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Our morphological traits, responses to stimuli, and the composition of our 

microbiomes are all phenotypic adaptations influenced by the genetic variation that 

defines us. Understanding this multimodal network of relationships requires the 

analysis of a multitude of orthogonal biological systems. Tailoring our approach to the 

individual biological outputs and systems allows us to reach a deeper understanding of 

the evolution, regulation, and interactions among biological processes.  

When available, we can use genomic data from large populations to establish 

links between genetic variation and phenotypic adaptation. For instance, positive 

selection can be inferred from variation computationally and statistically via evidence 

of selective sweeps. In Chapter 2, I evaluate eight selection scans to detect selective 

sweeps in domestic dogs, a population with well-documented selection pressures 

imposed by human preferences for specific morphologies and other traits. 

Pathogen-driven selective pressures modulate adaptation in the immune 

response, because hosts must keep up in the host-pathogen arms race. The high 

energetic cost of mounting an immune response reduces resource availability to other 



  

physiological processes. To explore these trade-offs, in Chapter 3 I profile the 

transcription dynamics of the Drosophila melanogaster innate immune response in a 

dense time course and I apply a broad range of statistical methods, including temporal 

clustering, gene set expression analysis, and Granger causality to construct putative 

gene interactions networks. 

The interaction of hosts with mutualistic symbionts can drive genetic 

adaptation in hosts through mutually-beneficial processes. In humans, the gut 

microbiome provides a wealth of symbiotic interactions. To address whether this 

mutualistic relationship drives host adaptation, in Chapter 4 I study the influence of 

host genetics on microbiome composition by performing high-resolution QTL 

mapping to identify genetic variation in Diversity Outbred mice significantly 

associated with specific bacterial abundances.  

This thesis presents three orthogonal approaches for surveying genetic 

variation and its consequences, using a combination of data collected through three 

sequencing methods: population genomic data using genotyping, global transcriptome 

dynamics using RNA-sequencing, and microbiome composition using 16S rRNA gene 

sequencing. 
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CHAPTER 1 

 

INTRODUCTION 

 

BIOLOGICAL MOTIVATIONS 

A common pursuit in evolutionary biology is to understand the causal link 

between genetic variation and phenotypic adaptation. The development of 

increasingly swift and cost-effective sequencing technologies has spurred explosive 

growth in data, analytical tools, and population genetics theory that can be used to 

characterize these genotype-phenotype relationships. Despite this growth, identifying 

the genetic loci responsible for a given phenotype is far from a solved problem. The 

detection of selection within a population can be performed with a variety of tools 

whose performance depends on the time window when selection occurred, its 

strength, the population demographics, and the polygenicity of the selected trait 

(VITTI et al. 2013; WEIGAND AND LEESE 2018). Additionally, “phenotypes” include a 

staggering variety of data types including -but not limited to- trait categories, the 

magnitude of response to stimuli over time, and the composition of symbiotic species 

within an organism. Tailoring our approach to these different biological outputs 

allows us to reach a deeper understanding of the evolution, regulation, and 

interactions among biological processes. 
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When genomic data from a large population are available, we can establish links 

between genetic variation and phenotypic adaptation by measuring patterns of 

variation among individuals. For instance, positive selection can be inferred using 

computational and statistical methods (VITTI et al. 2013; WEIGAND AND LEESE 2018) 

by looking for evidence of selective sweeps: regions of the genome with reduced 

variation in the nucleotides neighboring a common mutation. These signatures 

suggest the presence of a beneficial mutation, which has been driven to a higher 

frequency by natural selection. In Chapter 2 of this thesis, I use dogs as a model 

system to characterize the performance of eight different methods for detecting 

selection scans. Dogs are especially useful for this due to the presence of known 

selective pressures on morphology and behavior imposed by human preference. 

Selection, however, does not always lead to a reduction in genetic variation, but 

can sometimes increase it instead. This is the case in host-pathogen interactions, a 

very interesting instance of phenotypic adaptation that benefits from persistent 

genetic variation. In this system, balancing selection leads genomic regions that drive 

immune response processes to be maintained at high genetic variation in a population, 

instead of allowing one particular allele to reach fixation (CROZE et al. 2016). The 

over-homogenization of a species can cripple its ability to respond to change, as was 

the case with the clonal banana cultivar “Gros Michel” which experienced population 

collapse due to shared susceptibility to a pathogen infection the 1950’s (PLOETZ 

1994). Thus, pathogen-driven selective pressures modulate the process of adaptation 
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in the immune response, where hosts constantly need to keep up in the host-pathogen 

arms race.  

The link between genetic variation and fitness in host-pathogen interactions is 

further complicated by the presence of trade-offs within the host. Due to the high 

energetic cost of mounting an immune response (LAZZARO AND GALAC 2006), 

allocating resources to the immune system reduces resource availability to other life 

processes (ZEROFSKY et al. 2005; DIANGELO et al. 2009). Therefore, organisms must 

tune their immune responses to be effective, while also balancing resource trade-offs 

with other biological processes. This tuning is likely to be mediated through a series of 

regulatory and feedback circuits in the immune system, which are yet to be fully 

understood. To elucidate this, in Chapter 3 of this thesis I profile the transcription 

dynamics of the Drosophila melanogaster innate immune response using a dense gene 

expression time course. With this work, I unveil distinct temporal patterns of transient 

and sustained responses to infection that occur over different time scales, I provide 

several novel functional annotations for previously uncharacterized genes, and suggest 

new interactions governing temporal gene regulation of the immune response and 

trade-offs with metabolism and repair. 

The host-pathogen arms race is not the only type of host-microbe coevolution 

we can observe in nature. The interaction of hosts with mutualistic symbionts can 

drive genetic adaptation in hosts through a mutually beneficial process instead of one 

driven by conflict (SHAPIRA 2016). Some well-known examples of how mutualistic 
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symbionts affect host evolution include squids developing a light organ to host 

bioluminescent bacteria, and aphids - sap-feeding insects - developing a vertical 

transmission of bacteria that break down and provide nutrients otherwise inaccessible 

to aphids (SHAPIRA 2016). In humans, the gut microbiome provides a wealth of 

symbiotic interactions, and how or whether this relationship is driving host genomic 

adaptation is currently under study. To address this, in Chapter 4 of this thesis I study 

the influence of host genetics on gut microbiome composition using the Diversity 

Outbred mouse panel, a population designed to be the most genetically diverse mouse 

resource currently available (CHURCHILL et al. 2012). In this work, I performed a high-

resolution QTL mapping that identifies genetic variation in Diversity Outbred mice 

significantly associated with specific bacterial taxon abundances.  

In this introduction I discuss three orthogonal approaches for surveying genetic 

variation and its consequences. I use a combination of data collected through three 

sequencing methods: population genomic data using genotyping, global transcriptome 

dynamics using RNA-sequencing, and microbiome composition using 16S rRNA 

sequencing.  
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INFERRING REGIONS OF POSITIVE SELECTION IN POPULATION 

GENOMIC DATA 

The appearance of new mutations, the selective forces of natural selection, and 

the stochastic effects of genetic drift, all contribute to drive allele frequency changes 

in populations across generations. Knowing how these allele frequencies are changing 

throughout time can allow us to infer how evolution works by identifying the parts of 

the genome under selection. These changes could be directly measured if we were to 

continually sequence the genomes of a population over generational timescales and 

observe the resulting changes in allele frequency brought on by selective pressures 

(MALASPINAS et al. 2012; BANK et al. 2014; FOLL et al. 2015). And while some work 

has already been done in a similar fashion in organisms with short generation times 

(yeast (KRYAZHIMSKIY et al. 2014), bacteria (GOOD et al. 2017), Daphnia (ZBINDEN et 

al. 2008), Drosophila (HOULE et al. 2017)), it is not yet feasible to easily achieve on 

organisms with longer generation times. Fortunately, genomes accumulate signatures 

of their evolutionary history, which allow us to infer what happened in the past by 

reverse engineering the process of natural selection from these signatures found in 

genome sequence variation in extant population samples. 

Among the most drastic and recognizable signatures of positive selection are 

hard selective sweeps. Here, a single acquired beneficial mutation with strong selective 

advantage on a population will quickly increase in frequency over time (HERMISSON 

AND PENNINGS 2005) possibly reaching fixation, which is when a specific variant is 



 6 

shared by the entire population (Figure 1.1). As this happens, the regions linked to 

this beneficial mutation will ‘hitchhike’, also increasing in frequency alongside the new 

beneficial mutation. Strong selective sweeps can occur too fast for recombination to 

break down the statistical association (linkage disequilibrium) across neighboring 

alleles, thus leaving characteristic signatures of haplotype homozygosity around the 

selected region. However, positive selection will not always produce the clean 

signature of a hard selective sweep. Instead, a second beneficial mutation could be 

established before the first one reaches fixation (Figure 1.1) (WILSON et al. 2014). 

Alternatively, adaptation could occur from multiple alleles already present in the 

population as standing genetic variation. In these cases, beneficial alleles will be found 

in different haplotype backgrounds which will all increase in frequency, leaving a 

signature known as soft selective sweeps.  

 

 
Figure 1.1. Hard versus soft selective sweeps. Variation signatures seen among population 
haplotypes (on the right) can help us distinguish between hard and soft selective sweeps. 
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These selective sweep signatures can be detected by directly comparing the 

genomic regions of individuals within a population and between populations. This 

kind of population genomic data can be obtained by genotyping or sequencing whole 

genomes of multiple individuals in a population. Whole genome sequencing provides 

the highest resolution of genomic data, but it can still be costly when sampling large 

population numbers. A more cost effective alternative is to only measure the genetic 

variations of single nucleotide polymorphisms (SNPs) with a method called SNP 

genotyping, where hundreds of thousands of probes within a chip array hybridize 

multiple SNPs at the same time. This is a particularly effective method of surveying 

genomes that are already well characterized. SNP chip genotyping facilitates the 

selection of the most informative SNPs within a population, phasing the resulting 

data, and calculating the frequency of alleles in the surveyed population. 

Once population genomic data is collected, there are multiple data analysis 

methods that aim to detect regions under selection based on patterns observed in the 

genetic variation. These methods are based on the distribution or spectrum of allele 

frequencies, the lengths and frequencies of shared haplotypes, or runs of identity-by-

descent. Allele frequency based methods (such as π, Tajima’s D (TAJIMA 1989), and 

CLR (NIELSEN et al. 2005; PAVLIDIS et al. 2013)) analyze the distortion in site 

frequency spectra, where certain SNP frequencies are lower or higher than expected 

under a neutral model. On the other hand, haplotype based statistics (such as iHS 

(VOIGHT et al. 2006), nSL (FERRER-ADMETLLA et al. 2014), H12 (GARUD et al. 2015), 
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H (SCHLAMP et al. 2016), EHH, and IBD (CAI et al. 2011; HAN AND ABNEY 2013)) 

search for levels of haplotype homozygosity that are much more elevated than 

expected under neutrality. Furthermore, cross-population methods (such as FST 

(HOLSINGER AND WEIR 2009), XP-EHH (SABETI et al. 2007), and HapFLK 

(FARIELLO et al. 2013)) extend their analysis by using differences in allele frequency 

between populations, which allows the detection of other types of selection, such as 

negative selection (VITTI et al. 2013). Finally, there are composite methods (such as 

CLR (NIELSEN et al. 2005; PAVLIDIS et al. 2013), XP-CLR (CHEN et al. 2010), and 

CMS (GROSSMAN et al. 2010; GROSSMAN et al. 2013)) which combine multiple test 

scores to improve resolution and power, and reduce false discovery rate. All these 

methods have different approaches to finding selective sweeps, and as such they have 

varying degrees of success, depending on the data type, parameters, and assumptions. 

Therefore, it is of high interest to properly evaluate and benchmark these methods 

using positive controls from real population data. 

 

Evaluating the performance of selection scans to detect selective sweeps in 

domestic dogs 

The domestic dog is a great system to study genomic signatures of positive 

selection, because they provide a large number of distinct and well defined breeds that 

have been artificially selected throughout centuries for very different physical traits, 

such as body size, coat color, and skull shape; as well as behavioral traits, such as 
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obedience, herding, and hunting (FREEDMAN et al. 2016). This provides well 

characterized positive control loci where we already know the causal mutations which 

are under specific selective pressures through known breeding strategies. For example, 

46-52.5% of body size variance in dog breeds can be explained by variants at just six 

genes (RIMBAULT et al. 2013), and most coat phenotypes in purebred dogs in the 

United States are governed by variants in three genes (CADIEU et al. 2009). Multiple 

additional variants have been identified to affect specific morphological variations in 

dogs, such as lips and ears (BOYKO et al. 2010) and skull shape (SCHOENEBECK AND 

OSTRANDER 2013). 

In Chapter 2, I present the evaluation of multiple selection scans’ performance 

to detect selective sweeps in domestic dog populations. I developed a custom pipeline 

that integrates eight statistics (HapFLK, iHS, nSL, H, H12, CLR, Tajima’s D, and π) 

in order to detect signatures of soft and hard sweeps, and used it to confirm positive 

selection in 12 positive control loci already known to have experienced positive 

selection in specific dog breeds due to their association to desirable morphological 

phenotypes. This work successfully detected signature patterns of haplotype and 

nucleotide polymorphism left by artificial selection during dog domestication, and 

demonstrated the power and limitations of different selection scans and choice of 

analysis parameters used. Since then, I have adapted this pipeline to detect regions of 

positive selection in other genomic population datasets such as Persian Arabian and 

Iranian horse breeds (SADEGHI et al. 2018). 
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PROFILING TRANSCRIPTION DYNAMICS USING RNA SEQUENCING 

TIME SERIES 

The genome encodes all the information needed to build and maintain an 

organism throughout its life. This information, however, is not all needed at the same 

time, so while the genome is a rather static source of genetic information on the 

individual level, not all of it is being transcribed and used at any given time. Certain 

genes and regulatory elements play vital and transient roles during different 

developmental stages or in response to environmental stimuli such as infections, 

mating, and temperature changes. Likewise, certain genes and regulatory elements play 

roles in only certain cells or tissues. While the genome is the same in all cells, many 

genes are only transcriptionally active in certain cell types, contributing to cell 

differentiation and specialized functions. Many genes need to be transcribed from the 

genome only at a particular moment or at a particular place. Thus, proper positive and 

negative regulation of transcription is vital in many processes such as during 

development, where if genes continue to be expressed after they are not needed 

anymore it can lead to developmental malfunctions. 

Technologies such as microarrays and RNA sequencing (RNA-seq) allow us to 

get a snapshot of what the transcriptional landscape looks like at any given time and 

in a specific tissue in an individual organism. These technologies measure the type and 

abundance of mRNAs present in the organism at the moment of sample collection. 

Thanks to this, we can get a much clearer picture of how transcripts correlated with 
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certain processes, such as cell differentiation and reproduction; or reacting to external 

stimuli, such as a drug treatment or pathogen infection. Through the study of 

transcriptomics, we have been able to annotate the function of genes and 

transcription factors, as well as elucidate biological processes, and determine pathways 

for many diseases.  

Nonetheless, most biological processes are dynamic and a single snapshot of 

the process only shows a small part of the picture. In order to properly study and 

analyze dynamic processes over time, it is key to sample transcription in a time-series 

manner. Getting multiple snapshots throughout the process allows us to characterize 

the dynamics of gene expression, whether responses are transient or sustained, and 

determine the slope and kinetics of expression change. As sequencing technologies 

have increased accuracy and decreased costs, collecting time series expression data has 

become considerably more feasible, and multiple studies have already started 

characterizing the dynamics of development (GEIJER et al. 2012; BATUT AND 

GINGERAS 2017; WHITE et al. 2017) and disease (CHO et al. 2015; CHEN et al. 2016a; 

BENDJILALI et al. 2017). 

Although data collection of gene expression is increasingly cost effective, cost 

is still one of the main limiting factors when designing an RNA-seq time series 

experiment. For this reason, thoughtful experimental design in deciding the duration 

and sampling rate are extremely important (BAR-JOSEPH et al. 2012). Cyclic, 

developmental, and response processes will require very different strategies, both in 
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sampling rate, start and end points, and choice of replicates and controls (BAR-JOSEPH 

et al. 2012). For example, an experiment studying a developmental process will not be 

able to have time and age matched controls in the same way a drug treatment 

experiment could. Furthermore, with cost as a main limiting factor, the need for 

enough replicates will often mean having fewer time points, although experimental 

data and theoretical analysis has shown that under reasonable assumptions, sampling 

time points at higher resolution is preferred over having more replicates (SEFER et al. 

2016).  

While the collection of gene expression time series data is increasingly viable, 

the main challenge remains in the data analysis stage. Many studies default to using 

standard existing methods of analyzing static RNA-seq data, and although these 

methods are well established and are regularly integrated with other omics data (SPIES 

et al. 2017), there is now more awareness that these methods are not ideal for dealing 

with time course data (BAR-JOSEPH et al. 2012; SPIES et al. 2017). Time course data has 

very different underlying statistical assumptions that are not taken into account when 

using methods for analyzing static data, such as the temporal dependencies of the data 

and the correlation of genes between previous and subsequent time points (SPIES AND 

CIAUDO 2015). Many statistical and computational methods to analyze the 

exponential increase in data dimensionality and complexity are currently being 

developed to analyze gene expression data, but they all face non trivial challenges, and 

no benchmark has been achieved. 
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Statistical methods developed for microarray data analysis in the early 2000’s 

can be used as a starting point to study univariate time series (one gene at a time) of gene 

expression profiles over time, and identify genes and pathways that are differentially 

expressed in at least one or more time points over the entire time-course of 

experiments (SUBRAMANIAN et al. 2005; EFRON AND TIBSHIRANI 2007; LAW et al. 

2014). Recent advances in machine learning methods can also be used to cluster genes 

based on their temporal expression profiles (MONTERO AND VILAR 2014). However, a 

main challenge lies in multivariate time series analyses to find co-movement and lead-lag 

patterns between two gene expression trajectories, possibly accounting for spurious 

association caused by other genes. Some fields outside of genetics have a head start in 

developing and applying methods for analyzing similar multivariate dense time course 

data. In neuroimaging, brain scans such as MRIs and EEGs collect data throughout 

time to analyze connectivity between different brain regions (SETH et al. 2015), and 

diagnose conditions such as seizures, epilepsy, and brain tumors. In the financial 

sector, time series of the stock market can be used to build connectivity networks 

between firms and identify risk propagation (BILLIO et al. 2012; BASU et al. 2017). 

These advancements in time series analysis can and should still be used to inform 

methods and potential challenges of analyzing transcriptome dynamics. 

In biological systems, gene interactions are also dynamic, implying that 

temporal gene expression profiles should be able to unveil causal dependencies 

among genes and pathways. Given this domain knowledge of transcriptomics and the 
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types of results that would be most salient to researchers in the field, we chose to 

model the underlying behavior from first principles using Granger Causality (GC) 

analysis (GRANGER 1969). This type of analysis was developed from the field of 

econometrics, a branch of economics where mathematical and statistical models are 

used to describe economic systems. The causality concept proposed by GC is based 

on predictability, where if the prediction of future values for a time series is improved 

by having knowledge of the past of a second time series, then this second time series 

is said to be Granger causal for the first one (GRANGER 1969). This method facilitates 

the discovery of time series systems that are correlated with a lag in time, and infers 

causality from that lagged correlation. The defined causality between two systems can 

then be treated as an edge in a network, progressively characterizing the relationship 

of multiple correlated systems. 

 

Dense time course gene expression profiling of the Drosophila melanogaster 

innate immune response 

In most organisms, the first line of defense against pathogens is the innate 

immune response. In vertebrates, the innate immune response plays the vital role of 

activating the adapted immune response, which is based on antigen-specific selection 

of antibodies and receptors. Insects, on the other hand, do not have an adaptive 

immune response and must rely on the innate immune response to recognize 

common microbial structures - such as peptidoglycans - to mount a generic and 
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systemic response (ALBERTS et al. 2002). This response is characterized by the mass 

production of antimicrobial peptides (AMPs) by the humoral response, and the 

internalization and degradation of pathogens by the cellular response (LEMAITRE AND 

HOFFMANN 2007). Launching an effective immune response is vital to an organism, 

because if a pathogen is not neutralized and cleared the resulting infection could kill 

the host. On the other hand, immune responses are energetically costly, giving rise to 

resource trade-offs between the immune response and other vital processes such as 

reproduction (SCHWENKE et al. 2016). As a consequence of these trade-offs, the 

activation and repression of the immune response is tightly regulated (AGGARWAL 

AND SILVERMAN 2008), and this tuning is likely to be mediated through a series of 

regulatory and feedback properties of the immune system.  

In Chapter 3, I present the transcriptome dynamics profiling of the Drosophila 

melanogaster innate immune response. I performed a dense time-course RNA-seq 

experiment, and analyzed it by applying a broad range of statistical methods, including 

temporal clustering and gene set expression analysis, and used novel applications of 

Granger causality to construct putative gene interaction networks. The fruit fly 

Drosophila melanogaster is an ideal model organism to study transcriptome dynamics 

because it is a highly tractable laboratory system, allowing a diverse range of genetic, 

genomic, and molecular tools to aid scientific research on the system. Drosophila also 

possess many immune genes and pathways that are homologous to those of other 

organisms such as mammals. My experiment revealed distinct temporal patterns of 
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transient and sustained responses to infection that occur over different time scales, I 

provide several novel functional annotations for previously uncharacterized genes, 

and suggest new interactions governing temporal gene regulation of the immune 

response and trade-offs with metabolism and repair. 

 

 

STUDYING THE INFLUENCE OF HOST GENETICS ON GUT 

MICROBIOME COMPOSITION 

Organisms harbor a complex array of microbes, which affect how organisms 

interact with the world. These microbes interact with biological processes of the host, 

affecting fitness and disease. Some symbiotic relationships with these microbes are so 

important the hosts co-evolve with them: squids and their light organs evolved just to 

house bioluminescent bacteria that help squids camouflage from predators, aphids 

have bacteria that give them nutrients otherwise inaccessible to them and that 

transmit vertically to next generations (SHAPIRA 2016). In humans, the gut 

microbiome is estimated to house 1014 bacteria, providing an immense potential 

diversity of host-symbiont interactions (SHAPIRA 2016). The dynamics and 

mechanism by which these host-microbe interaction drives co-adaptation is currently 

under study. In mammals, the gut microbiome gets colonized during birth, and its 

composition and abundance is affected by multiple factors, such as diet, disease, and 

antibiotics. This gut microbiome modulates immune and metabolic phenotypes 
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(ROUND AND MAZMANIAN 2009; TURNBAUGH et al. 2009; GARRETT et al. 2010; 

VEIGA et al. 2010; RIDAURA et al. 2013) as well as and disease incidence. The 

association between gut microbiome populations and disease has been observed in 

obesity (LEY et al. 2005), heart disease (FAVA et al. 2006), diabetes (WEN et al. 2008), 

and liver cancer (YOSHIMOTO et al. 2013; SANDUZZI ZAMPARELLI et al. 2017), among 

others.  

To accurately characterize the relationship between the gut microbiome and 

different phenotypic outcomes, it becomes vital to understand the ways in which the 

microbiome itself can be modulated by both environment and genetic factors. While 

it has long been clear that the gut microbiome composition is strongly impacted by 

environmental factors (ROTHSCHILD et al. 2018), studies have identified many genetic 

variants significantly associated with specific bacterial taxa abundances (DAVENPORT 

et al. 2015; BONDER et al. 2016; TURPIN et al. 2016; WANG et al. 2016; GOODRICH et al. 

2017; IGARTUA et al. 2017; ROTHSCHILD et al. 2018). 

To even begin to be able to study how host and microbiome could be 

interacting, we need to accurately survey and characterize the microbiome. We can do 

this by performing 16S rRNA sequencing or metagenomic sequencing (GOODRICH et 

al. 2014a). 16S rRNA sequencing is currently the most common method for surveying 

bacterial taxonomy. The targeted 16S rRNA gene is present in all bacteria, and codes 

for the 16S ribosomal RNA which is one of the components of a subunit in a 

bacterial ribosome. This gene is variable enough across different bacteria that it acts as 



 18 

a signature sequence ideal for bacterial identification (YANG et al. 2016). More 

specifically, it has nine hypervariable regions (V1-V9) with different degrees of 

sequence conservation across taxa. The most variable regions allow us to distinguish 

between different species, while more conserved regions only allow broader 

taxonomic levels to be distinguished. Sub-regions V4-V6 are specifically 

recommended to optimize the phylogenetic resolution of bacterial identification 

(YANG et al. 2016). 16S rRNA sequencing, however, only provides data on 

microbiome membership and abundance. Metagenomics sequencing, on the other 

hand, surveys the entire genomes of all organisms in a sample, including viruses and 

fungi, and thus it can also provide information about functional pathways (also known 

as the hologenome). This means, however, that metagenomics sequencing is more 

expensive as it also requires more sequencing depth. Therefore, the choice in 

sequencing method will depend on the number of samples, experimental design, and 

desired data output. 

