0

)
. Now,

let Σ denote the covariance matrix of the data, that is cov (X1) = Σ. Then,

informally, the asymptotic normality result gives
√

n
(
X̄− µ0

) ≈ Np (0,Σ). Using

the continuous mapping theorem gives the asymptotic normality of Tρ,

Tρ ≈ ‖Np (0,Σ) ‖ρ. (5.1)

Of course, if the Xi are i.i.d. realizations from a multivariate normal distribution,

then these statements are no longer approximate; the distributions are exactly

equal to the specified norm of the corresponding normal distribution. One of

the strengths of the SN procedure is that the results continue to hold (in some

approximate sense) even if the underlying distribution is non-normal.

In the context of testing for DEGs, we are interested in the null hypothesis,

H0 : µ = 0. Clearly, for (6.4) to be useful in testing for DEGs we need to estimate

Σ accurately. Several authors have discussed the difficulty in estimating Σ in large

p, small n settings (Tsai and Chen, 2009). We use the shrinkage based estimator

developed by Strimmer and his students (Schafer and Strimmer, 2005; Opgen-

Rhein and Strimmer, 2007). Using the idea of Ledoit and Wolf (2004), they define

a covariance estimator which is guaranteed to be positive definite, even with p > n.

Their algorithm is implemented in both R code (corpcor) and Matlab code (cov-

shrink), which are freely available at http://strimmerlab.org/software.html.

Using (6.4) and the shrinkage estimator for the covariance matrix, we provide

an algorithm for testing the null hypothesis that the mean of X1 is zero, that is

that the genes are not differentially expressed. This is a Monte-Carlo algorithm

used to approximate the distribution of ‖Np (0,Σ) ‖ρ. The user would first decide

on a value of ρ and level of significance α to use. Again, for testing for DEGs,
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µ0 = 0. When ρ = ∞, we refer to this procedure as the sup-norm (SN) test.

1. Compute the observed test statistic, Tρ.

2. Estimate the covariance matrix S, using shrinkage.

3. Generate B random vectors Y1,...,Yn ∼ Np(0, S); compute the norm of these

vectors, T ?
i ≡ ‖Yi‖ρ; finally compute the (α/2) sample quantile q̂α/2 and the

(1− α/2) sample quantile q̂1−α/2 from T ?
1 , ..., T ?

B.

4. Reject if Tρ < q̂α/2 or if Tρ > q̂1−α/2.

5.2.2 Two-Sample Formulation

The two-sample problem is a straight forward generalization of the one-sample

problem given above. In this case we have two independent samples

{Xi1 : 1 ≤ i ≤ n1} and {Xi2 : 1 ≤ i ≤ n2} .

For fixed k, {Xi1 : 1 ≤ i ≤ nk} are i.i.d. random vectors with mean µk and covari-

ance matrix Σk. Here Xijk represents the expression level of gene j from array i in

sample k and X̄k =
(
X̄1k, ..., X̄pk

)t
, where X̄jk = 1

nk

∑nk

i=1 Xijk, j = 1, ..., p. To test

the null hypothesis of equal sample means, H0 : µ1 = µ2, we consider statistics of

the form, Tρ,2 ≡ ‖X̄1 − X̄2‖ρ. Again, using results from Kuelbs and Vidyashankar

(2009), we have that Tρ,2 ≈ ‖Np

(
0, 1

n1
Σ1 + 1

n2
Σ2

)
‖ρ.

To the test the null hypothesis we carry out the same basic steps as described

in the subsection above. First we use the shrinkage algorithm described in Opgen-

Rhein and Strimmer (2007) to estimate the covariance matrices and then approx-

imate the null distribution of the test statistic using the Monte-Carlo algorithm

given above.
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5.3 Screening Algorithm

The idea of our screening algorithm is to repeatedly apply the SN test, ‘throwing

out’ genes that result in a tests of accepting the null hypothesis and keeping genes

that result in a rejecting the null hypothesis. In the algorithm we use the notation

Ii to denote the indicator for test i, indicating whether the test detected a DEG

among all of the genes in group i. Specifically, Ii = 1 means the SN test rejected

the null hypothesis for group i (Ii = 0 otherwise). There are certain parameters

one needs to set to run the algorithm: the (expected) initial dimension size (d0),

the reduction factor (r), and the final cutoff (pf ). We describe an example which

explains these values. Assume the data consists of p = 2000 genes; set d0 = 100,

r = 2, and pf = 30. The value d0 = 100 means that in the first round of tests

we will divide the genes into 2000/d0 = 20 groups with an expected group size of

d0 = 100; the value of r = 2 means in each subsequent stage the expected group

size will be reduced by a factor of 2; finally, the value pf = 30 means that the

algorithm will run until the total number of remaining genes is less than or equal

to 30. In the first stage, randomly subset the genes into 20 groups (with an average

of 100 genes a group) and perform 20 SN tests on these groups. Keep all of the

genes in groups with Ii = 1, and throw out the others. To start stage 2 take these

remaining genes and divide them into groups with expected size d0/r = 50; now

repeat the process.

