i —

S aTer v A

COPE: A COOPERATIVE PROGRAMMING ENVIRONMENT

James Archer, Jr.
Richard Conway

TR 81-459
June 1981

Department of Computer Science
Upson Hall

Cornell University

Ithaca, New York 14853

PR s e e e Jve S—

COEE: A Caooserative Eradrammiod Eovirooment

James Archers Jr.X and Richard Conway
Cornell University

i, Iotraduciion

COFE is unusual among interactive prodram develorment sustems in its coorerative
attitude with resrect to user actions. It is coorerative both in the sense of peind
flexible and tolerant with resrect to the form of user entriess and in being willing
to eperform chores that the user is dgenerally asked to do fTor nimself. COFE is 2
research vehicles so it is deliberately extreme in this resrect to rermit
exploration of the feasibility» psucholosy and cost of such an arFroach.

COPE is 3 self-contained environment: epoviding a suntax-cognizant editors an
incremental translators 3nd an interactive execution surervisor. The most obvious
contrast is to the Cornell Frodram Sunthesizer [Ref 7J» and the easiest w2y to
characterize COFPE is as a Sunthesizer that incorrorates the PL/C aprroach CRef 31 to
sutomatic error-repair. While COPE and the Sunthesizer were bedun at the sasme times
thes are completely separate sysiems. The Sunthesizer was comrleted firsts and COPE
has had the benefit of exrerience with that system.

Tupicallys modern develorment sustems require the user to know a3t least three
different lansuades:?

i, the host eprodgrammind landguade

2, a command landuage to control the actions of the develorment suystem
3, 3 debudsging landuade of ‘immediate" statements or commands.

In some casess notablws the Cornell Sunthesizers 3 subset of the command landgu3adge
consists of ‘structure commands® that denerate (e.d. sunthesize) constructs in the
host landuage., COFE simelifies this situation bygl

1. eliminating the debudding languade altodether by allowing (a3lmost) any
construct in the host erogramming languade to be (ortionally)
executed immediateld» and

2, allowing any frasment of the host progdramming landuade to» in effacts
bpe interereted 3s 3 ‘structure command® .

The result'is 3 system with onlwy two languages:

i, the host Programming languades with 3 few extra statement tures (TRACE:
SLOWs FAUSEs and NOCHECK)

This work has been surported in ep3rt by the National Science Foundation under drant
MCS 77-08198s and in eart by ARFA under drant MDA $03-80-C-0102.

XCurrent sddress! Computer Suystems Laboratorys Stanford University

2
The COFE Frogramminsg Environment

2., 3 minimal command landusage (only 24 commandss including those for
cursor motions character editindg, tabings etc.)

Moreovery COFE is totally ‘mode-free®* -- the commands are not nierarchical -- so
that every command is available at 311 times. The overall result is 3 sustem with
an excertional dedree of concertual intedritvy that is» 3t the same times wurnusually
easy to learn and use.

COFE also has an unusual recovery facility -- directed a3t user errors rather
than suystem errors. UNDO and REDO commands make it easwy to recover from editindg
errors duringd develorment of 3 program. The same facilities make it rossible to
*back ur® the execution of a3 eprogram during testind.

COFE is written in *C*'» runs under UNIX on 3 VAXs» and 1is asvailsole to othner
institutions on request.

2. Actions and Caommands

COPE draws 3 clear distinction between siatemects —-- the underluing obJdects withn
which the suystem is concernedr and commaods —- the instructions by whnich the sustem
itself is controlled. Statements are constructs in the host erogramming 1anduage
that can either pe saved (in procedure files) for subseauent executions or can be
executed immedistelwy (and not saved). Commands are rerformed immediately when
giveny and cannot be saved.

The use of COFE is a secuence of actions. Each action is initisted by the wuser
entering some commandi the sustem resronse comepletes the action. The commands are
the following:

Primary commands?

Centryl EXECUTE execute (exranded) entry’ resume if null entry
EentrQJ FILE insert (exranded) entrg at edit-str
Centry] REFLACE rerlace edit-ptr unit with (exranded) entry
CnlCfilel MOVE rerlace file with n units from edit-etr
Cfilel COFY insert copy of file at edit-e,tr
Recovery commands? ,
UNDO undo effect of erevious srimary command
REDO re-enter the last command undone

Display format commands:
CONDENSE condense edit-ptr unit to single line format

EXFAND expand edit-str unit to multi-line format

O L S RE T

3
The COFE Frogramming Ernvironment

Editing and cursor motiomn commands?

Lentryl FETCH copy unit from edit-str into entry-window
UFP move edit/éxec-Ptr up one line
DOWN move edit/exec—str down one line
BACK PAGE move edit/exec—etr uF one.PBSe
FORWARD FPAGE move edit/exec-ftr down one rade
LEFT move entry-cursor left one character
RIGHT move entru-cursor risht ome character
LEFT END) move entruy-cursor to left end of line
RIGHT END move entry-cursor to right end of lire
WORD TAB move entry-cursor right to next word
STMT TAB move entry-cursor right to next stmt

- CLEAR clear character a3t entry-cursor
ERASE ° erase characters from entry-cursor to right end

Miscellaneous:
STATUS disrlay detailed descrirtion of system state

QUIT save state and interrurt session

Each command is specified by a3 sepecisl-function keg» in contrast to statements:
which are textual. (For keuboards with an inadeauate number of srecisl-function
keysy different commands are assigned to the same key and distinguished by some form
of *shift®.)

2.1 Ihe Chaice between EILE and EXECUIE

Statements are entered as text. For each textual entry» the user has tne choice
of saving the resultind statementss or executing them immediatels. Consecuently
the FILE and EXECUTE commands dominate COPE» both in concert snd in use.

The FILE command directs the sustem to make 3an insertion (at the ‘'"edit-=ointer
position® in the ‘current file') of a construct based on the textual ardument sSiven
with the command. The meaning of ‘based on the ardument® derends on tne tues of the
tardet file. Esch file ture is served by 3 serarate entru—editor. Most of these
editors are simeles the editor for procedure-ture tiles is very comelex (see Section
3. The procedure-suntax-editor (PSE) denerates an insertion that maws reeresent an
expansions repair or other modification of the entry suprlied by the user.

4

The COFE Frosramming Environment

The EXECUTE command causes some obdJect to be executed according to the semantics
of the host programming languadge (which» in the eprototure imrlementation of COFE is
3 nishly discirplined subset of FL/I called FL/CS C[Ref 41)., There ares in effect,
three different forms of EXECUTE, derending on the nature of the text argument:

i. If the argument is a3 file-names» the contents of tnat file are executed
as 3 prodram (3b initior as a MAIN procedure).

2., If the ardument is nully the suystem resumes execution of wnhatever
srocedure was last executind.

3. If the ardument is neither null nor 3 file-names it is executed as if
it had been inserted imto the current erocedure at the roint of
interrupt (3lthoush that insertion is nots in factr made).

This means that any construct of the host languadge can be executed ‘'immediatelwus®
(much 1like the facility in APL or FFL)» providing a rowerful debuddindg languade as
well 3s a3 "desk calculator facility® (see Section 4.2).

Facilities to control the epace of execution and the nature of the screen
displaysy that would ordinarily be viewed 3s commandss have been made statements in
the PL/CS lansuase., When executed immediately thew act as the usual commandss out
the sbility to include them 3s statements means that a3 procedure can control its own
display and rate of execution.

2,2 Undainsg and Redaoind User Aciians

The UNDO 3nd REDIO commands dive the wuser access to a3 command history
sutomatically maintained by the sustems and eprovide a3 convenient waw either to
recover from accidents during develosment or to reverse the course of execution.