Once microbiome membership and abundance information is collected, these 

data can be compared between healthy and disease states (such as cirrhosis (BAJAJ et 

al. 2012; BAJAJ et al. 2014), Non-Alcoholic Fatty Liver Disease (JIANG et al. 2015, and 

breast cancer (HIEKEN et al. 2016; ZHU et al. 2018)). In these scenarios, microbe 

abundance is analyzed with methods similar to those of transcriptomics, and 

“differential expression” can be calculated using pairwise comparisons. When 

studying the influence of the host genome on the microbiome, we can treat and 
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analyze microbiome composition as a quantitative phenotype, allowing the estimation 

of heritability of each microbiome attribute and the identification of quantitative trait 

loci are correlated with a certain bacterial taxa abundance (BENSON et al. 2010; 

MCKNITE et al. 2012; O'CONNOR et al. 2014; TURPIN et al. 2016).  

Current human studies face a main limitation in not being able to control 

environmental factors such as diet, meaning that only the strongest genetic effects can 

be detected. Strategies to circumvent this limitation include twin studies, where 

monozygotic and dizygotic twins will have different degrees of genotype sharing, but 

similar early shared environment on their gut microbiota, such as maternal effect and 

familial dietary preferences (GOODRICH et al. 2014b). Another strategy is to study 

human populations that live in isolated closed communities such as the Hutterites, 

who all share the same diet by communally preparing and eating the same meals in a 

colony dining room (DAVENPORT et al. 2015). Mouse studies, on the other hand, 

provide total control of diet and other environmental factors. This, coupled with well-

defined genetic differences among inbred lines, provide a good basis to dissect genetic 

and environmental factors affecting microbiome composition. Typical lab inbred mice 

strains, however, have limited genetic variation that does not accurately represent 

genetically diverse human populations. Heterogeneous mice stocks such as the 

Diversity Outbred mice were developed specifically to address this issue, providing an 

exciting new resource for research applications (CHURCHILL et al. 2012). 
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High-resolution QTL mapping with Diversity Outbred mouse strains 

identifies genetic variants that impact gut microbiome composition 

The Diversity Outbred (DO) mouse population was designed to be the most 

genetically diverse mouse resource available. The DO mouse stock has highly 

heterogeneous genomes as a result of their very particular breeding scheme, where 

they are derived from the same eight progenitor lines used to establish the 

Collaborative Cross (CC) (COLLABORATIVE CROSS CONSORTIUM 2012). The eight 

progenitor lines included five classical inbred strains (A/J, C57BL/6J, 129S1/SvImJ, 

NOD/ShiLtJ, and NZO/HlLtJ), and three wild-derived strains representing different 

Mus musculus subspecies (CAST/EiJ, PWK/PhJ, and WSB/EiJ) (COLLABORATIVE 

CROSS CONSORTIUM 2012). The DO population was first established by randomly 

outbreeding CC mice, and is now maintained by randomly assigning breeding pairs 

for the next generation (CHURCHILL et al. 2012). This results in a robust population of 

highly diverse mice, where each individual DO mouse has a unique combination of 

segregating alleles, representing a unique mosaic of the original eight progenitor lines 

(Figure 1.2). Thanks to this outbreeding strategy, the DO mouse population has 

much higher levels of heterozygosity, more similar to the human condition than other 

inbred mouse resources. This characteristic of the DO mouse population allows a 

substantially increased genetic mapping resolution (CHURCHILL et al. 2012), while still 

being able to fully control their environment. A limitation of the DO mouse 

outbreeding design is that because each individual DO mouse is a unique mosaic of 
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the eight original founder strains, the genotype of each DO mouse is irreproducible. 

Replicating results within the DO population is thus more difficult than with inbred 

lines, as it is the case in natural populations. However, this limitation could be partially 

circumvented by using the reproducible genotypes of the CC and the eight founder 

lines as a form of validation (SVENSON et al. 2012). The CC/DO founder progenitor 

lines have already successfully been used to identify genetic associations with intestinal 

microbiome composition (O'CONNOR et al. 2014), further motivating the profiling of 

the gut microbiome in the DO mouse population. 

 

 

 
 
Figure 1.2. Development of Diversity Outbred mouse panel. Simplified crossing scheme from 
eight founder lines. A representation of the genome of a single DO mouse (on the right) shows the 
mosaic composition with each color representing each original founder. 
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In Chapter 4, I present the gut microbiota profiling of 247 Diversity Outbred 

mice using 16S rRNA gene sequencing, and study the influence of host genetics on 

gut microbiome composition by performing a high-resolution QTL mapping in the 

Diversity Outbred mouse panel using microbiome abundances as a response variable. 

This work uncovered strong evidence of host genetic factors associated with specific 

bacterial taxa abundances and functional molecular pathways, providing insight into 

the complex dynamics between host genetics and the gut microbiome, and isolating 

potential associations between microbial taxa and QTLs that may be involved in 

pathological disease phenotypes. 
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CHAPTER 2 

 

EVALUATING THE PERFORMANCE OF SELECTION SCANS TO 

DETECT SELECTIVE SWEEPS IN DOMESTIC DOGS1 

 

ABSTRACT 

Selective breeding of dogs has resulted in repeated artificial selection on breed-

specific morphological phenotypes. A number of quantitative trait loci associated with 

these phenotypes have been identified in genetic mapping studies. We analyzed the 

population genomic signatures observed around the causal mutations for 12 of these 

loci in 25 dog breeds, for which we genotyped 25 individuals in each breed. By 

measuring the population frequencies of the causal mutations in each breed, we 

identified those breeds in which specific mutations most likely experienced positive 

selection. These instances were then used as positive controls for assessing the 

performance of popular statistics to detect selection from population genomic data. 

We found that artificial selection during dog domestication has left characteristic 

signatures in the haplotype and nucleotide polymorphism patterns around selected 

loci that can be detected in the genotype data from a single population sample. 

                                                        
1 Published as: Schlamp F, Made J, Stambler R, Chesebrough L, Boyko AR, and Messer PW (2016) 
Evaluating the performance of selection scans to detect selective sweeps in domestic dogs. 
Molecular Ecology, 25: 342-356. doi:10.1111/mec.13485 
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However, the sensitivity and accuracy at which such signatures were detected varied 

widely between loci, the particular statistic used and the choice of analysis parameters. 

We observed examples of both hard and soft selective sweeps and detected strong 

selective events that removed genetic diversity almost entirely over regions >10 Mbp. 

Our study demonstrates the power and limitations of selection scans in populations 

with high levels of linkage disequilibrium due to severe founder effects and recent 

population bottlenecks. 

 

INTRODUCTION 

Identifying the molecular targets on which positive selection has acted 

constitutes one of the key challenges for modern population genetics. Ideally, positive 

selection is inferred directly from the frequency changes of selected alleles in a 

population over time (MALASPINAS et al. 2012; BANK et al. 2014; FOLL et al. 2015). 

However, such approaches require data on historic allele frequencies, otherwise they 

remain limited to situations of particularly rapid evolution that can be observed in real 

time. 

Positive selection can also be detected from cross-population comparisons, 

based on the prediction that allele frequencies should differ between subpopulations if 

positive selection has acted in only one of them (LEWONTIN AND KRAKAUER 1973; 



 25 

SABETI et al. 2007; AKEY et al. 2010). While such tests do not require time-course data, 

they remain limited to scenarios where selection acted only in a subset of individuals. 

The most broadly applicable strategy for identifying positive selection is to 

search for its signatures in a single population sample, taken at a single point in time. 

Approaches from this category aim to identify the characteristic signatures of selective 

sweeps (KAPLAN et al. 1989; BARTON 2000; MAYNARD AND HAIGH 2007) which 

include a local trough in genetic diversity around the selected locus (KIM AND 

STEPHAN 2002), characteristic biases in the frequency distributions of single-

nucleotide polymorphisms (SNPs) (BRAVERMAN et al. 1995; FAY AND WU 2000) and 

the presence of a long haplotype that extends much farther than expected under 

neutrality (SABETI et al. 2002). These signatures form the basis for most popular scans 

for selective sweeps (VITTI et al. 2013). 

However, positive selection may not always produce selective sweeps. The 

classic selective sweep model presupposes that adaptation occurs from a single de 

novo mutation (HERMISSON AND PENNINGS 2005). Yet adaptation could often 

proceed from alleles that are already present as standing genetic variation (SGV) (ORR 

AND BETANCOURT 2001; INNAN AND KIM 2004; BARRETT AND SCHLUTER 2008). 

This should be particularly common in the evolution of polygenic traits, such as body 

size, where multiple trait-affecting alleles may be segregating in the population at any 

time (PRITCHARD et al. 2010). 
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Whether adaptation from SGV still produced sweep-like signatures depends on 

the initial frequency and age of a selected allele at the time when positive selection 

commences (PRZEWORSKI et al. 2005; PENNINGS AND HERMISSON 2006b). If the 

selected allele has been around long enough to recombine onto different haplotypes 

prior to the onset of positive selection, several haplotypes may then increase in 

frequency simultaneously. In this case, diversity is not necessarily reduced in the 

vicinity of the selected site and SNP frequency spectra can actually become biased 

towards intermediate frequencies (PRZEWORSKI et al. 2005). Very similar patterns are 

produced when adaptation involves several de novo mutations that independently 

emerged on distinct haplotypes, which is expected in very large populations or when 

mutational target sizes are large (PENNINGS AND HERMISSON 2006a; KARASOV et al. 

2010; MESSER AND PETROV 2013). The patterns generated by adaptation from SGV 

and recurrent de novo mutation are commonly referred to as soft selective sweeps, in 

contrast to the classical hard selective sweep, where only a single haplotype rises in 

frequency (HERMISSON AND PENNINGS 2005). 

Most scans for positive selection have been designed and tested exclusively 

under the assumption of a hard selective sweep model, and we do not know whether 

they provide a comprehensive picture of the mode and frequency of positive 

selection, or whether they identify only a subset of instances that is biased towards 

hard selective sweeps. Simulation studies have shown that selection scans quickly lose 

power for adaptation from SGV as the initial frequency of the selected allele increases 
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(PRZEWORSKI et al. 2005; TESHIMA et al. 2006; GARUD et al. 2015). However, it is 

unclear whether the alleles involved in adaptation from SGV are typically rare or 

frequent prior to the onset of selection. 

Here, we use a set of known quantitative trait loci (QTLs) in the domestic dog 

(Canis lupus familiaris) as positive controls to examine the performance of popular 

selection scans in a real biological system. Our positive control loci were identified by 

genomewide association studies, rather than selection scans, and thus are not 

necessarily biased towards hard selective sweeps from the outset. We focus specifically 

on a subset of QTLs for which we know the causal mutations and could thus measure 

their frequencies in individual dog breeds. This information allowed us to assess 

which mutations have likely experienced positive selection in which breeds. 

There are over 400 dog breeds today that have been bred for highly specific 

and diverse physical traits, including coat color, size, skull shape and behavioral traits 

such as obedience, herding and hunting. Modern dogs were the first animal to be 

domesticated, before cattle and horses, and domestication from their wolf ancestors 

goes back at least 15 000 years. Breeding programs throughout history, however, have 

resulted in periodic population bottlenecks, inbreeding, high levels of linkage 

disequilibrium in individual breeds and a prevalence of inherited diseases such as 

cancer, heart disease and hip dysplasia, among others (LINDBLAD-TOH et al. 2005). 

These features make purebred dogs a particularly challenging system for population 

genetic analysis. 
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MATERIALS AND METHODS 

Genotyping 

Genotyping data are from (SHANNON et al. 2015) briefly, blood was collected 

through cephalic venipuncture under Cornell IACUC # 2005-0151, and genomic 

DNA was extracted using a standard salt precipitation from EDTA blood samples 

and stored in the Cornell Veterinary Biobank. 

Genotyping was performed using the Illumina 170k CanineHD array, which 

was developed using the dog reference sequences (generated from a Boxer and a 

Poodle) and pooled DNA from a series of European and Asian breeds (Irish 

Wolfhounds, West Highland White Terriers, Belgian Shepherds and Shar-Peis) as well 

as pooled wolf DNA as described in (VAYSSE et al. 2011). We customized this array by 

adding 12 143 markers ascertained from whole genome sequencing data from mostly 

Eurasian village dogs (AUTON et al. 2013), approximately equally split between East 

Asian and Western dogs. Markers were preferentially chosen for being in coding 

regions but poorly tagged by existing array markers. The genotypes were combined 

with published CanineHD data from (AXELSSON et al. 2013). The full SNP panels (3 

million SNPs for the CanineHD array design and 14 million SNPs for the custom 

array content) were pruned for evenness, ability to design probe sequence and 

efficiency. In general, no effort was made to differentially enrich one source or 

another in particular regions of the genome, except that a subset of custom SNPs 
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were specifically included in the IGF1 and MSRB3 regions to facilitate fine mapping 

of those loci. No such enrichment of markers was made for the other 10 loci. 

The unimputed data set contained a call rate over 99.1%, and no locus 

contained >5% missing data. Imputation was performed because some methods to 

detect positive selection require no missing data, but the proportion of imputed 

genotypes is negligible and unlikely to bias the results. 

Phasing was performed for all autosomal and X chromosome markers with 

minor allele frequency (MAF) >0.01 using SHAPEIT (DELANEAU et al. 2013). Select 

regions showing strong evidence of positive selection when comparing allele 

frequency data across breeds and associated with a known phenotypic effect were 

chosen for analyzing selection signatures in each population. 

 

Frequency estimates of causal mutations in breeds 

Selection signatures were estimated from a randomly selected subset of 25 

unrelated individuals per breed. The allele frequency of the causal variant (when 

known) or the top associated variant was estimated from the entire data set 

(SHANNON et al. 2015) based on a much larger number of individuals genotyped (25–

722 dogs per breed). 
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Selection scans 

The hapFLK statistic was calculated using the program HapFLK (version 1.2) 

(FARIELLO et al. 2013), downloaded from: https://forge-

dga.jouy.inra.fr/projects/hapflk (August 2015). The population tree was obtained by 

hapFLK to compute Reynolds distances and the kinship matrix across all 25 breeds 

genomewide, using Culpeo Fox as the outgroup. The hapFLK scan was run using all 

25 breeds genomewide. We used the following parameters: eight clusters (−K 8), 20 

EM runs to fit the LD model (−nfit=20), phased data (–phased). Once hapFLK 

values were generated, we calculated P-values by fitting a standard normal distribution 

genomewide in R (FARIELLO et al. 2013). 

iHS scans were performed using the program Selscan (version 1.0.4) (SZPIECH 

AND HERNANDEZ 2014), downloaded from: http://github.com/szpiech/selscan 

(April 2015). All scans were run on polarized data with default iHS Selscan 

parameters: –max-extend 1 000 000 (maximum EHH extension in bp), –max-gap 200 

000 (maximum gap allowed between two SNPs in bp), –cut-off 0.05 (EHH decay cut-

off). We used the recombination map of Auton et al. (AUTON et al. 2013). The output 

results for each SNP were then frequency-normalized over all chromosomes using the 

script norm, provided with Selscan. This normalization was also performed using 

default parameters: –bins 100 (number of frequency bins). The fractions of SNPs with 

values above 2.0 were calculated over genomic windows of specified sizes (25, 51, 
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101, 201 neighboring sites on our chip) and the resulting ratio was assigned to the 

position of the central SNP of the window, as suggested in (VOIGHT et al. 2006). 

In contrast to iHS, which measures the length of haplotypes in terms of genetic 

distance and thereby requires specification of a recombination map, the nSL statistic 

measures haplotype lengths in terms of the number of segregating sites in the sample, 

making it more robust to recombination rate variations. nSL scans were performed 

using the original implementation of the statistic (FERRER-ADMETLLA et al. 2014), 

downloaded from: 

http://cteg.berkeley.edu.proxy.library.cornell.edu/~nielsen/resources/software/ 

(April 2015). All scans were run using default nSL parameters. The output results 

were normalized and averaged over windows following the same procedures used for 

iHS. 

The H statistic was estimated using the program h-scan (version 1.3), 

downloaded from: http://messerlab.org/resources/ (April 2015). The H statistic 

measures the average length of pairwise haplotype homozygosity tracts around a given 

genomic position in base pairs. The length of the homozygosity tract ℎ#$(𝑥) for a pair 

of samples (𝑖, 𝑗) at genomic position 𝑥 is defined as the distance between the first 

heterozygous site to the left and to the right of 𝑥. The value of 𝐻(𝑥) at position 𝑥 is 

then defined as the average over all pairs in the sample: 𝐻(𝑥) = -
.(./0)

	∑ ℎ#$(𝑥)#3$ . 
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H values were calculated at each SNP position in the data set. All scans were run 

using default H-scan parameters. 

H12, Tajima's D and π values were calculated over windows of a fixed number 

of SNPs on our genotyping chip (d = 25, 51, 101 and 201). The estimated values of 

each statistic were then assigned to the position of the central SNP of the window. 

H12 values were estimated following the definition provided in (GARUD et al. 2015). 

Tajima's D values were variance-normalized according to the formulas given in 

(TAJIMA 1989). Note that because all scans were run on a fully imputed data set, 

haplotype clustering for H12 is unambiguous in this study. 

CLR is a likelihood-ratio test that compares the SNP frequency spectrum in 

candidate regions with the genomic background to identify regions with sweep-

characteristic deviations. CLR scans were performed using the software SweeD 

(version 3.1) (PAVLIDIS et al. 2013), downloaded from: http://sco.h-

its.org/exelixis/web/software/sweed/ (April 2015). For each chromosome CLR was 

calculated with a resolution of 10 000 bins, assuring that the density of bins is much 

higher than the density of SNPs in each chromosome. All CLR scans were run on 

unfolded spectra using the polarized data. 
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RESULTS 

A set of 12 positive controls for studying the signatures of positive selection in 

dogs 

The molecular basis of morphological phenotypes selected during 

domestication of dog breeds has been extensively studied, and dozens of QTL for 

breed-specific phenotypes have been identified, which often explain surprisingly high 

fractions of phenotypic variance (RIMBAULT et al. 2013). We compiled a set of 12 

known QTLs distributed across nine chromosomes of the dog genome for which we 

know the specific mutations that are likely causal for breed-specific traits (Table 3.1). 

Our set includes mutations affecting body size [IGF1R, STC2, GHR and IGF1 

(RIMBAULT et al. 2013)], fur type [MC5R and KRT71 (CADIEU et al. 2009)], coat color 

[MC1R and TYRP1 (SCHMUTZ AND MELEKHOVETS 2012)], hair length [FGF5 

(CADIEU et al. 2009)], lip morphology (CHRNB1), ear morphology [MSRB3 (BOYKO 

et al. 2010)] and snout length [BMP3 (SCHOENEBECK AND OSTRANDER 2013)]. These 

loci are representative of loci that show evidence of strong selection based on elevated 

levels of divergence between breeds (AKEY et al. 2010; BOYKO et al. 2010; VAYSSE et 

al. 2011). Some QTLs known to be associated with breed-specific morphological traits 

were intentionally excluded from our analysis, because the causal mutations were 

either not well-tagged by markers in our data set [e.g. the insertion in the 3′UTR of 

RSPO2 associated with a furnishings phenotype (CADIEU et al. 2009)], or the locus 
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was very close to another locus [e.g. the size-related locus HMGA2 (RIMBAULT et al. 

2013) that is only 300 kbp away from MSRB3]. 

 

Table 2.1. Set of known QTLs with mutation frequencies in individual breeds 
 

 
 
The twelve QTLs included in our analysis span a wide range of phenotypic traits that likely 
experienced positive selection in particular subsets of breeds during the domestication of dogs. For 
nine of the 12 loci, at least one causal mutation for the phenotypic trait has been identified and for 
the remaining three loci (STC2, GHR, CHRNB1) we have promising candidate mutations. We 
focused on one such mutation for each locus (positions are specified in the first row of the table). 
For six of the 12 loci, these mutations are included on the genotyping chip. We studied 25 dog 
breeds in our analysis. Numbers in the cells specify the frequency of the known/likely causal 
mutations in each particular breed (Materials and Methods). Higher frequencies are indicated by 
darker shaded cells. 
 

We analyzed the population genetic signatures we observed around these 12 loci in 

population samples from 25 dog breeds, spanning a broad range of morphological 

variation (Table 2.1). For each of the 25 breeds, we genotyped a random sample of 25 

MC5R IGF1R STC2 GHR CHRNB1 MC1R MSRB3 TYRP1 IGF1 KRT71 FGF5 BMP3

chr:position 1:24430748 3:41849479 4:39182836 4:67040898 5:32382510 5:63694334 10:8037693 11:33326685 15:41220982 27:2539211 32:4509367 32:5231894
phenotypic trait fur type body size body size body size hangling lips coat color ear type coat color body size curly coat hair length snout length
causal? yes yes likely likely likely yes yes yes yes yes yes yes
included on chip? yes no no no yes yes no yes yes yes no no

Border Collie 0.02 0.01 0.31 0.62 0.43 0.01 0.95 0.28 0.49 0.09 0.68 0.00
Boxer 1.00 0.00 0.77 0.05 0.39 0.00 0.14 0.00 0.02 0.00 0.00 0.00
Cavalier King Charles Spaniel 1.00 0.00 0.99 1.00 0.78 0.81 0.01 0.00 1.00 0.00 0.79 0.00
Cocker Spaniel 0.97 0.04 0.61 0.71 0.12 0.70 0.00 0.04 0.96 0.01 0.42 0.00
Dachshund 0.96 0.88 0.20 0.85 0.33 0.09 0.00 0.03 0.80 0.00 0.28 0.00
English Setter 1.00 0.00 0.04 0.41 0.28 0.80 0.02 0.03 0.42 0.01 0.98 0.00
English Springer Spaniel 0.84 0.00 0.16 0.29 0.60 0.02 0.00 0.53 0.56 0.00 0.52 0.01
French Bulldog 1.00 0.02 0.19 0.24 1.00 0.26 0.65 0.00 0.94 0.00 0.02 0.98
German Shepherd 0.02 0.06 0.08 0.09 0.11 0.11 1.00 0.00 0.01 0.08 0.44 0.00
Golden Retriever 0.60 0.00 0.00 0.09 0.53 1.00 0.15 0.00 0.12 0.05 0.99 0.00
Havanese 0.51 0.22 0.66 0.74 0.16 0.52 0.32 0.25 0.94 0.32 0.73 0.00
Irish Wolfhound 0.99 0.00 0.00 0.00 0.72 0.00 1.00 0.00 0.00 0.00 0.14 0.00
Jack Russell Terrier 0.76 0.12 0.22 0.23 0.46 0.07 0.04 0.07 0.96 0.24 0.04 0.42
Labrador Retriever 0.31 0.00 0.14 0.20 0.10 0.61 0.28 0.31 0.42 0.01 0.09 0.00
Maltese 0.62 0.22 0.74 0.98 0.24 0.99 0.26 0.01 0.97 0.08 0.94 0.02
Miniature Schnauzer 0.69 0.14 0.23 0.94 0.42 0.10 0.89 0.01 1.00 0.01 0.03 0.97
Newfoundland 0.06 0.00 0.01 0.51 0.97 0.00 0.03 0.00 0.00 0.00 0.89 0.00
Papillon 0.33 0.36 0.86 0.31 0.83 0.03 0.47 0.00 0.97 0.00 0.89 0.02
Poodle 0.38 0.05 0.30 0.03 0.12 0.61 0.26 0.12 0.51 0.95 0.74 0.01
Rottweiler 0.99 0.00 0.00 0.01 0.02 0.01 0.73 0.00 0.89 0.00 0.11 0.00
Saint Bernard 0.20 0.11 0.00 0.02 0.96 0.00 0.00 0.00 0.04 0.00 0.48 0.00
Shetland Sheepdog 0.00 0.40 0.00 0.50 0.02 0.00 0.62 0.00 0.35 0.00 0.17 0.06
Shih Tzu 0.80 0.09 0.98 0.98 0.54 0.06 0.06 0.13 1.00 0.02 0.85 0.35
Vizsla 1.00 0.35 0.06 0.01 0.04 1.00 0.02 0.21 0.54 0.00 0.01 0.00
Yorkshire Terrier 0.70 0.73 0.79 0.68 0.24 0.00 0.00 0.02 1.00 0.00 0.36 0.00
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dogs at ~180 000 SNP markers, using a semi-custom SNP array (Materials and 

Methods). For six of the 12 loci, the known/likely causal mutations are included on 

the chip. Genotypes were then phased and imputed on the whole set, yielding 50 

haploid genomes for each of the 25 breeds (1250 genomes over the whole data set, 

see Materials and Methods). We polarized SNPs using allele information from 

Culpeo Foxes for SNPs where such information was available (99.46%) and assumed 

the minor allele to be the derived allele otherwise. To assess whether a particular 

mutation was likely under positive selection in a particular breed, we estimated 

population frequencies for the focal mutation at each of the 12 loci in each of the 25 

breeds (Table 2.1, Materials and Methods). 