In practice one would set the parameters of the algorithm based on the char-

acteristics of the observed data, for instance, the number of samples, the number

of genes, and the variance of the data.

The structure of our algorithm is outlined below. The algorithm outputs a

reduced set of genes that ideally will contain all of the differentially expressed
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genes. Notice in the update step, there is a check for the case pu = pa. This case

comes about if in the current stage the SN test for each group rejects the null

hypothesis, and no genes can be removed. If the true number of DEGs is greater

than the inputted cutoff, i.e. pd > pf , then it is desirable for the algorithm to halt

before the number of genes is reduced below pf . But it is also possible that this

case arises because of the particular assignment of genes. For example, suppose

that there are ten groups and 10 DEGs. If the assignment is such that one DEG

is placed in each of the 10 groups, then all 10 tests may (correctly) reject the null

hypothesis. To account for this situation, when pu = pa, we do a second allocation

of the genes and test if any genes can be removed after this second allocation. In

principle, a user could re-allocate any number of times before deciding the set of

genes cannot be reduced further.

Screening Algorithm

Input. Set pa = p, da = d0, count = 0. Continue to Step 1.

Step 1. (Random Allocation) Randomly allocate the pa genes to K ≡ dpa/dae groups.

Continue to Step 2.

Step 2. (Test). Perform the SN procedure on each of the K groups. Continue to

Step 3.

Step 3. (Update) Remove all genes in groups with Ii = 0. Let pu denote the updated

number of genes (after removal).

if pu = 0

Stop. Output ∅ (declare that none of the genes are differentially ex-

pressed).
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elseif pu ≤ pf .

Stop. Output the set Gf , which consists of the labels for the remaining

pu genes.

elseif pu = pa.

if count = 0.

Update count = 1. Return to Step 1.

elseif count = 1.

Stop. Output the set Gf , which consists of the labels for the re-

maining pu genes.

else

Update du = da/r. Set pa = pu, da = du, count = 0. Return to Step 1.

5.4 Specifications for the Simulation Studies

In this section we detail the specifications used in the simulation experiments

presented in Sections 5.5 and 5.6. All of the Monte-Carlo experiments presented

below are based on 5000 simulated data sets. In all cases the level of the test is fixed

at α = .05 and B = 2000 samples are used to approximate the null distribution.

We generate data from multivariate normal distributions. For the one-sample

simulations, data is simulated from Np (µ,Σ); for the two-sample problem, sample

k is simulated from Np (µk,Σk), for k = 1, 2. We proceed to describe our choices

for the mean vector and covariance matrix.
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In the one-sample problem the mean vector is chosen as follows. Let pd be

the number of DEGs in the data set, which we will assume all have a common

mean µd 6= 0. The mean vector contains pd non-zero elements and p − pd zeros,

µ = (µd, ..., µd, 0, ..., 0)t. Note that pd = 0 corresponds to the case of no DEGs;

with the corresponding mean vector µ = 0. For the two-sample problem, only

sample one contains DEGs, while sample two contains all null genes. Thus, µ1 =

(µd, ..., µd, 0, ..., 0)t, while µ2 = 0.

We use experimental data to set the covariance matrices. Specifically, we use

the leukemia dataset described by Golub et al. (1999), which studies the gene ex-

pression in two types of leukemia, acute lymphoblastic leukemia (ALL) and acute

myeloid leukemia (AML). We use the same pre-processing step as described in

Dudoit et al. (2002a) Section 3.1; leaving 3571 genes from 72 patients, 38 ALL

and 25 AML. On the remaining 3571 genes, we apply the standardization tech-

nique described in Section 3.3 of the same paper. We then separately estimated

a covariance matrix from the ALL group and the AML group, denoted ΣL and

ΣM , respectively. Specifically, we randomly permuted the 3571 genes and then

estimated the covariance matrix using the shrinkage algorithm (for correlations) of

Schafer and Strimmer (2005). This method produces two 3571 × 3571 covariance

matrices which are fixed throughout the paper. For a simulation study based on

p ≤ 3571 genes, we first fix the covariance matrix of appropriate dimensions by con-

sidering the p×p upper sub-matrix of ΣI denoted ΣI,p, I = L, M . More precisely,
(
ΣI,p

)
i,j

= (ΣI)i,j, for 1 ≤ i, j ≤ p. Finally, for each simulated data set, we sim-

ulate n random vectors from the p−dimensional normal distribution Np

(
µ,ΣI,p

)
,

where µ is a specified p × 1 vector which represents the mean expression level of

the genes.
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Figure 5.1: One-sample size analysis. Simulated size versus the number of
genes (p), for different covariance matrices vΣL,p.

