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The rhizosphere microbiome, which is the microbial community living in close 

proximity to plant roots, is important for plant growth and development. Besides 

environmental factors, plant genetic control is key in cultivating the rhizosphere 

microbiome. Whether the genetic variation influences the taxonomy or function of the 

rhizosphere microbiome remains equivocal. I approached this question by culturing 

and sequencing 48 Pseudomonas isolates from two maize genotypes grown at two 

different fields, and analyzing the Pseudomonas genomes to identify components 

under maize genetic control. I observed a small but significant association of maize 

genotypes with the variation in the metabolic genes of the Pseudomonas isolates, 

while I did not see an association of maize genotypes with the abundance of the 

isolates.  

Plant age is another important factor in shaping the rhizosphere microbiome, as 

plant age reflects changes in plant genetic control. Treating the rhizosphere 

microbiome as a quantitative trait, the proportion of this phenotypic variation 

attributable to plant genetic control can be measured as the heritability of the 

rhizosphere microbiome. To address how much variation in the maize rhizosphere 

microbiome is accounted for by maize genotypic variation, and to monitor how the 

heritability of the maize rhizosphere microbiome changes as maize grows and 



develops, we sampled the maize rhizosphere microbiome from 27 diverse maize lines 

grown in three different fields over the entire maize growing season. I followed the 

temporal dynamics of the microbiome, and estimated the proportion of variation in the 

beta diversity of the rhizosphere microbiome samples at each time point explained by 

maize genotypes, fields, and genotype by field interactions. I found that the maize 

genotype effect starts to increase at week 2 after planting, suggesting that the maize 

genetic control is taking effect. I observed the strongest maize genotype effect around 

flowering time. I also identified some potential heritable taxa as well as OTUs whose 

abundances vary over maize developmental stages. In addition, I observed increased 

species loss starting at week 2, which corresponds to the time point when maize 

genetic control starts to take effect, whereas species loss peaks at flowering time when 

maize imposes the strongest genetic control on the rhizosphere microbiome. 

Metagenomes are full of microbial “dark matters” that may harbor vast 

functional capacities. To optimize the function and decipher a functional region in a 

plant-growth promoting bacterial protein from the maize rhizosphere, I retrieved the 

rhizosphere bacterial protein regions and swapped them into E. coli to construct 

variant libraries, and selected the variant libraries for several rounds using nitrogen 

source limitation. I observed the fixation of known essential active site residues before 

the selection, and the fixation of several residues after selection, suggesting they are 

important for protein function. My results showed successful optimization and 

functional characterization of a region in this maize rhizosphere enzyme. 
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CHAPTER 1 

An Overview of the Maize Rhizosphere Microbiome 
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Plant rhizosphere microbiome 

Plants conduct photosynthesis and convert light energy to carbohydrates. Up 

to 40% of the plant photosynthates are released in the form of root exudates into the 

rhizosphere (Singh et al 2004), which is the area in close proximity to plant roots 

(Hartmann et al 2008). Root exudates are carbon-rich, and contain organic 

compounds such as sugars, organic acids, amino acids, fatty acids, proteins, and a 

number of plant secondary metabolites (Badri and Vivanco 2009). These compounds 

create unique ecological niches for microbes surrounding the roots, attracting to the 

vicinity a huge number of microorganisms that are collectively named as the 

rhizosphere microbiota, with the sum of microbial genomes being regarded as the 

microbiome (Hooper and Gordon 2001) (Figure 1.1).  

 

Figure 1.1 The plant rhizosphere and the rhizosphere microbiome. Adapted from 
Philippot et al 2013. 

 

Plants and their rhizosphere microbiome are considered as “superorganisms” 

(Mendes et al 2011), in which plants interact closely with the microbes. Mediated 

through root exudates, plants directly or indirectly influence their rhizosphere 

microbiome. Besides providing energy source to the microbiome, root exudates and 

other rhizodeposits act as signals to recruit microbes to the rhizosphere. One 
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example is the legumes-rhizobia symbiosis: flavonoids secreted at the legume root 

surface attract rhizobia to colonize and infect root hairs and regulate bacterial 

nodulation factor gene expression (Abdel-Lateif et al 2012). Root exudates also 

shield plants from pathogenic microbes. For example, maize roots secrete the anti-

fungal secondary metabolites 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one 

(DIMBOA) and 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) (Frey et al 2009). Other 

aspects of the influence from plants on their rhizosphere microbiome include 

adjusting the soil pH (Hinsinger et al 2003), facilitating growth of beneficial microbes 

(Cai et al 2009), interference with bacterial cell-cell communicating (Gao et al 2003, 

Proust et al 2011), and so on. Although the influence from plants is not the only 

factor, it has been proposed that these positive and negative influences from plants 

were key in shaping the rhizosphere microbiome (Dennis et al 2010).  

Rhizosphere microbiome also interacts with and influences plants in a number 

of ways (Figure 1.2). One beneficial effect from roots-associated microbes includes 

decomposing soil minerals that are inaccessible to plants, thus providing plants with 

essential nutrients (Van Der Heijden et al 2008). For example, bacteria and fungi 

produce phytase that immobilizes inorganic phosphate, making it available for plants 

(Richardson and Simpson 2011). Roots-associated microbes also benefit plants in 

many other aspects, such as protecting plants from infection by soil-borne pathogens 

(Garbeva et al 2004, Mendes et al 2011), fixing nitrogen (Hsu and Buckley 2009), 

promoting root growth by producing phytohormones (Mavrodi et al 2006), and 

relieving plant abiotic stresses such as heavy metal contamination (Gamalero and 

Glick 2012), high salinity (Egamberdieva and Lugtenberg 2014), and drought (Kim et 

al 2012). These influences from the rhizosphere microbiome on plants are critical to 

plant growth and development.   
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Figure 1.2 The influence of the rhizosphere microbiome on plants. Adapted from 
Mendes et al 2013.  

 

The rhizosphere microbiome has been compared to the gut microbiome 

(Berendsen et al 2012) as they share many similarities. These include mediation of 

host nutrient uptake, suppression of pathogen invasion to host, regulation of host 

immunity, and so on (Berendsen et al 2012). In addition, similar to mammals and their 

gut microbiome (Ley et al 2008), it has been proposed that plants and their 

rhizosphere microbiome co-evolve (Bakker et al 2012, Rosenberg and Zilber-

Rosenberg 2013). Genetic variation is the building block for evolution. Therefore, to 

further understand the interactions between plants and their rhizosphere microbiome, 

it is important to learn more about how plant genotypes control the rhizosphere 

microbiome, and what compositions of the microbiome are related to plant genetic 

variation. 
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Plant genetic variation controls rhizosphere microbiome  

Soil-borne microbial communities are generally affected by a number of 

abiotic factors. These mostly consist of factors resulting in heterogeneous 

environment and different geographic patterns, such as a number of soil 

physiochemical parameters (Chaparro et al 2012), including soil pH (Lauber et al 

2009), temperature and moisture content (Bell et al 2009), carbon content (Cruz-

Martínez et al 2012), carbon/nitrogen ratio (Nuccio et al 2013), mineral composition 

(Carson et al 2009), and so on. These factors play an important role in shaping the 

soil microbiome.   

The influence from host plants, and the interactions between host plants and 

abiotic factors contribute further to the differences between the rhizosphere and bulk 

soil microbial communities, which has been termed the rhizosphere effect (Berendsen 

et al 2012). In addition, it has been shown that the influence from plants along with 

environmental heterogeneity resulted in variation in the rhizosphere microbiome. For 

example, our recent survey on the rhizosphere microbiome collected from multiple 

maize inbred lines grown at five different fields in the Northeast and Midwest 

demonstrated that biogeography, i.e., field heterogeneity, as well as maize genetic 

differences, both contributed to the variation in the diversity of the maize rhizosphere 

microbiome (Peiffer et al 2013). Numerous studies have further pointed the 

importance of plant genetic variation, which controls the types and timing of root 

exudates, as a critical regulator for rhizosphere microbiome. It is well known that 

different plant species harbor distinct rhizosphere microbiomes (Berendsen et al 

2012). Within a plant species, studies on Arabidopsis thaliana rhizosphere bacterial 

communities have revealed that different Arabidopsis genotypes produced unique 

root exudates that closely regulated recruitment of different rhizosphere bacteria 
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(Micallef et al 2009b). In addition, it was shown that two Arabidopsis genotypes 

secreted different root exudates over time, which led to different assembly of 

rhizosphere bacterial communities (Micallef et al 2009a). These experimental 

evidences have all supported the relationship between plant genetic control and the 

variation in the rhizosphere microbiome, and that plant genetic variation is crucial in 

the differential assembly of rhizosphere microbiome.   

Plant genetic control may select on the taxonomy of the rhizosphere 

microbiota. Different plant genotypes may recruit unique microbial taxa to their 

rhizosphere. For example, several potato cultivars shared many bacterial taxa in their 

rhizosphere, but also attracted some cultivar-dependent bacterial taxa to their roots 

(Weinert et al 2011). Another study showed that two different bacterial genera, 

Pseudomonas and Serratia, responded differently to volatile organic compounds 

(VOC) from two plants, Lotus corniculatus and Saponaria officinalis, suggesting that 

Pseudomonas preferred a more narrow selection of VOC, whereas Serratia could be 

recruited by a broader spectrum of VOC (Junker and Tholl 2013). It is possible that 

different plant genotypes that secret distinct VOC profiles in their root exudates are 

likely to attract different bacterial taxa to their rhizosphere. On the other hand, the 

relative abundance of the same bacterial taxa may also vary in the rhizosphere of 

different plants. For example, different relative abundances of bacteria from the 

orders Pseudomonadales, Actinomycetales, and Enterobacteriales were discovered 

in the study on the rhizosphere microbiome of three potato cultivars (Weinert et al 

2011). In another study that compared the disease-suppressing rhizosphere 

microbiome to the disease-prone rhizosphere microbiome of sugar beet plants, 

researchers showed that the relative abundances of several bacterial classes, 

including Gammaproteobacteria, Betaproteobacteria, and Firmicutes, were 
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associated with whether the sugar beet rhizosphere microbiome was resistant or 

susceptible to Rhizocbonia solani infection (Mendes et al 2011). Thus, plant genetic 

variation is related to the differences in microbial taxa in the rhizosphere microbiome.  

Plant genotypes may also select on the functional capacity of the rhizosphere 

microbiome. Bacteria have been divided to R-strategists, which grow fast on available 

nutrients, and K-strategists, which grow slowly and are more ubiquitous (Fierer et al 

2007). The distinct blends of root exudates secreted by different plant genotypes may 

therefore attract different R-strategist bacteria to the rhizosphere based on the 

functional capacity of the bacteria to utilize the nutrients. For example, previous 

studies have shown the selection from different maize genotypes on the 2,4-

diacethylphloroglucinol-producing Pseudomonas strains (Picard and Bosco 2006), 

the selection from rice cultivars on ammonia-oxidizing bacteria (Briones Jr et al 2003), 

and the preferences for the type-I methanotrophs over type-II methanotrophs (Wu et 

al 2009). Thus, plant genetic variation is also related to the differences in the 

functional capacity of the rhizosphere microbiome. 

Although the impact of plant genetics on their rhizosphere microbiome has 

been widely studied, relatively less is known about the influence of plant genetic 

control on the rhizosphere microbiome within a plant species. Previous studies on the 

rhizosphere bacterial communities from different potato cultivars have uncovered that 

potato cultivars with more similar genotypes showed smaller differences in their 

rhizosphere bacterial communities compared to those of more different potato 

cultivars (Weinert et al 2009), and that potato cultivars recruited several cultivar-

specific bacterial taxa and differed in the relative abundances of their shared bacterial 

taxa (Weinert et al 2011). One study on the Arabidopsis root microbiome from eight 

Arabidopsis accessions grown in a greenhouse revealed a small but significant 
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difference in the relative abundance of a few bacterial taxa in the endophytic 

compartment that could be used to differentiate the Arabidopsis accessions 

(Lundberg et al 2012). Another study on the Arabidopsis root microbiome from two 

Arabidopsis ecotypes grown in controlled field conditions identified one bacterial taxa 

with different abundance in the root microbiome from the two Arabidopsis genotypes 

(Bulgarelli et al 2012). Our recent survey on the maize rhizosphere microbiome from 

27 maize inbred lines grown at five different fields at flowering time also discovered a 

small but truly significant maize genotype effect on the variation in the rhizosphere 

microbiome diversity (Peiffer et al 2013). Other studies on the rhizosphere 

microbiome from different genotypes within Medicago (Offre et al 2007, Zancarini et 

al 2012), Arabidopsis (Micallef et al 2009b), and soybean (Wang et al 2009) have 

also found that different plant genotypes within a plant species showed variation in 

their rhizosphere microbial populations. These studies established that plant 

genotypic variation, even within a plant species, is related to different rhizosphere 

microbiome.  

One important aspect that received even less attention on the influence from 

plant genotypes on their rhizosphere microbiome is the heritability of the rhizosphere 

microbiome. Heritability refers to the proportion of phenotypic variation in a population 

accounted for by genetic variation of individuals. If the plant rhizosphere microbiome 

is treated as a quantitative trait, it is probably affected by plant genotypes and/or 

other abiotic factors, as well as the interaction between plant genetics and those 

factors. The heritability of the rhizosphere microbiome therefore answers how much 

of the variation in the rhizosphere microbiome is attributable to plant genetic control 

and/or other factors. An earlier investigation on the intraspecific heritability of root 

microbial communities from Populus angustifolia found that intraspecific plant 
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genotypic variation explained over 60% of the variation in microbial biomass nitrogen 

levels, and nearly 70% of the variation in the microbial community composition 

(Schweitzer et al 2008). In our recent study on the maize rhizosphere microbiome, the 

measurement of heritability was applied to the α- or β- diversity indexes of the 

microbiome by calculating how much of the variation in the microbiome diversity was 

accounted for by the variation in maize genotypes, field conditions, and maize 

genotype by field interactions using analysis of variance (Peiffer and Ley 2013, 

Peiffer et al 2013). This study revealed that within a field, maize genotypes explained 

nearly half and more than 20% of the α- and β-diversity of the rhizosphere 

microbiome, respectively, suggesting that the maize rhizosphere microbiome diversity 

is heritable (Peiffer et al 2013). Studies on mammalian gut microbiome provided 

additional insights into measuring the heritability and identifying the heritable 

components of microbiomes. One study employed quantitative trait locus (QTL) 

analysis to examine whether certain mouse gut microbiome bacterial taxa could be 

treated as quantitative traits that were associated with over five hundred single 

nucleotide polymorphisms (SNPs) in the animals. It was suggested that several 

mouse genomic regions and QTLs are associated with the variation in the relative 

abundance of a few lower-order bacterial taxa (Benson et al 2010). Human gut 

microbiome heritability studies using twins were equivocal, concluding that a strong 

host genotype effect may or may not contribute to the variation in the human gut 

microbiome (Spor et al 2011). Other studies have identified several bacterial families 

as heritable components of the chicken gut microbiome (Meng et al 2014, Zhao et al 

2013). These results indicate that the heritability of microbiomes may be small, and 

may require better experimental design and analyses to be discovered.  
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Plant developmental stages influence rhizosphere microbiome  

Besides plant genetic control and abiotic factors related to spatial 

heterogeneity, the taxonomy and/or functional capacity of the rhizosphere 

microbiome may also be under the influence of plant developmental stages. In 

general, time may be an important factor behind the changes in many soil 

physiochemical properties, such as moisture (Baskan et al 2013), nitrogen availability 

(Cain et al 1999), and C/N ratio (Zhang et al 2011), which may influence rhizosphere 

microbiome. More specifically, the composition of root exudates changes as plants 

age (Baudoin et al 2002, Chaparro et al 2013), which may reflect the variation of plant 

genetic control over time. Many studies probing rhizosphere microbiome in relation to 

plant development have been conducted in Arabidopsis. In a recent survey that 

examined the composition of the Arabidopsis rhizosphere microbiome at four 

Arabidopsis developmental stages, researchers discovered that young Arabidopsis 

seedlings cultivated a more different rhizosphere microbiome from older Arabidopsis 

plants, and that several bacterial taxa displayed temporal patterns in response to 

plant developmental stages. In addition, a number of genes in the Arabidopsis 

rhizosphere microbiome showed differential expression over time (Chaparro et al 

2014). A chromatographic analysis on the root exudates collected from Arabidopsis at 

different developmental stages showed that Arabidopsis secreted varying 

percentages of sugars, sugar alcohols, amino acids, and phenolics over time. The 

variation in the root exudates were correlated with the functional genes involved in 

metabolizing the root exudates in the rhizosphere microbiome (Chaparro et al 2013). 

Studies of rhizosphere microbiomes of other plants also suggested a temporal 

pattern. For examples, rhizosphere bacterial taxa at the family and genus levels have 

been shown to vary significantly over the maize developmental stages of one maize 
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cultivar (Li et al 2014), and the structures of bacterial and fungal populations varied 

as Medicago transited from vegetation to reproduction (Mougel et al 2006), whereas 

the structure of bacterial communities changed significantly following potato 

developmental stages in all potato cultivars examined (van Overbeek and van Elsas 

2008). Therefore, plant developmental stages also contribute to the variation in the 

rhizosphere microbiome.    

 

The maize rhizosphere microbiome 

To study within a plant species, the heritability of the rhizosphere microbiome, 

the change in the heritability over plant developmental stages, and whether plant 

genotypes select taxonomical or functional bacterial populations, I focused my 

research on the maize rhizosphere microbiome. Maize is one of the staple food crops 

in the world, and harbors extensive natural diversity and tractable genotypic and 

phenotypic information (McMullen et al 2009). The maize nested association mapping 

(NAM) population is a suite of maize strains developed by Ed Buckler and colleagues 

(Yu et al 2006) including 5,000 recombinant inbred lines (RILs) with identified 

genotypes and defined QTLs (McMullen et al 2009). Maize also has well-described 

growth stages (Meier 2001), with an important one, flowering, being mapped to 

numerous QTLs (Buckler et al 2009). These previous efforts allowed me to associate 

rhizosphere microbial phenotypic variation with maize genotypic variation and 

temporal factors. For this dissertation research, I used the maize rhizosphere soil 

samples from 27 NAM founder lines (Table 1.1) grown in a randomized complete 

block design in three fields in Ithaca, Lansing, and Aurora at New York state, one field 

in Urbana, Illinois, and one field in Columbia, Missouri, as described previously 
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(Peiffer et al 2013). The maize rhizosphere microbiome samples were collected every 

week from week one after planting to week 15 after planting. The week 20 maize 

rhizosphere microbiome samples were also collected.  
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Table 1.1 The 27 maize inbred lines and subgroups used in this dissertation. 
 
Maize inbred lines Subgroups 

B73 Stiff stalk 

B97 Non-stiff stalk 

CML103 Tropical-subtropical 

CML228 Tropical-subtropical 

CML247 Tropical-subtropical 

CML277 Tropical-subtropical 

CML322 Tropical-subtropical 

CML333 Tropical-subtropical 

CML52 Tropical-subtropical 

CML69 Tropical-subtropical 

Hp301 Popcorn 

Il14h Sweet corn 

Ki11 Tropical-subtropical 

Ki3 Tropical-subtropical 

Ky21 Non-stiff stalk 

M162w Non-stiff stalk 

M37w Mixed 

Mo17 Non-stiff stalk 

Mo18w mixed 

MS71 Non-stiff stalk 

NC350 Tropical-subtropical 

NC358 Tropical-subtropical 

Oh43 Non-stiff stalk 

Oh7B Non-stiff stalk 

P39 Sweet corn 

Tx303 Mixed 

Tzi8 Non-stiff stalk 
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Aims of study 

Metagenomics has opened a window into the functional capacities of microbial 

communities in the environment, revealing a vast array of uncharacterized proteins 

that may be useful in many fields. While the structure and function of a small 

percentage of proteins in metagenomes are known, the remaining uncharacterized 

fraction remains a “dark matter” (Rinke et al 2013), ignored and omitted from most 

analyses. The first aim of this dissertation research is to optimize the function and 

decipher a functional region in the plant-growth promoting bacterial protein, 1-

aminocyclopropane-1-carboxylic acid (ACC) deaminase, from the maize rhizosphere 

microbiome. 

As described above, plant genotypes may select on the taxonomy or 

functional capacity of the rhizosphere microbiome. The second aim of this dissertation 

research is to investigate the influence of maize genetic variation on its rhizosphere 

Pseudomonas populations, and to find out whether maize genotypes were 

significantly associated with the variation in the Pseudomonas isolate genomes.  

Relatively fewer studies were focused on the heritability of rhizosphere 

microbiome, and currently, no longitudinal study has been conducted to investigate 

the heritability of rhizosphere microbiome over time. Thus, the third aim is to measure 

the heritability of maize rhizosphere microbiome over the entire maize growth season, 

and to investigate whether the maize genetic control on the rhizosphere microbiome 

changes over time.  
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Abstract 

Metagenomics has opened a window into the functional capacities of microbial 

communities in the environment, revealing a vast array of uncharacterized proteins 

that may have use in medicine, industry, and agriculture. While protein crystal 

structures and traditional mutational analyses are proven methods to determine the 

functional regions of a protein and to optimize its enzymatic activity, these methods 

are time consuming and difficult. Here I describe the use of a metagenomic library to 

optimize the function and decipher a functional region in the plant-growth promoting 

bacterial protein, 1-aminocyclopropane-1-carboxylate (ACC) deaminase region (DR), 

encoded by a rhizosphere microbial metagenome. I competed these ACC-DR 

variants in a selection assay based on ACC deaminase’s capacity to provide nitrogen 

for the growth of E. coli in vitro. The most successful ACC deaminase region (ACC-

DR) variants were identified after multiple rounds of selection using 454 

pyrosequencing. I observed that the previously studied essential active site residues 

were already fixed in the metagenomic library and that residues within the previously 

structurally identified ACC deaminase small domain and helix 3 went to fixation after 

selection. In addition, I identified a divergent essential residue that hints at alternate 

substrates or other constraints in nature, and a cluster of neutral residues that did not 

influence the performance of ACC-DR variants in the selection assay. I observed the 

same fixation of one important and one divergent residue after selection in an artificial 

ACC-DR variant library generated by DNA oligomer synthesis. Therefore, by use of a 

simple competition assay and a metagenomic library, I was able to optimize and 

functionally characterize a region of a metagenomic enzyme.  

 

Introduction 
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Environmental metagenomes are a rich and mostly uncharacterized reservoir of 

protein diversity encoded by a vast diversity of microorganisms. Metagenomes are 

mined for novel enzymes and products, such as the discovery of antibiotic resistant 

proteins (McGarvey et al 2012) and cellulose-degrading enzymes (Nacke et al 2012) 

from soil metagenomes. Metagenome sequences are also frequently generated to 

describe the functional attributes of microbial systems (Dantas et al 2013). While the 

structure and function of a small percent of proteins in metagenomes are known, the 

remaining uncharacterized fraction remains a “dark matter” (Rinke et al 2013), 

ignored and omitted from most analyses. Hence, facile and high throughput methods 

to understand the relationship between protein sequence and function of novel 

metagenomic proteins are needed.  

Recently, deep-mutational scanning was developed as a method to elucidate the 

sequence-function relationships and optimal sequence of proteins (Fowler et al 2010). 

Using a doped DNA oligomer library and Illumina sequencing, Fowler et al. were able 

to map the mutational preferences of hundreds of thousands of protein variants for an 

important human protein domain and to show the fitness effects of all possible point 

mutations in the protein domain. Given the diversity of protein variants in the 

metagenomes, I hypothesized that the metagenome itself could be used as the pool 

of variants. Furthermore by using the metagenome as a source of enzyme variants, 

non-functional protein variants would already have been excluded, thereby reducing 

the total sequence search space. 

The enzyme I targeted to construct a metagenomic library for optimization and 

mutational analysis is 1-aminocyclopropane-1-carboxylate (ACC) deaminase, an 

important plant-growth promoting protein. ACC deaminase is encoded by a wide 

variety of soil bacteria from the Proteobacteria, Firmicutes, and Actinobacteria phyla 
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(Glick et al 2007, Onofre-Lemus et al 2009). In the soil environment directly proximal 

to plant roots, the rhizosphere, bacteria convert ACC, the precursor of the plant stress 

hormone ethylene, to alpha-ketobutyrate and ammonia. This activity has been 

associated with relief from a number of plant stresses (Sheehy et al 1991) and 

promotion of root elongation (Glick 2004, Glick and Stearns 2011).  

Previous structural and mutational studies on the Pseudomonas and yeast 

ACC deaminase proteins demonstrated that the ACC deaminase protein structures 

are very similar with several highly conserved amino acid residues involved in binding 

the substrate and cofactor. Using degenerate primers based on the alignment of 

bacterial ACC deaminase proteins, I amplified by PCR a 37 amino acid region from 

the full-length ACC deaminase. This region contains several previously identified 

conserved residues as well as variable residues, and is hereafter referred to as the 

ACC deaminase region (ACC-DR). Based on the previous structural analyses on 

bacterial and yeast ACC deaminase proteins (Fujino et al 2004, Karthikeyan et al 

2004, Ose et al 2003, Yao et al 2000) and the alignment of characterized ACC 

deaminase sequences (Figure 2.1), the ACC-DR gene sequence displays high levels 

of conservation at regions coding for the active sites of the enzyme, whereas regions 

encoding non-active sites exhibit far higher levels of variation.  

In order to further elucidate the function of the remaining residues in the ACC 

deaminase region and to test the use of a metagenomic library for mutational analysis 

and optimization, I cloned a maize rhizosphere metagenomic library of over 1000 

ACC-DR variants into E. coli and conducted a growth selection assay based on the 

ability of ACC-DR gene variants to break down ACC and make nitrogen available for 

cell survival. Abundant (or fixed) ACC-DR gene variants after multiple rounds of 

selection were deemed the most efficient in this context. I first tested competing 
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rhizosphere bacterial ACC-DR variants. I then conducted the same selection assay 

using an artificial ACC-DR variant library generated by doped DNA oligomer 

synthesis using a winning ACC-DR variant from the soil libraries as the template for 

the oligo synthesis.  

 

 

Figure 2.1 Alignment of soil bacterial ACC deaminase gene sequences. Shown in 
this figure is the Clustalx-colored alignment of 16 soil bacterial ACC deaminase gene 
sequences. The full-length alignment was truncated to the ACC-DR sequences due 
to the limit in figure size.  

 

Multiple rounds of selection in replicate assays on the rhizosphere bacterial 

ACC-DR variant libraries demonstrated that the growth competition-based selection 

assay selected for the most beneficial residues in and around the active site of the 

ACC deaminase enzyme, and was able to reveal the importance of residues not 

previously known to be critical for ACC function. In the artificial ACC-DR variant 



 

31 

library, I observed the same fixation of one important residue and one divergent 

residue as those in the soil bacterial ACC-DR variant libraries after selection. 

Therefore, I demonstrated that a metagenome can be used as a starting source of 

variation in protein structure mutational analysis and optimization assays.  

 

Methods 

Rhizosphere samples and ACC deaminase plasmids 

Missouri rhizosphere samples from maize inbred lines Oh43, MS71, M37W, 

and NC358 were collected in 2010 and DNA was extracted as previously described 

(Peiffer et al 2013) by a team of people in my lab. A Lansing rhizosphere sample from 

one maize plant of the week two B73 maize inbred line was used for the library 

construction. 

A plasmid containing the Pseudomonas cloacae ACC deaminase and its 

flanking region, p4U2, was a generous gift from Dr. Bernard Glick at the University of 

Waterloo (Li and Glick 2001). The ACC deaminase region was deleted from p4U2 

using the primer acdSdelF 5'-

AATAGCGGCCTGGCCTTCGGCGCAGGAAAACTGGGTGAACTACT-3' and the 

Agilent QuikChange Lightning Site-Directed Mutagenesis Kit (Agilent Technologies, 

Santa Clara, CA). The PCR reaction was as follows: 51 µl containing 5 µl 10X 

QuikChange reaction buffer, 1 µl p4U2 plasmid DNA (~50 ng), 1 µl acdSdelF primer, 

1 µl QuikChange dNTP mix, 1.5 µl QuikSolution reagent, and 1 µl QuikChange 

Lightening Enzyme. Thermal cycling consisted of an initial denaturation at 95°C for 

2min, 18 cycles of denaturation at 95°C for 20 s, annealing at 60°C for 10 s, and 

elongation at 68°C for 5 min, followed by a final extension at 68°C for 5 min. The 

plasmid without the P. cloacae ACC deaminase region is referred to as p4U2∆ACC-
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DR.  

Cloning of ACC deaminase variants into E. coli 

The rhizosphere bacterial ACC deaminase regions were first amplified by PCR 

from the Lansing week2 A1 maize rhizosphere DNA using the primers acdSinserF 5'-

AATAGCGGCCTGGCCTTCGGCGGSAACAAGACGCGCAAG-3' and acdSinserR 5'-

CGGAGTAGTTCACCCAGTTTTCCTGCACSAGCACGCACTTCATG-3'. To capture 

the maximum diversity of ACC deaminase from the rhizosphere sample, three 

separate groups of PCR reactions were conducted, and each separate group 

consisted of five replicate PCR reactions. Each PCR replicate was 20 µl containing 2 

µl rhizosphere DNA (~10 ng), 0.4 µl acdSinserF, 0.4 µl acdSinserR, and 10 µl 2X 

Phusion HF Master Mix (New England BioLabs, Ipswich, MA). Thermal cycling 

consisted of initial denaturation at 98°C for 30s, 30 cycles of denaturation at 98°C for 

10 s, annealing at 57°C for 30 s, and elongation at 72°C for 1 min, followed by a final 

extension at 72°C for 7 min. For each group of PCR reactions, amplicons from the 

five replicate PCRs were combined, and purified using the QIAquick PCR Purification 

Kit (Qiagen, Valencia, CA). The three groups of amplicons were inserted into p4U2-

del in three separate mutagenesis reactions similar to those described above. Each 

mutagenesis reaction generated a pool of rhizosphere bacterial ACC deaminase 

variants thereafter referred to as lineages 1, 2, and 3.  

Growth-based selection assay 

To assess the ACC deaminase function of the variants, each lineage of the 

plasmid library containing rhizosphere bacterial ACC deaminase variants was 

transformed into E. coli XL10-Gold chemical ultracompetent cells (Agilent 

Technologies, Santa Clara, CA) following the manufacturer's protocol. To maximize 

the diversity of ACC deaminase variants transformed into E. coli, three replicate 



 

33 

transformations were conducted for each lineage of ACC deaminase variants. The 

three transformations for each lineage of ACC deaminase variants were combined 

(total volume 1.65 ml), Lysogeny broth (LB) supplemented with 50 mg/ml Ampicillin 

was added to 5 ml, and grown at 37 °C overnight. The overnight culture was spun 

down, and washed twice in 0.1 M Tris-HCl buffer (pH 7.5). For each lineage, the 

washed cell pellets were resuspended in 1.65 ml DF minimal media (Dworkin and 

Foster 1958) minus (NH4)2SO4, and supplemented with 0.2% dextrose, 50 mM 

MgSO4, 1 mM CaCl2, 50 mg/ml Ampicillin and 10 µg/ml thiamine. 300 µl of the 

washed overnight culture were frozen as the before selection ACC deaminase variant 

samples. 300 µl resuspended cell pellets normalized by the OD600 values of the 

previous round of cultures were added to 30 ml supplemented DF minimal media 

minus (NH4)2SO4 in three replicates, and 1 ml 0.5 M 1-aminocyclopropane-1-

carboxylate (ACC) was added lastly to the medium (hereafter this growth medium is 

called the DF/ACC medium) as the sole nitrogen source. The E. coli cells with ACC 

deaminase variants were grown at 30 °C for five days in the first round of selection. 

At the end of the first round of selection, the cultures were harvested, spun down, 

washed, and resuspended. 300 µl resuspended cells normalized by the OD600 

values of the previous round of cultures were transferred into 30 ml fresh DF/ACC 

medium to start the second round of selection. The second round of selection 

consisted of three days of growth at 30 °C, and were passaged into fresh DF/ACC 

medium to start the third round of selection in a similar way. A total of six rounds of 

selection were conducted on the ACC deaminase variant library. Importantly, 300 µl 

of cultures were collected as ACC deaminase variant pool samples after each round 

of selection. Note that E. coli cells containing different rhizosphere ACC-DR variants 

had heterogeneous growth rates within each variant library and between libraries, so I 
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did not sync the E. coli cells to the same growth stage but rather ensured that I 

provided the same amount of E. coli cells to each round of selection across all three 

variant libraries based on normalization of OD600 values, and gave each library of 

variants the same length of growth time. Also note that because the time zero culture 

for lineage2 in Library B was lost due to the broken flask where the culture was grown, 

Library B ACC-DR variants contained only two lineages.  

The test for cheaters, which tested whether E. coli cells without a functional ACC 

deaminase could grow on the nitrogen produced by E. coli cells with a functional ACC 

deaminase, was performed similarly to the selection assay except that two rounds of 

selection were conducted. 

Illumina sequencing of the soil bacterial ACC deaminase region 

The soil bacterial ACC deaminase region was amplified by PCR from the 

extracted DNA of the four Missouri maize soil samples using the degenerate primers 

a2F 5'-AATAGCGGCCTGGCCTTCGGCGCAGGAAAACTGGGTGAACTACT-3' and 

a2R 5'-CACSAGCACGCACTTCATG-3'. The amplicons were purified with the 

Agencourt AMPure XP PCR purification beads (Beckman Coulter, Indianapolis, IN). 

Addition of Illumina linker and adaptor sequences, and sequencing of the ACC 

deaminase regions on the Illumina Genome Analyzer IIx (Illumina Inc., San Diego, CA) 

were conducted by the Cornell University Life Sciences Core Laboratories Center.  

Illumina sequences were analyzed by Dr. Jeff Werner. Illumina sequences were 

processed using in-house Perl scripts as follows. Paired-end sequences were joined 

based on aligning the overlapping region of 23 base pairs, with no internal gaps 

allowed. Reads were filtered by trimming at sites of low-quality bases (Q20 cutoff) 

from single-direction reads and discarding reads that lost more than six bases. Joined 

read pairs in which the overlapping sequence region between the forward and 
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reverse read disagreed internally. Up to three tailing bases (for each direction) that 

disagreed with the complimentary sequence were allowed to be trimmed, and it was 

confirmed that trimmed tailing bases had comparatively lower quality scores. The 

ACC-DR DNA sequences were translated to their corresponding amino acid 

sequences. The correct reading frame was determined by comparison to a known 

amino acid template sequence. Amino acid sequences were then clustered by 

absolute identity using UCLUST (Edgar 2010), to tabulate the protein-level diversity 

available in the metagenome pool of variants. 

454 Sequencing of ACC Deaminase Variant Pools 

Plasmid DNA was extracted from the ACC deaminase variant pool samples 

collected before selection and after each round of selection using the QIAprep Spin 

Miniprep Kit (Qiagen, Valencia, CA). The ACC deaminase regions were amplified by 

PCR from the plasmid DNA using the following composite primer pair: forward primer 

= 454 Titanium Lib-I Primer A/5-base barcode/a2F primer, and reverse primer = 454 

Titanium Lib-I Primer B/a2R primer. Each sample was amplified in quadruplicate 20 

µl-PCR reaction containing 1 µl plasmid DNA (~10 ng), 0.4 µl forward primer, 0.4 µl 

reverse primer, and 10 µl 2X Phusion HF Master Mix (New England BioLabs, Ipswich, 

MA). Thermal cycling consisted of initial denaturation at 98°C for 30s, 30 cycles of 

denaturation at 98°C for 10 s, annealing at 51.2°C for 30 s, and elongation at 72°C for 

1 min, followed by a final extension at 72°C for 7 min. Following PCR, DNA amplicons 

were purified with the Agencourt AMPure XP PCR purification beads (Beckman 

Coulter, Indianapolis, IN), quantified using the Quant-iT PicoGreen dsDNA Assay Kit 

(Life Technologies, Grand Island, NY), and pooled in equimolar ratios into a single 

sample with a final concentration of 30 ng/µl. Pyrosequencing was performed using 

the Roche GS FLX Titanium chemistry (454 Life Sciences, Branford, CT) at the 
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engencore facility in the University of South Carolina.  

Analysis of ACC Deaminase Variant Pools 

454 reads were analyzed using the QIIME software package (Quantitative 

Insights into Microbial Ecology) using default parameters for each step (Caporaso et 

al 2010). Sequences were chimera-checked and clustered into ACC deaminase 

variant clusters using Otupipe (Edgar et al 2011) at a sequence similarity threshold of 

0.99. Each ACC deaminase variant cluster was represented by its most abundant 

sequence. A total of 33625 quality-filtered reads were obtained for 51 samples, an 

average of 659 reads per sample (min = 97, max = 10056). The forward and reverse 

primers were removed using a customized script. Due to the many indels in the 

sequences, a custom script was employed to maintain the correct length of the 

sequences. The P. cloacae ACC deaminase region was selected as the 'backbone' 

sequence. Using the EMBOSS water program (Rice et al 2000), each 454 read 

trimmed of both primers was aligned to the backbone. If an insertion was found 

relative to the backbone, the insertion was deleted in the 454 reads. If a deletion was 

found relative to the backbone, a gap was inserted into the 454 reads at the 

corresponding position. The insertion in the 454 sequences was easy to identify; 

however, the content of the gaps (i.e. what base to fill in the gaps) was impossible to 

determine within the limited context. Therefore, inevitably, a number of the resulting 

sequences still contained gaps. However, after this process, all sequences were of 

the same length, and the correct reading frame was maintained. The DNA sequences 

were translated into amino acid sequences, and the sequences that contained more 

than one unknown residue were excluded from the analysis. After this quality-filtering, 

26764 reads remained for 51 samples, an average of 524 reads per sample (min = 83, 

max = 6710).  
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To calculate the β-diversity between the ACC deaminase variant pools before 

and after each round of selection, the OTU table was rarefied once at the depth of 80 

reads per sample. A phylogenetic tree was built for the representative sequences of 

the ACC deaminase variant clusters using ClustalW (Larkin et al 2007), and the tree 

was used for calculating β-diversity using the UniFrac distance metrics (Lozupone 

and Knight 2005). To calculate the frequency of each DNA base or amino acid 

residue at every DNA/protein position, the OTU table was normalized by frequency. 

The 'plyr' (Wickham 2011) and 'reshape2' packages (Wickham 2007) were applied to 

numerate the DNA base/amino acid residue frequency in R v.2.15.0 (R Development 

Core Team 2010). The amino acid and DNA waffle plots were generated based on 

the frequency of the residues and bases using the R package ‘ggplot2’ (Wickham 

2009). The structure of the H26 ACC deaminase variant was computed using 

homology modeling on the SWISS-MODEL server (Arnold et al 2006) with the P. sp. 

ACP ACC deaminase (the Q26 ACC deaminase variant, PDB ID 1TYZ) as the 

template (Karthikeyan et al 2004). The structures were visualized and aligned in 

PyMol (DeLano 2002). The characterized ACC deaminase protein sequences from 

bacteria, fungi, and plant were aligned using MUSCLE (Edgar 2004), and the soil 

bacterial ACC deaminase gene sequences were aligned based on the alignment of 

the corresponding protein sequences using PAL2NAL (Suyama et al 2006). The 

alignments were visualized in JalView 2 (Waterhouse et al 2009).  

To identify the amino acid residues that were fixed or neutral in the selection 

assay, a linear regression was fitted to the frequencies of ACC-DR variants in each 

library at time zero and after each round of selection for each residue at each position. 

A residue is defined as being neutral if it has both positive and negative slopes in the 

three libraries, and is fixed if it has a starting frequency of over 0.1 and positive 
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slopes in all three libraries. 

To test whether the eight important residues identified by the selection assay 

hitchhiked to fixation, independence tests were used to identify whether the residues 

were associated. For the ACC-DR variant sequences at time zero before the 

selection assay, one was assigned to the sequences at a certain position if the 

sequences contained the fixed residue at that positions, and a zero otherwise. The 

loglinear model-based independence tests was applied to the 8-way contingency 

tables generated from the binary data for ACC-DR variants in the three soil libraries. 

(Add SCA methods here later).  

Molecular Evolution Analyses of ACC Deaminase Variant Pools 

The codon-based Z-test (Nei and Gojobori 1986) and the Tajima’s neutrality test 

(Tajima 1989) were performed in the Molecular Evolutionary Genetics Analysis 

(MEGA 6.0) program (Tamura et al 2013) on the ACC-DR DNA variants from all three 

soil libraries at time zero before the selection assay. The ACC-DR variants DNA 

variants were filtered by length and aligned based on their encoding protein 

sequences. A total of 16,432 sequences were obtained for the molecular evolution 

analyses. The codon-based Z-test calculates the test statistic dS-dN, with dS and dN 

representing the synonymous and nonsynonymous substitutions per site, respectively. 

The dataset was bootstrapped 500 times to estimate the variance, and the modified 

Nei-Gojobori method with Jukes-Cantor correction (assumed transition/transversion 

bias=15) (Zhang et al 1998) was selected as the substitution model. Any position that 

contained alignment gaps or missing data was eliminated for pairwise sequence 

comparisons. The probability of rejecting the null hypothesis of strict neutral (dN=dS) in 

favor of the alternative hypothesis (purifying selection with dN<dS) was measured and 

tabulated, and the level of significance was set at 5%. Tajima’s neutrality test was 
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conducted using all codon (1st, 2nd, and 3rd) positions, and all positions containing 

gaps and missing data were eliminated. The Illumina-sequenced soil ACC-DR variant 

pool was analyzed in the same way, except that a random subset of 5000 sequences 

were used for the analyses.  

DNA oligomer synthesis of for the artificial ACC deaminase variant pool 

The DNA oligo was synthesized as described previously (Fowler et al 2010) 

(Gene Link, Hawthorne, NY). One of the DNA variants of the ACC deaminase ‘LA’ 

variant was chosen as the ‘wildtype’ backbone of the oligo. The DNA sequence of the 

winning ‘LA’ variant 

‘CTCGAATACCTGATCCCCGAGGCGCTGGCGCAGGGCTGCGACACGCTGGTGT

CGATCGGCGGCATCCAGTCGAACCAGACACGCCAGGTTGCGGCCGTGGCTGC

CCACCTGGG’, which encoded 

‘LEYLIPEALAQGCDTLVSIGGIQSNQTRQVAAVAAHL’), and each base was doped 

with 2.1% non-wildtype nucleotides. The cloning of ACC deaminase variants into E. 

coli, the construction of the E. coli ACC deaminase variant library, and the growth-

based selection assay on the artificial ACC deaminase variant pools were the same 

as described above for the soil rhizosphere bacterial ACC deaminase variant pools.
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Results 

Diversity of ACC deaminase genes in the Rhizosphere  

To assess whether the rhizosphere sample was suitable as a source of ACC 

deaminase protein variants, I first probed the genetic diversity of bacterial ACC 

deaminase genes in four Missouri rhizosphere soil samples collected in 2010. 

Rhizosphere bacterial ACC deaminase genes are GC rich and highly polymorphic 

(Blaha et al 2006) with a few widely conserved regions (Figure 2.1). Thus, I designed 

a degenerate primer pair to amplify a 113-bp region from the ACC deaminase genes 

by PCR. This region, hereafter referred to as the ACC deaminase region (ACC-DR), 

contains several amino acid residues previously shown to be conserved in the active 

site as well as some variable residues (Karthikeyan et al 2004, Ose et al 2003, Yao et 

al 2000) (Figure 2.2).  

 

Figure 2.2 Alignment of ACC-DR from various organisms. Shown in this figure is the 
Clustalx-colored alignment of characterized ACC deaminase proteins in 18 organisms 
from bacteria, fungi, and plant. The full-length ACC deaminase is shown above the 
alignment, and the ACC-DR is marked in green. The amino acid numbering is based 
on the full-length Pseudomonas putida ACC deaminase. The arrows show the 
location of primers used in this study to amplify the ACC-DR, and ‘SNQ’ show the 
active site residues that bind cofactor and sulfate.        
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I assessed the variation in the ACC-DR from our rhizosphere soil samples 

using paired-end Illumina sequencing. After quality filtering, clustering, and removal of 

singletons, over 3.4 million different ACC-DR DNA variants remained, which encode 

over 450k different ACC-DR protein variants. These numbers are likely inflated due to 

sequencing errors, but overall the result indicates that the rhizosphere soil contains a 

high diversity of ACC-DR variants. The seven most abundant ACC deaminase protein 

variants from this rhizosphere soil comprised 51.5% of the sequences, and 

phylogenetic analysis indicated that they were encoded by the genera Burkholderia 

and Pseudomonas from the Proteobacteria phylum and Tetrasphaera and 

Promicromonospora from the Actinobacteria Phyla (Figure 2.3). In accord, previous 

work has reported that ACC deaminases are expressed by bacteria from the 

Proteobacteria and Actinobacteria phyla (Glick et al 2007, Onofre-Lemus et al 2009). 

Importantly, the high level of ACC deaminase protein diversity in this rhizosphere soil 

sample indicated sufficient diversity to serve as an initial variant pool for a selection 

assay. I conducted molecular evolutionary analyses on a random subset of 

sequences from this Illumina-sequenced natural ACC-DR variant pool, and found 

evidence for purifying selection on the ACC-DR (data not shown).  
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Figure 2.3 The seven most abundant rhizosphere bacterial ACC-DR protein variants. 
Rhizosphere bacterial ACC deaminase regions were amplified by PCR from the 
pooled DNA sample of four Missouri maize soil samples, and sequenced with Illumina 
paired-end sequencing. The first amino acid sequence shows the ACC deaminase 
region from the P. cloacae ACC deaminase. Below this sequence the seven most 
abundant ACC deaminase protein variants found in this DNA sample are shown. 
Listed at right are the top protein BLAST hits for these protein variants. 

 

Selection assay allows survival of functional ACC-DR variants only 

In order to identify the optimal ACC-DR sequences from the rhizosphere for ACC 

function in E. coli, I sought to utilize a competition assay in which the fittest ACC-DR 

variants would be selected for and enriched. The competition assay therefore 

requires that E. coli lacking a functional ACC deaminase gene cannot survive (i.e. 

cheat) the selection process by scavenging nitrogen released by co-occurring strains 

that do have ACC deaminase activity. To verify that this condition is met, I first 

competed E. coli cells lacking a functional ACC deaminase with E. coli cells with a 

functional ACC deaminase.  

Li and Glick have shown previously that E. coli cells transformed with a plasmid 

(p4U2) containing the ACC deaminase gene from Pseudomonas cloacae display 

ACC deaminase activity (Li and Glick 2001) and are able to grow with ACC as the 

sole nitrogen source. I confirmed that E. coli cells, which lack ACC deaminase, fail to 

grow when ACC is the sole nitrogen source, but are able to grow when transformed 
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with p4U2 (data not shown). Furthermore, I verified that E. coli cells containing the 

plasmid lacking the ACC deaminase region (p4U2 ∆ACC-DR) also fail to grow when 

ACC is the sole nitrogen source (data not shown).  

Next, I mixed in a 1:1 ratio E. coli–p4U2 with E. coli–p4U2∆ACC-DR, and grew 

the mixed populations with ACC as the sole nitrogen source (Figure 2.4a). After the 

first round of selection (see Methods), both E. coli types were still present (Figure 

2.4b); however, E. coli–p4U2∆ACC-DR disappeared after the second round of 

selection, (Supplementary Figure 3b). This experiment confirmed that the selection 

assay would not allow the growth of cheater strains lacking ACC deaminase activity. 

 

 

Figure 2.4 Non-functional ACC-DR variant cannot grow on ammonia produced by 
other ACC-DR variants. (a) E. coli containing the P. cloacae ACC deaminase on the 
plasmid (p4U2, black circle) was mixed in a 1:1 ratio with E. coli containing the 
plasmid lacking the ACC-DR (p4U2-del, red circle). The two variants were grown in 
the DF/ACC media for three rounds of selection. (b) A region containing the ACC-DR 
was amplified by PCR from the mixed growth samples. The PCR amplicons from 
p4U2 and p4U2-del were used as controls. 

 

Construction and selection of ACC-DR variant library 
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In order to generate E. coli libraries with ACC-DR variants, I amplified the 

bacterial ACC-DR from a rhizosphere DNA sample isolated from a similar rhizosphere 

soil sample as that described above (see Methods for the description of this second 

soil). I expected a similar degree of diversity among the rhizosphere DNA samples as 

ACC deaminase is widespread in rhizosphere bacteria (Glick et al 2007). These 

variants were pooled from five PCR reaction replicates and cloned into p4U2 by 

domain swapping. The ACC-DR library was transformed into E. coli grown in a 

minimal salt medium with ACC as the sole nitrogen source (Figure 2.5) to select for 

successful transformants.  

This library construction protocol was conducted three times from the same 

rhizosphere DNA sample to produce three individual E. coli libraries (Libraries A, B, C; 

one library is shown as an example in Figure 2.5) to maximize the diversity recovered 

from the rhizosphere. Libraries A, B, and C ACC-DR variant pools contained 891, 742, 

and 560 ACC-DR DNA variant clusters at 99% similarity, which encoded 310, 268, 

and 226 ACC-DR protein variants, respectively. In total, the libraries represented 

1,220 unique DNA variants encoding 455 protein variants. Two reasons may account 

for a lower diversity of ACC-DR variants in the E. coli libraries A, B, and C: 1) I 

conducted the selection assay in liquid culture and 2) I sequenced the PCR 

amplicons of rhizosphere ACC-DR variants for the Illumina sequence directly without 

cloning them into E. coli.  

Each library underwent six rounds of selection in triplicate. These triplicate 

competition assays were referred to as lineages (i.e. for library A, linages A1, A2, A3). 

For each lineage, I collected samples prior to the selection (i.e. time zero) and 

samples after each of the 6 rounds of selection (Figure 2.5). 
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Figure 2.5 Construction of E. coli ACC-DR variant libraries and growth-based 
selection assay. Shown in this figure is the experimental design for one of the E. coli 
Libraries (Library A) with ACC-DR variants, and the growth-based selection assay for 
this library. The E. coli Libraries B and C with ACC-DR variants were constructed and 
selected in the same way as Library A (see Methods for details of library construction 
and selection assay). 

 

Effect of selection on the diversity of ACC-DR variants 

To gain a coarse overview of the impact of selection on the genetic diversity of 

the ACC-DR gene variants, I estimated the β-diversity (between-sample diversity) of 

the ACC-DR pools from Libraries A, B, and C using the unweighted UniFrac distance 

metric (Lozupone and Knight 2005). The UniFrac metric ranges from 0 to 1 and is 

based on the unique/shared fraction of a common phylogeny relating the gene variant 



 

46 

sequences, such that any two pools with closely related variants will have a low 

UniFrac value, while two pools with phylogenetically less related content will have a 

value closer to 1. Distances are computed for all pair-wise comparisons and principal 

coordinates analysis (PCoA) of the distance matrix is applied to display the 

relationships between pools. In all three libraries, the first round of selection clearly 

impacted the overall diversity (Figure 2.6), and had a stronger influence on the overall 

variant diversity than subsequent rounds of selection. (Figure 2.6).  

 

 

Figure 2.6 ACC-DR variant pools cluster by selection round. The ACC-DR variant 
pools after each round of selection for the three replicate lineages within each library 
are clustered by round of selection in a PCoA of the unweighted UniFrac distances 
between samples. The percentage of variation explained by the principal coordinates 
is indicated on the axes. The ACC-DR variant pools are colored by a gradient from 
red to blue, and each point corresponds to an ACC-DR variant pool colored by 
selection round: red, time zero before selection, orange, cyan, green, aqua, teal, and 
blue, after the first to the sixth round of selection, respectively. Lineages for the same 
library are represented by dots of the same color for each round of selection, (a) 
ACC-DR variant pools in Library A. (b) ACC-DR variant pools in Library B,. Note that 
library B only contained two lineages. (c) ACC-DR variant pools in Library C.  

 

Purifying selection fixed most essential residues before selection assay 

In order to understand the specific effects of the selection assay on the ACC-DR, 

I began by analyzing previously reported essential amino acid residues (Karthikeyan 

et al 2004, Ose et al 2003, Yao et al 2000). Most essential residues (G20, Q23, S24, 

N25, T27, R28, A34, and A35) that are involved in binding cofactor and substrate as 
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well as ACC deaminase monomer-monomer interaction (Yao et al 2000) were already 

fixed in the starting libraries with over 90% frequency, suggesting strong selection 

pressures on ACC deaminase in rhizosphere bacterial populations. To confirm this 

supposition, I used the codon-based Z-test (Nei and Gojobori 1986), and calculated 

the Tajima’s D value (Tajima 1989) (Table 2.1).  

 

Table 2.1 Results from Tajima's neutrality test on the rhizosphere bacterial ACC-DR 
variants from Libraries A, B, and C at time zero before selection. 
 
m S ps Θ Π D 

16433 110 0.964912 0.093824 0.004721 -2.38002 

NOTE.-- The analysis involved 16433 nucleotide sequences. Codon positions included 
were 1st+2nd+3rd. All ambiguous positions were removed for each sequence pair. 
There were a total of 114 positions in the final dataset. Evolutionary analyses were 
conducted in MEGA6.  
Abbreviations: m = number of sequences, n = total number of sites, S = Number of 
segregating sites, ps = S/m, Θ = ps/a1, Π = nucleotide diversity, and D is the Tajima 
test statistic. 
 

A negative Tajima’s D value of -2.380024 indicated the presence of purifying 

selection in the starting library, and the subsequent codon-based Z-test results (not 

shown due to MEGA6 export size limit) also showed a high probability (p < 0.05) to 

reject the null hypothesis of strict-neutrality in favor of the alternative hypothesis of 

purifying selection. Hence, nature has already selected on the function of the ACC 

deaminase variants in soil bacteria, and provides us with a starting point to optimize 

and understand the functionality of the less constrained residues in the ACC 

deaminase region.  

Selection on a divergent essential residue 

One essential site previously identified by structural analyses, however, was not 

fixed in the starting library. In a small proportion of the starting library, residue 26 
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contained a divergent amino acid that is present in some rhizosphere bacterial ACC 

deaminase sequences. Karthikeyan et al. have reported that Q26 interacts with the 

bound sulfate in the active site of the protein (Karthikeyan et al 2004), and is 

important for ACC function. In each library, both glutamine (Q) and histidine (H) were 

present at residue 26 in the population prior to selection, but glutamine was fixed or 

enriched after the first round of selection (Figure 2.7).  

 

 

Figure 2.7 Amino acid residue waffle plots for the Libraries A, B, and C. The amino 
acid residue waffle plots show the frequency of each residue in ACC-DR variant pools 
at time zero and after each round of selection averaged for the three lineages in each 
library. Each amino acid residue is represented by a unique color, and the percentage 
of grids of the same color shows the frequency of that residue at a position. The 
amino acid residues on top of the waffle plots are color coded, and represent the 
sequence in the P. cloacae ACC-DR. The number on top of each amino acid residue 
shows the position of the residue from 1 to 37. Amino acid residues A, C, D, E, F, G, 
H, I, K, L, M, N, , Q, R, S, T, V, W, and Y are colored as shown in the letters , and the 
same colors are used to show their relative abundances.   

 

To understand why the H26 ACC-DR variant was quickly excluded from the 

variant pool by the selection assay, I employed homology modeling to estimate the 
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structure of this variant. I used the known Pseudomonas sp. ACP ACC deaminase 

crystal structure (PDB ID 1TYZ), which encodes the Q26 ACC-DR variant, as the 

template to model the structure of the H26 variant. I found that these two structures 

were very similar when aligned (Figure 2.8). However, because the side chain of the 

glutamine residue interacts with the bound sulfate ion in the active site of the protein 

(Karthikeyan et al 2004, Ose et al 2003, Yao et al 2000), a change from an 

uncharged to a charged amino acid may impact the efficiency of the deaminase in the 

selection assay. Thus, it appears that while Q is more beneficial for binding ACC in E. 

coli, H may favor an alternative substrate or context in nature.  

 

 

Figure 2.8 Alignment of the 3D-structures for Pseudomonas. sp. ACP ACC 
deaminase and homology-modeled ACC-DR. Alignment of the P. sp. ACP ACC-DR, 
shown in blue, and the homology-modeled ACC-DR based on the P. sp. ACP ACC 
deaminase structure is shown in orange. The Q26 residue in the P. sp. ACP ACC-DR 
is colored in red, and the H26 residue in the homology modeled ACC-DR is colored in 
purple. The other regions of the full-length ACC deaminase protein structures from 
these two variants are identical, and are omitted in the alignment. 
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Selection assay reveals importance of non-essential residues 

My selection assay acted on other sites not previously reported to be essential. 

ACC-DR variants with a leucine (L) at residue 4 were enriched after one or two 

rounds of selection in all libraries (Figure 2.7). Yao et al. have reported that this 

residue is located on helix 3, which is in close contact with helix 2, which binds the 

cofactor in the Hansenula saturnus ACC deaminase (Yao et al 2000). Although the 

underlying structural mechanism is not clear, this functionality may explain why the 

ACC-DR variants containing L4 were enriched by my selection assay.  

Other sites with completely unknown roles in ACC deaminase function were 

found to fix in the selection assay. Residues I5, E7, G12, C13, I22, Q29, H36 and L37 

were fixed at selection round one. Based on the known structure of the yeast ACC 

deaminase protein structure, which is highly similar to bacterial ACC deaminase 

structure, residue I22 is on a loop between β-strand C and α-helix 4 of the protein, 

which is involved in linking the active site cavity to the surface of the protein (Yao et al 

2000). The ACC deaminase consists of two domains (Karthikeyan et al 2004), a small 

domain of unknown function, and the cofactor-binding domain. As components of the 

small domain, residues I5, E7, G12, C13, Q29, H36, and L37 may help maintain the 

overall shape of the protein (Yao et al 2000).  

Given the proximity of many of residues with each other, I tested the time zero 

before selection ACC-DR variants for independence among the eight residues to 

determine if selection at one residue was accompanied by concomitant changes at 

another site. My results indicated that these residues were significantly associated (p 

< 10e-16). To further elucidate what subsets of the eight residues were likely to be 

selected together in my assay, I employed statistical coupling analysis (SCA)  

(Lockless and Ranganathan 1999) to the time zero before selection rhizosphere 
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bacterial ACC-DR variants (Supplementary Figure 4). SCA calculates the sequence 

similarity of ACC-DR variants based on the multiple sequence alignment of the time 

zero before selection ACC-DR variants, and constructs a positional correlation matrix 

of all residues in the ACC-DR. All residue pairs within the fixed residues (residues 4, 

5, 7, 12, 13, 22, 26, 29, 36, and 37) were more correlated than others. Thus, I could 

not exclude the possibility that these residues went to fixation together because of 

stronger correlation. However, as these residues are scattered through α-helices 4 

and 5, as well as the loops connecting α4, α5 and β-sheet 3 in the protein structure, it 

is likely that these residues function together to increase the efficiency of ACC-DR 

variants in an unknown fashion..  

While most emphasis on the studies for ACC deaminase has been focused on 

the PLP-binding domain of ACC deaminase, my results revealed that residues in 

other parts of the protein, especially the small domain, are also critical for the optimal 

efficiency of the enzyme. Therefore, my selection assay is able to reveal additional 

sites that impact the functional performance of ACC deaminase in E. coli, and 

highlights the significance of such assays to unravel the hidden structural info that 

may play important roles in protein function.  

Selection assay identifies neutral sites with no influence on enzyme 

function 

Other sites remained heterogeneous throughout the selection process. Residues 

9 and 10, for example, bore a mixture of several residues (predominantly IE and LA) 

prior to selection in Library A. After the first round of selection, the ACC-DR variants 

with the LA residues began to dominate the population, although the IE variants were 

still present in the population at a much smaller frequency (Figure 2.7). Similarly, the 

IE ACC-DR variants in Library B became dominant after the first round of selection 
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(Figure 2.7). The ACC-DR variants from Library C contained a mixture of I/L/M and 

A/E at residues 9 and 10, respectively, prior to selection, and there was no clear 

winner after six rounds of selection (Figure 2.7). Together these data suggest that LA 

and IE do not differentially affect the function of the ACC-DR. 

To test this hypothesis, I constructed the LA and IE ACC-DR protein variants on 

the identical background so that the variants only differed at the 9th and 10th residues, 

and grew E. coli cells containing either variant separately on ACC as the sole 

nitrogen source. I did not observe any significant difference in their growth rates 

(Figure 2.9), indicating that these two residues impose a neutral influence on the 

efficiency of ACC deaminase in E. coli.  

 

Figure 2.9 Individual growth curves of E. coli cells containing ‘IE’ and ‘LA’ ACC-DR 
variants in ACC/DF media.  This figure shows the growth curves of E. coli cells 
containing the 'IE' and 'LA' ACC-DR protein variants grown individually in the DF/ACC 
media. These two ACC-DR protein variants were identical in other residues except for 
the ‘IE’ or ‘LA’ residues at positions 9 and 10. Open circle: E. coli containing the ‘IE’ 
ACC deaminase protein variant. Closed circle: E. coli containing the ‘LA’ ACC 
deaminase protein variant. The curves were generated by plotting the natural log of 
the OD600 values of the variants versus time. The error bars represent the standard 
errors of the mean from five replicates of growth curve experiments for each strain. 
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Neither the 9 nor 10 residue is known to be involved in the enzymatic actions of 

the deaminase. Modeling of the two “winning” ACC deaminase variants at positions 9 

and 10 showed that the structure of the IE ACC-DR variant was very similar to the LA 

variant (data not shown). Furthermore, the predicted structures indicated that the IE 

or LA residues are located on the outside of the protein structure, away from the 

active site. Their location may explain their neutral behavior under the selection 

conditions.  

Similarly, I found that residue 11 remained heterogeneous throughout the 

selection assay. Based on its position in the ACC-DR, I predict that this residue has 

no direct role in deaminase function. Hence, the heterogeneity maintained at sites 9, 

10, and 11 may reflect the neutrality of these residues in the selection assay and in 

the function of ACC. 

Selection at DNA level   

Similarly, I followed selection of ACC-DR variants at the DNA level (Figure 2.10). 

As expected, I found that most variation was in the wobble positions of the codons, 

and that variation in the first and second positions of codons were fixed quickly after 

the first round of selection. Reflecting the observations at the protein level, amino acid 

residues that were highly variable throughout the selection assay displayed the 

persistent polymorphisms in the first and second codon positions after several rounds 

of selection. 
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Figure 2.10 DNA base waffle plots for Libraries A, B, and C ACC-DR DNA variant 
pools at time zero and after each round of selection. The DNA base waffle plots for 
each Library were made based on the frequency of each base in ACC-DR DNA 
variant pools at time zero and after each round of selection averaged for the three 
lineages in each library. Each base is represented by a unique color, and the 
percentage of grids of the same color shows the frequency of that base at a position. 
The DNA sequence on top of the waffle plots are color coded, and represent the 
‘wildtype’ DNA sequence in the P. cloacae ACC deaminase region. Bases A, C, G, 
and T are represented by black, dark grey, light grey, and white, respectively. DNA 
encoding amino acid residues 4, 9-11, 12 and 26 are shown in the cyan, yellow, and 
purple rectangles to show examples of fixed, neutral, and essential residues, 
respectively. 
 

Most essential and important residues, including L4, I5, E7, G12, C13, I22, Q23, 

S24, Q26, T27, R28, Q29, A34, A35, H36, and L37 (e.g., G12 and S24 in the purple 

rectangles, Figure 2.10), contained more than one DNA variant for each residue at 

time zero before selection, and multiple codons encoding the same amino acid 

residue were fixed in the selection assay in the three libraries, indicating that the 

selection from nature and my assay acted mainly on the protein level. However, two 

essential residues, G20 and N25, contained only one dominant DNA variant in all 

three libraries at time zero before selection, suggesting there is selection from nature 

on both the protein and the DNA levels. I also observed the enrichment of the codons 

for residues 9, 10, and 11 (Figure 2.10, the yellow rectangle) by the selection assay.  

I also found some rare codons for E. coli in the ACC-DR libraries, the most 

prominent being the codon ‘CCC’ encoding proline at residue 6, with other examples 
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such as the codon ‘CTC’ encoding leucine at residue 1, the codon ‘TTG’ encoding 

leucine at residue 16, and the codon ‘TTG’ encoding leucine at residue 37. These 

may reflect the soil bacterial origin where the ACC-DR variants were recovered from: 

for example, the codon ‘CCC’ encoding proline is not a rare codon in Pseudomonas 

or Burkholderia.  

Comparison with an artificial ACC deaminase region variant pool  

To compare the results of the metagenome-derived variants with artificially 

produced variants, I constructed an artificial ACC-DR variant library generated from 

doped DNA oligomer synthesis by using one of the winning LA ACC-DR DNA variants 

as the wildtype backbone, and doping each base with 2.1% non-wildtype nucleotides 

(see Methods for details). I selected the artificial ACC-DR variant library for six rounds, 

and sequenced the ACC-DR variants before and after each round of selection as 

performed for the metagenomic library. Compared to the rhizosphere bacterial ACC-

DR variant libraries that started with 1262 unique DNA variants encoding 471 protein 

variants in total, the artificial ACC-DR variant pool started with 932 unique ACC-DR 

DNA variant clusters at 99% similarity, which encoded 684 unique ACC-DR protein 

variants. Thus the artificial library was comprised of a similar number of variants as 

the rhizosphere bacterial ACC-DR variant library. Using the amino acid waffle plots to 

track the selection at the amino acid level and the same cut-off values to identify 

important residues enriched by the selection assay, I found that the L4 residue was 

important and was fixed after the first round of selection. (Figure 2.11). Similarly, 

although the H residue competed with Q at the 26th position, Q26 was fixed by the 

selection. The other fixed and neutral residues observed in the rhizosphere bacterial 

ACC-DR variant libraries were already the dominant residues in the artificial ACC-DR 

variant libraries at time zero before the selection assay. Thus, the artificial protein 
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variant pools yielded the same result as the natural pool.  

 

 

Figure 2.11 Amino acid residue waffle plots for the artificial ACC-DR protein variant 
pools at time zero and after each round of selection. The amino acid residue waffle 
plots for the three libraries are shown as in Figure 2.7. 
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Discussion 

Protein structure analysis and optimization has traditionally been an arduous and 

low-throughput process requiring the generation of purified proteins and point 

mutation libraries. The discovery of the vast number of uncharacterized gene and 

protein variants in metagenomes is driving demand for high throughput assays. Here 

I utilized a metagenomic library and a growth-based selection assay in order to 

understand the protein sequence-function relationships of ACC-DR (Figure 2.12) and 

identify the optimal ACC-DR variants in E. coli.  

 

 

Figure 2.12 Summary of the selection assay results. The ACC deaminase monomer 
is shown in copper with a back view (left) and front view (right) of the ACC-DR. The 
essential, fixed, neutral, and divergent residues identified by the selection assay are 
colored red, purple, orange, and blue, respectively, and the invariant residues in 
ACC-DR are shown in green. The linear amino acid sequence of ACC-DR with the 
above-mentioned five types of residues colored accordingly is placed below the 
protein structure.  
 

In my assay, the first round of selection had the greatest impact on the diversity 

within the variant pools. These results suggest that other metagenomic protein 
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variants could be optimized in very few selection cycles. By utilizing the soil 

metagenome as the initial source of protein variation, I was able to begin my selection 

assay with most essential residues already fixed due to the purifying selection 

present in the soil metagenome. Thus, my assay avoided the large sequence space 

of non-functional protein variants. 

Within the sequence space of functional ACC-DR variants, my assay was able to 

identify the functional, divergent, and neutral regions of the ACC-DR. Of particular 

interest, my assay revealed novel regions, or novel combination of certain amino acid 

residues, of the ACC-DR that may be critical to the optimal efficiency of ACC 

deaminase: the assay enriched for specific residues within the previously structurally 

identified but less studied small domain of ACC deaminase. The statistical coupling 

analysis on the enriched residues indicated that these enriched residues may 

collectively play an important role to enhance the deaminase efficiency. Additionally, 

the assay uncovered diversification at Q26, an essential residue within the ACC-DR. 

While the selection assay favored one of two dominant residues, Q or H, at position 

26, the presence of this alternative residue in nature suggests that other selective 

pressures such as the need for flexibility for alternate substrates, or the need to co-

evolve with other residues in the protein may be driving diversification at this residue. 

Finally, my selection assay found a cluster of several residues (positions 9, 10, 11) 

that were relatively neutral with respect to ACC deaminase function. The ACC-DR 

artificial protein variant pools yielded similar results as the natural pool, supporting the 

use of a metagenomic variant pool for mutational analysis and protein optimization.  

Overall, this work shows that the generation of protein variant pools from the soil 

metagenome is able to provide a detailed sketch of the functional regions of a protein 

domain and thus a starting point for understanding protein structure or optimizing 
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enzyme performance. Compared to the generation of protein variant pools from 

artificial libraries, my method is relatively cost-effective, and it focuses on the natural 

and functional protein variant sequence space. The growth-based selection assay is 

straightforward and is readily adaptable to other enzymes and expression hosts. 

Hence, the use of metagenomic libraries in a competition assay has the potential to 

speed the translation of novel natural products from nature to industry. 
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Abstract 

Plants and their roots-associated microorganisms interact closely with each 

other. However, relatively little is known about the impact of plant genetic variation on 

its rhizosphere bacterial populations, especially whether plants select for taxonomic 

or functional components of bacteria within a plant species. Here, I sequenced the 

genomes of 48 Pseudomonas isolates from the rhizosphere of two maize genotypes, 

a sweet corn inbred line and a non-stiff stalk maize inbred line, grown in two field 

conditions at the same developmental stage. I observed a small but significant 

association of maize genotypes with the variation in the metabolic genes of these 

Pseudomonas isolates after controlling for the effects from Pseudomonas isolate 

taxonomy and field conditions, while I did not see a significant association of maize 

genotypes with the variation in the abundance of the OTUs containing the 

Pseudomonas isolates. I identified the corresponding enrichment of metabolic genes 

in Pseudomonas isolates with respect to each maize genotype, including enriched 

denitrification-related and sugar metabolic genes in Pseudomonas isolates from the 

rhizosphere of the non-stiff stalk and the sweet corn maize inbred lines, respectively. I 

conducted molecular evolution analyses on the enriched metabolic genes and 

observed sites under negative selection. I also identified co-occurring OTUs from the 

same maize rhizosphere where the Pseudomonas isolates were cultured; these co-

occurring OTUs may be involved in various cooperative activities such as nitrogen 

fixation and cell-cell communication with the Pseudomonas isolates in the maize 

rhizosphere. These results should facilitate future studies to locate regions of 

bacterial genomes that are directly controlled by plant genotypes and are involved in 

plant-microbe interactions, which will ultimately benefit crop breeding.  
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Introduction 

Plants and their roots-associated microorganisms are considered as 

“superorganisms” (Mendes et al 2011), in which plants interact closely with microbes. 

Plants release up to 40% of their photosynthates to the rhizosphere, mainly in the 

form of root exudates (Singh et al 2004), which feed the roots-associated microbes 

with carbon and energy sources. In turn, microbes decompose soil organic matter, 

providing essential nutrients to plants (Lugtenberg and Kamilova 2009). In addition, 

roots-associated microbes also benefit plants in a number of ways, such as protecting 

plants from infection by soil-borne pathogens (Garbeva et al 2004, Mendes et al 

2011), fixing nitrogen (Brencic and Winans 2005, Hsu and Buckley 2009), and 

promoting root growth by producing phytohormones (Mavrodi et al 2006). Much as 

plants and their microbes rely on each other, the impact of plant genetic variation on 

its rhizosphere bacterial populations remains poorly understood. 

It is also unclear whether plants select for taxonomic or functional bacterial 

populations in their rhizosphere. While it is well known that components in plant root 

exudates attract bacteria to colonize roots (Zhang et al 2014), some studies indicated 

that different plant species or artificial root exudates mimicking natural maize root 

exudates selectively assembled rhizosphere bacterial communities of varying 

taxonomic compositions (Baudoin et al 2003, Grayston et al 1998). Others showed 

that plants selected for functional bacterial populations (Briones Jr et al 2003, 

Martinez-Romero 2009). Using a well-balanced study design, I addressed the above-

mentioned question from studying the relationships between one plant species and 

one bacterial genus. 

I focused on the impact of maize genotypes on the maize roots-associated 

Pseudomonas populations. Maize is one of the staple food crops in the world, and 
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harbors extensive natural diversity and tractable genotypic and phenotypic 

information (McMullen et al 2009). Bacteria in the Pseudomonas genus are closely 

associated with plants, and play a number of important roles such as acquisition of 

important elements including iron (Philippot et al 2013) and phosphorous (Rodriguez 

et al 2006), suppression of plant diseases (Raaijmakers and Weller 1998), and 

induction of plant systemic resistance (De Vleesschauwer and Höfte 2009). The study 

of maize genetic control on its rhizosphere Pseudomonas populations will advance 

our understanding on what components of the rhizosphere microbiome (i.e. bacterial 

taxa or traits) plant genetic variation controls. 

To investigate the influence of maize genetic variation on its rhizosphere 

Pseudomonas populations, I employed the following study design (Figure 3.1). Two 

maize genotypes, Mo17, a non-stiff stalk maize inbred line, and Il14h, a sweet corn 

inbred line (Flint-Garcia et al 2005), were grown in multiple replicates at two different 

fields located at New York and Illinois as describe previously (Peiffer et al 2013). I 

cultured the Pseudomonas isolates using the rhizosphere soil samples from three 

replicate plants of each maize genotype grown in each field, and sequenced the 

genomes of the first four Pseudomonas isolates cultured from each rhizosphere soil 

sample. From a total of 48 Pseudomonas isolate genomes, I aimed to find out 

whether maize genotypes are significantly associated with the variation in the 

Pseudomonas isolate genomes, and whether maize genotypes select the taxonomy 

or function of the isolates.  
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Figure 3.1 Experimental design. Multiple replicates of two maize inbred lines, Il14h, a 
sweet corn inbred line, and Mo17, a non-stiff stalk corn inbred line, were grown in two 
fields (Lansing, NY and Urbana, IL). The rhizosphere soil samples from three different 
maize plants of each maize genotype grown in each field, i.e. a total of 12 soil 
rhizosphere soil samples were collected to culture the Pseudomonas isolates. Four 
Pseudomonas isolates were cultured from each rhizosphere soil sample, so a total of 
48 Pseudomonas isolate genomes were sequenced. 

 

I found that maize genotypes are not significantly associated with the variation 

in the relative abundance of Pseudomonas isolates. I observed a small but significant 

association between maize genotypes and the variation in the counts of the metabolic 

genes from these Pseudomonas isolates after controlling for the effects from 

Pseudomonas isolate taxonomy and field conditions. I identified the corresponding 

enrichment of metabolic genes in Pseudomonas isolates with respect to each maize 

genotype: Pseudomonas isolate genomes from the non-stiff stalk maize harbor 

increased denitrification-related genes, whereas Pseudomonas isolates from the 

sweet corn maize rhizosphere contain more sugar metabolic genes. I conducted 

molecular evolution analyses in the enriched metabolic genes: while I did not see any 

site under positive selection, I observed negative selection in some sites in several 

genes. I also identified co-occurring OTUs from the same maize rhizosphere where 

the Pseudomonas isolates were cultured. These co-occurring OTUs may be involved 
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in various cooperative activities such as nitrogen fixation and cell-cell communication 

with the Pseudomonas isolates in the maize rhizosphere. Thus, I have shown that the 

genetic variation from two maize genotypes grown in two different fields at the same 

developmental stage significantly influence the metabolic abilities of their rhizosphere 

Pseudomonas isolates, providing evidence that maize genotypes select for the 

functional component of the rhizosphere microbiome. 

 

Methods 

Study design 

This study was aimed at determining the effect from maize genetic variation 

across different fields on Pseudomonas isolates. The design of this study mimicked 

that of a two-way ANOVA with two different maize genotypes and two different field 

conditions. The two maize genotypes, Il14h, a sweet corn inbred line, and Mo17, a 

non-stiff stalk maize inbred line, were grown in multiple replicates at two different 

fields located at New York state and Illinois. The rhizosphere soil samples from three 

replicates of each maize genotype grown at each field at week 12 after planting were 

collected as previously described (Peiffer et al 2013) by a team of people in my lab. 

Hence, a total of 12 rhizosphere soil samples were used in this study to culture 

Pseudomonas isolates. The genomes of the first four Pseudomonas isolates cultured 

from each rhizosphere soil sample were sequenced. Thus, a total of 48 

Pseudomonas isolate genomes were sequenced. 

Isolation, growth, and genomic DNA extraction of Pseudomonas isolates 

From each rhizosphere soil sample, 0.1 grams of soils were washed in 5 mL 

sterile phosphate buffered saline with 10% glycerol for 1 hour with gentle rocking at 

room temperature. 100 µL of the wash liquid was plated onto Pseudomonas Isolation 
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Agar (BD Diagnostic Systems, Franklin Lakes, NJ) using a disposable inoculating 

loop. The plates were incubated at 30 °C until colonies formed. To extract genomic 

DNA, single colonies were inoculated into 5 mL Lysogeny broth (LB), and grown at 30 

°C overnight. The cultures were harvested by centrifugation at 5000 × g for 5 min, 

and the cells were lysed using the B1 and B2 solutions as described in the Qiagen 

Genomic DNA Handbook (Qiagen, Valencia, CA).  The genomic DNA was 

precipitated with ethanol and sodium acetate, and pelleted after a centrifugation at 

1811 × g for 30 min. PCR and Sanger sequencing of the 16S rRNA genes were used 

to confirm the identity and purity of the genomic DNA preparations.  

Genome sequencing, assembly, annotation, and functional profile 

The genomes of Pseudomonas isolates were sequenced at the Joint Genome 

Institute using Illumina technology (Bentley et al 2008). An Illumina standard shotgun 

library was constructed and sequenced on the Illumina HiSeq 2000 platform. All 

general aspects of library construction and sequencing are provided on the Joint 

Genome Institute (JGI) website 

(http://www.jgi.doe.gov/sequencing/protocols/index.html). The procedures for genome 

assembly and annotation are similar to those described previously (Reeve et al 

2014). For details of genome statistics, see Tables 3.1 and 3.2. The MetaCyc 

functional profile for the 48 Pseudomonas isolates, which enumerated the primary 

and secondary metabolic pathways from all isolates, was generated on the JGI 

IMG/ER portal (Markowitz et al 2012).   
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Table 3.1 Genome statistics for the 24 Pseudomonas isolates from the Il14h maize 
genotype. 
 Il14h. 

Lansing.I
1 

Il14h. 
Lansing.I
2 

Il14h. 
Lansing.I
3 

Il14h. 
Lansing.I4 

Il14h. 
Lansing.I5 

Il14h. 
Lansing.I6 

Total 
Bases 

5665646 6436821 5666577 4756206 5589422 5597776 

# Genes 5243 5958 5251 4370 5208 5192 
GC% 62.07 60.51 62.06 61.59 62.15 62.14 
# Scaffolds 24 20 23 52 54 25 
 Il14h. 

Lansing.I
7 

Il14h. 
Lansing.I
8 

Il14h. 
Lansing.I
9 

Il14h. 
Lansing.I1
0 

Il14h. 
Lansing.I1
1 

Il14h. 
Lansing.I1
2 

Total 
Bases 

5953767 6102725 5681488 6099553 6100002 5575902 

# Genes 5353 5536 5269 5533 5536 5163 
GC% 62.45 62.38 62.07 62.41 62.4 62.14 
# Scaffolds 28 29 25 33 33 26 
 Il14h. 

Urbana.I1 
Il14h. 
Urbana.I
2 

Il14h. 
Urbana.I
3 

Il14h. 
Urbana.I4 

Il14h. 
Urbana.I5 

Il14h. 
Urbana.I6 

Total 
Bases 

4749093 4717612 4718477 5817007 5723734 6337748 

# Genes 4355 4418 4397 5462 5374 5792 
GC% 61.58 61.71 61.73 62.03 62.14 59.99 
# Scaffolds 52 93 43 29 24 61 
 Il14h. 

Urbana.I7 
Il14h. 
Urbana.I
8 

Il14h. 
Urbana.I
9 

Il14h. 
Urbana.I10

Il14h. 
Urbana.I11 

Il14h. 
Urbana.I1
2 

Total 
Bases 

6883327 5822697 4847117 4847839 4850394 4848195 

# Genes 6259 5472 4527 4522 4524 4517 
GC% 60.72 62.02 62.75 62.76 62.76 62.76 
# Scaffolds 78 27 32 24 23 22 
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Table 3.2 Genome statistics for the 24 Pseudomonas isolates from the Mo17 maize 
genotype.  
 

 Mo17. 
Lansing.I
1 

Mo17. 
Lansing.I2 

Mo17. 
Lansing.I3

Mo17. 
Lansing.I4 

Mo17. 
Lansing.I5 

Mo17. 
Lansing.I6 

Total 
Bases 

6932332 6928939 4692529 5593635 6103916 6092576 

# Genes 6412 6409 4370 5178 5575 5563 
GC% 61.03 61.02 61.84 62.14 60.3 60.33 
# 
Scaffolds 

34 34 37 28 25 28 

 Mo17. 
Lansing.I
7 

Mo17. 
Lansing.I8 

Mo17. 
Lansing.I9

Mo17. 
Lansing.I1
0 

Mo17. 
Lansing.I1
1 

Mo17. 
Lansing.I1
2 

Total 
Bases 

5564386 5565480 7022592 7014050 5560711 5564094 

# Genes 5185 5184 6437 6415 5182 5184 
GC% 62.23 62.21 62.51 62.53 62.24 62.23 
# 
Scaffolds 

24 25 99 99 25 27 

 Mo17.Ur
bana.I1 

Mo17.Urb
ana.I2 

Mo17.Urb
ana.I3 

Mo17.Urb
ana.I4 

Mo17.Urb
ana.I5 

Mo17.Urb
ana.I6 

Total 
Bases 

4954515 5283927 4952268 4910367 5759395 6454480 

# Genes 4594 4863 4630 4532 5370 5967 
GC% 63.59 63.11 63.59 63.37 62.73 59.41 
# 
Scaffolds 

15 29 17 29 49 43 

 Mo17.Ur
bana.I7 

Mo17.Urb
ana.I8 

Mo17.Urb
ana.I9 

Mo17.Urb
ana.I10 

Mo17.Urb
ana.I11 

Mo17.Urb
ana.I12 

Total 
Bases 

5753615 5752811 4698894 4702100 4693207 6568431 

# Genes 5363 5360 4379 4376 4371 6164 
GC% 62.76 62.76 61.8 61.77 61.83 59.06 
# 
Scaffolds 

41 43 26 30 33 32 

 

16S tree and concatenated ribosomal protein phylogeny  

16S rRNA gene sequences for the 48 Pseudomonas isolates were retrieved 

using a 16S rRNA gene mining program developed at JGI (Han, J., unpublished). The 

16S rRNA genes of the 48 Pseudomonas isolates were aligned in PyNAST using the 
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alignment of Pseudomonas OTUs downloaded from Greengenes (DeSantis et al 

2006) as the template. The alignment of the isolates and two representative 

Pseudomonas stains from each Greengenes Pseudomonas OTU was filtered by 

QIIME (Caporaso et al 2010), and used for Phylogeny construction using maximum 

likelihood implemented in PhyML (Guindon et al 2010) with the GTR+γ+I model of 

evolution and 100 bootstrap resampling. The bootstrap consensus 16S rRNA gene 

tree was visualized using the interactive Tree of Life (iTOL) (Letunic and Bork 2011), 

and the bootstrap values greater than 60 were displayed.  

Comparative genomics and Pan-genome SNP analysis  

The SNPs of the 48 Pseudomonas isolates were determined using the 

wombac program developed by the Victorian Bioinformatics Consortium that aligns 

bacterial genomes with a reference genome based on bwa and samtools to identify 

SNPs (http://www.vicbioinformatics.com/software.wombac.shtml). The wombac 

output file that aligned all the substitution SNPs in the Pseudomonas isolates was 

used to generate a binary table for the presence or absence of each SNP in each 

isolate genome. The PlasmidFinder-1.2 Server 

(http://cge.cbs.dtu.dk/services/PlasmidFinder/) was used to confirm that no plasmid 

sequence was present in the isolate genomes. SNPs were categorized as 

synonymous or non-synonymous using SnpEff version 3.5 (Cingolani et al 2012).  

Abundance of isolates in amplicon sequencing data  

Operational taxonomic units (OTUs) for the rhizosphere microbiome 16S 

rRNA gene V4 region amplicon Illumina MiSeq sequencing data (Jin, Z and Ley, RE., 

unpublished data) on rhizosphere soil samples collected from 27 maize inbred lines 

(including Il14h and Mo17) grown at Lansing and Urbana at week 12 after planting 

were picked using a closed-reference procedure against the May 2013 Greengenes 



 

76 

database at 97% sequence identity in QIIME. The 16S rRNA gene sequences of the 

48 Pseudomonas isolates were trimmed to the length of the V4 region, and were 

used to search against the sequences of the OTUs from the above-mentioned 16S 

rRNA gene V4 region amplicon sequencing data. This search identified what OTUs 

the Pseudomonas isolates belonged to. The number of reads for the Pseudomonas 

isolates-containing OTUs represented their absolute abundance. Due to the uneven 

numbers of reads for the rhizosphere soil samples containing the Pseudomonas 

isolates OTUs, as well as the unequal total number of reads for each sequencing run 

containing the rhizosphere soil samples, the absolute abundance of each 

Pseudomonas isolates-containing OTU was normalized as the following: the number 

of reads for each rhizosphere soil sample containing the Pseudomonas isolates 

OTUs was divided by the total number of reads from the sequencing run containing 

that rhizosphere soil sample. This ratio was multiplied to the absolute abundance of 

each Pseudomonas isolates-containing OTU to calculate the relative abundance.  

Distance-based approaches 

The distance-based approaches to identify maize genotype effect were 

conducted in R 3.0.2 (R Development Core Team 2005) using the ‘vegan’ package 

2.0-9 (Oksanen et al 2013). The ‘betadisper’ function was first used to check whether 

the two groups compared had similar multivariate dispersions, so that the 

assumptions for PERMANOVA test were satisfied. Then the ‘adonis’ function, which 

conducted a permutational multivariate analysis of variance on distance matrices, 

was employed to run PERMANOVA on the Bray-Curtis dissimilarities (Beals 1984) of 

the pan-genome SNPs counts, the relative abundance of Pseudomonas isolates-

containing OTUs, or the MetaCyc metabolic pathway profiles. The MetaCyc metabolic 

pathways that were significantly associated with each maize genotype were identified 
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using the ‘multipatt’ function in the R ‘indicspecies’ package (Cáceres and Legendre 

2009).  

Molecular Evolution Analyses 

The metabolic genes used for evolutionary analyses are listed in Supplement 

Table 1. The protein sequences for each gene set were aligned using MUSCLE 

(Edgar 2004), and were used to align the corresponding DNA sequences using 

PAL2NAL (Suyama et al 2006). The multiple sequence alignment of each gene set 

were manually curated before they were provided to jModeltest 2 (Darriba et al 2012) 

to estimate the best evolution models for phylogeny inference by PhyML. The multiple 

sequence alignment of each gene set and their phylogenetic tree were supplied to 

HyPhy (Pond and Muse 2005), and the methods of QuickSelectionDetection.bf, 

BivariateCodonRateAnalysis.bf, and BranchSiteREL.bf were used to infer natural 

selection in the genes, as well as the methods of SingleBreakpointRecomb.bf and 

GARDProcessor.bf to identify any site with recombination. The pairwise genetic 

distance for the sequences in each gene set was calculated in MEGA6 (Tamura et al 

2013).  

Co-occurring OTUs and networks 

The OTUs tables for the above-mentioned rhizosphere microbiome 16S rRNA 

gene V4 region amplicon sequencing data were normalized with frequency: in each 

un-normalized OTU table, the number of reads for each OTU in a given rhizosphere 

soil sample was divided by the total number of reads for that sample. The frequency-

normalized OTU-tables were used to identify co-occurring OTUs with the 

Pseudomonas isolates-containing OTUs. OTUs present in fewer than 3 samples were 

removed; Pearson correlation coefficients of the OTUs and the p-values of the 

correlations were calculated using the R Bioconductor (Gentleman et al 2004) 
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‘gpgraph’ package (Castelo and Roverato 2006), and the Benjamini and Hochberg 

multiple correction method (Benjamini and Hochberg 1995) was applied to calculate 

the false discovery rates. OTUs that had a correlation coefficient over 0.4 with the 

Pseudomonas isolates-containing OTUs and a correlation q-value lower than 0.01 

were considered as a true co-occurring OTU. The correlation coefficients between the 

identified co-occurring OTUs and the Pseudomonas isolates-containing OTUs were 

imported into Cytoscape (Shannon et al 2003) to generate network graphs. 

 

Results and Discussion 

16S Phylogeny of Pseudomonas isolates  

To infer the phylogeny of the 48 Pseudomonas isolates, I constructed a 

bootstrapped maximum-likelihood 16S rRNA gene phylogenetic tree of the 48 

Pseudomonas isolates using the 16S rRNA genes of two representative strains from 

each Pseudomonas OTU in the Greengenes database, and P. stutzeri str. SWI26 as 

the outgroup. The phylogenetic tree shows that four Pseudomonas isolates from the 

Mo17 maize inbred line grown in Urbana, IL form a clade, clade I, which is distant 

from the other big clade, clade II, which contains the remaining 44 isolates (Figure 

3.2). Within the big clade, 29 Pseudomonas isolates group within one big cluster, 

whereas the other 15 isolates form five smaller clusters (marked by letters). Within 

the big cluster, cluster A, the Pseudomonas isolates do not group by maize 

genotypes or field conditions; This distribution suggests that the standard cultivation 

procedure used in this study favor the isolation of close Pseudomonas species from 

rhizosphere soil samples of two maize genotypes grown in two different fields, 

whereas the small bootstrap values for branching patterns within cluster A also 

suggest that these Pseudomonas isolates have very similar 16S rRNA genes. Among 
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the other five smaller clusters of Pseudomonas isolates, clusters C, D, and F are 

composed of isolates from the same maize genotype and field, whereas cluster E 

contains isolates from two maize genotypes of the same field. Overall, there is no 

consistent clustering of Pseudomonas isolates by maize genotypes or by fields. The 

genus Pseudomonas has been divided into two intragenic clusters, ‘IGC P. 

aeruginosa’ and ‘IGC P. fluorescens’, as suggested by analyses of 16S rRNA and 

housekeeping gene sequences from over a hundred Pseudomonas species (Kampfer 

and Glaeser 2012). Based on the 16S rRNA gene phylogeny, the 4 Pseudomonas 

isolates in clade I belong to the IGC P. aeruginosa intragenic cluster, while the 

remaining 44 isolates in clade II belong to the IGC P. fluorescens intragenic cluster.  
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Figure 3.2 16S rRNA gene phylogeny of 48 Pseudomonas isolates. The phylogenetic 
tree was built using the 16S rRNA gene sequences from the 48 Pseudomonas 
isolates and two representative sequences from each Pseudomonas OTU in the 
Greengenes May 2013 database (DeSantis et al 2006).  Bootstrap values greater 
than 60% are displayed on the branches. P. stutzeri str. SWI26 was used as the 
outgroup. Clade I includes the four Pseudomonas isolates from the Mo17 maize 
inbred line grown in Urbana, IL. Clade II includes the remaining 44 Pseudomonas 
isolates, with clusters A – F representing the clusters formed by the 44 isolates within 
Clade II. 
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Abundance of Pan-genome SNPs is not significantly associated with 

maize genotypes  

To further investigate the genetic diversity of the Pseudomonas isolates, I 

studied the pan-genome single nucleotide polymorphisms (SNPs) of the isolates. I 

first confirmed that the 48 Pseudomonas isolate genomes do not contain any plasmid 

sequence. Using the complete genome of P. entomophila str L48 as the reference 

genome, I identified 69350 pan-genome SNPs shared by all 48 Pseudomonas 

isolates, with any two isolates sharing 61.07 ± 0.9820% of their SNPs on average. All 

48 Pseudomonas isolate genomes harbor 6480429 synonymous pan-genome SNPs 

and 1647943 non-synonymous pan-genome SNPs in total, and 135008 ± 50821 

synonymous pan-genome SNPs and 34332 ± 9697 non-synonymous pan-genome 

SNPs per isolate genome on average.  

To identify whether maize genotypes influence the pan-genome SNP 

abundance of their rhizosphere Pseudomonas isolates, I tested the statistical 

association of maize genotypes with the differences in the abundance of 

Pseudomonas isolate pan-genome SNPs. I generated a binary table based on the 

presence or absence of each SNP in each Pseudomonas isolate, and conducted the 

permutational multivariate analysis of variance (PERMANOVA) (Anderson 2001) on 

the Bray-Curtis dissimilarity of the SNP table. I found that fields do not significantly 

influence the pan-genome SNP abundance. After controlling for field conditions, I did 

not observe a significant association between maize genotypes and the differences in 

the abundance of Pseudomonas isolate pan-genome SNPs (P > 0.05). While I did not 

observe a significant association between maize genotypes and the abundance of the 

pan-genome SNPs in the Pseudomonas isolates, polymorphic sites in genes involved 

in maize-Pseudomonas interactions are more likely to reflect influence and selection 
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from maize genotypes. 

Abundance of Pseudomonas isolates-containing OTUs is not 

significantly associated with maize genotypes  

To examine whether maize genotypes influence the abundance of the OTUs 

containing the Pseudomonas isolates in the rhizosphere soil samples, I tested the 

statistical association of maize genotypes and the abundance of the OTUs containing 

the Pseudomonas isolates from the maize rhizosphere. I searched the maize 

rhizosphere microbiome 16S rRNA gene Illumina amplicon data (Jin, Z and Ley, R. 

E., unpublished data) using the V4 region of the 16S genes from the Pseudomonas 

isolates to find the OTUs containing the Pseudomonas isolates. I identified eight 

OTUs that the 48 Pseudomonas isolates belong to (Table 3.3), which are all 

members of the Pseudomonas genus (not shown due to table size limit). Because the 

microbiomes of the 12 rhizosphere soil samples used to culture the Pseudomonas 

isolates were sequenced in three different Illumina runs, I normalized the absolute 

abundance of the OTUs containing the Pseudomonas isolates with the number of 

reads per sample and the total number of reads per Illumina run. PERMANOVA on 

the Bray-Curtis dissimilarity for the relative abundance of the OTUs containing the 

Pseudomonas isolates show that fields are significantly associated with the variation 

in the abundance of the OTUs containing the Pseudomonas isolates (P < 0.05), and 

contribute to 44.735% of the total variation. After controlling for the effect from field 

conditions, maize genotypes are not significantly associated with the abundance of 

the OTUs containing the Pseudomonas isolates.  

 
 
 
 
 
 



 

83 

Table 3.3 The eight OTUs that contain the 48 Pseudomonas isolates. The OTUs 
were identified by searching the maize rhizosphere microbiome 16S rRNA gene 
Illumina amplicon data (Jin, Z and Ley, R. E., unpublished data) using the V4 region 
of the 16S genes from the Pseudomonas isolates. Columns 1 and 3 show the names 
of the Pseudomonas isolates, columns 2 and 4 show the OTU IDs that contain the 
Pseudomonas isolates. The OTU IDs are Greengenes OTU numbers.   
 

Isolate names OTUs 
isolates 
belong 
to 

Isolate names OTUs 
isolates 
belong 
to 

Il14h.Lansing:I1 845178 Il14h.Urbana:I1 845178 
Il14h.Lansing:I2 845178 Il14h.Urbana:I2 845178 
Il14h.Lansing:I3 845178 Il14h.Urbana:I3 845178 
Il14h.Lansing:I4 845178 Il14h.Urbana:I4 845178 
Il14h.Lansing:I5 845178 Il14h.Urbana:I5 845178 
Il14h.Lansing:I6 845178 Il14h.Urbana:I6 4456889
Il14h.Lansing:I7 845178 Il14h.Urbana:I7 1109251
Il14h.Lansing:I8 817734 Il14h.Urbana:I8 845178 
Il14h.Lansing:I9 845178 Il14h.Urbana:I9 817209 
Il14h.Lansing:I10 817734 Il14h.Urbana:I10 817209 
Il14h.Lansing:I11 845178 Il14h.Urbana:I11 817209 
Il14h.Lansing:I12 845178 Il14h.Urbana:I12 817209 
Mo17.Lansing:I1 4435982 Mo17.Urbana:I1 845178 
Mo17.Lansing:I2 4435982 Mo17.Urbana:I2 845178 
Mo17.Lansing:I3 845178 Mo17.Urbana:I3 845178 
Mo17.Lansing:I4 845178 Mo17.Urbana:I4 845178 
Mo17.Lansing:I5 4456889 Mo17.Urbana:I5 1109251
Mo17.Lansing:I6 4456889 Mo17.Urbana:I6 1109251
Mo17.Lansing:I7 845178 Mo17.Urbana:I7 845178 
Mo17.Lansing:I8 845178 Mo17.Urbana:I8 845178 
Mo17.Lansing:I9 4451011 Mo17.Urbana:I9 845178 
Mo17.Lansing:I10 4451011 Mo17.Urbana:I10 845178 
Mo17.Lansing:I11 845178 Mo17.Urbana:I11 845178 
Mo17.Lansing:I12 845178 Mo17.Urbana:I12 557974 

 

A number of studies have shown that field conditions, such as soil moisture, 

pH values, and temperature could influence the abundance of certain plant growth 

promoting bacteria taxa (Gaiero et al 2013). We have also found previously that the 

physiochemical properties of the Midwest field was significantly different from the 
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New York State field, and that field conditions explained most of the variation in the α- 

and β-diversity of the rhizosphere microbiome from 27 maize inbred lines (Peiffer et al 

2013). Therefore, it is not surprising that I observed that field conditions contribute 

significantly to the variation in the abundance of the OTUs containing the 

Pseudomonas isolates.  

Multiple investigations have shown that plant genotypes affected the 

abundance of the overall bacterial communities (Peiffer et al 2013) as well as 

individual bacterial taxa (Costa et al 2006, Depret and Laguerre 2008, Fromin et al 

2001), whereas other studies, such as one on the plant symbiotic nitrogen-fixing 

Sinorhizobium sp. associated with Medicago concluded that the host plant diversity 

was not related to the diversity of S. sp. isolates: in this study, the diversity of S. sp. 

isolates from 20 different Medicago genotypes was similar to that of S. sp. isolates 

from 20 Medicago plants of the same genotype  (Bailly et al 2006). Previous 

research that focused on rhizosphere Pseudomonas have shown that genetically 

different wheat and potato lines influenced the relative abundance of taxonomic and 

functional Pseudomonas populations, respectively (Dias et al 2013, Meyer et al 

2013). For this study, it is possible that maize genotypes do not influence the diversity 

of Pseudomonas in the rhizosphere significantly, but are related to the differences in 

the functions of the Pseudomonas isolates.  

Maize genotypes are significantly associated with Pseudomonas isolate 

function profiles  

To assess whether maize genotypes have a significant influence on the 

functions of the rhizosphere Pseudomonas isolates, I focused on the relationship 

between maize genotypes and the differences in metabolic profiles for the 

Pseudomonas isolates. I generated the MetaCyc (Caspi et al 2008) function profiles 
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of the Pseudomonas isolates, which enumerate genes involved in non-redundant and 

experimentally verified primary and secondary metabolic pathways. PERMANOVA on 

the Bray-Curtis dissimilarity for the MetaCyc function profiles of the isolates shows 

that field conditions are significantly associated with the differences in the counts of 

genes in the metabolic profiles of the Pseudomonas isolates (P < 0.01), and 

contribute to 11.141% of the variation. After controlling for field conditions, I observed 

a significant association between maize genotypes and the variation in the MetaCyc 

function profiles of the Pseudomonas isolates (P < 0.05), and that maize genotypes 

explain 5.658% of the variation.  

To investigate whether maize genotypes contribute significantly to the 

variation in the function profiles of the Pseudomonas isolates after controlling for the 

effects from the taxonomy of Pseudomonas isolates and field conditions, I included in 

the PERMANOVA analysis the taxonomy of the isolates based on what OTUs they 

belong to. The OTU taxonomy of the Pseudomonas isolates significantly explains a 

large part of the variation in the counts of the metabolic genes of the Pseudomonas 

isolates (47.891%, P < 0.01). After controlling for the OTU taxonomy effect, field 

conditions also contribute significantly to the differences in the function profiles of the 

isolates (7.905%, P < 0.01). After controlling for the effects from OTU taxonomy and 

fields, I still found that maize genotypes explain a small but significant proportion of 

the variation in the counts of the metabolic genes of the Pseudomonas isolates 

(2.694%, P < 0.05). I did not observe a significant contribution from the interactions 

between Pseudomonas OTUs, fields, or maize genotypes. This suggests that the 

function profile of one Pseudomonas isolate from a given maize genotype is not 

dependent on the particular OTU the isolate belongs to, or the particular field where 

the isolate was cultured.  
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Numerous studies have supported the notion that plant genotypes select for 

functional bacterial populations. Previously, researchers have identified the selection 

from different rice cultivars on the ammonia-oxidizing bacteria in the rhizosphere 

(Briones et al 2002). Studies comparing the auxin-producing (Picard and Bosco 2005) 

and 2,4-diacethylphloroglucinol-producing (2,4-DAPG-producing) (Picard and Bosco 

2006) Pseudomonas strains from parental lines and heterozygous offspring lines 

concluded that hybrid maize inbred lines with different genotypes from their parents 

were able to recruit more antiphytopathogenic Pseudomonas strains to their 

rhizosphere. Also, five wheat cultivars differed in their ability to enrich 2,4-DAPG-

producing Pseudomonas strains; more specifically, one wheat cultivar exclusively 

enriched P. fluorescens containing one type of 2,4-DAPG-producing key gene, 

whereas another wheat cultivar recruited the majority of P. fluorescens containing 

another type of 2,4-DAPG-producing key gene (Mazzola et al 2004). It is not 

surprising here that I found that maize genotypes are significantly associated with the 

differences in the function profiles of their rhizosphere Pseudomonas isolates. This 

implies that these two maize genotypes select for their rhizosphere Pseudomonas 

from the perspective of functions, or that these maize genotypes interact specifically 

with Pseudomonas containing certain metabolic capacities. Notably, although most of 

the variation in the function profiles of the Pseudomonas isolates is explained by the 

OTU taxonomy of the isolates and field conditions, the OTU a Pseudomonas isolate 

belongs to, or the field where the isolate was cultured does not determine the function 

profile of the particular Pseudomonas isolate, as suggested by the non-significant 

interactions between the OTU taxonomy of the isolates and maize genotypes, or field 

conditions and maize genotypes. These results all demonstrate that although small, 

the maize genotype effect observed in this study is true and significant, and is 
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independent of the effects from the OTU taxonomy of the Pseudomonas isolates or 

the field conditions.  

To identify the Pseudomonas function profiles that are significantly associated 

with each maize genotype, I employed the indicator species approach (Tables 3.4 

and 3.5). The Pseudomonas isolates from the Mo17 maize rhizosphere are enriched 

in genes involved in the metabolic pathways for denitrification (Table 3.4). 

Pseudomonas heavily participate in the denitrification process (Cheneby et al 2004). 

A previous study has shown that the Mo17 maize secreted more citrate than other 

maize inbred lines, which led to a slightly more acidic environment at its rhizosphere 

root cap (Piñeros et al 2005). Interestingly, artificial root exudates containing the 

highest amount of organic acid applied to maize roots resulted in significantly higher 

activity of nitrate reducers (Henry et al 2008). Therefore, the slightly more acidic 

rhizosphere may explain enriched denitrification genes in Pseudomonas isolates from 

the Mo17 maize rhizosphere. Note that I am aware that the MetaCyc function profiles 

list genes involved in metabolic pathways, which may not include complete metabolic 

pathways. I have verified that the enriched nitrate reduction I (denitrification) pathway 

contains all the enzymes (EC 1.7.2.1, EC 1.7.2.4, EC 1.7.2.5, and EC 1.7.99.4) for 

the complete pathway. Previous studies also showed that root morphology varied by 

maize genotypes, with Il14h having longer root systems than Mo17 (Kumar et al 

2012), and that maize root mucilage affected the diversity of denitrification bacterial 

population (Mounier et al 2004). Thus, another possible reason for enrichment of 

denitrification genes in Pseudomonas isolates cultured from the Mo17 maize 

rhizosphere is that the distinct root morphology and root mucilage of the Mo17 maize 

attract more denitrifying Pseudomonas to the rhizosphere. 
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Table 3.4 The Pseudomonas metabolic genes associated with the Mo17 maize 
genotype. The genes were identified using the ‘indicator species’ approach. Column 1 
shows the IDs of MetaCyc pathways containing the enriched metabolic genes, 
column 2 shows the information for the pathways, and column 3 shows whether the 
pathways are complete with all enzymes or not. 

 

Group Mo17   

MetaCyc pathway IDs Pathways Enzymes involved in each 
pathway 

PWY-66 GDP-L-fucose biosynthesis I 
(from GDP-D-mannose) 

EC 4.2.1.47, missing EC 
1.1.1.271 

DENITRIFICATION-PWY nitrate reduction I 
(denitrification) 

EC 1.7.2.1, EC 1.7.2.4, EC 
1.7.2.5, and EC 1.7.99.4 

PWY-6748 nitrate reduction VII 
(denitrification) 

EC 1.7.2.1, EC 1.7.2.4 and EC 
1.7.99.4, missing EC 1.7.5.2 

PWY0-1338 polymyxin resistance EC 1.1.1.305, EC 2.1.2.13, EC 
2.4.2.43, EC 2.6.1.87, and EC 
2.7.8.30 

HCAMHPDEG-PWY 3-phenylpropanoate and 3-(3-
hydroxyphenyl)propanoate 
degradation to 2-oxopent-4-
enoate 

EC 1.13.11.16 and EC 
1.14.13.127, missing EC 
1.14.12.19, EC 1.3.1.87, and 
EC 3.7.1.14.  

PWY-6690 cinnamate and 3-
hydroxycinnamate degradation 
to 2-oxopent-4-enoate 

EC 1.13.11.16 and EC 
1.14.13.127, missing EC 
1.14.12.19, EC 1.3.1.87, and 
EC 3.7.1.14.  

PWY-5641 2-nitrotoluene degradation EC 3.7.1-, missing EC 
1.13.11.2 

TOLUENE-DEG-DIOL-PWY toluene degradation to 2-
oxopent-4-enoate (via toluene-
cis-diol) 

EC 3.7.1-, missing EC 
1.13.11.2, EC 1.14.12.11, and 
EC 1.3.1.19 

PWY-1501 mandelate degradation I EC 1.2.1.28 and EC 4.1.1.7, 
missing EC 1.1.99.31, EC 
1.2.1.7, and EC 5.1.2.2 

PWY-5648 2-nitrobenzoate degradation II EC 1.14.12.1 

PWY-6079 anthranilate degradation I 
(aerobic) 

EC 1.14.12.1 

PWY-6444 benzoate biosynthesis II (CoA-
independent, non-&beta;-
oxidative) 

EC 1.2.1.28, missing EC 
4.3.1.24 

PWY-6446 benzoate biosynthesis III (CoA-
dependent, non-&beta;-
oxidative) 

EC 1.2.1.28 

PROPIONMET-PWY methylmalonyl pathway EC 5.1.99.1, missing EC 
5.4.99.2 and EC 6.4.1.3 

TRPCAT-PWY tryptophan degradation I (via 
anthranilate) 

EC 1.13.11.11, EC 3.5.1.9, and 
EC 3.7.1.3 
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In addition, the Pseudomonas isolates from the Mo17 maize rhizosphere are 

enriched in the genes for degrading anthranilate and tryptophan (Table 3.5). The 

Il14h maize produces higher amount of 2, 4-Dihydroxy-7-methoxy-I, 4-benzoxazin-3-

one (DIMBOA) (Butrón et al 2010). The Pseudomonas isolates from the Mo17 maize 

rhizosphere could help to decrease the DIMBOA levels by degrading the DIMBOA 

precursors, as anthranilate has been shown to be incorporated into DIMBOA (Kumar 

and Chilton 1994), and tryptophan and DIMBOA share common steps and 

intermediates for their synthesis (Melanson et al 1997). I have also verified that the 

anthranilate degradation I (aerobic) and tryptophan degradation I (via anthranilate) 

pathways contain the enzymes for the complete pathways.  
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Table 3.5 The Pseudomonas metabolic genes associated with the Il14h maize 
genotype. The columns are the same as in Table 3.4.  
 
Group Il14h  

MetaCyc pathway IDs Pathways Enzymes involved in each 
pathway 

PWY-6714 
 

GDP-L-fucose biosynthesis I (from 
GDP-D-mannose) 

EC 4.2.1.47, missing EC 1.1.1.271 

PWY-6714 L-rhamnose degradation III EC 1.1.1.-, EC 4.2.1.90, missing 
EC 1.1.1.173 and EC 3.1.1.65 

PWY-7136 beta myrcene degradation pathway EC 1.1.1.-, missing EC 1.2.1.86, 
EC 4.2.1.127, EC 5.4.4.4 

GAMMAHEXCHLORDEG-PWY gamma-hexachlorocyclohexane 
degradation 

EC 1.1.1.-, missing EC 1.3.1.32, 
EC 3.8.1.5, and EC 4.5.1.- 

PWY-6080 4-ethylphenol degradation 
(anaerobic) 

EC 1.1.1.-, missing EC 1.17.99 and 
EC 1.3.7.9 

PWY-6391 meso-butanediol biosynthesis I EC 1.1.1.- 

PWY-6392 meso-butanediol biosynthesis II EC 1.1.1.- 

PWY-5451 acetone degradation I (to 
methylglyoxal) 

EC 1.1.1.-, missing EC 1.1.1.80, 
EC 1.14.14.1 and EC 4.1.1.4 

PWYQT-4450 aliphatic glucosinolate 
biosynthesis, side chain elongation 
cycle 

EC 1.1.1.-, missing EC 2.3.3.- and 
EC 5.4.4.- 

7ALPHADEHYDROX-PWY cholate degradation (bacteria, 
anaerobic) 

EC 1.1.1.-, missing EC 3.1.2.26, 
EC 4.2.1.106, and EC 6.2.1.7 

PWY-5848 cinchona alkaloids biosynthesis EC 1.1.1.- 

DENITRIFICATION-PWY nitrate reduction I (denitrification) EC 1.7.2.1, EC 1.7.2.4, EC 1.7.2.5, 
and EC 1.7.99.4 

PWY-5519 D-arabinose degradation III EC 1.1.1.-, missing EC 1.2.1.26, 
EC 3.1.1.30 and EC 4.2.1.5 

PWY-6491 D-galacturonate degradation III EC 1.1.1.- 

PWY-6501 D-glucuronate degradation II EC 1.1.1.- 

GALACTITOLCAT-PWY galactitol degradation EC 1.1.1.-, missing EC 2.7.1.144 
and EC 4.1.2.40 

PWY-6678 geraniol and nerol degradation EC 1.1.1-, missing EC 1.2.1.86 

PWY-6518 glycocholate metabolism (bacteria) EC 1.1.1.-, missing EC 1.1.1.159, 
EC 1.1.1.176, EC 1.1.1.201, EC 
1.1.1.238,and EC 3.5.1.24 

PWY-2601 isethionate degradation EC 1.1.1.- 

P302-PWY L-sorbose degradation EC 1.1.1.-, missing EC 1.1.1.140 

LACTOSEUTIL-PWY lactose degradation II EC 1.1.1.-, missing EC 1.1.99.13 
and EC 3.2.1.23 

PWY-5453 methylglyoxal degradation III EC 1.1.1.- 

PWY-5271 phaseic acid biosynthesis EC 1.1.1.-, missing EC 1.14.13.93 

PWY-5410 traumatin and (Z)-3-hexen-1-yl 
acetate biosynthesis 

EC 1.1.1.-, missing EC 1.13.11.12 
and EC 2.3.1.195 

PWY-5516 xylose degradation II EC 1.1.1.- 

PWY-5782 2-keto-L-gulonate biosynthesis EC 1.1.1.- and EC 1.1.99.21, 
missing EC 1.1.99.32 

PWY-6704 L-ascorbate degradation IV EC 1.1.1.- and EC 1.1.1.264 
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On the other hand, in the Pseudomonas isolates cultured from the rhizosphere 

of the sweet corn maize inbred line Il14h, several sugar-metabolism related genes 

are associated with this maize genotype. The maize sweet corn inbred line Il14h 

harbors a mutation at the sugary1 gene, which results in higher sucrose and glucose 

concentration and lower starch production in the endosperm (James et al 1995). 

Relatively little is known for the influence of sugary1 mutation on sugar 

concentrations in stalks and roots in adult sweet corn plants, and one study has 

proposed that during the movement of sugars from stalks to kernels as sweet corn 

plants developed from the tassel formation stage to the milk stage, which includes 

flowering time (LANCASHIRE et al 1991), the levels of sucrose increased while the 

levels of fructose and glucose dropped in the ninth stalk internode (Russo and Smith 

1999). It is well known that plants release root exudates into their rhizosphere, which 

mediate interactions between plants and their roots-associated microbiome (Huang et 

al 2014), and sugars make up 65% of the maize root exudates (Aira et al 2010). The 

relatively higher amount of sucrose in the sweet corn is likely to be released into the 

rhizosphere in the form of root exudates, and may attract Pseudomonas containing 

higher number of genes involved in the metabolism of sugars. Moreover, it has been 

shown previously that P. chlororaphis O6 could produce meso-butanediol (Han et al 

2006). I also observed that the Pseudomonas isolates from the Il14h maize 

rhizosphere enrich genes for meso-butanediol biosynthesis pathways.  

Molecular Evolution 

To investigate whether the enriched metabolic genes associated with each 

maize genotype in the Pseudomonas isolates are under the selection from their 

respective maize genotype, I conducted molecular evolution analysis to infer natural 

selection on the enriched metabolic gene sequences from the Pseudomonas 
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genomes. I tested the nitrate reduction related genes enriched in the Pseudomonas 

isolates from the Mo17 maize rhizosphere, and the sugar metabolic genes enriched 

in the Pseudomonas isolates from the Il14h maize rhizosphere (see Table 3.6 for a 

list of genes used to infer selection). I aligned the gene sequences based on the 

alignment of their protein sequences, and inferred natural selection using several 

methods integrated in HyPhy (Pond and Muse 2005). I did not identify any positively 

selected site, whereas I observed that multiple sites in several genes are under 

negative selection. I also verified that there is no recombination in the gene 

sequences used to infer natural selection.  
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Table 3.6 List of Pseudomonas genes used for the molecular evolution analyses to 
infer natural selection. Sub-tables a, b, and c lists the denitrification genes, sugar 
metabolic genes, and regulatory genes for denitrification used for the molecular 
evolution analyses that are associated with the Mo17, Il14h, and Mo17 maize inbred 
lines, respectively. Column 1 shows the names of the genes, and columns 2 and 3 
show whether positive or negative is detected in the genes.  
 

Table 3.6a 

Mo17 enriched metabolic 
genes 

  

Genes Positive selection Negative selection 
assimilatory nitrate reductase 
(NADH) alpha subunit 
apoprotein 

No Yes 

anthranilate 1,2-
dioxygenase, small subunit 

No Yes 

4-amino-4-deoxy-L-
arabinose transferase and 
related glycosyltransferases 
of PMT family 

No Yes 

Table 3.6b 

Il14h enriched metabolic 
genes 

  

Genes Positive selection Negative selection 
Short-chain alcohol 
dehydrogenase of unknown 
specificity 

No Yes 

Dehydrogenases with 
different specificities 

No No 

Table 3.6c 

genes regulating nitrate 
reduc. 

  

Genes Positive selection Negative selection 
respiratory nitrate reductase 
chaperone NarJ 

No Yes 

periplasmic nitrate reductase 
chaperone NapD 

No Yes 

Signal transduction histidine 
kinase, nitrate/nitrite-specific 

No Yes 

 

I then asked whether regulatory genes for the enriched metabolic genes 

associated with each maize genotype are under the selection from maize. Previous 

studies examining positive selection in Streptococcus genomes have found that the 

two-component signal transduction kinase genes regulating virulence gene 
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expression were under positive Darwinian selection (Anisimova et al 2007). So I 

proposed that maybe the genes regulating metabolic gene expression are under the 

selection from maize, and changes in the regulatory genes lead to the enrichment of 

metabolic genes in the Pseudomonas isolates. I sought to infer natural selection in 

the known regulatory genes for denitrification, including the nitrate/nitrite-specific 

signal transduction histidine kinase genes NarXL (Sparacino-Watkins et al 2014) and 

the nitrate reductase chaperone genes (Grahl et al 2012, Sparacino-Watkins et al 

2014). I did not identify any site under positive selection from maize, whereas I 

observed negative selection at some sites in the regulatory genes (Table 3.6).  

I also estimated the evolutionary divergence between the gene sequences 

that were included in the analyses to infer natural selection. The estimated pairwise 

genetic distance of the genes ranges from 0.03 to 0.2, indicating a moderate level of 

divergence between these genes. As the divergence level increases, the relative 

number of non-synonymous mutation decreases, leading to higher non-synonymous 

mutation to synonymous mutation ratio (dN/dS) (Forsdyke 2007); As a dN/dS ratio over 

1 indicates positive selection, sequences with higher divergence level are more likely 

to show positive selection if the selection is present. That I did not identify any 

positively selected site in the moderately divergent sequences indicates that there is 

no molecular adaptation in these genes, and that the variation in the counts of the 

metabolic genes enriched in each maize genotype is more likely to have been 

influenced by the negative selection pressure from maize genotypes on the 

Pseudomonas isolates. This supports my PERMANOVA results that maize genotypes 

select on function abilities of the Pseudomonas isolates. This result is also in line with 

previous conclusions that purifying selection is pervasive in functional genetic 

elements in bacterial genomes and that bacterial genomes evolve under negative 
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selection (Petersen et al 2007, Tümmler and Cornelis 2005). It is also possible that 

certain maize genes involved in recruiting the Pseudomonas isolates or some 

compounds in the maize root exudates play key roles in the differences in the 

metabolic abilities of the Pseudomonas isolates cultured from the rhizosphere of two 

different maize genotypes.  

Co-occurring OTUs with Pseudomonas isolates  

To further elucidate the functions of the Pseudomonas isolates and their 

relationships with the other rhizosphere bacteria, I identified the OTUs that co-occur 

with the Pseudomonas isolates using the maize rhizosphere microbiome 16S rRNA 

gene V4 region amplicon data (Jin, Z and Ley, R.E., unpublished data) (Figure 3.3-

3.5). The 48 Pseudomonas isolates belong to 8 Pseudomonas OTUs (Table 3.3), and 

I identified from 3 to over 1000 co-occurring OTUs for each OTU containing the 

Pseudomonas isolates (not listed due to table size limit). Among the co-occurring 

OTUs with the Pseudomonas isolates, I observed OTUs from the Achromobacter, 

Arthrobacter, Bacillus, Paenibacillus, and Stenotrophomonas families that have been 

shown previously to be diazotrophic isolates from the wheat rhizosphere along with 

Pseudomonas (Venieraki et al 2011), and OTUs from the Bradyrhizobium family, 

which have been shown to co-operate with Pseudomonas to enhance nitrogen 

fixation in legumes (Barea et al 2005); These bacteria may collaborate with 

Pseudomonas on nitrogen fixation in the maize rhizosphere. I also identified co-

occurring OTUs of the Acidovorax, Agrobacterium, Rhizobium, Sphingomonas, and 

Variovorax families that have been shown to produce the same quorum sensing 

signaling molecules as Pseudomonas (D’Angelo‐Picard et al 2005), and OTUs from 

the Acinetobacter family which could degrade the signaling molecules produced by 

Pseudomonas (Chan et al 2011); These bacteria may interact with the Pseudomonas 
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isolates via inter-genus communicating (Dubern and Diggle 2008). In addition, I found 

that the Pseudomonas isolates from both maize genotypes and both fields all have 

non-random associations with some other Pseudomonas OTUs. This suggests that 

Pseudomonas OTUs in the maize rhizosphere may interact with each other in ways 

similar to how different 2,4-DAPG-producing Pseudomonas strains interacted in the 

wheat rhizosphere (Landa et al 2003).  

 

 

Figure 3.3 Network of co-occurring OTUs with the OTUs containing the 
Pseudomonas isolates in Lansing. The seven big nodes with numbers show the 
OTUs containing the Pseudomonas isolates and the OTU IDs. The smaller nodes 
were co-occurring OTUs with the OTUs containing the Pseudomonas isolates, and 
were colored based on their phyla. The edge between an OTU containing the 
Pseudomonas isolates and any of its co-occurring OTU represents a strong 
(Spearman’s ρ > 0.4) and significant (Q-value < 0.01) correlation. The width of each 
edge is proportional to the Spearman’s ρ between each node pairs. 
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Figure 3.4 Network of co-occurring OTUs with OTUs containing the Pseudomonas 
isolates in the first plate of Urbana. The seven big nodes with numbers show the 
OTUs containing the Pseudomonas isolates and the OTU IDs. The smaller nodes 
were co-occurring OTUs with the OTUs containing the Pseudomonas isolates, and 
were colored based on their phyla. The edge between an OTU containing the 
Pseudomonas isolates and any of its co-occurring OTU represents a strong 
(Spearman’s ρ > 0.4) and significant (Q-value < 0.01) correlation. The width of each 
edge is proportional to the Spearman’s ρ between each node pairs.  

 

Figure 3.5 Network of co-occurring OTUs with OTUs containing the Pseudomonas 
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isolates in the second plate of Urbana. The seven big nodes with numbers show the 
OTUs containing the Pseudomonas isolates and the OTU IDs. The smaller nodes 
were co-occurring OTUs with the OTUs containing the Pseudomonas isolates, and 
were colored based on their phyla. The edge between an OTU containing the 
Pseudomonas isolates and any of its co-occurring OTU represents a strong 
(Spearman’s ρ > 0.4) and significant (Q-value < 0.01) correlation. The width of each 
edge is proportional to the Spearman’s ρ between each node pairs. 
 

To identify the co-occurring OTUs unique to each maize genotype across two 

fields, I focused on one OTU that contains the Pseudomonas isolates from both 

maize genotypes and both fields. I compared the co-occurring OTUs for this OTU 

from the same maize genotype grown in both fields, and identified the shared co-

occurring OTUs (Table 3.7). Comparison of the shared co-occurring OTUs from each 

maize genotype shows that bacterial OTUs from the Chitinophagaceae and 

Bacteriovoracaceae families, the MND1 order of Betaproteobacteria, the RB41 order 

of Acidobacteria, and the Rhodoplanes and Frankia genera are unique co-occurring 

OTUs to the Pseudomonas isolates from the Il14h maize rhizosphere, whereas an 

bacterial OTU from the Edomicrobium genus is a unique co-occurring OTU to the 

Pseudomonas isolates from the Mo17 maize rhizosphere. The common co-occurring 

OTUs to the Pseudomonas isolates from both maize genotypes include bacterial 

OTUs from the Sphingomonadaceae, Syntrophobacteraceae, Gemmataceae, and 

Chitinophagaceae families. Among these co-occurring OTUs, bacteria from the 

Bacteriovoracaceae family have been reported to prey on Pseudomonas (Davidov et 

al 2006). Although there is no full knowledge for how the other co-occurring OTUs 

interact with the Pseudomonas isolates in the rhizosphere of each maize genotype, 

some of these OTUs have been reported as members of the maize rhizosphere 

(Bouffaud et al 2014, Chauhan et al 2011, Garcia-Salamanca et al 2013, Li et al 

2014), and the understanding of their roles and functions will benefit from future 

studies on maize-rhizosphere microbiome interactions and functional potential of 
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microbes in the maize rhizosphere microbiome.  

Table 3.7 Unique and shared co-occurring OTUs with the OTUs containing the 
Pseudomonas isolates for each maize genotype. Sub-tables a and b list the co-
occurring OTUs unique to the Mo17 and Il14h maize genotype, respectively. Sub-
table c lists the co-occurring OTUs shared by the two maize genotypes. OTU IDs are 
Greengenes OTU numbers. 
 
Table 3.7a 
unique to mo17 
OTU 
IDs 

Taxonomy of co-occurring OTUs 

4433035 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhizobiales; 
f__Hyphomicrobiaceae; g__Pedomicrobium; s__ 

Table 3.7b 
unique to Il14h 
OTU 
IDs 

Taxonomy of co-occurring OTUs 

114076 k__Bacteria;, p__Bacteroidetes;, c__[Saprospirae];, o__[Saprospirales];, 
f__Chitinophagaceae;, g__;, s__ 

11544 k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales; 
f__Frankiaceae; g__Frankia; s__ 

185100 k__Bacteria; p__Proteobacteria; c__Deltaproteobacteria; o__Bdellovibrionales; 
f__Bacteriovoracaceae; g__; s__ 

4440262 k__Bacteria; p__Proteobacteria; c__Betaproteobacteria; o__MND1; f__; g__; 
s__ 

4450676 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhizobiales; 
f__Hyphomicrobiaceae; g__Rhodoplanes; s__ 

697997 k__Bacteria; p__Acidobacteria; c__[Chloracidobacteria]; o__RB41; f__; g__; s__
Table 3.7c 
shared  
OTU 
IDs 

Taxonomy of co-occurring OTUs 

1085229 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; 
o__Sphingomonadales; f__Sphingomonadaceae; g__; s__ 

2254354 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; 
o__Sphingomonadales; f__Sphingomonadaceae; g__Sphingomonas; s__ 

4260136 k__Bacteria; p__Proteobacteria; c__Deltaproteobacteria; 
o__Syntrophobacterales; f__Syntrophobacteraceae; g__; s__ 

4433032 k__Bacteria; p__Planctomycetes; c__Planctomycetia; o__Gemmatales; 
f__Gemmataceae; g__; s__ 

853114 k__Bacteria; p__Bacteroidetes; c__[Saprospirae]; o__[Saprospirales]; 
f__Chitinophagaceae; g__; s__ 

929398 k__Bacteria; p__Bacteroidetes; c__[Saprospirae]; o__[Saprospirales]; 
f__Chitinophagaceae; g__; s__ 
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Conclusion 

In this study I characterized the taxonomy of the 48 Pseudomonas isolates 

cultured from two different maize genotypes grown in two fields at the same 

developmental stage. Although I did not observe a significant maize genotype effect 

on the pan-genome SNPs or the abundance of the OTUs containing the 

Pseudomonas isolates, I showed that maize genotypes significantly contribute to the 

variation in the counts of metabolic genes of the Pseudomonas isolates. I also 

identified the metabolic genes from the Pseudomonas isolates that are associated 

with each maize genotype. I conducted molecular evolution analyses in the enriched 

metabolic genes and observed genes under negative selection. In addition, I 

identified co-occurring OTUs from the same maize rhizosphere where the 

Pseudomonas isolates were cultured; these co-occurring OTUs may be involved in 

various cooperative activities such as nitrogen fixation and cell-cell communication 

with the Pseudomonas isolates in the maize rhizosphere.  

The experimental design permitted me to test the influence of maize 

genotypes on its rhizosphere Pseudomonas isolates across different field conditions, 

and to assess the degree to which these maize-Pseudomonas interactions depend 

upon the maize genotypes as well as the field conditions and the taxonomy of the 

isolates. Sequencing of the Pseudomonas isolates also allowed me to examine the 

whole genomes of the isolates and to specify the metabolic genes that imply maize 

genotype selection effect, providing a wide range of candidates that will benefit future 

studies on plant-microbiome interactions and crop breeding.  
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Abstract 

Characterizing the heritability of the plant rhizosphere microbiome advances 

our understanding on the relationship between plant genetic control and the variation 

in the rhizosphere microbiome. Root exudates change at different plant growth 

stages, reflecting the variation of plant genetic control over time. I describe here a 

longitudinal study on the heritability of the maize rhizosphere microbiome conducted 

using 27 diverse maize lines grown in three different fields over the entire maize 

growing season. I estimated the proportion of variation in the beta diversity of the 

rhizosphere microbiome samples at each time point explained by maize genotypes, 

fields, and genotype by field interactions. I found that the maize genotype effect starts 

to increase at week 2 after planting, suggesting that the maize genetic control is 

taking effect. I observed the strongest maize genotype effect around flowering time. I 

also identified some potential heritable taxa as well as OTUs whose abundances vary 

over maize developmental stages. In addition, I observed increased species loss 

starting at week 2, which corresponds to the time point when maize genetic control 

starts to take effect, whereas species loss peaks at flowering time when maize 

imposes the strongest genetic control on the rhizosphere microbiome. The results 

from this study will expand our knowledge on the dynamics of the rhizosphere 

microbiome and how plant genotypes interact with environmental factors to cultivate 

the rhizosphere microbiome. These results will also benefit future studies that 

incorporate heritable plant-microbiome interactions into genetic models for plant 

breeding.  
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Introduction 

Understanding the heritability of the microbiome is an important aspect to 

characterize the relationship between host genetic control and variation in the 

composition of the microbiome. Heritability refers to the proportion of phenotypic 

variation in a population accounted for by genetic variation of individuals (Spor et al 

2011). Treating the microbiome as a quantitative trait, the heritability of the 

microbiome answers to what extent is host genetic variation related to the variation in 

the microbiome.  

The rhizosphere microbiome is critical to the health and development of plants 

(Berendsen et al 2012), yet the heritability of the rhizosphere microbiome is not well 

characterized. An earlier investigation on the intraspecific heritability of root microbial 

communities from Populus angustifolia showed that intraspecific plant genotypic 

variation explained over half of the variation in microbial biomass nitrogen levels and 

the microbial community composition (Schweitzer et al 2008). Our recent study on the 

maize rhizosphere microbiome discovered that a small but significant proportion of 

the variation in the rhizosphere microbiome is heritable (Peiffer et al 2013). While 

research on vertebrate gut microbiome can provide us with additional insights into 

understanding the heritability and heritable components of microbiomes (Benson et al 

2010, Hansen et al 2011, Meng et al 2014, Nelson et al 2011, Spor et al 2011, 

Turnbaugh et al 2009), further understanding on the heritability of plant rhizosphere 

microbiome is lacking.  

Plant developmental stages also influence the rhizosphere microbiome 

besides the impact from plant genetic control and environmental factors. Changes in 

time may underlie the changes in many soil physiochemical properties, such as 

moisture (Baskan et al 2013), nitrogen availability (Cain et al 1999), or C/N ratio 
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(Zhang et al 2011). More specifically, the composition of root exudates changes as 

plants age (Baudoin et al 2002, Chaparro et al 2013), reflecting the variation of plant 

genetic control over time. Previous studies conducted on the Arabidopsis rhizosphere 

microbiome have identified that relative abundances of some bacterial taxa and 

functional genes in the rhizosphere microbiome followed temporal patterns in 

response to Arabidopsis developmental stages (Chaparro et al 2013, Chaparro et al 

2014). Other studies carried out in different plant rhizosphere microbiomes have 

obtained similar conclusions that plant developmental stages affect the composition 

of the rhizosphere microbiome (Inceoglu et al 2010, Li et al 2014, Mougel et al 2006, 

van Overbeek and van Elsas 2008).  

Using diverse maize inbred lines and a well-designed longitudinal study, I 

aimed to comprehend how maize genetic control on the rhizosphere microbiome 

changes over maize developmental stages. Our previous survey measured the 

heritability of the maize rhizosphere microbiome at flowering time, which was deemed 

a transition point in maize development from release of ample carbon resources to 

the rhizosphere to decrease in carbon flow to the rhizosphere due to maize 

reproduction (Peiffer and Ley 2013). Here I followed the rhizosphere microbiome of 

27 maize inbred lines grown at three different fields over 20 weeks, and conducted 

time-series analysis on the heritability of the rhizosphere microbiome. I estimated the 

proportion of variation in the beta diversity of the rhizosphere microbiome samples at 

each time point explained by maize genotypes, fields, and genotype by field 

interactions. I found that the maize genotype effect starts to increase at week 2 after 

planting, suggesting that the maize genetic control is taking effect. I observed the 

strongest maize genotype effect around flowering time. I also identified some 

potential heritable taxa as well as OTUs whose abundances vary over maize 
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developmental stages. In addition, I observed increased species loss starting at week 

2, which corresponds to the time point when maize genetic control starts to take 

effect, whereas species loss peaks at flowering time when maize imposes the 

strongest genetic control on the rhizosphere microbiome. My research revealed the 

changes in the heritability of the rhizosphere microbiome over maize developmental 

stages, and found potential heritable components of the rhizosphere microbiome. I 

also disentangled the temporal dynamics of species turnover and loss in the maize 

rhizosphere microbiome, and showed agreement between this temporal pattern and 

the dynamics of the maize genotype effect over time.  

 
Materials and methods 

Study design 

This study was aimed at determining the heritability of diverse maize lines 

over maize developmental stages. The maize germplasm and planting of the maize 

inbred lines have been described previously by a team of people in my lab (Peiffer et 

al 2013). Briefly, 27 maize inbred lines were planted in a randomized complete block 

design in three different fields (two conventional managed, one organic) located at 

upstate New York. The rhizosphere soil samples of all maize inbred plots were 

collected every week from week 1 after planting to week 15 after planting, as well as 

week 20 after planting (Figure 4.1).  
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Figure 4.1 Sampling time of maize rhizosphere microbiome. VE to VT are vegetative 
maize developmental stages, and R1 to R5 are reproductive maize developmental 
stages. Weeks are converted from approximate days after seedling. Arrows indicate 
the weeks of rhizosphere soil samples taken. Figure adapted from 
www.smallgrains.org/springwh/Jun04/crop/crop.htm.  
 

 

DNA extraction and 16S rDNA V4 region PCR amplification 

Total genomic DNA was extracted from the rhizosphere soil samples as 

described previously by a team of people in my lab (Peiffer et al 2013). The partial 

16S rRNA gene PCR amplification for all DNA samples was conducted following the 

Illumina MiSeq iTags working protocol with refined staggered primers (Joint Genome 

Institute, unpublished). Specifically, the 515F forward PCR primer (5’-

AATGATACGGCGACCACCGAGATCTACAC TCTTTCCCTACA 

GTGCCAGCMGCCGCGGTAA-3’, underlined, italic, and bold bases represent 

Illumina adapter, primer pad, and 16S rRNA gene V4 region forward primer, 

respectively) and the 806R reverse PCR primer (5’-
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CAAGCAGAAGACGGCATACGAGAT XXXXXXXXXXXX NNN 

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT 

GGACTACHVGGGTWTCTAAT-3’, underlined, italic, and bold bases represent 

Illumina adapter, primer pad, and 16S rRNA gene V4 region forward primer, 

respectively. String of Xs represents the unique barcode for each reverse primer, and 

NNN represents the one to three staggered bases.)  

The 16S rRNA gene V4 region PCR amplification was conducted as follows: 

Each rhizosphere soil DNA sample was amplified in duplicates in 50 µl PCR 

reactions, which contained 26 µl PCR water, 20 µl 5 PRIME HotMasterMix (5 PRIME, 

Inc., Gaithersburg, MD), 1 µl forward primer at 10 µM, 1 µl reverse primer at 10 µM, 

and 2 µl of rhizosphere DNA template. The PCR reaction mixes were set up 

manually, and the rhizosphere DNA templates were added using the Eppendorf 

epMotion liquid handling robotic workstation (Eppendorf North America, Hauppauge, 

NY). Thermal cycling consisted of an initial denaturation at 94 °C for 3 min, 35 cycles 

of  denaturation at 94°C for 45 s, annealing at 50°C for 1 min, and elongation at 

72°C for 1.5 min, followed by a final extension at 72°C for 10 min. The duplicate PCR 

reactions for each rhizosphere DNA sample were combined, and purified using the 

Agencourt AMPure XP PCR purification beads (Beckman Coulter, Indianapolis, IN). 

The purified PCR amplicons were quantified using the Quant-iT PicoGreen dsDNA 

Assay Kit (Life Technologies, Grand Island, NY), and pooled in equimolar ratios into a 

single sample with a final concentration of ~ 20 ng/µl. 

The 16S rRNA gene V4 region PCR amplicons were sequenced using 

Illumina technology (Bentley et al 2008) on the Illumina MiSeq platform at the Joint 

Genome Institute with the following sequencing primers: TCTTTCCCTACA 

GTGCCAGCMGCCGCGGTAA (read 1), 
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GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT (read 2), and 

GATCGGAAGAGCACACGTCTGAACTCCAGTCAC (index).  

Analysis of 16S rRNA gene V4 region sequences 

The analysis of the 16S rRNA gene V4 region sequences were conducted by 

Antonio González Peña and Jose Navas at Dr. Rob Knight’s lab in University of 

Colorado Boulder. The 16S rRNA gene V4 region sequences were analyzed using 

the QIIME software package (Quantitative Insights into Microbial Ecology) (Caporaso 

et al 2010) version 1.8.0-dev with default settings. Pre-filtering on a total of 

600,756,830 reads kept 99.72% of the sequences. Open-reference OTU picking was 

conducted on a total of 448,805,476 reads using the Greengenes (DeSantis et al 

2006) August 2013 taxonomy as the reference at 97% sequence identity. 28359 

OTUs were picked for 4405 samples, with 10% of the OTU table being non-zero 

values. The minimal and maximal reads per sample were 1 and 593118, respectively, 

with a median of 85917 reads and a standard deviation of 69734 reads. The 

unweighted and weighted UniFrac distances (Lozupone and Knight 2005) were 

calculated using the OTU table that was rarified (sub-sampled) at 10k and 20k read 

depths. After filtering out the Midwest and bulk soil samples, 3990 samples remained. 

The OTU table was converted to relative abundance in R 3.1.0 (R Core Team 2014). 

The absolute and relative abundance OTU tables were split by maize inbreds and 

maize ages, as well as collapsed into family-level OTUs in QIIME.  

Statistical analyses 

Permutation-based multiple regression was conducted on the family-level 

relative-abundance OTU table using the R package ‘lmPerm’ (Wheeler 2010). The R 

program ‘EDGE’ (Storey 2007) was employed to identify OTUs whose abundances 

vary with time. Partition of the beta diversity into turnover and nestedness 
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components was done using the R package ‘betapart’ (Baselga et al 2013). The R 

package ‘vegan’ (Oksanen et al 2013) and the function ‘capscale’ were used to 

estimate variation in beta diversity explained by maize inbreds, fields, and maize 

inbreds by field interaction using bootstrapped partial canonical analysis of principal 

coordinates. Heatmaps were generated using the R packages ‘gplots’ (Warnes et al 

2014) and ‘RColorBrewer’ (Neuwirth 2011). The Poisson generalized linear models 

were fitted using the ‘glm’ function in the R base package ‘stats’, the negative 

binomial generalized linear models were fitted using the ‘glm.nb’ function in the R 

package ‘MASS’ (Venables and Ripley 2002), the zero-inflated generalized linear 

models were fitted using the R ‘pscl’ package (Zeileis et al 2007), the general and 

generalized linear mixed models were fitted using the R ‘lme4’ package (Bates et al 

2014), and the linear mixed models with kinship matrix were fitted using the ‘lmekin’ 

function in the R ‘coxme’ package (Therneau 2012). The Bray-Curtis similarity metric 

was calculated using the R package ‘vegan’, and hierarchical clustering of OTUs was 

conducted using the R function ‘hclust’ in the R base package ‘stats’. The mantel test 

and Procrustes analysis were performed using the R ‘ade4’ (Dray and Dufour 2007) 

and ‘vegan’ packages, respectively. Statistical learning to define maize 

developmental stages or predict maize genotypes was done in the R package ‘pamr’ 

(Hastie et al 2013).  

 

Results and Discussion 

Influence of host genotypes on maize rhizosphere microbiome over time 

To investigate the influence from maize genotypes on the rhizosphere 

microbiome over time, I first estimated the proportion of variation in the beta diversity 

(between sample diversity) of the rhizosphere microbiome samples explained by 
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maize genotypes, fields, and genotype by field interactions at each time point. I 

employed a bootstrapped partial canonical analysis of principle coordinates (CAP) to 

the beta diversity of rhizosphere microbiome samples collected from weeks 2, 4, 5, 6, 

7, 8, 10, 11, 12, 13, 15, and 20 after planting, and assessed the variation accounted 

for by each term of interest after the effect of other terms had been ‘partialled out’. 

This approach has been successfully applied to studying the diversity and heritability 

of the maize rhizosphere microbiome at flowering time previously (Peiffer et al 2013).  

I conducted the CAP analysis on the unweighted and weighted UniFrac 

distances calculated at 10k and 20k rarefaction depths, and plotted the proportion of 

variation explained by maize genotypes, field, and genotype by field interactions at 

each time point. I showed that rarefaction depth does not influence the partitioning of 

variation (Figures 4.2 and 4.3).  

 

Figure 4.2 Proportion of variation in unweighted UniFrac distances rarefied at 10k 
and 20k explained by maize genotypes. X-axis, maize developmental time points in 
ages. Y-axis, percentage of variation in beta diversity explained by maize genotypes.  
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Figure 4.3 Proportion of variation in weighted UniFrac distances rarefied at 10k and 
20k explained by maize genotype by field interactions. X-axis, maize developmental 
time points in ages. Y-axis, percentage of variation in beta diversity explained by 
genotype by field interactions.  
 

The CAP analysis on the unweighted UniFrac distances shows that fields in 

general explain less variation than maize genotypes and genotype by field 

interactions. However, the variation in beta diversity explained by fields decreases 

sharply from week 2 to week 4, suggesting that maize genotypes starts to influence 

the rhizosphere microbiome after maize emergence (Figure 4.4). I observed an 

increase in maize genotype effect at the beginning of the vegetation growth stage at 

weeks 2 and 4, a slight decrease in these effects in the middle of the vegetation 

growth stage at week 6, and a near plateau from week 6 to week 11, a week before 

flowering. The maize genotype effect peaks at flowering time, indicating that root 

exudates are changing under the influence of maize genetic control at week 12. 

Interestingly, maize genotype effect still increases moderately after flowering and 

denting at week 15. Previous studies on the Arabidopsis root microbiome at different 
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Arabidopsis growth stages showed that towards the end of the growth cycle, the 

rhizosphere microbiomes from different Arabidopsis genotypes tended to be more 

alike, and that the rhizosphere microbiomes became more similar to bulk soil bacterial 

communities (Micallef et al 2009). While several other studies on Arabidopsis 

supported changes in root exudate contents over time in Arabidopsis (Chaparro et al 

2013, Chaparro et al 2014), relatively less is known about changes in the maize root 

exudate profiles during maize development. As it is generally regarded that maize 

plants release less carbon sources in the root exudates as they divert more carbon 

into kernels, future studies monitoring maize root exudate profiles over time are 

needed to fully understand whether maize genetics still tightly control their 

rhizosphere microbiome in older maize plants. The temporal pattern of the proportion 

of variation in the rhizosphere microbiome beta diversity explained by maize 

genotype and field interaction shows a similar trend to that of the genotype effect with 

slight differences, indicating that the maize genotype effect may be dependent on 

which field the maize plant is grown in. In addition, the smaller proportion of variation 

explained by field than that explained by maize genotype and genotype by field 

interactions is consistent with our previous findings that the three New York state 

fields were similar despite different ways of management; the variation in the 

rhizosphere microbiome beta-diversity is thus less dependent on the differences 

between fields.  
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Figure 4.4 Proportion of variation in unweighted UniFrac distances rarefied at 10k 
explained by maize genotypes (blue), fields (purple), and genotype by field 
interactions (red). X-axis, maize developmental time points in ages. Y-axis, 
percentage of variation in beta diversity explained by each factor.  
 

The CAP analysis on the weighted UniFrac distances shares a similar trend to 

that for the unweighted UniFrac distances, although there are several differences 

(Figure 4.5). For both the unweighted and weighted UniFrac distances, the maize 

genotype effect increases at week 2 to week 5, although the increase takes a longer 

time and does not drop until week 6 for unweighted UniFrac distances. The genotype 
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effect both peaks at week 12 for the unweighted and weighted UniFrac distances, 

and increases slightly after week 15. The weighted UniFrac is based on the 

abundances of taxa and is less sensitive to rare taxa, which may explain the 

observed small incongruities.  

 

Figure 4.5 Proportion of variation in weighted UniFrac distances rarefied at 10k 
explained by maize genotypes (blue), fields (purple), and genotype by field 
interactions (red). X-axis, maize developmental time points in ages. Y-axis, 
percentage of variation in beta diversity explained by each factor. Note that because 
rarefaction depth does not influence the temporal pattern, only the results for the 
UniFrac distances rarefied at 10k are shown here.  
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To find out whether the maize genetic effect on the rhizosphere microbiome 

abundance changes with maize development, I first sought to identify the heritable 

components of the rhizosphere microbiome and how much variation in the 

microbiome abundance is attributable to maize genotypes at each time point. I took 

the approach of modeling OTU abundances with regard to maize genotypes, field, 

genotype by field interactions and other factors, such as shipment and sequencing 

run. I employed a number of methods to explore the relationship of these factors with 

the variation in the rhizosphere microbiome OTU abundances, as described below.  

To deal with the non-normality in the OTU count data, I first used permutation-

based multiple regression to model OTU abundance. Because the original OTU table 

is sparse, with 10% counts being non-zeroes, I collapsed the OTU table at family 

level (hereafter referred to as the L6 data). The L6 data of all the maize rhizosphere 

microbiome samples contain 1261 family-level taxa. I regressed the absolute counts 

of each taxa in samples with maize genotypes, field, genotype by field interactions, 

and other covariates, using the total reads per sample as the offset, or regressed the 

relative abundance of each taxa with these factors without the offset. I corrected for 

multiple testing, and took the intersect of the significant hits from both calculations. I 

defined a taxa as having a truly significant maize genotype main effect when the 

genotype by field interactions are insignificant. I identified 63 taxa as having a 

significant maize genotype effect, and plotted the relative abundance of these taxa 

with maize genotypes at all times and by each time point (Figures 4.6 and 4.7). 

However, I did not observe a distinct pattern in the relative abundances of these taxa 

with regard to maize genotypes (Figure 4.6A). I also collapsed the 27 maize 

genotypes into 6 maize subgroups based on their genetic diversity (Liu et al 2003); 

this did not improve the pattern of the taxa relative abundance across maize 
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subgroups (Figure 4.6B). Plotting the relative abundances of these taxa with maize 

genotypes at each time point seems to show the variation in the relative abundances 

of the taxa across the maize genotypes better, although the patterns for many taxa 

are still not discernable (Figure 4.7).  

 

Figure 4.6 Heatmaps of potential heritable family-level taxa with maize genotypes 
(left) and subgroups (right) for all rhizosphere microbiome samples at all time points. 
Color bar on top of left graph shows the 27 maize genotypes from left to right: B73, 
B97, CML103, CML227, CML247, CML322, CML333, CML52, CML69, Hp301, Il14H, 
Ki11, Ki3, Ky21, M162W, M37W, Mo17, Mo18W, MS71, NC350, NC358, Oh43, 
Oh7B, P39, Tx303, and Tzi8. Color bar on top the right graph shows the 6 maize 
subgroups from left to right: mixed, non-stiff stalk (nss), popcorn, sweet corn, stiff 
stalk (ss), and tropical (ts).  
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Figure 4.7 Heatmaps of potential heritable family-level taxa with maize genotypes for 
rhizosphere microbiome samples at weeks 7 and 15. These are shown as an 
example for visualizing the patterns of potential heritable taxa at each time point. 
Color bars on top show the 27 maize genotypes as in Figure 4.6A.  
 

I further probed the relationship between OTU abundance and maize 

genotypes, field and genotype by field interactions using Poisson, negative binomial, 

and zero-inflated Poisson (ZIP) generalized linear models (GLMs) to account for over-

dispersion and zero-inflation in the count data. I modeled both the L6 data, and, after 

removing any OTU that was present in less than 75% of all the samples to trim 

excess zeroes, the p75 OTU data (the p75 OTU data contained 785 OTUs). For each 

of the 12 time points, I stacked the counts of all taxa/OTUs from all samples. I fitted 

the absolute abundance of the taxa/OTUs to maize genotypes, field, and genotype by 

field interactions, and diagnosed the fit. There were very significant over-dispersion 

for Poisson GLMs at all time points. Analysis of variance (ANOVA) for the negative 

binomial GLMs with and without the genotype by field interactions confirms that the 

interaction term is significant. The test for goodness-of-fit on the negative binomial 
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models shows that the negative binomial GLMs is a better fit than the Poisson GLMs 

for the L6 and p75 abundance data. However, the residual versus fitted plots indicate 

heteroscedasticity, and the normal quantile-quantile plots show that the residuals 

deviated from normality at all time points (see Figure 4.8 for an example). The ZIP 

GLMs, which assume that the zeroes come from a separate process from the non-

zero counts, model the excess zeroes independently from a Poisson count model. 

The residual versus fitted plots indicate heteroscedasticity, and the normal quantile-

quantile plots show that the ZIP model residuals have even more departure from 

normality compared to the negative binomial GLMs at all time points (see Figure 4.8 

for an example).  

 

Figure 4.8 Residual versus Fitted (left) and normal quantile-quantile plots (right) for 
residual of negative binomial (top) and Poisson zero-inflated (bottom) GLMs. These 
are example diagnostic plots for the negative binomial and ZIP GLMs fitted to the L6 
and p75 OTU data at each time point.   
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To account for the correlation in the OTU abundance data, I fitted general 

linear mixed models to the relative abundance of the L6 and p75 OTU data at each 

time point. The field was considered as a fixed effect, whereas the 27 maize 

genotypes were regarded as a random effect. The general linear mixed models failed 

to converge within the iteration limit of the models for 8 time points for the L6 data (11 

time points for the p75 data), or showed that maize genotypes and/or genotype by 

field interactions had zero variance in the total variance of the random effects for 9 

time points for the L6 data (8 time points for the p75 data). Logarithm or square root 

transformation did not improve the model fitting. I also applied Poisson generalized 

linear mixed models (GLMMs) to the absolute abundance of the L6 and p75 data 

using the total reads per sample as the offset. The Poisson GLMMs also failed to 

converge for all 12 time points, and showed that maize genotypes/genotype by field 

interactions had zero variance in the total variance of the random effects for both the 

L6 and p75 data. Previously, general linear mixed models have been used to detect 

OTUs differentially enriched in the Arabidopsis rhizosphere relative to bulk soil 

(Lundberg et al 2012) with the OTU abundance in bulk soil as the fixed effect, and 

Arabidopsis genotypes as a random effect. The incorporation of the bulk soil OTU 

abundance fixed effect likely improved the model fitting in this case.  

To take into consideration the relationship among the maize genotypes, I 

explored the possibility of including the maize kinship matrix (Peiffer et al 2013) in 

modeling OTU abundance using a general linear mixed model. I treated field as a 

fixed effect, maize genotypes as a random effect, and included the maize kinship 

matrix as the correlation structure for the random effect. There are two caveats 

associated with this approach. First, the normal quantile-quantile plots show that the 

residuals deviate from normality; second, it is not possible to include the interaction 
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term in the model, which may partly explain the identified lack of fit; thus, the 

genotype by field interaction cannot be estimated.  

I conducted mantel test and Procrustes analysis to examine the relationship 

between the maize kinship matrix and the beta diversity of the rhizosphere 

microbiome samples. As the maize genotype effect is strongest in week 12, I focused 

on comparing the kinship matrix to the unweighted and weighted UniFrac distances 

for week 12 samples. The kinship matrix was inflated to the same size as that of the 

UniFrac matrix, and Monte Carlo permutations were applied to the test. The mantel 

test results cannot reject the null hypothesis that the two matrices are unrelated (p > 

0.1) for both the unweighted and weighted UniFrac distances. Procrustes analysis 

with permutations on the maize kinship matrix and the unweighted or weighted 

UniFrac distances at week 12 cannot reject the null hypothesis that the two 

configurations are random, either (p >0.5). These results are consistent with our 

previous conclusion that the maize kinship matrix could not explain the variation in 

the maize rhizosphere microbiome beta diversity (Peiffer et al 2013).  

Influence of time on maize rhizosphere microbiome 

Besides exploring the maize genotype effect on the rhizosphere microbiome 

over time, I also investigated the influence of time on the maize rhizosphere 

microbiome in general.  

I first aimed to model the effect of time along with maize genotypes, field, 

genotype by field interactions, and other factors, to determine whether time has a 

significant influence on the variations in OTU abundance. I included time as a factor 

in the negative binomial GLM to model the stacked p75 OTU data for all samples 

from all time points. I compared this model to another model without the time factor, 

and found that time does not have a significant effect on the variation in the overall 
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OTU abundance. A recent study on maize rhizosphere microbiome in a single maize 

cultivar sampling four different maize growth stages has observed changes in the 

relative abundances of certain Proteobacteria or Bacteroidetes taxa in relation to 

maize developmental stages (Li et al 2014). An earlier research showed that the 

diversity of culturable rhizosphere bacterial populations did not differ significantly as 

maize went through five developmental stages, although the abundance of some 

bacterial taxa varied with time (Cavaglieri et al 2009). Therefore, although I did not 

find a significant effect of time on the overall rhizosphere microbiome OTU 

abundance, maize developmental stages may influence the abundance of a subset of 

the microbiome.  

I analyzed the relative OTU abundance for the rhizosphere microbiome 

samples from each of the 27 maize genotypes to identify the subset of the maize 

rhizosphere microbiome that vary in abundances over time. I took the intersect of the 

OTUs whose abundances vary over time from all 27 maize genotypes, and plotted 

the relative abundance of the 10 most abundant OTUs over the maize developmental 

time course (Figure 4.9 and Table 4.1). Interestingly, 3 OTUs from the 

Pseudomonadales order are highly enriched at later time points from week 8 to week 

20, suggesting a shift in the maize root exudates at week 8 that attracts more 

Pseudomonadales to the rhizosphere. Pseudomonadales are r-strategists that 

populate in nutrition-rich niches (Smit et al 2001). It has been found that as potato 

plants aged, the amount of 13C-labeled carbon released from roots increased over 

time, and that Pseudomonas and Burkholderia in the potato rhizosphere enriched 

more 13C-labeled carbon than other bacteria (Dias et al 2013). In addition, two OTUs 

from the Sphingobacteriaceae family in the Bacteroidetes phylum are slightly 

enriched in later maize growth stages after week 10. A recent study on Arabidopsis 
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rhizosphere microbiome has shown that the abundance of Bacteroidetes peaked at 

flowering time (Chaparro et al 2014), whereas previously we have also found that 

Sphingobacteriales were enriched in the maize rhizosphere at flowering time (Peiffer 

et al 2013). Thus, my results are in agreement with previous findings. Notably, this 

method mostly identified OTUs with varying abundances at later maize growth time 

points, and is also missing OTUs whose abundances are depleted over time.  

 

 

Figure 4.9 Heatmap of OTUs whose abundances vary by time with maize 
developmental time points for all rhizosphere microbiome samples. Color bar on top 
shows maize developmental time points from left to right by week. Numbers right next 
to the heatmap are Greengenes OTU numbers.   
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Table 4.1 Taxonomy of the OTUs whose abundances varied with maize 
developmental stages.  
 
 
1109251 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; 

o__Pseudomonadales; f__Pseudomonadaceae; g__Pseudomonas; s__ 

2468881 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; 

o__Pseudomonadales; f__Moraxellaceae; g__; s__ 

1918929 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; 

o__Rickettsiales; f__mitochondria; g__; s__ 

270842 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; 

o__Pseudomonadales; f__Pseudomonadaceae; g__Pseudomonas; s__ 

4339351 k__Bacteria; p__Bacteroidetes; c__Sphingobacteriia; 

o__Sphingobacteriales; f__Sphingobacteriaceae; g__Pedobacter; s__ 

2343601 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; 

o__Rickettsiales; f__mitochondria; g__; s__ 

4455861 k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; 

o__Pseudomonadales; f__Pseudomonadaceae; g__Pseudomonas; s__ 

573135 k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; o__Rhizobiales; 

f__Bradyrhizobiaceae; g__Bradyrhizobium; s__ 

1126297 k__Bacteria; p__Bacteroidetes; c__Sphingobacteriia; 

o__Sphingobacteriales; f__Sphingobacteriaceae; g__Pedobacter; s__ 

 

I estimated the effect of time on the unweighted UniFrac distances while 

controlling for the effect from other factors using CAP analysis. A permutation-based 

ANOVA on the CAP model reveals that although small (0.3%), the effect of time is 



 

138 

significant (p < 10e-16) for the variation in the beta diversity of all rhizosphere 

microbiome samples. This model-based approach is consistent with the principal 

coordinates analysis for the unweighted UniFrac distance (Figure 4.10), which shows 

the clustering patterns of the rhizosphere microbiome samples by time. 

 

Figure 4.10 Maize rhizosphere microbiome samples clustered using PCoA of the 
unweighted (top) and weighted (bottom) UniFrac distances. The percentage of 
variation explained by the principal coordinates is indicated on the axes. 
 

To further investigate the temporal patterns of the maize rhizosphere 
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microbiome, I sought to explore the variation of the co-occurring OTUs over time. I 

split the OTU abundance data to each time point, and analyzed the co-occurrence of 

OTUs by calculating the Pearson correlation of each OTU pair and correcting for 

multiple comparison. The number of OTU pairs that have significant correlations are 

huge due to the large number of OTUs. To focus on fewer taxa groups that may 

exhibit clearer patterns, I used the relative abundance of the L6 and p75 OTU data for 

all rhizosphere microbiome samples from all time points, and employed hierarchical 

clustering to detect possible temporal patterns. Hierarchical clustering of the Bray-

Curtis similarities of OTUs has been successfully applied to capture the succession 

patterns of the apple flower microbiome time series data (Shade et al 2013). 

Hierarchical clustering on the L6 data does not separate the taxa well; over 99% of 

the total taxa are grouped into one cluster. On the contrary, the p75 OTU data cluster 

into 6 major groups (Figure 4.11). However, I did not observe any discernible pattern 

when I plotted the 10 most abundant OTUs in each cluster (see Figure 4.12 for two 

examples). This suggests that the temporal co-occurrence patterns of the maize 

rhizosphere microbiome may be more complicated than that can be captured by 

hierarchical clustering, as the apple flower microbiome starts from a few taxa 

occupying an almost sterile environment when flowers first open, whereas the maize 

rhizosphere undergoes constant exchange and competition under field conditions. 

Alternatively, it is possible that the temporal dynamics of taxa/OTUs may be different 

for each maize genotype or within each field.  
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Figure 4.11 Hierarchical clustering (complete linkage-based Bray-Curtis similarities 
among OTUs defined at 97% sequence) for the relative abundance of the p75 OTU 
data. Y-axis: within-cluster Bray-Curtis similarity. 
 

 

Figure 4.12 Heatmaps of top twenty abundant OTUs in the first two clusters (left to 
right) from Figure 4.11 with maize developmental time points. Color bar on top shows 
maize developmental time points from left to right: weeks 1, 10, 11, 12, 13, 14, 15, 
16, 2, 20, 3, 4, 5, 6, 7, 8, and 9.  
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To examine the dynamics of changes in community composition in the 

rhizosphere microbiome during maize development, I partitioned the beta diversity 

into the species turnover and nestedness components (Baselga 2010). Species 

turnover and nestedness refer to the two opposing effects of species replacement 

and loss, respectively. The calculation was conducted on the presence-absence OTU 

data, and a monotonic transformation of the Sørensen beta diversity metric was 

divided into the parts that were due to addition of new community members and 

changes of constant community members. I found that more species replacement 

occurs in the maize rhizosphere microbiome than species loss, which is consistent 

with most of the microbiome members being rare OTUs. I observed an initial species 

loss at week 2 to week 4 after maize emergence; this corresponds to the increase in 

maize genetic effect when maize plants starts to select microbial species to establish 

their rhizosphere microbiome. From week 4 to week 8, members in the rhizosphere 

microbiome undergo active replacement, suggesting the gradual cultivation of maize 

on their rhizosphere microbiome is dynamic and involves recruitment of new 

microorganisms to the rhizosphere, and that old members that no long adapt to 

changes in the maize root exudates are excluded from the rhizosphere. Species 

replacement slows down as maize transitions from early to late vegetative growth 

stages, and species loss is fastest at week 12. This corresponds to the strongest 

maize genotype effect at week 12. Flowering is controlled by many small-effect 

quantitative trait locus (Buckler et al 2009). These genetic effects may underlie a 

relatively bigger change in root exudates at flowering time, which poses a stricter 

selection on members in the rhizosphere microbiome. Species turnover slows down 

after week 13, suggesting that the rhizosphere microbiome becomes more similar in 

later developmental stages.  
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My results on partitioning the variation in the beta diversity of maize 

rhizosphere microbiome samples attributable to maize genotypes and partitioning of 

the beta diversity into species replacement and loss components both indicate that 

weeks 2 and 4, week 8, and weeks 12 and 13 may be important maize growth time 

points that have a big impact on the rhizosphere microbiome. Therefore, I aimed to 

divide maize developmental stages on the basis of the heritable components of the 

rhizosphere microbiome. I employed statistical learning to discriminate the maize 

developmental stages using potential heritable family-level taxa identified by the 

permutation-based regression approach, or OTUs whose abundances vary by time. 

However, the error rates for the predictions are very high (overall error rates > 80%). I 

also explored predicting maize genotypes or subgroups using potential heritable 

family-level taxa. These estimates suffered the same high error rates as the 

predictions for maize developmental stages. Statistical learning has been used 

previously to classify ecological data in relation to time (Gilbert et al 2012, Koren et al 

2012); however, the high-dimensional data generated by next-generation sequencing 

may require novel statistical learning approaches such as those described recently 

(Blagus and Lusa 2013, Gaynanova et al 2014, Lin and Chen 2013).  
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Conclusion 

A number of research articles on microbiome time-series data have emerged 

during the last several years with the advent of next-generation sequencing 

technologies (for a review on mammalian microbiome time-series research, see 

Gerber 2014). Such studies investigated the dynamics of the composition and 

function of the microbial communities in close association with mammalian and plant 

hosts, and revealed the important temporal dynamics of the microbiomes. Research 

on plant microbiomes showed that plant growth stages influenced the diversity or 

function of the rhizosphere (Chaparro et al 2014, Li et al 2014), endophytic (Lundberg 

et al 2012, Shi et al 2014), or phyllosphere (Jackson and Denney 2011, Maignien et 

al 2014, Shade et al 2013) microbiomes.  

However, relatively less is known about the dynamics of plant genetic control 

on the rhizosphere microbiome over plant developmental stages. Compared to 

studies on single time-point microbiome data, our longitudinal study will answer when 

the plant genotype effect is strongest over plant developmental stages, and unravel a 

moving picture of the plant-microbiome interactions during the maize life cycle.  

While the search for an optimal modeling approach to determine the 

heritability of the maize rhizosphere OTUs/taxa and pinpoint truly heritable 

components is underway, I found that negative binomial GLMs fit the OTU 

abundance data better than other modeling methods, and that incorporating the 

maize kinship matrix into modeling OTU abundance may improve the model with the 

relationship among the maize inbreds being accounted for.  

My current analyses also showed that the maize genotype effect is strongest 

at week 12. In addition, the first two weeks, the mid-life cycle weeks, along with week 

12, are possible important time points in maize development that are related to shifts 
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in the rhizosphere microbiome. Novel statistical learning approaches (Fisher and 

Mehta 2014, Gaynanova et al 2014), as well as advanced computational analyses for 

microbiome time-series data (Gerber et al 2012, Marino et al 2014, Stein et al 2013) 

may be applied to longitudinal microbiome dataset to improve our understanding on 

the dynamics of the heritability of the maize rhizosphere microbiome and the general 

temporal-patterns of the rhizosphere microbiome in relation to maize development.  

In addition, in the previous chapters of this dissertation, I have shown that the 

maize rhizosphere microbiome harbors an enormous rich reservoir of functional 

proteins, and that maize genotypes are associated with certain metabolic genes in 

members of the rhizosphere microbiome. Recent studies in Arabidopsis and other 

plants have investigated the functional capacity of the rhizosphere microbiomes over 

time (Chaparro et al 2013, Chaparro et al 2014, Uksa et al 2014). The implement of 

Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 

(PICURSt) (Langille et al 2013) to our maize rhizosphere microbiome OTU 

abundance data will help reveal whether there are functional heritable components of 

the rhizosphere microbiome and whether they shift with maize developmental stages. 
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