
DATA CENTER ENERGY MANAGEMENT

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Lakshmi Ganesh

January 2012



© 2012 Lakshmi Ganesh

ALL RIGHTS RESERVED



DATA CENTER ENERGY MANAGEMENT

Lakshmi Ganesh, Ph.D.

Cornell University 2012

Data centers form the underpinnings of the global technology revolution that is cloud

computing. There is enormous pressure for data center growth and expansion, to meet

the computational demands of an increasingly digital world. With energy costs over-

taking server costs in data centers, energy is fast becoming a significant bottleneck to

data center scale-out. Further, the global data center energy footprint is growing to be a

significant burden on the world’s energy resources. Yet energy is a signally ill-managed

resource in most data centers; average data center energy efficiency is less than 50%.

With increasing industry awareness of the magnitude and urgency of this problem, many

solutions are cropping up to combat each of the several sources of data center energy

inefficiency.

The objective of this dissertation is three-fold: First, we examine the causes of data

center energy inefficiency from first principles, and identify the challenges involved in

addressing them. We find two categories of energy inefficiency: Idle resource energy

consumption, and support infrastructure energy consumption. Second, we present solu-

tions to address each form of inefficiency. We describe two ways to combat idle resource

energy consumption, and also present a systemic solution to tackle both forms of energy

inefficiency. Finally, throughout this dissertation, we examine the related work and lit-

erature, and attempt to map them into the solution space to identify how the solutions

relate with each other, and what gaps remain to be addressed.

The cloud has the potential to enable everything from ubiquitous computing and

universal access to knowledge, to smart power grids, greater social connectivity, and



near-infinite extensibility of compute/storage power. The cloud turns computation into

a utility, and by doing so, has the potential to make it accessible to a much larger part

of the world. This dissertation explores ways to enable sustainable scaling of the data

centers that power the cloud and enable this vision.



BIOGRAPHICAL SKETCH

Lakshmi was born in Trivandrum, in southern India, on the 27th of November, 1982,

and grew up in nomadic fashion all over India. She has warm associations and close

ties in most of India’s metros and several little towns besides. Though she complained

bitterly during the many moves of her childhood, in retrospect she wouldn’t have it any

other way.

Through the many variables in her life, Lakshmi has been fortunate to have the

following constants: Her mother, Radha, who has managed the feat of being the best

of parents as well as her best friend; her father, Ganesh, who has made his children

the protagonists of all his stories; her brother, Anand, who has shown by demonstra-

tion the meaning of a good life; her sister, Meena, who has always had her back; and

her extended family, which has unconditionally supported her. Lakshmi is named after

her maternal grandmother, from whom she would like to learn the wonderful ability to

evolve at every stage of life. Lakshmi has probably inherited her student gene from her

mother, her writer gene from her father, and has learnt from her siblings about the pur-

suit of excellence. She is now learning from her husband and his family the secret of

leading a life infused with joy.

On looking back, Lakshmi finds that most of her life’s highpoints correspond to

the times that she met and befriended some very special people. Her highschool years,

spent in the company of friends who have grown to be foster-sisters, have the warm,

golden glow of sepia photographs. Lakshmi’s undergraduate years were truly formative:

She found a home away from home among the many lovely people she met there; she

discovered a love for theater; she learnt how to power through difficult times; she found

her future husband, Madhav!

Lakshmi has now spent over seven years in the United States. It is a very broaden-

ing experience to find your place in a foreign country, and Lakshmi is in awe of what a

iii



welcoming country this is. She spent two busy years in sunny Santa Barbara, getting her

first taste of Systems research working with Ben Zhao. Ben gave her a gentle introduc-

tion to the process of crafting a research paper, and inspired her to pursue a doctorate

degree. Lakshmi then found herself in gorgeous Ithaca, working with Ken Birman and

Hakim Weatherspoon. Living in Ithaca is a little like doing a PhD—there are beauti-

ful moments of discovery, mixed in with hard winters of deadline-chasing and doubt.

Both are a trial by fire, and standing at the other end, Lakshmi feels the same mix of

accomplishment and nostalgia for both.

Lakshmi now looks forward to post-doctoral work with Mike Dahlin and Lorenzo

Alvisi at the University of Texas at Austin. Moreover, after six long years, Lakshmi

is finally in the same city as Madhav, and she couldn’t be more excited to begin the

adventure of life together.

iv



For my family.

v



ACKNOWLEDGEMENTS

People tend to picture PhD advisors as grim, bearded men with little interest in their

students beyond their publishing ability. Picture instead an advisor who knows of your

interest in theater and takes you to watch plays with him and his wife; an advisor who

lets you pursue a Theater minor during your Computer Science PhD, absurd as the

pairing seems; an advisor who shows you by example that it is possible to juggle a very

successful career with a very successful family life. I have had not one but two advisors

who have been friends as much as career mentors. I would like to thank Ken Birman and

Hakim Weatherspoon for pushing me to work hard, but also urging balance; for pointing

out my mistakes, but with humor; for showing me how to look for exciting questions to

work on, but also be productively engaged while looking; and for much else besides. I

have learnt all I know of the art of Systems research from them.

As I look back on my PhD, I see many points where thoughtful feedback and kind

words have helped steer my course. I would like to thank Robbert van Renesse for

being (possibly unbeknownst to him!) a stabilising influence in my career. I learnt some

key lessons about precision in thought and speech, and time management from Fred

Schneider (a pithy lesson in time management: work harder!). I admire Emin Gun Sirer

for his remarkable work ethic, and his whole-hearted commitment to quality Systems

work. I would like to emulate Bobby Kleinberg in his energy and enthusiasm as much as

in the clear joy his work brings him. I admire Eva Tardos for being such a great teacher,

and for being a role model for women in computer science. Finally, I shall remember

David Feldshuh and Beth Milles fondly for welcoming me into the Theater world, and

for showing me how many life skills may be learnt from the crafting of a play.

Most PhD careers, I think, have their ups and downs; mine was no exception. I

had a great Ithacan community to celebrate my ups with me, and help me through the

downs. My friends in the Distributed Systems group have inspired me with their exam-

vi



ple, worked closely with me, given me key feedback for my work, and laughed with me

over the many absurdities of PhD life. Thank you, Mahesh Balakrishnan, Tudor Marian,

Yee Jiun Song, and Hussam Abu-Libdeh. My house and office mates were my Ithacan

family. Ainur Yessenalina and Nikos Karampatziakis, I am going to miss our Sangam

dinners very much. You have been very good friends to me. Sucheta Soundarajan, thank

you for giving me a truly unique perspective on life, work, and animals! Saikat Guha,

you have been a friend, a mentor, and an inspiration—thank you! As I look back I see so

many lovely people who have enriched my life in Ithaca—Muthu Venkitasubramaniam,

Rachel Lin, Edgar Velazquez-Armendariz, Bruno Abrahao, Nitin Gupta, Amit Sharma,

and Parvati Iyer—thank you!

My non-Ithacan friends have supported me through my PhD career in innumerable

ways—daily phone calls, visits, holidays together, and so much more. You are all so

dear to me, and I miss you every day.

I come now to my best friend, Madhav. He also happens to be my husband. I

want to thank him for making me laugh, for being dismissive of all my self-doubt, for

seeing beyond my personal crises. His music, his worldview, his remarkable ability to

see possibilities in everything enrich my life every day. Life is full of joy with such a

traveling companion.

vii



TABLE OF CONTENTS

Biographical Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1 Introduction 1
1.1 Data Center Energy Management . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Context and Background . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Energy Profile of an Ideal Data Center . . . . . . . . . . . . . . 5

1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.1 Energy consumption by idle resources . . . . . . . . . . . . . . 8
1.2.2 Energy consumption by support infrastructure . . . . . . . . . . 10

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.1 Energy consumption by idle resources . . . . . . . . . . . . . . 13
1.3.2 Energy consumption by support infrastructure . . . . . . . . . . 15

1.4 Discussion: State of the Industry . . . . . . . . . . . . . . . . . . . . . 16
1.5 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Idle Resources: Matching Power to Load 19
2.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Idea Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 KyotoFS: A New Solution . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.1 Log-Structured File System . . . . . . . . . . . . . . . . . . . 25
2.3.2 LFS: A Power-Saving Opportunity . . . . . . . . . . . . . . . . 26

2.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Idle Resources: Matching Load to Power 36
3.1 Stranded Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 The RackPacker Approach . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 A Running Example . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.2 Rackpacker Overview . . . . . . . . . . . . . . . . . . . . . . 43
3.2.3 Filtering and Classification . . . . . . . . . . . . . . . . . . . . 44
3.2.4 Bundling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.5 Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

viii



3.3.1 RackPacker: Comparative Performance . . . . . . . . . . . . . 52
3.3.2 RackPacker: Workload Exploration . . . . . . . . . . . . . . . 56

3.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Support Infrastructure: Larger Power Management Units 63
4.1 PUE: Where does the power go? . . . . . . . . . . . . . . . . . . . . . 63
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3 Power-Lean Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.1 Power Cycle Unit . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3.2 The Case for a Larger PCU . . . . . . . . . . . . . . . . . . . . 70

4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Future Work 86
5.1 Global Network of Data Centers . . . . . . . . . . . . . . . . . . . . . 86
5.2 Cooperative Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3 Smart Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6 Conclusion 93

Glossary 95

Bibliography 100

ix



LIST OF FIGURES

1.1 Schematic Diagram Of Data Center Power Consumption As A Func-
tion Of Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 KyotoFS: Effect of varying percentage of powered-up disks on perfor-
mance (complementary CDF). . . . . . . . . . . . . . . . . . . . . . 30

2.2 KyotoFS: Effect of varying percentage of powered-up disks on power
consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 KyotoFS: Effect of varying percentage of powered-up disks on trace
running time and energy . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 KyotoFS Implementation: Random write throughput without and with
Gecko . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 An illustration of power provisioning at the rack level. About 40% of
available power is reserved for handling spikes and failover. . . . . . . 39

3.2 A real power consumption trace of a production server. . . . . . . . . . 41
3.3 The flow of the RackPacker algorithm. . . . . . . . . . . . . . . . . . 43
3.4 RackPacker: Filtering and approximation of the power consumption

time series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5 RackPacker Bundling: Bundling two servers toward the common phase. 47
3.6 RackPacker Bundling based on the decomposition of the 2nd FFT co-

efficient vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.7 Choice of Confidence Factor . . . . . . . . . . . . . . . . . . . . . . . 52
3.8 Average power consumption behavior for the various server types . . . 55
3.9 Server assignment results for a realistic workload trace. . . . . . . . . 55
3.10 Workload with shifted phases: Average power consumption behavior

for the various server types . . . . . . . . . . . . . . . . . . . . . . . . 56
3.11 Server assignment results for a workload trace with shifted phases. . . 57
3.12 Randomized workload: Average power consumption behavior for the

various server types . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.13 Server assignment results for a workload trace with randomized phases. 58

4.1 Rack Power Cycle Unit . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3 Impact of data organization scheme on PCU power-down opportunities 69
4.4 Power-Lean Approach Evaluation: Comparing the simulator against

Gecko . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.5 Computing optimal PCU size for the Internet Archive . . . . . . . . . 79
4.6 Effect of PUE on optimal PCU size . . . . . . . . . . . . . . . . . . . 80
4.7 Optimal PCU size when disk-to-CPU ratio is 24 . . . . . . . . . . . . 80
4.8 Energy savings from tuning number of live replicas . . . . . . . . . . . 82
4.9 Optimal PCU choice for a container farm . . . . . . . . . . . . . . . . 82
4.10 Result sensitivity to simulator settings . . . . . . . . . . . . . . . . . . 83

x



5.1 The Smoke and Mirrors File System. (1) A primary-site storage system
simultaneously applies a request locally and forwards it to the remote
mirror. After the network layer (2) routes the request and sends ad-
ditional error correcting packets, it (3) sends an acknowledgement to
the local storage system—at this point, the storage system and applica-
tion can safely move to the next operation. Later, (4) a remote mirror
storage system receives the mirrored request—possibly after the net-
work layer recovered some lost packets. It applies the request to its
local storage image, generates a storage level acknowledgement, and
(5) sends a response. Finally, (7) when the primary storage system re-
ceives the response, it knows with certainty that the request has been
mirrored and can garbage collect. . . . . . . . . . . . . . . . . . . . . 88

xi



LIST OF TABLES

2.1 KyotoFS Evaluation: Sample trace characteristics . . . . . . . . . . . . 28

3.1 RackPacker Configuration Parameters . . . . . . . . . . . . . . . . . . 51
3.2 Description of data using which RackPacker and other solutions are

evaluated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1 Power-Lean Approach Evaluation: Simulator Parameters (applicable
unless specified otherwise) . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 Power-Lean Approach Evaluation: Trace Characteristics . . . . . . . . 76

xii



CHAPTER 1

INTRODUCTION

From government bodies to private companies, banking institutions to hospitals, uni-

versities to individuals, data center use is ubiquitous. They are used to store and pro-

cess private and corporate email and documents, financial and health records, media

and games. They facilitate everything from data storage and computation, to commu-

nication, collaboration, and entertainment. Large (global-scale) organizations operate

dozens of data centers spread across the world, each containing tens or even hundreds

of thousands of servers. More data centers are springing up every day, and existing fa-

cilities are expanding continuously [74]. In both scale and reach, the global network of

data centers is comparable to as basic an infrastructure as the electricity grid. Yet, in the

matter of efficiency—of design and operation—the comparison fails.

The focus of this dissertation is data center energy management—a key aspect of

data center operational efficiency. Energy costs can account for over 35% of the total

cost of ownership (TCO) of data centers [78]. As servers grow ever more powerful,

and data center server densities continue to increase, wattage per square foot has been

growing as well. This compounds the amount of heat generated per square foot—in

turn requiring the expenditure of more energy to remove. Energy costs now rival server

costs [75], yet average industry energy efficiency is a mere 50% [61]. A telling measure

of rising industry awareness of this problem is that global investment in greener data

centers is projected to increase six-fold between 2011 and 2015, to $41B [8]. In this

dissertation, we first establish the scope of the problem, and identify the fundamental

research questions that underly it. We then describe our approach to addressing each of

these questions.

1



1.1 Data Center Energy Management

Global-scale online services typically run on hundreds of thousands of servers spread

across dozens of data centers worldwide [42]. Google is estimated to own over a million

servers (as of 2009) [60], while Microsoft’s Chicago data center alone is estimated to

contain over 300,000 servers (as of 2011) [59]. These scales will only increase signifi-

cantly as the cloud computing model [56] matures, and approaches what many perceive

as a likely vision of the future—a handful of infrastructure providers hosting most of the

world’s data and computation [44]. As companies compete to take the lead in this space,

the operational efficiency of their massive data centers assumes central importance; even

small gains in efficiency translate into end-user perceivable cost reductions, providing

key competitive advantage [48]. With energy costs comprising a significant portion of

data center TCO, streamlining energy consumption has assumed central importance.

Data center energy consumption is also of concern due to its significant environ-

mental impact. Studies show that the combined electricity use of the Internet and cloud

(data center and telecommunications network) ranks fifth among the countries of the

world, and is growing annually at a rate of about 12% [12]. Data centers worldwide are

estimated to account for over 2% of global greenhouse gas emissions, and a significant

fraction depend on coal for a majority of their power needs [12]. The cloud has the po-

tential to significantly reduce global energy consumption, through enabling technologies

like the smart grid, teleconferencing, and cloud storage, among others. Yet its growth,

at current trends, will soon be bottle-necked by its own energy footprint. Committing

to green data center design and operation is, therefore, essential to the realization of the

cloud’s rich potential.

Given the universal reach of data centers, and the truly global impact of their oper-

2



ational efficiency, it is perhaps surprising that average industry energy efficiency is less

that 50% [61]. Before exploring the reasons underlying data center energy inefficiency,

and identifying ways to mitigate it, it is worthwhile to take a closer look at how the data

center industry got to this point. In what follows, we formally define the space, and

present a brief history of the data center. We then describe the ideal data center energy

profile, and proceed to identify a path towards achieving it.

1.1.1 Context and Background

A data center is a facility dedicated to housing a large group of networked servers and

associated power distribution, networking, and cooling equipment, and used to host

applications that store, manage, and process digital data. In essence, a data center is a

warehouse-sized computer [35].

Physically, a data center may be a brick-and-mortar facility that typically takes years

to build, and can house tens to hundreds of thousands of servers; Alternately, it may be

a containerized data center, which is a shipping container pre-populated with a few

thousand servers and associated infrastructure, and can be commissioned and deployed

in a month or less [58].

Functionally, data centers may be private, where the entire facility is devoted to

hosting applications belonging to the facility owner, or shared, where the facility owner

leases out portions of the facility to different application providers [56]. A shared data

center may be operated as one of three kinds of services, depending on the interface ex-

posed to the lessees: Infrastructure-as-a-Service (IaaS) exposes the lowest-level inter-

face, and is essentially the leasing out of physical servers; Platform-as-a-Service (PaaS)

is one level higher, and leases out virtual CPUs and disks; and finally, Software-as-a-

3



Service (SaaS) leases out hosted software [56]. The scope of this dissertation includes

brick-and-mortar, containerized, private and shared data centers.

The evolution of the data center can be traced back to the mainframes of the 1960’s.

These room-sized machines were very expensive, powerful, and highly customized

for use in mission-critical data processing in large industries, military and space pro-

grams [46]. Commissioning one of these machines would often take years, and due

to their highly complex and custom nature, developing applications for them was slow,

error-prone, and lacked portability. The introduction of the personal computer (PC) in

the 1970’s suddenly made computers much more accessible, bringing them to small

businesses and even homes [71]. Though not comparable to mainframes in terms of

compute power, these machines were cheap, and much easier to develop software for

with their standardized hardware and operating systems [46]. The next game-changer

was the invention of Ethernet [57], and distributed computing. This led directly to

the evolution of the modern data center, by enabling two parallel trends: First, the

high-performance computing (HPC) community, which traditionally revolved around

special computing hardware with unique processing capabilities (mainframes), found

that the same massive computational and storage capacities could be achieved at much

lower cost from large clusters of commodity machines [63]. Enterprises in all sectors,

ranging from technology, to finance, military, and government, began to move away

from the mainframe model, to the data center model. Second, personal computing in-

creasingly shifted online, with data and computation both moving to remote third-party

servers [81, 19]; the economies of scale argument saw online service providers concen-

trating their servers in large facilities, either private, or shared. Thus, in an interesting

cyclical pattern, computing has evolved from the room-sized mainframe computers of

the 1960’s to the warehouse-sized server farms that comprise today’s data centers.

4



The so-called mega data center is of relatively recent origin; data centers containing

hundreds of thousands of servers did not exist even two years before the writing of

this dissertation. This is a rapidly evolving space, with the pace of innovation not quite

keeping up with the pace of growth/expansion. Data centers at large scale are, thus, often

cobbled together from designs meant for a smaller, earlier generation operation [48].

The space is populated with point solutions and incremental improvements. What is

needed is an examination of the fundamental sources of data center energy inefficiency.

We start by identifying the energy profile of an ideally efficient data center; contrasting

this with reality will then help uncover the research questions that need to be addressed

in order to optimize data center energy consumption.

1.1.2 Energy Profile of an Ideal Data Center

Before delving into the sources of data center energy inefficiency, it is worthwhile to

examine the energy profile of an ideal data center. This exercise establishes our goals in

designing optimal energy management solutions.

Ideally, a data center should consume only as much energy as is needed to process

incoming requests. Consider a request for a data item; given the application logic on the

data center servers, this request translates to some number of CPU instructions, memory

accesses, disk accesses, and network flows. These require some amount of energy to

execute, which can be computed given the IT resource specifications of the data cen-

ter. In reality, however, processing the request would additionally incur a number of

energy overheads: energy used by idling resources, by air conditioners that cool the

servers processing the request, and energy wasted in inefficient power delivery to the

servers, among other overheads. The amount of these overheads depends on the energy

5



(in)efficiency of the data center. An ideal data center would minimize these overheads.

We enumerate two target properties of a data center that capture this idea:

1. Power-proportionality: This property states that executing a given job consumes

a minimal amount of compute energy, irrespective of how much time it takes—

energy consumed by IT resources being proportional to work done [21]. This is

possible only if base-line power consumption (i.e., power consumed when no job

is being executed) is zero. In other words, idle resource power consumption must

be zero.

2. Power Utilization Efficiency (PUE) Close To 1: This property states that the en-

ergy consumed during job execution is within a small margin of the amount of

useful work done. In other words, the constant of proportionality relating energy

consumed to useful work done should be close to 1. PUE is defined as the to-

tal energy consumed by the data center, divided by the total energy consumed by

the servers in the data center. As energy consumed by a data center is divided

between servers (which do directly useful work) and the power, cooling, and net-

working infrastructure that supports the correct functioning of servers (thus not

directly useful), PUE can be much larger than 1. The industry average is 2 [78],

which indicates considerable inefficiency in the operation of data center support

infrastructure [77].

Together, these properties assert that the power consumed by a data center is a mini-

mal function of its load. Data center power proportionality requires power consumption

to track load, and eliminates overheads from idle resource power consumption. Low data

center PUE ties power consumption closely to useful work done, and minimizes over-

heads from support equipment power consumption. Thus, a data center that is power

6



proportional and has a PUE of 1 would consume only as much energy as the applica-

tion logic requires from the IT equipment. The next section examines the fundamental

research challenges to achieving these target properties.