Throughout, Σ is set to be a constant multiple of ΣL,p , Σ = vΣG,p, where

v > 1 gives a simple way for examining increased variance in the data. Similarly,

for the two-sample simulations, Σ1 = v1ΣL,p and Σ2 = v2ΣM,p.

5.5 One-Sample Simulation Studies

In this section we consider simulation experiments related to the one-sample prob-

lem. First we present results which study the size and power of the SN test. We

then present results for the screening algorithm. Recall that the specifications for

the simulations are described in Section 5.4.

5.5.1 SN Test

First we evaluate the size of the SN test under different conditions. For size

experiments, all of the genes are null, and thus we set µ = 0. We consider data

based on n = 20 replicates and examine the size as the number of genes increases

from p = 20 to 100. The result of the simulations are displayed in Figure 5.1.
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Figure 5.2: One-sample power analysis. The second graph displays results
for different covariance matrices vΣL,p.

Notice that in all cases the test achieves close the nominal size of α = .05.

Next we consider the power of the SN test; for power experiments, the set

of genes includes at least one DEG. We consider experiments that examine the

power under increasing variance and increasing number of genes. The result of the

simulations are displayed in Figure 5.2. Notice that the SN test is very powerful

in detecting a single DEG. With p = 800 total genes (and only one DEG) the test

correctly rejects the null hypothesis in all 5000 experiments; with p = 1000 genes

the test rejects the null in 4960 of the experiments.

5.5.2 Screening Algorithm

In this section we present, numerical results obtained by performing the screening

algorithm on simulated data sets. Recall that the screening algorithm repeatedly

applies the SN test reducing the original set of genes to a set Gf . For a single data

set, we record two performance measures of the screening algorithm: the number

of retained DEGs (R) and the total number of genes after the final run, |Gf |. For

each experiment, we report the minimum, maximum, and mean of R and |Gf |
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over the 5000 simulations. We will clarify these ideas with a concrete example.

Assume that there are 2000 total genes, 10 DEGs, and that we set the cutoff at

pf = 30. Furthermore, assume that the algorithm continues to run until |Gf | < pf .

Ideally, after the algorithm has run, all 10 DEGs remain in the final set Gf . We

record the size of Gf and the number of DEGs which remain in Gf . Recall that

the screening algorithm can end in three different ways: exit one occurs when the

algorithm runs until the cutoff is reached, 1 ≤ |Gf | ≤ pf ; exit two occurs when the

algorithm cannot reduce the number of genes below pf , |Gf | > pf ; and exit three

occurs when the algorithm declares that all of the genes are null, Gf = ∅. We only

report R and |Gf | for those data sets which result in exit one or exit two. In all of

the simulations there are 10 DEGs; additionally, the parameters of the screening

algorithm are fixed at (r, d0, pf ) = (2, 100, 30).

First we consider the impact of changing the mean for the DEGs. In this

experiment there are p = 2000 genes, 1990 of the genes have mean zero while

the remaining 10 DEGs have mean µd; we consider µd = .5, 1, 1.5, and 2. With

µd = .5, 71.82% of the simulated data sets resulted in exit one, the remaining

28.18% resulted in exit three; for the other values of µd all 5000 simulated data

sets resulted in exit one. The results of the simulations are displayed in Figure 5.3.

If µd = .5, the algorithm does not perform well; on average it only retains one of

the DEGs. However, with µd = 1.5, the algorithm, on average, is retaining all 10

of the DEGs. With µd = 2, in all 5000 simulations, the algorithm retains all 10 of

the DEGs.

Next we consider the impact of the total number of genes present. In this case,

µd = 2 is fixed and we considered p = 1000, 1500, 2000, 2500, and 3000 genes. In

this experiment, the algorithm ended in exit one and retained all 10 DEGs for

115



0.5 1 1.5 2
0

1

2

3

4

5

6

7

8

9

10

Mean of DEGs ( µ
d
 )

R

 

 

min
mean
max

0.5 1 1.5 2
10

12

14

16

18

20

22

24

26

28

30

Mean of DEGs ( µ
d
 )

|G
f|

 

 

min
mean
max

Figure 5.3: One-sample screening analysis. Plots of the minimum, mean,
and maximum values over the 5000 simulations for the number
of retained DEGs, R, and the final number of genes, |Gf |.

every simulated data set. Evidently, with µd = 2, the algorithm can handle very

high dimensions.