The UNDO command simrly undoes the previous erimary command -- the suystem is
restored to Precisely the state that existed srior to entry of the last commandg.
The result of undoind 2 FILE or REFLACE command is obvious. The file is restored to
itse state before the 1last insertiony and the ardument of the 1last command is
restored to the ‘entry-window®'. Less obvious is the emormous rpower of wundoindg the
EXECUTE command. This effectively 3llows one to ‘*back wue® the course of an
execution. Note tnat coammaods and not statements are undones so the execution is
restored to the state that existed erior to the last EXECUTE command. BEut since
execution during testing is tuepically 3 sequence of short intervalsy this 1is
adequate to effectively achieve ‘reverse execution®. Moreovery it is eassilwu
understoods easily usedr and not eprohibitively costly (in comrarison to true reverse
execution LC[Ref 81). To wuse this facility for testing» one runs rormally until
trouble is apeparent. Themrn execution can be undone to some erior safe roint, and
advanced more slowly and informativels from there.

. REDO simply re-enters the last command that was wundone. REDDO is wundoubtedls
less imeportant than UNDO» since in effecty it only provides recovery from over-
enthusiastic use of UNDO. Only extensive experience with COFE will indicate hnow
useful the REDO carability really is.

reons

5

The COFE Frodramming Environment

UNDO and REIO are imelemented bw a3 substantial stacks» so that for all #Fractical
purposes unlimited destn of recovers is erovided. The suystem is able to move
backward and. forward in this command history far bevond .most wusers’ extreme
reauirements. (See Section 5.2.)

These recovery facilities are both convenient and rowerful. We susrect that
even those who misnt consider COFE unnecessarily charitablesy will find the UNIDO
facility very attractive, Once it is apparent that interactive sustems can essily
provide such a3 facilitys it should be obvious that interactive sustems should 31l

behave this wawy.

3. Ihe Entrs af Eraocedure Iexi

The most distinctive characteristic of COPE (relative to other intedrated
develorment systems) is the treatment of erocedure text by the ‘'procedure-syntax
editor'. The task of the FSE is the followins:?

Given 3ny arbitrary textual entryy and a rosition in the srocedure
specified by the edit-rointers make an insertion that

3. honors the information in the textual entry

b. respects the context at the edit-rointer

c. denersates everuthing that is unambisuously imelied bw the entry

d. leaves the procedure in 3 suntactically-correct state.

The PSE can be viewed in different waus!

1. Given completes correctr continuous erocedure texts the FSE is an
unobtrusive editor and ‘rrettu—-srinter‘.

2, Given flawed textr» the FSE is an interactives error-rerairing rarser»
in the PL/C tradition.

3., Given isolated keswordss, the FSE is 3 rrodram denersator:» somewnat like
Hansen’s EMILY C[Ref SJ] or Teitelbaum’s Sunthesizer.

The reauirement that the erocedure alwauys be left in 3 syntactically-correct
state is aided by two special devices!

i. Required elements can be arbitrarils denerated. For examepley PL/CS
requires that all loors be named. If the user dives an entry that imrlies
a loops but does not srecify a namey 3 wunicue name is automatically

denerated. A(Subseauentls this assigned name can easily be chandged by the
user.,)
2, When it is not practical to denerate 3 recuired element (tor wameles

for conditions or exeressions)s 3 'suntactic variable® is supplied, For
examrles the suntactic variable ‘*cond® rerresents 3 condition» and 1is
supplied when the suntax requires 3 condition but the user has not wet
supplied one. Suntactic variables are distinctively diseplavwed 1in lower-
c3se letters. (The case in which user entries are siven is immaterials
but in the erosrams denerated by COFE cases are significant and

informative.)

6
The COFE Frogramming Environment

The entry srocess is associated with the diserlay of the ‘*edit screen'. This
consists of five windows: arranged 3s follows!

entry window H
1

rrevious command window title window

1
L
1
1]
1
L
1]
'
! messade window
!
1]
L]
)
1]

text window

The COFE prototure is not a3 'full-screen® system! user entries are echoed in the
entry-windows the sustem—-denerated procedure text arrears in the text-window. The
previous-command-window shows the toer 1level of the command stacks effectively
indicating the command that would be undone by UNDDO., The messade-window disrlaus
various promets and exrlanations. The title-window identifies the name and ture of

the file beind edited.

. For examples surprose 3 new procedure SAMFLE is to be develored. A file named
+SAMPLE is wused to store srocedure SAMFLE., The wuser would dgive the FILE command
with text ardument ‘*.samele’. Initially the edit-screen would 1look 1like the

following!?

Prev ecmd?! <FILE> .sample tEditing eroc
beginning edit i +SAMFLE

=> SAMPLE: FROC;
ENDII SAMFLES

The '=>' sumbol at the left is the edit-rointers which marks the roint at which new
constructs will be inserted (and 2lso controls FETCHs REFLACEs MOVE» COFYs CONLENSE

and EXFAND).

Now suppose wou wanted to construct &8 1loor in the bodwy of SAMFLE. Anyg
reasonable frasgsment of the source 1landguade suntax for 3 loor will suffice 3s an
entry, For exameples the command "while FILE®' would cause the edit screen to asrear

as follows:

Prev omd! <FILE> while . 1Editing eroc
! JSAMPLE

SAMPLE: FROC3} v
=> Wi¢: DO WHILE cond?
END W1;
END SAMFLE}

7
The COFE Frogramming Environment

At this rpointr any entry that denerated 3 valid condition would be inserted in ~lace
of ‘cond's but an entry that is not scceptable 3s a condition would simrly be
inserted in the body of the loor. For examples the command ‘set x sum = sum + X
FILE®* would cause the screen to aprear 3as follows:?

Prev emd! <FILE> det x sum = sum + X {Editing eroc
{ JSAMFLE

SAMFLE: FROCj

DCL (X) FLOAT;

DCL (SUM) FLOATS

Wi: DO WHILE conds
GET LIST(X)$

=> SUM = SuUM + X3

END W15

END SAMPLES

If the UNDO command were given at this moint» the edit screen would aspear as

follows:

det x sum = sum + X

Prev cmd?! <FILE> while {Editing proc

srevious command undone ! +SAMFPLE

SAMPLE! PROC;
=> Wit DO WHILE condj
) END W15
END SAMPLE}

The entry line could now be arbitrarily editeds and then the FILE commamnd could be
dgiven again.

Alternativelys instead of UNDO» surrose the edit-pointer had been rositioned 3t
the first line of the looer and the FETCH command had been given. The entire loor

would be coried into the entry window:

Wi DO WHILE conds GET LIST(X)3 SUM SUM + X3 END UWlj

Prev emd?! <FETCH: tEditing proc
i +SAMFLE

SAMPLE: FROC3
DCL (X) FLOATS
DCL (SUM) FLOATS
=> Wi: DO WHILE condj
GET LIST(X)3i
SUM = SUM + X5
END W15
END SAMFLE)

8
The COFE Frogramming Environment

Many COFE commands» includimg FETCH» 3are ‘unit-oriented®'. A unit 1is defimed as 2
lines rPlus 311 subsecuent lines indented with resrect to that initizl lime. For
examrlesy 3n assignment statement is 3 unit consisting of 3 sindle line. In the
examrle a3boves the entire Wl 1loor is 3 single unit -- whigch FETCH cories in its
entirety into the entry area. The entry window disrlags 3 sedgment of this area»
automatically scrolling left or right with movement of the entruy-cursor.

The suystem is indifferent to the orisgin of text in the entrws ares. it odoesn’t
matter whether this nas been entered directly from the kesboards coried from text
with FETCHs coried from another file with COFY» or some combination of these.
Whatever its origins the text can be processed bw FILEs REFLACE, or EXECUTE. For
examples the text FETCHed in the example sbove could be edited to the followins:

Wi: DO WHILE i < n# GET LIST(X)# SUM = SUM + X3 i = i + 15 END Wl;

Then this revised version could be used to rerplace the original. The REFLACE comand
replaces the entire unit denoted by the edit-rointer with the FSE-edited version of
the entry, In this case» the entire Wi unit would be rerlaced with 3 new version
that includes 3 condition and an additional statement in the body!