1.2 Research Questions

slope = 2 (PUE = 2) [9
0]

slope = 2

slope = 1

slope = 1

(o
ffs

et
 =

 6
0 

[6
3]

)

 0

 260

 0  100

D
a

ta
 C

e
n

te
r 

P
o

w
e

r 
C

o
n

su
m

p
tio

n
 

 (
%

 o
f 

m
a

x 
IT

 p
o

w
e

r)

Data Center Load (%)

Ideal
Current

Reducing Energy Consumed by Idle Resources
Reducing Energy Consumed by Support Equipment

Figure 1.1: Schematic Diagram Of Data Center Power Consumption As A Func-
tion Of Load

Figure 1.1 compares an ideal power consumption curve, as described in the pre-

vious section, with the prevalent reality. The differences between these curves signal

the presence of various inefficiencies in current data center design and operation. We

identify two problem areas: (1) Energy consumption by idle resources, and (2) Energy

consumption by support equipment. We discuss the magnitude of each problem area,

and the challenges involved in addressing it.

7



1.2.1 Energy consumption by idle resources

The ideal data center consumes zero energy under zero load. The reality, however, is that

in inadequately managed facilities, servers consume almost as much energy when idle or

lightly loaded, as when heavily loaded [55]. This is the reason for the high offset in the

power:load curve of the average data center (see figure 1.1). The problem is exacerbated

by the fact that most data centers, being provisioned for peak rather than average load,

are very lightly loaded on average—considerably less than 50% typically [48].

So why don’t data center operators just turn off idle resources? Many server compo-

nents also have the ability to operate in multiple power modes (corresponding to com-

mensurate levels of performance), so that they can be manipulated to consume power

proportional to their load, or desired level of performance. However, there are several

challenges to this approach:

• Performance Tradeoff: Switching between power modes takes time, and can

translate to degraded performance if load goes up unexpectedly. Most services

can tolerate very little, if any, performance degradation.

• Load Unpredictability: The load on a given server can be impacted by a plethora

of factors, including time of day, day of year, current world affairs, geography,

and flash crowds, among others, making it very hard to predict accurately. Power

managing servers without adequate fore-knowledge of their anticipated load can

lead to significant performance degradation.

• Short Idle Times: Load spread—the set of servers that serve the load—can also

vary continually (a result of load balancing, for example), leading to short idle

times for most servers; this means that the time and energy cost of switching them

to lower power modes is often not worth the potential energy saving from the

8



switch.

The research question here, then, is: how can we minimize energy consumption by

idle resources in a data center environment with high load variability, without unaccept-

able performance impact?

There are two basic approaches to addressing this question. The first approach tries

to reduce power consumption by idle resources by finding ways to enable switching

them to lower power modes (or turning them off). This approach relies on design-

ing mechanisms that improve the predictability and length of resource idle periods, to

enable effective power-down. The second approach tries to eliminate (or reduce) the

presence of idle resources at all, by provisioning fewer resources, and over-subscribing

them. This approach is premised on the same principle as virtual memory—that all

the contenders for the data center resources will not load-peak at the same time, thus

allowing the pool of resources to be time-shared between them.

Examples of the first approach include disk power management solutions like Mas-

sive Array of Idle Disks (MAID) [31], Popular Data Concentration (PDC) [67], Hiberna-

tor [85], and Power-Aware Caching (PA-Cache) [84], among several others [40, 22, 41].

These attempt to reduce storage power consumption by powering down idle disks. Some

of the shortcomings of these proposals are additional expense (MAID), inability to adapt

to different workloads/applications (PDC), complexity (Hibernator), and insufficient re-

turns (PA-Cache). Dynamic voltage and frequency scaling (DVFS) is a mechanism that

allows CPU power to be manipulated to match its utilization. This is a useful tool, but

needs an effective management framework that can maximize its benefit, by enabling

sufficiently long idle CPU periods. We discuss how to design such a framework, in

chapter 2.

9



Resource over-subscription solutions typically employ a power-tracking and capping

approach [35, 51, 45, 25, 68, 79]. Power-tracking, as the name implies, is a mechanism

to monitor power use, while power-capping prevents resources from exceeding a given

(tunable) power cap. These are essentially safety mechanisms to enable resource over-

subscription without the danger of overload and its repercussions. In chapter 3, we show

how to go beyond power tracking and capping, to actively consolidate load to maximize

resource utilization.

1.2.2 Energy consumption by support infrastructure

In addition to the servers and IT equipment that are doing directly useful work, data

centers contain a considerable amount of support infrastructure like power distribution

and cooling equipment, that enables the IT equipment to function correctly, but does not

contribute directly to useful work done. In the ideal data center, the energy consumption

of the support equipment should be a small fraction of the energy consumption of the

IT equipment. In reality, however, support equipment consumes a comparable amount

of energy to the IT equipment. This leads to the steep slope of the power:load curve of

the average data center (see figure 1.1). Support infrastructure performs the following

functions:

• Cooling: A prevalent rule-of-thumb in the industry suggests that for every Watt

of energy being consumed by servers, about 0.5 W is needed to cool them [43].

Traditional data center cooling infrastructure consists of a chiller unit to chill the

coolant used (water, or air), and fans to direct cool air towards the servers and hot

air away from the servers. These are both intrinsically power-hungry processes.

Further, the cooling infrastructure and the system it serves—the racks of variably

10



hot or cold servers—form a thermodynamically highly complex control system,

which is hard to get exactly right [62]. The average data center, therefore, errs on

the safe side and loads the cooling equipment more than required.

• Power Delivery: Power is typically delivered to a data center as high voltage

AC power; this is stepped down to lower voltage AC power for distribution to

racks for use by servers and other IT equipment. Inside this IT equipment, power

supplies convert the AC power to the DC power needed for digital electronics. For

every Watt of energy used to power servers, up to 0.9 W can be lost through this

series of power conversions; further, more power is needed to cool the conversion

equipment [76].

• Power Backup: In order to prevent outages, data centers use a backup power

supply that can kick in temporarily if the primary supply fails. Traditionally, this

backup takes the form of a central UPS (Uninterruptible Power Supply); power

to the facility flows through the UPS, charging it, and is then routed to the racks.

Significant power loss can result from this model, as the average UPS has an

efficiency of only about 92% [36].

The research question here, then, is: how can we minimize energy consumption by

support infrastructure in a data center, without impacting correct server functioning or

overall complexity?

Solutions have been proposed, especially of late, to address each of the power over-

heads from support equipment. A highly effective solution to reduce cooling power

overheads is free cooling, a system that uses ambient air for facility cooling, thus obvi-

ating the need for power-hungry chillers. It has been shown that free cooling can help

bring data center PUE down to as low as 1.07 [11]. However, a severe limiting factor

for this solution is the requirement that ambient temperatures be suitable for use in facil-

11



ity cooling—which does not hold for a majority of extant data centers. Power delivery

efficiency has been shown to improve significantly by supplying the data center with

DC power instead of AC power [76]. However, this shift also comes at a significant de-

ployment cost. Finally, it has been demonstrated that moving from a central UPS power

backup solution to a distributed model with each server backed up by its own battery

can eliminate the power loss through UPS inefficiencies [36].

Another approach to reducing support infrastructure energy consumption is to power

manage them in a similar manner to IT equipment—i.e., power them down when not

needed. Along these lines, Thereska et al. [73] have shown how storage power con-

sumption can be reduced by enabling the power down of entire servers, rather than just

disks. However, to the best of our knowledge, explicitly power managing the power

distribution, networking, and cooling infrastructure has not been tried. In chapter 4, we

argue that this approach can be highly effective in reducing data center PUE, and show

how to enable it without adding significantly to system complexity.

1.3 Contributions

In this dissertation, we present ways to address both of the research questions raised

above. We describe two ways to reduce the energy wasted on idle resources, and achieve

power proportionality. We also show how finer-grained control over the support infras-

tructure reduces its power burden, lowering data center PUE.

12



1.3.1 Energy consumption by idle resources

There are two ways to approach the problem of idle resource energy consumption. First,

we attempt to match power consumption to load, by enabling power-down of idle re-

sources. Second, we attempt to match load to provisioned power—we consolidate load

so that resource utilization is maximized and idle resources minimized.

Matching Power to Load: In order to match data center power consumption to its

load, we need to power down idle resources, so that baseline power consumption is

minimized. The challenge here is in accurately predicting resource idle periods—if

the idle period is not long enough, resource power down becomes counter productive.

Current solutions have tried various means for predicting resource idle periods, with

varying success. We suggest a new approach that circumvents the need for predicting

resource idle periods, by manipulating load distribution intelligently.

We apply this approach in a low-power storage system design, called KyotoFS. Ky-

otoFS is a distributed log-structured file system (LFS) [70] that leverages the read/write

separation enabled by an append-only log model to significantly improve power-down

opportunities among back-end disks. The key insight behind KyotoFS is that using a log

makes all write accesses completely deterministic—they all go to the disks housing the

log head. With write accesses constituting an increasing fraction of large-scale storage

accesses [64], we find that a significant portion of disk accesses become completely pre-

dictable. Our evaluation suggests that KyotoFS can reduce storage energy consumption

by up to 20%.

This approach finds a way to naturally distribute load in an energy-optimal manner,

without the need for additional levels of indirection for load redistribution, or load anal-

ysis for predicting access distribution. At a high level, we can see this as a clean-slate

13



approach, rather than a patching approach. While both approaches have their place in

engineering solutions, a clean-slate approach wins when its deployment cost is low, as

it is here. As we discuss in chapter 2, the log model has regained prominence with the

advent of flash storage; this allows us to combine the simplicity of a clean-slate design,

with the low deployment overhead of an increasingly prevalent storage model (the log).

As we will see, this combination is a recurrent theme in this dissertation.

Matching Load to Power: In order to match load to provisioned power, we need to

consolidate load in such a manner that we maximize resource utilization. We propose

a novel approach for consolidation: power-aware server placement in racks. The key

insight behind this approach is the observation that there is considerable variation among

the utilization patterns of servers in data centers; this suggests that cumulative load, per

rack, could be smoothed by populating the rack with an intelligent choice of servers. A

smooth load curve allows for maximal resource utilization.

RackPacker is an application of this approach. It is an algorithm for power-aware

server placement on racks. It works by observing server utilization patterns over a pe-

riod of time and determining optimal groupings of servers into racks such that average

rack utilization approaches peak rack utilization, thus reducing resource stranding (idle

resources). Our evaluation suggests that RackPacker can improve load consolidation to

the extent that data center capacity could be increased by 18%. With more and more data

center servers being virtualized, server placement decisions become a matter of virtual

machine migration; thus, RackPacker can make frequent server placement decisions at

low cost.

The RackPacker approach is applicable to more than just power consolidation. Data

centers are increasingly being virtualized to improve server utilization; hosting multiple

virtual machines on each physical server consolidates load, and reduces the physical

14



resources needed. Rackpacker is highly applicable in this context—it can be used to find

near-optimal groupings of virtual machines to host on each physical server, to maximally

consolidate load metrics such as CPU utilization, or memory usage. What is needed is

an understanding of how this metric would aggregate over multiple virtual machines,

which is non-trivial in some cases (memory, for instance) [47].

1.3.2 Energy consumption by support infrastructure

We show how to reduce support infrastructure energy consumption by moving to larger

units of power management, such as racks, or even entire containerized data centers.

The key insight behind this approach is that support infrastructure power consumption

should be tied to the IT equipment it is meant to support; further, it is controlled in

software, with the same algorithms controlling both the IT equipment, and its support

infrastructure. The advantage of power management at rack granularity is that commod-

ity racks are available that have their own power distribution, networking and cooling

equipment; powering a rack down, therefore, also powers down its associated support

infrastructure, thus improving PUE.

In our research on power-lean data centers, we show how to enable this approach,

through power-aware data placement and load distribution. Further, we show that cur-

rent data center design trends strongly support such an approach. Our evaluation re-

sults suggest that moving to rack-based power management can result in an eight-fold

reduction in data center energy consumption, when compared with conventional power-

management solutions.

The power-lean data center approach is another instance of combining a clean-slate

approach with low deployment cost. The space of data center power management so-

15



lutions is fragmented—there are solutions for powering down idle IT equipment (disks,

CPUs, servers), and solutions for reducing non-IT power overheads. Our solution uni-

fies these two approaches; further, it does so at low cost by using prevalent data center

practices such as data and compute cross-domain redundancy and rack-sized resource

commissioning units (chapter 4).

1.4 Discussion: State of the Industry

Industry leaders like Google and Facebook have been making their data centers more

energy efficient [83, 82, 65, 11]. In this context, it is reasonable to ask whether they

have already solved the problems we describe. In a broader sense, we ask whether the

industry is adequately addressing data center energy inefficiencies. We argue that while

they are moving in the right direction, there remain important gaps to address.

In section 1.2, we sketched some of the solutions currently being proposed and de-

ployed to streamline data center energy consumption; here we reiterate why they are

not sufficient. Our argument is three-fold: first, the data center energy management

space is fragmented—consisting of point solutions addressing individual sources of en-

ergy inefficiency, and lacking a systemic solution; second, most of the current solutions

have high deployment overhead, and require significant data center design overhaul; and

third, current solutions fail to address poor IT resource utilization in data centers, and

the resulting power overheads from idle resources.

Google [82], Facebook [11], and others have reported facilities with PUE close to

1.00. They achieve this reduction of energy overheads through a number of point so-

lutions. We have mentioned free cooling; this is arguably the single most effective

means of reducing data center PUE. However, the required ambient conditions do not

16



pertain everywhere. With an increasing push for data center geo-diversification (orig-

inating from reasons of performance as well as failure-resilience) [39], it is likely that

most future data centers also cannot assume suitable ambient conditions. Arguments for

wave-powered data centers [34] face the same objections.

Other industry innovations for PUE reduction include per-server batteries [36], cold

aisle containment [82], and a central CRAC controller [82]. Dell has designed servers

capable of functioning in higher temperatures [10], thus reducing cooling needs. Future

data center designs can and should make use of these solutions to improve their energy

efficiency. However, existing facilities will need to undertake a significant design over-

haul to adopt these solutions. In chapter 4 of this dissertation, we present a systemic

data center energy management solution that has low deployment cost for both existing

and new facilities.

Low data center server utilization is typically combated with virtualization. Host-

ing multiple virtual machines on each physical server can significantly increase average

server utilization [9]. However, there are two weaknesses to this approach that we ad-

dress in this dissertation. First, for optimal load consolidation, the right set of virtual

machines need to be co-hosted in each server; co-hosting virtual machines with the

same (or very similar) individual utilization curves will result in poorer load consolida-

tion than if the co-hosted virtual machines have opposing utilization curves (i.e., when

one curve peaks, the other troughs). Chapter 3 presents an algorithm to compute near-

optimal sets of virtual machines for load consolidation. The second weakness to the

virtualization approach is a more insidious one: most servers in a data center tend to

have similar utilization curves, leading to poor overall load consolidation potential. No

matter how many virtual machines you co-host in a physical server, if they all have load

troughs at the same time, there will be idle server periods. Thus, virtualization and load

17



consolidation have to be complemented with idle resource management for true data

center energy streamlining. Chapter 2 addresses the question of how to power down idle

resources without impacting performance.

This dissertation argues that there is a need for a systemic approach to data center

energy management, addressing both idle resource energy consumption and support in-

frastructure energy consumption. However, truly sustainable operations go beyond data

center energy management to include investment in green energy research and develop-

ment, usage of renewable energy, and active measures for protecting the environment;

industry leaders are beginning to take heed [82].

1.5 Organization

We have discussed the importance of improving data center energy management, and

identified two research questions that need to be addressed in order to do so. We have

outlined our approach towards answering these questions, and contrasted them against

related work.

The rest of this dissertation is organized as follows. Chapter 2 presents KyotoFS, a

power-proportional storage system that matches power consumption to load by power-

ing down idle disks. In chapter 3, we describe RackPacker, a server placement algorithm

that consolidates data center load to match provisioned power, thus reducing resource

stranding. Chapter 4 discusses how larger units of power management can drastically re-

duce support infrastructure energy consumption, resulting in improved data center PUE.

Finally, chapter 5 presents some future research directions, and chapter 6 concludes.

18



CHAPTER 2

IDLE RESOURCES: MATCHING POWER TO LOAD

We have identified idle resource energy consumption to be one of the sources of data

center energy inefficiency. Managing idle resources presents a tradeoff between perfor-

mance and power; turning off idle resources saves power, but can result in a performance

penalty or even service unavailability in case of accesses to the powered-off resources.

This chapter shows how to walk the tightrope of reducing idle resource power consump-

tion, while maintaining performance.

A significant fraction of the total cost of ownership (TCO) of data centers is the

cost of keeping hundreds of thousands of disks spinning. We present a simple idea here

that allows the storage system to turn off a large fraction of its disks, without incurring

unacceptable performance penalties. Of particular appeal is the fact that our solution is

not application-specific, and offers power-savings for a very generic data center model.

In this chapter, we describe our solution, identify the parameters that determine its cost-

benefit tradeoffs, and present a simulator that allows us to explore this parameter space.

We also present some simulation results that add weight to our claim that our solution

represents a new power-saving opportunity for large-scale storage systems. Finally, we

demonstrate the practicality of our solution through a prototype implementation.

2.1 Context

The declining costs of commodity disk drives has made online data storage a way of life,

so much so that companies like Google and Yahoo host hundreds of thousands of servers

for storage [60]. However, a hundred thousand servers consume a lot of power! Not

only does this translate to many millions of dollars spent annually on electricity bills,

19



the heat produced by so much computing power can be searing. Since disks account for

a significant fraction of the energy consumed [85], several approaches for disk power

management have been proposed and studied. We will examine some of these here. But

first let us lay out some of the groundwork.

Any disk power management scheme essentially attempts to exploit one fact: disks

can be run in high-power mode, or low-power mode, with a corresponding performance

tradeoff. In the limit, a disk can be shut off so that it consumes no power. Given a large

cluster of disks, only a fraction of them is accessed at any time, so that the rest could

potentially be switched to a low-power mode. However, since mode transitions consume

time and power, disk management schemes have to walk the tightrope of finding the right

balance between power consumption and performance.

The solution space explored thus far in the literature can be divided as follows: (1)

Hardware-based solutions, (2) Disk Management solutions, and (3) Caching solutions.

Each of these solutions proposes a new system of some kind; hardware-based solu-

tions propose novel storage hierarchy to strike the right balance between performance

and power consumption; disk management solutions interject a new ‘disk management

layer’ on top of the file system, which controls disk configuration and data layout to

achieve power-optimal disk access patterns; caching solutions devise new power-aware

caching algorithms that allow large fractions of the storage system to remain idle for

longer periods of time, allowing them to be switched to lower power modes.

This chapter argues that there is a fourth niche as yet unexplored: (4) File System

solutions. We do not present a new system; instead, we take an idea that has been

around for well over a decade now—the Log-Structured File System (LFS) [70]—and

argue that technological evolution has given it a new relevance today as a natural power-

saving opportunity for large-scale storage systems. The key insight is that, where other

20



solutions attempt to predict disk access to determine which disks to power down, the

LFS automatically provides a perfect prediction mechanism, simply by virtue of the fact

that all write-accesses go to the log head. Section 3 explains and expands on this idea.

2.1.1 Idea Overview

To see why the LFS is a natural solution to the problem of disk power management,

consider some of the challenges involved:

• Short Idle Periods: Typically, server systems are not idle long enough to make it

worthwhile to incur the time and power expense of switching the disk to a low-

power mode, and switching it back when it is accessed. This is a notable point

of difference between server systems and typical mobile device scenarios (like

laptops), which makes it hard to translate the solutions devised for mobile devices

to server systems. The LFS localizes write-access to a small subset of disks; this

feature, when combined with a cache that absorbs read-accesses, results in long

disk idle periods.

• Low Predictability of Idle Periods: Previous studies [41] have shown that there

exists low correlation between a given idle period’s duration and the duration of

previous idle periods. This variability makes it difficult to devise effective predic-

tive mechanisms for disk idle times. The LFS neatly circumvents this problem by

predetermining which disk is written to at all times.

• Performance Constraints: Server systems are often constrained by Service Level

Agreements (SLAs) to guarantee a certain level of performance, so that finding a

solution that provides acceptable performance to only a fraction of the incoming

requests (albeit a large fraction) may often not be sufficient. The LFS provides an

21



application-independent solution that allows the system to perform consistently

across a wide range of datasets.

• The law of large numbers: Large scale server systems process incredibly large

request loads. Directing these to a small fraction of the total number of disks

(the fraction that is in ‘high-power mode’) can significantly raise the probability

of error and failure. The fact that the disks used in these contexts are typically

low-end with relatively weak reliability guarantees exacerbates this problem. Our

solution alleviates this problem by making sure that the live subset of disks is not

constant.

The rest of this chapter is organized as follows: Section 2.2 describes some of the

solutions explored in the first three quadrants mentioned above. Section 2.3 presents

and analyzes our solution, while Section 2.4 discusses our evaluation methodology and

results. We describe a prototype implementation in section 2.5, and conclude in Sec-

tion 2.6.

2.2 Related Work

Hardware-based Solutions

The concept of a memory hierarchy arose as a result of the natural tradeoff between

memory speed and memory cost. Carrera et al. point out in [22] that there exists a

similar tradeoff between performance and power-consumption among high-performance

disks and low-performance disks such as laptop disks. They explore the possibility of

setting up a disk hierarchy by using high- and low-performance disks in conjunction

with each other. In a related vein, Gurumurthi et al. [40] propose Dynamic Rotations Per

Minute (DRPM) technology, whereby disks can be run at multiple speeds depending on

22



whether power or performance takes precedence. DRPM, however, poses a significant

engineering challenge whose feasibility is far from obvious.

Another approach is proposed by Colarelli et al. in [31], using massive arrays of

inexpensive disks (MAID). They propose the use of a small number of cache disks in

addition to the MAID disks. The data in these cache disks is updated to reflect the

workload that is currently being accessed. The MAID disks can then be powered down,

and need only be spun up when a cache miss occurs, upon which their contents are

copied onto the cache disks. This approach has several of the weaknesses that memory

caches suffer, only on a larger scale. If the cache disks are insufficient to store the entire

working set of the current workload, then ‘thrashing’ results, with considerable latency

penalties. Further, the cache disks represent a significant added cost in themselves.