5.6 Two-Sample Simulation Studies

In this section we consider simulation experiments related to the two-sample prob-

lem. First we present results which study the size and power of the SN test. We

then present results for the screening algorithm.

5.6.1 SN Test

All of the experiments presented in this section use Σ1 = ΣL,p and Σ2 = ΣM,p.

First we evaluate the size of the SN test under different conditions. In the first

experiment, we consider data based on n1 = 10 and n2 = 15 replicates and examine

the size as the number of genes increases from p = 100 to 500. In the second

experiment, we have n1 = 22 and n2 = 25 replicates and examine the size as the
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Figure 5.4: Two-sample size analysis. In the first graph, n1 = 10, n2 = 15;
in the second graph, n1 = 22, n2 = 25.
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Figure 5.5: Two-sample power analysis. Simulated power versus the DEG
mean µd.

number of genes increases from p = 30 to 100. The result of the simulations are

displayed in Figure 5.4. Notice that in all cases the test achieves close the nominal

size of α = .05.

Next we consider the power of the SN test; in these experiments the sample

sizes are fixed at n1 = 10 and n2 = 15. We consider experiments that examine the

impact of the total number genes, the mean of the DEGs, and the total number of

DEGs. The result of the simulations are displayed in Figure 5.5. Notice that the

SN test is very powerful in detecting a single DEG.
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5.6.2 Screening Algorithm

We consider the performance of the screening algorithm in the two-sample setting.

All of the experiments presented in this section use Σ1 = ΣL,p and Σ2 = ΣM,p,

and n1 = 10, n2 = 15.

First we consider the impact of changing the mean for the DEGs. In this

experiment there are p = 2000 genes, 1990 of the genes have mean zero while the

remaining 10 DEGs have mean µd; we consider µd = .5, 1, 1.5, and 2. With µd =

.5, 65.42% of the simulated data sets resulted in exit one, the remaining 34.58%

resulted in exit three; for the other values of µd all 5000 simulated data sets resulted

in exit one. The results of the simulations are displayed in Figure 5.6. The results

of this experiment are almost identical to the one-sample analog. Specifically, with

µd = .5 the algorithm does not perform well; however, with µd = 2, in all 5000

simulations, the algorithm retains all 10 of the DEGs.

Next we consider the impact of the total number of genes present. In this case,

µd = 2 is fixed and we considered p = 1000, 1500, 2000, 2500, and 3000 genes. Just

as in the one-sample analog, in this experiment, the algorithm ended in exit one

and retained all 10 DEGs for every simulated data set.

5.7 Data Analysis

In this section we analyze data from a study of the apolipoprotein AI (ApoAI)

gene described in Callow et al. (2000). This data has been previously analyzed by

Smyth (2004); a tutorial for analyzing the data set is available online as part of

the LIMMA user’s manual (Smyth et al., 2003). We normalize the data using the
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Figure 5.6: Two-sample screening analysis. Plots of the minimum, mean,
and maximum values over the 5000 simulations for the number
of retained DEGs, R, and the final number of genes, |Gf |.

LIMMA package as described in Smyth et al. (2003).

The ApoAI gene plays a central role in high density lipoprotein (HDL) metabolism;

see Williamson et al. (1992) and Plump et al. (1996) for more detailed discussions

of the ApoAI knockout model. The Callow et al. (2000) experiment was designed

to study the effect of ApoAI deficiency on other genes in the liver. To this end,

data was collected on 8 ApoAI knockout mice and 8 control mice. For each of

these 16 mice, mRNA measurements were collected from liver tissue. The RNA

from each mouse was hybridized to a separate array. The data set consists of 16

arrays with measurements on 5548 expressed sequence tags (ESTs).

Callow et al. (2000) identified 8 ESTs (representing four different genes) which

are differentially expressed in the knockout group versus the control group. Smyth

(2004) lists the top 15 differentially expressed ESTs based on his LIMMA approach.

Of these 15, the top 8 coincide with the ones identified in Callow et al. (2000). In

fact, Smyth writes “the top eight genes stand out clearly from the other genes and

all methods clearly separate these genes from the others” (note that Smyth uses

“gene” instead of “EST”).
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We ran our screening algorithm twice of this data set. The overlap of the two

runs consisted of 11 ESTs, which included the 8 ESTs identified in Callow et al.