Prev emd?! <REFLACE> W1! DO WHILE i < n3 GET LI!Editindg eproc
! +SAMFLE

SAMFLE: PROC3#
DCL (X) FLOATS
DCL (SuUM) FLOATS
DCL (I) FLOATS
DCL (N) FLOAT;
W1: DO WHILE (I < N)3#
GET LIST(X)3
SUM = SUM + Xi
I=1+1;
=> END Wi
END SAMFLE};

The FETCH-edit-REFLACE sequence did not have to be used to make these changes in W1,
With the edit-rointer rositioned on the W1l lines the entry *i<n FILE® would nave
rerlaced "cond® by "(I<N)* since insertions are made at the first valid rosition.
Similarlyy after rerositionind the edit-eointer to the SUM line» the entry *i=i+il
FILE® would cause the 3ssidsnment statement incrementing I to be inserted after the
SUM statement.

Note that in this exameles if FILE had accidently been dgiven instead of REFPLACE,
a second loor (named W2) would have been inserted in the body of W1l instead of
making the desired chansged in Wi. But any such error in the use of the commands 1is
easily remedied by UNILO.

All variables must be exrlicitly declared in PL/CS but» a3s indicated in the
examerlesys COPE is quite willing to generate the recuired declarations. The normal
default data ture is FLOAT» but certain tures of usade imeply other attributes. In
any event the user can essilsy chande the 3ttributes erovideds or add others
(EXTERNALs STATIC» INITIAL» READONLY).

A AR

9
The COFE Frodgramming Environment

3.1 Eotrs Earms aod Metbads

Even these short exameles should suddest .the wide variets of entrs metnods
allowable in COFE. At one extreme is the ‘structure command® stratesss as emrlowed
by the Sunthesizer. Entry of individual kewwords causes structure temslates to e
denerateds with suntactic variables to eromsrt the user for missing elements. For
exampley ‘wnile® is effectively equivalent to the Suntnesizer °*.dw® command.
Howevers unlike the Sunthesizers COFE does not have 3 unieue command associated witn
each construct -- any umambisuous frasment of the construct itself serves as 2
command. A second difference is that COFE treats all constructs in the lansusaze
consistently —— no distinction is made between constructs that must be senersted oy
commands and those that must be entered directly 3s text. Ang construct can oe
denerated py 3 'keuword command® or can be entered directly as text.

At the other extremes 2 COPE user can elan 3 procedure on earer first, and then
enter it 3s comrletes continuous text. The user need not uses or even be aware of»
COPE‘’s willindness to senerate substantial rportions of the rrocedure text.

Between these extremes» each user can devise 3 rersonal entry metnod. In asctusl
practices many programmers tend to elan and write programs usins some informalys
abbreviated dislect of the prodramming languages and them fill this out to full and
erorer form more or less automatically as thew enter the statements. COFE accerts

these informals sbbreviated forms directly. Howevers COFE does not srecify 3
singles rigid shorthand forms but rather allows each user to devise his own. In
sractices 3 user’s entry form maw evolve over time witn increasing exrerience. It

may also vary with different contexts and for different tures of problem.

Essentiallys COFE 2llows the user to choose the entry modes rather than have the
system imrose one earticular mode. (Teitelbaum cnaracterizes COFE as *snarcnistic®
-— in contrast to the Sunthesizer’s ‘totalitarian® arproach.) ‘

A useful burproduct of COFE’s entry flexibilitw is its asbility to =sccert ordinare
source lansuadse text from arbitrary files or otner external sources, Thnis means
that prosram sesments sprerared under other editors can easily be imeorted inmto COFE.,
It 3lso means that COFE erosrams can write other prodrams -- that can subsequently
be.executed under COFE., (Also see Section 4.3,)

3.2 Ihe 'Real® Saurce Laosuage far COEE
While the host programming landuadge for the COFE erototure is FL/CS» it is

aeparent that this is the outsut lsnsuase rather than the entry landusse. That is»
COFE sgenmerates srodrams in PL/CS -- it does not reeuire entry of erodrams in that

languade. While this tolerant arproach has been used befores notably in the FL/C
family of translatorss COFE carries the areproach substantially farther than ang of
its predecessors. In factsy it erovides sufficient difference in desree that a3

significant chansde in kind is achieved.

In PL/C the suystem was expected to detect and 3attemept reeair of accidental
lapses by the user. What has now become arparent is that if sutomatic resair is
sufficiently powerfuls reliables and unobtrusive» the user learns to caritalize on
this facility to simelify his own task. That iss the user deliberaielys makes
‘mistakes® and relies on the suystem to rerair them. Most of these mistakes sre
deliberate errors of omission. The user in effect enters an abbreviated form of the

10
The COFE Frogramming Environment

source language and relies on COFE to suprly the missing redundant elements to
achieve full suntactic form. The overall reduction in necessary keystrokes derends
poth on the earticular erocedure and on the severity Wwith whicn the user
abbreviates» but in general reduction by 3 factor of least two seems rractical.

This raises the interesting question of what is the "real® source landuage that
is recodnized by COFE? It accepts PL/CSy and in any event denerates FL/CS
proceduresy but it obviously 3lso accerts other langusses that are essentialiw
abbreviated forms of FL/CS. However» it is not easy to characterize the lansuades
accepted by COFE since the resronse to a earticular entry is neavily derendent on
context. One way to view the process is the followind.

Consider minimal entries -- 3 single kesword or 3 sindle exPression. Kewwords
can be epartitioned into two lists?

Unambidguous kevwords (unicuelw imely one sarticular construction)!?
ASSERT CALL DCL DECLARE DELETE ELSE EXT EXTERNAL FOR GET GOTO 1IF INIT
INITIAL LEAVE NEXT NOCHECK OTHERWISE FAUSE FPROC FPROCEDURE FUT READ
READONLY RECORD RETURN RETURNS SELECT SKIF SLOW SOME STATIC THEN TRACE
UNTIL WHILE

Ambiguous keswords (used in two or more constructions)?
ALL BIT BY CHAR CHARACTER DO EDRIT FILE FIXED FLOAT LIST TO VAR VARYING

The easiest case to consider is the entry of 3 single token entry from the 1list of
unambidguous kevwords. For each such entry the sustem has 3 eproduction that
denerates the ‘context-free response®. For examepley 3s illustrated rreviouslys the
response to the entry ‘while® is!

Wn!: DO WHILE cond # END Wni

*

As another exameples the context-free resronse to the entry ‘when' is:
Sn! SELECT# WHEN cond 3 OTHERWISE 3 END Snj

This much is straightforward -- both in imrlementation and understanding. What
makes the erocess comrlicateds for both the user and the suystems is the rnecessary
sensitivity to the context in which the insertion is to be made.

For examples suprose the context for a3 ‘when® entry is the following:?
S§9¢ SELECT3 WHEN cond 3 <insertion-roint>> OTHERWISE 7 END S9%3

Obviouslyy the context-free resronse would be inasprorriste at this roint» so the
sustem must check first to see whether an implied element is already erresent before
suprluing that element. This works in essentisallwy the same way whether the element
already exists in the eprocedure as 3 result of some previous entrys or whether it is
3 prior token in the current entry.

The resronse to the entry of an ambisuous kewword is similary excert that the
context-free production is 2 “preferred® or *most srobable® construct» rather than s
uyniquely implied construct. The adartation to context in this case must be Frerared
to shift to a3 less-probable rroduction 3s well 3s suppress deneration of elements
3lready rresent.

