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1. Introduction. An option pricing model establishes a relationship between the traded
derivatives, the underlying asset and the market variables, e.g., volatility of the underlying
asset [4, 25]. Option pricing models are used in practice to price derivative securities given
knowledge of the volatility and other market variables.

The celebrated constant-volatility Black-Scholes model [4, 25] is the most often used
option pricing model in financial practice. This classical model assumes constant volatility;
however, much recent evidence suggests that a constatitityotaodel is not adequate [27,

28]. Indeed, numerically inverting the Black-Scholes formula on real data sets supports the
notion of asymmetry with stock price (volatility skew), as well as dependence on time to
expiration (volatility term structure). Collectively this dependence is often referred to as the
volatility smile. The challenge is taccurately (and efficiently) model this vdiliy smile.

In practice, the constant-volatility Black-Scholes model is often applied by simply using
different volatility values for options with different strikes and maturities. In this paper, we
refer to this approach as the constant implied volatility approach. Although this method works
well for pricing European options, it is unsuitable for more complicated exotic options and
options with early exercise features. Moreover, as will be illustrateg#inthis approach
can produce incorrect hedge factors even for simple European options, assuming that the
underlying follows al-factor model.

A few different approaches have been proposed for modeling the volatility smile. One
class of methods (Merton [26]) assumes a Poisson jump diffusion process for the underly-
ing asset. Stochastic volatility models (Hull and White [20]) have also been used. Das and
Sundaram [10] indicate that neither of these types of models sufficiently explains the implied
volatility structure.

Finally, there is thd -factor continuous diffusion approach: an underlying asset with the

initial value Sinit is assumed to satisfy:

® L p(Su )it + 0" (S W, € [0,7], 7> 0,
t

where W, is a standard Brownian motion, is a fixed trading horizon, angd, o*: R x

[0,7] — R are deterministic functions. The functiori(s,t) is called thelocal volatility
function The advantages of thiefactor continuous diffusion model, compared to the jump

or stochastic model, include that no non-traded source of risk such as the jump or stochastic
volatility is introduced [17]. Consequently, the completeness of the model, i.e., the ability to
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hedge options with the underlying asset, is maintained. Completeness is ultimately important
since it allows for arbitrage pricing and hedging [17].

There may be dispute regarding whethérfactor model (1) is the best way to model an
underlying process. Our research will not shed light to this dispute. Instead, we demonstrate
the importance of accurately approximating the local #tifunction in pricing and hedging
derivatives when the underlying followslafactor model (1).

In order to price complex exotic options using-&actor diffusion model (1), the volatil-
ity functiono*(s, t) needs to be approximated. Volatility is the only variable in thfactor
model which is not directly observable in the market. Similar to the implied volatility in the
constant volatility model, one possible idea is to imply this local volatility function from the
market option price data. Indeed, it is established [1, 17] that the local volatility function can
be uniquely determined from the European call options of all strikes and maturities, under
the no arbitrage assumption of the observable European call option prices. Unfortunately, the
market European option prices are typically limited to a relatively few different strikes and
maturities. Therefore the problem of determining the local volatility function can be regarded
as a function approximation problem from a finite data set with a nonlinear observation func-
tional. Due to insufficient market option price data, this is a well-known ill-posed problem.

Computational methods have been proposed to solve this ill-posed problem [1, 2, 5, 13,
14,17, 22,23, 27]. Most of these methods [1, 5, 13, 14,17, 22, 27] overcome the ill-posedness
of the problem by assuming the existence of a complete spanning set of European call option
prices, which, in practice, requires use of extrapolation and interpolation of the available
market option prices [5, 13, 22, 27]. This can be problematic because potentially erroneous
non-market information are introduced into the data. Rubinstein proposes to compute the
implied probability without any exogenous assumption on the model for the local volatility
function [22, 27]. In [1] the local volatility is computed aach discretization nodal point
with a PDE approach. The methods [2, 23] use a regularization approach to the ill-posed local
volatility approximation problem. The closeness of the local volatility to a prior is used in [2]
and smoothness is used in [23].

The local volatility function approximation problem is ill-posed: there are typically an
infinite number of solutions to the problem. It is not difficult to find a local volatility function
o(s,t) that matches the market option price data. However, for accurately pricing exotic

options, we are not merely concerned with matching the market option prices but would like
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to reconstruct as accurately as possible thetilityefunction o*(s, t) in the diffusion model
(1). Accurately approximating this volatility function is especially important for computing
hedge factors, even for simple European call/put optionsi4ee

Smoothness of the function has long been used as a regularization criterion for function
approximation with a finite observation data [29, 30, 31]. Splines have known to possess good
approximation theoretical properties for a model both when the function is fixed and smooth
and when it is a sample function from a stochastic process [31]. However, approximating
the local volatility function from a finite set of option prices is more complex, compared to
a standard function approximation problem, since the (observation) option price functional is
nonlinear. Nevertheless, it is intuitive that smoothness regularization will play a similar role
here.