(2000).
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CHAPTER 6

ROBUST ASYMPTOTIC INFERENCE FOR HIGH DIMENSIONAL

DATA

6.1 Introduction

Modern scientific technology is providing a class of statistical problems that involve

high dimensional data. These data are typically characterized by small sample size

(n) and a large number of parameters (p); hence, the terminology large p, small n

problems. While data from gene expression microarray experiments are a canonical

example for such data, other examples arise in diverse fields such as proteomics,

chemometrics, functional magnetic resonance imaging, and astronomy (Donoho,

2000; Johnstone, 2001; Varmuza and Filzmoser, 2008).

Several authors have studied the problem of robust methods for high dimen-

sional data (Aggarwal and Yu, 2001; Hubert and Engelen, 2004; Hubert et al.,

2005; Filzmoser et al., 2008). Kadota et al. (2003), Oh and Gao (2009), and Shieh

and Hung (2009) study the problem of outlier detection in the specific context of

microarray data. This work focuses on detecting and removing outliers, and then

proceeding with standard analysis on the remaining data points. However, it is

desirable to develop procedures which are robust to distributional assumptions, in

addition to being robust to outliers. In fact, what is needed is a framework for

developing inferential tools in the large p, small n setting which are “robust” and

“efficient.” The meaning of robustness and efficiency needs to be better under-

stood in this context. This chapter is a first step in that direction, developing a

robust, adaptive procedure for multivariate problems.
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Bickel (1982) reviews the work of adaptive inference for independent and iden-

tically distributed (i.i.d.) data. Additionally, Beran (1978) considered robust

and adaptive inference in the i.i.d. setting and established asymptotic efficiency

and a form of asymptotic robustness of his procedure. In the context of regres-

sion problems, Stone (1982) studied adaptive estimation and established rates of

convergence. More recently, Bickel et al. (1993) studied adaptive inference for

semi-parametric models.

The rest of the paper is organized as follows. Section 2 introduces basic notation

and assumptions, while Section 3 is devoted to a brief literature review concerning

adaptive inference for one-dimensional data. Section 4 describes the methodology

for our model while Section 5 is devoted to simulation results. Finally, Section 6

describes a plan for future work.

6.2 Notation and Assumptions

We shall denote the data as
{
Xi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ p(n)

}
. In the context of

microarrays, the data is interpreted as a collection of gene expression data for

p(n) genes from n replicates, where Xi,j represents the expression level of the ith

replicate, for gene j. More generally, the number of replicates could be represented

as some function of n, say r(n), but this comes at the price of more cumbersome

notation. We assume that for fixed n, Xi ≡
(
Xi,1, ..., Xi,p(n)

)
, 1 ≤ i ≤ n, are

i.i.d. random vectors. We additionally assume that p(n) is non-random and that

it is the same for all replicates. This assumption is restrictive, for example it does

not cover the case of missing data, but it can be removed using the techniques of

Kuelbs and Vidyashankar (2009). We specify the following model assumptions.
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Assumption 4. The marginal distributions of Xi,j are symmetric about θ0,j with

density fj, which belongs to some location family. Additionally, the covariance

matrix of Xi is Σn, which is a p(n)× p(n), non-singular matrix.

6.3 Adaptive, Robust Estimation for Univariate Data

We recall the robust, adaptive location estimator for univariate data studied in

Beran (1978). Throughout this section, any reference to Beran without further

date information refers to Beran (1978).

Let ξ1, ξ2, ..., ξn be i.i.d. real valued random variables with density g. As a model

for the data, assume that g belongs to the location family
{
f(x− θ) : θ ∈ R

}
,

where f is symmetric about zero, absolutely continuous, and has finite Fisher

information I(f) ≡ ∫ (
f ′(x)

)2
/f(x)dx < ∞. Beran proves that his location esti-

mator θ̂n is asymptotically efficient under the model. More precisely, he proves, as

n →∞,

√
n

(
θ̂n − θ

)
= n−1/2I−1(f)

n∑
i=1

−f ′ (Xi − θ)

f (Xi − θ)
+ op(1),

under every symmetric density f(x−θ) belonging to the model. Beran additionally

proves ‘robustness’ to the symmetry assumption. Informally, the distribution of θ̂n

does not change much if the distribution of each Xi is perturbed from a symmetric

shape to an arbitrary nearby shape. He formulates robustness using an extension

of the regularity concept discussed in Hájek (1970). We do not pursue robustness

to the symmetry assumption in this paper.

Let gn be a non-parametric kernel density estimator (KDE) of the form,

gn(x) ≡ 1

ncn

n∑
i=1

K

(
x− ξi

cn

)
.
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Utilizing the symmetry of the data, Beran proposes an estimator which minimizes

the Hellinger distance between gn(x) and gn(−x + 2θ). To be more precise, first

recall that the Hellinger distance, denoted H, between two densities f and g is

given by

H(f, g) ≡ ||f 1
2 − g

1
2 ||2 = 2− 2γ(f, g),

where

γ(f, g) ≡
∫

(f(x))1/2(g(x))1/2dx.