—

11
The COFE Frodramming Envirornment

The entry of an exrressiorn is essentially like the entru of an ambiguous
kegword. The preferred resronse nas oeen chosen to be a3 FUT statement witn tine
diven expression as arsument. The user can of course 3lter tnis choice by erovidinsg
some context. This can be done bw diving a3 kesword bpefore the exeression. For
examrles "get x' or ‘skier x' produces a3 different resronse tham Just "=t Context
can 3also be supelied bw a3 suffix colon or 3 mrefix left parenthesiss which cause an

expression to be intersreted a3s a label or conditions resrectiveld.

Two srecisl cases reflect the fact that the source language was not ortimallw
designed for this service. PL/I’s ambisuous use of the '=' sumbol is a3 sresat
nuisances and ambiguous entries in COFE are resolved im favor of the assigrment
statement. The sustem can be coerced into makind *3=b° into 3 condition by enterins
(3=b, The other rroblem is in distinguishing between the followins constructions!

ROs DO I
I =15 EN
ENDj

1 TO exer RY 13
H

[~}

The entry 'do i=1°" is resolved to the construction on the risht; to achieve tne one
on the left 'dos i=1' must be entered.

The entry of 'end® is an example of the importance of locatins context. END’s
in the erocedure are always automaticslly generatedr so the user never is required
to enter any ‘'end®. Consecuentlys the entry of ‘end® is defined to mean ‘move the
edit-pointer forward to the next END®, For examples the entry *while i<J i=i+1 det
% sum = sum + % end x° results in the following construction:?

Wi DO WHILE (I < J)}
I =1+1;
GET LIST(X)3#
SUM = SUM + Xi
END W15
PUT SKIF LIST(X))

Without the 'end® in the entry», the FUT statement would be included in the bodg of
the 1loor. Note that this intersretation of the 'end®' entry is what makes COPFE
caprable of both senerating rrosram structure and accertins comelete rrodgram insfut,

Another way to view this eprocedure entrg erocess 1is the following. The
srocedure wunder develoements in its fimal form» consists of a3 sequence of n tokens
(wordss numberss operatorss punctuation» etc.)!

Sly S2» S3y e Sn

The user must specifuy many of these tokens» but in deneral not 3ll of them since
there is considerable redundsncy in srodrammins landuades. COFE is desidrned to sive
the user maximum flexibilitys both in determinindg woich tokens to surply and the
arder in which to suepely them.

At each point in the entrs rrocess some skeleton of the token secuence existsy
and the user srecifies some subseaquence of additional tokens: and 3 position in the
existing seauence where the insertion is to be made. For eacnh such inmsertion COFE
denerates the redundant tokens imelied by those siveny and also ang tokens necessary

12
The COFE Frogramming Environment

to make the existinmg string hosritable to the new insertion.
For exameles surpose the followind subsecuence is to be inserted!

Wi: DO WHILE (I < J)3 END W1

There are thirteen tokens in this subseauence» but onls four of these:

WHILE, I» <» J

must be supplied by the user (assumindg he will sccept 3 denerated loorname). COFE
accerts any of the following choices by the user:?

WHILE I < J as 3 sindle entry
*WHILE® 3nd *I < J* a3s two consecutive entries

*WHILE® as an initial entrys and *I < J®* arbitrarily laters after
aepropriate rositioning of the edit rointer

Similarlys the bodu of the loor can be suprlied 3s rart of the initisl entrys as an
immediste subseauent entrys or arbitrarily later. In generals COFE strives to allow
the user to arbitrarily rartition any subseauernce entry into reasondle sub-entries
without chanding the construction that results. Converselys he should be able to
combine any consecutive entries into 3 sindle entry without chanding the results.
That 1is» *Si Si+l1 ... Sitk® 35 3 sindle entry should have tne same effect ss "Si
Si+l .o Si+J® and *Si+Ji+l ... Si+k" 3s two consecutive entries. While this cannot
be absolutely achieveds it works surerisinsgly well and-the astonishment factor is
auite low.

The implementation of the FSE is discussed in Section S.1.

3.3 Condensation af Eracedure Iext

A general limitation of 23ll screen editors is the relatively few lines of text
that can pe displaved at ome time. Even as larger screens becomindg availables this
will still be 3 significanmt limitation. Consequentlys it is useful to be able to
‘condense® text that is eerirheral to thne current locus of interest. Eoth the
Sunthesizer and FLELIL C[Ref 6] emelow variations of this stratesy; COFE demonstrstes
a3 third version of condensation.

COPE uses two alternative diseplay formats for srocedure text. The normaly or
‘expanded® formats 1is the multi-lines indented form shown in the examrles above.
The alternative ‘condensed® form concatenates statements onto a3 sindle lines
rerplacing 3ll but the first with am elirsis. For exameles consider the followins
erodram segsments in normal exeranded form!

13
The COFE Frogramminsg Environment

L3: DO I =1 TO N BY 15
SUM = 0j
L4: DO J = 1 TO M BY 13
GET LIST(X))
=> SUM = SUM + Xi
END' L43 .
PUT SKIF LIST(SUM)j

END L33

If the CONDENSE command were diven with the edit-rointer rositioned as showns the
L4 unit® would be condensed and the disrlay would 3fpear as follows:

L3: 00 I =1 TO N BY 13
SUM = 0j
=> L4: DO J =1 TO M BY 13 s
PUT SKIF LIST(SUM)/
END L33

Condensation is hierarchical -- if CONLDENSE were diven again the L3 unit would be
condensed and the disrlaw would arrear!

=»> L3 DO I =1 TO N BY 15 ...

Repetition of CONLENSE would eventually cause the entire erocedure to be condensed
to 3 single line!?

=> SAMPLE: FROC? o+

The EXFAND command restores 3 condensed wunit to normals multi-line form. Each
EXFAND command expands onls the outermost condensed level (erclosing tne edit-
pointer line)s so rereated EXFANDs are be necessary to fully exr3nd deerly condensed

text.

The disrlay format is a relatively permanent eprorerty of 3 units that isy 3
condensed wunit remains condensed wuntil exeplicitly exrandeds rersisting from one
session to another. It arrears in condensed form on both the edit screen and the
execution screen (described below).

4, Pronsgsram Execution

At any stage of develosments 3 prodram can be executed., If 3 file name is diven
ss argument to the EXECUTE command» the erevious execution environment is erased and
the specified file is executed as 3 MAIN procedure. Execution will continue wuntil

the one of the followindg events occurs:

1, 3 suntactic variable (denoting 3 recuired but unspecified element) is

14
The COFE Frogramming Environment

encountered
2, a8 FPAUSE statement is encountered
3. 3 run-time error is encountered
4, the outrput window is filled
S. 38 GET statement has insufficient data

6. normal execution is comrpleted.

7. any kew of the kewsboard is sresseds eresumably indicating the user
wants to enter 3 command.

When any of these events occurss execution is raused and the suystem awaits the next
user command. While execution is P3useds there are six tures of action the user can
take?

1., Execution can be resumed.
2. Execution can be backed ur (byg UNDO).
3. Immediate statements can be executed.

4, The execution-rointer can be moved (effectively an immediate GOTD).

S. Some file can be modified.

6. The execution can be cancelled (by beginning execution of asnother
PrOETram.

All commands are svailasble during an execution ep3use’ mone asre inaccessible bpecause
of the state or mode of the suystem. In eparticulary the editing commands that chanse
3 file cause the edit screen to rearrears but this naspens automaticslly and the
uyser need not exrlicitly °*shift to edit mode®. If disrlay is chansed to the edit
screeny it automaticalls reverts to the execution screen wnenever an EXECUTE command
is diven.