In [23] the lack of sufficient market option price data is overcome by regularizing with
smoothness of the local volatility function. The local volatility is computeebah discretiza-
tion pointto match the given option prices with an additional objective of minimizing the
change of the derivativeo (s, t). Unfortunately, this approach requires the solution of a very
large-scale nonlinear optimization problem: the dimension is equal to the total number of
discretization points. In addition, it requires determination of a regularization parameter.

In this paper, we propose a spline functional approach: a local volatility funetien)
is explicitly represented by a spline with a fixed set of spline knots and end condition. The
volatilities at the spline knots uniquely determine a local volatility function. We choose the
number of spline knots to be no greater than the number of option prices and they are placed
with respect to the given data. The spline is determined by solving a constrained nonlinear
optimization problem to match the market option prices as closely as possible. The dimen-
sion of the optimization problem is typically small, depending on the number of option prices
available. The approximation properties of the spline allow an accurate and smooth approxi-
mation of the local volatility function prescribing tHefactor model in a region within which
the volatility values are significant for pricing available options.

We start with the motivation for our proposed inverse spline approximation formulation
for the local volatility in§2. Computational issues for solving the proposed optimization
problem are discussed #3. Numerical examples illustrating the reconstructed local volatil-
ity surfaces from the European call option prices are describéd.itsing a European call

option example with the underlying following the known absolute diffusion process, we illus-

3



trate the capability of the proposed method dacurately reconstructing the local vilidy
function. A S&P 500 European index call option example with the real market data is also
used to illustrate the smoothness of the local volatility function and the stability of the pro-

posed approach. I§b, concluding remarks are given.

2. Local Volatility Function Approximation with Splines. Assume that the underly-
ing asset follows a continuousfactor diffusion process with the initial valu;:

ds,
St

= w(Sy, t)dt + o (S, t)dWy, t e [0,T1],
for some fixed time horizof0, 7], W; is a Brownian motion, ang(s,t), o*(s,t): RT x
[0,7] — R are deterministic functions sufficiently well behaved to guarantee that (1) has a
unique solution [24]. Note that in this notatieri(s,t) can be negative as well as positive.
(The conventional notion of positive volatility correspondste*(s, £)2 in our notation.) For
simplicity, we assume that the instantaneous interest rate is a constahaind the dividend
rate is a constant > 0 (A general stochastic interest derivative pricing can be priced, e.g.,
[19]). Given Sinit, 7 andq, and under the no arbitrage assumption [25], an option with the
volatility o (s, t), strike priceK’, and maturityl" has a unique price(o (s, t), K, T).

Assume that we are givem market option (bid,ask)-pairg(bid;, ask)}',, corre-

sponding to strike prices/expiration timggy;, Tj)}}”:l- Let
vj(o(s, 1)) def v(o(s,t), K;T;), j=1,---,m.

We want to approximate, as accurately as possible, the locdilitgléunction o*(s,t) :

RT x [0, 7] — R from the requirement that
(2) bid; < v;(o(s,t)) <ask, j=1,---,m.

Since the observation dafébid;, ask;, K;, T;) }72, is finite and the restriction is on the op-
tionvalues{v;(o(s,t))}7L,, problem (2) can be considerediamerse function approximation
problemfrom a finite observation data. L&t denote the space of measurable functions in the
region[0, +o00) x [0, 7]. The inverse function approximation problem (2) can be written as an

optimization problem:

m m

©) min_ S [bid; — vy(o(s. 0))]F + 3 [vy(o(s. 1)) — ask)]*,

o(s,t)eEH = =



wherez+ & max(z,0). This is a nonlinear piecewise differentiable optimization problem:

to overcome nondifferentiability in (3), one can alternatively solve a variational least squares

problem:
@) Qi jzle»(a(s,t)) - 9%,
wherev; def m Since the observation data is finite, problems (2,3,4) are severely

underdetermined: there are typically an infinite number of solutions. It is easy to find a
functiono (s, t) that matches the market option price data [2, 5, 17, 13, 14, 22, 23, 27].

The local volatility reconstruction problem (2,3,4) is a complicated nonstandard function
approximation problem. The option price functioné (s, t), K, T') is nonlinear in the local
volatility functiono (s, t). It is a nonlinear inverse function approximation problem.

In most of the proposed methods [1, 2, 5, 17, 13, 14, 22, 27] matching the market option
price data has been emphasized; it is often the only objective. However, a fuactian
which matches the finite set of market option prices can be very different from the local
volatility o* (s, t) which prescribes thé-factor model for the underlying, s&é for an exam-
ple. Moreover, the price; generally has error (for example when a bid-ask spread exists). In
addition, the option value;(o (s, t)) can only be computed numerically using a tree method
or a PDE approach (there is no closed form solution for a gemeeadtor model (1)). Hence,
it may not be desirable to insist thaf(o (s, t)) match exactly the observed market prige
for j = 1,---,m. For pricing and hedging of exotic options, it is more important to compute
a local volatility functiono (s, t) which is as close as possible to the local volatility function
a*(s,t). In other words, in addition to calibrating the market option price data sufficiently ac-
curately, we would like taeconstructas accurately as possible, the local it function
o*(s,t) of the diffusion model (1).