Therefore, the location estimator θ̂n which minimizes the the Hellinger distance

between gn(x) and gn(−x + 2θ), can be obtained as

θ̂n ≡ argmax
θ∈R

∫
(gn(x))1/2(gn(−x + 2θ))1/2dx. (6.1)

Beran assumes the following the conditions.

B 1. K(x) is a non-vanishing density, symmetric about zero, absolutely continuous,

and the ratio K ′(x)/K(x) is bounded over the real line.

B 2. The density g is symmetric about θ, absolutely continuous, and has finite

Fisher information I(g) ≡ ∫ (
g′(x)

)2
/g(x)dx < ∞.

Remark 5. Using arguments similar to those given in Cheng and Vidyashankar

(2006), the assumptions on the density K can be weakened to allow K to be sym-

metric about zero and absolutely continuous.

Beran uses a standard technique (see also Beran (1977)) to address the existence

and consistency of the estimator θ̂n. Namely, he studies the functional related to

(6.1). To be precise let G be the class of densities metrized by the L1 distance.

Define the (possibly multi-valued) functional T by the requirement that for every
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k ∈ G,

∫ (
k(−x + 2T (k))

)1/2 (
k(x)

)1/2
dx = max

θ∈R

∫ (
k(−x + 2θ)

)1/2 (
k(x)

)1/2
dx. (6.2)

We summarize the results of Beran’s Lemma 1 and Lemma 2 in the following

proposition. The result shows that (6.1) is well-defined, and, in particular, if k

is symmetric then T (k) is uniquely defined. Additionally, the result shows the

continuity of T .

Proposition 8. Let T be defined by (6.2).

1. For k ∈ G, the set of values T (k) which satisfies (6.2) is non-empty and

compact. If k is symmetric, then T (k) is uniquely defined as the center of

symmetry.

2. Let {kn ∈ G} be a sequence converging to k ∈ G in L1. If T (k) is uniquely

defined, then every value of T (kn) converges to T (k).

Now, Proposition 8 together with L1 consistency of the KDE yields the consis-

tency of θ̂n (see Beran’s Theorem 1). Under the additional finite Fisher information

assumption, Beran also proves the asymptotic efficiency of θ̂n (see Theorem 3). We

summarize these results in the next proposition.

Proposition 9. Let cn → 0 and ncn →∞.

1. (Consistency). Assume B1 holds and that T (g) is uniquely defined. Then

every sequence θ̂n converges to T (g) in probability, as n →∞.

2. (Asymptotic efficiency). Assume B1 and B2 hold. Then, as n →∞,

√
n

(
θ̂n − θ

)
d−→N

(
0, I−1(g)

)
.
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We make a final comment concerning the functional T . As alluded to above,

a standard proof technique for minimum distance estimators based on density

estimators, is to prove the consistency of the corresponding functional T . And

then use this consistency result to show that the sequence of minimizers (θ̂n in

this case) ‘inherits’ the properties of the density estimator. For example, Devroye

(1987) (see Theorem 4.2) proves that the robustness of Beran’s parametric MHDE

(Beran, 1977) follows from the robustness of the non-parametric density estimator.

In fact, we use this heuristic to argue that the plausibility that the joint consistency

of the minimizers follows from the joint consistency of the corresponding density

estimators.

6.4 Robust and Adaptive Inference for Large p, Small n

Problems

In this section we describe the statistical methodology to test the null hypothesis

H0 : θ1 = θ0,1, θ2 = θ0,2, ..., θp(n) = θ0,p(n).

Following Kuelbs and Vidyashankar (2009), we propose to estimate the parameters

‘component-wise’ and then estimate the covariance matrix to perform the test. We

begin by describing the estimation methodology.

Assumption 5. For each j ≥ 1, Kj is a density satisfying the following properties.

1.
∫

xKj(x)dx = 0.

2. k2
j ≡

∫
x2Kj(x)dx < ∞. Moreover, supj≥1 k2

j < ∞.
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Let gn,j be kernel density estimator (KDE) for the jth component, namely

gn,j(x) ≡ 1

ncn,j

n∑
i=1

Kj

(
x−Xi,j

cn,j

)
.

For each fixed j, it is known (Devroye, 1983) that if cn,j → 0 and ncn,j →∞, then

the KDE is pointwise and L1 strongly consistent; namely, as n →∞,

gn,j(x)
a.s.−−→ fj(x− θ0,j) [a.e. x],

∫ ∣∣gn,j(x)− fj(x− θ0,j)
∣∣ dx

a.s.−−→ 0.