It is important to reslize that the sustem is a3lmost always in this pPaused-in-
execution state. (The excertions are brand new sustems in which nothing has been
executedy or 3 sustem in which the most recently executed rprocedure has been
deleted.) Evern when am execution has been normally comrpleteds it is still considered
to be p3used and the enviromnment is esreserved (so that immediate statements can
still be executed in that enviromment). The wuser can 3lways determine wnat state
the sustem is in by diving the STATUS command. This displays 23 comprenensive
summary of erocedure c3lling historys rosition of execution rointers rosition in
standard input and outeput files» etc.

4,1 Ihe Executioo Screen

The execution screen is disrlaved whenever statements are beins executed. It
consists of seven windowss as shown below?

e Al avs A

v

PR R R Ll

15
The COFE Frodgramming Envirornment

entry window

1]
1
H
stack window H
H
1
1]
13

previous command window

messase window

check window

trace window

execution outrut window

This is much like the execution screen of the Sunthesizer in that it simultaneouslsy
disrplaus:

a. the trace window with the text of the rrocedure beindg executeds with an
sexecution-rointer® indicating the statement currently beins executed

b. the check window showing variables and their current values
c. the output window showing the results of executing (FUT) statements.

For exameley the screen might aprear 3s follows when execution is eaused for 3 "rade
turn® in the outeut window:

PUT SKIF(2) LIST(’last line has be

Prev cmd?! <EXEC> .stars {Executing?
Output window fulls <EXEC>» to clear and continue | .STARS
STARS: FROC; 1 8 = XKKKKKXKK
S = ‘%X’ I =7
I =15 it N =20
N = 203 !
Wi¢ 00 WHILE (I < N)# H
S =811 ‘%’ H
>>» PUT SKIF LIST(S)} '
I =1I+1; i

XX

XXX
xkkX
XKKKX
KKEKXKKXK
KKXKK XXX

16
The COFE Frodgrammins Envirornment

The Sunthesizer has dramatically demonstrated the effectivermess of this ture of
display -- it is hnard to arerreciate until one nas seen it. It seems relativelw
difficult for 3 user oot to understand what is taking rlace in execution when
confronted with the dunamic and simultaneous diseplay of these tnree tures of
information. COFE differs from the Sunthesizer in this redard onle in minor waws.

As on the edit screensy lines on the executionm sScreemn 3re & sC3rce re2source.
When the execution-rointer moves to 3 line not shown in the trace window the window
contents are asutomatically scrolled. Similarly, when the number of variables
exceeds the size of the check windows rerlacements are made by 3 least-recentlu-
changed sldorithm. BRut since both scrolling and rerlscement ternd to be visuslly
disturbings the effectiveness of the display would be impaired if either event
occurs too freauently., To minimize the frequency of scrollins:?

i. Lines are divided between the trace window and the check window (rather than
arrange the three maJor windows verticallu)., This means tnat statememt lines
must often be truncated in the trace windows and names a3nd values must
sometimes be truncated in the . check windows but meitner seems to interfere with
the user’s 3bility to understand wnat is haesrening during execution. (The user
can e3sily rpause during execution and cause the full text of 3 line or the full
value of a variable to be diserlaved.)

2. Lines that are not essential to understanding the rprodgress of execution are
automatically omitted from the trace window. For examrles neitner END nor

DECLARE 1lines 3re disrlaved on the execution screen. (Note that with
automatically formatted disrlayy ENDI lines are comrletelw redundant --
structural information 1is comepletelw surprlied by indentation. ENDIs are

displaved on the edit screen only for comeatibility with the source languadge.
Future versions might well omit END lines 3ltodgether.) SLOWs» TRACE and FAUSE
statements are 3lso not shown on the execution screen. The overasll reduction
in the disrlaved lensth of a3 Pprocedure can be cuite significant.

3. The user has considerable control over the sranularity of the trace.
CONDENSEd units arrear in single~line elided formy 3nd the TRACE(exer)
statement 3lso rrovides exelicit control over tne nesting dertn of statements
to be disrlaved in the trace window. TRACE(0O) susepends the trace altodgether,
and if given 3s the first statement of 3 called erocedures leaves the trace
window unchanged.

The SLOW statemert controls the sreed of execution by limiting the frecuercy
with which the execution screen is redrawn. Since the movement of the execution
pointer is 3 redraws this c3an limit speed to 23 roint where it can be visuslly
followedy and erecisely interrurted. For exameley SLOW(100) would limit execution
speed to at most one 'ster® every 100 tenths of a3 second. But note that a3 ster (for
this eurpose) 1is essentially a3 1line in the trace window. This means that 3
condensed unit is 3 sindle ster» 3nd consequently can run faster than when it is
expanded., Similarly, the suspression of adetail trace displags by the TRACE statement

also rpermits undisrlaved units to run at full srPreed.
[

Since COFE is a3 develorment sustems the defaults have been established to favor
testing rather than efficient execution. This 3lso means that the most rowerful
diagnostic envirorment is sutomatically established for 3 users without his. havinsg
to know of the available features. For examples SLOW(S) is the defaulty and the

——— N A

e AN r—

17

The COFE Frodramming Ernvironment

user must specify SLOW(O) to get full-sereed execwtion. TRACE(2) is the agdefaulty and
the wuser must srecify TRACE(O) to surrress tracinsg. Similarlys the default is to
‘check® all varisbles» and the user must srecify NOCHECK(list) to selectivelw exemsrt
variables from checking. NOCHECK(ALL) suprresses 3ll checkins (in the Frocedure in
which this statement is executed)s and TRACE(O) suppresses bDoth tracins 3nd
checkinsg.

Note also that TRACE and SLOW are statements» rather tnam commands. While tnew
can be executed immedistely» effectively ss commandssy thew can 3lso be inserted in 3
procedure so it can manase its own execution displaw. For examrles the statement
TRACE(O0) placed at the bedinning of 3 eprocedure after one is satisfied with its
correctrnessy allows it to be called and executed unobtrusivelw regardgless of the
disrlay characteristics of the eprocedures that call it. As another examrles stored
SLOW statements sive a3 srocedure control over the timing of outrFut statements so
that erodrams involving animationm or real-time resronse a3re feasible. Botn
flexibility and concertual simrlicity are enhanced by extendins the source languade
with such statementss rather than adding them only to the command lansuase.

4,2 Immediate Executian

The entire saurce laodguage (excert for PROC and DCL) is caraole of immediate
execution. Any text emntry that could be FILEd in 3 Pproceduresr can alternatively be
EXECUTED directly and immedistelu. This can be useful both as a ‘desk calculstor
sustem® inderendent of any stored Pprocedurey and a3s 3 'debussing lansuase® auring
testing of 3 stored prodgram.

Text to be executed is subdected to preciselw the same treatment by the FSE as
text destined for insertion in 3 procedure file. For examples a3 variavole or
expression alone is ‘reeaired® to a3 FUT statement:

x becomes *PUT SKIP LIST(X,3*®
*sert(3.1416)" tecomes *FPUT SKIP LIST(SART(Z.1416));"

This rerair is convenient for both the desk calculastor and debuddginsg uses (which is
why this seemingly arbitrary rerair choice was made). More comeplicated entries can
be diven?

1 to 10 sart(J)* for desk calculator use

*do J

do J 1 to 10 x(J) for disdnostic disrlay

Immediate execution in 3 block-structured lansuage iss of course» s rotentizlly
confusing srocess., The rule is simely that execution takes place in the current .
environment -- literslly 3s if the statements were inserted im the current rrocedure
at the roint at which it is ep3useds and executed there. The mormal FL/I score rules
apply. NO extraordinary eprovision is made to give immediate statements access to
obJects that nmnormal stored statements could not see.

18
The COFE Frodramming Environment

4,3 Execuitioo of omoo-Erocedure Eiles

A file specified 3s argument to the EXECUTE command will ordinarily be of ture
srocedure -- but COFE does rot require that this be the case. Any ture of file can
be executed. If execution of 3 non-srocedure file is serecifieds that file is simsly
streamed throusih the FSE into JTEMP» and .TEMF is executed., The sepecified file
itself is of course not chanded.

