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1 Introduction

Zero-knowledge (ZK) interactive proofs [GMR89] are paradoxical constructs that allow one player
(called the Prover) to convince another player (called the Verifier) of the validity of a mathematical
statement x ∈ L, while providing zero additional knowledge to the Verifier. Beyond being fasci-
nating in their own right, ZK proofs have numerous cryptographic applications and are one of the
most fundamental cryptographic building blocks.

The notion of concurrent zero knowledge, first introduced and achieved in the paper by Dwork,
Naor and Sahai [DNS04], considers the execution of zero-knowledge proofs in an asynchronous and
concurrent setting. More precisely, we consider a single adversary mounting a coordinated attack
by acting as a verifier in many concurrent executions (called sessions). Concurrent ZK proofs are
significantly harder to construct and analyze. Since the original protocol by Dwork, Naor and Sahai
(which relied on so called “timing assumptions”), various other concurrent ZK protocols have been
obtained based on different set-up assumptions (e.g., [DS98, Dam00, CGGM00, Gol02, PTV12,
GJO+12]), or in alternative models (e.g., super-polynomial-time simulation [Pas03b, PV10]).

In the standard model, without set-up assumptions (the focus of our work,) Canetti, Kilian,
Petrank and Rosen [CKPR01] (building on earlier works by [KPR98, Ros00]) show that concurrent
ZK proofs for non-trivial languages, with “black-box” simulators, require at least Ω̃(log n) number
of communication rounds. Richardson and Kilian [RK99] constructed the first concurrent ZK
argument in the standard model without any extra set-up assumptions. Their protocol, which uses
a black-box simulator, requires O(nε) number of rounds. The round-complexity was later improved
in the work of Kilian and Petrank (KP) [KP01] to Õ(log2 n) round. Somewhat surprisingly, the
simulator strategy of KP is “oblivious”—the “rewinding schedule” of the simulator ignores how
the malicious verifier schedules its messages. The key insight behind this oblivious simulation
technique is that a single “rewinding” may be helpful for simulating multiple sessions; in essence,
KP performs an amortized analysis, which improves the round-complexity. (As we shall see shortly,
such an amortized analysis will play an important role also in this work.) More recent work by
Prabhakaran, Rosen and Sahai [PRS02] improves the analysis of the KP simulator, achieving an
essentially optimal, w.r.t. black-box simulation, round-complexity of Õ(log n); see also [PTV12] for
an (arguably) simplified and generalized analysis.

The central open problem in the area is whether a constant-round concurrent ZK protocol (for
a non-trivial language) can be obtained. A major breakthrough towards resolving this question
came with the work of Barak [Bar01], demonstrating a new non-black-box simulation technique that
seemed amenable for constructing constant-round protocols that are resilient to concurrent attacks.
Indeed, Barak demonstrated a constant-round bounded-concurrent argument for NP based on the
existence of collision-resistant hash-functions; bounded-concurrency here means that for every a-
priori polynomial bound m on the number of concurrent executions, there exists a protocol (which
depends on m) that remains zero-knowledge as long as the number of concurrent execution does
not exceed m. (In particular, in the protocol of Barak, the message length of the protocol grows
linearly with the a-priori bound m on the number of concurrent executions.)

But a decade later, the question of whether “full” (i.e., unbounded) concurrent zero-knowledge
is achievable in a constant number of rounds is still wide open.

1.1 Our Results

In this work, we present new falsifiable intractability assumptions, which in our eyes are both
natural and reasonable, under which constant-round concurrent zero-knowledge is achievable.
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P-certificates We consider an analogue of Micali’s non-interactive CS-proofs [Mic00] for lan-
guages in P. Roughly speaking, we say that (P, V ) is a P-certificate system if (P, V ) is a non-
interactive proof system (i.e., the prover send a single message to the verifier, who either accepts
or rejects) allowing an efficient prover to convince the verifier of the validity of any deterministic
polynomial-time computation M(x) = y using a “certificate” of some fixed polynomial length (in-
dependent of the size and the running-time of M) whose validity the verifier can check in some
fixed polynomial time (independent of the running-time of M). That is, a P-certificate allows every
deterministic polynomial-time computation to be certified using a “short” certificate (of a-priori
bounded polynomial length) that can be “quickly” verified (in a-priori bounded polynomial-time).

The soundness condition of a P-certificate system states that no uniform polynomial-time
algorithm can output an accepting certificate for any false statement. For our application we
will require a slightly stronger soundness condition: soundness needs to hold even against T (·)-time
attackers attempting to prove the validity also of T (·)-time computations, where T (·) is some “nice”
(slightly) super-polynomial function (e.g., T (n) = nlog log logn). We refer to such proof systems as
strong P-certificates. Since we consider only languages in P, we may also consider statistically-
sound (resp statistically-sound strong) P-certificates, where soundness holds also with respect to
unbounded attackers restricted to selecting statements of polynomial (resp. T (·)) length. (Note
that considering soundness against non-uniform efficient-time attackers is equivalent to statistical
soundness, since if an accepting proof of a false statement exists, a non-uniform efficient attacker
can simply get it as non-uniform advice.

On the Existence of P-certificates A candidate construction of a (computationally-sound)
P-certificate system comes from Micali’s CS-proofs [Mic00]. These constructs provide short cer-
tificates even for all of NEXP. However, since we here restrict to certificates only for P, the
assumption that these constructions are sound (resp. strongly sound) P-certificates is falsifiable
[Pop63, Nao03]: Roughly speaking, we can efficiently test if an attacker outputs a valid proof of
an incorrect statement, since whether a statement is correct or not can be checked in deterministic
polynomial time. Formalizing this intuition turns out to be somewhat subtle: in general, whether
an attacker breaks soundness of a strong P-certificate system, or even just a P-certificate system,
may not be efficiently testable since there is no a-priori polynomial upper-bound on the running-
time of the machine M selected by the attacker. At first one may think that this issue can be easily
resolved by asking the prover to provide an upper-bound on the running-time of M in unary; this
certainly makes the soundness condition falsifiable, but such certificates are no longer “short”. We
overcome this issue by relying on the fact that Micali’s construction satisfies an additional (and
very natural) property, which we refer to as time-representation invariance—namely, that whether
the verifier accepts a proof of a statement x does not depend on how the time-bound (i.e., the upper
bound on the running time of M) is represented. For a time-representation invariant P-certificate,
it suffices to define soundness for the the case that the attacker specifies the time-bound in unary; by
the time-representation invariance condition, this implies soundness also for other (more efficient)
representations. Thus, assuming that the soundness condition of a time-representation invariant
P-certificate holds is a falsifiable assumption, yet “short” certificates can still be generated by using
more efficient representations of the running-time bound.1

In our eyes, on a qualitatively level, the assumption that Micali’s CS-proofs yield strong P-
certificates is not very different from the assumption that e.g., the Full Domain Hash [BR93] or
Schnorr [Sch91] signature schemes are existentially unforgeable: 1) whether an attacker succeeds can

1In contrast, as shown by Gentry and Wichs [GW11], (under reasonable complexity theoretic assumptions) non-
interactive CS-proofs for NP cannot be based on any falsifiable assumption using a black-box proof of security.
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be efficiently checked, 2) no attacks are currently known, and 3) the “design-principles” underlying
the construction rely on similar intuitions.

Finally, note that the assumption that statistically-sound strong P-certificates exists is implied
by the assumption that 1) DTIME(nω(1)) ⊆ NP and 2) NP proofs for statements in DTIME(t)
can be found in time polynomial in t [BLV06]. In essence, the assumption says that non-determinism
can slightly speed-up computation, and that the non-deterministic choices can be found efficiently,
where efficiency is measured in terms of the original deterministic computation. Although we have
no real intuition for whether this assumption is true or false2, it seems beyond current techniques
to contradict it. (As far as we know, at this point, there is no substantial evidence that even
SUBEXP 6⊆ NP.)

From P-certificates to O(1)-round Concurrent ZK Our main theorem is the following.

Theorem. Assume the existence of families of collision-resistant hash-functions secure against
polynomial-size cirucuits, and the existence of a strong P-certificate system (resp. a statistically-
sound strong P-certificate system). Then there exists a constant-round concurrent zero-knowledge
argument for NP with uniform soundness (resp. non-uniform soundness). Furthermore, the pro-
tocol is public-coin and its communication complexity depends only on the security parameter (but
not on the length of the statement proved).

Our protocol is a variant of Barak’s [Bar01] non-black-box zero-knowledge argument for NP.
As mentioned above, Barak’s original protocol already handles bounded-concurrent composition;
that is, it remains secure under an a priori bounded number of concurrent executions. In con-
trast, our protocol handles an unbounded number of executions, but relies on (seemingly) stronger
assumptions.

Let us briefly remark that from a theoretical point of view, we find the notion of uniform
soundness of interactive arguments as well-motivated as the one of non-uniform soundness; see
e.g., [Gol93] for further discussion. From a practical point of view (and as is often the case), an
asymptotic treatment of soundness is not needed for our results, even in the uniform setting: our
soundness proof is a constructive black-box reduction that (assuming the existence of families of
collision-resistant hash-functions), transforms any attacker that breaks soundness of our concurrent
ZK protocol on a single security parameter 1n into an attacker that breaks the the soundness of the
P-certificate systems with comparable probability on the same security parameter 1n, with only a
“small” polynomial overhead. In particular, if some attacker manages to break the soundness of a
particular instantiation of our protocol using e.g., Micali’s CS-proof for languages in P implemented
using some specific hash function (e.g., SHA-256), then this attacker can be used to break this
particular implementation of CS-proofs.

1.2 Outline of Our Techniques

We provide a detailed outline of our techniques. We warn the reader that this outline is quite
technical and assumes the reader is relatively familiar with Barak’s non-black-box simulation tech-
nique.

Let us start by very briefly recalling the idea behind Barak’s protocol (following a slight variant
of this protocol due to [PR03b]). Roughly speaking, on common input 1n and x ∈ {0, 1}poly(n), the

2As far as we know, the only evidence against it is that it contradicts very strong forms of derandomization
assumptions [BLV06, BOV07].
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Prover P and Verifier V , proceed in two stages. In Stage 1, P starts by sending a computationally-
binding commitment c ∈ {0, 1}n to 0n; V next sends a “challenge” r ∈ {0, 1}2n. In Stage 2, P shows
(using a witness indistinguishable argument of knowledge) that either x is true, or there exists a
“short” string σ ∈ {0, 1}n such that c is a commitment to a program M such that M(σ) = r.3

Soundness follows from the fact that even if a malicious prover P ∗ tries to commit to some
program M (instead of committing to 0n), with high probability, the string r sent by V will
be different from M(σ) for every string σ ∈ {0, 1}n. To prove ZK, consider the non-black-box
simulator S that commits to the code of the malicious verifier V ∗; note that by definition it thus
holds that M(c) = r, and the simulator can use σ = c as a “fake” witness in the final proof.
To formalize this approach, the witness indistinguishable argument in Stage 2 must actually be
a witness indistinguishable universal argument (WIUA) [Mic00, BG08] since the statement that c
is a commitment to a program M of arbitrary polynomial-size, and that M(c) = r within some
arbitrary polynomial time, is not in NP.

Now, let us consider concurrent composition. That is, we need to simulate the view of a verifier
that starts m = poly(n) concurrent executions of the protocol. The above simulator no longer
works in this setting: the problem is that the verifier’s code is now a function of all the prover
messages sent in different executions. (Note that if we increase the length of r we can handle a
bounded number of concurrent executions, by simply letting σ include all these messages).

So, if the simulator could commit not only to the code of V ∗, but also to a program M that
generates all other prover messages, then we would seemingly be done. And at first sight, this
doesn’t seem impossible: since the simulator S is actually the one generating all the prover messages,
why don’t we just let M be an appropriate combination of S and V ∗? This idea can indeed be
implemented [PR03b, PRT11], but there is a serious issue: if the verifier “nests” its concurrent
executions, the running-time of the simulation quickly blows up exponentially—for instance, if we
have three nested sessions, to simulate session 3 the simulator needs to generate a WIUA regarding
the computation needed to generate a WIUA for session 2 which in turn is regarding the generation
of the WIUA of session 1 (so even if there is just a constant overhead in generating a WIUA, we can
handle at most log n nested sessions).

P-certificates to The Rescue Our principal idea is to use P-certificates to overcome the above-
mentioned blow-up in the running time. On a very high-level, the idea is that once the simulator S
has generated a P-certificate π to certify some partial computation performed by S in a particular
session i, then the same certificate may be reused (without any additional “cost”) to certify the
same computation also in other sessions i′ 6= i. In essence, by reusing the same P-certificates,
we can amortize the cost of generating them and may then generate WIUA’s about WIUA’s etc.,
without blowing-up the running time of the simulator. Let us briefly mention how the two salient
features of P-certificates, namely “non-interactivity” and “succinctness”, are used: Without non-
interactivity, the same certificate cannot be reused in multiple sessions, and without succinctness,
we do not gain anything by reusing a proof, since just reading the proof may be more expensive
than verifying the statement from “scratch”.

Implementing the above high-level idea, however, is quite non-trivial. Below, we outline our
actual implementation. We proceed in three steps:

1. We first present a protocol that only achieves bounded-concurrent ZK, using P-certificates,

3We require that C is a commitment scheme allowing the committer to commit to an arbitrarily long string
m ∈ {0, 1}∗. Any commitment scheme for fixed-length messages can easily be modified to handle arbitrarily long
messages by asking the committer to first hash down m using a collision-resistant hash function h chosen by the
receiver, and next commit to h(m).
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2. We next show how this bounded-concurrent protocol can be slightly modified to become a
(fully) concurrent ZK protocol assuming the existence of so-called unique P-certificates—P-
certificates having the property that for every true statement, there exists a single accepting
certificate.

3. In the final step, we show how to eliminate the need for uniqueness, by generating P-
certificates about the generation of P-certificates etc., in a tree-like fashion.

Step 1: Bounded Concurrency Using P-certificates In this first step, we present a (some-
what convoluted) protocol using strong P-certificates that achieves m(·)-bounded concurrency (us-
ing an even more convoluted simulation). As mentioned, Barak’s original protocol could already
be modified to handle bounded concurrency, without the use of P-certificates; but as we shall see
shortly, our protocol can later be modified to handle full concurrency.

The protocol proceeds just as Barak’s protocol in Stage 1 except that the verifier now sends a
string r ∈ {0, 1}2m(n)n2

(instead of length 2n). Stage 2 is modified as follows: instead of having P
prove (using a WIUA) that either x is true, or there exists a “short” string σ ∈ {0, 1}m(n)n2

such
that c is a commitment to a program M such that M(σ) = r, we now ask P to use a WIUA to
prove that either x is true, or

• commitment consistency: c is a commitment to a program M1, and

• input certification: there exists a “short” string σ ∈ {0, 1}m(n)n, and

• prediction correctness: there exists a P-certificate π of length n demonstrating that
M1(σ) = r.

(Note that the only reason we still need to use a universal argument is that there is no a-priori
upper-bound on the length of the program M1; the use of the P-certificate takes care of the fact
that there is no a-priori upper-bound on the running-time of M1, though.) Soundness follows using
essentially the same approach as above, except that we now also rely on the strong soundness of
the P-certificate; since there is no a-priori upper-bound on neither the length nor the running-time
of M1, we need to put a cap on both using a (slightly) super-polynomial function, and thus to
guarantee soundness of the concurrent zero-knowledge protocol, we need the P-certificate to satisfy
strong soundness.

Let us turn to (bounded-concurrent) zero-knowledge. Roughly speaking, our simulator will
attempt to commit to its own code in a way that prevents a blow-up in the running-time. Recall
that the main reason that we had a blow-up in the running-time of the simulator was that the
generation of the WIUA is expensive. Observe that in the new protocol, the only expensive part of
the generation of the WIUA is the generation of the P-certificates π; the rest of the computation
has a-priori bounded complexity (depending only on the size and running-time of V ∗). To take
advantage of this observation, we thus have the simulator only commit to a program that generates
prover messages (in identically the same way as the actual simulator), but getting certificates ~π as
input.

In more detail, to describe the actual simulator S, let us first describe two “helper” simulators
S1, S2. S1 is an interactive machine that simulates prover messages in a “right” interaction with
V ∗. Additionally, S1 is expecting some “external” messages on the “left”—looking forward, these
“left” messages will later be certificates provided by S2. See Figure 1 for an illustration of the
communication patterns between S1, S2 and V ∗.
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Figure 1: Simulation using P-certificates.

S1 proceeds as follows in the right interaction. In Stage 1 of every session i, S1 first commits to
a machine S̃1(j′, τ) that emulates an interaction between S1 and V ∗, feeding S1 input τ as messages
on the left, and finally S̃1 outputs the verifier message in the j′’th communication round in the
right interaction with V ∗. (Formalizing what it means for S1 to commit to S̃1 is not entirely trivial
since the definition of S̃1 depends on S1; we refer the reader to the formal proof for a description of
how this circularity is broken.4 S1 next simulates Stage 2 by checking if it has received a message
(j, πj) in the left interaction, where j is the communication round (in the right interaction with
V ∗) where the verifier sends its random challenge and expects to receive the first message of Stage
2; if so, it uses M1 = S̃1 (and the randomness it used to commit to it), j and σ being the list of
messages received by S1 in the left interaction, as a ”fake” witness to complete Stage 2.

The job of S2 is to provide P-certificates πj for S1 allowing S1 to complete its simulation. S2

emulates the interaction between S1 and V ∗, and additionally, at each communication round j, S2

feeds S1 a message (j, πj) where πj is a P-certificate showing that S̃1(j, σ<j) = rj , where σ<j is the
list of message already generated by S2, and rj is the verifier message in the j’th communication
round. Finally, S2 outputs its view of the full interaction.

The actual simulator S just runs S2 and recovers from the view of S2 the view of V ∗ and outputs
it. Note that since S1 has polynomial running-time, generating each certificate about S̃1 (which is
just about an interaction between S1 and V ∗) also takes polynomial time. As such S2 can also be
implemented in polynomial time and thus also S. Additionally, note that if there are m(n) sessions,
the length of σ is at most O(m(n)n)� m(n)n2—for each of the m(n) sessions, and for each round
of the constant number of rounds in each session, we need to store a pair (j, π) where π is of length
n; therefore, the simulation always succeeds without getting “stuck”.

Finally, indistinguishability of this simulation, roughly speaking, should follow from the hiding
property of the commitment in Stage 1, and the WI property of the WIUA in Stage 2. Or does it?
Note that since S1 is committing to its own code (including its randomness), it is committing to a
message that depends on the randomness used for the commitment. (In the language of [BCPT12],
this constitutes a randomness-dependent message (RDM) attack on the commitment scheme.) This
circularity can be easily overcome (as in [PRT11]) by simply not committing to the randomness of
S̃1, and instead providing it as an additional input to S̃1 that may be incorporated in σ; without
loss of generality, we may assume that the randomness is “short” since S1 can always use a PRG
to expand it. But the same circularity arises also in the WIUA, and here σ, which contains the seed
used to generate the randomness of S1, needs to be an input. To overcome it, we here require S1

to use a forward-secure PRG [BY03] to expand its randomness; roughly speaking, a forward-secure

4Roughly speaking, we let S1 take the description of a machine M as input, and we then run S1 on input M = S1.
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PRG ensures that ”earlier” chunks of the output of the PRG are indistinguishable from random,
even if a seed generating the ”later” ones is revealed. We next have S1 use a new chunk of the
output of the PRG to generate each new message in the interaction, but uses these chunk in reverse
order (i.e., in step 1, the last chunk of the output of the PRG is used, etc.); this means that we
can give proofs about ”earlier” computations of S1 (which requires knowing a seeds expanding
the randomness used in the computation) while still guaranteeing indistinguishability of ”later”
messages.5

Step 2: Full Concurrency using Unique P-certificates The reason that the above approach
only yields a bounded concurrent zero-knowledge protocol is that for each new session i, we require
S2 to provide S1 with new certificates, which thus grows the length of σ. If we could somehow guar-
antee that these certificates are determined by the statement proved in the WIUA, then soundness
would hold even if σ is long. Let’s first sketch how to do this when assuming the existence of unique
strong P-certificates—that is, P-certificates having the property that for each true statement x,
there exists a single proof π that is accepted. (We are not aware of any candidates for unique
P-certificates, but using them serves as a simpler warm-up for our actual protocol.) We simply
modify the input certification and prediction correction conditions in the WIUA to be the following:

• input certification: there exists a vector λ = ((1, π1), (2, π2), . . .) and a vector of messages
~m such that πi certifies that M1(λ<j) output mj in its j’th communication round, where
λ<j = ((1, π1), . . . , (j − 1, πj−1)), and

• prediction correctness: there exists a P-certificate π of length n demonstrating that
M1(λ) = r.

Soundness of the modified protocol, roughly speaking, follows since by the unique certificate prop-
erty, for every program M1 it inductively follows that for every j, mj is uniquely defined, and thus
also the unique (accepting) certificate πj certifying M1(λ<j) = mj ; it follows that M1 determines a
unique vector λ that passes the input certification conditions, and thus there exists a single r that
make M1 also pass the prediction correctness conditions. Zero-knowledge, on the other hand, can
be shown in exactly the same way as above (using S1, S2), but we can now handle also unbounded
concurrency (since there is no longer a restriction on the length of the input λ).

Step 3: Full Concurrency Using (Plain) P-certificates Let us finally see how to implement
the above idea while using “plain” (i.e., non-unique) P-certificates. The above protocol is no longer
sounds since we cannot guarantee that the proofs πj are unique, and thus the messages mj may not
be unique either, which may make it possible for an attacker to pass the “prediction correctness”
condition (without knowing the code of V ∗) and thus break soundness. A natural idea would
thus be to ask the prover to commit to a machine M2 (which in the simulation will be a variant
of S2) that produces the certificates πj , and then require the prover to provide a ”second-level”
certificate that the ”first-level” certificates were generated (deterministically) by running M2. But
have we really gained anything? Now, to perform the simulation, we need to provide the second-
level certificates as input to both M1 and M2; however, for these second-level certificates, we have
no guarantees that they were deterministically generates and again there is no a-prior upper bound
on the number of such certificates, so it seems we haven’t really gained anything.

5Although the language of forward-security was not used, it was noticed in [PR03b] that GGM’s pseudo-random
function [GGM86] could be used to remove circularity in situations as above. A related trick is used in the contem-
porary work of [CLP12].
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Our main observation is that a single ”second-level” certificate can be used to to certify the
(deterministic generation) of n ”first-level”certificates. And a sequence of n “second-level” cer-
tificates can be certified by a single “third-level” certificate, etc. At each level, there will be less
than n certificates that are not certified by a higher-level certificate; we refer to these as “dan-
gling” certificates. See Figure 2 for an illustration of the tree structure, and certified and dangling
certificates.

π1
1 π1

n·· · π1
n2−n+1 π1

n2·· · π1
n2+1 π1

n2+n·· · π1
n2+n+1 π1

n2+2n−1·· ·

π2
n π2

n2 π2
n2+n·· ·

π3
n2

Figure 2: An illustration of the tree structure for generating P-certificates. Nodes that are not
circled are “certified” certificates; nodes that are circled are “dangling” certificates.

Note that since the number of messages in the interaction with V ∗ is polynomially bounded, we
only have a polynomial-number of level-1 certificates, and thus, the above higher-level certification
process does not go beyond a constant number of levels (at each level we need a factor of n less
certificates). Finally, note that the total number of “dangling” (uncertified) certificates is bounded
by the number of levels times n (and is thus bounded by, say, n2.) This means that all the dangling
certificates may be provided as a “short” input σ to the committed program, and all the certified
certificates can be provided as a “long” (but certified deterministically generated) input λ.

Let us explain this idea more closely using only second-level certificates; this still only gives us
bounded-concurrency, but we may now handle O(m(n)n) sessions (instead of just m(n)). (More
generally, if we use k-levels of certification, we can handle m(n)nk sessions.) We now change Stage
2 of the protocol to require P to use a WIUA to prove that either x is true, or

• commitment consistency: c is a commitment to programs M1,M2, and

• input certification: there exists

– a vector of ”certified level-1 certificates” λ1 = ((1, π1), (2, π2), . . . , (an, πan)),

– a ”small” number of ”dangling level-1 certificates” σ1 = (σ1
1, σ

1
2, . . . , σ

1
j′), where j′ < n

and for each j ≤ j′, σ1
j ∈ {0, 1}n,

– a ≤ m(n) level-2 certificates σ2 = (σ2
n, σ

2
2n, . . . , σ

2
an) where for each j ≤ a, σ2

jn ∈ {0, 1}n,

such that,

– σ2
an certifies that M2(σ2

<an) generates the certificates λ1,

and

• prediction correctness: there exists a P-certificate π of length n demonstrating that
M1(λ1, σ1, σ2) = r.
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Soundness of this protocol follows since the total length of “arbitrary” (not deterministic) input is
bounded by (m(n)+n)n� m(n)n2. m(n)n-bounded concurrent zero-knowledge on the other hand,
roughly speaking, follows by letting M1 be as above (i.e., S̃1) and M2 be a variant of the simulator
S2 that outputs all the certificates generated by S2. We then define a simulator S3 responsible
for generating second-level certificates for S2, and finally outputs its full view of the interaction.
The final simulator S runs S3 and outputs the view of V ∗ in the interaction. See Figure 3 for an
illustration of the communication patterns of S1, S2, S3 and V ∗.

S3 S2 S1 V ∗

·· ·

·· ·

·· ·

·· ·

·· ·

·· ·

·· ·

π1
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·· ·
π1
n
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n+1
·· ·
π1

2n

π1
n2+1
·· ·

π1
n2+n

π1
n2+n+1
·· ·

π1
n2+2n

π1
n2+2n+1

π2
n

π2
2n

π2
n2+n

π2
n2+2n

·· ·

Figure 3: Simulation using second-level P-certificates.

Note that as long as there are less than m(n)n message in the interaction with V ∗, the number
of first-level certificates is bounded by m(n)n, and thus we have enough “spots” for second-level
certificates (in σ2) to perform the simulation.

In the final protocol, we instead have the simulator commit to a sequence M1,M2, . . . of machine;
roughly speaking, M1 will be as above, M2 is responsible for generating first-level certificates (while
receiving level k > 1 certificates externally), M3 will be responsible for generating second-level
certificates (while receiving level k > 2 certificates externally), etc. Note that although there is a
(potentially) exponential blow-up in the time needed to generate higher-level certificates, since we
only have a constant-number of levels, simulation can be performed in polynomial-time.

1.3 Related Work

We provide a detailed discussion of some other related works:

• As mentioned in the introduction, constant-round concurrent zero-knowledge protocols with
super-polynomial-time simulators have been constructed in the plain model [Pas03a, PV08].
For the protocol of [Pas03a], the only super-polynomial-time “advantages” needed by the
simulator is to find a pre-image x′ = f−1(y) to any point y output by the malicious verifier
V ∗, as long as y actually is in the range of some one-way function f . If we assume that the
only way for V ∗ to output some y in the range of f is by applying f to an input x that it

9



explicitly knows, then the protocol of [Pas03a] is concurrent zero-knowledge. A problem with
formalizing this is that V ∗ may already get some string y = f(x) as its auxiliary input and
thus may not know x. As in the literature on “knowledge-of-exponent”-type extractability
assumptions (see e.g., [Dam91, HT98, BP04b, CD09, BCCT12a, DFH12, GLR11]), this issue
can be resolved by having the prover select the one-way function f from a family F of one-way
functions. Now the extractability assumption we need is that for every polynomial-time oracle
machine M , there exists some polynomial-time machine M ′ such that given any z ∈ {0, 1}∗,
and uniformly selected functions ~f = f1, . . . fpoly(n) ∈ F , MO(~f)(1n, z, ~f) and M ′(1n, z, ~f)

generate the same output, where O(~f) is an oracle that inverts the functions in ~f . In other
words, we are assuming that in the simulation, the simulator together with the verifier can
—in polynomial-time—emulate the one-way function inverter used in [Pas03a]. Note that the
above extractability assumption is stronger than the typical “knowledge-of-exponent”-type
extractability assumptions since we require simultaneous extractability of many images y
that are chosen adaptively by the adversary.6 However, as shown in [Pas03b], any sufficiently
length-expanding random oracle satisfies exactly such an extractability assumption—this was
used in [Pas03a] to construct a concurrent ZK protocol in the “non-programmable” random
oracle model.

One important difference between the above approach and our work is that we here provide
an explicit concurrent ZK simulator. The above-mentioned approach simply assumes that
such a simulator exists; and, even if the assumption is true, it is not clear, how to find it. In
particular, for the purpose of deniability (see e.g., [DNS04, Pas03b]) it is not clear whether
the approach based on “extractability” assumptions provides sufficient guarantees (unless an
explicit simulator strategy is found).

• Barak, Lindell and Vadhan [BLV06] show that under the assumptions that 1) DTIME(nω(1)) ⊆
NP and 2) NP proofs for statements in DTIME(t) can be found in time polynomial in t,
2-round proof exists that are zero-knowledge for uniform verifiers that do not receive any
auxiliary input. Their zero-knowledge simulator is non-black-box. As mentioned in the
introduction, the above-mentioned assumptions imply the existence of statistical strong P-
certificates. We note that the protocol of [BLV06] is not known to be concurrent (or even
sequential) zero-knowledge, even with respect to uniform malicious verifiers.

• Contemporary work by Canetti, Lin and Paneth [CLP12] constructs a public-coin concur-
rent zero-knowledge protocol using non-black-box simulation techniques7. As shown by
Pass, Tseng and Wikstrom [PTW11], public-coin concurrent (and in fact even parallel) zero-
knowledge protocols require non-black-box simulation, no matter what the round-complexity
is. The protocol of [CLP12] is in the “non-programmable” CRS model of [Pas03a] but as
showed in [Pas03a] black-box separation of the Goldreich-Krawczyk [GK96] type (and, in
particular, the [PTW11] one, falls into this category) extend also to zero-knowledge in the
non-programmable CRS model; thus non-black-box simulation is necessary also for their re-
sult. In contrast to our protocol, theirs, however, requires O(log1+ε n) number of rounds for
arbitrarily small constant ε, but instead only relies on the existence of families of collision-
resistant hash functions. (Additionally, [CLP12] note that if assuming the existence of a
single hash function that is collision-resistant against uniform adversaries, their protocol can

6On the other hand, it is weaker that most other usages of extractability in it requires less structure from the
function (i.e., only one-wayness).

7Our results and theirs were developed in parallel.
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be instantiated also in the plain model with uniform soundness.)

On a technical level, both our work and theirs provide methods for overcoming the exponential
blow-up in the simulation time when dealing with non-black-box simulations, but the actual
details of the methods are very different: [CLP12] increases the round-complexity to tackle
this blow-up, and relies on ideas from the literature on concurrent zero-knowledge with black-
box simulation [RK99, KP01, PRS02]; as a result, their techniques only apply in the context of
super-logarithmic round protocols. In contrast, we rely on P-certificates to overcome the blow-
up and obtain a constant-round protocol. (We also mention that our protocol can be modified
in a straight-forward way to achieve non-uniform soundness in the non-programmable CRS
model, by using 2-round P-certificates (that are sound against non-uniform polynomial-time)
and simply having the first message of the P-certificate be fixed as the CRS.)

• A recent work by Bitansky, Canetti, Chiessa, Tromer [BCCT12b] present techniques for com-
posing SNARKs (succinct non-interactive arguments of knowledge) for NP; roughly speaking,
[BCCT12b] shows that if for some sufficiently large c, any non-deterministic nc computation
can be proved using an “argument of knowledge” of length n that can be verified in time n2,
then for any d, every non-deterministic nd-time computation can be also be proved (using a
SNARK of length n that can be verified in time n2). This is achieved by having the prover
first generate a SNARK for each subcomputation of nc steps, and then for each “chunk” of n
SNARKs, having the prover prove that it knows SNARKs that are accepted for all these sub-
computations, and so on in a tree-like fashion. Finally, the prover only provides the verifier
with a “top-level” SNARK that it knows lower-level SNARKs that proves that it knows even
lower-level SNARKs etc. This type of proof composition was previously also used by Valiant
[Val08]. To prove that this type of composition works it is crucial to work with languages
in NP (since we are proving statements about the existence of some SNARKs); additionally,
it is crucial that we are dealing with arguments of knowledge—SNARKs of false statements
may exists, so to guarantee soundness, the prover needs to show that not only appropriate
SNARKs exists, but also that it “knows” them.

At a superficial level, our simulator strategy also uses a tree of “proofs”. However, rather than
proving knowledge of lower-level “proofs” etc, in our approach, higher-level P-certificates are
only used to demonstrate that lower-level P-certificates have been deterministically generated.
As a consequence, we do not need to certify non-deterministic computations; additionally, we
do not need the certificates to satisfy an argument of knowledge property. Indeed, this is
what allows us to base P-certificates on a falsifiable assumption.

• Since the work of Barak [Bar01], non-black-box simulation techniques have been used in sev-
eral other contexts: For example, non-malleability [Bar02, Pas04, PR05a, PR05b], resettable-
soundness [BGGL01, DGS09, BP12], concurrent secure computation [Lin03, PR03a, Pas04,
BS05], covert secure computation [GJ10]. We believe our techniques will yield improved
constructions also for these settings; we hope to report on this in future works.

1.4 Acknowledgements
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discussions about concurrent zero-knowledge and non-black-box simulation. We are especially
grateful to both Alon Rosen and Omer Paneth for very insightful discussions about how to formalize
non-black-box simulations that “commit to their own code”; additionally, as we mention in the
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2 Preliminaries

Let N denote the set of positive integers, and [n] denote the set {1, 2, . . . , n}. We denote by PPT
probabilistic polynomial time Turing machines. We assume familiarity with interactive Turing
machines, denoted ITM, interactive protocols. Given a pair of ITMs, A and B, we denote by
(A(x), B(y))(z) the random variable representing the (local) output of B, on common input z and
private input y, when interacting with A with private input x, when the random tape of each
machine is uniformly and independently chosen, and ViewB 〈A(x), B(y)〉 (z) the random variable
representing B’s view in such an interaction. The term negligible is used for denoting functions
that are (asymptotically) smaller than one over any polynomial. More precisely, a function ν(·)
from non-negative integers to reals is called negligible if for every constant c > 0 and all sufficiently
large n, it holds that ν(n) < n−c.

2.1 Witness Relations

We recall the definition of a witness relation for a NP language [Gol01].

Definition 1 (Witness relation). A witness relation for a language L ∈ NP is a binary relation
RL that is polynomially bounded, polynomial time recognizable and characterizes L by L = {x :
∃y s.t. (x, y) ∈ RL}

We say that y is a witness for the membership x ∈ L if (x, y) ∈ RL. We will also let RL(x)
denote the set of witnesses for the membership x ∈ L, i.e., RL(x) = {y : (x, y) ∈ L}. In the
following, we assume a fixed witness relation RL for each language L ∈ NP.

2.2 Computational Indistinguishability

The following definition of computational indistinguishability originates in the seminal paper of
Goldwasser and Micali [GM84]. Let X be a countable set of strings. A probability ensemble indexed
by X is a sequence of random variables indexed by X. Namely, any element of A = {Ax}x∈X is a
random variable indexed by X.

Definition 2 (Indistinguishability). Let X be a countable set. Two ensembles {An,x}n∈N,x∈X and
{Bn,x}n∈N,x∈X are said to be computationally indistinguishable over N if for every probabilistic
machine D (the distinguisher) whose running time is polynomial in its first input, there exists a
negligible function ν(·) so that for every n ∈ N and x ∈ X:

|Pr [a← An,x : D(1n, x, a) = 1]− Pr [b← Bn,x : D(1n, x, b) = 1]| < ν(n)

2.3 Interactive Proofs and Arguments

We recall the standard definitions of interactive proofs [GMR89] and arguments (a.k.a computa-
tionally sound proofs) [BCC88]. In our definition of arguments, we distinguish between uniform
soundness, where soundness only needs to hold against a uniform probabilistic polynomial-time
algorithms, and non-uniform soundness, where it holds against non-uniform polynomial-time algo-
rithms. Typically, in the literature on zero-knowledge argument, non-uniform soundness is more
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commonly used (but there are exceptions, see e.g., [BP04a]). We find the uniform model of com-
putation as well-motivated as the non-uniform one; see e.g., [Gol93].

Definition 3 (Interactive Proof System). A pair of interactive machines (P, V ) is called an inter-
active proof system for a language L if there is a negligible function ν(·) such that the following
two conditions hold:

• Completeness: For every n ∈ N , x ∈ L, and every w ∈ RL(x),

Pr[(P (w), V )(1n, x) = 1] = 1

• Soundness: For every pair of machines B1, B2 and every n ∈ N ,

Pr[(x, z)← B1(1n) : x /∈ L ∧ (B2(z), V )(1n, x) = 1] ≤ ν(n)

If the soundness condition only holds against all polynomial-time (resp. non-uniform polynomial-
time) machines B1, B2, the pair (P, V ) is called a uniformly-sound (resp. non-uniformly sound)
interactive argument system.

2.4 Witness Indistinguishability

An interactive protocol is witness indistinguishable (WI) [FS90] if the verifier’s view is “indepen-
dent” of the witness used by the prover for proving the statement.

Definition 4 (Witness-indistinguishability). An interactive protocol (P, V ) for L ∈ NP is witness
indistinguishable for RL if for every PPT adversarial verifier V ∗, and for every two sequences
{w1

n,x}n∈N,x∈L∩{0,1}poly(n) and {w2
n,x}n∈N,x∈L∩{0,1}poly(n) , such that w1

n,x, w
2
n,x ∈ RL(x) for every

n ∈ N and x ∈ L∩{0, 1}poly(n), the following ensembles are computationally indistinguishable over
N :

• {ViewV ∗
〈
P (w1

n,x), V ∗(z)
〉

(1n, x)}n∈N,x∈L∩{0,1}poly(n),z∈{0,1}∗

• {ViewV ∗
〈
P (w2

n,x), V ∗(z)
〉

(1n, x)}n∈N,x∈L∩{0,1}poly(n),z∈{0,1}∗

2.5 Commitment Schemes

Commitment protocols allow a sender to commit itself to a value while keeping it secret from
the receiver ; this property is called hiding. At a later time, the commitment can only be opened
to a single value as determined during the commitment protocol; this property is called binding.
Commitment schemes come in two different flavors, statistically binding and statistically hiding; we
only make use of statistically binding commitments in this paper. Below we sketch the properties
of a statistically binding commitment; full definitions can be found in [Gol01].

In statistically binding commitments, the binding property holds against unbounded adver-
saries, while the hiding property only holds against computationally bounded (non-uniform) ad-
versaries. The statistical-binding property asserts that, with overwhelming probability over the
randomness of the receiver, the transcript of the interaction fully determines the value committed
to by the sender. The computational-hiding property guarantees that the commitments to any two
different values are computationally indistinguishable.

Non-interactive statistically-binding commitment schemes can be constructed using any one-to-
one one-way function (see Section 4.4.1 of [Gol01]). Allowing some minimal interaction (in which
the receiver first sends a single random initialization message), statistically-binding commitment
schemes can be obtained from any one-way function [Nao91, HILL99].
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2.6 Universal Arguments

Universal arguments (introduced in [BG08] and closely related to the notion of CS-proofs [Mic00])
are used in order to provide “efficient” proofs to statements of the universal language LU with
witness relation RU defined in [BG08, Mic00]. A triplet y = (M,x, t) ∈ LU if the non-deterministic
machine M accepts input X within t < T (|x|) steps, for a slightly super-polynomial function
T (n) = nlog logn. We denote by TM (x,w) the running time of M on input x using the witness w.
Notice that every language in NP is linear time reducible to LU . Thus, a proof system for LU
allows us to handle all NP-statements. Below we recall the definition in [BG08].

Definition 5 (Universal argument). A pair of interactive Turing machines (P, V ) is called a uni-
versal argument system if it satisfies the following properties:

• Efficient verification: There exists a polynomial p such that for any y = (M,x, t), the total
time spent by the (probabilistic) verifier strategy V , on common input 1n, y, is at most
p(n + |y|). In particular, all messages exchanged in the protocol have length smaller than
p(n+ |y|).

• Completeness by a relatively efficient prover: For every n ∈ N , y = (M,x, t) ∈ LU and w in
RU (y),

Pr[(P (w), V )(1n, (M,x, t)) = 1] = 1

Furthermore, there exists a polynomial q such that the total time spent by P (w), on common
inputs 1n and (M,x, t), is at most q(n+ |y|+ TM (x,w)) ≤ q(n+ |y|+ t).

• Computational Soundness: For every polynomial size circuit family {P ∗n}n∈N , there is a neg-
ligible function ν, such that, for every n ∈ N and every triplet (M,x, t) ∈ {0, 1}poly(n) \ LU ,

Pr[(P ∗n , V )(1n, (M,x, t)) = 1] < ν(n)

• Weak proof of knowledge: For every positive polynomial p there exists a positive polynomial
p′ and a probabilistic polynomial-time oracle machine E such that the following holds: for
every polynomial-size circuit family {P ∗n}n∈N , every sufficiently large n ∈ N and every y =
(M,x, t) ∈ {0, 1}poly(n) if Pr[(P ∗n , V )(1n, y) = 1] > 1/p(n) then

Pr
r

[∃w = w1, . . . wt ∈ RU (y) s.t. ∀i ∈ [t], EP
∗
n

r (1n, y, i) = wi] >
1

p′(n)

where RU (y)
def
= {w : (y, w) ∈ RU} and E

P ∗n
r (·, ·, ·) denotes the function defined by fixing the

random-tape of E to equal r, and providing the resulting Er with oracle access to P ∗n .

The weak proof-of-knowledge property of universal arguments only guarantees that each indi-
vidual bit wi of some witness w can be extracted in probabilistic polynomial time. Given an input
1n and y = (M,x, t) in LU ∩ {0, 1}poly(n), since the witness w ∈ RU (y) is of length at most t, it
follows that there exists a extractor running in time polynomial in poly(n) · t that extracts the
whole witness; we refer to this as the global proof-of-knowledge property of a universal argument.

The notion of witness indistinguishability of universal argument for RU is defined similarly
as that for interactive proofs/arguments for NP relations; we refer the reader to [BG08] for a
formal definition. [BG08] (based on [Mic00, Kil95]) presents a witness indistinguishable universal
argument based on the existence of families of collision-resistant hash functions.

14



2.7 Concurrent Zero-Knowledge

An interactive proof is said to be zero-knowledge if it yields nothing beyond the validity of the
statement being proved [GMR89].

Definition 6 (Zero-knowledge). An interactive protocol (P, V ) for language L is zero-knowledge
if for every PPT adversarial verifier V ∗, there exists a PPT simulator S such that the following
ensembles are computationally indistinguishable over n ∈ N :

• {ViewV ∗ 〈P (w), V ∗(z)〉 (1n, x)}
n∈N,x∈L∩{0,1}poly(n),w∈RL(x),z∈{0,1}poly(n)

• {S(1n, x, z)}
n∈N,x∈L∩{0,1}poly(n),w∈RL(x),z∈{0,1}poly(n)

In this work we consider the setting of concurrent composition. Given an interactive protocol
(P, V ) and a polynomial m, an m-session concurrent adversarial verifier V ∗ is a PPT machine that,
on common input x and auxiliary input z, interacts with up to m(|x|) independent copies of P
concurrently. The different interactions are called sessions. There are no restrictions on how V ∗

schedules the messages among the different sessions, and V ∗ may choose to abort some sessions
but not others. For convenience of notation, we overload the notation ViewV ∗ 〈P, V ∗(z)〉 (1n, x) to
represent the view of the cheating verifier V ∗ in the above mentioned concurrent execution, where
V ∗’s auxiliary input is z, both parties are given common input 1n, x ∈ L, and the honest prover
has a valid w witness of x.

Definition 7 (Concurrent Zero-Knowledge [DNS04]). An interactive protocol (P, V ) for language
L is concurrent zero-knowledge if for every concurrent adversarial verifier V ∗ (i.e., any m-session
concurrent adversarial verifier for any polynomial m), there exists a PPT simulator S such that
following two ensembles are computationally indistinguishable over n ∈ N .

• {ViewV ∗ 〈P (w), V ∗(z)〉 (1n, x)}
n∈N,x∈L∩{0,1}poly(n),w∈RL(x),z∈{0,1}poly(n)

• {S(1n, x, z)}
n∈N,x∈L∩{0,1}poly(n),w∈RL(x),z∈{0,1}poly(n)

2.8 Forward Secure PRG

Roughly speaking, a forward-secure pseudorandom generator (PRG) (first formalized by [BY03],
but early usages go back to [BH92]) is a pseudorandom generator where the seed is periodi-
cally updated—thus we have a sequence of seeds s1, s2, . . . generating a pseudorandom sequence
q1, q2, . . .—such that if the seed st is exposed (and thus the “later” sequence qt+1, qt+2, . . . is also
exposed), the “earlier” sequence q1, . . . , qt still remains pseudorandom.

We provide a simple definition of a forward secure pseudorandom generator, where the “expo-
sure” time t is statically selected.8

Definition 8 (Forward-secure Pseudorandom Generator). We say that a polynomial-time com-
putable function G is a forward secure Pseudo-Random Generator (fsPRG) if on input a string
s, and ` ∈ N , it outputs two sequences (s1, s2, . . . s`) and (q1, q2, . . . , q`) such that the following
properties hold:

• Consistency: For every n, ` ∈ N , s ∈ {0, 1}n, the following holds

8The definition of [BY03] allows an attacker to adaptively select the exposure time t. For our purposes the simpler
non-adaptive notion suffices.
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– if G(s, `) = ((s1, ~s), (q1, ~q)), then G(s1, `− 1) = (~s, ~q).

• Forward Security: For every polynomial p, the following ensembles are computationally in-
distinguishable

– {s← Un, (~s, ~q)← G(s, `) : st, ~q≤t}n∈N,`∈[p(n)],t∈[`]

– {st ← Un, ~q ← (Un)` : st, ~q≤t}n∈N,`∈[p(n)],t∈[`]

where Un is the uniform distribution over {0, 1}n and ~q≤t = (q1, . . . , qt).

Any (traditional) PRG implies the existence of a forward secure PRG; thus by the result of
[HILL99] the existence of forward secure PRGs are implied by the existence of one-way functions.

In our application of forward secure PRGs, we will use the outputs of the PRG in reverse
order, and thus write G(s, `) = (s`, s`−1, . . . s1), (q`, q`−1, . . . , q1). As a consequence, we may reveal
a seed st “explaining” the “earlier” sequence ((st−1, . . . s1), (qt−1, . . . , q1)) while guaranteeing that
the “later” sequence (q`, . . . qt) still is indistinguishable from random.

3 P-certificates

In this section we define the notion of P-certificates. On a high-level, P-certificates can be viewed
as an analogue of Micali’s CS-proofs [Mic00], but where we restrict to languages in P. As we shall
see, by restricting to languages in P, we can make the soundness condition of (a restricted class
of) P-certificates falsifiable.

Roughly speaking, we say that (P, V ) is a P-certificate system if (P, V ) is a non-interactive proof
system (i.e., the prover send a single message to the verifier, who either accepts or rejects) allowing
an efficient prover to convince the verifier of the validity of any deterministic polynomial-time
computation M(x) = y using a “certificate” of some fixed polynomial length (independent of the
size and the running-time of M) whose validity the verifier can check in some fixed polynomial time
(independent of the running-time of M); that is, any deterministic polynomial-time computation
can be certified using a “short” certificate that can be “quickly” verified.

To formalize this, we consider the following canonical languages for P: for every constant c ∈ N ,
let Lc = {(M,x, y) : M(x) = y within |x|c steps}. Let TM (x) denotes the running time of M on
input x.

Definition 9. A pair of probabilistic interactive Turing machines, (Pcert, Vcert), is a P-certificate
system if there exist polynomials gP , gV , ` such that the following holds:

• Efficient Verification: On input c ≥ 1, 1k and a statement q = (M,x, y) ∈ Lc, and π ∈ {0, 1}∗,
Vcert runs in time at most gV (k + |q|);

• Completeness by a Relatively Efficient Prover: For every c, d ∈ N , there exists a negligible
function µ such that for every k ∈ N and every q = (M,x, y) ∈ Lc such that |q| ≤ kd,

Pr[π ← Pcert(c, 1
k, q) : Vcert(c, 1

k, q, π) = 1] ≥ 1− µ(k)

Furthermore, Pcert on input (c, 1k, q) outputs a certificate of length `(k) in time bounded by
gP (k + |M |+ TM (x)).

• Soundness: For every c ∈ N , and every PPT P ∗, there exists a negligible function µ such
that for every k ∈ N ,

Pr[(q, π)← P ∗(c, 1k) : Vcert(c, 1
k, q, π) = 1 ∧ q 6∈ Lc] ≤ µ(k)
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We also consider a stronger soundness condition stipulating that soundness holds even if the at-
tacker selects a slightly super-polynomial-size statement and specifies some slightly super-polynomial
runtime.

• Strong Soundness: There exists some “nice” super-polynomial function9 T (k) ∈ kω(1) and
some “nice” super-constant function10 C(·) ∈ ω(1) such that for every probabilistic algorithm
P ∗ with running-time bounded by T (·), there exists a negligible function µ, such that, for
every k ∈ N , c ≤ C(k)

Pr[(c, q, π)← P ∗(1k) : Vcert(c, 1
k, q, π) = 1 ∧ q 6∈ Lc] ≤ µ(k)

We say that (Pcert, Vcert) is a statistically-sound P-certificate system (resp. statistically sound strong
P-certificate system if the soundness condition holds also against (unbounded) P ∗ with polynomially-
bounded (resp. T (·)-bounded) output.

Remark 1. The reason that we do not consider a notion of computational soundness with respect to
non-uniform polynomial-time attackers is that such a notion is equivalent to statistical soundness:
if an accepting proof of a false statement exists, a non-uniform efficient attacker can simply get
it as non-uniform advice. Nevertheless, it still makes sense to consider a notion of a(·)-bounded-
non-uniform soundness, where soundness holds for attacker that on input the security parameter
1k additionally receive a(k) bits of non-uniform advice. Our results regarding uniform soundness
directly extend also to the regime of bounded non-uniform soundness.

As we shall see shortly, a candidate construction of a (computationally-sound) P-certificate
systems comes from Micali’s CS-proofs [Mic00]. We also note that the assumption that statistically-
sound strong P-certificates exists is implied by the assumption that 1) DTIME(nω(1)) ⊆ NP and
2) NP proofs for statements in DTIME(t) can be found in time polynomial in t [BLV06]. (In
essence, the assumption says that non-determinism can slightly speed-up computation, and that
the non-deterministic choices can be found efficiently, where efficiency is measured in terms of the
original deterministic computation.)

3.1 Time-Representation Invariant P-certificates

At first sight it may seem that since we consider only languages in P, the sound (resp., strongly
soundness) condition of P-certificates is falsifiable [Pop63, Nao03]: we should be able to efficiently
test if an attacker outputs a valid proof of an incorrect statement, since whether a statement is
correct or not can be checked in deterministic polynomial time.

This intuition is somewhat misleading: recall that soundness needs to hold for all polynomial-
time computations, where the time-bound nc may be selected by the attacker trying to break
soundness. Since there is no a-priori constant bound on c, the attacker may make the test (checking
whether soundness was broken) run in super-polynomial-time (by selecting a large c.) The situation
is even worse for the case of strongly sound P-certificates.

At first one may think that this issue can be easily resolved by restricting to certificate systems
where the prover is asked to provide an upper-bound on the running-time of M in unary; this
certainly makes the soundness condition falsifiable, but such certificates are no longer “short”. We
overcome this issue by allowing for a more flexible representation of (upper-bound on) the running-
time of M , and restrict to time-representation invariant P-certificates—namely proof systems where

9For instance, T (n) = nlog log logn.
10For instance, C(k) = log log logn.

17



whether the verifier accepts a proof of a statement x does not depend on how the time-bound is
represented. For a time-invariant P-certificate, it suffices to define soundness in the case that the
attacker specifies the running-time bound in unary; by the time-representation invariance condition,
this implies soundness also for other (more efficient) representations.

Towards this, we consider an alternative variant of canonical languages in P: for every constant
c ∈ N , let L′c = {(M,x, y, 1n) : M(x) = y within nc steps}.

Definition 10. A pair of probabilistic interactive Turing machines, (Pcert, Vcert), is a time-representation
invariant P-certificate system if there exist polynomials gP , gV , ` such that the following holds:

• Efficient Verification: On input c ≥ 1, 1k and a statement q = (M,x, y, 1n) ∈ L′c, and
π ∈ {0, 1}∗, Vcert runs in at most gV (k + |q|) time.

• Time-Representation Invariant Verification: There exists a negligible function µ such that
every c, c̃, n, ñ, such that nc = ñc̃, every k ∈ N and every (M,x, y) ∈ {0, 1}∗ and every
certificate π ∈ {0, 1}∗,

|Pr[Vcert(c, 1
k, (M,x, y, 1n), π) = 1]− Pr[Vcert(c̃, 1

k, (M,x, y, 1ñ), π) = 1]| ≤ µ(k)

• Completeness by a Relatively Efficient Prover: For every c, d ∈ N , there exists a negligible
function µ such that for every k ∈ N and every q = (M,x, y, 1n) ∈ L′c such that |q| ≤ kd,

Pr[π ← Pcert(c, 1
k, q) : Vcert(c, 1

k, q, π) = 1] ≥ 1− µ(k)

Furthermore, Pcert on input (c, 1k, q) outputs a certificate of length at most `(k) in time
bounded by gP (k + |M |+ nc).

• Soundness for L′1: For every PPT P ∗, there exists a negligible function µ such that for every
k ∈ N ,

Pr[(q, π)← P ∗(1k) : Vcert(1, 1
k, q, π) = 1 ∧ q 6∈ L′1] ≤ µ(k)

We say that (Pcert, Vcert) is a strong time-representation invariant P-certificate system if there
exists some “nice” T (k) ∈ kω(1) such that the soundness for L′1 condition holds with respect
to all probabilistic algorithms with running-time bounded by T (·). We say that (Pcert, Vcert) is
a statistically-sound time-representation invariant P-certificate system (resp. statistically sound
strong time-representation invariant P-certificate system) if the soundness for L′1 condition holds
also against (unbounded) P ∗ with polynomially-bounded (resp. T (·)-bounded) output.

Note that the soundness condition of time-representation invariant P-certificates is clearly fal-
sifiable since checking whether the attacker actually outputs a statement q /∈ L′1 can be done in
linear-time in the length of the statement, and verification of a certificate π for a statement q can
be done in polynomial-time by definition.

Let us briefly outline a candidate construction of time-representation invariant P-certificates
(where both Pcert and Vcert are deterministic).

A Candidate Construction Based on CS-proofs. Micali’s CS proofs [Mic00] are obtained by
first constructing a public-coin 4-round interactive argument for NEXP (similar to the “succinct”
4-round interactive argument for NP of [Kil95]) and then eliminating interaction through the Fiat-
Shamir paradigm [FS90]: that is, the verifier’s random message are generated by applying a random
oracle to the prover’s messages, and next the random oracle may be instantiated with a concrete
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family of hash function {hk}k∈N . More precisely, CS proofs are used to prove membership of the
CS language LCS with witness relation RCS as defined in [Mic00]. A quadruple (M,x, y, t) ∈ LCS

iff the lengths of x and y are smaller than t and M(x) = y in t steps. Roughly speaking, to prove
a statement q = (M,x, y, t), the prover, on input a security parameter 1k, proceeds in two steps.
In the first step, it constructs a PCP (Probabilistically Checkable Proof) [BFLS91, FGL+91] proof
π′ for q and computes a Merkle’s hash tree [Mer89] with π′ as the leaves using a hash function
hk, producing a root r. Then, in the second step, it computes a polylogarithmic number l of PCP
queries, determined by the hash value hk(r); for each PCP query i, it finds the authentication
path ai that reveals the corresponding PCP answer bi. Finally, the prover sends a CS proof
π = t‖r‖bi‖ai‖ · · · ‖bl‖al. The verifier, on input a statement x and such a proof π, checks whether
all the authentication paths are accepting w.r.t. r, recomputes the PCP queries using hk(r) and
checks whether all the PCP answers are accepting.

In our language L′c, recall that a statement is of form q = (M,x, y, 1n). The prover and the
verifier on input c, 1k and q can thus recover a time bound t by computing nc and then recover
the corresponding CS language instance (M,x, y, t), and next simply runs the prover and verifier
algorithms of CS-proofs. By construction it follows that the above construction satisfies prover’s
relative efficiency and completeness. Additionally, since the verification procedure only depends on
the time bound t = nc, and not on the values of n and c, the verification procedure also has the
time-representation invariance property.

Finally, in our eyes, assuming that the above construction satisfies the soundness condition of
time-representation invariant P-certificates is a reasonable and “well-behaved” complexity theoretic
assumption: on a qualitatively level, the assumption is not very different from the assumption
that e.g., the Full Domain Hash [BR93] or Schnorr [Sch91] signature schemes are existentially
unforgeable: 1) whether an attacker succeeds can be efficiently checked, 2) no attacks are currently
known, and 3) the “design-principles” underlying the constructions rely on similar intuitions (e.g.,
that instantiating random-oracles with hash functions in “natural” schemes lead to secure protocol).

From Time-Representation Invariant P-certificates to P-certificates As we now show,
time-representation invariant P-certificates imply P-certificates.

Theorem 1. Assume the existence of a time-representation invariant P-certificate system (resp.
a strong time-representation invariant P-certificate system) (P ′cert, V

′
cert). Then, there exists a P-

certificate system (resp. a strong P-certificate system) (Pcert, Vcert). Furthermore if (P ′cert, V
′
cert) is

statistically sound (resp. statistically strong sound), then (Pcert, Vcert) is so as well.

Proof. Let (P ′cert, V
′
cert) be a time-representation invariant P-certificate system. Consider a P-

certificate system (Pcert, Vcert) where Pcert and Vcert simply runs P ′cert and V ′cert respectively with n
fixed to the length of the input x. More precisely, Pcert on input c, 1k and a statement q = (M,x, y) ∈
Lc, lets q′ = (M,x, y, 1|x|) ∈ L′c, runs P ′cert(c, 1

k, q′) and outputs whatever P ′cert outputs.; Vcert on
input (c, 1k, q, π) computes q′ in exactly the same way, runs V ′cert(c, 1

k, q′, π) and outputs the verdict
of V ′cert. It follows from the relative prover efficiency and completeness properties of (P ′cert, V

′
cert)

that (Pcert, Vcert) also satisfies relative prover efficiency and completeness. Let us turn to soundness.
We only prove the case of strong soundness (assuming that (Pcert, Vcert) is strongly sound), all the
other cases follow analogously.

Assume for contradiction that for every T (k) ∈ kω(1) and C(k) ∈ ω(1), there exists a T (k)-time
cheating prover A, and a polynomial p such that for infinitely many k ∈ N and ck ≤ C(k), it
holds that the probability that A(1k) outputs ck, a false statement q = (M,x, y) 6∈ Lck and a
certificate π for q ∈ Lck that is accepted by Vcert (that is, Vcert(ck, 1

k, q, π) = 1) is at least 1/p(k).
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Fix some arbitrary function T ′(k) ∈ kω(1). Let T (k) ∈ kω(1) and C(k) ∈ ω(1) be two functions
such that T (k)C(k) ≤ T ′(k). By our assumption, there exists a cheating prover A that violates the
strong soundness property of (Pcert, Vcert) w.r.t. the functions T (k) and C(k) with some polynomial
probability 1/p(k). Using A, we construct another cheating prover A′ that violates the strong
soundness for L′1 of (P ′cert, V

′
cert) w.r.t. function T ′(k) with the same probability 1/p(k). Machine A′

on input 1k simply runs A(1k) to obtain ck, q = (M,x, y) and π; it then sets n = |x|ck and outputs
q′ = (M,x, y, 1n) and π. Clearly, A′ runs in time T (k)C(k) ≤ T ′(k). By construction of Vcert, the
probability that Vcert(ck, 1

k, q, π) = 1 is the same as the probability that V ′cert(ck, 1
k, q̃, π) = 1, where

q̃ = (M,x, y, 1|x|). Furthermore, by the time-representation-invariance of V ′cert, the probability that
V ′cert(ck, 1

k, q̃, π) = 1 is negligibly close to the probability that V ′cert(1, 1
k, q′, π) = 1. It follows

that A′ (whose running-time is bounded by T ′(k)) outputs accepting proofs of false statements
with probability negligibly close to 1

p(k) for infinitely many k ∈ N . Since the above holds for any

function T ′(k), we have that (P ′cert, V
′
cert) is not strongly sound for L′1, which is a contradiction.

4 Constant-round Concurrent ZK
In this section, we present our construction of a constant-round concurrent ZK protocol. To
simplify the exposition (and following the description in the introduction), as a warm-up, we first
present a protocol that only uses one level of P-certificates and thus only handles a bounded
number, O(m(n)), of concurrent executions; we refer to this protocol as “Protocol 1”. We then
generalize Protocol 1 and describe a protocol that uses k levels of certificates and can handle O(nk)
concurrent executions; we refer to this protocol as “Protocol k”. By setting k to be super-constant,
say, k = log n, we obtain a (fully) concurrent ZK protocol.

4.1 Protocol 1

We proceed to describe Protocol 1, (P1, V1), which we prove ism-bounded concurrent zero-knowledge.
The protocol relies on the following primitives:

• A commitment scheme com: for simplicity of presentation, we assume that com is a non-
interactive commitment scheme, but the protocol can be modified in a straight-forward way
to work for any two-message commitment scheme (as in [Nao91]).

• A strong P-certificate system (Pcert, Vcert) with parameter T (·) and C(·), where T (·) is a
“nice” super-polynomial function and C(·) is a “nice” super-constant function: for, simplicity
of exposition, we assume that both Pcert and Vcert are deterministic. We discuss in Section
4.3 how to modify the protocol to also handle randomized P-certificate systems.

• A family of hash functions {Hn}n: to simplify the exposition, we here assume that both
com and {Hn}n are collision resistant against circuits of size T ′(·), where T ′(·) is “nice”
super-polynomial function. As in [BG02], this assumption can be weakened to just collision
resistance against polynomial-size circuits by modifying the protocol to use a “good” error-
correcting code ECC (i.e., with constant distance and with polynomial-time encoding and
decoding), and replace commitments com(h(·)) with com(h(ECC(·))).

Let us now turn to specifying the protocol (P1, V1). The protocol makes use of three parameters:
m(·) is a polynomial that upper bounds the number of concurrent sessions; Γ(·) is a “nice” super-
polynomial function such that T (n), T ′(n) ∈ Γ(n)ω(1), and D(·) is a “nice” super-constant function
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such that D(n) ≤ C(n). Let m = m(n), Γ = Γ(n) and D = D(n). In the description below, when
discussing P-certificates, we always consider the language LD.

The prover P1 and the verifier V1, on common input 1n and x and private input a witness w to
P1, proceed as follow:

Phase 1: P1 and V1 exchanges the following three messages.

1. V1 chooses a randomly sampled hash function h← Hn.

2. P1 sends a commitment to 0n using com.

3. V1 replies with a random “challenge” r of length 3mn.

Phase 2: P1 gives a WIUA argument of the statement that either x ∈ L OR there exists S̃1 ∈
{0, 1}Γ(n), j ∈ [m], s ∈ {0, 1}n, π ∈ {0, 1}n, σ ∈ {0, 1}Γ(n), ρ, such that

1. Commitment Consistency: c = com(h(S̃1); ρ),

2. Input Certification: |σ| ≤ 2mn,

3. Prediction Correctness: π certifies that S̃1(1n, j, s, σ) = r.

A formal description of the protocol can be found in Figure 4 and 5.

Protocol 1

Common Input: A security parameter 1n in unary and an instance x of a language L ∈ NP with
witness relation RL.

Parameters: m = m(n) is an upper bound on the number of concurrent sessions. Γ = Γ(n) and
D = D(n) are respectively upper bounds on the size of the committed program and the time
bound.

Phase 1:

V1 → P1: Send h← Hn.

P1 → V1: Send c = com(0n; ρ).

V1 → P1: Send r ← {0, 1}3mn
.

Phase 2:

P1 ⇔ V1: A WIUA 〈PUA, VUA〉 proving the OR of the following statements:

1. ∃ w ∈ {0, 1}poly(|x|)
s.t. RL(x,w) = 1.

2. ∃ 〈S̃1, j, s, π, σ, ρ〉 s.t. RS(〈h, c, r〉 , 〈S̃1, j, s, π, σ, ρ〉) = 1.

Figure 4: A public-coin non-black-box bounded concurrent zero-knowledge protocol.

Our Simulator. As explained in the introduction, the goal of our simulator is to try to “commit
to its own code” in a way that prevents a blow-up in the running-time. Note that in our protocol,
the only expensive part of the generation of the WIUA is the generation of the P-certificates π; the
rest of the computation has a-priori bounded complexity (depending only on the size and running-
time of V ∗). To take advantage of this observation, we thus have the simulator only commit to a
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Instance: A triplet 〈h, c, r〉 ∈ Hn × {0, 1}poly(n) × {0, 1}3mn
.

Witness: 〈S̃1, j, s, π, σ, ρ〉: A program S̃ ∈ {0, 1}Γ, an integer j ∈ [m], a seed s ∈ {0, 1}n, a P-certificate

π ∈ {0, 1}n, a string σ ∈ {0, 1}Γ, a randomness ρ ∈ {0, 1}n.

Relation: RS(〈h, c, r〉 , 〈S̃1, j, s, π, σ, ρ〉) = 1 if and only if:

1. Commitment Consistency: c = com(h(S̃1); ρ),

2. Input Certification: |σ| ≤ 2mn,

3. Prediction Correctness: Vcert(D, 1
n, (S̃1, (1

n, j, s, σ), r), π) = 1 (i.e., π certifies that
S̃1(1n, j, s, σ) = r).

Figure 5: RS , a relation that Protocol 1 uses in WIUA of Phase 2.

program that generates prover messages (in identically the same way as the actual simulator), but
getting certificates ~π as input.

In more detail, to describe the actual simulator S, let us first describe two “helper” simula-
tors S1, S2. Roughly speaking, S1 is an interactive machine that simulates prover messages in a
“right” interaction with V ∗. Additionally, S1 is expecting some “external” messages on the “left”;
these “left” messages will be certificates provided by S2. See Figure 1 in the introduction for an
illustration of the communication patterns between S1, S2 and V ∗.

Let us turn to a formal description of the S1 and S2. To simplifiy the exposition, we assume
w.l.o.g that V ∗ has its non-uniform advice z hard-coded, and is deterministic (as it can always get
its random tape as non-uniform advice).

On a high-level, S1(1n, x,M, s, `) acts as a prover in a “right” interaction, communicating with
a concurrent verifier V ∗, while receiving some additional “external” messages on the “left”. (The
input x is the statement to be proved, the input M will later be instantiated with the code of S1,
and the input (s, `) is used to generate the randomness for S1; s is the seed for the forward secure
pseudorandom generator g, and ` is the number of n-bit long blocks to be generated using g.) A
communication round in the “right” interaction with V ∗ refers to a verifier message (sent by V ∗)
followed by a prover message (sent by S1).

Let us now specify how S1 generates prover messages in its “right” interaction with V ∗.
S1(1n, x,M, s, `) acts as follows:

• Upon invocation, S1 generates its “random-tape” by expanding the seed s; more specifically,
let (s`, s`−1, . . . s1), (q`, q`−1, . . . , q1) be the output of g(s, `). We assume without loss of
generality that S1 only needs n bits of randomness of generate any prover message (it can
always expand these n bits into a longer sequence using a PRG); in order to generate its j’th
prover message, it uses qj as randomness.

• Upon receiving a hash function hi in session i during the j-th communication round, S1 pro-
vides a commitment ci to (the hash of) the program S̃1(1n, j, s′, τ) = wrap(M(1n, x,M, s′, j),
V ∗, τ, j), where wrap(A,B, τ, j) is the program that lets A communicate with B for j rounds,
while allowing A to receive τ as external messages, and finally outputting B’s message in the
j’th communication round. (That is, S̃1(1n, j, s′, τ) emulates j rounds of an execution between
S1 and V ∗ where S1 expands out the seed s′ into j blocks of randomness and additionally
receives τ as external messages.)
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• Upon receiving a challenge ri in session i during the j’th communication round, S1 needs
to provide a WIUA. To do so, it checks whether it was received an external message (j, πj),
and if so, it uses the certificate πj to complete the WIUA (and otherwise halts). More pre-
cisely, S1 provides an honest WIUA that ci is a commitment to S̃1 and that πj certifies that
S̃1(1n, j, sj , τ) = ri where τ is list of external messages received by S1 so far. (Note that
since we only require S̃1 to generate the j’th verifier message, giving him the seed (sj , j) as
input suffices to generate all prover messages in rounds j′ < j. It follows from the consistency
requirement of the forward secure PRG that S̃1 using (sj , j) as seed will generate the exact
same random sequence for the j − 1 first blocks as if running S̃1 using (s, `) as seed.)

S2(1n, x,M, s, `) internally emulates ` messages of an execution between S1(1n, x,M, s, `) and
V ∗. In each communication round j, after V ∗ generates a verifier message mj , S2 generates a
certificate πj (using Pcert) that S̃1(1n, j, sj , σ) = mj , where σ is the list of external messages
received by S1 so far, and feeds (j, πj) to S1. Finally, S2 outputs its view (which in particular,
contains the view of V ∗) at the end of the execution.

The final simulator S(1n, x) simply runs S2(1n, x, S1, s, T (n + |x|)), where s is a uniformly
random string of length n and T (n+ |x|) is a polynomial upper-bound on the number of messages
sent by V ∗ given the common input 1n, x, and extracts out, and outputs, the view of V ∗ from the
output of S2.

Running-time of S. Let us first argue that S1 runs in polynomial time. Clearly it only takes
S1 polynomial-time to generate the commitments in Phase 1 (since V ∗ has a polynomial-length
description, and thus also the code of S1). During the WIUA in Phase 2, the length of the witness
used by the simulator is polynomial in length of the description of S̃1 and the length of the certificate
π used by S1; both are of polynomial length. Since the P-certificates verification time is polynomial
in the length of the statement proved, it follows that the relation being proved in the WIUA has a
time complexity that is upper bounded by a fixed polynomial in the length of V ∗. By the relative
prover efficiency condition of the WIUA, each such proof only requires some fixed polynomial-time,
and thus the whole execution of S1 takes some fixed polynomial time (in the length of V ∗ and thus
also in the length of x.) It directly follows that also S̃1’s running-time is polynomially bounded.

Finally, since S2 is simply providing certificates about the execution of S̃1, it follows by the
relative prover efficiency condition of P-certificates, that S2 runs in polynomial time, and thus also
S.

Indistinguishability of the simulation Assume that there exists a cheating verifier V ∗, a
distinguisher D and a polynomial p such that the real view and the simulated view of V ∗ can be
distinguished by D with probability 1

p(n) for infinitely many n. More formally, for infinitely many

n ∈ N , x ∈ L ∩ {0, 1}poly(n), w ∈ RL(x) and z ∈ {0, 1}poly(n), it holds that

|Pr[D(ViewV ∗ 〈P (w), V ∗(z)〉 (1n, x)) = 1]− Pr[D(S(1n, x, z)) = 1]| ≥ 1

p(n)

Consider a hybrid experiment Real′V ∗(n, x, z) that proceeds just as the real experiment except
that all phase 1 commitments are generated by committing to the code of S̃1 (as done by S). We
also denote by Real′V ∗(n, x, z) the view of the verifier V ∗ in the hybrid. It follows by a simple hybrid
argument that there exists a polynomial p′ such that the view of V ∗ in the hybrid Real′ and in
simulation by S can be distinguished by D with probability 1

p′(n) for infinitely many n. That is,

23



for infinitely many n ∈ N , x ∈ L ∩ {0, 1}poly(n), w ∈ RL(x) and z ∈ {0, 1}poly(n), it holds that∣∣Pr[D(Real′V ∗(n, x,w, z))) = 1]− Pr[D(S(1n, x, z)) = 1]
∣∣ ≥ 1

p′(n)
(1)

Consider such n, x, z (and assume that z is hard-coded into the description of V ∗), and consider
T = T (n+|x|) hybrid experiments (recall that T (n+|x|) is the maximum number of communication
rounds given common input 1n, x). In hybrid Hj , the first j communication rounds are simulated
exactly as by S (using pseudo-randomness), but all later communication round j′ > j are simulated
by S (and more specifically by S1) using true randomness q′j being uniformly distributed in {0, 1}n;
additionally, to complete all WIUA that begin at or after communication round j, S1 uses the true
witness w instead of the “fake” witness used by S1. (Note that once we start using real randomness
is some session i, it is no longer clear whether simulation of “later” sessions can be completed.
To deal with this issue, we thus also switch all WIUA that begin at or after round j to use a real
witness; if some WIUA already began at some communication round j′ < j, then the simulation of
this WIUA can still be completed.)

It follows by Equation 1 and a hybrid argument that there exist some j and a polynomial
p′′ such that D distinguishes Hj and Hj+1 with probability 1

p′′(n) . Now, consider another hybrid

experiment H̃j that proceeds just at Hj , but where true randomness is used in communication
round j + 1 (but still using the fake witness). It follows by the forward security of the PRG g
that the outputs of Hj+1 and H̃j are indistinguishable—the reason we need forward security is
that to emulate communication rounds j′ ≤ j, the seeds sj′ may need to be known (as they are
used by S1 to provide WIUA’s). Indistinguishability of H̃j and Hj follows directly by the witness
indistinguishability property of the WIUA. It thus leads to a contradiction and completes the proof
of the indistinguishability of the simulation.

4.2 Protocol k

We move on to describe our actual concurrent ZK protocol: Protocol k, (Pk, Vk). We refer the
reader to the introduction for the ideas underlying this protocol.

As with Protocol 1, Protocol k proceeds in two phases. In Phase 1, the prover Pk and the
verifier Vk proceeds exactly as in Protocol 1 but the length of the “challenge” r is modified to be
3kn2. Next, Phase 2 is modified as follows:

Phase 2: Pk gives a WIUA argument of the statement that either x ∈ LOR there exists S̃1, . . . , S̃k ∈
{0, 1}Γ(n), 0 < j < nk, s1, . . . , sk ∈ {0, 1}n, π1, . . . , πk ∈ {0, 1}n, σ1, . . . , σk ∈ {0, 1}Γ(n),

λ1, . . . , λk ∈ {0, 1}Γ(n), ρ, such that

1. Commitment Consistency: c = com(h(S̃1, . . . , S̃k); ρ),

2. Input Certification:

(a) |~σ| ≤ 2kn2; and

(b) Let l∗ be the largest l such that j ≥ nl−1. Then λ≥l
∗

= null and for 2 ≤ l ≤ l∗, πl

certifies that S̃l(1
n, bjcnl−1 , sl, ([λ≥l]bjc

nl−1
, σ≥l)) = λl−1.

3. Prediction Correctness: π1 certifies that S̃1(1n, j, s1, ([λ≥1]j , σ
≥1))) = r

where bjcx , j − (j mod x), and the bracket operator [·]j is defined as follows: The input
is expected to be a set of triples of the form (j′, l′, πl

′
j′), and the output is a subset of these

obtained by removing elements with j′ ≥ j; that is, we are “filtering out” all messages that
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were generated in communication round j or later. Roughly speaking, the bracket operator
is used to eliminate “unnecessary” inputs to the program. We require this to be able to reuse
P-certificates; we provide a more detailed explanation of why this is needed in Remark 2,
after having formalized the simulator.

Using the notation from the introduction, the messages ~λ are “certified” certificates (each compo-
nent of ~λ may of an unbounded polynomial length), and the messages ~σ are “dangling” certificates
(each component of ~σ, however, is “short” by the input certification condition).

A formal description of Protocol k can be found in Figure 6 and 7.
We will be analyzing (Pk, Vk) when k = log n (but the analysis works as long as k is a “nice”

super-constant, but polynomially-bounded, function). It is easy to check that the protocol is
complete. Furthermore, since the honest prover Pk, on private input a valid witness w of the
statement x, always succeeds in the Phase 2 by proving that x ∈ L, by the prover and verifier
efficiency conditions of WIUA, both the honest prover Pk and verifier Vk run in some fixed polynomial
time. Furthermore note that the communication complexity of the protocol depends only on the
security parameter 1n but not the length of the statement x; thus the protocol is “succinct”.

We turn to showing that (Pk, Vk) is sound and concurrent ZK when k = log n.

Protocol k

Common Input: A security parameter 1n and an instance x of a language L ∈ NP with witness
relation RL.

Parameters: m = m(n) is an upper bound on the number of concurrent sessions. Γ = Γ(n) and
D = D(n) are respectively upper bounds on the size of the committed program and the time
bound.

Phase 1:

Vk → Pk: Send h← Hn.

Pk → Vk: Send c = com(0n; ρ).

Vk → Pk: Send r ← {0, 1}3kn
2

.

Phase 2:

Pk ⇔ Vk: A WIUA 〈PUA, VUA〉 proving the OR of the following statements:

1. ∃ w ∈ {0, 1}poly(|x|)
s.t. RL(x,w) = 1.

2. ∃ 〈 ~̃S, j, ~s, ~π, ~σ,~λ, ρ〉 s.t. RS(〈h, c, r〉 , 〈 ~̃S, j, ~s, ~π, ~σ,~λ, ρ〉) = 1.

Figure 6: A public-coin non-black-box concurrent zero-knowledge protocol.

4.2.1 Soundness of Protocol k

Lemma 1. Under the above-mentioned cryptographic assumptions, (Pk, Vk) is uniformly sound.
Additionally, if (Pcert, Vcert) is a statistically strong P-certificate system, then (Pk, Vk) is non-
uniformly sound.

Proof. We prove this lemma w.r.t. uniform soundness assuming (Pcert, Vcert) is a strong P-certificate;
the non-uniform part of the lemma follows in identically the same way.
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Instance: A triplet 〈h, c, r〉 ∈ Hn × {0, 1}poly(n) × {0, 1}3kn
2

.

Witness: 〈 ~̃S, j, ~s, ~π, ~σ,~λ, ρ〉: A sequence of programs ~̃S = (S̃1, . . . , S̃k) ∈ {0, 1}k·Γ, an integer j ∈ [nk],

a sequence of seeds ~s = (s1, . . . , sk) ∈ {0, 1}k·n, a sequence of P-certificates ~π = (π1, . . . , πk) ∈
{0, 1}k·n, a sequence ~σ = (σ1, . . . , σk) ∈ {0, 1}k·Γ, a sequence ~λ = (λ1, . . . , λk) ∈ {0, 1}k·Γ, a
randomness ρ ∈ {0, 1}n.

Relation: RS(〈h, c, r〉 , 〈 ~̃S, j, ~s, ~π, ~σ,~λ, ρ〉) = 1 if and only if:

1. Commitment Consistency: c = com(h( ~̃S); ρ),

2. Input Certification:

(a) |~σ| ≤ 2kn2, and

(b) Let l∗ be the largest l such that j ≥ nl−1. λ≥l
∗

= null and for 2 ≤ l ≤ l∗,
Vcert(D, 1

n, (S̃l, (1
n, bjcnl−1 , sl, ([λ≥l]bjc

nl−1
, σ≥l)), λl−1), πl) = 1 (i.e., πl certifies that

S̃l(1
n, bjcnl−1 , sl, ([λ≥l]bjc

nl−1
, σ≥l)) = λl−1).

3. Prediction Correctness: Vcert(D, 1
n, (S̃1, (1

n, j, s1, ([λ≥1]j , σ
≥1)), r), π1) = 1 (i.e., π cer-

tifies that S̃1(1n, j, s1, ([λ≥1]j , σ
≥1)) = r).

where bjcx , j − (j mod x), and the operator [·]j is defined as follows: The input is expected to

be a set of triples of the form (j′, l′, πl′

j′), and the output is a subset of these obtained by removing
elements with j′ ≥ j.

Figure 7: RS , a relation that Protocol k uses in WIUA of Phase 2.

Assume for contradiction that there is a probabilistic polynomial time cheating prover P ∗ and
a polynomial p, such that for infinitely many n ∈ N, with probability 1/p(n), P ∗ selects a false

statement x ∈ {0, 1}poly(n) \ L and convinces Vk of the membership of x in L.
Fix one such n. Let P ∗u,h,r be the “residual” deterministic WIUA prover resulting from fixing P ∗’s

randomness to u and feeding it the messages h and r. Let E be the “global” proof-of-knowledge
extractor of the WIUA. Note that E runs in time poly(Γ(n)). Let Es denote E with randomness
fixed to s. Now, consider the following experiment Exp:

• Sample a tuple (u, h, r, s) uniformly at random.

• Let (x, c) ← P ∗u,h,r and w′ ← E
P ∗u,h,r
s , where x is the statement selcted by P ∗u,h,r, c is the

commitment generated by P ∗u,h,r, and w′ is the witness extracted by E
P ∗u,h,r
s .

Let BAD denote the event that E
P ∗u,h,r
s extracts a valid “fake” witness w′ = ( ~̃S, j′, ~s′, ~π′, ~σ′, ~λ′, ρ′) ∈

RS(h, c, r) in the above experiment.
Let us first argue that by our assumption (that P ∗ breaks soundness), BAD happens with non-

negligible probability: By an averaging argument, with probability at least 1/2p(n) over (u, h, r), the
statement x selected by P ∗u,h,r is not a member of L and yet P ∗u,h,r convinces the WIUA verifier with
probability 1/2p(n). For each such a tuple (u, h, r), by the “global” proof-of-knowledge property of

WIUA, E
P ∗u,h,r
s extracts a valid “fake” witness w′ ∈ RS(h, c, r) with some non-negligible probability

1/q(n) (over the randomness s). It follows that BAD happens with non-negligible probability.
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We now show that under our cryptographic assumptions, BAD can only happen with negligible
probability, which is a contradiction.

First, note that by the soundness of (Pcert, Vcert) with parameters T (·) and C(·), and the fact
that T (n) = Γ(n)ω(1) and D(n) ≤ C(n), we have that except with negligible probability over the

choice of (u, h, r, s), whenever the P-certificates ~pi
′

that E
P ∗u,h,r
s extracts out are convincing, their

corresponding statements are true; otherwise, we can construct a uniform poly(Γ(n))-time adversary

that samples u, h, r, s uniformly at random, runs E
P ∗u,h,r
s , and outputs a random certificate from

w′. Additionally, by the binding property of com and the collision-resistant property of Hn it

follows that with overwhelming probability over (u, h), there exists a vector of machines ~̃S∗ such

that except with negligible probability over the choice of r, s, it holds that if E
P ∗u,h,r
s outputs a

valid w′ ∈ RS(h, c, r), then the machines ~̃S in w′ equals ~̃S∗.11 By a union bound it follows that

with overwhelming probability over (u, h), there exists a vector of machines ~̃S∗ such that except

with negligible probability over the choice of r, s, the following holds: a) if E
P ∗u,h,r
s outputs a valid

w′ ∈ RS(h, c, r), then the machines ~̃S in w′ equals ~̃S∗, and b) all accepting certificates ~π′ prove
true statements. Let us refer to such pairs (u, h) as good.

For any valid “fake” witness w′ = ( ~̃S, j′, ~s′, ~π′, ~σ′, ~λ′, ρ′) ∈ RS(h, c, r) define a machine Mw′

(using ~̃S in w′) that given the input (j′, ~s′, ~σ′) of length smaller than 2kn2, outputs r:

Machine Mw′: Mw′(1
n, j, ~s, ~σ) lets l∗ be the largest l such that j > nl−1. Mw′ next runs the

machines S̃l∗ , S̃l∗−1, . . . , S1 in sequence as follows: S̃l∗ is run on input 1n, jl
∗
, sl
∗

and σl
∗
; let

λl
∗−1 denote its output. Next for each l ≤ l∗, S̃l is given 1n, jl, sl, σ≥l and [λ≥l]j,l where λ≥l

are the outputs of the executions of S̃l+1, . . . , S̃l∗ . Finally, M outputs the string r returned
by S̃1.

Note that by definition, if all the P-certificates in w′ prove true statements, then Mw′ given the
input (j′, ~s′, ~σ′) indeed outputs r. However, for any machine M , since the input to the machine
M is of length 2kn2, it follows by a counting argument that only for a negligible fraction of length
3kn2 strings r, there exists some input that makes M output r. Thus, whenever (u, h) is good
(which happens with overwhelming probability), except with negligible probability (over the choice
of r, s) BAD cannot happen; it follows that BAD can only happen with negligible probability,
which is a contradiction.

4.2.2 Concurrent ZK of Protocol k

The simulator S for Protocol k will define k+ 1 “helper” simulators S1, . . . , Sk+1. Before providing
the formal definition of S1, . . . , Sk+1, let us first describe the interaction among them.

Recall that in the simulation of Protocol 1, S1 is an interactive machine that communicates
with a concurrent verifier V ∗, on the “right”, while expecting to receive a P-certificates (j, πj)
from S2, on the “left”, for every communication round j in the right interaction with V ∗; S1 then
makes use of these certificates to complete the right interaction with V ∗ (and more specifically,
to complete the WIUAs it is supposed to provide V ∗). In the simulation of Protocol k, S1 still
communicates with V ∗ on the “right”, but now additionally expects to receive P-certificates from

11Note that for this to hold, we here rely on the fact that binding of com and collision-resistancy of Hn hold also for
circuits of size poly(Γ(n)); however, as mentioned, by slightly modifying the protocol as in [BG02], this assumption
can be weakened to just collision resistance against polynomial-size circuits.
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Figure 8: Simulation of protocol (Pk, Vk) for k = 3.

all of S2, . . . , Sk+1 on the “left”. In more detail, recall that a communication round in the “right”
interaction refers to a verifier message (sent by V ∗) followed by a prover message (sent by S1).
Now, in each communication round j in the right interaction, upon receiving a message from the
verifier V ∗, S1 also expects to receive (j, 1, π1

j ) from S2, and furthermore, for every 2 ≤ l ≤ k, if

j mod nl−1 = 0, then S1 additionally expects to receive (j, l, πlj) from Sl+1. In other words, S1

expects to receive a “level-l” certificate (of the form (j = a ·nl−1, l, πlj) for some a) from Sl+1 every

nl−1 communication rounds. Roughly speaking, each such “level-l” certificatate, certifies that all
“level-(l − 1)” certificates up to round j were actually generated by Sl; and those “level-(l − 1)”
certificates certify that Sl−1 actually generated the “level-(l− 2)” certificates up until round j, etc.
See Figure 8 for an illustration of the communication pattern between V ∗, S1, . . . , Sk+1.