To obtain joint inferential results (across all pn components) requires a uniform

consistency result for the density estimators. This result is related to uniform large

deviations and has recently been investigated by Louani (2005). We now state his

result.

Proposition 10. [Louani 2005] Let gn be a kernel density estimator and F a class

of densities. Assume that

lim
n→∞

sup
f∈F

‖E(gn)− f‖1 = 0. (6.3)

Then, if cn → 0 and ncn →∞,

sup
f∈F

P
(‖gn − f‖1 > ε

) ≤ e−Cεn

where Cε is independent of n and K.

As an immediate corollary of the Proposition, we obtain joint consistency for

the density estimates.

Corollary 4. Assume, for each j, fj ∈ F , which satisfies condition (6.3). If

cn,j → 0, ncn,j →∞, and log p(n)
n

→ 0, then

sup
1≤j≤p(n)

‖gn,j(x)− fj(x− θ0,j)‖1
a.s.−−→ 0.
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Louani (2005) discusses classes of densities F which satisfy the property (6.3).

Following Beran’s univariate work (Beran, 1978), we define componetwise adap-

tive estimators as

θ̂n,j = argmax
θ∈R

∫
g

1/2
n,j (x)g

1/2
n,j (−x + 2θ)dx.

Using Beran’s arguments, it follows that θ̂n,j is an efficient estimator of θ0,j under

the assumed model. Motivated by Corollary 4, we conjecture that consistency

holds jointly,

max
1≤j≤p(n)

∣∣∣θ̂n,j − θj

∣∣∣ a.s.−−→ 0.

We are currently investigating this result as well as the joint asymptotic normality

of the vector (√
n

(
θ̂n,j − θj

)
: 1 ≤ j ≤ p(n)

)
.

For testing the null hypothesis H0, Kuelbs and Vidyashankar (2009) propose an

estimator based on the sample mean vector Xn. To be precise, fix the dimension

p. Assuming regularity conditions, they prove, under H0,

‖√n
(
X̄n − θ0

) ‖∞ ≈ ‖Np (0,Σ) ‖∞.

They approximate the null distribution with a Monte-Carlo procedure.

We propose an analogous procedure, replacing the center and scaled sample

mean with the vector of center and scaled adaptive location estimates

(√
n

(
θ̂n,j − θ0,j

)
: 1 ≤ j ≤ p

)
.

This procedure requires estimating Σ in the large p, small n setting which is

known to be a difficult problem (Tsai and Chen, 2009). We use the shrinkage based

algorithm developed by Strimmer and his students (Schafer and Strimmer, 2005;
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Opgen-Rhein and Strimmer, 2007). Using the idea of Ledoit and Wolf (2004), they

define a covariance estimator which is guaranteed to be positive definite, even with

p > n.

6.5 Numerical Implementation

In this section we describe the numerical implementation of our procedure. Because

we adopt a component-wise approach it is sufficient to describe the procedure in

the univariate case. Note that the last paragraph of this section gives a precise

summary of the numerical implementation used for our simulation results.

We recall the basic the univariate problem. Let ξ1, ..., ξn be i.i.d. random

variables with symmetric density g and location parameter θ0. Define the KDE

gn = 1
ncn

∑n
i=1 K

(
x−ξi

cn

)
. The objective function for the estimation problem is

given by

max
θ∈R

∫
g1/2

n (x)g1/2
n (−x + 2θ)dx. (6.4)

First we discuss the choice of kernel K and window width cn for the KDE.

Silverman (1986) (see Section 3.3) discusses the ‘optimal’ choice of kernel K and

window width cn in terms of minimizing the (approximate) integrated mean square

error between a kernel density estimator and the true density g. His discussion is

based on Lemma 4a of Parzen (1962) which provides an approximate expression

for the integrated mean square error. This leads to the so-called Silverman rule-

of-thumb for window widths

cn,S (K) ≡ snC(K)n−1/5,

where C(K) is a constant which depends on the kernel and sn is a scale estimate.
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Because the Epanechnikov kernel possesses certain optimality properties in this

context (Silverman, 1986) we set K(t) = 3
4
√

5

(
1− t2/5

)
I

(
|t| < √

5
)
; for this ker-

nel the constant is C(K) = 2.34. For sn we use a standard robust estimator of

scale, namely the normalized median absolute deviation (MAD) sn = 1.4826m̂n,

where m̂n is the sample MAD (Maronna et al., 2006). Putting these terms together,

we use the window width cn = 2.34(1.4826m̂n)n−1/5 = 3.4693m̂nn
−1/5.