 

Genomewide selection scans in 25 dog breeds 

We first used the hapFLK statistic (FARIELLO et al. 2013) to confirm that our 

12 positive controls indeed show signatures of positive selection in cross-population 

comparisons. hapFLK was developed to detect differences in haplotype frequencies 

across many populations, using an FST-based framework that also incorporates 

information about the hierarchical structure of the populations. Figure 2.1 shows the 

results from our genomewide hapFLK scan including all 25 breeds (only the 

chromosomes that contain positive controls are shown). Each of our 12 controls is 

associated with a significant peak (P < 0.05) in the hapFLK scan, with 7 of the 12 
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detected as extreme outliers (P < 0.001). Figure S2.1 shows the underlying 

hierarchical breed structure inferred by hapFLK. 

 

 
 
Figure 2.1. HapFLK results. The figure shows the results from the hapFLK scan performed over 
all 25 breeds. Results are shown only for those chromosomes that contain at least one of our control 
loci. The genomewide thresholds corresponding to P < 0.05 and P < 0.001 are shown as horizontal 
dashed lines. The locations of the control loci are indicated by vertical red lines. 
 
 

To test whether positive selection at our control loci has also left detectable 

signatures in the patterns of genetic variation in individual breeds, we ran genomewide 

scans using seven popular statistics for identifying sweep signatures from a single 

population sample. We studied both SNP frequency-based and haplotype-based 

statistics. 

Tajima's D is a popular frequency-based statistics that compares the number of 

segregating sites (s) in a population sample with levels of heterozygosity (π) to detect 

genomic regions with an excess of low or high frequency SNPs compared to neutral 

expectations (TAJIMA 1989). Another widely used statistic is CLR, which underlies the 

programs Sweepfinder (NIELSEN et al. 2005) and SweeD (PAVLIDIS et al. 2013). We 
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included both Tajima's D and CLR as two classic representatives of frequency-based 

statistics in our study. We also included pairwise heterozygosity per nucleotide (π). 

Haplotype-based statistics search for elevated levels of haplotype homozygosity 

expected around a sweep locus. One of the most popular approaches in this category 

is integrated haplotype score (iHS), which searches for loci where the derived allele 

resides on a longer haplotype than the ancestral allele (VOIGHT et al. 2006). In addition 

to iHS, we also included the nSL statistic, a recent modification of iHS that has 

improved power in detecting soft sweeps (FERRER-ADMETLLA et al. 2014). Note that 

iHS and nSL are both targeted at the identification of incomplete sweeps, where the 

selected allele is not fixed in the sample. We further included the H12 statistic that has 

been developed for the detection of both hard and soft sweeps (GARUD et al. 2015). 

Finally, we included a simple haplotype statistic (H) that measures the average length 

of pairwise haplotype homozygosity tracts around each SNP in base pairs (Materials 

and Methods). 

All of the above statistics, except H require specification of analysis parameters. 

For iHS and nSL, minimum haplotype homozygosity levels need to be specified 

below which haplotypes are no longer extended. To improve sensitivity, iHS and nSL 

are also combined over neighboring data points, which introduces a window-size 

parameter (VOIGHT et al. 2006). CLR requires the specification of the number of grid 

points along the chromosome. H12, Tajima's D and π require specification of the 
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length of an analysis window over which their values are estimated. These windows 

are typically defined in terms of a fixed number of SNPs. Given that SNPs in our data 

were estimated from all 25 breeds, we can either define such windows using all SNP 

on our chip, or only those SNPs that are actually segregating in the particular breed of 

interest. We decided to define windows using all SNPs on our chip to make results 

comparable between breeds. Note that this may be considered an unfair advantage to 

the π and H12 statistics, as it incorporates cross-population information: Consider, for 

example, a window of 25 neighboring SNPs identified using information from all 

breeds, for which diversity is depleted entirely in a particular breed. In that case, π = 0 

and H12 will yield a value of one, as only a single haplotype will be present in the 

window. However, it turns out that in practice, the performance of these statistics is 

not strongly affected by whether we define window sizes using all SNPs on our chip, 

or just the segregating sites in the particular breed for which the given statistic is 

estimated, as we will show below. 

Figure 2.2 shows the results of the seven statistics (iHS, nSL, H, H12, CLR, 

Tajima's D and π) for the example of French Bulldogs. Different statistics vary 

markedly in appearance and statistical properties, although some statistics are more 

similar than others. As expected, iHS and nSL identify largely overlapping candidate 

regions. Likewise, H12 and H behave similar to each other, consistent with the fact 

that both statistics measure local levels of haplotype homozygosity (although H12 

measures homozygosity over a window of fixed size, whereas H measures the average 
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length of pairwise homozygosity tracts around a SNP in the sample). Tajima's D and π 

yield similar results as well, suggesting that the signal in Tajima's D in regions with 

negative values is driven primarily by local reductions in π. Increasing window sizes 

generally tends to smoothen results for the window-based statistics, reducing noise at 

the price of lowered sensitivity. Figure S2.2 shows the results of the scans in French 

Bulldogs when defining windows using only those SNPs that are actually segregating 

in our sample. Results are almost indistinguishable between the two approaches, 

suggesting that our choice of defining window sizes using all SNP on the chip does 

not have a large effect on the analysis. Selection scans for all 25 breeds are presented 

in Figure S2.3. 
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Figure 2.2. Single population selection statistics in French Bulldogs. Results for iHS, nSL, H, 
H12, Tajima's D, CLR and π along those chromosomes that harbor at least one of our positive 
controls. For iHS, nSL, H12, Tajima's D and π, the blue lines show results for a window size of 25 
SNPs, grey lines show results for a larger windows of 201 SNPs. Note that signals of positive 
selection correspond to higher values of iHS, nSL, H, H12 and CLR, but lower values of π and more 
negative values of Tajima's D. Horizontal dashed lines indicate the 95% quantile cut-offs for the 
given statistic and window size, which we estimated for each chromosome separately. The positions 
of the controls are indicated by vertical red lines. The width of these lines corresponds to the 
frequency at which the causal mutation was observed in the breed in our sample (thin lines: low 
frequency; thick lines: high frequency). Scans for all 25 breeds are presented in Figure S2.3. 
 
 
 

Note that our SNP data were obtained from a genotyping chip, rather than 

direct sequencing (Materials and Methods). Low-frequency SNPs are therefore 

underrepresented. This should systematically bias Tajima's D values towards more 

positive values and may also affect the CLR statistic. However, as we expect these 

biases to be present genomewide, relative comparisons between different regions 

along the genome should remain informative. Note also that levels of nucleotide and 
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haplotype diversity vary widely between breeds and that our data set covers a wide 

range of these values (Figure 2.3). 

 

 

Figure 2.3. Strong differences in nucleotide and haplotype diversity between breeds. The 
figure shows the average genomewide levels of nucleotide heterozygosity (π) and length of pairwise 
haplotype homozygosity tracts (H) in each breed. Values were estimated across all genomewide SNP 
positions for the given breed. Values of π were estimated using a window size of 51 SNPs. Box plots 
show medians with first and third quantiles. Note that these values were obtained from our 
genotyping chip, which comprises only a subset of polymorphic sites. The true diversity levels will 
be higher and homozygosity stretches will be shorter. 
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Genomewide outlier characteristics 

Our genomewide scans reveal characteristic differences in the number, sizes 

and distributions of ‘peaks’ identified by the seven selection statistics. To quantify 

these differences, we assigned peaks across the genome using an outlier criterion: We 

considered all data points with value above a given chromosome-wide quantile 

threshold (σ) as candidates for positive selection. For each such data point, we then 

defined a peak as the window of radius d base pairs around its genomic position. 

Overlapping peaks were combined into a single peak. 

We employed a simple outlier approach, rather than using an explicit neutral 

null model, as such a model would require information about the particular 

demographic history of each individual breed. Unfortunately, we do not generally 

know much about these demographic histories, except that they can be complicated 

and differ profoundly between breeds. Our outlier criterion does not require 

knowledge of demography, but it cannot provide us with information about false-

discovery rates. However, in our study, we focus on assessing the performance of 

selection scans at known positive controls, which is conceptually different from the 

discovery of novel targets in that we are not generally worried about the detection of 

false positives. Instead, we want to study whether scans correctly place the controls 

among the top signals genomewide. Our rationale is that our control loci should be 

located in or near the regions with the strongest signals. The simple outlier approach 
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allows us to draw general conclusions about the number and distribution of such 

regions identified by each statistic under a given threshold criteria. 

Table 2.2 shows the average number of peaks identified genomewide per 

breed and the average fraction of the genome covered by these peaks, using two 

different quantile thresholds (σ = 0.95 and σ = 0.99) and three window radii (d = 10, 

50 and 250 kbp) for each statistic tested. As expected, lower thresholds and larger 

peak radii both tend to produce more peaks and larger fractions of the genome 

covered than higher thresholds and smaller radii. Values range from ~600 peaks 

identified genomewide per breed by CLR under the 0.95 criterion with d = 10 kbp, to 

only ~10 peaks identified genomewide per breed for iHS under the 0.99 criterion with 

d = 250 kbp. Note that nucleotide heterozygosity is very low in our data set: on 

average, π~10−5 per site for the breeds in our data set (Figure 2.3). Thus, 

neighboring SNPs tend to be several kbp apart, which is why we chose rather large 

windows. 
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Table 2.2. Genomewide peak statistics 
 

 
 
The table shows the number of peaks identified by each statistic for a given quantile threshold (σ) 
and window radius (d) along those chromosomes that harbor at least one of our positive controls, 
averaged across all breeds. The numbers in parentheses specify the average percentage of the 
genome that is covered by the peaks in the particular scenario. 
 
 
Performance of selection scans at positive controls 

We next assessed the performance of each statistics in identifying signals of 

positive selection at each positive control locus. This was performed by measuring the 

distance between the causal sweep mutation and the next data point with a value 

above the 0.95 chromosome-wide quantile of the given statistic. If the statistic yielded 

a value above the 0.95 quantile at the actual causal mutation, we set the distance to 

zero. We used chromosome-wide quantiles, rather than genomewide quantiles, 

because levels of nucleotide and haplotype diversity vary systematically between the 

different chromosomes within a breed (Figure S2.3). 

iHS.25 98.1 (13.3%) 87.7 (14.4%) 70.6 (19.0%) 40.2 (3.2%) 34.3 (3.67%) 28.8 (5.5%)
iHS.201 20.4 (6.0%) 18.7 (6.3%) 16.2 (7.3%) 12.2 (2.7%) 11.4 (2.8%) 9.6 (3.4%)
nSL.25 124.8 (8.4%) 110.5 (9.8%) 86.4 (15.5%) 45.2 (1.9%) 40.1 (2.4%) 33.4 (4.5%)
nSL.201 24.8 (4.9%) 22.4 (5.2%) 18.4 (6.4%) 15.4 (1.2%) 13.7 (1.3%) 11.6 (2.1%)
H 115.2 (5.9%) 68.5 (7.1%) 36.5 (9.9%) 64.1 (1.4%) 42.0 (2.0%) 23.6 (3.8%)
H12.25 170.7 (5.9%) 154.0 (7.8%) 115.9 (15.7%) 64.4 (1.7%) 59.8 (2.4%) 50.3 (5.6%)
H12.201 43.0 (5.4%) 40.5 (5.9%) 33.6 (8.0%) 20.8 (1.4%) 19.7 (1.7%) 16.9 (2.7%)
TD.25 207.1 (5.3%) 162.1 (7.5%) 131.8 (16.0%) 57.2 (1.1%) 47.3 (1.7%) 42.7 (4.3%)
TD.201 65.6 (4.9%) 44.1 (5.5%) 30.8 (7.6%) 31.5 (1.0%) 21.5 (1.3%) 15.5 (2.4%)
CLR 589.5 (6.4%) 430.4 (12.3%) 258.1 (31.7%) 88.6 (1.2%) 70.6 (2.1%) 57.8 (5.8%)
π.25 345.0 (4.7%) 251.3 (8.1%) 197.1 (21.3%) 110.5 (1.0%) 87.4 (2.1%) 79.8 (7.0%)
π.201 92.4 (5.7%) 55.9 (6.6%) 35.8 (9.1%) 53.2 (1.8%) 30.9 (2.2%) 20.0 (3.6%)

cutoff σ=0.95 cutoff σ=0.99
d =10000 d =50000 d =250000 d =10000 d =50000 d =250000
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A close distance between a causal mutation and an outlier data point is not 

itself a clear indication that the given statistic has high power in detecting the locus. 

The close distance could simply be due to chance if values of the statistic fluctuate 

fast along the chromosome, so that any random genomic position would typically be 

close to a data point with value above the 0.95 threshold. To assess the significance of 

a measured closest distance, we therefore calculated empirical P-values for observing 

the given or a shorter distance by chance, based on the distribution of closest 

distances at random genomic locations in the particular chromosome and breed. Note 

that these empirical P-values are not P-values in the regular sense obtained from a 

neutral null model, but simply indicate the extent to which the observed distance is an 

empirical outlier regarding the chromosome-wide distribution. 

The resulting P-values for all locus/breed combinations in which the causal 

allele has a frequency of at least 50% are shown in Table 2.3. For the window-based 

statistics, we show result for window sizes 25, 51, 101 and 201 SNPs. The actual 

distances between the causal mutation and the closest outlier are provided in Table 

S2.1. 

Table 2.3 shows that there is substantial variation in the ability to detect 

signatures of positive selection among different statistics, loci and breeds. As 

expected, iHS and nSL produce rather similar results. Interestingly, H12, Tajima's D 

and π also appear to be more similar to each other than to the other statistics. H12 
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identifies the largest number of locus/breed combinations, at least when using the 

small windows size of 25 SNPs (Table 2.4). iHS and nSL identify only one or two 

(depending on window size) of the 15 fixed sweeps under a 0.05 significance level. 

They fail to identify any fixed sweep when using a stricter 0.001 significance level. 

These particular results for iHS and nSL are not surprising, given that both statistics 

were designed to detect incomplete sweeps. CLR does identify several sweeps under 

the 0.05 significance level but also does not detect any sweep under the 0.001 

significance level. H and π have lower performance than H12 and Tajima's D but 

better performance than CLR, iHS and nSL, especially under the stricter 0.001 

significance level. 
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Table 2.3. Performance of selection scans at individual QTLs 
 

 
The table shows for each locus the breeds ordered by the frequency of the causal allele in the 
particular breed (only breeds with frequency above 50% are shown). The coloring of the cells 
specifies the P -value of the measured distance between the causal mutation and the closest data 
point that lies above the 95% threshold for the given statistic. Our empirical P -values were 
calculated from the empirical distributions of closest distances for random genetic loci. Different 
statistics vary widely in whether they detect signatures of positive selection for a given locus/breed 
combination. In general, signatures of positive selection tend to be detected more frequently, the 
higher the frequency of the selected mutation in the specific breed. 
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Table 2.4. Scan performances under different significance thresholds 
 

 
 
The table shows for different sets of locus/breed combinations the number of combinations in 
which each statistic identifies a signal of positive selection under a significance threshold of P < 0.05 
(top) or P < 0.001 (bottom). We classified locus/breed combinations into two sets according to 
whether the selected allele is fixed in our sample (f = 1) or polymorphic (0.2 < f < 1.0). The ’n’ 
column shows the total number of locus/breed combinations in each set. We did not include 
locus/breed combinations where the selected allele was below 20%. 
 
 

The similarity between H12 and π may appear counterintuitive at first glance, 

given that H12 measures haplotype homozygosity, whereas π is based on nucleotide 

heterozygosity. A likely reason for this is that we defined window lengths using all 

SNPs present on our chip. Analysis windows are therefore the same in all breeds. In 

those breeds where a sweep has occurred, fewer sites will actually be polymorphic, 

reducing π. However, this is also expected to decrease the number of different 

haplotypes, as fewer SNPs will be present that can break up haplotypes, yielding 

higher H12 values. 
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Haplotype homozygosity levels increase with frequency of selected alleles 

Generally, we expect that scans should perform better at detecting sweeps the 

higher the frequency of the selected allele in a particular breed. This tendency is 

indeed visible in Figure 2.3 and Table 2.3. We also observed a clear positive 

correlation between the frequency of the selected allele in a breed and the value of H 

at a locus for all loci, except TYRP1 and IGF1 (Figure 2.4). H simply measures the 

average haplotype homozygosity lengths among all individuals in the sample. The 

observation of higher H values for higher frequency alleles is therefore consistent 

with the selected alleles residing on longer haplotypes than the ancestral alleles, as 

more individuals carrying these longer haplotypes will increase the average haplotype 

lengths among all individuals. 

 

 

Figure 2.4. Haplotype homozygosity levels increase with frequency of selected allele. Each 
panel shows for the particular locus the values of H at the causal site as a function of the frequency 
in the specific breed (only breeds where the selected allele has a frequency >20% are shown). We 
observed a positive correlation (measured by R2) between allele frequency and the value of H in the 
breed for all loci except TYRP1 and IGF1. 
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Note that iHS and nSL lose power to detect a sweep when the selected allele is 

fixed in the breed (Table 2.3), as has been observed previously (SCHRIDER et al. 2015). 

As mentioned before, this is expected given that both statistics were specifically 

designed to detect incomplete sweeps, where both the ancestral and derived allele are 

still segregating in the population and the haplotypes on which they reside can be 

compared with each other. 

 

Positive selection has produced both hard and soft selective sweeps 

We analyzed the haplotype patterns and SNP frequency spectra around 

individual loci in individual breeds to see whether we can understand why some 

statistics perform better than others at detecting signatures of positive selection in 

specific cases. 

Figure 2.5a shows the CHRNB1 locus in French Bulldogs, which produced 

the strongest signal of positive selection in H, H12, Tajima's D and π. The haplotype 

and SNP patterns around this locus provide a showcase example of a hard selective 

sweep. Diversity is depleted over >10 Mbp around the locus (Figure 2.2). On 

average, we would expect around 40 sites to be polymorphic over a window of the 

given size in this breed. However, we do not observe a single polymorphic site at this 

locus in our sample of 25 French Bulldogs. On average, we would also expect several 

haplotypes to be present, with the most common haplotype at around 40% frequency. 

As no site is polymorphic, we only observe a single haplotype. In contrast to the clear 
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signal identified by H, H12, CLR, Tajima's D and π at this locus, both iHS and nSL 

are unable to identify the sweep, consistent with the causal allele being fixed (Figure 

2.2, Table 2.3). 

 

 

Figure 2.5. Positive selection produced both hard and soft selective sweeps. Haplotypes and 
SNP frequency distributions at specific loci in specific breeds. The top part of each panel shows the 
haplotypes in our sample from the particular breed over a window of 51 sites on our genotyping 
chip, centered on the causal mutation. The grey brackets on the right show the expected haplotype 
frequencies ordered by their prevalence in an average window of that size in the chromosome. Bar 
plots on the bottom of each panel show distributions of SNP frequencies in the window (black), 
compared with the chromosomal average (grey). The red bars indicate presence of the causal allele. 
(a) The CHRNB1 locus in French Bulldogs is a hard selective sweep that is fixed in our sample. 
None of the 51 sites is polymorphic at this locus and only a single haplotype is present. (b) In Saint 
Bernards, the causal mutation is not fixed in our sample. The most frequent haplotype is at higher-
than-expected frequency, but several other haplotypes carrying the mutation are also present that 
may be variants of the major haplotype from recombination and/or mutation events. The SNP 
frequency spectrum shows the characteristic distortions towards high and low frequencies expected 
under a hard selective sweeps. (c) At the MC1R locus in Cocker Spaniel the causal mutation is 
present in 37 of the 50 genomes in our sample. The frequency of the most common haplotype, 
however, is not much higher than expected by chance and the SNP frequency spectrum is skewed 
towards intermediate frequencies, compatible with a soft selective sweep. (d) In English Setters, the 
MC1R locus shows even more pronounced signatures of a soft selective sweep. 
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In Saint Bernards, for comparison, the mutation at CHRNB1 is at high 

frequency but two genomes in our sample do not carry it (Figure 2.5b). Several 

haplotypes with the causal allele are present at the locus that may be variants of the 

major haplotype from recombination and/or mutation events early during its sweep 

(MESSER AND NEHER 2012). The SNP frequency spectrum shows the characteristic 

distortions of a hard selective sweeps and all scans detect signatures of positive 

selection at this locus (Table 2.3). 

Figure 2.5c, d shows the MC1R locus in Cocker Spaniels and English Setters. 

Both breeds show signatures strongly suggestive of soft selective sweeps: The 

frequencies of the most common haplotypes are similar or lower to expectations in an 

average window, and in both breeds, several haplotypes carry the selected mutation. 

Importantly, some of these haplotypes differ at many sites from each other, including 

positions right next to the causal site, making it very unlikely that these haplotypes are 

in fact variants of the same haplotype that arose from mutation or recombination 

events during the sweep (MESSER AND NEHER 2012). Given that most pure dog 

breeds are <200 years old (PARKER et al. 2004; LARSON et al. 2012), yet some of these 

haplotype variants are quite common in the sample, it is also unlikely that they arose 

from recombination events after the sweep. Furthermore, the SNP frequency spectra 

are atypical for a hard selective sweep as they are skewed towards intermediate 

frequencies. All of these observations are more consistent with soft selective sweeps 

where positive selection has driven several haplotypes simultaneously, possibly 
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because selection acted on SGV. Both H12 and H detect signatures of positive 

selection at MC1R in Cocker Spaniel, other statistics are inconsistent and results 

strongly depend on window size. All statistics lack power in identifying signatures of 

positive selection at this locus in English Setters. Only H12, Tajima's D and π show 

some signal and only when using short analysis windows (Table 2.3). 

Figure S2.4 shows haplotype patterns and SNP frequency spectra around the 

IGF1 locus in 12 different breeds. The selected mutation at this locus has been 

identified as a SINE element insertion in intron 2 of the IGF1 gene (RIMBAULT et al. 

2013) that appears to be absent in grey wolves, most large dog breeds and all wild 

canids (GRAY et al. 2010). Hence, we do not expect that positive selection has acted 

on SGV at this locus, but rather that the selected SINE was a de novo mutation that 

arose during the domestication process. This is largely consistent with the haplotype 

and SNP frequency pattern in different breeds at this locus, which tend to show 

signatures of hard selective sweeps. 

 

DISCUSSION 

In our study, we examined the population genomic signatures observed around 

a set of 12 positive control loci known to have experienced positive selection in 

specific dog breeds due to their association with desirable morphological phenotypes. 

The dog system is extraordinary in that it provides a very large number of individual 

populations (breeds) for which we often know the specific selective pressures 
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experienced. In such a system, the most powerful selection scans should be those that 

can utilize the information provided by cross-population comparisons, for example 

FST-and XP-EHH-based methods (VITTI et al. 2013). We confirmed this intuition by 

showing that hapFLK, a powerful cross-population scan that uses haplotype 

information in an FST-based framework and incorporates information on the 

hierarchical structure between breeds, indeed identified all of our controls. However, 

for many other systems we may not have such cross-population information and will 

thus rely on scans that can detect signatures of selective sweeps from a single 

population sample. 

Our approach of using positive controls in a real system is conceptually 

different from previous studies that evaluated the performance of selection scans 

based on computer simulations (TESHIMA et al. 2006; HUFF et al. 2010; POH et al. 2014; 

LOTTERHOS AND WHITLOCK 2015; SCHRIDER et al. 2015). These studies generally 

assume idealized evolutionary scenarios, such as panmixia, simplified demographic 

models and constant parameters over time and space, while interactions between 

selected sites such as background selection, Hill-Robertson interference and epistasis 

tend to be ignored. Unfortunately, we still lack a clear understanding of the 

importance of these effects and the extent to which they can obscure footprints of 

positive selection (BANK et al. 2014). In addition, many simulation studies assume that 

adaptation follows the classic selective sweep model. Whether this is an appropriate 
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model for describing adaptation in most biological systems is increasingly being 

questioned (PRITCHARD et al. 2010; CUTTER AND PAYSEUR 2013; MESSER AND 

PETROV 2013). 

We found that artificial selection has indeed left detectable signatures in the 

polymorphism pattern around our positive control loci in purebred dogs. However, 

whether such signatures were detected varied widely between loci, individual breeds, 

the particular statistic used and the choice of analysis parameters. Interestingly, one of 

the most popular haplotype-based statistics, iHS, proved to be less accurate in 

identifying signatures of positive selection at our controls than the other statistics, 

including simpler haplotype-statistics such as H12 and H, as well as the frequency-

based statistics CLR, Tajima's D and π. This could be due to a number of reasons: It 

is well known that iHS has difficulties identifying fixed sweeps because it requires the 

ancestral allele to be segregating in the population (SCHRIDER et al. 2015). We indeed 

observed that both iHS and nSL had particularly low power at those locus/breed 

combinations where the causal allele was fixed in our sample (Table 2.4). 

Furthermore, the generally high levels of LD in purebred dogs (SUTTER et al. 2004; 

LINDBLAD-TOH et al. 2005; BOYKO et al. 2010) could limit the sensitivity of haplotype-

based statistics, as only extremely strong sweeps may be able to generate haplotypes 

that are even longer than those already present. Note, however, that two other 

haplotype-based statistics, H and H12, identified many positive controls. 
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The H12 statistic estimated over short windows of 25 segregating sites 

identified the largest number of positive controls in our study, followed by π and 

Tajima's D. This finding suggests that the signals of positive selection identified by 

these three statistics may be largely driven by the difference between the local density 

of SNPs on our genotyping chip (which we used for defining the window length for 

estimation of H12, π and Tajima's D) and the number of SNPs that are actually 

polymorphic in a particular breed in the given window. 

Purebred dogs are clearly an exceptional system, characterized by strong 

artificial selection that is sometimes even repeatable between breeds (BOYKO et al. 

2010). In addition, phenotypic variance for breed-defining morphological traits is 

often explained by surprisingly few mutations (RIMBAULT et al. 2013). As such, 

purebred dogs provide an excellent system for mapping the genetic basis of positively 

selected variants. 

However, some aspects of our data set could confound the results in our study. 

First, because SNPs were obtained from a genotyping chip, rather than direct 

sequencing, they should be biased towards common variants, which might 

compromise the performance of frequency-based methods such as CLR and Tajima's 

D. In addition, the high levels of LD in dogs due to increased inbreeding could limit 

the power of haplotype-based methods. Dog breeds also vary in effective population 

size by several orders of magnitude (LEROY et al. 2013), overlapping the range 
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observed in smaller natural populations. In many ways, detection of selective sweeps 

in smaller populations is more difficult than in large populations as extensive drift can 

obscure and weaken the signatures of sweeps. 

The severe bottlenecks during the breeding process could have systematically 

affected the patterns generated by positive selection, such as whether hard or soft 

sweeps should be more common. For example, recurring bottlenecks can have 

‘hardened’ sweeps from SGV that were initially soft (WILSON et al. 2014). The mode 

and signatures of adaptation in large natural populations may therefore be quite 

different from those observed in purebred dogs and additional work is needed to 

evaluate the performance of methods for detecting selective sweeps in such 

populations. 
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CHAPTER 3 

 

DENSE TIME-COURSE GENE EXPRESSION PROFILING OF THE 

DROSOPHILA MELANOGASTER INNATE IMMUNE RESPONSE2 

 

INTRODUCTION 

Upon microbial infection, Drosophila launch rapid and efficient immune 

responses that are crucial to survival. However, a spurious or over-activated immune 

response can be harmful to the organism. An excessive or overly prolonged immune 

response can lead to metabolic dysregulation, causing wasting in mammals and flies 

(FITZPATRICK AND YOUNG 2013). Furthermore, immune responses are energetically 

costly (LAZZARO AND GALAC 2006) because they draw resources from other 

physiological processes (ZEROFSKY et al. 2005; DIANGELO et al. 2009) such as 

metabolism, reproduction, and environmental stress responses. It has been shown 

that allocating resources to the immune system reduces resources for reproduction 

(MCKEAN et al. 2008; HOWICK AND LAZZARO 2014), and the opposite is also true, 

where mating reduces survivorship after infection and decreases resistance to 

infection (FEDORKA et al. 2007; SHORT AND LAZZARO 2010; SHORT et al. 2012). This 

represents a type of trade-off where both immune response and reproduction are 

                                                        
2 Manuscript in preparation: Schlamp F, Early A, Wells MT, Basu S, and Clark AG. Dense time-
course gene expression profiling of the Drosophila melanogaster innate immune response. 
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costly, and limited resources need to be allocated to either one or the other 

(SCHWENKE et al. 2016). Therefore, we expect that natural selection will act to tune 

their immune response to strike a balance between the advantage of a rapid and 

robust ability to fight infection, and the costly side-effects of an over-prolonged or 

unnecessary immune response. This tuning is likely to be mediated through a series of 

regulatory and feedback properties of the immune system of the fly. 

While gene expression has been examined at several time points after infection 

in Drosophila (DE GREGORIO et al. 2001; BOUTROS et al. 2002; SACKTON et al. 2010), 

the dynamics of this immune response have not yet been studied with high temporal 

resolution. Such a high-resolution time-course analysis can help profile with more 

certainty the types of expression dynamics that different genes and pathways undergo 

after infection. Dense and extended time-course sampling of gene expression of the 

immune response can allow us to distinguish between transient and sustained 

expression patterns, where expression of genes with a transient response to 

perturbation will return back to normal after a certain period of time, while expression 

of genes with a sustained response will remain at a different level of expression 

compared to pre-perturbation levels. This kind of temporal profiling of the immune 

response can also suggest candidates to examine for possible interactions and trade-

offs between the immune response and other physiological processes in the form of 

regulatory networks.  
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Inference of gene regulatory networks from time-course gene expression data 

arises in many contexts in functional genomics and bioinformatics. While several 

currently existing methods to analyze static RNA-seq data - such as edgeR (ROBINSON 

et al. 2010) or DESeq2 (LOVE et al. 2014) - have been utilized to analyze time-course 

data, they are not ideal for dealing with time-course RNA-seq data for many reasons, 

as reviewed in (BAR-JOSEPH et al. 2012) and (SPIES AND CIAUDO 2015). For example, 

most methods do not take into consideration the correlation of genes in adjacent time 

points, which leads to many temporal patterns in expression to not be taken into 

account for normalization and differential expression analysis (SPIES AND CIAUDO 

2015). New approaches for analyzing time-course data, like those introduced in this 

paper, are essential to reveal dynamic behaviors in organisms and discover regulatory 

interactions among genes. 

In this study, we performed a dense time-course RNA-seq analysis of the 

Drosophila transcriptional response to immune challenge to better understand the 

dynamics of activation and resolution of the innate immune response. The goal of this 

RNA-seq experiment was to stimulate a full but transient immune response in 

Drosophila and follow the dynamics in gene expression through time. Flies were 

sampled over 5 days generating a total of 20 time points post-infection with an 

additional time point pre-injection as a control. We analyzed the resulting longitudinal 

RNA-seq dataset using a broad range of statistical methods. We use gene-wise linear 

models to fit cubic splines with time, and standard empirical Bayes F-tests to select 
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genes whose expression levels were significantly altered across the time course. 

Additionally, we find strong temporal patterns of transient and sustained responses to 

infection that occur over different time scales using clustering analysis, and we further 

identify non-immune expression dynamics of Drosophila reproducing the well-

characterized cyclic patterns in gene expression of the circadian rhythm. We also 

performed gene set analysis to detect pathway-specific expression patterns and 

constructed networks of multivariate Granger causality (GC) relationships (GRANGER 

1969) among subsets of DE genes. Our analyses provide several novel functional 

annotations for previously uncharacterized genes, identify different types of 

transcriptional dynamics, and suggest new interactions governing temporal gene 

regulation of the immune response. Throughout all of these analyses we see a 

continued theme of interplay and trade-off between the immune response and other 

canonically separate pathways. 

 

 

MATERIALS AND METHODS 

Fly lines, injections, and sample collection 

Male adult Drosophila of about 4 days old from an F1 cross from two Drosophila 

melanogaster Genetic Reference Panel (DGRP) lines: line 379, which has shown to have 

low bacterial resistance, and line 360, which has high bacterial resistance (EARLY et al. 

2017b). Flies were kept on a 12:12 dark-light cycle. 
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Flies were injected in the abdomen with 9.2 µl of commercial 

lipopolysaccharide (LPS) (Escherichia coli 055:B5 Sigma) derived from the outer 

membrane of Gram-negative bacteria. LPS is a known non-pathogenic elicitor used to 

stimulate a full but transient immune response in Drosophila (IMLER et al. 2000; 

LEULIER et al. 2003). Using commercial LPS instead of living bacteria also gives the 

advantage of avoiding the confounding effects from the mechanisms the bacteria uses 

to circumvent immune responses (GRAHAM et al. 2011). While it is now argued that 

purified LPS by itself does not induce an immune response in Drosophila, it has been 

shown that commercial ‘crude’ LPS preparations do (IMLER et al. 2000; LEULIER et al. 

2003; KANEKO et al. 2004; HANDU et al. 2015), most probably due to contaminating 

peptidoglycan in the latter (KANEKO ET AL. 2004). For this reason, commercial LPS 

was chosen for this study, and its ability to induce an immune response was 

confirmed using qPCR, as explained in the next section. 

Flies were injected using a Nanoinjector (Nanoject II, catalog #3-000-204, 

Drummond), which allows high-throughput fly injections with a constant injection 

volume. Injections were performed in the abdomen, as it has been shown to be less 

detrimental to the fly compared to thorax injury (CHAMBERS et al. 2014). 

Flies were sampled for a total of 21 time points throughout the course of five 

days, which includes an uninfected un-injected sample as control at time zero, and 20 

time points after infection (1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 20, 24, 30, 36, 42, 48, 72, 

96, 120 h). This sampling was performed in two blocks, using flies from the same 
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stock, in two consecutive days. Therefore, all samples have two replicates, giving a 

total of 42 samples. During collection, a group of ~10 pooled flies corresponding to 

the sampled time point were flash frozen in dry ice and stored at -80 C for later RNA 

extraction. 

 

Experimental validation using qPCR 

The immune inducibility of commercial LPS was confirmed using qPCR. Adult 

male Drosophila were injected with 9.2 µl or 40 µl of 1 mg/mL LPS and flash frozen at 

8 and 24 h for RNA extraction. Uninfected un-injected flies were used as control. 

Each sampled time point consisted of a group of ~10 pooled flies. Each sample had 

two replicates. Genes AttA and DptB were measured to confirm immune inducibility. 

Gene Rp49 was used as a baseline for expression normalization. Results showed a 

significant up-regulation of AttA and DptB at both volumes (9.2 µl and 40 µl) for 

both time points (8 and 24 h). We decided to use 9.2 µl so as to cause the least 

amount of disruption to flies during infections, while still eliciting an immune 

response.  

 

RNA extraction, RNA sequencing, and quality control filtering 

RNA extraction was performed using Trizol (Life Technologies) following the 

manufacturer’s instructions. cDNA libraries were prepared using the TruSeq RNA 

Sample Preparation Kit (Illumina). RNA purity was assessed using a Nanodrop 
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instrument. RNA concentration was determined using a Qubit (Life Technologies) 

instrument. Sequencing was performed on an Illumina Hi-Seq 2500, single-end, and a 

read length of 75 bp, at Cornell Biotechnology Resource Center Genomics Facility. 

Samples had an average of 24.8 M raw reads. Samples went through quality 

control using FastQC (version 0.11.5) (ANDREWS 2010). Truseq adapter sequences 

were removed from any sample that showed any level of adapter contamination using 

cutadapt (version 1.14) (MARTIN 2011). Low quality bases in the beginning and end of 

the reads were trimmed using fastx_trimmer (version 0.0.13, 

http://hannonlab.cshl.edu/fastx_toolkit/). Reads were mapped to the Drosophila 

melanogaster genome (r6.17) using STAR (version 2.5.2b) (DOBIN et al. 2012). BAM 

files were generated using SAMtools (version: 1.3.2) (LI et al. 2009). Only one sample 

(4B, at 3 h) out of the original 42 failed to pass the quality thresholds, and all 

subsequent analysis used the remaining 41 samples. An average of 92.97% reads per 

library mapped uniquely to the Drosophila melanogaster genome. We ended up with an 

average of 23.4 million uniquely mapped reads per library. 

Reads mapping to genes were counted using the R package GenomicAlignments 

(LAWRENCE et al. 2013). Genes with zero counts across all samples were removed 

(923 genes out of 17,736). Samples were normalized to library size. A “+1” count 

number was added to all genes before performing log2 transformation, to make sure 

values after transformation are finite, and stabilize the variance at low expression end. 

After normalization and log2 transformation, only genes with more than 5 counts in at 
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least 2 samples were kept (removing 4,156 genes). We ended up with 12,657 genes for 

downstream analysis. 

 

Principal components analysis 

Principal components analysis (PCA) was performed using function plotPCA 

from the R package DESeq2 (LOVE et al. 2014) after regularized-logarithm 

transformation of raw counts, using the design ~time+time:time to create the 

DEseqDataSet. Genes with zero counts across all samples were first removed. The 

default number of 500 top genes with highest row variance was used to calculate the 

principal components. 

 

Differential expression analysis 

In order to identify genes that had differential expression over the time course, 

we adopted the linear model-based methodology proposed in (LAW et al. 2014) and 

available in the R package limma. We first transformed the normalized RNA-seq read 

counts (before log2 transformation) using the voom transformation, which estimates 

the heteroscedastic mean variance relationships of log-counts and adds a precision 

weight to each observation to make them amenable to the usual linear modeling 

pipelines that rely on normality. We used gene-wise linear models to fit cubic splines 

(with 3 degrees of freedom) with time, TMM normalization method (ROBINSON AND 

OSHLACK 2010), and standard empirical Bayes F-tests to select genes whose 
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expression levels were significantly altered across the time course in both replicates. 

Next, we checked for differential expression of every gene between time point 0 

(control) and time point t, for t = 1, 2, …, 48 h. For each test, a multiple testing 

correction at 5% False Discovery Rate (FDR) using the Benjamini-Hochberg method 

(BENJAMINI AND HOCHBERG 1995) was adopted. Venn diagrams to compare results 

were adapted from those generated using web tool Venny 

(http://bioinfogp.cnb.csic.es/tools/venny/) (Oliveros 2007).  

 

GO enrichment 

Gene Ontology (GO) enrichment analysis was performed using PANTHER 

Statistical Overrepresentation Test (http://pantherdb.org/, version 14.1, released 

2019/04/29) (MI et al. 2018) using default settings (GO-Slim Biological Process 

annotation data set, Fisher’s Exact test, FDR < 0.05). 

 

Detecting cyclic gene patterns 

Cyclic gene patterns were identified using the JTK_Cycle algorithm (HUGHES et 

al. 2010) available in R package JTK_Cycle. Nine regularly distributed time points were 

subset from both replicates every 6 hours (0, 6, 12, 18, 24, 30, 36, 42, 48 h). The time 

point corresponding to 18 h was approximated by averaging normalized gene counts 

between time points 16 and 20 h. We looked for rhythms between 18-30 h (4 to 6 

time points) at an adjusted P-value < 0.01. 
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Temporal clustering 

Temporal clustering was performed using the R package TSclust (MONTERO 

AND VILAR 2014). Normalized counts of both replicates were clustered using 

dissimilarity measures from Autocorrelation-based method (ACF), which computes 

the dissimilarity between two time series as the distance between their estimated 

simple autocorrelation coefficients (GALEANO AND PEÑA 2000). This method was 

used with a P-value cutoff of 0.05.  

 

Gene set analysis 

Gene set analysis was done using the R package GSA, which uses a Gene Set 

Analysis algorithm (EFRON AND TIBSHIRANI 2007) that improves the GSEA 

algorithm (SUBRAMANIAN et al. 2005) by allowing testing for associations between 

gene sets and time-dependent variables (EFRON AND TIBSHIRANI 2007; MULLIGHAN et 

al. 2009). Gene set membership was assigned from GO data downloaded from 

FlyBase.org in January 2019. Normalized counts for both replicates at each time point 

from 1 to 120 h were compared against both control replicates (0 h), using a two-class 

paired vector (-1, 1, -2, 2) which corresponds to (control_replicateA, 

timepointX_replicateA, control_replicateB, timepointX_replicateB). We used 100,000 

permutations to estimate false discovery rates. Only pathways with P-values below 

0.05 and with 5 or more genes from our full dataset were kept. A subset of most 

relevant pathways was compiled by selecting pathways that had at least one gene from 
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the subset of 551 most predominant time-dependent genes, and had a score of 2.5 of 

more in at least one time point from 1 to 48 h. This gave us 41 unique pathways as 

shown in Figure 3.9. 

 

Network inference 

Granger causality-based methods (GRANGER 1969) were used to construct 

putative interaction networks among genes in the form of directed graphs with 

individual genes as nodes. A directed edge from gene A to gene B is added if the time 

course of gene A Granger-causes the time course of gene B. The notion of ‘Granger 

causality’ is popular in learning lead-lag relationships among two or more time series. 

Formally, if the time series of gene A, given by 𝑥4, has some power in predicting the 

expression of gene B at time 𝑡 + 1, called 𝑦490, over and above 𝑦4 and conditioned 

on an information set 𝐼4, then gene A is said to exert a Granger causal effect on gene B. 

Bivariate Granger causality uses a small information set 𝐼4 = {𝑥0:4, 𝑦0:4} and captures 

Granger causal relationship from gene A to gene B by testing whether the regression 

coefficient in the following bivariate regression is different from zero: 

𝑦490 = 𝛼𝑦4 + 𝛽𝑥4 + 𝑒𝑟𝑟𝑜𝑟490 

A master set of 258 genes was constructed from the 551 predominant time-

dependent genes by picking those that had available functional annotation and that 

had differential expression of at least absolute log fold change of 1. Using linear 
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regression (function lm() in R), we conducted bivariate (pairwise) Granger causality 

tests for every pair of genes among this set of 258 genes using data on sliding 

windows of t = 6 consecutive time points and the two replicates (sample size = 12), 

and ranked them in order of increasing P-values (BH method used for calculating 

FDR), keeping the top resulting edges (BHFDR < 0.05%). 

A well-known critique of bivariate Granger causality is its use of a small 

information set that does not contain any other factors except genes A and B 

(MUKHOPADHYAY AND CHATTERJEE 2006). This failure to account for other potential 

confounding variables can give rise to many spurious edges in our network 

(MUKHOPADHYAY AND CHATTERJEE 2006), where Granger causal effects from gene 

A to gene B is an artefact of gene C, which is causal for one or both genes. To address 

this, we adopted multivariate (or network) Granger causality (BASU et al. 2015), 

allowing us to avoid such spurious inferences through multiple linear regression. In 

this framework, we start with p genes, and Granger causal relationship of Gene A on 

Gene B is tested by regressing 𝑦490 on 𝑦4, 𝑥4 and the time courses of the other 𝑝 − 2 

genes 𝑧04, 𝑧-4, … , 𝑧H4.  

𝑦490 = 𝛼𝑦4 + 𝛽𝑥4 + 𝛾0𝑧04 + 𝛾-𝑧-4 + ⋯+ 𝛾H/-𝑧H/-,44 + 𝑒𝑟𝑟𝑜𝑟490 

For small sample size and large p, the above regression is not possible to run 

using ordinary least squares (OLS), so we use LASSO (TIBSHIRANI 1996) regression. 

To test if the regression coefficient 𝛽 in the above regression is different from zero, 
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we used two different variants of de-biased LASSO (JAVANMARD AND MONTANARI 

2014; DEZEURE et al. 2015), each of which corrects the bias of lasso and allows 

quantifying uncertainty of regression coefficients one at a time. A non-zero coefficient 

𝛽 in the above multivariate regression suggests that gene A is Granger causal for gene 

B, even after accounting for the effects of the other p-2 genes. Using this method on 

the master set of 258 genes, we reconstructed putative directed networks of 

multivariate Granger causality and ranked the edges in increasing order of P-values, 

following the same parameters used in the bivariate (pairwise) Granger causality 

method (sliding window of 6 consecutive time points in both replicates, keeping the 

top resulting edges (BHFDR < 0.05%)). 

 

 

RESULTS 

High-resolution profiling of gene expression after immune challenge 

To generate a full transcriptional profile of gene expression dynamics in 

Drosophila melanogaster after immune challenge, we injected adult male flies with 

commercial lipopolysaccharide (LPS), a known non-pathogenic elicitor that can 

stimulate a full yet transient immune response (IMLER et al. 2000; LEULIER et al. 2003), 

while avoiding the confounding effects from a growing and changing population of 

pathogens. Flies were sampled for a total of 21 time points throughout the course of 

five days, which includes an uninfected un-injected sample as control at time zero, and 
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20 time points after infection. Since this is a perturbation-response experiment, denser 

sampling occurred at early time points (BAR-JOSEPH et al. 2012), with the first 13 time 

points taken within the first 24 h (1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 20, and 24 h). 

Sampling is also essential at late time points in order to capture gene expression 

patterns, to know how long it takes to return to ‘normality’, and to differentiate 

between transient and sustained responses (BAR-JOSEPH et al. 2012). For this reason, 

sampling continued until day 5 after infection, although more sparsely (30, 36, 42, 48, 

72, 96, 120 h) (Figure 3.1A). All samples have two replicates, giving a total of 42 

samples. Sampled flies were flash frozen to isolate mRNA for RNA-seq analysis as 

described in the Materials and Methods. This yielded 41 high-quality libraries with 

an average of 23.5 million mapped reads per sample. After normalization of libraries, 

only genes with more than 5 counts in at least 2 samples were kept, leaving 12,657 

genes for further analysis. 

Principal components analysis (PCA) of all time points reveals a horseshoe 

temporal trend, with the control samples clustering in the middle, and all the post-

infection timepoints following a horseshoe-shaped track, consistent with a pattern of 

many genes displaying a coordinated change over the five-day interval (Figure 3.1B). 

This type of “horse-shoe” or arch temporal trend in PCA has been seen in other time-

series experiments (DENG et al. 2014; LAW et al. 2014; BENDJILALI et al. 2017; WHITE 

et al. 2017), and is commonly seen in spatial population genetic variation (NOVEMBRE 

AND STEPHENS 2008) and in ecological gradient data that varies in a non-linear 
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manner (PODANI AND MIKLÓS 2002). One possible explanation for this pattern is that 

PCA ordination gets distorted as it tries to fit a nonlinear relationship to an underlying 

assumption of linearity (CLAPHAM 2011). PC1, PC2, and PC3 captured 35, 15, and 

14.5% of the variance in gene expression respectively, and the first six PCs account 

for over 80% of the total variance in the data. 

Proper normalization of the data was confirmed by confirming the behavior of 

known Drosophila housekeeping genes across time (Qiagen Housekeeping Genes RT2 

Profiler PCR Array and (LÜ et al. 2018)). As expected, housekeeping genes showed 

little change across time (Figure 3.1C). The success of the immune challenge was 

confirmed by the immediate up-regulation of known immune response genes within 

the first time points (Figure 3.1D). 
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Figure 3.1. Transcriptional profiling of Drosophila immune response. (A) Timeline of 21 time 
points, including un-infected un-injected sample as control at time 0. Sampling was denser in the 
first 24 h and continued -although more sparsely- until day 5 (120 h). (B) Principal component 
analysis (PCA) of all time points shows a coordinated change of gene expression over five days. 
Both replicates are shown for all samples except for the time point at 3 h, where one replicate was 
excluded from the analysis during RNA-seq data processing. The two samples in blue clustering in 
the middle (marked with grey dashed circle) correspond to the control time point (0 h). All other 
time points from 1 to 120 h show a horseshoe temporal pattern around the controls. PC1 and PC2 
captured 35 and 15% of the variance in gene expression, respectively. Plots of normalized counts of 
housekeeping genes (C) show little change across time as expected under proper data normalization, 
while immune response genes (D) show up-regulation within the first time points, as expected after 
a successful immune challenge. 
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Continuous and pairwise methods identify time dependent genes 

First, we wanted to identify genes whose expression levels were significantly 

altered across the time course. To accomplish this, we applied a precision weight-

based transformation ‘voom’ on the normalized data using R package limma (LAW et 

al. 2014), we then used gene-wise linear models to fit cubic splines with time, and 

standard empirical Bayes F-tests to select genes with expression levels that 

significantly change throughout time, as described in the Materials and Methods. 

We performed a multiple testing correction at 5% False Discovery Rate (FDR) using 

the Benjamini-Hochberg method (BENJAMINI AND HOCHBERG 1995). The time point 

at 3 h was removed in the analysis due to lack of replication.  

This analysis identified 380 genes with significant changes in expression 

through the first 48 h, and 48 genes with significant changes in expression through the 

first 8 h (Figure 3.2A). The smoothing applied by continuous frameworks (REINSCH 

1967) such as splines or quadratic trends are expected to miss some intricacies of the 

temporal expression pattern of genes, but they are adequate for modelling general 

trends. Long time spline fit on the first 48 h can detect gradual changes and ‘global’ 

patterns, but misses early impulse patterns, such as those observed in known immune 

response genes such as AttA and DptB (Figure 3.2C). On the other hand, short 

spline fit over the first 8 h can accurately identify early impulse patterns, but will not 

be able to identify patterns of expression that alter later in time, such as the ones 

shown by genes Gale and Galk (Figure 3.2D). 
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Next, we characterized the behavior of expression temporal patterns by 

estimating the differential expression of every gene at each time point, from 1 to 48 h, 

compared to the un-infected un-injected control samples at time zero. Pairwise 

comparisons were done on normalized counts of both replicates, as described in 

Materials and Methods. This method identified 729 differentially expressed (DE) 

genes that were significantly (FDR < 0.05) up- or down-regulated by an absolute log2-

fold change of at least 1 (which corresponds to a 2-fold change in expression) in at 

least one time point throughout the first 48 h after injections. Within this gene set, 

there were 214 genes that were up- or down-regulated by an absolute log2-fold 

change of at least 2 (4-fold change in expression) (Table S3.1). Figure 3.2B shows 

the overlap between these sets and those identified by spline modeling. 

We combined the set of genes identified by the spline modeling over 48 and 8 

h (411 genes) and the 214 DE genes identified by pairwise differential expression to 

compile a subset of 551 most predominant time-dependent genes (Table S3.2).  
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Figure 3.2. Identification of time-dependent genes. (A) Genes that significantly change in 
expression across time according to spline analysis in first 48 h (blue) vs 8 h (yellow). (B) Comparing 
results from spline analysis (over 48 h in blue and over 5 h in yellow) vs. results from differential 
expression analysis (absolute log2FC of 1 in green and log2FC of 2 in orange) at FDR < 0.05. (C) 
Spline modeling of two immune genes (AttA and DptB) when using first 48 h (blue) and first 8 h 
(yellow) compared to pattern of normalized counts (green), spline modeling over 48 h smooths out 
the early impulse signal. (D) Spline modeling of genes Galk and Gale when using first 48 h (blue) and 
first 8 h (yellow) compared to the pattern of normalized counts (green), spline modeling over 8 h 
misses the main change in pattern. 

 

 
Global dynamics show different patterns of expression and biological function 

The 551 most predominant time-dependent genes show four main hierarchical 

clusters of gene expression profiles across time (Figure 3.3A). Clusters 1 and 4 are 

characterized by an initial decrease in expression followed by an increase in expression 

after 8 and 3 h respectively, out to 5 days after injection (Figure 3.3B), with cluster 1 
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showing a stronger decrease in expression in the early hours after injection. These 

clusters have a significant enrichment of Gene Ontology (GO) terms for various 

biosynthetic, catabolic, and metabolic processes (Figure 3.3C). Clusters 2 and 3 both 

have a strong increase in expression after injection (Figure 3.3B), and show 

significant enrichment of GO terms for multiple immune and stress response related 

processes, and abiotic stimulus response, respectively (Figure 3.3C). Cluster 2 has a 

more immediate increase in expression following injection, reaching a maximum peak 

within the first 2 h (Figure 3.3B) and contains immune response genes Attacins 

(AttA, AttB, AttC) and Cecropins (CecB, CecC), as well as Heat Shock protein family 

genes (Hsp70Aa, Hsp70Ab, Hsp70Ba, Hsp70Bb, Hsp70Bbb, Hsp70Bc) which are known 

to protect cells from high temperatures and other forms of stress, but also play many 

roles in the immune system (BINDER 2014). Cluster 3, on the other hand, reaches a 

maximum expression later at around 9 h (Figure 3.3B) and contains the Immune-

induced peptide family (IM1, IM2, IM3, IM4, IM14, IM23, IMPPP) and other immune 

response related genes, as well as genes from the Turandot family (TotA, TotB, TotC, 

TotM, TotX) which are involved in humoral stress response and can be induced under 

several stress conditions, such as bacterial challenge, high temperature, mechanical 

pressure, among others (EKENGREN et al. 2001).  
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Figure 3.3. Global dynamics of time-dependent genes show divergent patterns of 
expression. (A) Heatmap of 551 most predominant time-dependent genes, identified by spline 
modeling over 48 and 8 h (FDR < 0.05) and pairwise differential expression (absolute log2FC > 2 
and FDR < 0.05). Hierarchical clustering of the genes shows four main clusters characterized by 
time points in which the genes reach maximum and minimum expression across time. Z-score 
values of each gene are shown from dark purple (minimum expression across time) to dark orange 
(maximum expression across time). (B) Mean patterns of expression across time for genes within 
each of the four main clusters, displayed by their centered and scaled normalized counts. (C) 
Significant Gene Ontology terms (FDR < 0.05) for overrepresented Biological Processes at each 
cluster. 
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GO analysis on the 214 top DE genes shows a significant overrepresentation 

of immune response related genes, such as Attacins (AttA, AttB, AttC), Diptericins 

(DptA, DptB), Cecropins (CecB, CecC), Immune-induced peptides (IM1, IM2, IM3, 

IM4, IM14, IM23, IMPPP), Drosocin (Dro), Drosomycin and Drosomycin-like genes (Drs, 

Drsl1, Drsl2, Drsl3), Metchnikowin (Mtk), Peptidoglycan Recognition Proteins (PGRP-

SB1, PGRP-SD), Diedel, Relish (Rel), elevated during infection (edin), among others. This 

confirms that the organism is having an immune response to the commercial LPS 

injections, as it is consistent with known gene expression profiles of immune response 

deployment in Drosophila (DE GREGORIO et al. 2001; BOUTROS et al. 2002). Among 

these 214 top DE genes we also find genes related to other stress response pathways, 

such as Turandots (TotA, TotC, TotM) and Heat Shock proteins (Hsp70Aa, Hsp70Ab, 

Hsp70Ba, Hsp70Bb, Hsp70Bbb, Hsp70Bc). A heatmap of the log2-fold change in 

expression of all 214 top DE genes can be found in Figure S3.1. 

Next, we further filtered these 214 top DE genes using more stringent cutoffs 

to identify core DE genes for additional characterization. This results in a core of 91 

genes that are significantly (FDR < 0.01) up- or down-regulated by an absolute log2-

fold change > 2 in at least two time points throughout the first 48 h after injection. A 

heatmap of the log2-fold change of these 91 core DE genes from 1 to 48 h can be 

seen in Figure 3.4A. The distribution of all significantly up- and down-regulated 

genes at each timepoint can be seen in Figure 3.4B. Many of the up-regulated genes 

at each timepoint are also known immune genes, as identified by a list of immune 
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genes curated in (EARLY et al. 2017a). The number of up-regulated genes is much 

higher than the number of down-regulated genes across all timepoints. The bottom of 

the heatmap in Figure 3.4A shows a cluster of the most up-regulated genes, 

composed of DptB, AttC, Mtk, Dro, CR45045, DptA, CG43920, and edin. These are 

mostly immune-related genes that are strongly up-regulated in early timepoints after 

infection, and remain elevated by approximately 32-fold 48 h later (Figure 3.4C).  

Within these 91 core DE genes, we also find circadian rhythm genes period (per), 

timeless (tim), takeout (to), and vrille (vri), which when plotted against time exhibit the 

classic 24 h periodic expression of the circadian rhythm (Figure 3.4D). Features like 

these serve to validate the normalization and differential expression analysis of this 

dataset, demonstrating that this time-course profiling is accurately identifying 

previously well characterized temporal patterns. 
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Figure 3.4. Characterization of top DE genes. (A) Heatmap of gene expression changes. Up-
regulated genes in orange, down-regulated genes in purple. FDR correction of 0.01, absolute log2-
fold change cutoff of 2 in at least two time points. 91 genes total, across 48 h. Genes ordered using 
Euclidean distance. (B) Distribution of genes significantly up- and down-regulated at each timepoint 
(in red and blue, correspondingly) and how many of those are immune genes (shaded over red), no 
down-regulated immune genes were observed. (C) Temporal dynamics of gene expression of the 
most up-regulated cluster of genes in heatmap (DptB, AttC, Mtk, Dro, CR45045, DptA, CG43920, 
and edin), first 48 h after injection. (D) Temporal dynamics of gene expression of circadian rhythm 
genes (per, tim, to, vri) show a classic and well characterized 24 h periodic expression.  
 

Transcription Factors are differentially expressed 

Among the top 214 DE genes, we find 6 transcription factors (TFs), identified 

from FlyTF database. Four well characterized TFs: Ets at 21C (Ets21C), Hormone 

receptor-like in 38 (Hr38), Relish (Rel), and stripe (sr) show a fast impulse of up-regulation 

immediately following injection, reaching maximum expression in the first hour 
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(Figure 3.5A). Ets21C is a stress inducible TF and Relish is a downstream component 

of the immune deficiency (imd) pathway, which regulates antibacterial response 

(MYLLYMÄKI et al. 2014; MUNDORF et al. 2019). Hr38 and stripe are the two most 

robust activity-regulated genes (ARGs, defined as genes that are rapidly induced with 

neuronal activity, mostly within an hour) in Drosophila (CHEN et al. 2016b). In 

mammals, ARGs (also known as immediate-early genes, IEGs) are induced rapidly 

and transiently upon stimulation in neurons, and are usually enriched for TFs which 

trigger secondary transcriptional responses (CHEN et al. 2016b). On the other hand, 

candidate TF Origin recognition complex subunit 1 (Orc1) has a later up-regulation, reaching 

maximum expression at hour 8 (Figure 3.5A). Orc1 codes for a component of ORC, 

which binds origins of replication and is essential for gene amplification and cell 

proliferation. TF vrille (vri) and candidate TF cryptochrome (cry) are known for their 

circadian rhythm functions (CYRAN et al. 2003; COLLINS et al. 2006), and their 24 hour 

circadian oscillations in RNA level are recapitulated in our analysis (Figure 3.5B).  

 

 
Figure 5. Temporal dynamics of Differentially Expressed Transcription Factors. (A) 
Immediately early (Ets21C, Hr38, Rel, and sr) and late (Orc1) up-regulation after immune challenge. 
(B) 24 h circadian rhythm patterns (cry, vri). 
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Identification of genes with circadian rhythm patterns 

The dense sampling scheme of our temporal profiling allowed us to extract well 

characterized periodic features, such as highly expressed genes (Figure 3.4D) and 

transcription factors (Figure 3.5B) with known circadian rhythm functions. As a 

follow up, we decided to use R package JTK_Cycle (HUGHES et al. 2010) to identify 

additional genes with 24 h cycling patterns in our data set. JTK_Cycle is a non-

parametric algorithm developed to identify periodic features, while estimating their 

period length, phase, and amplitude (HUGHES et al. 2010). 485 genes were identified to 

have a 24 h cycle with an adjusted P-value < 0.01 (Table S3.3). Out of those 485 

genes, the top 22 periodic genes were identified using a cutoff of BH Q-value < 0.05 

and amplitude > 0.5 (Figure 3.6). Among them we find 4 well characterized circadian 

genes: period (per), takeout (to), vrille (vri), and PAR-domain protein 1 (Pdp1), as well as 9 

genes which do not have assigned circadian functions but have evidence of cyclic 

behavior in previous literature (Table 3.1), and 8 uncharacterized genes that have not 

yet been reported to have cyclic expression outside this study (Table 3.1). 
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Figure 3.6. Top 22 genes identified by JTK_Cycle show 24 h temporal cycling. 
 
 
 
 
Table 3.1. Evidence of cyclic behavior for top genes identified by JTK_Cycle. 
 

 
Sources: (UEDA et al. 2002; ZHAO AND ZERA 2004; HUANG et al. 2013; ADEWOYE et al. 2015; HE et 
al. 2016; DAMULEWICZ et al. 2018; PEGORARO AND TAUBER 2018) 
 

Temporal clustering identifies distinct patterns of up- and down-regulation of 

immune processes, and suggests function of uncharacterized genes 

Groups of genes that share common functions are often activated and 

regulated together, which represents a measurable signal in the form of temporal co-
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occurrence. We used clustering analysis to discern these temporal patterns of co-

expressed genes, which might allow us to characterize their behavior during immune 

response and identify processes of co-activation and co-regulation. Normalized 

counts of both replicates were clustered using the autocorrelation-based distance 

function in R package TSclust as explained in Materials and Methods. This clustering 

analysis shows strong temporal patterns that correspond to early and late induction of 

immune processes, as well as both transient and sustained responses to infection. 

Clustering analysis shows temporal patterns of sustained responses to infection. 

The gene cluster with highest expression after immune response induction includes 

AttA, AttB, AttC, DptA, DptB, Dro, edin, Mtk, PGRP-SB1, PGRP-SD, CG43236, 

CG43920, CR44404, and CR45045. This cluster is characterized by a strong early 

induction ~2.5 to 6 log fold change within the first hour, reaching a maximum of 6-

8.5 log fold change, and maintaining persistent up-regulation of 2.5 to 5 log fold 

change throughout 5 days (120 h) (Figure 3.7). AttA, AttB, AttC, DptA, DptB, Dro, 

and Mtk are known effector genes of the immune response with antimicrobial peptide 

(AMP) function (BULET et al. 1993; LEVASHINA et al. 1995; HEDENGREN et al. 2000), 

edin codes for a signaling peptide of the immune response, and PGRP-SB1 and PGRP-

SD are peptidoglycan recognition proteins. CG43236, CG43920, CR44404, and 

CR45045 are uncharacterized transcripts that have been shown to be up-regulated 

after bacterial infections (TROHA et al. 2018). This cluster has a pattern of immediate 
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activation, and most surprisingly genes in this cluster remain strongly up-regulated up 

to 120 h. 

 

 
Figure 3.7. Clusters of AMPs show sustained expression after immune inducement 
throughout 5 days (120 h). 
 

Clustering analysis also identified clusters of genes with transient responses to 

infection. One of these clusters was composed by a putative class of immune induced 

peptides: IM1, IM14, IM2, IM23, IM3, IM4, IMPPP, and CG33470. CG33470 is an 

uncharacterized transcript that is located 3.3 kb downstream of IMPPP and might 

belong to the same open reading frame, as both are sometimes referred to as IM10 

(KENMOKU et al. 2017), and show nearly identical gene counts in our dataset. This 

cluster of immune induced molecules is characterized by an early induction (but not as 

immediate as the AMP cluster) of ~2.5 to 3.5 log fold change within the first two 

hours, reaching a max of 2.5 to 5 log fold change, and returning to a steady state after 

3-5 days (Figure 3.8A). This shows that clustering analysis identifies effector immune 

genes segregating by function: AMPs show an immediate early sustained up-regulation 
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even after 5 days (Figure 3.7), while the IM family has an early up-regulation that 

eventually returns to steady state levels (Figure 3.8A).  

Another cluster of transient responses to infection shows later induction and 

reaches its maximum log fold change after 8-12 h and returns to baseline after 2-3 

days (Figure 3.8B). Unlike the previous clusters, this cluster is characterized by most 

genes being first down-regulated immediately after injection for the first 1-2 hours. 

This cluster was composed of genes from the stress-induced Turandot family 

(EKENGREN et al. 2001) TotA, TotB, TotC, TotM and TotX, and by Diedel, Grik, lectin-

24A, NimB3, CG11459, CG16836, and CG30287. Diedel is an immunomodulatory 

cytokine known to down-regulate the imd pathway. Grik is a receptor for glutamate, a 

ubiquitous neurotransmitter that mediates information flow between neurons. Lectin-

24A is a C-type lectin, which are pattern recognition receptors that mediate pathogen 

encapsulation by hemocytes (AO et al. 2007). Lectin-24A has been shown to be down-

regulated in the first 2 hours following septic injury and then up-regulated 9 hours 

after (KEEBAUGH AND SCHLENKE 2012), consistent with the pattern we see in our 

data. NimB3 is part of the Nimrod gene family, which are involved in the initial steps 

of phagocytosis through bacterial binding (ZSÁMBOKI et al. 2013). CG11459 is a 

predicted cathepsin-like peptidase induced by bacterial infection and injury 

(KATZENBERGER et al. 2016). CG16836 is located near IM genes IM1, IM2, IM3 and 

IM23 (expressed in the previous cluster, Figure 3.8A), which could explain the similar 

co-expression patterns. This cluster of genes in the 55C4 region of chromosome 2R 



 89 

have been recently labeled as “Bomanins” (CLEMMONS et al. 2015). CG30287 is a 

predicted serine protease, which play many roles in immune response proteolytic 

cascades (BUCHON et al. 2009). 

 

 
Figure 3.8. Clusters of genes with a transient response, corresponding to (A) putative effector 
immune genes, and (B) Turandots (humoral stress response) return to steady state by day 5 (120 h) 
post immune inducement. 
 

Clustering analysis of this dataset allows us to distinguish between immune 

response processes with different temporal dynamics (sustained vs. transient, early vs. 

late induction). Although these clusters show a very robust grouping by function, it is 

important to note that this grouping was solely driven by temporal co-occurrence in 
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expression alone, as at no point in the analysis was function or any other gene 

annotation used as a separating factor. Due to this, clustering analysis can help 

elucidate the functions of uncharacterized genes. 

 

Temporal gene set pathway analysis shows a divergence in expression between 

immune and metabolic processes 

Functional interpretation of clustering results is limited by those genes that 

have similar expression patterns across all timepoints. To better elucidate which 

biological pathways change over time and how, we can integrate prior knowledge of 

gene affiliation to specific functional categories. This analysis was done using gene set 

analysis to identify temporal pathway behavior.  

Gene set analysis was applied with the R package GSA, which uses a Gene Set 

Analysis algorithm (EFRON AND TIBSHIRANI 2007) that improves the GSEA 

algorithm (SUBRAMANIAN et al. 2005) by allowing testing for associations between 

gene sets and time-dependent variables (EFRON AND TIBSHIRANI 2007; MULLIGHAN et 

al. 2009). The original GSEA was developed in order to identify relevant pathways 

and processes being up- or down-regulated in gene expression data. Single-gene 

methods such as Differential Expression focus only on the top-scoring genes, which 

can lead to missing biologically significant signals from genes with modest and non-

statistically significant expression changes. GSEA is able to detect sets of genes with 

strong cross-correlation of expression, exposing through their aggregated expression 
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changes, collections of genes that belong to the same pathway or process 

(SUBRAMANIAN et al. 2005). 

Gene set analysis shows that the top up-regulated pathways are all related to 

immune response, defense response to bacteria, and peptidoglycan functions (Figure 

3.9). Within these we find pathways related to defense response against both Gram-

negative and Gram-positive bacteria. While the commercial LPS used for injections is 

derived from the outer membrane of Gram-negative bacteria, the injections 

themselves also result in septic injury, which is known to activate both Gram-positive 

and Gram-negative immune pathways (Toll and Imd pathways correspondingly) 

(HOFFMANN AND REICHHART 2002).  
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Figure 3.9. Heatmap showing top up- and down-regulated pathways (orange and purple 
respectively) through the first 48 h post-injections. “Top” pathways had an absolute score > 2.5 and 
P-value < 0.05 in at least one time point, and at least one gene from the pathway was also member 
of the 551 most predominant time-dependent genes.  

 

Among down-regulated pathways we find many metabolism-related functions, 

consistent with GO enrichment seen in down-regulated global dynamics Clusters 1 

and 4 (Figure 3.3B). Three of these pathways (glycogen metabolic process, 

triglyceride biosynthetic process, and gluconeogenesis) are highlighted in Figure 3.10. 

The glycogen pathway down-regulation pattern seems to be driven by genes Fatty acid 

synthase 1 (FASN1), and UGP, which codes for a UTP--glucose-1-phosphate (Figure 
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3.10A). The triglyceride pathway down-regulation seems to be driven by FASN1 and 

minotaur (mino), a glycerol-3-phosphate 1-O-acyltransferase (Figure 3.10B). Finally, the 

gluconeogenesis pathway down-regulation seems to be driven by fructose-1,6-

bisphosphatase (fbp), a rate limiting enzyme for gluconeogenesis (MIYAMOTO AND 

AMREIN 2017). These metabolic genes reach their lowest expression within the first 6 

hours after injections, and mostly recover by hours 12-24. These metabolic recoveries 

are much faster than what we observed for transient immune and stress response 

genes, which take 2-4 days to fully recover (Figure 3.8). 

 

 
Figure 3.10. Selected significantly down-regulated metabolic pathways with corresponding 
gene memberships. Genes that have been previously classified as part of the 551 most 
predominant time-dependent genes are highlighted in color and annotated in the legends, while the 
rest are in grey. Genes with the strongest expression signals (absolute log Fold Change > 1) are 
highlighted with arrows and labeled with asterisks (＊) in the legends. 
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Gene interaction modeling of lead-lag patterns using Granger causality 

Gene interactions are dynamic, and it follows that temporal gene expression 

profiles should be able to unveil causal dependencies among genes. If two genes have 

expression patterns that are correlated but with a certain lag, this lagged correlation, 

called Granger causality, can help infer a regulatory interaction. This causality concept 

is based on predictability, if the knowledge of the past of one time series improves the 

prediction of a second one, the first is said to be Granger causal (GC) for the second. 

Thus, we constructed directed GC edges and networks of putative interactions among 

genes (Figure 3.11). 

 

 
Figure 3.11. Diagram describing the process of constructing directed networks from Granger 
causality. Lagged correlated expression between two genes (Granger causality) leads to the 
construction of a directed edge between two genes (nodes), which in turn is used to build directed 
networks of putative interactions among genes. 
 

First, we compiled a subset of 258 genes by selecting predominant time-

dependent genes that had available functional annotation and that had differential 

expression of at least absolute log fold change of 1. Next, we performed Granger 

causality analysis on sliding windows of 6 time points on the normalized counts of 

both replicates (12 data points) using bivariate and multivariate methods as explained 
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in Materials and Methods. Among the GC pairs of genes with the highest number 

of consecutive windows with significant directed edges we find circadian rhythm 

genes such as cryptochrome and Smvt (6 consecutive windows, 6 to 16) (Figure 3.12A), 

vrille and takeout (4 consecutive windows, 9 to 17) (Figure 3.12B), period and takeout (4 

consecutive windows, 9 to 17) (Figure S3.2), and Smvt and takeout (4 consecutive 

windows, 9 to 17) (Figure S3.3). This shows that Granger causality can be used to 

infer gene dependencies/interactions using global gene expression behavior.  

 

 
 
Figure 3.12. GC edges of circadian rhythm genes plotted against time. Significant windows 
colored in blue, non-significant colored in grey. Resulting overall consecutive windows are labeled in 
blue dashed rectangles. Individual windows represent 6 consecutive time points, note that time 
points are not regularly distributed with time, therefore windows have different time ranges, but 
identical number of samples. 
 

Having found the broadest GC relationships, spanning mostly cyclic genes, we 

constructed a high-quality set of consistently significant GC edges of divergent 

expression. To this end we first filtered the subnetwork by (a) removing all nodes 

corresponding to cyclic genes identified earlier through the JTK_Cycle method, (b) 

using only pairs of nodes with significant edges (BHFDR < 0.05%) in at least 3 



 96 

consecutive windows within the first 24 hours of the time course, and (c) trimming 

the final filtered network by removing all edges with a positive weight, as these edges 

are more likely to capture spurious causality due to the high correlation between the 

genes at all timepoints.  

Our resulting high-quality GC network contains 51 nodes and 35 edges in 16 

connected components (Figure S3.4). This network, by design, should include the 

most interesting examples of divergent expression changes from our full dataset.  

The largest connected component in this network (Component #1) is a 

multifunctional chain of 6 genes annotated in Figure 3.13A. GC pairs within this 

cluster included two metabolic genes, Sorbitol dehydrogenase 1 (Sodh-1) and UGP, both 

negatively directing Claspin (both 4 consecutive windows, 2 to 10 and 4 to 12, 

respectively) (Figure 3.13C & S3.5). Claspin is known to play a role in DNA 

replication stress (LEE et al. 2012). It is known that there is an interplay between host 

immune systems and replication stress (UBHI AND BROWN 2019). The immune system 

can detect and respond to replication stress, which is an important feedback loop 

necessary to remove defective cells (LIU et al. 2015). Furthermore, the activation of 

the immune response generates reactive oxygen species (ROS) and reactive nitrogen 

species (RNS), and can promote chronic inflammation, all of which can trigger DNA 

damage (NAKAD AND SCHUMACHER 2016). UGP and fbp were identified earlier during 

gene set analysis to drive the down-regulation of metabolic pathways (Figure 3.10A 

and 3.10C), and in this cluster they are both negatively directed by LpR2 (3 
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consecutive windows, 6 to 13) (Figure 3.13D and S3.6). LpR2 is a lipophorin 

receptor, known to regulate the innate immune response by clearing serpin protease 

complexes from the hemolymph through endocytosis (SOUKUP et al. 2009). 

Lipophorin is a known humoral factor that contributes to clot formation (KARLSSON 

et al. 2004; KRAUTZ et al. 2014). Finally, LpR2 is also shown to negatively direct juvenile 

hormone acid methyltransferase (jhamt) (4 consecutive windows, 1 to 9) (Figure 3.13E). 