For every 2 ≤ l ≤ k, for Sl to be able to generate its level (l − 1)-certificates, Sl internally
emulates the interaction among Sl−1, . . . , S1, V

∗, but additionally needs to receive all level-l′ cer-
tificates, where l′ ≥ l; thus each machine Sl produces level-l − 1 certificates on the “right”, while
receiving level-l, level-(l + 1), . . . level-k certificates from respectively Sl+1, Sl+2, . . . Sk+1, on the
“left”. See Figure 9 for an illustration of Sl.

We now define S1. As before, on a high-level, S1(1n, x, ~M, s, `), acts as a prover in a “right”
interaction, communicating with a concurrent verifier V ∗, while receiving some additional “exter-
nal” messages on the “left”. (The input x is the statement to be proved, the input ~M will later be
instantiated with the codes of S1, . . . Sk, and the input (s, `) is used to generate the randomness
for S1; s is the seed for the forward secure pseudorandom generator g, and ` is the number of n-bit
long blocks to be generated using g.)

Let us now specify how S1 generates prover messages in its “right” interaction with V ∗.
S1(1n, x, ~M, s, `) acts as follows:

• Upon invocation, S1 generates its “random-tape” by expanding the seed s; more specifically,
let (s`, s`−1, . . . s1), (q`, q`−1, . . . , q1) be the output of g(s, `). Again, we assume without loss
of generality that S1 only needs n bits of randomness of generate any prover message; in order
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Figure 9: Simulator Sl.

to generate its j’th prover message, it uses qj as randomness.

• Upon receiving a hash function hi for session i in communication round j, S1 provides a
commitment ci to the hash of the programs S̃1, . . . , S̃k defined as follows.

– S̃1(1n, j, s′, σ) = wrap(M1(1n, x, ~M, s′, j), V ∗, σ, j).

– For 2 ≤ l ≤ k, S̃l(1
n, j, s′, σ) = wrap′(Ml(1

n, x, ~M, s′, j), σ, j) where wrap′(A, σ, j) is the
program that executes A for j “communication rounds,” while allowing A to receive σ as
external messages “on the left”, and finally outputs the set of messages generated by A
“on the right”—recall that Ml will be instantiated by Sl, who emulates the interaction
among Sl−1, . . . , S1, V

∗, receives level-l′ certificates for l′ ≥ l externally “on the left”,
and generates level-(l− 1) certificates on the “right”; “communication rounds” here still
refer to the communication rounds of S1 and V ∗. (wrap′ simply returns ⊥ whenever A
does not have the specified structure.)

• Upon receiving a challenge ri in session i during the jth communication round, S1 needs to
provide a WIUA. To do so, S1 collects the witness as follows.

– Let l∗ be the largest l such that j ≥ nl−1.

– For 1 ≤ l ≤ l∗, set sl = sbjc
nl−1

(i.e., the seed corresponding to communication rounds

bjcnl−1 ; recall that bjcx , j − (j mod x)).

– For 1 ≤ l ≤ l∗, recall that S1 expects to have received al = bjcnl−1/nl−1 messages from
Sl+1 of the form (a · nl−1, l, πl

a·nl−1) for a ∈ [al].

∗ Let πl be the P-certificate in the last message received from Sl+1; by construction,
this message was received in round bjcnl−1 and thus we have πl = πlbjc

nl−1
.

∗ Let λl be the messages received from Sl+1 up until and including round bjcnl ; by
construction, since Sl+1 generates a message every nl−1 communication rounds, λl

contains a total of bjcnl/nl−1 messages.

∗ Let σl be the messages generated by Sl+1 after round bjcnl but before round bjcnl−1

(thus, we exclude the last message πl and the messages included in λl); since there
are at most nl communication rounds after round bjcnl and before round bjcnl−1 ,
and (again) Sl+1 generates a message every nl−1 rounds, σl contains at most n
messages; each such message is of length n+O(log n) < 2n.

– For l∗ < l ≤ k, let λl = null. (Note that also λl∗ = null since bjcnl∗ = 0.)
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– Finally, let ρ and ~̃S be the randomness and machines, respectively, used to generate the
commitment ci in the ith session.

If S1 fails to find a valid witness, S1 simply halts. Otherwise, S1 uses the above witness to
provide an honest WIUA to V ∗ that

1. (Commitment consistency:) ci = com(hi(S̃1, . . . , S̃k); ρ),

2. (Input certification:) |~σ| ≤ 2kn2, λ≥l
∗

= null and for 2 ≤ l ≤ l∗, πl certifies that
S̃l(1

n, bjcnl−1 , sl, ([λ≥l]bjc
nl−1

, σ≥l)) = λl−1,

3. (Prediction correctness:) π1 certifies that S̃1(1n, j, s1, ([λ≥1]j , σ
≥1)) = ri

Remark 2. Above, for every 1 ≤ l ≤ l∗, S1 uses the P-certificates πl to certify that the execution of
S̃l up until communication round bjcnl−1 when providing S̃l with the “certified” inputs [λ≥l]bjc

nl−1

and “dangling” inputs σ≥l. The bracket operator is used to ensure that the inputs given to S̃l
are identically the same as were given to it when generating the P-certificate πl at round bjcnl

(or else the statement proved by πl would be different from the one that S1 needs to provide a
certificate about). The bracket operator simply “filters” out all messages that are generated at or
after communication round bjcnl−1.

As noted above, by construction, ~σ always satisfies the appropriate length restrictions. Thus,
the only thing we need to ensure is that the certificates received by S1 indeed prove the “right”
statements for S1 to be able to complete its WIUAs; we shall see why this is the case shortly.

We now turn to defining Sl for 2 ≤ l ≤ k + 1, inductively. Suppose S1, . . . , Sl−1 are defined.
Sl(1

n, x, ~M, s, `) emulates the interaction among Sl−1(1n, x, ~M, s, `), . . . , S1(1n, x, ~M, s, `), V ∗ for `
communication rounds, while expecting to receive external messages “on the left”.

• In each communication round j with j mod nl−1 = 0, after V ∗ sends a verifier message mj ,
we distinguish two cases.

– If l = 2, S2 generates a certificate π1
j (using Pcert) that wrap(S1(1n, x, ~M, sj , j), V

∗, τ, j)

= mj , where τ is the set of messages S1 has received so far, and outputs (j, 1, π1
j ).

– If l > 2, Sl continues to emulate the round to the point that (the internally emulated)
Sl−1 outputs its message (j, l − 2, πl−2

j ), and then Sl generates a certificate πl−1
j that

wrap′(Sl−1(1n, x, ~M, sj , j), τ, j) = η, where τ is the set of messages that Sl−1 has received
so far and η is the set of messages Sl−1 has generated so far (in the internal emulation).
Then Sl outputs the message (j, l − 1, πl−1

j ).

• In each communication round j s.t., j mod nl = 0, after generating its message (j, l−1, πl−1
j ),

Sl expects to receive external messages (j, l′− 1, πl
′−1
j ) “on the left” for every l′ > l such that

j mod nl
′−1 = 0. Sl simply relays these messages to its internally emulated Sl−1, . . . S1.

Finally, Sl outputs its own view at the end of the execution (which in particular, contains the view
of V ∗, and all the messages generate by Sl).

Note that the construction of S2, . . . , Sk+1 ensures that S1 will always have the appropriate
certificates to complete every WIUA it reaches; as a consequence, S1 never gets “stuck”.

Let ~S = (S1, . . . , Sk). The final simulator S(1n, x) simply runs Sk′(1
n, x, ~S, s, T (n+ |x|)), where

s is a uniformly random string of length n, T (n+|x|) is a polynomial upper-bound on the number of
messages sent by V ∗ on input 1n and statement x ∈ {0, 1}poly(n), and k′ = dlogn T (n+ |x|)e+1, and
then extracts and outputs the view of V ∗ from the output of Sk′ . Note that since T is polynomial
in n, k′ is a constant.
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Running-time of S We first note that essentially the same argument as for Protocol 1 shows that
S1 runs in polynomial time: It only takes S1 polynomial-time to generate the commitments in Phase
1 (since V ∗ has a polynomial-length description, and the programs S̃l’s have length polynomial in
the size of V ∗). During the WIUA in Phase 2, the length of the witness used by the simulator is
polynomial in length of the programs S̃l’s, and their inputs and outputs, all of which are polynomial
in the circuit-size of V ∗. Since the P-certificates verification time is polynomial in the length of
the statement proved, it follows that the relation being proved in the WIUA has a time complexity
that is upper bounded by a fixed polynomial in the length of V ∗. By the relative prover efficiency
condition of the WIUA, each such proof only requires some fixed polynomial-time, and thus the
whole execution of S1 takes some fixed polynomial time (in the size of V ∗ and thus also in the
length of x.) It directly follows that also S̃1’s running-time is polynomially bounded.

It now follows by an induction that Sl and thus S̃l run in polynomial time for every constant
l. Suppose Sl−1 and S̃l−1 run in polynomial time. Since Sl is simply providing certificates about
the execution of S̃l−1, it follows by the relative prover-efficiency condition of P-certificates, that Sl
runs in polynomial time, and thus also S̃l. Finally, as S simply runs Sk′ with a constant k′, the
running-time of S is polynomially bounded as well.

Indistinguishability of the simulation Note that by construction of S, it follows that the
simulation never gets “stuck” in the sense that whenever V ∗ expects a WIUA in some session, S
has an appropriate “fake” witness and can complete the WIUA using this “fake” witness. Indistin-
guishability of the simulation follows in identically the same way as for Protocol 1.

4.3 Dealing with Randomized P-certificates

As mentioned above, to simplify the exposition, our protocol uses strong P-certificate system
(Pcert, Vcert) with deterministic prover and verifier strategies. We here sketch how to deal with the
case when Pcert and Vcert are randomized.

• Handling randomized Vcert. If Vcert is randomized, we simply need to the verifier V generate
the randomness for Vcert, but to guarantee soundness of the P-certificate, V needs to do so
after the P-certificates are determined. We do this by adding a new communication round
before Phase 2 where the prover first is asked to commit to the k P-certificates π1, . . . , πk

that it wants to use in Phase 2 (the honest prover should simply commit to 0k·n) and next the
verifier selects randomness ρ1, . . . , ρk for Vcert for each of these certificates. In Phase 2, the
prover is then asked to demonstrate that for each certificate l ∈ [k], Vcert using randomness
ρl accepts πl.

• Handling randomized Pcert. If Pcert is randomized, the helper simulators S2, . . . , Sk+1 also
become randomized. As with S1, there is now a potential “randomness-dependent” issue
since the simulators generate certificates about their own behaviour in earlier communication
rounds (in particular, S1 needs to know the randomness of all “helper” simulators). We can
break the circularity by using forward secure PRGs in exactly the same way as was done for
S1; each the simulator Sl use independent seeds s(l) for a forward secure PRG to expand the
randomness for generating level-(l − 1) certificates in each communication round, and then

uses the seed s
(l)
j as an input to S̃l’s when generating certificates at communication round j.
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4.4 A Note on Uniform Assumptions

We remark that even in the case of uniform soundness, our protocol currently relies on families of
hash-functions collision-resistant also for non-uniform polynomial-time. Note, however, that for our
soundness proof, it suffices to use commitment schemes that are binding for uniform polynomial-
time algorithms and a WIUA where the proof of knowledge property is proven secure using a
uniform security reduction. (We still need the hiding and the witness indistinguishability properties
to hold for non-uniform polynomial-time to establish ZK with arbitrary auxiliary inputs). We
see no obstacles in getting these properties by instantiating our protocol with statistically-hiding
commitments and a “special-purpose” WIUA from [PR05a], which also relies on statistically-hiding
commitments, but we haven’t verified the details. In particular, if we only rely on statistically-
hiding commitments where the (computational) binding hold against uniform polynomial-time
algorithms, such commitment can be based on families of hash functions collision-resistant against
uniform polynomial-time.
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