We now discuss the numerical optimization of (6.4). Adopting the technique of

Cheng and Vidyashankar (2006), we use a Monte-Carlo algorithm to approximate

the integral in (6.4). Namely,

∫
g1/2

n (x)g1/2
n (−x + 2θ)dx =

∫ √
gn(−x + 2θ)

gn(x)
gn(x)dx

≈ 1

M

M∑
j=1

√
gn(−yj + 2θ)

gn(−yj)
,

where y1, ..., yn are i.i.d. samples from gn. Using this approximation we replace

(6.4) with approximate objective function

max
θ∈R

M∑
j=1

√
gn(−yj + 2θ)

gn(−yj)
. (6.5)

Both Silverman (1986) (see Section 6.4) and Cheng and Vidyashankar (2006) pro-

vide algorithms for generating pseudo-random variates from a KDE.

For the simulation results presented in this paper we use following numeri-

cal implementation. We use the Epanechnikov kernel with window width cn =

3.4693m̂nn−1/5, where m̂n is the sample MAD. The estimator is obtained by using

the Monte-Carlo approximation to the objective function (6.5), with M = 2000

Monte-Carlo samples. This optimization is carried out in Matlab using the func-

tion fminunc with the initial value set as the sample median.
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6.6 Simulation Section

In this section we test our methodology using simulated data. All of the experi-

ments are based on 500 simulated data sets. The level of the test is fixed at α = .05

and B = 2000 samples are used to approximate the null distribution.

We are interested in using the methodology described in Section 4 to test

the null hypothesis H0 : µ = 0. The simulated data sets are generated from a

100 dimensional multivariate normal distribution. To examine the effect of data

contamination, we use the following model: X1,X2, ...,X9 ∼ N100 (0,Σ) and X10 ∼
N100 (µ,Σ), where µ = (m,m, ..., m)t. The covariance matrix Σ is estimated from

100 randomly selected genes from the ALL group in the leukemia dataset described

by Golub et al. (1999).

We test the null hypothesis using two different procedures: the procedure de-

scribed in Section 4, which is based on the AMHDE, and the related procedure

described in Kuelbs and Vidyashankar (2009), which is based on the sample mean

vector Xn. Additionally, we consider two different experiments. In the first exper-

iment (Experiment A) Σ is known. In the second experiment (Experiment B), Σ

is estimated using the shrinkage estimator described in Section 4. Experiment A,

which is admittedly unrealistic, allows us to study the effect of contamination on

the location estimator, without confounding it with the effect on the covariance

estimator.

The results of the simulations are displayed in Table 6.1. Both procedures

achieve close to nominal size in the absence of contamination. In Experiment A,

the AMHDP displays robustness to contamination while the sample mean proce-

dure does not. In Experiment B, both procedures break down in the presence of
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Table 6.1: Simulation results for testing H0 : µ = 0 in the presence of data
contamination

m = 0 m = 1 m = 5 m = 10

MLE (Exp A) 0.0520 0.0560 0.3180 0.9920

MHDE (Exp A) 0.048 0.0520 0.07 0.056

MLE (Exp B) 0.046 0.084 0.508 0.97

MHDE (Exp B) 0.056 0.102 0.954 1

contamination. This result is not surprising because we are not using a robust

estimator for the covariance matrix.

6.7 Future Research

This section outlines our plan for future work. The results in the simulation sec-

tion suggest the need to develop a robust, high dimensional covariance estimator.

We are currently studying a modified version of the Strimmer shrinkage based co-

variance estimator. The basic idea is to shrink towards a robust target. In the

asymptotic setting, we want to formalize the ideas outlined in Section 4 to prove

the joint consistency of our estimator; the next step is to prove asymptotic nor-

mality. Finally, we want to study ‘efficiency’ and ‘robustness’ in the large p, small

n setting.
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Ferré, F. (1998). Gene Quantification. Birkhauser, Boston.

Filzmoser, P., Maronna, R. and Werner, M. (2008). Outlier identification

in high dimensions. Computational Statistics and Data Analysis, 52 1694–1711.

Friedman, A. (1982). Foundations of modern analysis. Dover Publications Inc.,

New York. Reprint of the 1970 original.

Goll, R., Olsen, T., Cui, G. and Florholmen, J. (2006). Evaluation of

absolute quantitation by nonlinear regression in probe-based real-time PCR.

BMC Bioinformatics, 7 107–118.

Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M.,

Mesirov, J. P., Coller, H., Loh, M. L., Downing, J. R., Caligiuri,

M. A., Bloomfield, C. D. and Lander, E. S. (1999). Molecular clas-

sification of cancer: Class discovery and class prediction by gene expression

monitoring. Science, 286 531–537.

Guttorp, P. (1991). Statistical Inference for Branching Processes. Wiley, New

York.
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