Smoothness has long been used [29, 30, 31] as a regularization condition for a function
approximation problem with a limited observation data. In addition, smoothness of the local
volatility function can be important in computational option valuation schemes. Convergence
of a PDE finite difference method, for example, depends on the smoothness of the function
o(s,t).

In [23] it is proposed to use smoothness as a regularization condition to approximate the



local volatility function. The regularized optimization problem

m
) i, 2ol ) = )+ A s D)

is used in [23] whera\ is a positive constant anf- ||» denotes thd.? norm. The change of

the first order derivative is minimized depending on the regularization paramétervhich
determining a suitable value may not be easy. In addition, computational implementation
of this method requires solving a large-scale discretized optimization problem: for a PDE
implementation, the dimension I§ M whereN is the number of discretization points $n
and M is the number of discretization points in A simple gradient descent algorithm is
used in [23]. Since the optimization problem is (5) highly nonlinear, with such a method, the
computed solution is typically inaccurate. To use a more sophisticated optimization algorithm,
the Jacobian matrix of the vector functiom, - - -, v,,) needs to be evaluated but this becomes
extremely costly due to the large dimension of the discretized problem.

Splines have long been used in approximating smooth curves and surfaces (see, e.g.,
[16]). They have also been used as a tool for regularizing ill-posedness of function approx-
imations from finite observation data [31]. In a typidatlimensional spline interpolation
setting, assuming value, i = 1,-- -, m, of the dependent variablgx) corresponding to
valuesz;,i = 1,---,m, are given, a spline is chosen to fit the défa =;), i = 1,---, m.

Given the number of knogsand their locations, the freedom of the spline is the coefficient of
each spline segment. The cubic spline has long been used by craftsman and engineers as the
mechanic spline. It is the smoothest twice continuously differentiable function that matches

the observations; the minimizer of

b
. " 2 i N — f. ) = 1.---
fgcl)lgs/a (f"(x))*dz, subjecttof(x;) = fi, i yree, M,

is a natural cubic spline, wheteis the Sobolev space of functions whose first order deriva-
tives are continuously differentiable and the second order derivatives are square integrable
(assumingn > 2). For mechanical splines, this corresponds to minimize the elastic strain
energy. For-dimensional surface fitting, the bicubic spline defined on a regular grid is twice
continuously differentiable [3, 16]. The bicubic spline has a similar variational minimization
property. Advantages of spline interpolation include its fast convergence on many types of
meshes, computational efficiency, and insensitivity to roundoff errors [3].

Approximating the local volatility function by a spline is particularly reasonable if the

local volatility function is smooth. Is this a reasonable expectation for the local volatility
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function? Assume that the underlying follows thdactor diffusion process (1). Let there
be given observable arbitrage-free market European call pridesT’) for all strikesK €
[0, c0) and all maturitiesd” € (0, 7]. From Proposition 1 in [1], the local volatility function
o*(s, t) of the diffusion process (1) that is consistent with the market is given uniquely by
_ gt (K D)+ K(r—a)ft

2 02v
K OK?2

(6) (0" (K,T))?

This formula suggests that, assumingy, 7') is sufficiently smooth (note thaﬁ% andg—;
already exist) antg%’2 # 0, (o*(K, T))? is sufficiently smooth in the regioft), oo) x (0, 7]
as well.

In this paper, we use 2=dimensional spline functional to directly approximate a local
volatility function'. Let the number of spline knojs < m. We choose a set of fixed spline
knots{(5;,;)},_, in the region[0, co0) x [0, 7]. Given{(5;,;)};_, spline knots with cor-
responding local volatility values; ef o(5;,t;), an interpolating cubic spling(s, t) with a
fixed end condition (in our computation the natural spline end condition is used) is uniquely
defined by setting(s;, ¢;) = ;,7 = 1,---, p. We then determine the local volatility values
a; (hence the spline) by calibrating the market observable option prices. The freedom in this
problem is represented by the volatility valugs; } at the given knotg(s;,¢;)}. If 7 is a
p-vector,c = (4, --,,)T, then we denote the corresponding interpolating spline with the
specified end condition ags, ¢; 7).

Let

vj(c(s,t;0)) o v(c(s, t;0), K;,T;), j=1,---,m.

To allow the possibility of incorporating additional a priori informatidéandw are lower and
upper bounds that can be imposed on the local volatilities at the knots. Thus, we define the
verse spline local volatility approximation proble@ivenp spline knots(sy, 1) - - -, (5p, tp),

solve for thep-vectora
: _\ def 1
min f(0) =35
@) subjectto 1< < u,

where positive constan{su; }7", are weights, allowing account to be taken of different ac-

curacies ofy; or computedy;. The determination of an approximation in theor [/, norm

L Ifit is known thato (s, t) is a function ofs or ¢ only, then one can usedimensional spline.
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instead may be a valuable alternative although the problem becomes even more difficult to
solve computationally. Note also that the formulation (7) is quite general: European call/put
or even more complicated option prices can be used to compute the spline approximation to
the local volatility functiono* (s, t).

The inverse spline local volatility problem (7) is a minimization problem with respect to
the local volatilityg at the spline knots. The computed volatility function has some depen-
dence on the number of kngtsand the location of the knof§s;, ¢;) }¥_,. The choice of the
number of knots and their placement in spline approximation is generally a complicated issue
[16, 31]. The situation here is not typical for spline approximation due to the fact that the
dependent option price function is not the function to be approximated. Rather, it depends
on the values of the unknown volatility function in the regif x [0, 7]. Moreover, the
dependence on the unknown volatility values is not uniform in the regiornx [0, 7]. The
option premium depends little on the volatility values with smahd s far from Sinj;. It is
convenient to view this as follows [1]: there exists a region centered ar§naithin which
the volatility values are significant in pricing and hedging: we denote this regity &s the
optionv;, see Fig. 1 forillustration of its typical shape. We can at most expect to approximate
well the local volatilities in the regio® def UJL, D; from the market option data. In our ex-
periments, we often choose the number of knots equal to the number of observations. In order
to construct and evaluate a spline efficiently, the spline knots can be placed in a rectangular

mesh covering the regich and bicubic spline interpolation [3] can be used.

S\nll

Time t

FiG. 1. The Local Volatility in theShaded Regio®; Is Significant in Pricing and Hedging

If the number of spline knots are chosen to be no more than the number of observation
data points, the degrees of freedom, compared to that of a (discretized) formulation of (3),
is significantly decreased (several orders of magnitude). In addition to gaining smoothness
of the local volatility function, formulation (7) significantly decreases the computational cost

compared to that of the (discretized) formulations (3,5) due to reduction of the dimension of
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the optimization problem.

It is not appropriate to choogemuch larger thamn since (7) may become underdeter-
mined. If one decides to use more spline knots, additional regularization, e.g.,
m
Zl wjvj(e(s, t;3)) — ;% + M(e(s, ;)
j=

N | —

: _\ def
min f(o) =

(8) subjectto I <7 < u,

is more appropriate: heve> 0 is a regularization parameter antv (s, ¢; o)) is @ smoothing
norm for the tensor product splines [15]. (A referee has pointed out that this has recently been
considered in [21].)

In this paper, we focus on the formulation (7) and asspnienot greater tham. In
order to solve the inverse local volatility problem (7), an optimization method will be needed
to evaluate the values of options(c(s, t; 7)) for any splinec(s, t; 7); the derivatives may

also be computed. We discuss this next.

3. The Computational Procedure. Our proposal is to approximate the local volatility
surfaceg™ (s, t), with a cubic spline(s, t; &) by solving (7) for the vecto# = (54, --,5,)".
Problem (7), whep < m, is defined once theknots(s1,¢1), - - -, (3p, t,) have been chosen
appropriately. To express (7) more succinctly, define a vector-valued furfctioR? — R™
where component of F'is given bywj% [vj(c(s,t;0)) — 0], for j =1, - - -, m. Therefore (7)

can be rewritten:

: _\ def
min f(o) =

(9) subjectto I <7 <u.

1F ()13

N | —

Problem (9) is a box-constrained nonlinear least-squares probléntlrere are a vari-
ety of optimization methods available to enable its solution. In our implementation we use
a trust region/interior point method [6, 7], in which a sequence of strictly feasible points
are generated{s®)} ¢ int{F}, whereF = {7 € ® : 1 < & < u}. Moreover,
the sequence corresponds to a monotonically decreasing sequence of function values, i.e.,
fEFD < fB) e =1,... oo, wheref®) = f(z(*¥)). Under mild assumptions this approach
guarantees convergence, i@*) — 5*, whereg*is a local minimizer for problem (9).

def

The Jacobian of" with respect tos is required: J(g) = VF(g). Note thatJ is an

m X p matrix. In the square case whgn= m, it is possible to use a standard secant update to
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approximate/, e.g., [12], which can significantly reduce the cost. Under reasonable assump-
tions a superlinear rate of convergence can be achieved. We note that there are optimization
approaches that do not require the calculation (or approximation) of the Jacobian Jhatrix
however, they typically converge very slowly - we have not investigated those methods in this
work.
In this paper we explore two possibilities in the framework of our optimization approach:
1. Use of automatic differentiation [8] and/or finite-differencing to complite def
J(5(k));

2. Use of a secant update to approximate whenp = m.

3.1. The Problem Structure. The evaluation off (¢) requires the evaluation of each
component of, i.e.,wj% [vj(c(s,t); o) —1;], forj =1, ---,m. These are generalized Black-
Scholes computations. There are several ways to approach this — we choose, as an example,
to use a standard PDE-discretization technique.

Given Siit, 7, ¢, ando (s, t), let V(s,t) denote the option value of an underlying asset
with strike priceK and expiry datd at (s, t), t € [0, 7. Under the no arbitrage assumption,

the option value satisfies the following generalized Black-Scholes equation [25]

ov ov 1 0%V
1 9 o —q)s Tl 42 220V _ Ly
(10) 5 + (r—gq)s s + 20(3,75) s 552 rV.

The boundary conditions for the European call option are :

lim IV (s,t)

_ —q(T—t)
Jim P e , tel0,T],

V(0,t) =0, tel0,T],

V(s,T) =max(s — K,0).

We use a Crank-Nicholson finite difference solution strategy for solving (10), based on
discretization on a uniform grid. Giverzadimensional grid the numerical solution of (10) is
standard and discussed in several texts. Zvan et al [32] have a good discussion of complexity
issues. It is possible to increase efficiency by employing a number of computing techniques
such as vectorization and pipelining — description of these implementation aspects goes be-

yond the scope of this paper.

3.2. Computing the Jacobian and the gradient.The Jacobian matrif(c) satisfies

_ ov Oc
J(U) = % X %7
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whereZ is anm-by-M N matrix, 4< is an M N-by-p matrix.

It is useful to note that matrig’ %< g—g is constant and therefore needs to be computed
just once for the entire problem (given a fixed discretization and spline knot placement). The
productg—z x C' can be computed directly using automatic differentiation (forward mode)
or approximately using finite differences (differencinglong the columns of’). In either
case the work involved i®(p - w(F')) wherew(F') is the work (flops) required to evaluate
F. (In the finite-differencing case this is a tight bound whereas this bound can be undercut
considerably if automatic differentiation is used [18].)

The gradient off, with respect ta, is simply J? F'. Therefore if the functiod and its
JacobianJ have been computed as described above the gradient is given by a matrix-vector
multiplication.

If the secant method is used in the square casepie.n, then the gradient is approx-
imated byA x F' whereA is the secant approximation to the Jacobian. The Jacobian is not

computed (except, possibly, for secant method restarts) with this approach.

4. Computational Examples. We now describe some computational experience with
our proposed method for reconstructing the local volatility functdis, ¢) from limited
observation data. We illustrate how European call options can be used to approximate the
local volatility function.

We have implemented the proposed method in Matlab using a trust region optimiza-
tion algorithm with a PDE approach for function and Jacobian evaluation. Without precise
knowledge of accuracy of the market data, the weights in the inverse spline localityola
approximation problem (7) are simply set to unity; ef 1, 5 =1,---,m. The generalized
Black-Scholes PDE (10) is solved with a Crank-Nicolson finite difference method. Given any
a, the bicubic spline(s, ¢; ) with the variational end condition (the second order derivative
at the end is zero) is computed and evaluated using the functions in the Matlab spline toolbox
[11]. We use a simple discretization scheme: a uniformly spaced mesh\vith)M grid
points in the region0, 2Sinit] x [0, 7] wherer is the maximum maturity in the market option

data:

_ ;2Sinit :
8 = it 1=0,---,N—1,
(ll) g N-1
tj:jjvf_lv j:O,"',M—l.
For simplicity, we have chosen the spline knots to be on a uniform rectangular mesh cov-
ering the regiorD in which the volatility values are significant in pricing the market options.
11



Given a European option, we do not have an explicit knowledge of the r@gidn our ex-
periments, we have uség; Sinit, 72S5init] X [0, 7] as an estimate dp with ; € [.6,.8] and
v2 € [1.4,1.6] depending on the magnitude 6f;;. The number of spline knogstypically
equals the number of observation In the event that the option prices are calibrated to high

precision, we have experimented with< m.

4.1. Reconstructing Local Volatility, Pricing and Hedging. In order to demonstrate
the effectiveness of the proposed method in reconstructing the local volatility surface and its
accuracy in pricing and hedging, we consider a synthetic European call option example used

in [23]. In this example, the underlying is assumed to follow an absolute diffusion process:

(12) d?st = u(Ss, t)dt 4 o* (S, t)dWr,
t

where the local volatility function™(s, t) is a function of the underlying only,

[0
J*(Sv t) = ;7

with o = 15, andW; representing a standard Brownian motion. We use the same parameter
setting as in [1]: Let the initial stock index i, = 100, the risk free interest rate= 0.05
and the dividend rate = 0.02.

We consider, as market option da2a,European call options on the underlying following
the absolute diffusion process (12). Eleven options have half year maturity with strike prices
[90:2:110] and another eleven options have one year maturity with the same strikes. Thus

the option strike and maturity vectors are given below

K =1[90;92;---;110;90; 92; - - -; 110] € R*2,

T =0.5;0.5;---;0.5;1;1;---; 1] € R%,

For the absolute diffusion process (12), the analytic formula for pricing European options
exists [9] and we set the market European option call prj@gual to this analytic value. The
discretization parameters in (11) are seflds= 101 and N = 51.

For this example the lower and upper bounds for the local volatility at the &nate
l; = —1 andu; = 1 respectively (though no variable is at the bound at the computed solution
in this case). First, we let = m and place the spline knots on the gid 20 : 200] x [0, 1].

The initial volatility values at knots are specified(‘g@) =0.15,7=1,---,22. The resulting

12



Reconstructed Local Volatility with 22 Observations #Jeval= 6 True Local Volatility

FiG. 2. The Reconstructed and True Local Volatility

optimization problem is relatively easy to solve. The optimization method reduitesations
(6 Jacobian evaluations) and the computed optimal objective function yiéitig is 10~°.

Fig. 2 demonstrates the accuracy of this local titilareconstruction: the reconstructed
spline surface(s, t; 7*) very accurately approximates the actual Wity surfacec™(s, t) in
the neighborhood of the regidib, 125] x [0, 1]. To better observe accuracy of reconstruction,
the three plots on the left in Fig. 3 display the local volatility curvestfer0, 0.58 andt = 1
respectively. Since the calibration error is very small and the reconstructed volatility surface
is nearly linear, we experimented with choosing the number of spline knots less:thBEine
three plots on the right of Fig. 3 display the local volatility curves reconstructed with eight
spline knots placed on the meEHSinit : .4Sinit : 1.6Sinit] < [0, 1]. We observe that the local
volatility reconstruction remains excellent, with a slightly larger deviation whsismall and
s is far from Sint.

To illustrate theaccuracy of pricing using the reconstructed local tibtg c(s, ¢;*)
rather than the true local volatility* (s, t), we compare prices and hedge factors of a number
of European call options using both the true local volatility and the reconstructed volatility
surfaces. The hedge factors vega (sensitivity to the change in thditgladelta (sensitivity
to the change in the underlying), gamma (sensitivity of delta to the change in the underlying
), rho (sensitivity to change in the interest rate) and theta (sensitivity to change in the matu-
rity) are computed using a finite difference approximation. A constant shift in both volatility
surfaces is used to calculate the vega hedge factor. For European call options with strikes and
maturities over the grigt5: 5: 110] x [.4:.1:.7], the results are shown in Table 1. These

results indicate that fairly accurate prices as well as hedge factors are obtained using the re-
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max relative error| average relative erro
Price 7.8¢73 2.1e73
Vega 9.8¢73 6.1e3
Delta 4.8e72 1.3e72
Gamma 9.5e72 5.9¢72
Rho 4.5e73 2.0e73
Theta 6.9e73 2.2¢73
TaBLE 1

Accuracy of Pricing and Hedging

constructed volatility surface(s, t; *). Note that the PDE option evaluation with the chosen
discretization can generate errors of at least these magnitudes.

We emphasize that the formulation (7) is appropriate when the number of splineknots
is not greater than the number of observationsf p is much larger tham, then formulation
(7) can become severely underdetermined. To illustrate the potential pitfalls of allowing too
much freedom in approximating' (s, t), we simulate the more realistic market situation when

there is a bid-ask spread in the given option prices by setting
v; = exact price of option + .02rand

whererand is a Matlab generated random number. We compare the local volatility reconstruc-
tions using the spline knots on the rectangular mesH&g:: : .4 Sinit : 1.6.Sinit] x [0, 1] (p = 8)
and[0:.01Sinit: 2Sinit] x [0, 1] (p = 202 < M N). The plots on the left in Fig. 4 illustrate the
reconstructed local volatility curves using the rectangular mMméshyi: : .4.Sinit : 1.6.Sinit] % [0, 1]
for knots. The plots on the right in Fig. 4 illustrate the reconstructed local volatility curves
using the rectangular meh: 2: 2.Sinit] % [0, 1] for knots. Although the available option prices
are matched with very high accuracy (error abbtrt®) usingp = 202, the computed local
volatility surface does not resemble the true local volatility surteide, t). Using eight knots
on the rectangular meght Sinit : .4Sinit : 1.6Sinit) x [0, 1], on the other hand, yields a much
more accurate votdity surface, even though the calibration error of the available options is
larger (about 0~%).

Next we illustrate that, assuming the underlying follows a contindefiastor model (1),
a constant implied volatility approach can produce erroneous hedge factors even though the
option prices may be computed accurately. We use the same absolute diffusion model (12)

but with greater volatility: the constant = 75 is used instead af = 15. The same initial
15
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underlying Sinit = 100 and the risk free interest rate = 0.05 are used but the dividend
rateq is set to zero. We consider European call options with strikes and maturities at the
grid [80 : 4 : 120] x [.25,.5,1]. The spline knots are at the grjd: 20 : 2Sini] x [0, .5, 1].
Fig. 5 displays the price and hedge factors of options with matutityear using the true
local volatility, reconstructed volatility, and constant implied volatility. From these plots, we
see that the price and all the hedge factors computed using the reconstructed local volatility
function are fairly accurate approximation to the true values. Using the constant implied
volatility method, however, large errors exist in hedge factors (mosticeally in theta,
delta, gamma and vega).