The same privilede is asccorded to the CALL statement. The argument of CALL is s
srocedure names stored in 3 file with the same name. If mo such file existsy one is
created containing an empty srocedures so the CALL effectivelw becomes 3 null

statement. On the other hands if 3 file existsy but is not of ture rrocedures the
contents of that file are streamed throush the FSE into .TEMFs and the erocedure is
executed from there. This ture-indifference courled with the enthusiastic rerair

facility of the FSE dives COFE an interesting carability of executing almost
angthing.

S. Structure of the COEE Imelemeotatiion

A series of Correll CS Technical Rerorts describe the COFE imelementation in
detail (Ref 1)s but several unususal ssepects of the sustem might be mentioned here.
All involve the exrloitation of a3 novel file sustem.

The entire COFE imerlementation is based on its file sustem. Almost every module
of the sustem draws its input from files and writes its outrut to files. Moreovers
the file sustem used internally in the implementation is the same sustem tihe wuser
sees for rroceduresy data and outrut.

In many respects COFE can be viewed 3s 3 database system. Each user command is
3 *transaction®s which is analvzed and processed by urdating various files. The tor
level control is simply the following loo~!

DO UNTIL (command = QUIT);
Get next command (textual-entrg and command-key))
Frocess the commandj}
END 3

The ‘process command® module is 3 set of rarallel routines -- one for each different
command. These routines draw uron ones or boths of the following rrocesses:

Procedure suntax editory with argsuments srecifwing
textusl-entry
tardet file
position in target file (based on edit rointer)

Execution surervisor» with arguments srecifuins
procedure file
position in procedure file (bssed on execution rointer)
environment (which is itself a files and also contains
pointers to other files)

As described in Section 3s the FSE constructs a3 rrodgram sesment based on the textusl
entrys and inserts it at the serecified roint in a3 procedure file. Frocedure files

VT

R ekt]

19
The COFE Frodgramming Environment

are maintaired in an internal form that is a comrromise petween tne reaquirements of
disrlay and execution. A procedure disrlaw routine translates tnis form into
displavable lines (im slightly different form-for the edit and execution screens’e
and the execution surervisor intererets this form to execute tne srogram.

The FILEs REFLACE and COFY routines use onlw the FSEs» in the obvious way.
Similarlys the new-prosram and the resume forms of EXECUTE use only the execution
supervisor. But some of the unusual flexibilitw in COFE comes from the =20ility +to
uyse first the FSE and then the execution surervisor in thne same command. For
examrles immediate execution is eprovided simely by invokins the FSE witin .TEMF as
the tardet files and them invoking the execution surervisor with .TEMF 3s its
subJect. Similarlys the execution of non-efrocedure files (either by the EXECUTE
command or the CALL statement) simely requires exercise of the FSE before invocation
of the execution surervisor.

S.1 Iwo-Level Barsiod

The COPE PSE is imeplemented by 3 novel two-level rarsindg stratedgy., The tor
level is an LL(1) sarser for the structural suntax of the landgwuases in wnich eacn
expression is essentially redarded ss 3 single token. *Insertion-onl=* correction
is provided at this level by rerlacinsg the normal error entries in the rarsing table
by c3lls on insertion routines. Quite powerful structural rer3ir is achieved from a
small set of rarsing tables. It doess of courses require thnat 2ll structural
kevwords be reserved.

The second level eparses only the exeressions. In mang contexts tie ture of
expression reauired has already been determined bw the tor level structural
analysis. Some error reeair is effected buy the expression earsery out it is
relatively modest comeared to the structural erarser, There are several ressons for
this restraint. In the first elacesy the sustem must be careful not to rerair two
consecutive exrressions into a8 sindle exrression. For examrley the emtrwe "x «°
should srobably not be made into 3 sindle expressions but the entry *(x «)*' should
erobably be rersired by the addition of 3 comma. Eut this requires arbitrarily
extensive lookasheads since it is not clear what action should bpe taken for the
prefix *(x 9 .0 Note howevers that the two-level strateswy has effectively
partitioned the ineput stream so that *arbitrary lookashesd' is actuslly not very far

and even cubic reeair aldorithms are quite rractical.

The second restraint on exeression rer3ir 1is a conseuence of the user’s
priviledge of skipping reauired exeressions and filling them in later. For examrlers
the user maw elect to srecify the bodw of a8 loor in the initial entry and come back

later to supply the condition. That iss diven the entry ‘while i=it+1', the
expression rarser snould not be too enthusiastic to mske 2 condition out of whatever
follows the kevword ‘while‘. (FL/I‘s ambigsuous wuse of the '="' sumbol 1is

particularly unfortunate for our purroses.)

Returning to the tor level rarsers the rarsindg stack of the LL(1) erarser is
increased whenever the imput lookahead requires 3 new sroduction. COFE uses 3
*uniquely implied® criterion to Push new productions whem it is ‘krown® that the
matching terminal does not 3lready exist in the stack. Consequentlys it is crucisl
that the eparser intellisently determines for each new keswords whether 1t 1is
confirmation of & kewword already imrlied by some erior kevword (and consequently
already on the stack)» or is a new construct. To facilitate this decisionsy COFE

20
The COFE Frodramming Environment

keers track of the number of eacnhn terminal that it ‘exrects® to see bhefore
comeleting the curremt entry. New rarsind actions are used whose function is
conditional on the count associated witn the imPut terminal. When the terminzi nas
been rredicteds rarsind rroceeds by simulating imsertions into the infut. When the
terminal has not been rredicteds a3 new Fproduction is rushned onto the stack.

The COPE mparsers are table-driven and the FL/CS host language could readily be
replaced with comrarable subsets ofs says FASCAL or Ada, Eut it should be noted
that to some extent the effectiveness of the COFE FSE derends on the numoer of
different contexts im which esch individusl kewword canm arrear in the source
language. Recall from Section 3.2 that imn FL/CS the list of unambisuous keswords is
much longer than the list of ambisuous kevwordss so ‘uniauelw imeplied® resronses are
much more common than °most eprobable’ ones. This would be 1less true of 3 rich
languade like full FL/I or Ads.

S.2 Ibe Recovery Mechaoism

The imrlementation of the UNDO and REDO facilities is based on 3 srecisl file
named .LOG. This file is a chronological record of commands (with the corresronding
textusl entries)s automatically maintained by the sustem., Schematicallyy it works
in the following way!

«LOG contents:
icommands Ppreviously
i executed

prev command pointer=> prev cmd executed

commands sreviously
undone

The line indicated by the srevious-command-rointer is the 1line disrlaved in the
*previous command window® of the disrplay screen.

Each time 3 erimary command (FILE» REFLACE» EXECUTE, MOVE, COFY) is sdivens the
following action takes rerlace with resrect to .LOG!?

i. The command and its text entry (if ang) are inserted a3s 3 new line
immediately after the ‘previous command line®.

2, The previous command rointer is moved to the line Just imserted, and
that line is also displaved in the previous command window.

3., The command is rerformedy and checkroint information is added to
.LOG (in 3 form not visible to the user).

When the UNIO command is diven» the following takes rlace!

1. The checkrpoint information in .LOG is used to restore the sustem to the

Ny e

21

The COFE Frodgramming Envirornment

state that existed s=rior to tne rreviows command.

2., The Previous command rointer is moved ur one line in JLOG.

3. The line denoted by the eprevious command rointer is disrlayed in the
srevious command window.

Wher the REINO commarmd is sivens the following takes rlace!

1. The line in .LOG immediatelw ©below the rrevious commanag lime 1is
‘submitted® to the sustems Just as if it had Just Deen entered from tne
kegboard. : :

2, The previous command pointer is moved down to the lime Just supmittea:
and that line is displaved in the rrevious command window.