Disk Management Solutions

Pinheiro and Bianchini [67] suggest that if data is laid out on disks according to fre-

quency of access, with the most popular files being located in one set of disks, and

the least popular ones in another, then the latter set of disks could be powered down to

conserve energy. Their scheme is called Popular Data Concentration (PDC) and they im-

plement and evaluate a prototype file server called Nomad FS, which runs on top of the

file system and monitors data layout on disks. Their findings are that if the low-access

disks are powered down, this results in a considerable performance hit; they suggest

instead that they be run at low speed. While their idea is sound, it is not clear whether

this scheme would adapt to different workloads.

Son et al. propose another data layout management scheme to optimize disk access

patterns [72]. Their approach uses finer-grained control over data layout on disk, tuning

it on a per-application basis. Applications are instrumented and then profiled to obtain

array access sequences, which their system then uses to determine optimal disk layouts

23



by computing optimal stripe factor, stripe size, start disk etc. Again, the wisdom of

marrying the disk layout to the application seems questionable.

Hibernator, proposed by Zhu et al. [85], combines a number of ideas. It assumes

multispeed disks, and computes online the optimal speed that each disk should run at.

To minimize speed transition overheads, disks maintain their speeds for a fixed (long)

period of time - they call this the coarse-grained approach. Hibernator includes a file

server that sits on top of the file system and manipulates data layout to put the most-

accessed data on the highest speed disks. The authors address the issue of performance

guarantees by stipulating that if performance drops below some threshold, then all disks

are spun up to their highest speed.

Caching Solutions

Zhu et al. [84] observe that the storage cache management policy is pivotal in deter-

mining the sequence of requests that access disks. Hence, cache management policies

could be tailored to change the average idle time between disk requests, thus providing

more opportunities for reducing disk energy consumption. Further, cache policies that

are aware of the underlying disk management schemes (eg. which disks are running

at which speeds, say) can make more intelligent replacement decisions. The authors

present both offline and online power-aware cache replacement algorithms to optimize

read accesses. They also show through experiments the somewhat obvious fact that for

write accesses, write-back policies offer more opportunities to save power than write-

through policies.

24



2.3 KyotoFS: A New Solution

We now argue that there remains an unexplored quadrant in this solution space. Caches

are used to minimize accesses to disk. Good caching algorithms practically eliminate

read accesses to disk. However, write accesses (whether synchronous or not) must still

eventually access the disk. Thus, assuming perfect caching, disk access will be write-

bound. Putting a disk management layer on top of the file-system to optimize data layout

for writes is only halfway to the solution. To take this idea to its logical conclusion, it

is necessary to rethink the file system itself. In the context of write-access optimiza-

tion, a very natural candidate is the log-structured file system [70]. We now give a brief

overview of the log-structured file system before describing the power-saving opportu-

nity it represents.

2.3.1 Log-Structured File System

The Log-Structured File System (LFS) was motivated by a need to optimize the latency

of write-accesses. Writing a block of data to a Seagate Barracuda disk costs about

11.5ms in seek time and 0.025ms/KB in transmission time. The key observation here

is that seek time is a large and constant term in latency computation. To eliminate this

term, LFS replaces write operations by append operations. Secondary storage is treated

as a large append-only log and writes always go to the log head. Seek time is thus

eliminated, and write latency becomes purely a function of the disk bandwidth.

How do reads work in the LFS? In the same way as in conventional file systems!

Reads require random-access, and hence do not avoid seek-latency. However, the as-

sumption is that with good caching mechanisms, reads will be a small fraction of disk

25



accesses.

As can be imagined, space reclamation is a tricky problem in log structured file

systems. However, excellent solutions have been proposed to solve it, and one such

is of interest to us: the disk is divided into large log segments. Once a log segment

gets filled, a new log segment is allocated and the log head moves to the new segment.

When some threshold of a segment gets invalidated, its valid data is moved to another

segment (replacing that segment’s invalid data), and it is then added to the pool of free

log segments. Over time, this process results in a natural division of allocated segments

into stable (ie.. consisting almost entirely of data that is rarely invalidated/modified),

and volatile ones (which need to be constantly ‘cleaned’). We will see how this feature

can be used to save power.

2.3.2 LFS: A Power-Saving Opportunity

The disk-management policies described in the related works section essentially attack

the problem by trying to predict in advance which disk any given access will go to. They

optimize the data layout on disks to ensure that accesses are localized to some fraction

of the disks, so that only these need be powered up. However, these are all probabilistic

models - a new access has some probability of not fitting this model and needing to

access a powered-down disk. Further, in such schemes, disk layout becomes tied to

particular applications; two applications that have completely different access patterns

might require different data layouts on disk leading to conflicts that reduce possible

power-savings.

Since all writes in the LFS are to the log head, we know in advance which disk they

will access. This gives us the perfect prediction mechanism, at least for write-accesses.

26



Besides being deterministic, this prediction mechanism is also application-independent.

Thus, if most accesses to disks were writes, we could power down every disk but the

one that the log head resides on. This, however, is an ideal case scenario. Our view

is that, with a good caching algorithm (the power-aware caching algorithms described

in section 2.2 are good candidates), reads to disk can be minimized, and only a small

fraction of the disks need be powered on in order to serve all writes as well as reads.

However, what about the performance and power costs of log cleaning? Matthews

et al present some optimizations in [54] to hide the performance penalty of log cleaning

even when the workload allows little idle time. The power costs of log cleaning are

a little more tricky to justify; however, this is where the natural division of segments

into stable and volatile ones that the log cleaning process results in (as described above)

can help. After a significant fraction of segments on a disk have been classified as

stable, volatile, or free, we power the disk on and copy the stable segments to a ‘stable’

disk, volatile segments to a ‘volatile’ disk (disk is kept on), and the entire disk is freed

for reuse. This is similar to the log cleaning scheme described in [66], which uses a

‘hidden’ structure embedded in the log to track segment utilization. Cleaning an entire

disk amortizes the cost of powering it on.

The LFS has returned to prominence at the time of this writing as the file system of

choice for use in flash storage devices [15]. Flash storage is increasingly being adopted

in data centers as an intermediate level in the storage hierarchy between primary mem-

ory and disk. However, it has certain properties like block-sized erase and limited erase

cycles, which make log-based storage models a good fit [15]. This means that an im-

portant piece of the puzzle for KyotoFS—log-based storage—is already seeing wide

adoption in data centers today, facilitating industry adoption of KyotoFS.

27



Table 2.1: KyotoFS Evaluation: Sample trace characteristics

Number of accesses 476884
Number of files touched 23125
Number of bytes touched 4.22GB

Average number of bytes/access 8.8 KB

2.4 Evaluation

2.4.1 Methodology

We have proposed the use of the LFS in lieu of conventional file systems in data-center

scenarios to achieve power conservation. For this idea to be accepted, two questions

need to be answered in the affirmative: (1) Does this new scheme result in significant

power savings?, and (2) Does this new scheme provide comparable performance to

existing schemes? Further, the answers to these questions must be largely application-

independent, and must apply to a generic data center model. To address these questions,

we present a simulator - Logsim. Logsim consists of less than a thousand lines of Java

code and is a single-threaded, discrete event-based simulator of a log-structured file

system. Given a trace of read and write requests, Logsim returns the observed access

latencies, disk utilization, cache-hit ratio, disk-mode transitions etc., for the chosen set

of configuration parameters. We use real-world traces for our simulations from a web-

server that serves images from a database [69]. Table 2.1 describes the characteristics

of a sample trace.

The mechanism we simulate is as follows: All (non-empty) disks are assumed to

begin in the ‘on’ state, and an access count (an exponentiated average) is maintained for

each disk. The user specifies the maximum percentage (m) of disks that are kept powered

on. Periodically (200ms, in our experiments), a ‘disk check’ process scans the access

28



count for each disk and powers down all but the most-accessed top m% of the disks, as

well as any disk which does not have access count at least t. t is 0 in our experiments.

If a cache-miss results in an access to a powered-down disk, then this disk is spun up

(to remain powered on until the next ‘disk check’), and there is a corresponding latency

penalty. Judicious choice of m and t minimizes the probability of this occurrence.

2.4.2 Results

To save power, we must turn off some percentage of disks in the storage system. How-

ever, there are two opposing forces at play here. A large number of powered-on disks re-

sults in good performance (low latency), but also low power savings. On the other hand,

decreasing the number of powered-on disks incurs two possible penalties: increased

latencies, and increased mode-transitions. Mode-transitions consume power and thus

counter the potential savings achieved by powered-down disks. To find the optimal per-

centage of disks to be powered down, we ran a set of simulations on Logsim and varied

the number of disks that we kept powered up from none (except the log-head disk), to

all, in steps of 20%. Thus, out of a total of 66 disks, 1, 13, 26, 39, 52, and 66 disks were

kept powered up, respectively. For each run, we examine both its performance (in terms

of observed access latencies), as well as its power-consumption. Figure 2.1, 2.2 and 2.3

show the results of these simulations.

The performance of our system depends heavily on its cache configuration. Since

cache optimization is an orthogonal issue that comprises an entire field of research in

itself, it is important to isolate its effect on performance. To achieve this, we imple-

mented an ‘ideal cache’ algorithm, which we term the oracle. Experiments using the

oracle approximate the best performance we could achieve since an oracle has future

29



 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  2  4  6  8  10  12  14  16  18

1-
cd

f n
um

be
r o

f a
cc

es
se

s

latency (seconds)

0% on
20% on

40% on, Oracle
40% on
60% on
80% on

100% on
Oracle RP

Figure 2.1: KyotoFS: Effect of varying percentage of powered-up disks on perfor-
mance (complementary CDF).

knowledge and is able to replace items accessed furthest in the future [33]. In figure 2.1,

2.2, 2.3, the data points that use this algorithm are annotated with the word ’Oracle’.

Finally, we also wish to compare our system against conventional (not log-

structured) file systems. As an approximation of such a system, we implemented a

‘random placement’ (RP) algorithm, which maps each block to a random disk. All

disks are kept powered up, and ideal caching (oracle) is assumed. This data point is

labeled ‘Oracle RP’ in our graphs.

Having set the context, let us examine our results. Figure 2.1 shows the relation

between performance (per-access latency) and the number of disks that are powered on.

If we imagine a line at y=.001 (ie.. 99.9% of the accesses live above this line) 60%

disks ON is the third best configuration, next only to the Oracle RP and 100% disks ON

configurations. Further, the performance degradation in going from 100% disks ON to

60% disks ON is negligibly small. The principal take-away is that, for the system under

test, the optimal configuration is to have 60% of the disks powered on. In other words,

30



0 20 40 Oracle 40

60 80 100
Oracle RP

%disks on

0

200

400

600

800

Po
w

er
 C

on
su

m
pt

io
n 

(W
)

Transition

Standby

On

Figure 2.2: KyotoFS: Effect of varying percentage of powered-up disks on power
consumption

40% of the disks can be spun down while still maintaining performance comparable to

that of a conventional file system.

Figure 2.2 shows an estimate of the actual power savings achieved by our solu-

tion. The height of each bar is the average power consumed while processing the trace.

Further, each bar shows the break-up of power consumed by powered-up disks (On),

powered-down disks (Standby), and mode-transitions (Transition). We assume the fol-

lowing disk specifications: Average operating power = 12.8 W, standby power = 1.5

W, mode transition power = 13.2 W, and time for transition = 6s. We see that turning

off 60% of the disks results in about 18% power savings while maintaining acceptable

performance.

Figure 2.3(a) shows how much time the disks spend in on/standby/transition states.

The height of each bar is the cumulative time spent by each disk in each of these three

states. When 0% disks are on, the run takes 7253 cumulative hours; we omit this bar

from our graph for clearer presentation. We see that both the total duration of the exper-

iment as well as the number of mode-transitions increase as the percentage of disks that

31



20 40 Oracle 40

60 80 100
Oracle RP

%disks on

0

500

1000

1500

C
um

ul
at

iv
e 

Ti
m

e 
(h

ou
rs

)

Transition

Standby

On

(a) Trace running time

20 40 Oracle 40

60 80 100
Oracle RP

%disks on

0

50000

100000

150000

200000

En
er

gy
 C

on
su

m
pt

io
n 

(W
h)

(b) Energy

Figure 2.3: KyotoFS: Effect of varying percentage of powered-up disks on trace
running time and energy

is powered on is decreased. Figure 2.3(b) shows the effect of this increased running time

on energy consumption (we omit the bar for 0% disks on, as it corresponds to about 800

kWh and is off the scale of the graph). However, as in figure 2.1, we see that keeping

60% disks on strikes an acceptable balance. While there is an inherent tradeoff between

power and performance as is illustrated in figure 2.3, we show in the next section that a

less read-dominant workload can actually result in KyotoFS outperforming conventional

file systems, while also consuming less power.

2.5 Prototype

In this section, we describe a proof-of-concept implementation of KyotoFS, and show

that it is a practical storage solution which can match raw disk performance and even

exceed it in certain cases.

We implemented a prototype of KyotoFS as a block device driver called Gecko.

Gecko is a non-distributed version of KyotoFS, running on a single node, and occupying

the same position in the storage stack as conventional RAID solutions. It implements

32



a logical address space over a physical one that is formed by concatenating or chaining

all the drives in the node’s disk array into a single address space. In its simplest form,

Gecko uses the physical address space strictly as a circular log. It maintains tail and

head pointers that inform it of the current location of the log in this address space. It

also maintains a blockmap from logical blocks to physical positions on the log. When

updates are initiated by the OS on the logical address space, Gecko logs them to the tail

and then updates its blockmap. When reads occur on the logical address space, Gecko

checks this blockmap for the current position of the requested block in the log, and then

fetches it from the disk array.

Each link in a Gecko chain can be a mirrored pair of drives for availability and read

throughput properties similar to RAID-1. The advantage of this model is that one of each

mirror pair on the log tail can be powered down without impacting data availability. This

would lower read throughput, but would not compromise availability or fault tolernce. In

this model, Gecko can also decouple log cleaning across mirrors in the log tail. Consider

an example where the log tail consists of mirrored drives D0 and D0’, and the log head

consists of drives D1 and D1’. Gecko cleans D0 first, moving valid data to the head of

the log at D1 and D1’.

The key power-saving opportunity in KyotoFS is from the separation of reads and

writes to different disk drives, so that there is power-down opportunity for disks that are

read-only (the disks in the log tail). Gecko ensures this separation by maintaining the

log head and log tail on different drives. We are also exploring ways to send cleaning

and first-class writes to different drives on Gecko, so that the write throughput of the

system is unaffected by cleaning.

We evaluated Gecko performance on a node with six disk drives. Figure 2.4 shows

that Gecko exceeds raw disk performance for writes; since Gecko sequentializes writes

33



 0

 20

 40

 60

 80

 100

 120

 140

4 8 16 32 64 128 256 512 1024 2048

T
h
ro

u
g
h
p
u
t 

(M
B

/s
)

Block Size (KB)

Disk
Gecko

(a) Varying Block Size

 0

 20

 40

 60

 80

 100

 120

 140

8 16 32 64 128

T
h
ro

u
g
h
p
u
t 

(M
B

/s
)

# of Concurrent Writes

Disk
Gecko

(b) Varying Number of Concurrent Writers

Figure 2.4: KyotoFS Implementation: Random write throughput without and with
Gecko

by design, this throughput gain is achieved at no cost to latency. Combined with the

power savings demonstrated in the previous section, the improved write throughput il-

lustrates the advantages of a log to power and performance.

2.6 Conclusion

In this chapter, we point out a new opportunity for saving power in large-scale storage

systems. The idea is elegant in its simplicity: Log structured file systems write only

to the log head; as a result, if read accesses are served by the cache, then write ac-

cesses touch only the log head disk, potentially allowing us to power down all the other

disks. Existing solutions like disk management solutions and caching solutions are typi-

cally application-specific; our solution, on the other hand, is applicable to any cacheable

dataset. Since existing solutions are typically layered on top of the file-system, they

could be used in conjunction with our solution to take advantage of application-specific

optimizations.

We provide simulation results to support our claim that power-savings are possible

34



using a log-structured file system. We also demonstrate the practicality of our solution

through a prototype implementation. Our principal contribution here is in having shown

a new fit for an old idea; we believe that the log-structured file system shows promise as

a power-saving opportunity for large-scale storage systems.

35



CHAPTER 3

IDLE RESOURCES: MATCHING LOAD TO POWER

The previous chapter looked at ways to reduce idle resource energy consumption by

enabling the power-down of idle resources. In this chapter, we adopt a complementary

approach: we minimize resource idling through load consolidation. Load consolidation

reduces resource idling, and allows maximal utilization of the data center resources.

The capacity of a data center is defined in many dimensions: power, cooling, space,

water, network bandwidth, etc. Running out of resources in any of these dimensions

means that the service provider needs to build or rent another data center to facilitate

business growth. Among these resources, power is usually the first to be exhausted

because of the load limitation on the power grid and the increasing power density of

computing1. However, recent studies [52, 35] have found that the average data center’s

power resources are highly underutilized.

In this chapter, we look at ways to optimize the power utilization in data centers by

addressing the following question: How many servers can a facility with a given power

capacity host? In common practice, this number is arrived at by dividing the provi-

sioned power capacity by the power rating of each server. This rating might either be

the nameplate rating of the server (which is usually a substantial over-estimate), or—

which is slightly better—the server’s experimentally measured peak power consump-

tion. However, both these schemes suffer from the weakness of all static provisioning

solutions—they do not account for the variability of load on the servers and the resulting

dynamics of their power consumption.

1defined as the amount of power consumed by a rack of servers occupying a unit space (e.g. square
foot)

36



We propose an algorithm that studies the power consumption behavior of the servers

over time, and suggests optimal ways to combine them in racks to maximize power uti-

lization. At the heart of such a dynamic provisioning scheme is the following intuition:

the actual power consumption of each server is not always (and often very rarely) equal

to its peak; hence, by intelligent over-subscription of the provisioned power, we can

unleash the stranded power to host more servers. In other words, if we employed this

scheme to populate our facility, we would exceed its power capacity if all of the servers

were running at peak load; however, since the probability of such an event is vanishingly

small, we are (with very high probability) fine.

Our solution takes advantage of two technology trends in data center computing:

1) virtualization: the use of virtual machines (VM) to consolidate services and ease

software migration; and 2) power capping: the ability to adjust the power state of a

server to prevent it from exceeding a given power cap. With VMs, it is easy to move

services among physical servers, so that “matching” servers can be placed together to

reduce the probability of exceeding a power budget. With power capping, the rare events

of exceeding power limits can be mitigated by reduction in performance. Although we

still aim at minimizing the power capping probability, reaching or temporarily exceeding

power capacity will not cause catastrophic failures.

With these assumptions, our algorithm—RackPacker—solves what we term the

server placement problem: Given actual power consumption profiles over a period of

time for a set of servers, what is the least number of racks that they can be packed

into without exceeding any rack’s power cap? A brute force optimization formulation

can reduce this problem to vector bin packing [26], where d time instances of interest

are d dimensions of an object and the bin size in each of the d dimensions is the rack

power cap. However, in this formulation, d could be a few thousands if the provision-

37



ing cycle is a day and power samples are collected every 30 seconds. Since this vector

bin packing formulation leads to an NP-hard problem with prohibitively many dimen-

sions, we use a number of domain-specific optimizations to arrive at a near-optimal

solution efficiently. One of the central insights we use is that some, but not all, servers’

power consumption can be strongly correlated due to their application dependencies or

load balancing designs. Hence, it is desirable to find servers that show anti-correlated,

or strongly time-shifted behavior and pack them together to minimize power capping

probability. Our experiments with RackPacker show from 15-30% improved efficiency

in packing servers in racks. Note, however, that RackPacker provides a probabilistic

solution—should server power consumption diverge significantly from the norm, rack

capacity can be exceeded.

In Section 3.1, we describe the background and common practice on rack power

provisioning and show the opportunity for unleashing stranded power. We then describe

our algorithm—RackPacker—in Section 3.2. We discuss the evaluation of RackPacker

in Section 3.3 and present related work in Section 3.4. Finally, Section 3.5 summarizes

our findings and suggests interesting avenues for future work.

3.1 Stranded Power

To understand the rack packing challenges and opportunities, we first describe the power

distribution and provisioning architecture in a typical data center. Power consumed by

a data center is usually divided into critical power, which is UPS backed up and used

by IT equipment, and non-critical power, which is used by cooling and other parts of

the facility that do not require UPS backup. We only consider critical power utilization

here.

38



!"#$% !"#$% !"#$%

&"'!# &"'!# &"'!#

("#&% ("#&% ("#&%

(

&

%

!

)

*

#

$

& % !

!"

+,-./01/2/13/

45-673/101/2/13/

82596/0,7:/1

!"#$%"&

;!(<=,2>%()?0/5@AB

Figure 3.1: An illustration of power provisioning at the rack level. About 40% of
available power is reserved for handling spikes and failover.

Critical power in a data center is delivered to remote power panels (RPP) in each

server room (usually called server co-locations or colos), split into many circuits there,

and then distributed to server racks in that colo. Every circuit has a defined capacity, and

is regulated by a circuit breaker, which is the physical defense for catastrophic power

failures. For redundancy purposes, a rack usually has multiple circuits, each in the form

of a power strip. Servers, typically dual corded, spread their power load across the power

strips they plug into. Figure 3.1 shows the power provisioning chart for a rack with 3

circuits, with power load evenly distributed over the circuits, (i.e. each server is plugged

into two of the three power strips). There are two overheads that limit the amount of

power usable by the servers: spike protection and failover protection. If each circuit is

rated at single phased 30Amps and 208V, then the total available power at each circuit

is 6.24KW2. However, 10% to 20% of the total power is reserved to handle spikes in

2Technically, it is 6.34KVA. For ease of discussion, we ignore the power factor and treat W and VA
interchangeably.