In addition to choosing the number of spline knptshe placement of the knots requires
some care as well. The spline knots should be placed to cover the rBgwathin which
the values of the local volatility are significant in the option values. We have used the uni-
form spacing in the intervgD, 2Sinii] and [.4Sinit, 1.6Sinit] in this synthetic example but an
alternative is to place them nonuniformly with a more refined placement areuadSi,;.
Moreover, one need to avoid placing spline knots too closely together since this can lead to ill

conditioning of the Jacobian matrixr'.

4.2. A S&P 500 Example lllustrating Smoothness and Stability.We consider now a
more realistic example of approximating the local volatility functioiis, ¢) from the Euro-
pean S&P 500 index European call options. We use the same European option data of October
1995 given in[1]. The market option price data (in the implied Black-Scholes constant volatil-
ity) is given in Table 2. Similar to [1], we use only the options with no more than two years

maturity in our computation. The initial index, interest rate and dividend rate are set as in [1],
Sinit = $590, 7 =0.06, and g = 0.0262.
The discretization parameters in (11) are set as,
N =101, and M =101.

In order to solve the proposed inverse spline volatility problem (7), we compute the mar-
ket European call option prices with given strikes and maturities using the constant volatil-
ity Black-Scholes formula with the corresponding implied volatility. The Matlab function
blsprice is used.

For this example the number of spline knptsquals the number of observationsand

the spline knots are placed on a rectangular Mi&sthy; : .066Sinit : 1.4Sinit] X [0:.33:2]. Using
17



Maturity (in years) Strike (% of spot)
85% | 90% | 95% | 100% | 105% | 110% | 115% | 120% | 130% | 140%

175 190 | .168 | .133 113 .102 .097 120 142 .169 .200
425 A77 | 155 | .138 125 .109 .103 .100 114 .130 .150
.695 A72 | 157 | 144 133 118 .104 .100 101 .108 124
.94 A71 | 159 | .149 137 127 113 .106 .103 .100 110

1 471 | 159 | .150 .138 .128 115 107 .103 .099 .108
15 169 | .160 | .151 142 133 124 119 113 .107 .102

2 169 | .161 | .153 .145 137 .130 126 119 115 A11
3 168 | .161 | .155 .149 143 137 133 128 124 123
4 168 | .162 | .157 152 .148 143 139 135 .130 128
5 168 | .164 | .159 154 151 .148 144 .140 136 132

TABLE 2

Implied Volatilities for S&P 500 Index Options

all the call option prices with maturity” < 2 in Table 2, the reconstructed local volatility
surface is given in Fig. 6. This optimization problem seems to be more nonlinear and difficult
to solve. After28 iterations, the average error of(c(s, t;5)) — v; using the reconstructed
local volatility is0.0076. The average error using the constant implied volatility via the PDE
implementation with this discretization, compared to the Black-Scholes analytic formula, is
0.0510.

The reconstructed local volatility sades can be slightly different if different spline knots
are chosen. In order to show that the local volatility surface reconstruction, pricing and hedg-
ing are relatively robust, we consider the second spline knots placement using the rectangular
meshK x [0:.33:2]. The average price calibrating error for the market call options in this
case is0027. The reconstructed volatility surface using this kn@tgg@ment is shown in Fig.
7. Comparing Fig. 6 with Fig. 7, the reconstructed volatility auds are quite similar in
the regionD, noting the shape db. For options with strikes and maturities over the grid
[.85:.1:1.15]Sinit x [.85:.1: 1.15], the relative difference of pricing and hedging factor
with the two spline knot placements are shown in Table 3. We observe that indeed they are
acceptably close.

For pricing simple European call/put options, different implied volatilities are often used
in practice to price options of different strikes/maturities in ordeacoommodate votdity
smile. For pricing an exotic option such as a knock-out option, a constant volatility model

is inappropriate since the price of this option depends on volatilities of different strikes and

18



max rel. diff. | avg. rel. diff.
Price 6.8¢73 1.4e™3
Vega 1.3e72 2.7¢~3
Delta 4.3¢72 1.6e2
Gamma 8.8¢72 4.1e72
Rho 5.3¢73 2.0e73
Theta 4.9¢72 9.2e73

TABLE 3

Differences Between Using Two Rectangular Meshes for Knots

max rel. diff. | avg. rel. diff.
Price 11% 6%
Vega 15% 9%
Delta 19% 11%
Gamma 27% 17%
Rho 12% 7%
Theta 29% 16%

TABLE 4

Relative Difference in Pricing and Hedging Using Constant Volatility

maturities. In order to illustrate the potential error in using a constant volatility in pricing
exotic options, we examine here the price and hedge factors differences between using a
constant volatility model and thiefactor model with the reconstructed volatility function. We

use the same S&P 500 index option example and choose the the arithmetic average (which is
0.1319) of the implied volatilities withI" < 2 as the constant volatility. We compare the prices
atagrid[.85:.1:1.15]Sinit x [.85:.1:1.15] of strike prices and maturity dates (different from
given market data). The results are in Table 4. These two methods give significantly different
prices: we notice as much as 11% relative difference. Similarly all the hedge factors computed
using the constant volatility have a large relative difference, we document the results in Table
4. To visualize the difference in detail, we plot the price and hedge factor curves for options

with 1-year maturity in Fig.8.

4.3. Incorporate Additional Information. Using market option data to imply the lo-
cal volatility function in a diffusion model is a look-ahead technique. Frequently, historical
data has been used to estimate a constant volatility. The latter is a look-back technique. An

interesting question is whether it is possible to combine both techniques to generate better
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Tol Finite Difference quasi-Newton Update
lterations | Time | lterations| Time | Jevals
le=2 7 | 321.29 11 | 131.85 3
le—3 10 | 401.43 18 | 193.91 4
le4 19 | 651.89 28 | 286.78 5
le™? 25 | 795.45 36 | 332.13 6
TABLE 5

Quasi Newton Results

approximation to the local volatility function.

In the proposed spline volatility formulation (7), there are two potential ways that a priori
information can be incorporated. The first is to use the simple bounds to limit the range of the
local volatilities at knots. The second possibility is to specify fixed local volatilities at some
chosen knots.

We have experimented with setting tighter bounds on the volatlitgr the S&P 500
index European call option example. We observe that, as long as the bounds are not too small
(I < —.3,,u > .3inthe S&P 500 example), they can influence volatility values of sinall
ands far from Syt but do not have much impact in the regignwithin which the volatility
function is significant in market option prices. However, setting bounds too tight can impede
calibrating the market option prices. Therefore, unless one has reliable knowledge on the
bounds of the volatilities, they should be sufficiently large to ensure that the calibrating error
is sufficiently small. Similar remarks can be made if one wishes to set the volatilities at certain
knots to some fixed values.

Finally, we would like to illustrate the potential computational saving by using the quasi-
Newton updates. In Table 5 we present Matlab computational results using the finite dif-
ference and quasi-Newton update for Jacibian for the S&P 500 index option example with
different termination tolerances for optimization. We observe significant total speedup using
a quasi-Newton approach. The quasi-Newton approach takes more iterations to converge but

requires fewer Jacobian evaluations.

5. Concluding Remarks. Assuming that the underlying asset of options follows a con-
tinuousl-factor diffusion model, we propose a method of accurately approximating the local
volatility function o*(s, t) using a finite set of option prices. We emphasize that accurate

approximation of the local volatility function in thefactor model is crucial in hedging all
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options (including simple European options) and pricing exotic options. Moreover, since the
market option data typically has bid-ask spreads, exact calibration of the option data (the
average of the bid-ask spreads) is not necessary and can be harmful.

Based on the formula (6) established in [1, 17], the local volatility functitfi, T')?
is smooth if the European call option value functigi, T) is sufficiently smooth. We use
a spline functional approach to reconstruct this local volatility function. After choosing the
number of spline knots and their placement, we represent a locéilivgfanction o (s, t) by
an interpolating spline with a fixed end condition. The volatility values at knots are determined
by solving a small nonlinear optimization problem subject to simple bounds. The number of
variables in the optimization (7) is no greater than the number of option observations.

We solve the proposed inverse spline approximation optimization problem using a trust
region method, with the function and Jacobian evaluated using a PDE approach. Computa-
tional efficiency through structure exploitation within the framework of finite difference and
automatic differentiation is discussed.

We consider two European call options examples illustrating the capability of the pro-
posed method. In the first example, we consider synthetic European call options for which the
underlying follows a known absolute diffusion model. Option observation data is simulated
by evaluating a set of European call options using the analytic formula. The reconstructed
local volatility is compared to the true local volatility, indicating a faialgcurate reconstruc-
tion in the region within which the local volatility values are significant for option evaluations.
With the same example, we illustrate that the constant implied volatility approach can produce
erroneous hedge factors, compared to that fron tfaetor model, even for simple European
options. Moreover, when the observable option prices have bid-ask spreads, calibrating mar-
ket data exactly by using too many spline knots can lead to poor reconstruction of the true local
volatility function. In the second example, S&P 500 index European call options with market
option data of October 1995 are considered. We illustrate the smoothness of the reconstructed
local volatility and stability of the proposed method in pricing and hedging.

We have demonstrated the potential of the proposed spline volatility approach in discov-
ering, from a finite set of option prices, the local volatility function in thiactor process fol-
lowed by the underlying. We plan to further investigate automatic techniques for the optimal
selection of the number of knots< m and their placement. The importance of the proposed

local volatility function reconstruction in pricing exotic options or American options will also
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be explored.
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