The .LOG file is diseplawables like any other filesy but the eortion asbove and
including the erevious command line is oot editablesr since changes could well
jeorardize the UNDOsbility of the commands. On the other nands the rsortion oelow
the last command line can be arbitrarily editeds which of courses chanses the result
of REDO commands.

The checkroint information that makes UNDO rossible is syrprisingly simsie to
manadge. This is 3 conseauence of COFE’s comrlete derendence on its file swstem.
Everuthing -- the user’s files» the environment stacks the sumbol taoles the screen
images -- is maintained in a3 file. Every file is =3dedy and modified mages are not
overwritten. Consequentlss thne checkeoint information consists simrly of references
to both the old and new version of each rade that is modified during the execution
of 2 command., This los of rade references is maintained in +L0Gy with eacn command
line serarating one sequerce of rage references from the next. (Command liness, but
not pade references» are displausble.) UNDO is accomelished simrly by restorins the
old versions of file eades» back as far 3s the last command lines amd deletins the
modified rades. The modified rases need not be rreserved in anticiration of REDO
commands since thes can readils be recreated bw the sustem wnen the commsand is
resubmitted. (Furthermores this sllows the rossipility of modifuins the commands
before resubmission.)

The checkroint facility is not intended as rrotection against swstem failuress
and the decision as to what rades and when r3des should be coried into mon—-volatile
storase is considered 2 sersrate issue from the UNDO- RELDO facility.

6. Ihe Eile Sustiem

Althoudgh the file sustem used by COFE was develored srecifically for this
sustems it embodies ideas that sre not reculiar to this tyre of develorment
environment and could well be exrloited in other sustems. Similarlys the concerts
are not reculiar to the FL/I lansuagesy 3lthoush the source lanmsuade facilities in
the prototupe COFE are» of coursey exerressed in PL{I-like terms.

The central idea of this file sustem is the use of 3 sinsgle file structure thsat
is very simeple to wunderstand and wuse» yet srovides considerable flexibility.
Essentially this is accomeplished by sacrificing some degree of execution efficiency.
The second reoint is that the same file sustem is used throushout COFE. The user

22
The COFE Frosgramming Envirorment

emplogs it for srocedures, infrut datay and auxiliary files. The sustem itself
emrloys it to manage its disrlayss erovide workinsg storage (sympol table» runtime
stacks etc.)s and to imrlement tne recoverw facilities.

Each file consists of 3 secuence of records) automatically numbered
sequentially. Ortionallys each record cam have 3 key values 3nd kewed recnrde =2re
maintained in order of increasind kew value. Unkewyed records can exist between any
fs3ir of kewed records. Each record consists of zero or more ‘items'i eacin item is
simely 3 (varwing length) character string., For seauential accesss tine file can e
regarded a3s simrly 3 seaquence of items (the record boundaries are insignificant’.
But the kewed records are directly accessibles providing the basis of a3 convenient
direct-access facility. Essentiallysy each item in the file is am 'item® in the FL/I
LIST format senses excert that strinds are not quoted (so the sustem can easily read
wnat it nhas written).

A file can have 3 rparticular °*ture' of content. For each srecial ture an
encoder and decoder sre eprovided to translate between disrlaw form and the internsl
file form. 1In Particulary files wnose ture is “procedure® are maintained in a3 coded
form for which the srocedure suntax editor (FSE) is the encoders and 3 adecoder
restores procedures to textual form for diseplay. This decoder is codnizant of the
different requirements of tne edit and execution screens» and is 3lso sensitive to
the CONDENSE/EXFAND choice the user has made for each unit of the eprocedure.

At 2 lower level (invisible to the user)s files are raded into fixed size blocks
and the interface with the host file sustem is entirely in terms of such blocks.
More detsiled descristions are diven in References 1 and 2.

6.1 Ihe .IEME Eile Stack

As noted in Sections 4.2 and 4.3y the special file JTEMP 1is wused to host
sedments that need to be translated before execution. FBut althousnh this method of
introducing content to .TEMP is srecials the user can subsequentlys edit the contents
of TEMP Just like any other file.

Howevery .TEMF is different from other files in that it is» in fact» a3 stack of
files rather than a3 sindle file. That issy each immediate execution does not destroy
the rrevious contents of .TEMF’} it Jdust "rushes® the rrevious file onto the stack
and creates 3 rew level of JTEMF. (The stack can be ‘rorred® by the DELETE
statement.) Each level of .TEMF has its own file ture.

In addition to its role in immediate executions the .TEMF stack serves two other
PUTPOSES ., Firsty it 1is the recovery file for the MOVE command. That iss the
semantics of MOVE sepecifw that the target file is cleared (before receivins wunits
from the text of the current file). In facty» the previous contents of the tarset
file are moved onto .TEMF» and the user can recover them intact from that location.

.TEMF is 3lso the default file for both the MOVE ard COPY commands. Thaet 1is»
if no file is exelicitly srecifieds .TEMF is the tardet for MOVE and the source for
COFY. This eprovides 3 convenient way to manirulate sedments of 3 srocedure. For
examplesy to move a3 unit from one rosition to another the followinsg is 311 that is
required?

23

The COFE Frogrammina Environment

position the edit-rointer to the unit to be moved
MOVE

reposition the edit-rointer to the new rosition
CcoPY

6.2 Eile Processing Extemsians ta EL/CS

The standard FL/CS landuage has only LIST and EDIT forms of GET and FUTs and
only a sindle input and single outfut file. In COFE the landguadge has been mocestly
extended to dive the user asccess to the carasbility of the file sustem. While this
could certainly have been done by including more of FL/I in thne FL/CS supsets FL/I’s
formidable I/0 facilities seemed somewhat at variance with the frugal structure of
FPL/CS., Consequentlyy we elected to sacrifice comratibility in this resard and
experiment with a novel file facility. The following is intended only to sussest
the nature of this facility» and not to serve ss 3 detailed user’s dguidge.

The extensions consist only of additionsl ortionsl rnrases in the GET ama PUT
statementss the addition of &3 DELETE statement» and the addition of six builtin
functions and sseudo-variables. The extensions do not require structuress record
1/0s file declarationss file varisbles or ON conditions. But these simrle
extensions dive the user multirle input and outrut files» direct access as well as
seauential 3sccess» mixed kewed and unkeved recordss and varisole lendgtn records.

Each file has 3 ‘current record rointer®s and in the current records 3 ‘current
item Prointer®. These pointers dictate the semantics of the GET and FUT statement.
For seauential eprocessings their action is automatic» natural and wunobtrusives and
an unsofhisticated user need not be aware of them. But the wuser can interrosate and
manage these rointers bw means of the added builtin functions snd ssewudo-varisbles.
These are the followins?

REC(filename)
Function returns the current record number.
Assidgnment to pseudo-variasble rerositions the current record rointer.

REMAIN(filename)
Function returns the number of records before end-of-file.

KEY(filename)
Function returns the key value of the current record.
Assignment to pseudo-variaoble of a new kew value creates 3 recorso.
Assigsnmernt to pseudo-variable of an old key value makes that
record current.

FIND(filenames keusvalue)
Function sets the current record rointer to the first record whose
kew is dreater than or equsl to kewvalues and returns the key
value of that record.

COUNT(filename)

Function returns the number of items in the current record.
Assignment. to the pseudo-varisble chandges the number of items.

ITEM(filename)

24
The COFE Frogsramming Envirorment

Function returns the current item rnumoer.
Assigrment to the sseudo-variable moves the current item rointer,

The imerut 3and outrut statements can be described in terms of these functioms and the
rointers they control:?