JHAMT is an enzyme that activates juvenile hormone (JH) precursors at the final step 

of JH biosynthesis pathway in insects (SHINODA AND ITOYAMA 2003). JH is a known 

hormonal immunosuppressor in Drosophila (ROLFF AND SIVA-JOTHY 2002; FLATT et al. 

2008; SCHWENKE AND LAZZARO 2017). 

Interestingly, Claspin was identified to be part of the same pathway as Orc1 in 

our previous gene set analysis, showing similar patterns and window of up-regulation 

(mitotic DNA replication checkpoint pathway, Figure S3.7). In our network, Orc1 is 

part of an isolated edge with metabolic gene ABGE (Component #2, 4 consecutive 

windows, 4 to 12) (Figure 3.13A and 3.13E).  
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Figure 3.13. High-quality GC network components and their edges. (A) Components #1 and 
#2 from GC network (Figure S3.4). (B) Diagram summarizes interplay between main represented 
pathways on the selected components. (C-D) Selected edges from the components plotted against 
time. Significant windows colored in blue, non-significant colored in grey. Resulting overall 
consecutive windows are labeled in blue dashed rectangles. Individual windows represent 6 
consecutive time points, note that time points are not regularly distributed with time, therefore 
windows have different time ranges, but identical number of samples. 
 

These prioritized subnetwork components suggest an underlying interplay 

between metabolic pathways and other pathways such as proliferation and repair 

(Figure 3.13B), motivating follow-up studies to determine which pathways might be 

regulating and trading off with each other in the hours following an immune 
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challenge. The overall unfiltered GC network has a multitude of relationships worth 

exploring further, but limitations in the ability to discern between different types of 

causality make widespread conclusions from the network challenging.  

 

 

DISCUSSION 

We have produced a dense and high-quality time course profiling of the 

Drosophila transcriptome response to commercial LPS immune challenge and injection 

using RNA-seq sampling over 20 time points in 5 five days. This profiling provides a 

high-quality high-dimensional dataset, which we analyzed using a broad range of 

statistical methods.  

First, we identified a subset of most significant time-dependent genes using 

spline fitting and pairwise differential expression analysis. We grouped and classified 

these time-dependent genes based on their temporal expression profiles to identify 

patterns of cyclic behavior, as well as distinct responses to immune challenge with 

divergent initiation and resolution dynamics, all discussed in detail below. Recurring 

patterns of expression corresponded to distinct functional categories, allowing us to 

infer the functional class of previously uncharacterized genes.  

Next, we expanded our profiling of the immune response by directly querying 

the functional pathways of the genes in our dataset. We identified differentially 

expressed biological pathways using pairwise gene set analysis, which allowed us to 
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characterize functional pathway transcription dynamics. The resulting global 

behaviors of immune response and metabolic pathway expression point to potential 

resource tradeoffs, precipitated by the immune challenge. 

Finally, we constructed directed Granger-causal networks of putative 

interactions to detect the regulation of one gene by another. We filtered this causal 

network to generate a high-quality set of divergent network connected components in 

which the interplay between metabolic pathways and separate pathways such as 

proliferation and repair becomes clear. 

Below, we describe and discuss in detail the main insights from these analyses, 

as well as limitations and future steps.  

 

Cyclic patterns of expression 

The dense sampling nature of this time course allows us to discern the clear 

cycling patterns of differentially expressed genes and transcription factors such as 

period, timeless, takeout, vrille, and cryptochrome, all of which have well-characterized 

circadian rhythm functions (KONOPKA AND BENZER 1971; MYERS et al. 1996; SO et al. 

2000; CYRAN et al. 2003; COLLINS et al. 2006) (Figure 3.4D, 3.5B). We systematically 

collected all genes fitting this 24-hour expression pattern using the JTK_Cycle 

algorithm. This method detected multiple well-known circadian rhythm genes, as well 

as genes that have been shown to be or indicated as cyclic in previous literature 

(Figure 3.6). More interestingly, this method also detected multiple uncharacterized 
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genes that - to our knowledge - have not yet been reported to have cyclic expression, 

such as CG10560, CG13091 (Sgroppino), CG15253, CG15254, CG18493, CG31321, 

CG33511, CG34134, CG42329, and Sodium-dependent multivitamin transporter (salt) 

(Table 3.1). 

 The identification of canonical circadian rhythm patterns both validates our 

methods of data normalization and differential expression analysis, and increases the 

certainty that we are accurately profiling novel temporal dynamics. It is important to 

note, however, that proper validation of the cycling behavior of our novel cyclic genes 

should be performed under normal Drosophila conditions, as we do not know whether 

immune challenge affected their expression.  

 

Sustained versus transient responses to immune challenge 

We characterized two temporal co-expression clusters presenting a transient 

response to the immune challenge. This response follows a pattern of up-regulated 

expression after injection with a return to the pre-challenge state within 2-5 days 

(Figure 3.8). These two clusters were mainly composed of known immune-induced 

molecules (IMs, or Bomanins (CLEMMONS et al. 2015)) and stress-induced Turandot 

genes. We additionally identified a separate set of metabolic genes (e.g. FASN1, UGP, 

fbp, and mino) present in pathways with the opposite transient response to the immune 

challenge. This response follows a pattern of down-regulated expression after 

injection followed by recovery to the pre-challenge state (Figure 3.10). Unlike the 
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immune/stress recovery period (2-4 days), the recovery of these genes was markedly 

faster (12-24 hours). Finally, we describe a temporal co-expression cluster of a 

sustained response to immune challenge. This response follows a pattern of up-

regulated expression within the first hour post-injection and remains up-regulated 

during the entire 5-day time course (Figure 3.7). This cluster was mainly composed of 

antimicrobial peptides (AMPs). 

Our time series allows us to characterize both transient and sustained responses 

to immune challenge. Variations in this response include a marked difference in 

recovery time and, in some cases, a lack of recovery even after 5 days. We observed 

that metabolic genes recovered faster than immune genes, suggesting that the early 

stages of infection likely involve the greatest tradeoffs. The striking difference in 

expression level recovery is highlighted by the sustained expression in AMPs 

throughout our entire time course. Further work is needed to better define what it 

means to return to normality, if normality is achieved at all, and how that might be 

contributing to long term effects either detrimental or beneficial. 

 

Different stages of transcriptional change 

Gene sets belonging to different functions show an up- or down-regulation 

immediately after immune challenge, reaching their highest or lowest point of 

expression within 4 different time frames. We first observed these phenomena when 

clustering time-dependent genes based on their global expression profiles (Figure 
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3.3B), and later characterized individual functional categories during temporal 

clustering analysis. AMPs showed the fastest up-regulation within the first 1-2 hours 

after immune challenge (Figure 3.7), a pattern we also observed in many transcription 

factors (Figure 3.5A). Metabolic genes and IMs reach their lowest and highest point 

of expression respectively at 5-8 hours after immune challenge (Figure 3.10 and 

3.8A). Proliferation and repair genes reach their highest point of expression at 8-10 

hours (Figure 3.13). Finally, stress-related Turandot genes reach their highest point of 

expression at 10-12 hours (Figure 3.8B). 

Our analysis shows that the immune response may be orchestrated by the 

changing expression in multiple functional groups with different initiation and 

resolution dynamics. Together, the above analyses paint a picture of an immune 

response that involves both transient and sustained changes in expression that occur 

over different timescales. This time course allows us to see layers of expression 

dynamics at a resolution that is unprecedented, allowing us to generate new 

hypotheses about the interplay and potential tradeoffs between functional pathways. 

 

Predicting function by association 

Our analysis identified genes that showcase cyclic behavior but are not 

canonically circadian-associated genes (Figure 3.6). This includes 9 genes which do 

not have assigned circadian functions but do have some evidence of cyclic behavior in 
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previous literature. It also includes 8 genes that had not been reported to exhibit any 

cyclic expression before this study, described in detail in Table 3.1.  

Temporal clustering analysis identified uncharacterized genes (CG43236, 

CG43920, CR44404, and CR45045) that share similar expression dynamics with AMP 

pathway associated genes (Figure 3.7). CR44404 and CR45045 are uncharacterized 

long noncoding RNA (lncRNAs) and, while lncRNAs do not encode proteins, they 

have been associated with transcriptional repression and activation (LONG et al. 2017). 

In mammals, lncRNAs have been implicated in regulating immune gene expression 

(CARPENTER AND FITZGERALD 2015; MUMTAZ et al. 2017), but it is not yet known if 

they play a role in Drosophila immunity. CG43236 has been shown to be up-regulated 

after injury, among other innate immune genes (KATZENBERGER et al. 2016). 

CR44404, CR45045, CG43236, and CG43920 were shown to be up-regulated in a D. 

melanogaster transcriptome profiling after immune challenge with 10 bacterial infections 

(TROHA et al. 2018). CG43236 and CG43920 have also been shown to encode small 

proteins predicted to be cationic (IM 2018), properties shared by known AMPs 

(LEMAITRE AND HOFFMANN 2007); while lncRNAs CR44404 and CR45045 were 

predicted to physically interact with antimicrobial peptide transcripts (IM 2018). These 

predictions in the literature are consistent with our dynamics-based implication of 

these uncharacterized genes as AMPs. 

We are able to implicate these genes as potential members of these functional 

pathways due to their strong expression-dynamic similarity. This is impactful both in 



 105 

the novel functional implication of previously uncharacterized genes, but also in 

demonstrating the potential this method of function-by-association has to assign 

function to other uncharacterized genes through RNA expression time course 

experiments. 

 

Functional interplay and potential trade-offs 

Our dataset shows distinct global dynamics pointing to a divergence in the 

functional responses to immune challenge. We first observed divergence in expression 

patterns when clustering time-dependent genes based on their global expression 

profiles, with clusters enriched for immune and stress response functions being up-

regulated and clusters enriched for metabolic processes being down-regulated (Figure 

3.3). The divergence in expression between immune and metabolic processes is 

strikingly confirmed in gene set analysis, as the most up-regulated pathways related to 

immune response functions, while the most down-regulated pathways related to 

metabolic functions (Figure 3.9). FASN, which shows the strongest down-regulation 

in both glycogen metabolic process and triglyceride biosynthetic process (Figure 

3.10A-B), is a lipogenic gene whose down-regulation might indicate a need to have 

easily accessible nutrients instead of storing them. Indeed, infections in mammals are 

known to induce adipose tissue lipolysis (WOLOWCZUK et al. 2008) and bacterial 

peptidoglycan is a ligand that stimulates lipolysis as well (CHI et al. 2014). The gene 

with the strongest down-regulation in the gluconeogenesis pathway was fbp (Figure 
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3.10C), which codes for fructose-1,6-bisphosphatase, the rate limiting enzyme for 

gluconeogenesis. This gene was significantly down-regulated in a study showing that 

Listeria monocytogenes infection in Drosophila causes a decrease in energy stores, with 

reduced levels of triglycerides and glycogen (CHAMBERS et al. 2012). The divergent 

dynamics detected in our dataset are thus in agreement with known individual 

mechanisms characterized in the immune response. 

We further see implications of functional interplays with our Granger Causal 

(GC) network analysis. Main subnetwork components showed significant GC 

directional edges between down-regulated metabolic genes (such as Sodh-1, UGP, fbp, 

and AGBE) and up-regulated genes with cell proliferation and repair functions 

(Claspin, LpR2, and Orc1) (Figure 3.13). These results further suggest an underlying 

interplay between metabolic pathways and proliferation and repair mechanisms such 

as regulation of DNA replication stress, endocytosis, and clot formation. 

Overall, the analysis of transcriptional patterns of the Drosophila genes in our 

experiment points to a global tradeoff between the immune response and metabolic 

processes. GC networks of putative gene interactions further suggest an interplay 

between metabolic and repair functions. The clear divergent functional responses to 

immune challenge, along with their distinct initiation and resolution expression 

dynamics, help us characterize and further understand the orchestration of the 

immune response. 
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Limitations and future steps 

One of the main limitations of this time-course experimental design is the lack 

of time-matched controls to account for expression changes associated with 

phenomena outside the immune challenge, such as aging. It is important to note, 

however, that it is still highly valuable to develop and improve methods for analyzing 

time-course transcriptional data lacking time-matched control samples since they are 

needed to analyze processes such as development, where such controls are not 

possible. Experimental data and theoretical analysis has shown that under reasonable 

assumptions, sampling time points at higher resolution is preferred over having more 

replicates (SEFER et al. 2016), an important strategy to consider when having a limited 

experimental budget. However, even under this consideration our time-course 

experimental design would have benefited from more replicates, as two replicates per 

time point led to exclusion of one time point (3 h) when one of the replicates did not 

pass quality filters. 

In our dataset, Granger Causality analysis excelled at showcasing the 

relationships between divergent gene pairs, but was overly sensitive to the extreme 

temporal correlation between large groups of genes. To avoid a prohibitively dense 

network for analysis, we relied on heuristic network trimming criteria, which was 

effective, but is likely not generalizable to other similar experiments. Developing co-

integration methods that take into account the specific bias found in high-dimensional 

RNA-seq datasets would provide a more robust statistical analysis of the causal 
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relationships observed in this type of data. Alternatively, a more aggressive, systematic 

filtering of genes based on prior biological knowledge could help alleviate this 

sensitivity to correlation, while also decreasing the computational power required to 

run this analysis. Potential filtering schemes could include binning genes by their 

common biological pathways, or generating a priori assumptions on the Granger 

causality of any two genes given that they are protein-protein interactors, their 

chromosomal location, or their transcription factor promoter/target relationships. 

Finally, it is indispensable that these statistical causal relationships be confirmed with 

direct experimental disruptions of a system, as only carefully controlled intervention 

can truly demonstrate biological causality. 

Overall, this analysis motivates innovation in computational methods for 

longitudinal omics data, both to account for their inherent high-dimensionality and 

the complex underlying architecture that contains both causal and spurious 

coordination. Further, this should serve as a proof of concept for the future of high-

density time-course RNA-seq in other model organisms. 
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CHAPTER 4 

 

HIGH-RESOLUTION QTL MAPPING WITH DIVERSITY OUTBRED 

MOUSE STRAINS IDENTIFIES GENETIC VARIATION THAT IMPACT 

GUT MICROBIOME COMPOSITION3 

 

INTRODUCTION 
 

The gastrointestinal tract of all vertebrates, including humans, harbors a 

complex ecological community of highly diverse microbes referred to as the gut 

microbiota. The microbiota colonizes the gut for the first time during the birth of the 

host and its composition is influenced by many factors during the host’s life such as 

disease, diet, and antibiotics (FRANCINO 2016; BATTAGLIOLI AND KASHYAP 2018; 

DUDEK-WICHER et al. 2018; DASH et al. 2019). Variation in the human gut 

microbiome composition has also already been associated with host immune 

responses (ROUND AND MAZMANIAN 2009; GARRETT et al. 2010; VEIGA et al. 2010), 

metabolic phenotypes (TURNBAUGH et al. 2009; RIDAURA et al. 2013), and diseases 

such as obesity (LEY et al. 2005), heart disease (FAVA et al. 2006), and diabetes (WEN et 

                                                        
3 Manuscript in preparation: Schlamp F, Zhang DY, Cosgrove E, Edwards M, Simecek P, Pack A, 
Goodrich JK, Ley R, Churchill GA, and Clark AG. High-resolution QTL mapping identifies genetic 
variation associated with gut microbiome composition in Diversity Outbred mice. 
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al. 2008). Given the roles of the gut microbiome in complex human diseases, it is 

important to characterize the factors that impact microbiome composition.  

While it is clear that the gut microbiome composition is strongly impacted by 

environmental exposures (ROTHSCHILD et al. 2018), the role of host genetics has only 

recently been implicated (GOODRICH et al. 2014b; BLEKHMAN et al. 2015; GOODRICH 

et al. 2016). Studies have identified multiple genetic variants significantly associated 

with specific bacterial taxa abundances (DAVENPORT et al. 2015; BONDER et al. 2016; 

TURPIN et al. 2016; WANG et al. 2016; GOODRICH et al. 2017; IGARTUA et al. 2017; 

ROTHSCHILD et al. 2018), despite the observation that generally the primary 

determinants of microbiome composition are non-genetic (ROTHSCHILD et al. 2018). 

Human genetic studies have significant limitations for accurate assessment of genetic 

effects on the microbiome, including accessibility to large and diverse sample 

populations as well as a general lack of control over confounding variables. One 

major limitation is that there is minimal control of diet and other environmental 

factors, and so only the strongest genetic effects can be detected. 

The mouse model, with the ability to control diet, along with well-defined 

genetic differences among inbred lines, provides a better opportunity to dissect 

genetic and environmental factors impacting microbiome composition. Quantitative 

trait locus (QTL) mapping efforts show that gut microbiota composition is a 

polygenic trait, with clearly mappable genetic factors influencing the gut microbiome 
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composition (BENSON et al. 2010; MCKNITE et al. 2012; SNIJDERS et al. 2016). 

Standard QTL mapping approaches have low mapping resolution, however, and 

advanced intercross lines provide one excellent means of improving mapping 

resolution. Belheouane et al. (BELHEOUANE et al. 2017) performed genetic and 16S 

rRNA gene analysis of skin microbiomes of a collection of 15-generation advanced 

intercross lines, and demonstrated that the improved mapping resolution also 

improved the specificity and significance of genetic associations. It is clear that the 

mouse model will provide further opportunities to dissect the means by which the 

host genome can modulate microbiome composition. A logical next step is a mapping 

experiment to identify portions of the genome that influence functional pathways that 

modulate the microbiome. 

Here we extend the analysis of the link between the host genome and 

microbiome using the Diversity Outbred mouse model. The Diversity Outbred (DO) 

population is a heterogeneous mouse stock derived from the same eight progenitor 

lines (A/J, C57BL/6J, 129S1/SvImJ, NOD/ShiLtJ, NZO/HlLtJ, CAST/EiJ, 

PWK/PhJ, and WSB/EiJ) used to establish the Collaborative Cross (CC) 

(COLLABORATIVE CROSS CONSORTIUM 2012). Mice from the CC lines at early stages 

of inbreeding were used to establish the DO population, which is maintained by 

randomized outbreeding among 175 mating pairs. The result is each individual DO 

mouse represents a unique combination of segregating alleles, whose genome is a 
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unique mosaic of the original eight progenitor lines. The advantages of this 

outbreeding include normal levels of heterozygosity — similar to the human genetic 

condition — and substantially increased genetic mapping resolution (CHURCHILL et al. 

2012). The CC/DO mice founder progenitor lines have already proven to be 

successful in identifying genetic associations with intestinal microbiome composition 

(O'CONNOR et al. 2014). 

In this study, motivated by the high level of environmental control of the 

laboratory mouse and the improved mapping resolution of the Diversity Outbred 

mouse system, we identified genetic underpinnings of the gut microbiota of 247 

Diversity Outbred mice. We uncover strong evidence of host genetic factors 

influencing the composition of many specific attributes of the gut microbiome. These 

included not only associations between specific host genetic variants and abundances 

of particular bacterial taxa, but also associations with functional molecular pathways.  

 

 
MATERIALS AND METHODS 

Animal population and sample collection 

Male mice from the Diversity Outbred Mouse Panel were obtained from The 

Jackson Laboratory (Bar Harbor, ME, USA) at 6 weeks of age. Mice were group 

housed (5 animals per cage) for 2 weeks of post-travel acclimation, and then single 

housed at identical conditions. All mice were reared on chow diet. Fecal pellets from 
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249 mice were collected at 3 months old (two samples were later discarded, leaving a 

final analyzed dataset of 247 mice). Pellets were stored in Eppendorf tubes placed on 

dry ice and moved to a -80°C freezer until processing. 

 

Microbial DNA extraction, 16S rRNA gene PCR, and sequencing 

Microbial community DNA was extracted from one single frozen pellet per 

sample using the MO BIO PowerSoil-htp DNA Isolation Kit (MO BIO Laboratories, 

Inc., cat # 12955-4), but instead of vortexing, samples were placed in a BioSpec 1001 

Mini-Beadbeater-96 for 2 minutes. We used 10-50 ng of sample DNA in duplicate 50 

µl PCR reactions with 5 PRIME HotMasterMix and 0.1 µM forward and reverse 

primers. We amplified the V4 region of 16S using the universal primers 515F and 

barcoded 806R and the PCR program previously described (CAPORASO et al. 2011), 

but with 25 cycles. We purified amplicons using the Mag-Bind® E-Z Pure Kit 

(Omega Bio-tek, cat # M1380) and quantified with Invitrogen Quant-iT™ 

PicoGreen® dsDNA Reagent, and 100 ng of amplicons from each sample were 

pooled and paired end sequenced (2x250bp) on an Illumina MiSeq instrument at 

Cornell Biotechnology Resource Center Genomics Facility. 

 

16S data processing 

We performed demultiplexing of the 16S rRNA gene sequences and OTU 

picking using open source software package Quantitative Insights Into Microbial 
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Ecology (QIIME) version 1.9.0 with default methods (CAPORASO et al. 2010). The 

total number of sequencing reads was 15,149,384, with an average of 61,334 

sequences per sample and ranging from 17,658 to 135,803. Open-reference OTU 

picking at 97% identity was performed against the Greengenes 8_13 database. 12% of 

sequences failed to map in the first step of closed-reference OTU picking. The 

taxonomic assignment of the reference sequence was used as the taxonomy for each 

OTU. ‘NR’ within taxa names represents New Reference OTUs defined as those with 

sequences that failed to match the reference and are clustered de novo. Random 

subsamples were used to create a new reference OTU collection and ‘NCR’ represents 

New Clean-up Reference OTUs that failed to match the new reference OTU 

collection (RIDEOUT et al. 2014). 

For the non-rarefied data, read count was used as an additional covariate during 

QTL mapping to reduce the effect of sequencing depth. A rarefied dataset was also 

used for heritability estimates and QTL mapping, as explained in Supplemental 

Material. Two extreme outliers were omitted from further analysis, yielding a total of 

247 samples. To differentiate the non-rarefied taxa from the rarefied taxa, we use 

‘NonR’ to represent the non-rarefied dataset and ‘R’ to represent the rarefied dataset. 

For heritability estimates and QTL mapping, a filter was applied across all 247 

samples that removed any taxon that was not present in more than 50% of the 
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samples. Relative abundance of reads (number of reads clustered to each taxa divided 

by the total number of reads in a given sample) was used as the tested phenotype. 

Stacked bar plots of the most abundant taxa within each taxonomic level were 

plotted with R-package ggplot2. A box-plot was first generated for each taxonomic 

level depicting the abundances of the taxa within that taxonomic level across the 247 

samples (Figure S4.1). The top ten taxa with the highest average abundances are 

selected to be plotted in the stacked bar plot, ordered by the most abundant taxon. A 

heatmap that correlates similarities between taxa from the non-rarefied and rarefied 

datasets based on the Pearson correlation coefficient was plotted using the R-package 

corrplot (Figure S4.2). 

 

SNP genotyping 

SNP genotyping was done at the Jackson Laboratories on each of the 247 mice 

using The Mega Mouse Universal Genotyping Array (MegaMUGA). A total of 57,973 

SNPs passed all the QC metrics and were used in the heritability and mapping analysis 

reported here. 

 

Heritability calculations 

Heritabilities of the various bacterial taxa were quantified and calculated on 

automes using a linear mixed model as implemented in R-package lme4qtl via the 
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relmatLmer() function (ZIYATDINOV et al. 2018) 

(https://github.com/variani/lme4qtl). This linear mixed model enables us to 

decompose variability into genetic and environmental components. The variance of 

the genetic component is expected to be 𝜎L-𝐾, where 𝐾 is a kinship matrix normalized 

as proposed in (KANG et al. 2010). The kinship matrix in specified via the “relmat” 

argument in relmatLmer(). To account for the potentially confounding effects of 

shared cages during acclimation (as noted above in Section 5.1), we also included cage 

as a random effect in our model. Thus, the model included estimates of variance of 

the genetic component (𝜎L-) and the cage component (𝜎NOLP- ), and the residual 

variance due to unspecified environmental factors (𝜎QR- ). 

The narrow sense heritability was then estimated as: 

ℎ- =
𝜎L-

𝜎L- + 𝜎NOLP- + 𝜎QR-
 

Sequencing lane was included as a covariate in both non-rarefied and rarefied 

datasets. For our non-rarefied dataset, narrow sense heritabilities were calculated using 

the number of read counts as an additional covariate. Significance of heritability 

estimates was assessed by conducting a restricted likelihood ratio test using the 

exactRLRT() function in the R-package RLRsim (SCHEIPL et al. 2008), as applied in 

Supplementary Note 3 in (ZIYATDINOV et al. 2018).  
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QTL Mapping 

For QTL mapping, the relative abundances were rank Z-transformed using R-

package DOQTL (GATTI et al. 2014) and then mapped using a linear mixed model in 

R-package lme4qtl::relmatLmer() (ZIYATDINOV et al. 2018) on autosomes with kinship 

included as random effect to account for genetic relatedness among animals. For the 

bacterial taxa from the five taxonomic levels, we generated QTL mappings for all taxa 

that passed the 50% zero cut-off (i.e. those present in at least 50% of the mice), with 

the taxa designated as the phenotype. Sequencing lane (fixed effect) and cage (random 

effect) were included in both non-rarefied and rarefied datasets. We included read 

count as an additional covariate (fixed effect) for our non-rarefied dataset. Significant 

and suggestive associations were identified in a two-step procedure. First, we applied 

likelihood ratio tests comparing models with and without genotype. P-values derived 

from these tests were adjusted for multiple testing across SNPs (within a given taxon) 

using R function p.adjust() with method “BH” (BENJAMINI AND HOCHBERG 1995). In 

the second step, we conducted permutation tests (1000 permutations) for taxa that 

had associations with adjusted p-value < 0.1 in the first step.  

For every bacterial taxon from the five taxonomic levels with a statistically 

significant QTL association, we mapped the OTUs belonging to that taxon. We 

applied a 50% zero cut-off filter to only retain common OTUs. With the OTUs 
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obtained, we generated QTL mappings and assessed significance just as we had done 

for the five taxonomic levels.  

 

Gene Set Pathway Analysis 

We used the open-source online DAVID annotation tool (HUANG et al. 2008) 

and the Ingenuity Pathway Analysis (IPAⓇ, QIAGEN Redwood City, CA) software to 

conduct gene set pathway analysis. We used DAVID v6.8 and their functional 

annotation tool to reduce large gene sets into smaller groups of functionally related 

genes. A list of gene names was uploaded onto the website with the identifier 

parameter set to ‘official_gene_symbol’ and the species Mus musculus selected. DAVID 

then outputs a list of categories, such as functional, gene ontology, tissue expression, 

and others, which contained subsets of the inputted gene set. Within each category, 

DAVID also lists more specific categories and by displaying the genes for each sub-

category, we were able to view which of the genes from our gene list were found to be 

associated with various different classifications. From the association results, a p-value 

filter allowed us to view only the results above a certain EASE p-value threshold, a 

modified Fisher-Exact p-value score. We chose the groupings with shown higher 

significance and reinforced the results outputted by DAVID with KEGG pathway 

database (KANEHISA et al. 2017) by simply confirming the presence of each gene in 

their organized category, as by DAVID, in KEGG’s online database. 
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Using IPA, a new “core analysis project” was created and then our list of genes 

was uploaded as a dataset with parameters chosen to fit the formatting of our gene 

list. Before running the analysis, we set the reference set to be Ingenuity® Knowledge 

Base and then ran our analysis. IPA uses multiple categories to classify the inputted 

gene set and we focused on their disease and functions category. Others include 

expression, regulatory effects, and other canonical pathways. Additionally, IPA 

generates networks of genes proven to be either directly or indirectly related to each 

other. We chose the most significant network outputted and identified the 

intersection of that network with the network relating the genes in our QTL hits with 

the respective disease. 

 

 
RESULTS 

Variation of gut microbiota 

High-throughput sequencing of fecal samples from 247 three month old male 

mice from the Diversity Outbred Mouse Panel generated 15,149,384 16S rRNA gene 

sequences that passed the quality filtering criteria after demultiplexing (see Materials 

and Methods). On average, 61,334 sequences were obtained per sample (ranging 

from 17,658 to 135,803 sequences). Sequences were sorted into 57,014 operational 

taxonomic units (OTUs) at 97% identity against the Greengenes 8_13 database using 

open-reference OTU picking. Next, OTUs were summarized at five levels of 
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taxonomy (phylum, class, order, family, genus). In order to focus on the most 

abundant microbes, only the taxa present in at least 50% of samples (i.e. present in 

124 samples or more) were used for all following analysis, leaving a total of 80 taxa to 

test at the five levels of taxonomy (7 phyla, 9 classes, 12 orders, 21 families, and 31 

genera). The most predominant taxa at the phylum level were Firmicutes (average 

relative abundance = 48.64%) and Bacteroidetes (46.41%), which is consistent with 

previous findings (BENSON et al. 2010; MCKNITE et al. 2012; ORG et al. 2015). The 

relative abundances of these taxa were highly variable, with Firmicutes ranging from 

11% to 94%, and Bacteroidetes ranging from 1% to 88% (Figure 4.1). 

 

 

Figure 4.1. Relative abundances of top ten most abundant phyla across the 247 mouse 
strains. Relative abundances shown, mouse strains sorted by phylum Firmicutes, the most abundant 
phylum.  
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The top 8 most abundant genera were present in at least 99% of the samples. 

The two most abundant genera were an unidentified genus within Bacteroidales family 

S24-7 (average relative abundance = 43.89%, ranging from 1% to 88%) and another 

unidentified genus within Clostridiales (32.35%, ranging from 4% to 78%), consistent 

with previous findings (SHIN et al. 2016). Stacked bar plots and box plots depicting 

relative abundance frequencies for all five taxonomic levels are available in Figure 

S4.1. 

When dealing with uneven sequence counts across samples, microbiome 

studies commonly use rarefaction as a data normalization approach, consisting of 

randomly selecting from each sample an equal number of sequences (GOODRICH et al. 

2014a). It has been argued, however, that rarefaction is not an ideal approach due to 

valuable data being discarded (MCMURDIE AND HOLMES 2014). Therefore, we 

decided to present our analysis of the non-rarefied data using sequence counts per 

sample as a covariate, noting also that the rarefied data provided highly concordant 

results (see Supplemental Material). 

 

Heritability estimation 

Each of the 247 individual mice used in this study was genetically unique. The 

unit of inference for phenotypes was the relative abundance of each taxon in each 

individual, while the units of genetic inference were the SNP genotypes at each of 
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57,973 sites for each mouse using the mouse array. We estimated narrow-sense 

“SNP” heritability (h2) using a linear mixed model in R-package lme4qtl (ZIYATDINOV 

et al. 2018). A linear mixed model was used to predict whether the effects of the 

autosomal genotype on the phenotype is proportional to the genetic similarity 

between the mice, after adjustment for known factors. Thus, calculations were based 

on the kinship matrix (genetic similarity), expression of a phenotype (taxon 

abundance) across all samples, and additional covariates (such as sequencing lane, read 

counts, and cage effect). Significance was assessed by an exact (restricted) likelihood 

ratio test using R-package RLRsim (SCHEIPL et al. 2008). More details can be found in 

Materials and Methods. In total, 27 of the 80 tested taxa were heritable (nominal p-

value < 0.05), with 3 additional taxa having statistically suggestive heritabilities of 20% 

or more (nominal p-value < 0.1) (Table S4.1A). Proportion variance estimates for 

kinship and cage for all taxa are presented in Figure 4.2. 
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Figure 4.2. Proportion variance estimates for kinship and cage for all taxa. Proportion of 
variance for each taxon that can be explained by additive effects (heritability) using a kinship or 
Genomic Relationship Matrix (GRM) (green), cage effects (orange), and unexplained residual effects 
(blue). Taxa marked with a red asterisk have statistically suggestive QTL hits (adj. p-value < 0.1). 
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The most heritable taxon was the class Mollicutes with a heritability estimate of 

39% (p-value of 0.002) (Table 4.1). Within Mollicutes, an unidentified genus in order 

RF39 was also found to be highly heritable, with a heritability of 34% (p-value 0.010) 

and the genus Anaeroplasma has a heritability of 28% (p-value 0.013). Within class 

Clostridia, an unidentified genus in order Clostridiales showed a heritability of 38% (p-

value 0.0106). Furthermore, the genus Lactobacillus within class Bacilli and the entire 

Firmicutes phylum were also heritable, at 36% (p-value 0.008) and 23% (p-value 0.049) 

respectively. The genus Turicibacter within class Bacilli had high heritability estimates as 

well at 35% (p-value 0.0043) and 28% (p-value 0.029) respectively. Given the large 

proportion of the microbiome is composed of either Firmicutes or Bacteroidales, 

their proportions are strongly negatively correlated. This means that the high 

heritability of Firmicutes abundance implies also a high heritability of the order 

Bacteroidales (31%, p-value 0.013), as well as an abundant unidentified genus in family 

S24-7 (32%, p-value 0.014). 
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Table 4.1. Heritability of taxa at five taxonomic levels.  
 

 

Only showing ranked results with heritability above 20%. Results with p-value < 0.05 (statistically 
significant) are bolded. When results were identical across taxa in the same phylogenetic branch, 
only the lowest (most specific) taxon was kept. The designations p_, c_, o_, f_, and g_ are for 
phylum, class, order, family, and genus, respectively. Complete table of heritability results, including 
rarefied data, can be found in Tables S4.1A-B. 
 

QTL Mapping 

QTL mapping of the bacterial taxa at the five taxonomic levels revealed 

significant findings that suggest statistically significant associations between host 

genotype and abundances of certain taxa. QTL regions on autosomes were found 

using the R-package lme4qtl (ZIYATDINOV et al. 2018). Significance was assessed first 

by comparison of models with and without genotype via a likelihood ratio test, 
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followed by a genome-wide permutation test. The reported p-values were corrected 

for multiple testing across SNPs (but not across taxa). In total, genetic associations 

with 3 taxa were found to be statistically significant (adj. p-value < 0.05), and genetic 

associations with 3 additional taxa were statistically suggestive (adj. p-value < 0.1) 

(Table 4.2, Table S4.2A).  

We found statistically significant QTL hits associated with the abundance of 

family Ruminococcaceae, order Bacillales, and genus Staphylococcus (Table 4.2). We 

also found statistically suggestive QTL hits associated with phylum Bacteroidetes, 

order Bacteroidales, and class Mollicutes. Multiple QTLs for various taxa overlapped 

with the QTL regions for their parent taxa, such as QTL hit for genus Staphylococcus 

(which is below the taxonomic branch for order Bacillales) overlapping the QTL hit 

for order Bacillales (Table 4.2). These overlaps are a common occurrence in both the 

significant and non-significant QTLs (Table S4.2A).  
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Table 4.2. QTL regions for taxa at five taxonomic levels.  
 

 

Only showing ranked results with adj. p-value < 0.1 (statistically suggestive). Results with adj. p-value 
< 0.05 (statistically significant) are bolded. When results were overlapping across taxa in the same 
phylogenetic branch (such as p_Bacteroidetes and o_Bacteroidales), permutations were calculated 
only for the lowest (most specific) taxon. The designations p_, c_, o_, f_, and g_ are for phylum, 
class, order, family, and genus, respectively. Complete table of QTL results, including rarefied data, 
can be found in Tables S4.2A-B. 
 

Looking at specific QTL peaks, we identified the genes Insig2 and Ksr2 on the 

highest point in the region for the class Mollicutes (chr1:121,315,223, LOD = 7.002) 

and the order Bacteroidales (chr5:117,733,508, LOD = 7.203) respectively. INSIG2 

plays a central role in the pathway by which the circadian clock regulates liver lipid 

metabolism (ZHANG et al. 2017) and Ksr2 has been implicated in being associated with 

BMI and severe early-onset obesity through large scale GWAS studies (MILANESCHI et 

al. 2019).  
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OTU level analysis 

Next, we decided to increase the specificity of the taxonomic classifications to 

operational taxonomic units (OTUs) by compiling all OTUs identified within taxa that 

had statistically suggestive QTL peaks (Table 4.2). We filtered out OTUs that were 

present in less than 50% of the samples, resulting in 362 OTUs. QTL mapping 

performed on these selected OTUs resulted in 59 OTUs with at least one statistically 

suggestive association. Additionally, 99 OTUs were found to be heritable (h2 > 20%, 

p-value < 0.05), of which 28 OTUs also had statistically suggestive QTLs (Tables 

S4.3 and S4.4). Proportion variance estimates for kinship and cage for all tested 

OTUs are presented in Figure S4.3. 

QTL associations to OTUs varied compared to overlapping QTL regions 

associated to taxa at higher taxonomic levels, some were sharper and stronger, others 

were less specific and wider (Table 4.3). These results are interesting because a 

sharper QTL peak associated with an OTU may suggest that the overlapping QTL 

region associated with the broader taxonomic group is being driven by that specific 

OTU. On the other hand, if the overlapping QTL region associated with the broader 

taxonomic group is smaller and more specific than the region seen on an individual 

OTU, this might suggest a cumulative effect of multiple sub-taxonomies driving a 

stronger signal at the broader taxonomic level. For example, QTL hits for OTU 
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338796 and New.CleanUp.ReferenceOTU 170146 within family Ruminococcaceae 

were both statistically significant and overlapped with the QTL region for 

Ruminococcaceae, but the QTLs for the OTUs were both wider. 

 
Table 4.3. QTL regions for OTUs.  
 

 

Only showing OTUs with adj. p-value < 0.1 (statistically suggestive) and with a QTL region 
overlapping QTLs from higher-level taxonomies. Results with adj. p-value < 0.05 (statistically 
significant) are bolded. Complete table of QTL results for OTUs can be found in Tables S4.4. 
 

Comparison to other studies 

Results from other published studies on heritabilities of the various bacterial 

taxa in the gut microbiome were compiled and compared with our results, both in 

rarefied and non-rarefied datasets (Figure 4.3). A full comparison of heritabilities 

among all analyzed taxa in our study and other studies can be found in Table S4.5.  

Family S24-7 within order Bacteroidales had a high heritability in our study (h2 

= 0.32) and it has been reported as heritable and significant in both mice (h2 = 0.60 in 
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(ORG et al. 2015)) and humans (h2 = 0.33 in (TURPIN et al. 2016)) (Figure 4.3). Genus 

Lactobacillus was found to have a high and significant heritability (h2 = 0.36) and it was 

also found to be highly heritable in one mouse study (h2 = 0.74 in (O'CONNOR et al. 

2014)) and both highly heritable and significant in a pig study (h2 = 0.34 in 

(CAMARINHA-SILVA et al. 2017)) and multiple human studies (h2 = 0.36 in 

(DAVENPORT et al. 2015), 0.26 in (TURPIN et al. 2016), and 0.15 in (LIM et al. 2017)). 

Genus Turicibacter, also within class Bacilli, was found to have a high and significant 

heritability as well (h2 = 0.57) and was found to be highly heritable in one mouse study 

(h2 = 0.54 in (ORG et al. 2015)). Turicibacter was also found to be significantly heritable 

in human studies (h2 = 0.26 in (TURPIN et al. 2016) and 0.36 in (GOODRICH et al. 

2016)). Under the class Clostridia and still within the phylum Firmicutes, family 

Christensenellaceae in our rarefied dataset had a high, significant heritability (h2 = 

0.31) that did not appear in our non-rarefied dataset. In human studies, 

Christensenellaceae has been found to be highly heritable and statistically significant 

(h2 = 0.64 in (TURPIN et al. 2016), 0.42 in (GOODRICH et al. 2016), and 0.31 in (LIM et 

al. 2017)). Additionally, we found genus Clostridium to have a high and significant 

heritability (h2 = 0.31) that was also seen in other human studies as well (h2 = 0.24 in 

(GOODRICH et al. 2016) and 0.46 in (DAVENPORT et al. 2015)). The genus Coprococcus 

was also significant and highly heritable from our study (h2 = 0.25) as well as in 

various human studies (h2 = 0.46 in (DAVENPORT et al. 2015) and 0.16 in (LIM et al. 

2017)). 
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The clade within the phylum Tenericutes including genus Anaeroplasma gave 

high and statistically significant heritabilities in both our rarefied and non-rarefied 

datasets (Figure 4.3). Few other studies found similar results either because they did 

not include these taxa in their study or their results gave weaker heritabilities with 

non-significant p-values. Nonetheless, one mouse study did find a high heritability for 

genus Anaeroplasma (h2 = 0.48 in (O'CONNOR et al. 2014)). In human studies, 

significant heritabilities were found for phylum Tenericutes (h2 = 0.34 in (GOODRICH 

et al. 2016) and 0.23 in (LIM et al. 2017)), class Mollicutes (h2 = 0.32 in (GOODRICH et 

al. 2016) and 0.23 in (LIM et al. 2017)), and order RF39 (h2 = 0.31 in (GOODRICH et al. 

2016)). 

Both our non-rarefied and rarefied datasets gave insignificant heritability 

estimates of 0.02 for the genus Akkermansia and all the way up its taxonomic branch 

to phylum Verrucomicrobia, yet estimates from (ORG et al. 2015) were as high as h2 = 

0.92, and heritability of Akkermansia from (O'CONNOR et al. 2014) was h2 = 0.62 in 

mice. Studies conducted using human microbiome samples show a diversity of 

heritability estimates for this taxonomic branch: moderately high and significant (h2 = 

0.30 for both in (TURPIN et al. 2016)), low and significant (h2 = 0.15 for 

Verrucomicrobia and h2 = 0.14 for Akkermansia in (GOODRICH et al. 2016)), and close 

to zero and non-significant (up to h2 = 0.01 for Akkermansia in (DAVENPORT et al. 

2015), and 0.05 for Verrucomicrobia and 0.06 for Akkermansia in (LIM et al. 2017)). 
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Figure 4.3. Comparison of taxon heritabilities across mouse, human, and pig studies. The 
green shading over heritability estimates ranges from lowest heritability estimate (white) to highest 
heritability estimate (green) in a given study. Statistically significant results are shown in bold font. 
For our Diversity Outbred study, we report both non-rarefied (nonR) and rarefied (R) results. For 
(ORG et al. 2015) we report results using all mice (All), just males (M), just females (F), an average 
per strain (Avg), and a single mouse per strain (One). (ORG et al. 2015) and (O'CONNOR et al. 2014) 
did not report significances. For (GOODRICH et al. 2016) the estimates are calculated by the ACE 
model, bold values indicate estimates with a 95% confidence interval not overlapping 0. For 
(DAVENPORT et al. 2015) the estimates are the proportion of variance explained (PVE) estimates 
(“chip heritability”), we report winter (W), summer (S), and combined seasons (C) datasets, and bold 
values indicate estimates with a standard error not overlapping 0. For (TURPIN et al. 2016) and (LIM 
et al. 2017) estimates are polygenic heritability (H2r). For (CAMARINHA-SILVA et al. 2017) estimates 
are narrow-sense heritability (h2). Grey indicates that the taxon was not observed or excluded in a 
given study. Figure adapted from (GOODRICH et al. 2016). Selected comparisons shown, full 
comparison found in Table S4.5. 
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In addition to comparing our heritability estimates with other studies, we also 

contrasted our QTL mapping results of the gut microbiome with those from previous 

findings (Figure 4.4). A full comparison of QTLs among all analyzed taxa in our 

study and other studies can be found in Table S4.5. 

We identified statistically significant QTL associations for the order Bacillales 

as well as for the family Staphylococcaceae and the genus Staphylococcus within 

Bacillales in chromosome 19; another mouse study also found statistically significant 

QTL associations for all of the same taxa but on chromosome 17 (MCKNITE et al. 

2012). A human microbiome study found statistically significant QTL regions for the 

class Bacilli, which comprise the above mentioned order and families (BLEKHMAN et 

al. 2015. 

Family Ruminococcaceae has been previously found to have significant QTL 

associations both in mice (chromosome 12, (BENSON et al. 2010)) and humans 

(BLEKHMAN et al. 2015). In our study, Ruminococcaceae was identified to be 

associated with chromosomes 2 and 5. We also identified a QTL hit for the phylum 

Bacteroidetes in chromosome 5 while another mouse study identified a significant hit 

in chromosome 14 (WANG et al. 2015). Within Bacteroidetes, even though we did not 

find any significant QTL results for the genus Bacteroides, many other mouse studies 

did (chromosomes 1 (WANG et al. 2015), 4 (MCKNITE et al. 2012), 9 (LEAMY et al. 
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2014), 11 (BUBIER et al. 2018), 16 (LEAMY et al. 2014), and 18 (LEAMY et al. 2014)) as 

well as a human study (BLEKHMAN et al. 2015).  

Phylum Tenericutes had a significant hit in chromosome 1 in both our non-

rarefied and rarefied datasets, and family Lachnospiraceae had a statistically suggestive 

QTL in chromosome 10 in our rarefied dataset but not in our non-rarefied dataset. 

Both of these taxa had significant QTL hits in a human study (BLEKHMAN et al. 2015). 

 

 

Figure 4.4. Comparison of taxa with QTL associations across mouse and human studies. 
Associations with each taxon are marked in blue if statistically suggestive and bolded if statistically 
significant, or dark grey if not significant. The chromosome number were the QTLs were found are 
denoted in each box. Light gray indicates that the taxon was not observed or excluded in a given 
study. For our Diversity Outbred study, we report both non-rarefied (nonR) and rarefied (R) results. 
Figure adapted from (GOODRICH et al. 2016). Selected comparisons shown, full comparison found 
in Table S4.5. 
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Gene level analysis 

Examining the QTL mapping results from previous studies, it was apparent 

that although different studies might all have found significant QTL regions for a 

particular bacteria taxon, they identified different genomic positions as showing 

associations. In order to identify common pathways shared by different QTL regions, 

we ran a cumulative geneset pathway analysis on the genes within our identified 

regions and the genes within the regions indicated in other studies. In total, there were 

60 significant QTL hits with an additional 256 suggestive hits across the six 

taxonomic levels (phylum, class, order, family, genus, and OTU) (Table S4.2 and 

S4.4).  

Of the analyzed gene subsets, the collection of genes within QTLs among the 

taxa and OTUs that fall under the family Ruminococcaceae returned the most 

significant results. The Ingenuity Pathway Analysis (IPA) software was employed to 

analyze and categorize our geneset (IPA®, QIAGEN Redwood City, CA). Overall, 

372 genes from 58 statistically significant and suggestive Ruminococcaceae QTLs 

(Table S4.6) were submitted to IPA. A core analysis to find associated pathways and 

diseases generated multiple gene networks that revealed genes strongly associated with 

ovarian, breast, and colon cancer pathways (Figure 4.5A-B).  

Five genes, Vegfa, Kat2b, Smad4, Fgfr2, and Yes1, from our gene set were found 

to be highly linked to ovarian cancer (p-value = 5.43 x 10-6) (Figure 4.5A). Although 
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all of these genes have been identified to be related to ovarian cancer pathways, we 

recognized Smad4 as a well-known and prevalent tumor suppressor gene. SMAD4 

mediates the TGF-beta signaling pathway and occurs frequently in pancreatic and 

colorectal cancers with malignant progression and appears occasionally in other 

human cancers (MIYAKI AND KUROKI 2003). Additionally, five genes from our input 

gene set were found to be significantly associated with breast cancer pathways (p-value 

= 1.17 x 10-5) (Figure 4.5B). Though the results are sparse and under studied, 

Ruminococcaceae abundance and breast cancer have been linked in previous studies. 

One study shows that Ruminococcaceae abundance was significantly higher in 

postmenopausal breast cancer patients when compared to normal healthy patients 

(YANG et al. 2017).  

Genes from our significant Ruminococcaceae QTL peaks were also found to 

be associated with colon carcinoma (p-value = 6.67 x 10-5) and colorectal carcinoma 

(p-value = 1.75 x 10-4) (Figure 4.5A) and associations between these bacteria and 

colorectal cancer (CRC) have been studied before. Ruminococcaceae was found to be 

significantly less abundant in cancerous colorectal tissue compared to healthy 

intestinal lumen (CHEN et al. 2012). Furthermore, another study showed findings that 

suggest Ruminococcaceae provides beneficial effects against risk of colorectal cancer 

(ERICSSON et al. 2015).  
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In addition to having genes associated with specific cancers, various genes from 

our Ruminococcaceae gene set were found to have direct interactions with the well-

known and prevalent cancer gene Tp53. Figure 4.5C from IPA depicts a gene 

network containing 21 genes from the Ingenuity Knowledge Base and 14 genes from 

our input gene set, 5 of which (Sorbs1, Stau1, Cox15, Ran, and Glb1) have direct 

interactions with the widely known tumor suppressor gene Tp53. TP53 has been 

shown to be a critical player in tumor development and how tumor cells avoid 

apoptosis, and mutations in Tp53 have been identified in numerous types of cancers 

(LEVINE et al. 1991; GREENBLATT et al. 1994; PETITJEAN et al. 2007; VOGELSTEIN et al. 

2010).  
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Figure 4.5. Ingenuity Pathway Analysis (IPA) interaction network generated from genes 
within Ruminococcaceae QTLs. Genes circled in color are all part of specific associated pathways 
as specified below. Genes colored in gray belong to our dataset whereas un-colored genes are other 
closely associated genes added by IPA. Refer to Tables S4.7A-C for a list of these associated genes 
from our dataset. (A) The network shows genes found within Ruminococcaceae QTLs strongly 
associate with pathways related to ovarian cancer (circled in pink) and colon carcinoma and 
colorectal carcinoma (circled in light blue). (B) The network shows genes found within 
Ruminococcaceae QTLs strongly associate with pathways related to breast cancer (circled in pink). 
(C) The network shows genes found within Ruminococcaceae QTLs strongly associated with 
hallmark cancer gene Tp53 (circled in purple). 
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In addition to Ruminococcaceae, we compiled the results from all of our 

significant QTL peaks under the order Bacillales and used the genes from within the 

QTL regions to run gene set functional pathway analyses and found these bacteria to 

be highly associated with pathways involved in lipid and sphingolipid metabolism. 

IPA identified our input genes Vldlr and Sgms1 to be related to multiple lipid 

metabolism pathways (p-value = 5.23 x 10-8 to 5.14 x 10-4) (Figure S4.4, Table 

S4.7A) and DAVID functional annotation tool (HUANG et al. 2008) identified our 

genes Vldlr, Sgms1, and Asah2 to be related to lipid metabolism (p-value = 0.0048) as 

well as genes Sgms1 and Asah2 to be related to sphingolipid metabolism (p-value = 

0.0063) (Table S4.7B). Associations between gut microbiota and host lipid 

metabolism have been investigated previously, and proof of causality between specific 

microbial associations with lipid metabolism and sphingolipid production has been 

demonstrated (GHAZALPOUR et al. 2016; HEAVER et al. 2018; BROWN et al. 2019; 

JOHNSON et al. 2019). 

 

DISCUSSION 

There exists a complex and multifaceted relationship between the gut 

microbiome and its host’s genome, where recent studies are beginning to show the 

true magnitude of these connections. Our results seek to further understand this 
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relationship by identifying functional and disease pathways that may be associated 

with specific bacterial abundances in the mouse gut microbiome.  

SNPs with the highest LOD in the QTL regions for Mollicutes and 

Bacteroidales were found to lie within genes Insig2 and Ksr2 respectively. Insig2 

encodes a transmembrane protein that releases SREBP proteins to the endoplasmic 

reticulum where they exert control over lipid metabolism (PASCHOS AND 

FITZGERALD 2017). Relationships between gut microbiome and lipid metabolism 

have already been established (LI et al. 2008; VELAGAPUDI et al. 2010), and our 

reported association between Mollicutes and Insig2 further suggest some kind of 

interaction between Mollicutes abundance and lipid metabolism. Gene Ksr2 is known 

to be associated with BMI and early-onset obesity, as Ksr2 variants impair cellular fatty 

acid oxidation and glucose oxidation, often leading to hyperphagia, low heart rate, 

reduced basal metabolic rate, and severe insulin resistance (PEARCE et al. 2013). This 

provides potential pathways by which Ksr2 may lead to severe cases of obesity. 

Additionally, Bacteroidetes relative abundance has been shown to be 50% lower in 

genetically obese ob/ob mice compared to lean mice while Firmicutes relative 

abundance was higher by a corresponding amount (LEY et al. 2005). The association 

we find between Bacteroidales and Ksr2 may suggests a potential relationship between 

Bacteroidales abundance and risk for obesity. 



 142 

Using the total set of genes from within all 58 statistically significant and 

suggestive QTL regions for taxa within the family Ruminococcaceae, we identified 

multiple networks, each of 35 functionally interrelated genes, enriched in disease 

pathways for ovarian, breast, and colon cancer. Evidence of functional associations 

between ovarian cancer and Ruminococcaceae is lacking, but various studies have 

confirmed findings showing increased Ruminococcaceae abundance in breast cancer 

patients compared to normal healthy individuals (FERNÁNDEZ et al. 2018; ZHU et al. 

2018). While these studies did not uncover a directionality to this association, the 

significant differences in microbiome composition could be used as independent 

biomarkers of breast cancer (ZHU et al. 2018). In addition to specific links between the 

family Ruminococcaceae and breast cancer, associations between the gut microbiome 

and breast cancer have been flagged (FERNÁNDEZ et al. 2018). This includes 

associations between perturbations in the gut microbiome and circulating estrogen 

levels and metabolites, produced by several bacteria including Ruminococcaceae and also 

known as the estrobolome, which can affect the risk for breast cancer (PLOTTEL AND 

BLASER 2011; FUHRMAN et al. 2014). Indeed, the gut microbiome can influence 

estrogen metabolism through enterohepatic circulation (ADLERCREUTZ et al. 1984; 

FLORES et al. 2012), and thus could be implicated in breast cancer by interacting with 

estrogen metabolism (MINELLI et al. 1990; GOEDERT et al. 2015). Outside the gut 

microbiome, a study looked at the relationship between the breast tissue microbiome 

and breast cancer and also found significantly different microbiome composition and 
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functions between women with benign and malignant breast disease (HIEKEN et al. 

2016). In aggregate, these studies support a role for microbes in the risk of breast 

carcinogenesis and our study extends this relationship by identifying specific genes 

involved in breast cancer pathways that may mediate this connection. 

Our functional gene networks also revealed genes involved in colon cancer 

pathways. Ruminococcaceae abundance has been shown to be negatively correlated 

with risk for colorectal cancer (CRC) (CHEN et al. 2012; ERICSSON et al. 2015). 

Looking beyond the specificity of Ruminococcaceae, various other studies have 

shown strong evidence for a link between the gut microbiome and risk for CRC. 

Microbiota in the colon form biofilms that line the mucosal surface, and a study has 

shown evidence suggesting that this biofilm structure may impact cellular proliferation 

and cancer growth by affecting the metabolome and down-regulating or up-regulating 

the production and release of metabolites favorable for tumor cells (JOHNSON et al. 

2015). General decreased microbial community diversity has been shown to be 

significantly correlated with risk for CRC in a study that compared CRC case subjects 

to control healthy subjects (AHN et al. 2013). Additionally, a study identified the 

enrichment and depletion of several bacterial populations associated with CRC and 

used this information in addition to known clinical risk factors for CRC to build a 

predictive model for evaluating risk for CRC. Used as a screening tool, this new 

predictive model that included microbial abundances improved accuracy by more than 
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50 folds (ZACKULAR et al. 2014). This not only confirms the existence of strong 

associations between the gut microbiome and CRC, but also raises the possibility that 

these data may be used as a potential diagnostic tool for clinical purposes. 

In addition to revealing potential disease pathways associated with 

Ruminococcaceae, our geneset pathway analysis also unveiled connections between 

multiple genes to the well-characterized cancer gene Tp53. Genes Sorbs1 and Stau1 

found in our QTL analysis have been shown to be down-regulated in cells that have 

undergone p53-mediated immortalization and transformation as a direct or indirect 

result of Ras signaling activity (BOIKO et al. 2006). Furthermore, another study 

showed through gene ontology analysis that p53 regulates various mitochondrial 

bioenergetic pathways including the up-regulation of our gene Cox15 involved in ATP 

synthesis (MAK et al. 2017). The same study also found that p53 regulates various 

genes involved in cardiac tissue function including the down-regulation of our gene 

Ran involved in major signal transduction pathways (MAK et al. 2017). P53 was further 

found to decrease the activity of mouse SA beta-Galactosidase protein (encoded by 

our gene Glb1) in mouse mesothelial cells as well as in mouse embryonic fibroblast 

cells (PIETRUSKA AND KANE 2007; WANG et al. 2007). With multiple genes from 

within our significant Ruminococcaceae QTL peaks exhibiting interactions with the 

popular tumor suppressor gene Tp53, it is highly suggestive that Ruminococcaceae 
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abundance may be in some way linked to cancer development and tumor cell 

proliferation. 

Similar geneset pathway analysis was conducted for the QTLs under the order 

Bacillales and significant associations were found between various genes and lipid 

metabolism. Although specific interactions between Bacillales and lipid metabolism 

have not been thoroughly studied before, previous studies have elucidated a 

relationship between the gut microbiome and the metabolome. One study discovered 

increased energy metabolites in conventionally raised mice compared to germ free 

mice and further found microbiome composition to influence levels of various lipid 

classes, most significantly on triglyceride and phosphatidylcholine molecular species 

(VELAGAPUDI et al. 2010). Furthermore, systems biology analysis comparing human 

baby microbiota to normal microbiota in mice found that metabolism of dietary lipids 

was specifically influenced by the microbiome (LI et al. 2008). In mouse, a study 

confirmed the microbiome to exert a strong impact on the metabolism of bile acids 

with increased bile acid levels in various gut compartments in germ free mice, 

suggesting that gut microbiome composition may affect host lipid metabolism 

through bile acid metabolism (CLAUS et al. 2008). 

A concern with performing microbiome analysis is that the standard data 

processing method of rarefaction of counts causes notable losses of data and loss of 

power leading to missed associations (MCMURDIE AND HOLMES 2014). We evaluated 
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the impact of rarefaction on microbial abundances by clustering rarefied and non-

rarefied taxa together by correlation of frequency of counts within each taxonomic 

level. The majority of the rarefied taxa correlated with their non-rarefied counterparts 

(Figure S4.2). Regardless of this similarity, we conducted all analysis in parallel for 

non-rarefied and rarefied datasets. Looking at the significantly associated QTLs within 

various taxa from non-rarefied and rarefied datasets, we notice some differences in 

the significance of the QTLs and the chromosome in which they reside (Table 

S4.2A-B). While several microbial taxa associations with QTLs were consistent across 

non-rarefied and rarefied datasets, there were some instances of statistically significant 

associations being found in only one of the datasets. 

Comparing our results with other studies, we found little overlap in the specific 

bacterial taxa studied as well as the calculated heritabilities and QTL results. This is 

most likely due to the limited number of existing studies discussing heritabilities and 

QTL mappings of bacteria within the gut microbiome. Additionally, the absence of a 

standardized methodology for performing these studies leads to use of different 

procedures and analytical methods, making it increasingly difficult to compare results 

across studies (GOODRICH et al. 2017). Ultimately, the current state of the field for 

profiling different characteristics of the gut microbiome is still rapidly evolving and as 

it matures and more studies are undertaken, it will become easier to compare and 

validate results. 
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Although our results support the claim that host genetics can impact the gut 

microbiome composition in ways that are relevant to the health of the host, our study 

has some limitations. The biggest limitation to the power of the study is its relatively 

small sample size (n = 247 DO mice). Conducting QTL mapping with small sample 

sizes may lead to the ‘Beavis effect’ which is a failure to detect QTL of small effect 

sizes as well as an overestimation of effect size of the QTLs that are discovered 

(MILES AND WAYNE 2008). Our study also shares all the weaknesses common to the 

Diversity Outbred design: since the genome of each mouse is a unique mosaic of the 

8 strains from the CC population, the genotype of each DO mouse is irreproducible. 

This limits the amount and manner of phenotyping that can be done, and it makes 

replicating results within the DO population difficult. However, this limitation could 

be partially circumvented by using the CC lines as a form of validation, since they can 

provide reproducible genotypes (SVENSON et al. 2012). Another limitation is the 

current lack of experimental validations of associations between disease pathways 

(such as those for ovarian, breast, and colon cancer) and specific taxa within gut 

microbiome composition, making it difficult to confirm any associations we find 

between genes and bacterial abundances. 
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Our results provide insight into the complex interplay between host genetics 

and the gut microbiome, and isolate potential associations between microbial taxa and 

QTLs that may be involved in pathological disease phenotypes. Additional studies are 

required to verify associations between specific genes and taxon abundance in the gut 

microbiome, such as performing gene knockouts and observing the effects on 

microbiome composition. While most of the variation in the gut microbiome 

composition is not due to genetics but rather environmental factors (ROTHSCHILD et 

al. 2018), attributes of the gut microbiome that are clearly heritable may provide 

important insights about host-microbiome interactions and mechanisms that impact 

microbiome composition. The direct genotype-phenotype association approach in this 

study could be applied to illuminate novel associations between genetic variants and 

their effects on microbial abundances involved in the microbiome through the 

mechanism of a complex disease of interest. Understanding the interactions between a 

host’s genome and its microbiome composition may also aid in our understanding of 

complex diseases and their mechanisms and potentially aid in developing medical 

treatments.  
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CHAPTER 5 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

In this thesis, I presented three orthogonal approaches for surveying genetic 

variation and its consequences. I used a combination of data collected through three 

different sequencing methods: In Chapter 2 I study population genomic data using 

genotyping, in Chapter 3 I profile global transcriptome dynamics using RNA-

sequencing, and in Chapter 4 I investigate microbiome composition using 16S rRNA 

sequencing. Below I synthesize the insights from these studies and discuss general 

conclusions and future directions for all three projects. 

 

Inferring regions of positive selection in population genomic data 

The availability and collection of population genomic data allow us to establish 

links between genetic variation and phenotypic adaptation by measuring patterns of 

variation among individuals. Motivated by the need to properly evaluate and 

benchmark methods for finding selective sweeps, in Chapter 2 I evaluated the 

performance of eight selection scans to detect selective sweeps in 25 breeds of dogs. 

The domestic dog was an extremely useful system for this work, as it provided 

multiple distinct breeds that have experienced specific selective pressures through 

artificial selection. Thanks to this, we were able to select a set of 12 positive control 
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loci known to have experienced positive selection in specific dog breeds due to their 

association with desirable morphological phenotypes. These positive control loci were 

then used to assess the performance of popular statistics to detect selection.  

This work successfully detected signature patterns of haplotype and nucleotide 

polymorphism left by artificial selection during dog domestication and demonstrated 

the power and limitations of different selection scans as well as the importance of 

choices in parameters used in the analysis. Cross-population comparison made by 

hapFLK in all 25 dog breeds was the most sensitive, as it identified all 12 of our 

control loci. This demonstrates the added power of comparing data across breeds. 

However, other systems that do not have such cross-population information can only 

rely on scans that detect signatures of selection from single population samples. Our 

work showed that single population scans varied widely in their ability to detect 

signatures of selection in our control loci, not only due to the nature of the statistic 

and the parameters used, but also the nature of the dog population data itself. For 

example, haplotype-based statistics that required a segregating ancestral allele in the 

population, such as iHS and nSL, had particularly low power at locus/breed 

combinations where the causal allele was fixed in our sample. The best performing 

single population statistic was H12 followed by π and Tajima’s D, all of which were 

calculated over short windows of 25 segregating sites. The window length for these 

scans was defined based on the density of SNPs in the genotyping chip. Thus, 

differences between local densities of SNPs in the chip and the number of SNPs that 
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are polymorphic in a particular breed in a given window may have driven the signals 

of positive selection identified by these three statistics. 

As mentioned above, purebred dog populations provide an excellent system for 

mapping the genetic basis of positively selected variants. However, the population 

history of dog domestication and inbreeding (including severe bottlenecks and high 

levels of Linkage Disequilibrium), as well as the data collection methods (genotyping 

chip instead of direct sequencing), could confound the results in this study. Additional 

work is needed to evaluate the performance of selection scans to detect selective 

sweeps in large natural populations.  

As mentioned earlier, the choice of parameters can also affect the performance 

of selection scans. Often, parameter choice is either arbitrary or empirical, and thus 

there is a need in the field to develop methods for deciding which parameters are 

most appropriate. Some possible approaches might be to select parameters based on 

real and simulated data and using Machine learning, while taking into account 

population evolutionary history.  

Selection scan methods that identify signatures of selective sweeps are still 

being developed and improved, however one of the main limitations is that most do 

not actually identify the specific mutation favored by selection. Regions identified as 

positively selected by selection scans can be very large (up to a few megabases). 

Current options to try and narrow down the regions under selection include 

composite of multiple signals from overlapping regions identified by different 
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statistics (GROSSMAN et al. 2010). Genes present within these regions can be tested for 

functional and pathway enrichment (such as Gene Ontology) and overlap with known 

QTLs, as done in (SADEGHI et al. 2018). Although a more rigorous way of doing this 

would be to compare results against neutral loci (WEIGAND AND LEESE 2018). 

Another option is to rank SNPs on the basis of their functional annotations (AKBARI 

et al. 2018). Techniques to identify a smaller region of interest in a larger stretch of the 

genome are useful, but methods to find causal SNPs need to be developed. For 

example, the recently developed iSAFE algorithm ranks all mutations within regions 

under selection based on their contribution to the selection signal (AKBARI et al. 2018). 

This is a promising step in the direction of finding causal SNPs before any molecular 

experiments are conducted. 

 

Profiling transcription dynamics using RNA sequencing time series 

The state-of-the-art of published RNA-sequencing time course experiments 

rarely provides the resolution necessary to thoroughly characterize expression 

dynamics, let alone understand the weaknesses of classical time course analysis in this 

biological domain. An open-source, thoroughly analyzed dataset of this type, can 

incentivize innovation in computational methods beyond the scope of its individual 

study, and lay the groundwork for best practices for future analyses. With this in 

mind, in Chapter 3 I presented the transcriptome dynamics profiling of the Drosophila 

melanogaster innate immune response to commercial LPS immune challenge. This 
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resulting dataset of RNA-seq sampling over 20 time point in 5 days represent the 

most dense and high-quality time course of the immune response in Drosophila to date. 

Given the resolution and high-dimensionality of this dataset, a broad range of 

statistical methods were required to extract signals such as clustered expression 

patterns, Granger Causality relationships between genes, and overall function-specific 

expression dynamics. 

Clustering and classification of time-dependent genes based on their temporal 

expression profiles unveiled distinct responses to the immune challenge with 

divergent initiation and resolution dynamics. Clusters of metabolic, immune-induced, 

and stress-induced genes presented transient responses to immune challenge, 

resolving as early as 12 hours post-injection. In sharp contrast, clusters of 

antimicrobial peptides (AMPs) presented a strong sustained response to immune 

challenge, as they remained up-regulated during the entire 5-day time course. Notable 

among the detected temporal dynamics, well-characterized circadian rhythm patterns 

could be observed oscillating in a 24-hour cycle. The identification of these canonical 

rhythm patterns both validates our methods of data normalization and differential 

expression analysis, and increases the certainty that we are accurately profiling novel 

temporal dynamics. Additionally, synchronized expression patterns between genes 

generally corresponded to their membership in distinct functional categories, allowing 

us to infer the functional class for previously uncharacterized genes. This method of 

function-by-association shows promising potential in the large-scale assignment of 
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functional annotation to other uncharacterized genes through RNA expression time-

course experiments. 

The surprising quality of the correlation between gene expression dynamics and 

their functional pathway annotation strongly motivated a function-first approach to 

immune response expression profiling. We identified differentially expressed 

biological pathways using pairwise gene set analysis, which allowed us to characterize 

functional pathway transcription dynamics. The resulting global behaviors of up-

regulation of immune response pathways and down-regulation of metabolic pathways 

point to potential resource tradeoffs precipitated by the immune challenge. I also 

show that the implication of functional interplay between immune response and 

metabolic pathways is further supported by the construction of directed Granger-

causal networks of putative interactions. Main subnetwork components showed 

significant GC directional edges between down-regulated metabolic genes and up-

regulated genes with cell proliferation and repair functions (such as Claspin, LpR2, and 

Orc1). These results further suggest an underlying interplay between metabolic 

pathways and proliferation and repair mechanisms such as regulation of DNA 

replication stress, endocytosis, and clot formation. 

Overall, this analysis motivates innovation in computational methods for 

longitudinal omics data, both to account for their inherent high-dimensionality and 

the complex underlying architecture that contains both causal and spurious 
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coordination. Further, this should serve as a proof of concept for the future of high-

density time-course RNA-seq in other model organisms. 

RNA-seq time course datasets have a limitations on the resolution of 

transcription timing as they only quantify the abundance of transcripts at given, 

discrete, points in time. Alternative methods like precision nuclear run-on sequencing 

(PRO-seq) can measure active transcription by mapping the distribution of all 

transcriptionally engaged polymerases in the genome and their nascent RNAs (KWAK 

et al. 2013). This assay allows the identification of instantaneous transcriptional 

dynamics without confounding secondary effects and pre-existing transcript levels in 

cells. 

Unfortunately, current protocols of PRO-seq using whole fly require ~1000 

flies per sample in order to get enough nuclei, a significantly higher material 

requirement than RNA-seq, which can use 10 or fewer flies per sample. This starting 

material requirement can prove prohibitive in the case of experiments where 

individual flies need to be manually injected one by one, as was the case in Chapter 3. 

However, this challenge can be alleviated by using tissue culture cells or when 

studying perturbations that are easier to induce, such as heat shock. Additionally, an 

alternative strategy recently developed is the use of chromatin run-on sequencing 

(ChRO-seq), which is an application of PRO-seq that uses chromatin as starting 

material instead of nuclei (CHU et al. 2018). This reduces the number of flies needed 

per sample to ~400 flies and significantly reduces preparation complexity and time.  
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Regardless of the data gathering resolution, transcriptomic time-course datasets 

are inherently high-dimensional, and thus very challenging to analyze. Non-interacting 

genes can be incorrectly detected to be Granger Causal when they follow the same 

global expression pattern, generating an overabundance of extremely significant hits 

that make interpretation of the analysis as a whole very challenging. In Chapter 3, I 

dealt with this challenge by excluding positively-causal edges in the GC network to 

focus on divergent behaviors, which constituted clearer and rarer signals in our study. 

Methods like cointegration analysis better contextualize the similarity of the patterns 

in Granger Causality by detecting latent factors that would explain the relationship 

between two transcription patterns better than a simple causal relationship. However, 

methods of cointegration for biological time courses still need to be developed.  

An additional way to improve the signal-to-noise ratio in these types of analyses 

would be the implementation of dimensionality-reduction techniques based on prior 

biological knowledge. The gene set that is used for Granger Causality analysis can be 

filtered using pathway annotation, protein-protein interactions, or known causal 

relationships like transcription factor promoter/target roles. This type of filtering 

would greatly increase the biological signal detectable through this type of analysis 

while greatly reducing the computational burden that such a high-dimensional analysis 

generates.  

Finally, it is important to consider that gene expression is a single modality of 

the larger biological system under study. Incorporating information from other omics 
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data gathering tools, like parallel proteomic and metabolomic time series could paint a 

fuller picture of the system at large. Transcriptional analysis is valuable in its own 

right, but we require a variety of biological signal to explore the system-level dynamics 

of post-transcriptional modification, translational efficiency and hormone and nutrient 

dynamics. Admittedly, such datasets will require the continuous innovation of all the 

approaches used in Chapter 3 to accommodate the rapidly escalating level of 

dimensionality. Alternative data gathering methods can also alleviate the 

computational challenges described above. Tissue-specific and single-cell RNA-seq 

both can improve the accuracy of causality analysis by coupling gene pairs in time 

while also providing a spatial resolution to different transcriptional dynamics.  

 

Studying the influence of host genetics on gut microbiome composition 

Complex arrays of microbial communities thrive within their hosts, affecting 

fitness, disease, and their interaction with their environment through the modulation 

of various biological processes. Characterizing the modulation of a microbiome by 

their host and vice versa is an increasingly popular pursuit, as new sequencing 

technologies and innovation in computational methods have made possible the 

simultaneous study of microbes and hosts. There is still, however, no well-understood 

model of the interactions between an organism’s genetic code and the types of 

microbial communities that it can host. This motivated the work in Chapter 4, where 

I presented the gut microbiota profiling of 247 Diversity Outbred mice using 16S 
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rRNA gene sequencing, and showed the influence of host genetics on gut microbiome 

composition by performing a high-resolution QTL mapping in the Diversity Outbred 

mouse panel using microbiome abundances as a response variable. 

These functional associations isolate potential targets for microbiome drivers in 

host genes which may be involved in pathological disease phenotypes. However, 

experimental validation of these interactions are vital to confirm the associations 

between disease pathways and specific taxa within the gut microbiome composition. 

This is particularly challenging to do given the source of these associations come from 

Diversity Outbred mice, where each genome is a unique mosaic of the 8 strains from 

the CC population, and thus irreproducible. A knock-out experiment using CC as a 

form of validation would be a reasonable next step towards systematically identifying 

these host-genetic microbiome drivers. 

This type of association is statistically challenging as it requires a large number 

of mice to have adequate power given the potential for variation in both DO mice 

and any given microbiome. Additionally, the limited number of existing studies 

discussing heritabilities and QTL mappings of bacteria within the gut microbiome 

makes it hard to compare results in our experiment with others. The growing interest 

in the study of the microbiome makes these limitations largely temporary, as the 

number and quality of these types of studies is bound to explode in the coming years. 

Although 16S rRNA gene sequencing is currently the most common method 

for surveying bacterial communities, whole metagenome sequencing will surpass it in 
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the near future, as it provides richer data at an increasingly low price. Repeating this 

type of study using whole metagenome sequencing would allow us to expand our 

analysis beyond microbial taxa abundances and their associated functional pathways 

and instead zero-in directly on the functional units responsible for the underlying 

relationship between host and microbe. Likewise, the power of microbiome studies 

could be greatly enhanced if they integrate other levels of data, such as 

transcriptomics, proteomics, and metabolomics. 
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