39



the power grid or load (10% is shown in this plot). Furthermore, in order to support

failover—in the sense that when one of the three power strips fails, all servers can safely

use the remaining two power strips—another 30% of the total power has to be set aside.

Thus, the usable power to the servers is only up to 60% of the total power—3.74 KW per

circuit, or 11.2KW for the entire rack. In fact, this rather conservative power provision-

ing baseline encourages probabilistic over-subscription, since temporarily exceeding the

power cap is likely to be safe.

The common practice of power provisioning, however, does not even fully utilize the

60% usable power. Server vendors usually give an estimated nameplate power consump-

tion indicating the maximum possible power consumption of the server. For example,

the power calculator tool from HP [3] rates 395W for a ProLiant DL360 G5 server, with

two Xeon E5410 2.33GHz quad-core CPUs, four 2GB DIMM, and two 146.8GB SAS

HDD. In other words, a 11.2KW rack can host at most 28 such servers, even though

each server only occupies one unit in a typical 44 unit rack.

In reality, the nameplate power allocated to a server is never fully used. Using server

profiling, one can arrive at a discounted power rating, which is lower than the nameplate

power rating. For example, if the DL 360 server has never consumed more than 300W,

using the discounted power rating, a rack can host 37 such servers.

Static power provisioning, even with discounted power rating, can still leave a large

amount of power stranded. Figure 3.2 shows a power consumption trace over a day of

a production server accessed by millions of users. We have two observations. First,

server power consumptions change due to the load fluctuation. Slow and quasi-periodic

load fluctuation has been observed in a lot of web traffic, including web sites [25] and

instant messaging [27]. This fluctuation can become even more significant as idle power

consumption is decreasing for newer servers. Secondly, in addition to the slow fluctua-

40



0 500 1000 1500 2000 2500 3000
150

155

160

165

170

175

180

185

Sample # (30s per sample; 1 day = 2880 samples)

P
o
w

e
r 

(W
)

Figure 3.2: A real power consumption trace of a production server.

tion, there are spikes, caused by short term load variation such as scheduled processing

intensive tasks or flash crowd visitors. The discounted power rating—being a worst case

estimate—must include both the peak of the fluctuation and the highest spikes; thus it

can be overly conservative.

Power over-subscription can take advantage of two dynamic properties of actual

server power traces:

• Not all servers fluctuate to the peak at the same time. The usage patterns of on-

line services can be diverse. For example, websites for financial news and ser-

vices may reach their peak around late morning when both east and west coast

customers are on-line and the stock market is open. However, home entertain-

ment sites may reach their peak in the evening. If we can bundle services that are

maximally out of phase, then the peak of the sum is less than the sum of the peaks.

• Servers that are managed by the same load balancer or have close dependencies

can have strong correlations among their spikes. Statistically, placing services that

41



are anti-correlated will lead to smaller probability of their seeing simultaneous

spikes.

These observations motivate us to design RackPacker, which statistically guarantees

that over-subscribed sets of servers do not exceed rack level power caps.

3.2 The RackPacker Approach

3.2.1 A Running Example

Throughout the rest of this chapter, we use 831 servers from a popular on-line service as

a running example for our discussion. Functionality-wise, these servers largely belong

to three categories, which we call Types 1, 2, and 3. They are divided into several clus-

ters, where each cluster is managed by a load balancer. Server workloads show strong

correlations, because of both functionality dependencies and load balancing effects. For

example, when there is a flash crowd, servers behind the same load balancer experience

a power spike at the same time, while servers across load balancers are less correlated.

Due to the nature of the application, we also observe that about 2 hours after servers of

type 1 reach their peak workload, servers of type 3 reach their peak. The tight coupling

among server tiers and the relatively high CPU utilization, reaching over 75% at peak

load, make this a challenging set of servers for rack packing.

These servers have a nameplate power rating of 350W; based on this number, a

11.2KW rack can host 32 servers. In other words, we need 26 racks to host these servers

in the most conservative situation.

42



Filtering

Phase

Analysis
Bundling

Covariance

Analysis

Statistical

Bin 

Packing
traces

trends

noise

Phases of

fluctuation

Common-phase 

bundles

Spike covariance

Bundle sizes

Figure 3.3: The flow of the RackPacker algorithm.

3.2.2 Rackpacker Overview

RackPacker takes a data-driven approach that uses collected power consumption traces

to support server placement decisions. We assume that services are hosted by virtual

machines, even though there may be only one VM per physical server. VMs enable

fast re-positioning of services without moving the servers physically. This allows the

server placement decisions to be made frequently—at a weekly or even daily basis—and

aggressively. The RackPacker algorithm, thus, only needs to predict short term traffic

growth. In the rest of this chapter, we use the terms server and service interchangeably.

That is, a server of type 1 refers to a VM hosting service type 1 running on a physical

server. We only consider homogeneous server hardware.

Figure 3.3 shows the key components in the RackPacker algorithm.

By profiling or monitoring a server operation, we model the server power consump-

tion with a time series (rather than a single number). The time series is first filtered to

obtain the low frequency power consumption baseline, and the high-frequency noise that

captures spikes. The noise signal has zero mean. Its variance represents how “spiky”

the transient power consumption can be. The goal of obtaining the low-frequency com-

ponents is to identify the baseline fluctuations reflecting workload trends, specifically

their phase. Using this phase information, we can sift through the servers and bundle

43



those that are most out of phase. The bundles are then treated as the unit for rack pack-

ing. The high-frequency noise goes through a covariance analysis that measures the

likelihood that two bundles may have spikes at the same time. This statistical measure,

together with the baseline of the bundles, is used in a statistical bin packing algorithm

to find a (near-)optimal server placement solution.

Thus, RackPacker has three major steps: filtering, bundling, and packing. In the rest

of this section, we describe each of these steps in detail.

3.2.3 Filtering and Classification

The goal of filtering is to separate workload trends from noisy transients. A typical

approach is to compute a moving average with a sliding window on the power traces,

which is equivalent to low-pass filtering. Let S be the set of servers of interest, Ps be

the power profile time series of server s ∈ S with M samples, and T be the sliding

window size to compute the moving average. Then, the baseline Bs is computed as

Bs(i) = 1
T ∑

i
j=(i−T+1)Ps( j), i = {1...M} (with patching zeros when i ≤ T ), and noise

Ns = Ps−Bs. Figure 3.4 presents the results of filtering the time series shown in Fig-

ure 3.2. Figure 3.4(a) is the baseline signal obtained by a 30 minutes moving average.

The residual noise signal and its histogram are shown in Figure 3.4(c) and Figure 3.4(d).

We use σs to represent the standard deviation of the noise.

To obtain and compare the relative times at which different servers peak, we

perform discrete Fourier transform (FFT) on the baseline signal. In particular,

since the most significant fluctuation has the period of a day, we expect that the

second FFT coefficient has the largest magnitude. Indeed, for the power pro-

file in Figure 3.2, the normalized magnitude of the first 10 FFT coefficients are

44



0 500 1000 1500 2000 2500 3000
155

160

165

170

175

180

Sample # (30s per sample; 1 day = 2880 samples)

P
o
w

e
r 

(W
)

(a) The baseline trace.

0 500 1000 1500 2000 2500 3000
155

160

165

170

175

180

Sample # (30s per sample; 1 day = 2880 samples)

P
o
w

e
r 

(W
)

 

 

Sinewave approximation

Original signal

(b) Fourier approximation using 2nd coefficient

0 500 1000 1500 2000 2500 3000
−10

−5

0

5

10

Sample # (30s per sample; 1 day = 2880 samples)

P
o
w

e
r 

(W
)

(c) The noise trace.

−10 −5 0 5 10
0

200

400

600

800

1000

1200

Noise level (W)

F
re

q
u

e
n

c
y
 i
n

 2
8

8
0

 s
a

m
p

le
s

(d) Noise histogram.

Figure 3.4: RackPacker: Filtering and approximation of the power consumption
time series.

[0,4.2790,0.2240,0.7166,0.4953,0.1057,0.1303,0.0738,0.0393,0.0609]. It is clear

that the second component is at least an order of magnitude greater than other com-

ponents, indicating that it is a good approximation of the overall shape of the power

profile.

We denote the second FFT coefficient of the baseline power profile by fs. Note that

fs is a complex number that represents a sine wave that can be written as | fs|Sin(ωt +

φs), where | fs| is the magnitude and φs is the phase. In a slight abuse of terminology, we

call φs the primary phase of the service. For example, Figure 3.4(b) compares the signal

45



reconstructed by the second Fourier coefficient with the original signal. We clearly see

that the second coefficient captures well the overall shape of the original power profile.

Based on the relative magnitudes of the noise level and the fluctuation | fs|, the

servers can be classified as flat or fluctuating. Intuitively, a fluctuating server shows

substantial load variation above and beyond its noise. In our example, we consider

servers whose power profile has | fs| < 3σs to be flat. By this definition, 830 out of the

831 servers fluctuate. Fluctuating servers that show significant phase difference will po-

tentially pack well together, and deserve special attention. This brings us to the bundling

step.

3.2.4 Bundling

The goal of bundling is to find small sets of servers whose primary phases “match”.

Ideally, if the average of fs across all servers is 0, then the fluctuations cancel each other

out . However, in real data centers, this may not be possible. Therefore, the total power

load fluctuates at the data center level. Let φ̄ be the average phase of all fs. Then the best

packing approach should spread the data center peak load evenly to all racks. Hence,

the target for the bundling process is to make the average phase of each bundle as close

to φ̄ as possible.

Another benefit of a common phase for all bundles is dimension reduction. As stated

earlier, given a set of power profile time series, we need to verify that at each time in-

stance the total power consumption at each rack does not exceed the power cap with

high probability. When server power profiles show distinct phases, we need to perform

this verification at the peak time of every power profile. By bundling servers into com-

mon phase groups, we only need to verify the time instance when the common phase

46



Real

Img

f

1
f

2
f

1
f

1

~
f

2
f

2

~
f

Figure 3.5: RackPacker Bundling: Bundling two servers toward the common
phase.

sine wave reaches the peak.

The bundling process can be explained using complex vectors. The complex coef-

ficient fs of server s can be viewed as a vector in the complex coordinates, as can the

average vector f̄ with phase φ̄ . Then each vector can be decomposed by projecting it

to the direction of f̄ and to the direction that is orthogonal to f̄ . Figure 3.5 illustrates

this projection. Let f1 be the 2nd FFT coefficient of server 1, and f̄ be the average vec-

tor across all servers. Then we project f1 on f̄s to obtain f̄1, and then f̃1 = f1− f̄1. If

there exists f2, whose projection f̃2 on the direction that is orthogonal to fs satisfies,

f̃2 + f̃1 = 0, then bundling server 1 and server 2 together achieves the common phase.

Once common phase bundles are created, further bundling can be performed along the

f̄ direction so that positive and negative magnitudes cancel each other out .

Algorithm 1 shows the pseudo-code for this bundling step. There are two parameters

that affect bundling performance: the max bundle size BundleCap and the cancellation

threshold εB. Intuitively, the smaller we make εB, the closer the bundled vectors get

to the f̄s direction. However, one cannot bundle too many servers together since they

47



RackPacker: Bundling
1: Compute the mean f̄ of { fs} for all fluctuating servers. Compute the angle φ̄ of f̄ .
2: For each vector fs with magnitude | fs| and angle φs, project fs to the direction of φ̄

and φ̄ +π/2:
3: f̄s = | fs|cos(φ̄ −φs)
4: f̃s =−| fs|sin(φ̄ −φs)
5: Sort f̃s in a descent order.
6: Select the unbundled server s with the largest | f̃s|, and place it in a bundle b.
7: Compute the size of |b| and b̃, the length of b along the φ̄ +π/2 direction.
8: if |b̃|< εB then
9: Finish with current bundle and repeat 6.

10: else
11: if There is no unbundled server then
12: Finish.
13: else
14: Select unbundled server s′ such that | f̃s′+ f̃b| is minimized.
15: if the size of b+ s′> BundleCap then
16: Finish current bundle without putting s′ in b
17: else
18: Add s′ in b, and repeat 7.
19: end if
20: end if
21: end if
22: Treat each bundle as flat. For every bundle b, compute its baseline Bb = ∑s∈b Bs +

maxt∈T | fb|, and its variance σb from the variance and covariance of the noise vec-
tors of the servers in the bundle.

Algorithm 1: Pseudo-code for the Bundling phase of RackPacker

could then exceed the power cap. As we will discuss later, the packing performance is

also affected by the correlation of the noise factors. Since noise is not considered in the

bundling process, we want to limit the bundling size to give flexibility to the packing

step.

Figure 3.6 shows the results of bundling the 830 fluctuating servers in our running

example. Figure 3.6(a) shows the original vectors with ‘+’ markers, and their decom-

position to the mean and its orthogonal directions with ‘.’ markers. The vectors in the

orthogonal directions are canceled out by the bundling process, and Figure 3.6(b) shows

48



  5000

  10000

  15000

  20000

30

210

60

240

90

270

120

300

150

330

180 0

(a) The decomposition of the vectors for 831 servers.

  20000

  40000

  60000

  80000

  100000

30

210

60

240

90

270

120

300

150

330

180 0

(b) The bundling results of 831 servers based on the decomposition.

Figure 3.6: RackPacker Bundling based on the decomposition of the 2nd FFT co-
efficient vectors.

49



the vectors after bundling. The maximum bundle size is 3, when we set the bundle

power cap to be one-tenth of the rack power cap.

3.2.5 Packing

Once bundles are created with the same phase, the packing process uses a modified bin

packing algorithm for the final placement. A particular challenge that the packing step

addresses is the correlations among the spikes.

The goal of the packing phase is to assign bundles to racks in such a manner as to

minimize the probability of exceeding the rack power cap. In order to minimize this

probability, the packing phase packs together bundles that show minimal correlation in

their spikes (noise). Correlated bundles spike in lockstep; this can result in a heightened

likelihood of exceeding the rack cap in the event of load spikes such as flash crowds.

In order to compute sets of bundles that show minimal noise correlation, the pack-

ing phase proceeds as follows. First, the bundles are ordered in descending order of

size. Bundle size for a bundle b is computed as ∑s∈b Bs +CF ∗σb, where σb is the stan-

dard deviation of the bundle noise, and CF stands for confidence factor, a configuration

parameter (3, here).

We then iterate through this ordered list of bundles and assign them to racks one by

one. A bundle b is deemed to fit into a rack r if ∑b′∈r Bb′+Bb +CF ∗σr,b < Cr, where

σr,b is the standard deviation of the rack noise ( = sum of the noise of each bundle in

that rack) combined with the noise of bundle b, and Cr is the rack cap. Given a non-

empty rack r, to arrive at the next bundle that we’ll attempt to pack into r, we order

the unassigned bundles in ascending order of their covariance with the current contents

50



RackPacker: Packing
1: Sort the bundles in descending order by Bb+CF ∗σb, where CF = confidence factor,

a configuration parameter. Call this list L.
2: Pick a bundle b from the top of the list L and assign it to rack R.
3: For all bundles in R, compute BR = ∑b∈R Bb, and σR =√

∑b∈R σ2
b +2∑b1,b2∈R covariance(b1,b2).

4: while list L non-empty do
5: Pick a bundle b′ from L that is most uncorrelated with all the bundles in R, and

add it to R.
6: For all bundles in R, compute BR and σR as above. If BR+CF ∗σR >CR, remove

the last bundle from R.
7: end while
8: Repeat from 2 with a new rack.

Algorithm 2: Pseudo-code for the Packing phase of RackPacker

Table 3.1: RackPacker Configuration Parameters

Parameter Value
Rack Cap 11200 W

Bundle Cap 1120 W
εB 20

Confidence Factor (CF) 3

of r. We then try to find a bundle from this ordered list that will fit into r. If no such

bundle is found, we create a new rack and repeat the process. Algorithm 2 presents the

pseudo-code for this phase.

3.3 Evaluation

We have implemented RackPacker in MATLAB. Figure 3.1 shows our choice of param-

eters for the implementation. The choice of the parameter “Confidence Factor (CF)” is

illustrated in figure 3.7. Here assignment confidence is computed as the percentage of

racks that fail to stay within the rack cap over a week’s trace of data. We see that the

51



1 1.5 2 2.5 3 3.5 4 4.5 5
0.8

1

1.2

Confidence Factor (CF)

A
s
s
ig

n
m

e
n

t 
C

o
n

fi
d

e
n

c
e

1 1.5 2 2.5 3 3.5 4 4.5 5
17

18

19

N
u

m
b

e
r 

o
f 

R
a
c
k
s

Number of Racks

Assignment Confidence

Figure 3.7: Choice of Confidence Factor

choice of the CF value results in a tradeoff between assignment confidence and packing

efficiency.

In evaluating RackPacker, we wish to answer the following questions:

1. How does RackPacker compare with the prevalent server assignment algorithms?

We wish to see if there is a strong argument for using RackPacker in place of

existing solutions.

2. What kinds of workloads is RackPacker best suited for? Conversely, are there

workloads for which RackPacker is not suitable? We wish to know what kinds of

applications benefit the most from RackPacker.

We tackle each of these questions in order in this section.

3.3.1 RackPacker: Comparative Performance

To compare the efficacy of RackPacker against current solutions, we use the following

metrics:

52



• Stranded Power: This is the difference between provisioned power and actual

power consumed per rack. Minimizing stranded resources is the goal of a good

provisioning scheme. Hence, the less the stranded power per rack, the better the

server assignment algorithm.

• Packing Efficiency: This is the number of racks needed to host the given set of

servers. We wish to minimize this number in order to improve the utilization of

the data center.

Static Assignment Pseudo-code
1: Order the servers randomly. Call this list serverlist.
2: Remove the first server s from serverlist and assign it to the first rack. Compute this

rack’s power consumption as: rackpower(1) = power(s)
3: while serverlist is not empty do
4: Remove server s (of type t, say)from top of serverlist
5: if Fit Criterion: rackpower(curr rack)+power(s) < rack power cap then
6: Assign server s to current rack and update its rackpower
7: else
8: Create a new rack, and assign s to it.
9: end if

10: end while

Algorithm 3: Pseudo-code for Static Assignment of servers to racks. Note that
power(s) can be the nameplate rating of s, or the peak measured
power for s.

We compare RackPacker with two flavors of static assignment: (1) Nameplate

Rating-Based assignment, and (2) Peak Power-Based assignment. Both these schemes

employ striping, where each type of server is distributed uniformly across all the racks.

This results in each rack containing approximately the same relative proportion of each

type of server. The nameplate rating-based scheme uses the power rating on the server

as a measure of its power consumption. Since this number is usually a substantial

over-estimate, we also provide a comparison point called the peak power-based scheme,

which uses the measured peak power consumption of the server in place of the name-

53



Number of server types 3

Number of servers
Type 1 329
Type 2 283
Type 3 219
Total 831

Average power consumed
Type 1 199.4 W
Type 2 194.7 W
Type 3 210.1 W

Peak power consumed
Type 1 268.8 W
Type 2 262.6 W
Type 3 270 W

Data time-span 1 week

Table 3.2: Description of data using which RackPacker and other solutions are
evaluated

plate rating. This is the most aggressive static power provisioning approach, which

assumes that the peak in the future does not exceed the peak in the past. Algorithm 3

presents the pseudo-code for both these static assignment schemes. In this section we

present analytical results for the nameplate rating-based scheme, and simulated results

for the peak power-based scheme and the RackPacker algorithm. In the graphs that we

present, the algorithm labelled “Static” refers to the peak power-based scheme.

We evaluate each of these three server assignment algorithms on real power con-

sumption data obtained from a production data center. The data spans 831 servers for

a production application. These servers belong to one of three types, corresponding to

different tiers of the application. Table 3.2, and figure 3.8 describe the data. The data

spans a week, but we train the various algorithms on one day’s data, and validate the

computed assignment against the remaining days.

Figure 3.9(a) is a pictorial representation of the server assignments computed by

RackPacker, and the peak power-based scheme. We find that RackPacker results in 14%

more efficient assignment, using only 18 racks against 21 for the peak power-based static

assignment. Further, figure 3.9(b) shows the power consumed per rack, averaged over

all racks for each of these assignments. The rack cap was assumed to be 11,200 W. We

54



0 500 1000 1500 2000 2500 3000
150

200

250

Time (1unit = 30s)

T
y

p
e

 1
 (

W
)

 

 

0 500 1000 1500 2000 2500 3000
150

200

250

T
y

p
e

 2
 (

W
)

Time (1unit = 30s)

 

 

0 500 1000 1500 2000 2500 3000
150

200

250

Time (1unit = 30s)

T
y

p
e

 3
 (

W
)

 

 

Avg over 329 servers

Avg over 283 servers

Avg over 219 servers

Figure 3.8: Average power consumption behavior for the various server types

Type 1
Type 2
Type 3

RackPacker Static

Rack # (1-18) Rack # (1-21)

Se
rv

er
 T

yp
e

Se
rv

er
 T

yp
e

(a) Server assignment results

0 500 1000 1500 2000 2500 3000
7000

8000

9000

10000

11000

Time (1unit = 30s)

R
a
c
k
 P

o
w

e
r 

(W
)

 

 

0 500 1000 1500 2000 2500 3000
7000

8000

9000

10000

11000

Time (1unit = 30s)

R
a
c
k
 P

o
w

e
r 

(W
)

 

 

RackPacker: Avg over 18 racks

Static: Avg over 21 racks

(b) Aggregate rack power for computed server assignments

Figure 3.9: Server assignment results for a realistic workload trace.

see that RackPacker results in much less stranded power. RackPacker does much better

when compared with the nameplate rating-based scheme. Recall that using nameplate

numbers, we need 26 racks to host these servers. Thus here we see a 30% improvement

in packing efficiency.

55



3.3.2 RackPacker: Workload Exploration

In the previous section we showed that RackPacker can improve utilization substan-

tially for a real data center scenario. Now we will explore what kinds of workloads

RackPacker is best suited to.

The workload presented in figure 3.8 represents a single-application hosting center.

The three types of servers represent three tiers of the application; we see that these

tiers operate essentially in lockstep, with load variation being consistent across the tiers.

Here we will explore two other data center scenarios. The data for these scenarios is

generated through controlled modification of the real data from table 3.2.

0 500 1000 1500 2000 2500 3000
150

200

250

Time (1unit = 30s)

T
y

p
e

 1
 (

W
)

 

 

0 500 1000 1500 2000 2500 3000
150

200

250

Time (1unit = 30s)

T
y

p
e

 2
 (

W
)

 

 

0 500 1000 1500 2000 2500 3000
150

200

250

Time (1unit = 30s)

T
y

p
e

 3
 (

W
)

 

 

Avg over 219 servers

Avg over 283 servers

Avg over 329 servers

Figure 3.10: Workload with shifted phases: Average power consumption behavior
for the various server types

Dedicated Multi-Application Hosting Center: Here we consider data centers that

host a small number of applications (more than one). Figure 3.10 shows the data we gen-

erated to represent this scenario. Again, there are three types of servers, but types 2 and 3

56



Type 1
Type 2
Type 3

RackPacker Static

Rack # (1-17) Rack # (1-21)

Se
rv

er
 T

yp
e

Se
rv

er
 T

yp
e

(a) Server assignment results.

0 500 1000 1500 2000 2500 3000
7000

8000

9000

10000

11000

Time (1unit = 30s)

R
a

c
k

 P
o

w
e

r 
(W

)

 

 

0 500 1000 1500 2000 2500 3000
7000

8000

9000

10000

11000

Time (1unit = 30s)

R
a

c
k

 P
o

w
e

r 
(W

)

 

 

RackPacker: Avg over 17 racks

Static: Avg over 21 racks

(b) Aggregate rack power for computed server assignment
results.

Figure 3.11: Server assignment results for a workload trace with shifted phases.

belong to a different application than type 1—they are thus phase shifted. Figure 3.11(a)

shows the server assignment computed by RackPacker and the peak power-based static

scheme. Again, we find that RackPacker achieves 19% better packing efficiency, us-

ing 17 racks against 21 for the static scheme. Figure 3.11(b) shows the corresponding

reduction in stranded power. The nameplate rating-based scheme needs 26 racks (as

computed above); RackPacker is now 34% more efficient. In general, we expect that

phase shifted servers will benefit more from RackPacker.

Mixed Hosting Center: Here we consider data centers that host a very large number

of applications; this represents the cloud computing scenario, where the servers are

leased out to various companies that host different applications on them. Figure 3.12

shows the data we generated to represent this scenario. Here we see that there are

numerous types of servers, and their correlations are less obvious. Figure 3.13(a) shows

the server assignment computed by RackPacker and the peak power-based static scheme.

Figure 3.13(b) shows the average rack power utilization for each of these assignments.

Again, we find that RackPacker outperforms the static schemes substantially.

57



0 500 1000 1500 2000 2500 3000
195

200

205

Time (1unit = 30s)

T
y
p

e
 1

 (
W

)

 

 

0 500 1000 1500 2000 2500 3000
190

195

200

Time (1unit = 30s)

T
y
p

e
 2

 (
W

)
 

 

0 500 1000 1500 2000 2500 3000
205

210

215

Time (1unit = 30s)

T
y
p

e
 3

 (
W

)

 

 

Avg over 219 servers

Avg over 283 servers

Avg over 329 servers

Figure 3.12: Randomized workload: Average power consumption behavior for
the various server types

Type 1
Type 2
Type 3

RackPacker Static

Rack # (1-17) Rack # (1-21)

Se
rv

er
 T

yp
e

Se
rv

er
 T

yp
e

(a) Server assignment results.

0 500 1000 1500 2000 2500 3000
7000

8000

9000

10000

11000

Time (1unit = 30s)

R
a

c
k

 P
o

w
e

r 
(W

)

 

 

0 500 1000 1500 2000 2500 3000
7000

8000

9000

10000

11000

Time (1unit = 30s)

R
a

c
k

 P
o

w
e

r 
(W

)

 

 
RackPacker: Avg over 17 racks

Static: Avg over 21 racks

(b) Aggregate rack power for computed server assign-
ments.

Figure 3.13: Server assignment results for a workload trace with randomized
phases.

3.4 Related Work

In this chapter, we present a scheme for intelligent over-subscription of data center

power. The idea of power over-subscription is not new, and has been explored in the

58



literature in numerous ways. The common theme in prior work, however, is that power

tracking and capping are the means used to achieve this over-subscription. To the best of

our knowledge, server placement—which sets of servers are placed in which racks—has

not been studied as a means of improving data center utilization. Thus, RackPacker is

intended to supplement prior work by intelligent server placement that reduces the need

for rack-level power capping.

Fan et al. [35] study the aggregate power usage characteristics of large collections of

servers for different classes of applications over a period of six months and conclude that

cluster-level power capping is a feasible and practical means of improving data center

utilization. Their conclusion is based on the intuition that even if power utilization is

high at server and rack levels, it is unlikely to be too high at cluster level (since a large

number of servers would need to be simultaneously heavily loaded, for this to happen).

However, they offer no other insights for implementing power capping.

Muse [25] is a game-theoretic, distributed power management architecture. The

goal is to reduce the power consumption of hosted applications by allocating only as

many servers as are needed to serve the arriving requests. Muse uses a load prediction

model called “flop-flip” which combines two exponentially weighted moving averages

of observed load to achieve stable and reasonably agile load estimations. Game theory

is used to translate these load estimates to the number of active servers needed per

application. Idle servers are shut down to save power.

Chen et al. [28] use two control knobs to restrict application power usage: the num-

ber of active servers, as well as their performance states. They use queueing theory to

compute request arrival rate over some epoch, and a feedback control loop to correct

the predictions over a sub-epoch. Their controller then solves the following optimiza-

tion problem: given the predicted throughput, what is the optimal number of servers to

59



allocate for each epoch, and what is the frequency they should each be run at, for each

sub-epoch.

Lefurgy et al. [51] use CPU throttle states to implement power capping. CPU throt-

tling reduces the clock speed, with power consumption dropping proportionally. The

solution employs a control feedback loop running at each server. The server’s power

consumption is monitored periodically, and its CPU speed is set to target this load for

the next epoch. The authors show how to make this model stable, with bounded settling

time.

Heath et al. [45] add a degree of sophistication to their controller by taking into

account the heterogeneity of the servers in the data center. Given the bandwidths of

all the different resources, the controller’s optimization problem is to find the request

distribution from clients to servers, and among servers, in such a way that the demand

for each resource is not higher than its bandwidth, and we minimize the ratio of cluster-

wide power consumption over throughput.

Finally, our idea of translating the server placement problem into a form of multi-

dimensional bin packing is inspired by Chekuri et al. [26]. They present an approximate

algorithm to pack d-dimensional vectors (servers) into d-dimensional bins (racks) to

minimize the maximum load on any dimension. This algorithm, which represents the

theoretical best solution for this problem, does not scale well in practice since it requires

d to be much less than the average number of servers per rack.

60



3.5 Summary

Efficient use of data center infrastructure is a pressing issue for the scalability of the

IT industry. Due to conservative and static estimation of server power consumption,

traditional approaches for power provisioning leave large amounts of provisioned power

stranded. RackPacker is a data driven approach for power provisioning. By analyzing

real power traces from servers, we obtain the baseline, fluctuation phase, and noise

levels for each server. Leveraging this information, we can find sets of anti-correlated

servers, in term of both fluctuation phase and noise covariance, that are best candidates

for sharing the same rack. Our simulation results from real workload traces show that

even with tightly coupled and high utilization services, we can achieve over 30% better

packing performance compared to the nameplate rating-based provisioning mechanism.

We can save 14% space in comparison to even the most aggressive static assignment

approach.

RackPacker works best when there are significant fluctuations on workload and

power consumption. There are two reasons that strong fluctuations are increasingly

common in server workloads. On-line services are getting more and more geo-focused.

That is, many services are designed for users from particular countries or geo-locations.

As a result, the workload on these servers reflects usage patterns and the peak load is

concentrated in a small time span. Another trend is that the server hardware and soft-

ware are becoming increasingly power aware. Server idle power is decreasing, while the

peak power consumption stays relatively flat. This implies that the power consumption

of servers, under variable workload will show fluctuating patterns.

There are several practical concerns when applying RackPacker to real data cen-

ter operations. We did not consider the rack height constraints when evaluating Rack-

61



Packer. It is easy to apply rack packing to reduce the power capping if rack height is a

constraint. In this case, a data center can add more racks with smaller total power per

rack. Sometimes, administrative advantages and security regulations can limit the flex-

ibility of moving services within or across data centers. In addition, current data center

networking architecture is hierarchical. Servers are divided into subnets and those in

the same rack can only be in the same subnet (VLAN). However, many data centers

are dominated by a relatively small number of services each employing a huge number

of servers on the same VLAN. Solving the power provisioning problem for these ser-

vices brings immediate benefits. We did not explicitly address how to proportionally

provision cooling with server assignment. Cooling should not be a big concern in this

context, since data centers’ cooling capacities are designed to match their peak power

consumptions.

As a data driven approach for resource management, RackPacker algorithm can be

applied to other scenarios, in particular service consolidation via virtualization. Similar

to the problem of finding “matching” servers for a rack, one would like to find matching

services that can share the same physical server. The difference is that power is an addi-

tive resource, ignoring the power factor, but other resources in a physical server may not

be additive. For example, depending on cache misses, the time delays of retrieving data

from storage can differ significantly when multiple services share the same hardware.

Modeling multi-modality resources and optimizing their utilization is challenging future

work.

62



CHAPTER 4

SUPPORT INFRASTRUCTURE: LARGER POWER MANAGEMENT UNITS

No discussion of data center energy management is complete without addressing support

infrastructure energy consumption. Data centers are estimated to spend close to 50% of

provisioned power on non-IT support equipment such as power delivery and backup,

networking, and cooling equipment. Chapters 2 and 3 have discussed ways to reduce

idle IT resource energy consumption to achieve power proportionality; however they

neglect the significant power overheads from non-IT equipment. This chapter shows

how to take a systemic approach to data center power management, achieving power

proportionality while also minimizing data center PUE.

4.1 PUE: Where does the power go?

Studies have shown that a state-of-the-art mega data center (housing on the order of

50,000 servers) spends about 59% of the power drawn on IT equipment, 33% on cooling,

and the balance 8% on power distribution losses [39]. This translates to a PUE of 1.7

(compare with reported industry average of 2.0 [78]).

An industry rule-of-thumb suggests that for every Watt of energy consumed by a

server, about 0.5 W is needed to remove the resulting heat generated [43]. The traditional

cooling infrastructure consists of a chiller, a humidifier, and several CRAC (Computer

Room Air Conditioner) units. The chiller produces chilled water through refrigeration,

and pumps it to the CRAC units. The CRAC units use fans to draw hot air away from

the servers and supply them with cool air (using the chilled water from the chiller). The

humidifier is used to correct the humidity level of the air leaving the AC units. These

are all thermodynamically complex and power-hungry processes.

63



A significant amount of power (8-10%) is also lost in the power distribution infras-

tructure [78]. For every Watt of energy used to power servers, up to 0.9 W can be lost

in power distribution [76]. To a large extent, these losses result from the series of AC

to DC, and DC to AC conversions that are part of the power distribution process. For

example, power is typically delivered to a data center as high voltage AC power; this is

stepped down to lower voltage AC power for distribution to racks for use by servers and

other IT equipment. Inside this IT equipment, power supplies typically convert the AC

power to the DC power needed for digital electronics. If the facility uses a UPS, an ad-

ditional level of indirection is injected in routing the power through the UPS - resulting

in another set of AC-to-DC, and DC-to-AC conversions. Power is lost at each of these

conversions; further, more power is needed to cool the conversion equipment [76].

In order to prevent outages, data centers use a backup power supply that can kick in

temporarily if the primary supply fails. Traditionally, this backup takes the form of a

central UPS; power to the facility flows through the UPS, charging it, and is then routed

to the racks. Significant power loss can result from this model, as the average UPS has

an efficiency of only about 92% [36].

In summary, a considerable fraction of the power consumed by a data center power

goes towards non-IT equipment. In fact, industry average energy utilization numbers

suggest that almost as much energy goes towards non-IT equipment as is consumed by

IT equipment. No data center energy management story can be complete, therefore,

without addressing the significant energy consumption of non-IT support infrastructure.

64



4.2 Related Work

The data center power management space is silo-ed into IT resource management, and

support infrastructure management solutions. The former set of solutions has been dis-

cussed extensively in chapters 2 and 3. We now survey the solution space for stream-

lining data center support infrastructure energy consumption. We show that the space is

fragmented, with no single systemic approach, and also discuss the significant data cen-

ter redesign required to deploy these solutions. The next section shows how to address

these shortcomings.

The current solution space for reducing support infrastructure energy consumption

in data centers consists of point solutions that address individual sources of energy inef-

ficiency. They are engineering techniques targeted specifically at the power distribution,

backup, or cooling infrastructure. Accordingly, we categorize them under the following

three headings:

1. Power Distribution Efficiency: Power distribution losses result from the multitude

of AC to DC and DC to AC conversions that form part of the data center power

delivery infrastructure. It has been shown that power conversion efficiency can be

improved significantly if the data center is supplied with DC power instead of AC

power. DC power delivery systems are up to 20% more efficient that AC deliv-

ery [76]. However, moving from AC to DC power delivery can have significant

deployment cost.

2. Power Backup Efficiency: The traditional data center power backup solution is

a central UPS; significant power loss can result from this model, as the average

UPS has an efficiency of only about 92% [36]. A solution to this problem, demon-

strated by Google, is to use a distributed power backup model with each server

65



backed up by its own battery [36]. New facilities can and should use this solution

to eliminate power backup losses, but existing facilities face considerable design

overhaul if they are to adopt it.

3. Cooling Efficiency: Cooling is one of the most power-hungry processes in a data

center, consuming as much as 50% of the power going to the servers. We have

described (in chapter 1) a very effective way to reduce this overhead—free cool-

ing. This technique obviates the need for power-hungry chillers by using ambient

air to cool the facility. Of course, this is only applicable in facilities with suitable

ambient temperature and humidity. Dell recently designed a line of servers that

are capable of operating at higher temperatures, thus reducing cooling needs [10].

Another solution is to use a central CRAC controller to better match cooling in-

tensity to facility load and temperature [82]. Our solution can be likened to a dis-

tributed controller; one that controls not only CRAC units, but also disks, servers,

and power distribution and backup equipment.

4.3 Power-Lean Approach

As we saw in section 4.2, current data center energy management solutions are silo-ed

into two separate approaches: power-down solutions for idle IT resources, and engineer-

ing solutions for reducing support infrastructure energy consumption. In this section, we

show how to shift to a systemic approach, and extend power-down solutions to include

support infrastructure. The key insight behind our approach is that, while servers and

disks comprise purely IT equipment, racks and larger resource units also include the

associated power distribution, backup, and cooling equipment; hence, powering these

down will result in a power-proportional solution that also has low PUE. We first for-

mally identify possible units of power management, and then discuss reasons for shifting

66



  

Rack 1

Top-of-rack switch

Rack PDU

In-rack cooling

Rack 2

Server 1

Server 2

Server N

Server 1

Server 2

Server N

.

.

.

.

.

.

Figure 4.1: Rack Power Cycle Unit

to larger units of power management, and show why it is practical to do so today.

4.3.1 Power Cycle Unit

We define the power cycle unit (PCU) as the resource unit that the power management

scheme operates over. This is the unit whose power state is manipulated to track utiliza-

tion. For example, disk power management schemes manipulate the disk power state

(ON/OFF/possibly low-power states corresponding to lower speeds); CPU power man-

agement schemes manipulate CPU power (typically through frequency tuning). Our

contention is that larger PCU options, which have not been explored thus far, promise

significantly bigger energy savings.

Figure 4.1 illustrates our rack PCU model. Depending on the rack and server dimen-

sions, a rack could contain anywhere between 10 to 80 servers, or more. In figure 4.1

67



we show a module consisting of two racks, which share an in-rack cooling system, a

rack power distribution unit (PDU), and a top-of-rack switch. The in-rack cooling sys-

tem [14] draws hot air from the servers in the racks, and circulates cool air to maintain

the required server operating temperature. This cooling system would typically be allied

with a central chiller unit, which would supply it with chilled air; if the outside air con-

ditions are favorable, the chiller can be dispensed with in favor of free cooling. The rack

PDU supplies power to the rack components; a switched PDU [20] will allow remote

control of this power supply, allowing the rack to be turned on or off over the network.

Finally, the top-of-rack switch connects the servers in the rack to the data center net-

work. The switch power is also controlled by the rack PDU. The data center network is

typically hierarchical, with rack switches connected using row switches, which in turn

connect to a set of central switches that have a link to the outside. In this model, the rack

PCU can be powered down/up without impacting the rest of the data center network.

While racks today are physically self-sufficient, and offer fault isolation from the

rest of the data center network, powering them down can result in data unavailability

or service interruption unless mindful load placement is practised. In order to create

rack power-down opportunities, PCU-aware data organization must be employed, as

follows:

1. Each data item must be spread (striped/mirrored) across PCUs, rather than within

them. Thus, assuming some degree of data redundancy, one or more host PCUs

may be down without impacting the availability of that item.

2. Data access must be localized (as far as possible) to a subset of the PCUs so that

others are idle and may be powered down. This is achieved by directing accesses

to an item to the more active among its host PCUs.

Figures 4.2(a), and 4.2(b) illustrate PCU = Rack, and PCU = Node, respectively.

68



MAID

Back-end

Node
Disk
Rack
Data Item Replica
Powered-Down State

(a) PCU=Rack

MAID

Back-end

Node
Disk
Rack
Data Item Replica
Powered-Down State

(b) PCU=Node

Figure 4.2: System model

 0

 10

 20

 30

 40

 50

 60

 70

DISK
NODE

40NODE-RACK

%
 P

C
U

/N
o
d
e
/D

is
k
 d

o
w

n

Data Organization Unit

pcu
node
disk

Figure 4.3: Impact of data organization scheme on PCU power-down opportuni-
ties

Note how replica placement changes with PCU; note, also, the creation of idle PCUs

through selective access of more active replica hosts. Figure 4.3 demonstrates the im-

portance of PCU-aware data organization. We simulate a production data center, and set

the PCU to 40-node racks; we then vary the data organization unit (the unit across which

replicas are distributed). As expected, we see that unless replicas are distributed across

the given PCU (40-node racks, in this case), there are no opportunities for powering

them down (number of 40-node PCUs down is zero, when the data organization unit is

69



disk, or node). When the replicas are distributed across disks, or nodes, we see plenty of

disk and node power-down opportunities (number of disks/nodes down is high), but no

rack power-down opportunity (number of racks down is zero). Thus, PCU-aware data

organization (and retrieval) is key to enabling larger PCUs.

4.3.2 The Case for a Larger PCU

We have presented an overview of the rack PCU model. We make the case that larger

PCUs (rack or larger) are needed in order to overcome the limitations of current power

proportional solutions. A power management solution that concentrates only on the

IT equipment (servers/disks) is limited in its potential benefit due to the nature of the

power consumption breakdown of the average data center. Larger PCUs—racks, or

containers—allow power cycling of the associated cooling and power distribution equip-

ment as well, thus significantly improving the energy savings potential. We now show

that implementing large PCUs is practical today at very little deployment cost; in fact,

several current trends among large-scale online services strongly enable this model:

Rack-and-Roll: The online services hosting space is evolving so rapidly that data cen-

ter design standards are a moving target. However, they are characterized by one guiding

principle—modularity. Agility, and rapid scalability are imperatives for successful on-

line services, and both require modularity in design. A need for rapid expansion ushered

in the concept of “commodity servers”—pre-assembled servers conforming to the most

popular configurations prevalent in industry, ready for purchase off the shelf, deployable

simply by plugging them into the data center. The concept has now expanded to racks,

which are increasingly becoming the unit of choice for expansion. “Commodity racks”

have servers, top-of-rack switches [30], power distribution units [20], and in-rack cool-

70



ing equipment [14] pre-installed. Purchasing and commissioning a rack is now a mere

matter of hours—the “rack-and-roll” phenomenon [29]. Further along this path, entire

data centers have now been commoditized—the data center shipping container.

This modularity at multiple levels translates to an opportunity for larger PCUs, as

the ability to power down racks, or even entire containers exists today. Each of these

potential PCUs houses not only servers and disks, but also their corresponding power

distribution, networking, and cooling equipment; powering these down offers energy

savings far beyond the limited disk power management space.

Data Model and Placement: Industry-leading storage designs are converging on cer-

tain techniques for performance and reliability that prove strongly enabling for power

management solutions in general, and large PCUs in particular:

• Replication: Most large-scale systems today replicate their data for fault-

tolerance. A replication factor of three is an industry standard [37, 32, 50]. With

appropriate replica placement, there is opportunity for powering down one or

more replica hosts, without impacting data availability. This provides a tunable

parameter—number of live replicas—which can be adjusted based on load, and is

a key enabler for storage power management. When combined with PCU-aware

replica placement (see trend below), larger PCUs are facilitated.

• Cross-failure-domain replica placement: Each object is replicated, not only across

disks, but across racks, and also across data centers. This ensures data availability

in the face of domain-correlated failures, such as a rack or data center outage.

This practice has been adopted in leading systems like GFS [37], Dynamo [32],

and Cassandra [50], among others. Thus, the mechanism is already in place to

support PCU-aware data placement.

71



• Append-only model: A data model that is gaining popularity today due to its

performance properties is one where data is stored on disk in immutable data

structures. Updates become appends in this model, and consolidation happens

lazily. This model caters especially to workloads that are dominated by new writes

and large sequential reads, with updates being relatively infrequent. GFS [37],

Bigtable [24], and Cassandra [50] are industry-leading systems that use this

model. This model is a good fit for power management—updates do not re-

quire powering up of all replicas; instead, they can be ’offloaded’ (appended)

to powered-up disks, and lazily consolidated when the requisite replica hosts are

up.

Data and Compute Locality: A challenge in data-intensive compute systems is to

localize data and computation. Several techniques have been developed that facilitate

this. For example, Bigtable [24] exposes data locality control to its clients, so that they

can enforce contiguous placement of related data. Another technique is proposed in

GreenHDFS [49], which determines object placement by its age; their measurement of

a large Hadoop [2] deployment showed that data popularity is strongly correlated with

its age in the system, and by placing data of similar age together, they achieve access

locality. Thus, mechanisms are in place today in most production systems to ensure data

and compute locality. This facilitates power management, because it allows us to power-

manage storage without impacting computation; further, it allows us to power down not

just disks, but the associated servers as well—in this model, compute tasks assigned to

a server are associated with the data hosted on that server, and thus it is reasonable to

infer an idle CPU associated with idle disks.

Data Deluge: Studies suggest that the digital universe—all the digital data being cre-

72



ated by consumers and businesses worldwide—is growing at a compound annual rate

of 57% [53]. Just for the year 2010, this rate of growth translated to an increase in the

world’s digital data by 1.2 million petabytes [38]. As a reference point, storage capacity

growth rate (disk areal density growth) is an estimated 35% [4]—outstripped by data

growth. These trends are significantly changing storage needs. Our belief is that we

have arrived at a point in the data deluge where the fraction of data accessed, or even

accessible, for any reasonable length of time (a week, say), is a tiny fraction of the total

data stored. We come, therefore, to the workload property that the vast majority of data

is seldom accessed, the data that is accessed is accessed mostly as reads, and writes that

are performed are mostly new writes, instead of updates. This property is highly con-

ducive to power management—it creates opportunities for a significant fraction of the

storage system to be powered down without impacting performance or data availability.

4.4 Evaluation

Our aim is to quantify the potential energy savings from using larger PCUs, for different

data center settings. We wish to answer the following questions:

1. What factors impact optimal choice of PCU?

2. What is the optimal choice of PCU for different data center models, from private

to shared, and from brick-and-mortar facilities, to containerized ones?

We describe our methodology, and then present our findings.

73



4.4.1 Methodology

We use simulations to explore the PCU space, for two reasons: Firstly, for a problem

of this scale, a real deployment study is impractical. Secondly, we wish to explore a

number of different PCU options, and the large combinatorial space of solutions and

their configuration parameters does not allow for a practical deployment study.

Simulator

Our simulator models the power-proportional solution space described in section 4.2,

and allows different solutions to be simulated by specifying their architecture and load

localization target. The model we work with for our PCU explorations is a MAID-

style system, with PCU-aware back-end data organization. Given the system specifica-

tions (node and disk capacity, bandwidth, power ratings, PCU membership information,

PCU power overhead, and transition time), we simulate the progress of each file request

through the system, recording latency and power consumption. Figure 4.2 shows the

system model with PCU = Rack, and PCU = Node respectively. Table 4.1 presents the

standard simulation parameters.

Data

For our experiments, we use access logs from the Internet Archive’s Media Collec-

tion [5]. The Internet Archive (IA) makes for a uniquely apt case study in the area of

power-aware cloud hosting for a number of reasons: First, it epitomizes the problem of

scaling storage to meet the demands of the data deluge—its charter being to store all

data. Second, the IA targets long-term preservation of (and immediate access to) data,

rather than high-throughput data analysis and allied issues; in this it differs from data

74



Table 4.1: Power-Lean Approach Evaluation: Simulator Parameters (applicable
unless specified otherwise)

Parameter Description Value
Data Layout Redundany scheme employed PCU-aware,

2-way mirrored
Disk Power (W) Power consumed by disk when up,
(Up/Down/Tran) down, or transitioning between

up and down 10/2/10
Node Power (W) Power consumed by node (beyond that
(Up/Down/Tran) consumed by its disks) when up, down,

or transitioning between up and down 200/5/200
Rack Power (%) Power consumed by rack (beyond that
(Up/Down/Tran) consumed by its nodes) when up, down,

or transitioning between up and down 50/0/50
Disk Access Time Time taken to retrieve 1 byte from
(ms) disk that is up 8
Disk Bandwidth Data transfer rate from disk that is up 100
(MBps)
Disk Transition Time Time taken by disk to go between up
(s) and down states 6
Node Transition Time Time taken by node (beyond that
(s) taken by its disks) to go between

up and down states 30
Rack Transition Time Time taken by rack (beyond that
(s) taken by its component nodes) to go

between up and down states 300
Power Check Interval The intervals at which all PCUs are
(hr) examined and idle ones powered down 0.5
Power Management The interval after start of simulation
Start Time (hr) when power checking begins 0.5
Disk Power Down An exponentially weighted disk access
Threshold count threshold below which the disk

is considered idle 10
Target Disk Down (optional) Force this target number of
Count disks to be powered down during

power checks, whether idle or not 50%
Cache Size MAID disk capacity 100 GB
Number Of Nodes Number from an IA MC data center 886
Number Of Disks Number from an IA MC data center 4
Per Node

75



Table 4.2: Power-Lean Approach Evaluation: Trace Characteristics

Attribute Trace 1 Trace 2 Trace 3
Duration 6 hrs 6 hrs 6 hrs
# accesses 6.5m 7m 6.6m
Avg. access size (MB) 1.7 1.3 1.5
Max access size (GB) 7.73 20.74 7.73
Avg # accesses to a node 7797.77 8338.12 7862.95
Max # accesses to a node 110322 184424 120983
# Nodes accessed 833 838 835

intensive computing services (which have tended to dominate the literature of late—

[17, 18, 23]). We believe these are orthogonal problems; once there is a sustainable

framework for storing data at truly vast scales, data management/analysis services can

be supported in a staged fashion. Finally, the IA is a not-for-profit organization, and

operates under constraints (limited resources—money, people) that make the problem

of scaling it more challenging; lean operation is not just desirable, it is an imperative in

this context.

Table 4.2 gives details of the IA traces we use in our experiments. These traces have

a read-ratio ( # reads
# accesses) of very close to 1 (0.9926). Unless otherwise specified, each

data point presented in the following section is the averaged result of running 6-hour

traces from three different days of the week of April 3-9, 2009. (a Monday, Tuesday,

and Friday, the same set of hours being picked from each day). The traces are basically

HTTP GET logs, and specify, for each file access, the access time, the file details (name,

size), as well as the storage node details (id, disk number). However, we manipulate this

information slightly to conform to different data organization layouts. Given a data

organization scheme—PCU-aware, 2-way mirroring, for example—we statically map

each disk to a “mirror disk” such that the mirror disk is on a different PCU from the

original disk. An access request to any item on either disk is then directed to the more

active of the two. Support for dynamic, per-file mapping is planned in future work.

76



 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1e-08  1e-06  0.0001  0.01  1  100  10000  1e+06

C
o

m
p

le
m

e
n

ta
ry

 C
D

F
 (

fr
a

c
ti
o

n
 o

f 
a

c
c
e

s
s
e

s
)

Latency (ms)

Measured
Simulated

Figure 4.4: Power-Lean Approach Evaluation: Comparing the simulator against
Gecko

Validation

We used two methods to ensure that our simulator tracks ground truth. First, we com-

pared its disk-level storage model against measurements from a real storage node. Sec-

ond, we used actual measurements from production settings to configure the simulator’s

node- and rack- level parameters.

We used a home-grown low-power storage system called Gecko (see chapter 2: sec-

tion 2.5) to validate our simulator at disk-granularity. Gecko uses a log-structured stor-

age system layered over RAID-1 block storage. Its log storage model allows it to have

control over write accesses—they always go to the disks housing the log head. Its usage

of RAID-1 allows it to power down half the disks in the log tail while keeping data live.

Our Gecko implementation uses a server with 6 disks, 3 of which are mirrors. In its

low-power mode, this implementation keeps the 2 log head disks live, but only 2 out of

the 4 disks in the log tail live. Using this low-power mode, we ran our Gecko imple-

77



mentation on file access traces from 3 of the most-accessed nodes in the IA data. This

trace spanned 25 minutes, and comprised 32,749 requests. We also ran this trace on our

simulator, configured to resemble the Gecko implementation.

Figure 4.4 compares the measured and simulated access latencies. We do not sim-

ulate second-order effects, as we are interested principally in quantifying to a first ap-

proximation the energy saving potential of large PCUs. Therefore, the two curves in

figure 4.4 diverge in expected ways—the simulator does not model seek distances or

seek-optimized request ordering, and as a result does not report latencies below 8 ms

(which corresponds to the baseline disk access latency); also, outstanding request queues

are not modeled, and so queuing delays are not reported either. That said, we believe

the match between the curves is sufficient for our purposes,

We obtained node and rack power cycling information from actual measurements at

the IA. These have informed our choice of node and rack transition times, and power

overheads.

4.4.2 Results

We now explore the potential as well as the limitations of power management through

larger PCUs. We present our results in the context of three motivating scenarios:

Motivating Example: Internet Archive

The Internet Archive’s charter is universal access to all knowledge. Its knowledge col-

lection currently comprises the Wayback Machine, which stores snapshots of the World

Wide Web dating from 1996, and the Media Collection (MC), which stores over 2 PB of

78



 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

N
O
N
E

D
ISK-PC

U

N
O
D
E-PC

U

20N
O
D
E-PC

U

40N
O
D
E-PC

U

100N
O
D
E-PC

U

200N
O
D
E-PC

U

E
n
e
rg

y
 (

k
W

h
)

(a)

10^0

10^1

10^2

10^3

10^4

10^5

10^6

D
ISK-PC

U

N
O
D
E-PC

U

20N
O
D
E-PC

U

40N
O
D
E-PC

U

100N
O
D
E-PC

U

200N
O
D
E-PC

U

L
a
te

n
c
y
 (

m
s
)

99.9th percentile
99.99th percentile

99.999th percentile

(b)

 0
 10
 20
 30
 40
 50
 60

%
 P

C
U

s
 D

o
w

n

 0
 10
 20
 30
 40
 50
 60

%
 N

o
d

e
s
 D

o
w

n

 0
 10
 20
 30
 40
 50
 60
 70

 0  1  2  3  4  5  6

%
 D

is
k
s
 D

o
w

n

Simulation Time (hr)

100node-PCU
200node-PCU

20node-PCU

40node-PCU
Disk-PCU

Node-PCU

(c)

Figure 4.5: Computing optimal PCU size for the Internet Archive

video, audio, image and text files. Our workload data derives from one of the MC data

centers; we now explore the right choice of PCU for this data center.

We simulate an MC data center; table 4.1 describes the configuration parameters,

which are intended to reflect ground truth. The IA maintains two copies of each file, on

two separate storage servers. It reserves two storage servers for new data; when they fill

up, two more storage servers are commissioned for the purpose. The MC data center we

simulate has 886 storage servers—commodity machines with 4 disks each.

Figure 4.5(a) shows that a 20-, or 40- node rack is the optimal PCU size for this data

center, leading to 40% less energy consumption than disk-based power management

79



 0

 500

 1000

 1500

 2000

 2500

D
ISK-PC

U

N
O
D
E-PC

U

20N
O
D
E-PC

U

40N
O
D
E-PC

U

100N
O
D
E-PC

U

200N
O
D
E-PC

U

E
n

e
rg

y
 (

k
W

h
)

(a) PUE=1.05

 0

 500

 1000

 1500

 2000

 2500

D
IS

K
-P

C
U

N
O
D
E
-P

C
U

2
0
N
O
D
E
-P

C
U

4
0
N
O
D
E
-P

C
U

1
0
0
N
O
D
E
-P

C
U

2
0
0
N
O
D
E
-P

C
U

(b) PUE=1.25

 0

 500

 1000

 1500

 2000

 2500

D
IS

K
-P

C
U

N
O
D
E
-P

C
U

2
0
N
O
D
E
-P

C
U

4
0
N
O
D
E
-P

C
U

1
0
0
N
O
D
E
-P

C
U

2
0
0
N
O
D
E
-P

C
U

(c) PUE=2.0

Figure 4.6: Effect of PUE on optimal PCU size

 0

 100

 200

 300

 400

 500

 600

NONE
DISK

NODE
40NODE-RACK

E
n
e
rg

y
 (

k
W

h
)

(a)

10^0

10^1

10^2

10^3

10^4

10^5

10^6

DISK
NODE

40NODE-RACK

L
a
te

n
c
y
 (

m
s
)

99.9th percentile
99.99th percentile

99.999th percentile

(b)

Figure 4.7: Optimal PCU size when disk-to-CPU ratio is 24

(an 8X improvement!), and 15% less than node-based power management. Further, we

see in figure 4.5(b) that the 20- and 40-node PCU configurations outperform the node

PCU configuration; each set of three bars in this graph shows the highest latency seen

in the 99.9-, 99.99-, and 99.999- th percentile of accesses respectively (left to right).

Figure 4.5(c) explains why the rack PCU configurations outperform the node PCU con-

figuration. For each configuration, it tracks the number of PCUs, nodes, and disks that

are powered down over the length of the simulation. We see that for all of the configura-

tions with PCU > node, the number of PCUs down stays constant after the initial power

check interval. This means that no access goes to a powered-down rack, with the result

that rack power-downs have no performance penalty.

80



Figure 4.6 shows the impact of PUE on optimal PCU size. Rack power overhead

reflects data center PUE—50% rack power overhead implies a PUE of at least 1.5. We

see that for values of PUE below 1.25, larger PCUs no longer make sense—it is better to

use node-based power management in these settings. This bears out our intuition—the

motivation for shifting to larger PCUs is to reduce some of the non-IT power overheads

of the data center; the smaller these overheads, the less reason to make this shift. Keep

in mind, however, that the industry average for data center PUE is 2.

Figure 4.7 shows the impact of disk-to-CPU ratio on optimal PCU size. For a service

such as the IA, whose load is entirely I/O-bound, it makes sense to use servers with a

larger number of disks. This is in fact precisely the direction the IA is taking; they are

in the process of transitioning to storage nodes with 24 to 36 disks each. In this disk-

heavy model, we reexamine optimal PCU choice. Figure 4.7 shows that a 40-node rack

is still the optimal PCU choice when disk-to-CPU ratio is increased to 24; comparing

with figure 4.5 (disk-to-CPU ratio of 4), however, we see that the energy savings over

disk- and server-based power management has decreased.

Motivating Example: Amazon S3

We now look at a new online service model that is fast gaining popularity—Storage

as a Service (SaaS). Amazon’s Simple Storage Service (S3) [1], for example, provides

storage at approximately 10 cents per Gigabit-month. The interface is a key-value store.

Objects are replicated for reliability - the basic service providing at least 3-way replica-

tion, with replicas spread across failure domains such as racks and data centers. Clients

can alternatively choose a cheaper option—lower level of replication (Reduced Redun-

dancy Storage (RRS): 2-way, spread across data centers) for data requiring less stringent

reliability guarantees.

81



 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

NONE
31_NODE

31_RACK

32_NODE

32_RACK

33_NODE

33_RACK

E
n
e
rg

y
 (

k
W

h
)

(a)

10^0

10^1

10^2

10^3

10^4

10^5

10^6

31_NODE

31_RACK

32_NODE

32_RACK

33_NODE

33_RACK

L
a
te

n
c
y
 (

m
s
)

99.9th percentile
99.99th percentile

99.999th percentile

(b)

Figure 4.8: Energy savings from tuning number of live replicas

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

NONE
NODE

40NODE-RACK

CONTAINER

E
n
e
rg

y
 (

k
W

h
)

(a)

10^0

10^1

10^2

10^3

10^4

10^5

10^6

NODE
40NODE-RACK

CONTAINER

L
a
te

n
c
y
 (

m
s
)

99.9th percentile
99.99th percentile

99.999th percentile

(b)

Figure 4.9: Optimal PCU choice for a container farm

Consider an additional S3 feature: tunable number of live replicas. Clients, when

they upload objects, can specify their expected popularity, and tune the number of repli-

cas that need be kept live; the lower this number, the lower the cost of storing the object.

With mechanisms already extant for spreading replicas across racks (and data centers),

PCU-aware data organization is an easy fit. Figure 4.8 shows the energy savings from

reducing the number of live copies. The x-axis labels are of the form rl PCU, where r

is the total number of replicas (3, here), l is the number of live replicas, and PCU can

be node or 40-node rack. Keeping only one copy live using rack PCU leads to a 47%

energy savings, while keeping two copies live saves 21% energy. Assuming that energy

82



 1060

 1080

 1100

 1120

 1140

 1160

 1180

 1200

 1220

 1240

5m
in_N

O
D
E

5m
in_R

AC
K

15m
in_N

O
D
E

15m
in_R

AC
K

1hr_N
O
D
E

1hr_R
AC

K

E
n

e
rg

y
 (

k
W

h
)

(a) Power check interval

 1060

 1080

 1100

 1120

 1140

 1160

 1180

 1200

 1220

0_N
O
D
E

0_R
A
C
K

20_N
O
D
E

20_R
A
C
K

40_N
O
D
E

40_R
A
C
K

60_N
O
D
E

60_R
A
C
K

80_N
O
D
E

80_R
A
C
K

100_N
O
D
E

100_R
A
C
K

(b) Target disk-down count

 1060

 1080

 1100

 1120

 1140

 1160

 1180

 1200

 1220

 1240

2_N
O
D
E

2_R
AC

K

20_N
O
D
E

20_R
AC

K

50_N
O
D
E

50_R
AC

K

100_N
O
D
E

100_R
AC

K

E
n

e
rg

y
 (

k
W

h
)

(c) Disk power-down threshold

Figure 4.10: Result sensitivity to simulator settings

costs contribute 30% to total storage cost, these savings could reduce end-user perceived

storage prices by a significant 14%, or 6.3% respectively.

Motivating Example: Container Farm

Containerized data centers are seeing increasing adoption in industry; for example, Mi-

crosoft reportedly owns a facility in Chicago comprising 112 containers—a container

farm [59]. Containers have the advantages of modularity, ease of deployment, ease of

management, and improved space and power efficiency, and might reasonably be ex-

pected to be a popular data center commissioning unit of the future. With this in mind,

we consider the right PCU choice for a data center consisting of a network of containers.

In this model, we have a new PCU choice—an entire container. The advantage of

powering down a container is that we power down its associated power distribution and

backup infrastructure. Assuming that these overheads add up to 10% of the power draw,

figure 4.9 shows the energy savings from container-based power management. Here

we assume that each container has 300 nodes, that container power-up takes 7 minutes

(as opposed to 5 minutes for rack power-up), and container power overhead is 60% (as

opposed to 50% rack power overhead). We see that the container PCU saves 25% more

energy than the formerly optimal 40-rack PCU (figure 4.9(a)), while offering better

83



performance (figure 4.9(b))! This seeming paradox is explained by the fact that larger

PCUs lead to more conservative power management—all the nodes in the container need

to be turned off before the container is turned off; as a result, typically only redundant

containers get powered down, thus avoiding power-up latency penalties.

Sensitivity Analysis

Finally, we verify that our results are not artifacts of the simulator settings. Fig-

ure 4.10 shows that our findings are robust to simulator fine-tuning. Figure 4.10(a)

shows that varying the power check interval does not significantly affect the results. In

figure 4.10(b) we see that over-aggressive disk power down (forcing 100% of the disks

to be down at every power-check interval) can significantly reduce energy savings, but

for more reasonable choices of target disk down-count, the results are remain the same.

Finally, figure 4.10(c) shows that the choice of optimal PCU size is unaffected by vary-

ing disk power-down threshold values.

4.5 Summary

To summarize, we have examined a number of different online service models and

shown that in each case significant energy savings are achieved by use of larger PCUs.

In the Internet Archive setting, we have shown that using a 40-node rack PCU achieves

8X more energy savings than disk-based power management. This translates to a saving

of about 2.6MWh per day over that of a disk-based solution, even for a small 886-node

facility. However, we note that the benefit of larger PCUs is strongly tied to the facility

PUE—if PUE (and hence rack power overhead) falls below 1.25, larger PCUs are no

longer optimal.

84



We believe that an increasingly likely vision of the future of online services is one

where a few infrastructure providers host all of the world’s services and data. We show

that for an S3-like model, existing data replication and placement policies fit our large

PCU model. Further, we show that S3 could provide storage options up to 14% cheaper

by adopting rack-based power management, and tuning the number of replicas kept live.

Finally, we examine another point in the design space—container farms. We show

that, in this scenario, using entire containers as the PCU leads to an additional energy

saving from powering off power distribution and backup equipment (UPS), resulting in

a truly power-lean data center.

85



CHAPTER 5

FUTURE WORK

So far in this dissertation, we have argued the importance of improving data center

energy efficiency, and explored various ways to do so. We have identified two main

sources of data center energy inefficiency: idle resource energy consumption, and sup-

port infrastructure energy consumption. We presented two ways to tackle the former:

turn off idle resources (KyotoFS), or maximize resource utilization to reduce resource

idleness (RackPacker). To reduce support infrastructure energy consumption, we pro-

posed the use of larger power cycle units. Together these solutions work to streamline

data center energy consumption, facilitating sustainable scaling of the cloud computing

model.

We now take a step back and examine emerging trends in cloud computing, and

discuss some of the challenges facing it.

5.1 Global Network of Data Centers

The cloud computing model shifts data and computing from local servers to a remote

platform comprised of servers hosted in a data center somewhere. The closer this data

center is to the clients it supports, the better the performance, and the more seamless the

aforementioned shift. Therefore, cloud service providers build data centers all around

the world, to achieve proximity to as many of their clients as possible. Another reason

for data center geo-diversity is failure resilience. With data and computation replicated

over data centers spread across the world, service interruption through correlated fail-

ures is minimized. Finally, data center geo-diversity can also be beneficial from a cost

perspective; certain geographical regions offer ambient conditions that are conducive

86



to free cooling, while other locations boast cheap land or power. For all these reasons,

most major cloud service providers find their operations spread across a global network

of data centers, with client requests often spanning multiple data centers. A very relevant

question, then, is how to enable efficient inter-data center communication.

We address a subset of this problem in our design of the Smoke and Mirrors File

System (SMFS) [80]. SMFS offers efficient, reliable, RTT-independent one-way com-

munication between two data centers. It is intended to achieve file system mirroring

across arbitrarily distant data centers with nearly asynchronous performance while of-

fering near-synchronous reliability. SMFS accomplishes this goal through two mech-

anisms. First, it proactively adds redundancy at the network level to transmitted data.

Second, it exposes the level of in-network redundancy added for any sent data via feed-

back notifications. Proactive redundancy allows for reliable transmission with latency

and jitter independent of the length of the link. Feedback makes it possible for a file

system (or any other application) to respond to clients as soon as enough recovery data

has been transmitted to ensure the desired safety level has been reached. Figure 5.1

illustrates this idea.

Going forward, we would like to explore extending SMFS to enable what we term

energy elasticity in the cloud. Just as compute and storage elasticity allow clients to con-

trol the compute and storage footprint of their applications to match their performance

and cost constraints, similarly, energy elasticity would allow them to control their energy

footprint. One way for clients to control their energy footprint could be by specifying

that applications which do not have real-time constraints be housed on greener facil-

ities, even if they are geographically further away. Extending SMFS to achieve inter

data center communication that is nearly independent of inter data center RTT is key to

achieving this vision.

87



Figure 5.1: The Smoke and Mirrors File System. (1) A primary-site storage sys-
tem simultaneously applies a request locally and forwards it to the re-
mote mirror. After the network layer (2) routes the request and sends
additional error correcting packets, it (3) sends an acknowledgement
to the local storage system—at this point, the storage system and ap-
plication can safely move to the next operation. Later, (4) a remote
mirror storage system receives the mirrored request—possibly after
the network layer recovered some lost packets. It applies the request
to its local storage image, generates a storage level acknowledgement,
and (5) sends a response. Finally, (7) when the primary storage sys-
tem receives the response, it knows with certainty that the request has
been mirrored and can garbage collect.

5.2 Cooperative Storage

Hosting data and computation on the cloud can be significantly cheaper and more en-

ergy efficient than hosting them locally [82]. The Storage-as-a-Service (SaaS) model

has emerged as a direct economic response to growing storage needs, and its proponents

argue that an increasingly likely vision of the future is one where a few providers com-

pete to host most of the world’s data. Yet enterprises do not find it easy to make the

decision to shift their operations to the cloud. This is because there are grave concerns

88



to trusting one’s data to a third party. First, storage providers are fault-prone, leading to

data unavailability, or at worst, data loss [7]. Second, data privacy is increasingly a con-

cern, especially when trusting confidential data to a black-box storage provider. Finally,

most clients hesitate to get locked down to any one provider and the arbitrary feature set

he provides.

We propose Cooperative Storage as an alternate cloud storage model that addresses

these concerns. Cooperative Storage creates a unified storage interface from a multitude

of storage providers. This model is based on the premise that trusting to a heterogeneity

of storage providers is better than trusting to just one (a la the P2P evolution). These

storage providers may be derived from SaaS providers as well as private individuals

with spare capacity. Data reliability is improved through this cross-domain data spread,

fate-sharing is avoided with any one provider, clients are no longer locked down to any

single feature set, and finally, capacity can scale to truly global proportions. However,

many new concerns emerge, and it is the subject of our current work to address them.

First, designing a distributed storage solution that provides a provably reason-

able level of service despite spanning many heterogeneous participants across multi-

ple administrative domains poses several challenges. We are collaborating with sub-

ject experts—the authors of the groundbreaking BAR (Byzantine Altruistic Rational)

model [16]—to design Cooperative Storage. A BART (BAR-Tolerant) system allows

for faulty as well as selfish nodes in a distributed system; it not only tolerates a bounded

number of Byzantine nodes (which can deviate arbitrarily from the system protocol),

but also an unbounded number of Rational nodes (which deviate from the protocol in

ways that increase their net benefit). This model is clearly a good fit for reasoning about

the Cooperative Storage solution.

Another, non-technical, concern emerges in the Cooperative Storage model. Content

89



owners—especially for sensitive data—would hesitate to trust their data to a system

where they do not know which entity they can hold accountable for reliably hosting

it. The Cooperative Storage model is a form of P2P storage where content hosting

responsibility is distributed across a wide network of participants. We are working to

incorporate unambiguous responsibility mapping for content in this model.

Finally, a challenge with any large-scale system design, especially when originating

in academia, is coming up with a good evaluation plan. We have been collaborating with

the Internet Archive (IA) for a few years now, and they are involved in the Cooperative

Storage vision. The IA is in the process of venturing into the SaaS space, and is inter-

ested in coming up with the right model. We hope to prototype and test our model with

the IA.

5.3 Smart Grid

We have already mentioned the immense potential of the cloud to enable a greener way

of life. One of the most exciting opportunities it offers is in facilitating a smart power

grid. There are pressing economic as well as environmental arguments for the overhaul

of the current outdated power grid, and its replacement with a Smart Grid that inte-

grates new kinds of green power generating systems, monitors power use, and adapts

consumption to match power costs and system load. Inefficient power generation on

the one hand, and severe overload on the other, as well as urgent issues of national and

global concern such as power system security and climate change are all driving this

shift. As the Smart Grid concept matures, we will see a dramatic growth in green power

production: small production devices such as wind turbines and solar panels or solar

farms, which have fluctuating capacity outside the control of grid operators. Small com-

90



panies that specialize in producing power under just certain conditions (price regimes,

certain times of day, etc.) will become more and more common. Power consumers

are becoming more sophisticated about pricing, shifting consumption from peak peri-

ods to off-peak periods; viewed at a global scale, this represents a potentially non-linear

feedback behavior. Electric vehicles are likely to become important over the coming

decade, at least in dense urban settings, and could shift a substantial new load into the

grid, even as they decrease the national demand for petroleum products. The operation

of the grid itself will continue to grow in complexity, because the effect of these chang-

ing modalities of generation and consumption will be to further fragment the grid into

smaller regions, but also to expand the higher level grid of long-distance transmission

lines. Clearly, a lot of work is required to transition from the 50-year-old legacy grid of

today to the smart grid of the future.

We have worked on identifying some of the computing needs for building this

smart grid, and examining the cloud infrastructure to see whether it can address these

needs [13]. We show that many promising power management ideas demand scalability

of a kind that only cloud computing can offer, but also have additional requirements

(real-time, consistency, privacy, security, etc.) that cloud computing would not currently

support. Some of these gaps will not soon be filled by the cloud industry, for reasons

stemming from underlying economic drivers that have shaped the industry and will con-

tinue to do so. However, a focused federal research program could create the needed

scalability solutions and then work with the cloud computing industry to transition the

needed technologies into standard cloud settings.

91



As with any new technology, many exciting research questions attend the evolution

of cloud computing. We have outlined a few here, with a focus on energy efficiency and

sustainability. The process of research is quite as much about finding the right questions,

as it is about finding answers. Going forward, we hope to find both.

92



CHAPTER 6

CONCLUSION

Gartner rates cloud computing as one of the top disruptive technologies of our time [6].

It is not hard to see why: The cloud has the potential to enable everything from ubiqui-

tous computing and universal access to knowledge, to smart power grids, greater social

connectivity, and near-infinite extensibility of compute/storage power. It is imperative,

therefore, that we work to realize this rich potential and facilitate sustainable evolution

of the cloud computing model. This dissertation tackles the question of how to stream-

line the operation of the global network of data centers that constitutes the cloud, and

minimize their energy footprint.

We identify two aspects of data center energy inefficiency: idle resource power con-

sumption, and support infrastructure power consumption. To reduce idle resource power

consumption, we can adopt one of two approaches. The first approach tries to match

data center power consumption to the load, by turning off resources when they are idle.

KyotoFS is an example of this approach, and leverages the log-structured file system to

create longer disk idle times, allowing them to be powered down to save energy. The

second approach tries to match data center load to provisioned power, by consolidating

the load so that resource utilization is improved, and resource idling reduced. Rack-

Packer is an example of this approach; it examines the utilization patterns of servers in

the data center to identify near-optimal sets of servers to group together in a rack so that

aggregate rack utilization is maximized. Finally, we show how to address support in-

frastructure power consumption by shifting to larger units of power management in data

centers; we argue that turning off entire racks is practical today, and can significantly

improve data center energy efficiency.

93



We also discuss how emerging trends in cloud computing are creating promising

avenues for future work. We explore the concept of energy elasticity, which would

allow cloud users to control the energy footprint of their applications, in the same way

that they control their compute and storage footprint today. We also describe some

reliability and security concerns with the current evolution of the cloud storage model,

and outline an alternate approach—cooperative storage. Finally, we explore one of the

greatest opportunities of cloud computing—enabling the next generation power grid—

and discuss the challenges involved. We believe these areas will gain more prominence

in the coming years and serve as necessary complements to our work on data center

energy management.

The world is moving at an astonishing pace, but it moves in uneven strides. While

even household appliances in some parts of the world are connected to the Internet, other

parts of the world are yet to see electricity. The cloud has an unparalleled potential to

improve technology penetration, and carry the benefits of technology to every part of the

world. Already, we see much evidence of this. Telemedicine allows doctors and medi-

cal practitioners in urban settings to offer their services remotely to distant rural areas;

connected classrooms help teachers leverage the Internet both as a source of information

and as a way to connect to a global student base; rural farmers can leverage information

kiosks delivering immediate weather and pricing projections—a service critical to their

livelihood. The cloud turns infrastructure into utility, and application into service. In

doing this, it makes computation suddenly much more accessible. Drinking water, sani-

tation, electricity, and other utilities reached orders of magnitude more people when they

moved from a fragmented to a unified production model; in a similar fashion, the cloud

unifies computation and has the potential to bring its benefits to a significantly larger

section of the globe. This dissertation is about how to enable responsible evolution of

the cloud model, to sustainably realize its rich potential.

94



GLOSSARY

application a program that runs on one or more computers.

brick-and-mortar data center a data center that is housed in a room or building. See

also data center, containerized data center.

cloud computing a model of computing where computation and data reside in servers

hosted in remote data centers that are connected by wide-area links. This model

turns computation into a pay-per-use utility, similar to electricity, or water. Refer

to [56] for a detailed definition. See also server, data center.

computational complexity theory (a quick, informal primer) Problems in class P

are those that can be solved in polynomial time, while those in class NP are ones

that can be verified in polynomial time. Clearly, P⊂NP. It is an open question

whether P=NP. NP-complete problems are a subset of NP-problems to which

any NP-problem can be reduced in polynomial time. NP-hard problems are a set

of problems that are at least as hard as NP-complete problems—all NP-complete

problems can be reduced in polynomial time to them; however, NP-hard problems

need not be in NP.

containerized data center A data center that consists of a shipping container prepop-

ulated with a few thousand servers and associated infrastructure, and can be com-

missioned and deployed in a matter of months. See also data center, brick-and-

mortar data center.

data center A facility dedicated to housing a large group of networked servers and

associated power distribution, networking, and cooling equipment, and used to

host applications that store, manage, and process digital data. See also server,

application.

95



green data center a data center with a minimal carbon footprint. See also data center.

IaaS Infrastructure-as-a-Service. A cloud computing model where raw compute power

is offered as a service. Refer to [56] for a detailed definition. See also cloud

computing.

LFS The log-structured file system (LFS) is an append-only file system. It treats the

underlying block storage as a log so that all writes become appends, whether they

are new writes or updates. Every update, therefore, results in a cascade of updates

to all affected meta-data files (inodes) to invalidate old data and update pointers

to point to the new data. See [70] for more details.

load balancing Load balancing is a method to distribute workload across multiple com-

puters, network links, disk drives, or other resources, to achieve optimal resource

utilization, maximize throughput, minimize response time, and avoid overload.

low-pass filter A filter that passes frequencies below a given value and attenuates fre-

quencies above that value.

MAID Massive Array of Idle Disks. This is a storage model where a set of disks is used

as an additional cache layer between main memory and secondary storage (disks).

The purpose of this disk cache is to absorb most of the accesses to secondary

storage, thus allowing a good fraction of it to be powered down to save energy.

Refer to [31] for more detail.

mega data center a data center containing hundreds of thousands of servers or more.

See also data center.

nameplate rating The full-load rating of an electrical or electronic apparatus under

specified conditions set by the manufacturer.

96



NP-hard A problem is non-deterministic polynomial-time hard (NP-hard) if solving it

in polynomial time would make it possible to solve all problems in class NP in

polynomial time. See also computational complexity theory (a quick, informal

primer).

online service an application that is available as a service on the Internet, typically

accessed with a browser. See also application.

P2P Peer-to-Peer. A decentralized network model, where nodes (peers) are connected

together directly rather than via a central server, allowing them to access each

other’s information directly.

PaaS Platform-as-a-Service. A cloud computing model where virtual machines are

offered as a service. Refer to [56] for a detailed definition. See also cloud com-

puting.

personal computing Personal computing encompasses the various uses that individu-

als put computers to, such as document editing, communication, entertainment.

power capping Power capping mechanisms forcibly curb system power use (by shut-

ting parts of it down, or reducing functionality) when it approaches a specified

limit (power capacity, for instance).

power tracking Power tracking is the practice of manipulating system power usage to

match its load. See also power-proportionality.

power-proportionality A data center is power-proportional if it uses minimal IT power

to execute any given job. Importantly, the data center should consume zero IT

power under zero load. See also data center.

private data center A data center that is used to exclusively host one entity’s compu-

tational needs. Refer to [56] for a detailed definition. See also data center, shared

data center.

97



PUE Power Utilization Efficiency. PUE is defined as the ratio between the total power

consumed by a data center, and the power consumed by the IT equipment in the

data center. This metric quantifies the amount of power consumed by non-IT

equipment such as cooling and power distribution infrastructure, that is not doing

directly useful work. See also data center.

rack A rack is a frame or enclosure for mounting multiple device modules. Typical

server racks can hold a few dozen servers, and are equipped with the required

power delivery and network switching gear. See also server.

resource power-down Turning off a device (such as a disk, server, or rack). Power-

ing off a device takes time and consumes energy (during the transition), as does

powering it on.

RTT Round Trip Time. A networking term referring to the amount of time it takes a

packet to make a round trip from sender to receiver and back.

SaaS Software-as-a-Service. A cloud computing model where applications hosted on

cloud platforms are offered as a service. Refer to [56] for a detailed definition.

See also cloud computing.

server a computer typically used in enterprise computational settings.

shared data center A data center that hosts more than one entity’s computational

needs. Refer to [56] for a detailed definition. See also data center, private data

center.

SLA Service Level Agreement. This refers to a legal contract that binds a service

provider to guarantee specified levels of service to the consumers of the service.

TCO total cost of ownership.

98



UPS Uninterruptible Power Supply (UPS) is a device that provides battery backup

when the electrical power fails or drops to an unacceptable voltage level.

vector bin packing The vector bin packing problem is a multi-dimensional variant of

the classical bin packing problem. The latter seeks to find a minimum number

of partitions of n real numbers ∈ [0,1] such that the sum of the numbers in each

partition does not exceed 1. The vector bin packing problem, on the other hand,

seeks to minimize the number of partitions of n m−dimensional vectors ∈ [0,1]d

such that the sum of each dimension of the vectors in a partition does not exceed

1. See [26] for more details.

virtual machine A virtual machine is a software implementation of a machine that

executes programs like a physical machine.

virtualization Virtualization is the creation of a virtual (rather than actual) version of

something, such as an operating system, a server, a storage device, or network

resources.

99



BIBLIOGRAPHY

[1] Amazon simple storage service (s3). http://aws.amazon.com/s3.

[2] Apache Hadoop. http://hadoop.apache.org.

[3] HP Power Calculator Utility: A Tool For Estimating Power Requirements For
HP ProLiant Rack-Mounted Systems. http://h18004.www1.hp.com/
products/solutions/power/index.html.

[4] Moore’s law. Wikipedia. http://en.wikipedia.org/wiki/Moore’s_
law.

[5] The Internet Archive. http://www.archive.org.

[6] Gartner Identifies Top Ten Disruptive Technologies for 2008 to 2012. May 28th
2008. http://www.gartner.com/it/page.jsp?id=681107, Last Ac-
cessed: Sep 2011.

[7] From Sidekick to Gmail: A Short History of Cloud Computing Outages. Network
World, October 12th 2009. http://www.networkworld.com/news/
2009/101209-sidekick-cloud-computing-outages-short-
history.html, Last Accessed: Sep 2011.

[8] Green Data Center Market to Reach $41 Billion Annually by 2015. Pike Research
Press Release, August 5th 2010. http://www.pikeresearch.com/
newsroom/green-data-center-market-to-reach-41-billion-
annually-by-2015, Last Accessed:Aug 2011.

[9] Impact of Virtualization on Data Center Physical Infrastructure. The Green
Grid White Paper, 2010. http://www.thegreengrid.org/˜/media/
WhitePapers/White_Paper_27_Impact_of_Virtualization_
Data_On_Center_Physical_Infrastructure_020210.pdf?
lang=en, Last Accessed: Sep 2011.

[10] Dell Leads Shift to ”Chiller-Less” Data Centers With Fresh Air Technol-
ogy. Dell Press Release, July 28th 2011. http://content.dell.
com/us/en/corp/d/press-releases/2011-07-28-fresh-air-
initiative.aspx, Last Accessed: Sep 2011.

[11] Facebook Launches Open Compute Project, 2011. http://www.facebook.
com/press/releases.php?p=214173, Last Accessed:Aug 2011.

100

http://aws.amazon.com/s3
http://hadoop.apache.org
http://h18004.www1.hp.com/products/solutions/power/index.html
http://h18004.www1.hp.com/products/solutions/power/index.html
http://en.wikipedia.org/wiki/Moore's_law
http://en.wikipedia.org/wiki/Moore's_law
http://www.archive.org
http://www.gartner.com/it/page.jsp?id=681107
http://www.networkworld.com/news/2009/101209-sidekick-cloud-computing-outages-short-history.html
http://www.networkworld.com/news/2009/101209-sidekick-cloud-computing-outages-short-history.html
http://www.networkworld.com/news/2009/101209-sidekick-cloud-computing-outages-short-history.html
http://www.pikeresearch.com/newsroom/green-data-center-market-to-reach-41-billion-annually-by-2015
http://www.pikeresearch.com/newsroom/green-data-center-market-to-reach-41-billion-annually-by-2015
http://www.pikeresearch.com/newsroom/green-data-center-market-to-reach-41-billion-annually-by-2015
http://www.thegreengrid.org/~/media/WhitePapers/White_Paper_27_Impact_of_Virtualization_Data_On_Center_Physical_Infrastructure_020210.pdf?lang=en
http://www.thegreengrid.org/~/media/WhitePapers/White_Paper_27_Impact_of_Virtualization_Data_On_Center_Physical_Infrastructure_020210.pdf?lang=en
http://www.thegreengrid.org/~/media/WhitePapers/White_Paper_27_Impact_of_Virtualization_Data_On_Center_Physical_Infrastructure_020210.pdf?lang=en
http://www.thegreengrid.org/~/media/WhitePapers/White_Paper_27_Impact_of_Virtualization_Data_On_Center_Physical_Infrastructure_020210.pdf?lang=en
http://content.dell.com/us/en/corp/d/press-releases/2011-07-28-fresh-air-initiative.aspx
http://content.dell.com/us/en/corp/d/press-releases/2011-07-28-fresh-air-initiative.aspx
http://content.dell.com/us/en/corp/d/press-releases/2011-07-28-fresh-air-initiative.aspx
http://www.facebook.com/press/releases.php?p=214173
http://www.facebook.com/press/releases.php?p=214173


[12] How Dirty is Your Data? A Look at the Energy Choices that Power Cloud Com-
puting. Greenpeace Report, May 24th 2011. http://www.greenpeace.
org/international/en/publications/reports/How-dirty-
is-your-data/, Last Accessed:Aug 2011.

[13] Running Smart Grid Control Software on Cloud Computing Architectures. In
Workshop on Computational Needs for the Next Generation Electric Grid, April
2011.

[14] 42U. High Density In-Rack Cooling Solutions for Server Racks, Computer Rooms,
Server Rooms & Data Centers. http://www.42u.com/cooling/in-
rack-cooling/in-rack-cooling.htm.

[15] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John Davis, Mark Manasse, and
Rina Panigrahy. Design Tradeoffs for SSD Performance. In USENIX Technical
Conference, June 2008.

[16] Amitanand Aiyer, Lorenzo Alvisi, Allen Clement, Michael Dahlin, Jean-Philippe
Martin, and Carl Porth. BAR Fault Tolerance For Cooperative Services. In ACM
Symposium on Operating Systems Principles (SOSP), October 2005.

[17] Hrishikesh Amur, James Cipar, Varun Gupta, Gregory Ganger, Michael Kozuch,
and Karsten Schwan. Robust and flexible power-proportional storage. In Sympo-
sium on Cloud Computing (SOCC), June 2010.

[18] David Andersen, Jason Franklin, Michael Kaminsky, Amar Phanishayee,
Lawrence Tan, and Vijay Vasudevan. Fawn: A fast array of wimpy nodes. In
Symposium on Operating Systems Principles (SOSP), October 2009.

[19] Thomas Anderson, David Culler, and David Patterson. A Case for Networks of
Workstations: NOW. IEEE Micro, 15, February 1995.

[20] APC. Switched Rack PDU. http://www.apc.com/products/family/
index.cfm?id=70.

[21] Luiz Barroso and Urz Holzle. The Case for Energy-Proportional Computing. IEEE
Computer, 40, December 2007.

[22] E. Carrera, E. Pinheiro, and R. Bianchini. Conserving Disk Energy in Network
Servers. In ACM International Conference on Supercomputing (ICS), June 2003.

101

http://www.greenpeace.org/international/en/publications/reports/How-dirty-is-your-data/
http://www.greenpeace.org/international/en/publications/reports/How-dirty-is-your-data/
http://www.greenpeace.org/international/en/publications/reports/How-dirty-is-your-data/
http://www.42u.com/cooling/in-rack-cooling/in-rack-cooling.htm
http://www.42u.com/cooling/in-rack-cooling/in-rack-cooling.htm
http://www.apc.com/products/family/index.cfm?id=70
http://www.apc.com/products/family/index.cfm?id=70


[23] Adrian Caulfield, Laura Grupp, and Steven Swanson. Gordon: Using flash mem-
ory to build fast, power-efficient clusters for data-intensive applications. In Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS),
March 2009.

[24] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson Hsieh, Deborah Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert Gruber. Bigtable: A
distributed storage system for structured data. In Operating Systems Design and
Implementation (OSDI), November 2006.

[25] Jeffrey S. Chase, Darrell C. Anderson, Prachi N. Thakar, and Amin M. Vahdat.
Managing Energy and Server Resources in Hosting Centers. In ACM Symposium
on Operating Systems Principles (SOSP), October 2001.

[26] Chandra Chekuri and Sanjeev Khanna. On Multi-Dimensional Packing Problems.
In Symposium on Discrete Algorithms (SODA), January 1999.

[27] Gong Chen, Wenbo He, Jie Liu, Suman Nath, Leonidas Rigas, Lin Xiao, and
Feng Zhao. Energy-aware server provisioning and load dispatching for connection-
intensive internet services. In USENIX Symposium on Networked Systems Design
and Implementation (NSDI), April 2008.

[28] Yiyu Chen, Amitayu Das, Wubi Qin, Anand Sivasubramaniam, Qian Wang, and
Natarajan Gautam. Managing server energy and operational costs in hosting cen-
ters. In ACM International Conference on Measurement and Modeling of Com-
puter Systems (SIGMETRICS), June 2005.

[29] Cisco. Cisco Data Center Infrastructure 2.5 Design Guide, 2007.
http://www.cisco.com/en/US/docs/solutions/Enterprise/
Data_Center/DC_Infra2_5/DCI_SRND_2_5_book.html.

[30] Cisco. Data Center Top-of-Rack Architecture Design, 2009. http:
//www.cisco.com/en/US/prod/collateral/switches/ps9441/
ps9670/white_paper_c11-522337.html.

[31] D. Colarelli, D. Grunwald, and M. Neufeld. The Case for Massive Arrays of Idle
Disks (MAID). In USENIX Fast and Storage Technologies (FAST), January 2002.

[32] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: Amazon’s highly available key-value store. In
Symposium on Operating Systems Principles (SOSP), October 2007.

102

http://www.cisco.com/en/US/docs/solutions/Enterprise/Data_Center/DC_Infra2_5/DCI_SRND_2_5_book.html
http://www.cisco.com/en/US/docs/solutions/Enterprise/Data_Center/DC_Infra2_5/DCI_SRND_2_5_book.html
http://www.cisco.com/en/US/prod/collateral/switches/ps9441/ps9670/white_paper_c11-522337.html
http://www.cisco.com/en/US/prod/collateral/switches/ps9441/ps9670/white_paper_c11-522337.html
http://www.cisco.com/en/US/prod/collateral/switches/ps9441/ps9670/white_paper_c11-522337.html


[33] Peter Denning. The working set model for program behavior. Communications of
the ACM, 11(5), May 1968.

[34] Larry Dignan. Google Makes Waves And May Have Solved The Data Center
Conundrum. ZDNet, September 8th 2008. http://www.zdnet.com/blog/
btl/google-makes-waves-and-may-have-solved-the-data-
center-conundrum/9937, Last Accessed: Sep 2011.

[35] Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Barroso. Power Provision-
ing for a Warehouse-Sized Computer. In International Symposium on Computer
Architecture (ISCA), June 2007.

[36] Katie Fehrenbacher. A Key to Google’s Data Center Efficiency:
One Backup Battery Per Server. GigaOm, April 1st 2009. http:
//gigaom.com/cleantech/a-key-to-googles-data-center-
efficiency-one-backup-battery-per-server/.

[37] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system.
In Symposium on Operating Systems Principles (SOSP), October 2003.

[38] Bernard Golden. Cloud computing: How big is big data? idc’s answer.
CIO, May 07 2010. http://www.cio.com/article/593039/Cloud_
Computing_How_Big_is_Big_Data_IDC_s_Answer.

[39] Albert G. Greenberg, James R. Hamilton, David A. Maltz, and Parveen Patel. The
cost of a cloud: Research problems in data center networks. Computer Communi-
cation Review, 39, January 2009.

[40] Sudhanva Gurumurthi, Anand Sivasubramaniam, Mahmut Kandemir, and Huber-
tus Franke. Drpm: Dynamic speed control for power management in server class
disks. In International Symposium on Computing Architecture (ISCA), June 2003.

[41] Sudhanva Gurumurthi, Jianyong Zhang, Anand Sivasubramaniam, Mahmut Kan-
demir, Hubertus Franke, N. Vijaykrishnan, and M. J. Irwin. Interplay of Energy
and Performance for Disk Arrays Running Transaction Processing Workloads. In
IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS), March 2003.

[42] James Hamilton. On Designing and Deploying Internet-Scale Services. In USENIX
Large Installation Systems Administration (LISA), November 2007.

[43] Simon Hancock. Iceland Looks to Serve the World. BBC Click, October 9th 2009.

103

http://www.zdnet.com/blog/btl/google-makes-waves-and-may-have-solved-the-data-center-conundrum/9937
http://www.zdnet.com/blog/btl/google-makes-waves-and-may-have-solved-the-data-center-conundrum/9937
http://www.zdnet.com/blog/btl/google-makes-waves-and-may-have-solved-the-data-center-conundrum/9937
http://gigaom.com/cleantech/a-key-to-googles-data-center-efficiency-one-backup-battery-per-server/
http://gigaom.com/cleantech/a-key-to-googles-data-center-efficiency-one-backup-battery-per-server/
http://gigaom.com/cleantech/a-key-to-googles-data-center-efficiency-one-backup-battery-per-server/
http://www.cio.com/article/593039/Cloud_Computing_How_Big_is_Big_Data_IDC_s_Answer
http://www.cio.com/article/593039/Cloud_Computing_How_Big_is_Big_Data_IDC_s_Answer


[44] Derrick Harris. What Went Wrong With Iron Mountain’s Cloud Storage. GigaOM,
April 14th 2011. http://gigaom.com/cloud/what-went-wrong-
with-iron-mountains-cloud-storage/, Last Accessed:Aug 2011.

[45] Taliver Heath, Bruno Diniz, Enrique V. Carrera, Wagner Meira Jr., and Ricardo
Bianchini. Energy Conservation in Heterogeneous Server Clusters. In ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming (PPoPP),
June 2005.

[46] David Hornby, Bill Walker, and Ken Pepple. Consolidation in the Data Center:
Simplifying IT Environments to Reduce Total Cost of Ownership. Pearson Educa-
tion, 2002.

[47] Aman Kansal, Feng Zhao, Jie Liu, Nupur Kothari, and Arka Bhattacharya. Virtual
Machine Power Metering and Monitoring. In ACM Symposium on Cloud Comput-
ing (SOCC), June 2010.

[48] James Kaplan, William Forrest, and Noah Kindler. Revolutionizing Data
Center Energy Efficiency. Report by McKinsey&Company, July 2008.
http://www.mckinsey.com/clientservice/bto/pointofview/
pdf/Revolutionizing_Data_Center_Efficiency.pdf, Last Ac-
cessed:Aug 2011.

[49] Rini Kaushik, Milind Bhandarkar, and Klara Nahrstedt. Evaluation and analysis
of greenhdfs: A self-adaptive, energy-conserving variant of the hadoop distributed
file system. In Cloud Computing Technology and Science (CloudCom), November
2010.

[50] Avinash Lakshman and Prashant Malik. Cassandra - a decentralized structured
storage system. In ACM SIGOPS Large Scale Distributed Systems and Middleware
(LADIS), October 2009.

[51] Charles Lefurgy, Xiaorui Wang, and Malcolm Ware. Power Capping: A Prelude
to Power Shifting. Cluster Computer, 11, June 2008.

[52] Steve Lohr. Data Centers Are Becoming Big Polluters, Study Finds. Oct
16th 2008. http://bits.blog.nytimes.com/2008/05/01/data-
centers-are-becoming-big-polluters-study-finds/.

[53] Peter Lyman, Hal Varian, Peter Charles, Nathan Good, Laheem Jordan, and Joy-
ojeet Pal. How Much Information? Executive Summary. School of Information
Management and Systems, UC-Berkeley, 2003.

104

http://gigaom.com/cloud/what-went-wrong-with-iron-mountains-cloud-storage/
http://gigaom.com/cloud/what-went-wrong-with-iron-mountains-cloud-storage/
http://www.mckinsey.com/clientservice/bto/pointofview/pdf/Revolutionizing_Data_Center_Efficiency.pdf
http://www.mckinsey.com/clientservice/bto/pointofview/pdf/Revolutionizing_Data_Center_Efficiency.pdf
http://bits.blog.nytimes.com/2008/05/01/data-centers-are-becoming-big-polluters-study-finds/
http://bits.blog.nytimes.com/2008/05/01/data-centers-are-becoming-big-polluters-study-finds/


[54] Jeanna Matthews, Drew Roselli, Adam Costello, Randy Wang, and Thomas An-
derson. Improving the Performance of Log-Structured File Systems with Adaptive
Methods. In ACM Symposium on Operating Systems Principles (SOSP), October
1997.

[55] David Meisner, Brian Gold, and Thomas Wenisch. PowerNap: Eliminating Server
Idle Power. In ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), March 2009.

[56] P Mell and Tim Grance. The NIST Definition of Cloud Computing. National
Institute of Standards and Technology (NIST), 53(6), 2009.

[57] Robert Metcalfe and David Boggs. Ethernet: Distributed Packet Switching for
Local Computer Networks. Communications of the ACM, 19, July 1976.

[58] Cade Metz. Google Admits Data Center Podification. The Register, April
2 2009. http://www.theregister.co.uk/2009/04/02/google_
data_center_revealed/, Last Accessed: Aug 2011.

[59] Rich Miller. Microsoft: 300,000 Servers in Container Farm. Data Center
Knowledge, May 7th 2008. http://www.datacenterknowledge.
com/archives/2008/05/07/microsoft-300000-servers-in-
container-farm/, Last Accessed:Aug 2011.

[60] Rich Miller. Who Has the Most Web Servers? Data Center Knowledge, May 14th
2009. http://www.datacenterknowledge.com/archives/2009/
05/14/whos-got-the-most-web-servers/, Last Accessed:Aug 2011.

[61] Rich Miller. How A Good PUE Can Save 10 MegaWatts. Data Center
Knowledge, September 13 2010. http://www.datacenterknowledge.
com/archives/2010/09/13/how-a-good-pue-can-save-10-
megawatts/, Last Accessed: Aug 2011.

[62] Justin Moore, Jeff Chase, Parthasarathy Ranganathan, and Ratnesh Sharma. Mak-
ing scheduling ”cool”: Temperature-aware workload placement in data centers. In
USENIX Annual Technical Conference, April 2005.

[63] Ian Murphy. IBM Believes in Commoditised HPC for BI. ComputerWeekly.com,
June 30th 2010. http://www.computerweekly.com/blogs/
database-notes/2010/06/ibm-believes-in-commoditised-
hpc-for-bi.html, Last Accessed:Aug 2011.

105

http://www.theregister.co.uk/2009/04/02/google_data_center_revealed/
http://www.theregister.co.uk/2009/04/02/google_data_center_revealed/
http://www.datacenterknowledge.com/archives/2008/05/07/microsoft-300000-servers-in-container-farm/
http://www.datacenterknowledge.com/archives/2008/05/07/microsoft-300000-servers-in-container-farm/
http://www.datacenterknowledge.com/archives/2008/05/07/microsoft-300000-servers-in-container-farm/
http://www.datacenterknowledge.com/archives/2009/05/14/whos-got-the-most-web-servers/
http://www.datacenterknowledge.com/archives/2009/05/14/whos-got-the-most-web-servers/
http://www.datacenterknowledge.com/archives/2010/09/13/how-a-good-pue-can-save-10-megawatts/
http://www.datacenterknowledge.com/archives/2010/09/13/how-a-good-pue-can-save-10-megawatts/
http://www.datacenterknowledge.com/archives/2010/09/13/how-a-good-pue-can-save-10-megawatts/
http://www.computerweekly.com/blogs/database-notes/2010/06/ibm-believes-in-commoditised-hpc-for-bi.html
http://www.computerweekly.com/blogs/database-notes/2010/06/ibm-believes-in-commoditised-hpc-for-bi.html
http://www.computerweekly.com/blogs/database-notes/2010/06/ibm-believes-in-commoditised-hpc-for-bi.html


[64] Dushyanth Narayanan, Austin Donnelly, and Antony Rowstron. Write Off-
Loading: Practical Power Management for Enterprise Storage. ACM Transactions
on Storage, 4, November 2008.

[65] Jared Newman. 6 Things You’d Never Guess About Google’s Energy Use. Time
Techland, September 9th 2011. http://techland.time.com/2011/09/
09/6-things-youd-never-guess-about-googles-energy-use,
Last Accessed: Sep 2011.

[66] Oracle. Berkeley db java edition architecture. An Oracle White Paper, Septem-
ber 2006. http://www.oracle.com/database/berkeley-db/je/
index.html.

[67] Eduardo Pinheiro and Ricardo Bianchini. Energy Conservation Techniques for
Disk Array-Based Servers. In ACM International Conference on Supercomputing
(ICS), June 2004.

[68] Parthasarathy Ranganathan, Phil Leech, David Irwin, and Jeffrey Chase.
Ensemble-Level Power Management for Dense Blade Servers. In International
Symposium on Computer Architecture (ISCA), June 2006.

[69] Drew Roselli and Thomas Anderson. Characteristics of File System Workloads.
Technical Report No. UCB/CSD-98-1029, 1998.

[70] Mendel Rosenblum and John K. Ousterhout. The Design and Implementation of a
Log-Structured File System. ACM Transactions on Computer Systems (ToCS), 10,
February 1992.

[71] Gina Smith. The IBM Personal Computer Turns 30. InformationWeek, August
1 2011. http://www.informationweek.com/byte/commentary/
personal-tech/desktop-pc/231002983, Last Accessed: Aug 2011.

[72] Seung Son, Guilin Chen, and Mahmut Kandemir. Disk Layout Optimization for
Reducing Energy Consumption. In ACM International Conference on Supercom-
puting (ICS), June 2005.

[73] Eno Thereska, Austin Donnelly, and Dushyanth Narayanan. Sierra: Practical
Power-Proportionality for Data Center Storage. In Sixth Conference on Computer
Systems, ACM EuroSys, April 2011.

[74] Patrick Thibodeau. Data Centers, Under Strain, Expand At Furious Pace.
Computer World, May 19th 2011. http://www.computerworld.com/

106

http://techland.time.com/2011/09/09/6-things-youd-never-guess-about-googles-energy-use
http://techland.time.com/2011/09/09/6-things-youd-never-guess-about-googles-energy-use
http://www.oracle.com/database/berkeley-db/je/index.html
http://www.oracle.com/database/berkeley-db/je/index.html
http://www.informationweek.com/byte/commentary/personal-tech/desktop-pc/231002983
http://www.informationweek.com/byte/commentary/personal-tech/desktop-pc/231002983
http://www.computerworld.com/s/article/9216841/Data_centers_under_strain_expand_at_furious_pace_
http://www.computerworld.com/s/article/9216841/Data_centers_under_strain_expand_at_furious_pace_


s/article/9216841/Data_centers_under_strain_expand_at_
furious_pace_, Last Accessed:Aug 2011.

[75] John Timmer. Datacenter Energy Costs Outpacing Hardware Prices. Ars Tech-
nica, 2009. http://arstechnica.com/business/news/2009/10/
datacenter-costs-outpacing-hardware-prices.ars, Last Ac-
cessed:Aug 2011.

[76] My Ton, Brian Fortenbery, and Willian Tschudi. DC Power for Improved Data
Center Efficiency. Report by Lawrence Berkeley National Laboratory (LBNL),
2008.

[77] Sandra Upson. Google Watches its Watts. IEEE Spectrum, July 2007.
http://spectrum.ieee.org/computing/hardware/google-
watches-its-watts, Last Accessed: Aug 2011.

[78] Kushagra Vaid. Datacenter Power Efficiency: Separating Fact From Fiction. In-
vited Talk at USENIX HotPower 2010.

[79] Xiaorui Wang and Ming Chen. Cluster-Level Feedback Power Control for Per-
formance Optimization. In IEEE International Symposium on High Performance
Computer Architecture (HPCA), February 2008.

[80] Hakim Weatherspoon, Lakshmi Ganesh, Tudor Marian, Mahesh Balakrishnan, and
Ken Birman. Smoke and Mirrors: Reflecting Files at a Geographically Remote
Location Without Loss of Performance. In USENIX File and Storage Technologies
(FAST), February 2009.

[81] Aaron Weiss. Can Personal Productivity Live in the Cloud? Dell, Jan-
uary 21st 2011. http://content.dell.com/us/en/enterprise/d/
large-business/personal-productivity-in-cloud.aspx, Last
Accessed:Aug 2011.

[82] Google Whitepaper. Google’s Green Data Centers: Network POP Case
Study. Google, 2011. http://www.google.com/en/us/corporate/
datacenter/dc-best-practices-google.pdf, Last Accessed: Sep
2011.

[83] Todd Woody. Google Reveals Its Carbon Footprint. Forbes, September 8th
2011. http://www.forbes.com/sites/toddwoody/2011/09/08/
google-reveals-its-carbon-footprint, Last Accessed: Sep 2011.

107

http://www.computerworld.com/s/article/9216841/Data_centers_under_strain_expand_at_furious_pace_
http://www.computerworld.com/s/article/9216841/Data_centers_under_strain_expand_at_furious_pace_
http://www.computerworld.com/s/article/9216841/Data_centers_under_strain_expand_at_furious_pace_
http://arstechnica.com/business/news/2009/10/datacenter-costs-outpacing-hardware-prices.ars
http://arstechnica.com/business/news/2009/10/datacenter-costs-outpacing-hardware-prices.ars
http://spectrum.ieee.org/computing/hardware/google-watches-its-watts
http://spectrum.ieee.org/computing/hardware/google-watches-its-watts
http://content.dell.com/us/en/enterprise/d/large-business/personal-productivity-in-cloud.aspx
http://content.dell.com/us/en/enterprise/d/large-business/personal-productivity-in-cloud.aspx
http://www.google.com/en/us/corporate/datacenter/dc-best-practices-google.pdf
http://www.google.com/en/us/corporate/datacenter/dc-best-practices-google.pdf
http://www.forbes.com/sites/toddwoody/2011/09/08/google-reveals-its-carbon-footprint
http://www.forbes.com/sites/toddwoody/2011/09/08/google-reveals-its-carbon-footprint


[84] Qingbo Zhu, F. M. David, C. F. Devaraj, Zhenmin Li, Yuanyuan Zhou, and Pei
Cao. Reducing Energy Consumption of Disk Storage Using Power-Aware Cache
Management. In IEEE International Symposium on High Performance Computer
Architecture (HPCA), February 2004.

[85] Qingo Zhu, Zhifeng Chen, Lin Tan, and Yuanyuan Zhou. Hibernator: Helping
Disk Arrays Sleep Through the Winter. In ACM Symposium on Operating Systems
Principles (SOSP), October 2005.

108


	Biographical Sketch
	Dedication
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Data Center Energy Management
	Context and Background
	Energy Profile of an Ideal Data Center

	Research Questions
	Energy consumption by idle resources
	Energy consumption by support infrastructure

	Contributions
	Energy consumption by idle resources
	Energy consumption by support infrastructure

	Discussion: State of the Industry
	Organization

	Idle Resources: Matching Power to Load
	Context
	Idea Overview

	Related Work
	KyotoFS: A New Solution
	Log-Structured File System
	LFS: A Power-Saving Opportunity

	Evaluation
	Methodology
	Results

	Prototype
	Conclusion

	Idle Resources: Matching Load to Power
	Stranded Power
	The RackPacker Approach
	A Running Example
	Rackpacker Overview
	Filtering and Classification
	Bundling
	Packing

	Evaluation
	RackPacker: Comparative Performance
	RackPacker: Workload Exploration

	Related Work
	Summary

	Support Infrastructure: Larger Power Management Units
	PUE: Where does the power go?
	Related Work
	Power-Lean Approach
	Power Cycle Unit
	The Case for a Larger PCU

	Evaluation
	Methodology
	Results

	Summary

	Future Work
	Global Network of Data Centers
	Cooperative Storage
	Smart Grid

	Conclusion
	Glossary
	Bibliography