FUT CFILE(frn)] C[FAGEL(,s)J] C[SKIFLC(m)1] CLIST or EDIT ...J%
1. If FILE is omitteds outrut is to stanmdarg file (QUTFUT. {File
LOUTFUT is sutomatically cleared each time a3 mew eprosram execution is
begun.) If FILE is specified and fn 1is news this constitutes an
implicit declaration of a3 new file. If the fn is knowns and the

first reference executed is a FUT» the current record rointer is set

to filesize+ls and the current item pointer to 0.

2., If SKIF is omitteds items are written starting at the end of the
current record (that 1iss at REC(fn)s COUNT(fn)+1). If SKIF is
specifiedsy outrut bedins a3t the current record rlus n. If m |is
positive n-1 null records are inserted. If n is zero» outrut bedins
at ITEM(fn)s urdating fields or extending the record 3s needed.

3. PAGE controls the outrut window of the execution screens clearing
the window and allocating s lines to it (the remainder doing to tne
trace/check windows). If Pps is not srecifieds the outrut window is
cleared but its size is unchandged.

GET LCFILE(fm)] CNEXT] LIST or EDIT ¢+ &
1, If FILE is omitteds inmerut is from standard file .DATA. (A new
esrogram execution resets the current record rointer in JDATA to O
but .DATA is not automatically cleared.)

2, If NEXT is divens REC(fn) is incremented and ITEM(fn) is set to 1
(prior to transmission).

3. Items are read starting with REC(fn), ITEM(fn)» ignoring record
boundaries. RECN(fn) ana ITEM(fn) are incremented to reflect numober
of items read.

DELETE FILE(fmn) CRECORICMH1]S
1., If RECORD is dgivers n records are deleted startinsg with REC(fn).

2., If RECORD is omitteds the entire file fn is deleted. Note that
there 1is no COFE command to delete 3 file —-— immediate execution of
the DELETE statement is used.

7. Cooclusions

As this is writtens COFE is demonstrable but not wet fullw servicesole. Since
its obJjective is to rermit evaluation of 3 rnovel user interfacesy we will not be able
to conclude how well this soal has been 3achieveo wuritil substantial user exrerience
has been accumulated. Consequentlyy the following are really condectures or
predictions rather than conclusions firmly surprorted by exrerience. Howeversy we
telieve that COFE will susrort the followins =oints:

25
The COFE Frogramming Environment

i1, The full rower of an intedrated» interactive srodgram develorment environment
can be offered without recuiring the wuser to learn much more tnan thne nost
eprogramming lansuases and without forcins users to supmit to & risia entry
srotocol. In other wordsy manyg such sustems make tne rrocess more comslicatea
than necessary for the user.

2, A deneralized *immediate execution® facilitw is a natural concest (even in 3
block-structured landuade) that is botn simrle to understand snd user Snd vers
sowerful.,

3. A deneral recovery facility (with resrect to suystem commands) can be simrle
to understand and uses and very convenient for the user.,

4, Contrary to the conventional wisdom that automatic error-rersir is
inapeprorriate in interactive suystemss since thne user is availaple 2nd can be
forced to make his own repsirs» automatic rerair is esrecially wuseful and
effective when each rees3ir can be immedistely submitted to the user for
sccertance or redection. When automatic reeair is comrlemented bx 3 convenient
UNDO facilitys both the sustem and the user can pe relatively pold in this
respect. The consequence is 3 coorerative effort im which the wuser can make
deliberate errors of omission and rels on the suystem to senerate some elements

of the srodgram.

Ackoouwled€dements

COPE is the most recent of 3 long secuence of Cornell sustems that have exrlored
diagnostic facilities and fault-tolerant oreration. Qur debt to the CORC» CUFLs
FL/C and FL/C3 rrodects is sisnificant. Many rpeorle have been involved im these
proJectsy with key contributions having been made by William Maxwells» Howard Morsanm
and Thomas Wilcox.

Our colleasues im the prototure imrlementation of COFE have been Andrew Shores
Len Silver and Steven Worona. Tim Teitelbsum has made many valuable sudgsestions:
Fred Schneider made ke susdgestions concerning the recovery facilitwy and Alan
Demers and [eamn Krafft have zlso been most helrful in this effort.

Befereaces

i. Cornell Derartment of Comeputer Science Technical Rerorts concerninsg COFE?

TR79-397 "A Frodram [evelorment Sustem Execution Surervisor®
(Archer and Shore)

TR79-366 "A File Sustem Extension to FL/CS*
(Archer)

TR79-3467 ‘Implementation of an Unrestricted File Organization for FL/CS®
(Archer)

TR79-399 *Sustem Architecture for the PL)CS Llevelosment Sustem®
(Archersy Conways» Shoresy Silver)

TR80-437 °*The COFE User Interface®
(Archersy Conways Shores Silver)

3.

4,

S

6.

8.

26
The COFE Frogramming Envirornment

Archers J.» *The Desigsn and Imrlementation of 3 Coorerative Frosram Develorment
Environment®s FhD Thesiss [ert. of Comeruter Sciernces Cornell 1981

Cornways R.» and T. Wilcoxs *Desisn and Imrlementation of a8 Diagrnostic Comriler
for FPL/I's Commuoicatioos af ACM» March 1973

Conways R.» and R. Constablesy °*FL/CS - A Discirlined Subset of FL/I'»y Technicsal
Report TR76-293, Dest. of Comeputer Sciences Cornell 1976

Hansens W.» 'Creation of Hierarchical Text with s Comeruter Disrlag®, FADIl Thesiss
Comeputer Science Dert.» Stanford 1971

Mikelsonss M.» and M. Wegman» °*FDEiIL! The FLIiL Frogram [evelorment Envirornment®s
RC8513» Watson Research Laby IEM 1980

Teitelbaums T.» *The Cornell Frodgram Sunthesizer! A Microcomruter Imrlementation
of PL/CS®y Technical Rerort TR79-370» Dert. of Computer Sciences Cornell 1979

Zelkowitzsy M.s °"Reversible Execution as a Diagnostic Tool's PhD Thesis, Dert. of
Computer Sciences» Cornell 1971

Asegendix! Ibe EL/CS Laosuase

PL/CS is a small and 'discirlined® subset of FL/I [Ref 4]. The following FL/I

constructs are included?

Statement tures:?
Assignments? CALL3? GETs PUTs GOTOs LEAVES RETURN?
indexedy WHILE snd UNTIL loorss comround statementss
IF#+ SELECT:
PROCEDIURE (e:xternal only» but including functions)

Datas tyres:
FLOATy FIXED» CHARACTER VARYING» RIT(1)» arraysy

INITIAL, STATIC» EXTERNAL

PL/CS has the following festures incomratible with FL/I?

assertions!
ASSERT cond
ASSERT cond FOR ALL index = exrprl TO exer2 RY exrr3
ASSERT cond FOR SOME index = exeprl TO exrr2 RY exerd
READNONLY attribute

PL/CS is further extended in COFE with the followind:

TRACEs SLOW» FAUSE and NOCHECK statements (see Sections 4.1 angd 4.2)
ortions in GET and FUTs and DELETE statement (see Section 6)

Many FL/CS constructs are severels restricted relative . to their FL/I

countersarts., For exameley functions have absolutely no side-effects (even GETs FUT

27

The COFE Frogrammins Environment

arnd CALL are not allowed in functioms)s» loors nave simele control rnrazes (WHILE &amnad
UNTIL carnot be diven inm the same loor)s GOTOs allow forward reference onlws» etc.,
The exclusions and restrictions eliminate many of the inconsistencies ama unrlessant
surerises found in FL/I» and wield an attractive and useful lsngusse. FL/CS is
somewhat comparable to FASCALs and has some relative advantadge in strins srocessing
snd dumamic arras dimensionings and relstive disedvantsse in the lack of user-
defined tures and comrlex data structures.

D

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif

