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CHAPTER 1

INTRODUCTION AND SUMMARY

In the theory of n-person cooperative games, the term "solution" is
used to denote the outcome or expected outcome of a game played in 2
"rational manner. The many interpretations of "raticnal" have lead to a
variety of '"solution" concepts for n-person cooperative games. The core of
a game is perhaps the most widely studied solution concept. This paper
characterizes those games which do have nonempty core. This characterization
suggests a new way of looking at well known solution concepts such as the
core and the nucleolus and also suggests definitions of new solution concepts.

In Section 2.1 we introduce the notion of the core of an m-dimensional
vector with respect to a given mxn matrix B. In this case, an imputa-
tion is an n-dimensional probability vector. It is shown that the set of
all m-dimensional vectors with nonempty core with respect to the matrix B
is a closed umbounded convex polyhedron whose extreme points must be columns
of B. 1In the case when all the columns are extreme points and no two
columns are identical, there exists a one-to-one correspondence between the
set of all imputations and the convex hull in R of the columns of B, and
so the set of all imputations can be embedded in Rm in a natural way.

In Section 2.2 we use the results of Section 2.1 to determine the set
of all 0-1 normalized n-person games with nonempty core and we describe
this set by naming its extreme points. Using the above embedding we inter-
pret the core and a modified nucleolus of an n-person game V in terms of
v's "closeness' to the embedding.

In Chapter III, we use metric notions of "closeness" of a game to the

embedded imputations to define new solution concepts for a game, Sections



3.1 and 3.2 explore the use of the Buclidean metric and Section 3.3 discusses
the relationship between the use of Ep-metrics and an absolute nucleolus
which is defined in terms of the absolute values of excesses. If a game

has nonempty core, the solution concept defined using the £1~metric is in
fact the core of the game. This solution (called the 1-center) has the
additional advantage that it exists for all games. In Section 3.4, we embed
a subset of imputations into the game space in another way.

The results of Chapters II and TII can be viewed in another way. Some
types of games have natural solution concepts, e.g. a natural solution for
a monotone simple game with veto players is an equal split among the veto
players with the remainder of the players getting nothing. In Chapters 11
and I1I we use notions of "closeness" to approximate a given game by convex
combinations of these natural games and then use the same convex combina-
tions of the solutions for these natural games as a solution for the criginal
game, The core and modified nucleolus, as well as the various centers
defined in Chapter III, can be viewed in this way.

Chapters IV and V are miscellaneous in nature and explore lightly
problems that to me appear to be of considerable difficulty. In Chaptexr 1V
we find the nonsimple extreme points of the set of all 4-person 0-1 normal-
ized superadditive games. We use this result to demonstrate that the set
of all 4-person 0-1 normalized totally balanced games has nonsimple extreme
points. In Chapter V we examine games whose core contains its Shapley value.
Such games form a closed convex polyhedron some of whose extreme points are

nonsimple. The simple extreme points are determined.




CHAPTER 11

IMPUTATIONS AS POINTS IN THE GAME SPACE

2.1 The B-core of a Vector

The notion of the core of an n-person game has been studied exten-
sively in the literature of n-person game theory. However, not all n-person
games have nonempty cores and it is important to determine which ones, in
fact, do have nonempty cores. Bondareva [2], Shapley [16], and Charnes and
Kortanek [3] have given the inequalities which determine the polyhedron
consisting of all games with nonempty core. These inequalities, which
introduce the combinatorial notion of balanced sets, become unwieldy when
n > 4. One hopes for an alternate and easier way of characterizing this
polyhedron. This can be done and the results can be related to Fulkerson's
[7] notion of antiblocking polyhedra. This result, in turn, suggests using
the game-theoretic notion of a core to interpret some of Fulkerson's results.

In this section we develop the notion of core for an m-dimensional real
column vector with respect to a given mxn matrix. In the following section,
these results are applied to 0-1 normalized n-person games. In this appli~
cation, the set of imputations is embedded in a natural way in the space of
n-person games.

let B be an mxn matrix whose elements are real numbers and let v
be any m-dimensional real columm vector. An n-dimensional real column
vector x with components Xg for i=1,2,...,n is called an imputation
if and only if _?1 x, = 1 and X > 0 for i=1,2,...,n.

If y and 1; are two r-dimensional real column vectors, then we write
y > z if and only if Yi > %3 for i=1,2,...,v vhere Y3 and z., are

i

the i-th components of the vectors y and 1z, respectively.



Definition 1. The vector v is said to have nonempty B-core if there

exists an imputation x such that
(1) Bx > v,

If the vector v has nonempty B-core, then the set of all imputations X
satisfying (1) is called the B-core of v,

Let C. be the convex hull of the colums of B. Let Rm denote the

B
set of all m-dimensional real colum vectors and let R; denote the set

of m-dimensiocnal real columm vectors all of whose components are nomnegative
Also, if C and D are subsets of Rm’ then C+ D (€ - D) is defined

to be the set of all vectors ¢ + d (c - d) where ¢ce C and d e D.

From (1)} and the definition of an imputation, we have the following

lemnma,

Lemma 1. A vector v has nonempty B-core if and only if

ks —— ——

where weg C, and ue Rm and satisfying u < 0.

B

Thus, a vector v has nonempty B-core if and only if v lies ''in

or below'" the set CB’ i,e. we have the following corollary.

Corollary 1. The set of all m-dimensional vectors having nonempty B-core
is the closed convex polyhedron CB - R;.
Fulkerson [7] calls (CB - R;) n R; the antiblocking polyhedron of

the polyhedron



(@)

Fulkerson's Theorem 2.2 on page 10 of [7] is similar to our Theorem 1 for
(CB - R;) n R; in the case when B is non-negative. The inequalities

which determine CB - R; are themselves determined by the extreme points

of the polyhedron described by (2). However, we are primarily concerned

with the extreme points of CB - R:n' The extreme points of (CB - R;) n R;

in the case of n-person games are determined in section 5.1.
Now,we wish to find the extreme points of Cy - R;. We will show that
each column of B which does not lie "in or below' the convex hull of the

P N . +
remaining columns of B is an extreme point of CB - Rm' In fact, such

columns are the only extreme points of CB - R;.

Lemma 2. If v is an extreme point of CB - R;, then v is a column of B.

Proof. Let veC, - R; and suppose v £ C If the imputation x is

B B’
in the B-core of v, then ka > v for some k e {1,2,...,m} where Bk

denotes the k-th row of B. Choosing a number e so that 0 < g < ka - Vo

we define vectors v° and v by V; = vy = V§ if j#k and

vl and 2 are members of Cy - R; since the imputation X 1is a member
of each of their respective B-cores. v = % v1 + % vz and v # vl and so

v cannot be an extreme point of Cp - R;. Therefore, all the extreme points



of CB - R; are memhers of CB‘ CB is, in fact, the convex hull of the

columns of B and so all the extreme points of CB - R; mast be columns

of B. A*
For the remainder of this section, we assume that no two columns of

B are identical. Therefore, if a column of B 1ies “in or below'" the

convex hull of the remaining columms of B, then clearly it cannot be an

extreme point of C, - R;. The following lemma states that the converse

B
also holds,

Lemma 3. If a column of B is not an extreme point of Cg - R;, then it
can be written w + u where u<0 and w is a member of the convex hull

of the remaining columns of B.

Proof. let b be a column of B which is not an extreme point of Cy - R;.
Therefore, b = % vl + %-vz where b # v1 and v1 and v2 are members of
CB - R;. Since vl and v2 are members of CB -'R;, v1 = (1-a)w1 + ab

2

and v = (1-B)w2 + gb where 0 <a<1, 0<p<l1, wl

and w2 are members

of C - R;, and C is the convex hull of the n-1 columns of B

B.b B-b

which are not equal to b. Therefore,

b=l + (I-A)w2

- l-a +
where A = eI We have 1> i > 0 and so b ¢ CB_b Rm‘ A

The results of Lemma 2 and Lemma 3 are summarized in the following

theorem.

¥
In this and the remaining chapters of this paper, A indicates the end of a

proof.



Theorem 1. The vector v 1is an extreme point of CB - R; if and only if
it is a colum of B which cannot be written as w + u where u <0 and
w 1is a member of the convex hull of the remaining columns of B.

Let B' be the submatrix of B whose columns are the extreme points
of CB - R;. By repeated application of the proof of Lemma 3, we obtain

the following corollary.
Corollary 2. C, - R = C R
wOrolary . Ly = By T tpr " Ry

Corollary 3 discusses the B-cores of vectors in CB"

Corollary 3. If ve (5,

one imputation. Furthermore, distinct members of Gy have disjoint B-cores.

then the B-core of v consists of one and only

Proof. let v e C C

B" B‘

so v = Bx where x is an imputation such that xX; = 0 if the i-th colum

is the convex hull of the columns of B' and

of B, Bi’ is not a column of B!'. Therefore, the imputation x is in the
B-core of v, Suppose the imputation y # X 1is also in the B-core of v.

By > v and sc By > Bx or equivalently Bly-x) > 0. If S = {i: Yo% 2 G},
then S 1is not empty end there exists an i ¢ {1,2,...,m} such that i# s.

Therefore,

Let a= J (r-x;) = ] (x;-y;) > 0. If i¢8S, then x, >0 and B;

ie$ i#s
is an extreme point of CB - R;. By Lemma 3, if 1 ¢ S, then
B> 5 L BOex)
® kes



Therefore,

J B.(x,-y.) > } B.(y.-x.) ,
igs + 1 i jeg 10i7d
and this contradicts (3). Therefore, the B-core of v consists of the
single imputatiom x.
A similar argument proves that distinct members of CB' have disjoint

B-cores. A

Corollary 4. If v = Bk where By is an extreme point of C, - R;, then

the B-core v consists of the single imputation x given by

1 if 1=k
o {
0 otherwise .

The following corollary is an immediate consequence of Corollary 3 and
states that the set of all imputations can, under certain circumstances, be

imhedded in Rm in a natural way.

N “ +
Corollary 5. If each colum of B is an extreme point of CB - Rm’ then
there exists a one-to-one correspondence between the set of all imputations

and the set CB'

Proof. If each columm of B is an extreme point of C; - R;, then B' = B.
By Corollary 3 the B-core of a vector v in CB consists of one and only
one imputation, call it x'. By Corollary 3, the mapping f from Cy to

the set of all imputations defined by £(v} = x' is one-to-one and onto, A

Corollary 6 is a restatement of Definition 1 using Lemma 1.



Corollary 6. A vector v has nonempty B-core if and only if ({v} + R;) n CB
is not empty, where {v} denotes the subset of Rm containing the vector
v only. Also, if v has nonempty B-core, then the B-core of v consists
of all imputations x for which Bx e ({v} + R;) n Cy-

The important point about Corollary 6 is that the set CB in Rm is

used to determine whether or not a vector v has nonempty B-core. If the

vector v has nonempty B-core, then CB also determines the B-core of V.

2.2 Games with Nonempty Core and an Interpretation of Core in the Game Space

In this section, we want to apply the results of Section 2.1 to the
classical theory of n-person cooperative games.

Let n be a fixed integer and let N = {1,2,...,n}. Each member of N
is called a player and each subset of N is called a coalition. An n-person
game is a function from the nonempty subsets of N to the real numbers.*

An n-person game Vv 1is said to be in 0-1 normal form whenever

(1} viN) = 1

(2) v({ih) = 0 for i = 1,2,...,n.
n

If w is an n-person game and if w(N) - z w({i}) » 0, then w is said to
i=1

be strategically equivalent to the 0-1 normal n-person game u if and only

if

w(s) - } w({ih

ieS

wN) - ] w({iD)

ieN

u(s) = for all nonempty S &N,

It is common in the literature of game theory to also require that an n-persom
game satisfy the superadditivity requirement that v{8) + v(T) < v(5 um

for all S,T ©N such that § (1T = #. We will not impose this requirement
here. The superadditivity requirement is considered only in Chaptex IV.
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In this and the follewing chapters, all games are assumed to be in 0-1 normal
form unless specifically stated otherwise. Therefore, each 0-1 normal n-perscn
game can be represented as a vector in R . R is called the

Mp-2  Pan-2
n-person game Space.

For a fixed n, an n-dimensional column vector x with components X,

n
for i=1,2,...,n is called an imputation if § x; =1 and x; > v({i}) = 0
for i=1,2,...,n. An n-person game Vv is said to have nonempty core if

there exists an imputation x such that

(3) ) x; > v(s) for all S CN such that n > Is| > 1,
ieS

where |S| is the number of players in coalition S. The set of all impu-
tations x satisfying (3) for the game v is called the core of v,

If B 1is the (Zn-n-z)Xn matrix of coefficients for the inequalities
in (3), then the core of an n-person game v is, in fact, the B-core of
v as defined in Section 2.1. Therefore, the results of Section 2.1 can be
applied to the study of n-person games with nonempty core.

1f for each player i we defined the n-person game v, by

1 if ieS and |S] > 1
(4) vi(53={
0 otherwise

then the games V_,V,,...,v_ are, in fact, the n columns of B. Also, the
1°°2 n

games VI’VZ”"’Vn are monotone simple games each with one veto player.*

An n-person game v is monotone if and only if T ©S ©N implies

v{T) < v(S). An n-person game v 1is simple if and only if v(8) is ©

or 1 for all S ©N. Player i is a veto player for the simple n~person
game v if and only if v(8) = 1 implies 1 ¢ S.
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Let Cn be the convex hull of the games VysVpseeasVpe The following

theorem is a direct application of Corollary 1 of Section 2.1.

Theorem 1. The set of all n-person games having nonempty core is the closed

+
2"n-2

The next lemma is an application of Lemma 2 of Section 2.1.

convex polyhedron C_ - R

3

Lemma 1. If v is an extreme point of C_ - R , then ve {v.,v,,...,v_}.
——— n n 172 n
2" -n-2

Lemma 2. Each n-person game vy defined in (4) is an extreme point of
c, - R

27.n-2,
Proof. If v, is not an extreme point of Cn - R+n , then from Lemma 3

2 -n-2

of section 2,1 there exists non-negative real numbers Az,ls,...,ln such

n
that ) A, = 1 and satisfying

2
(s) v(8) € A,v,(8) +...+ A v (5) for all SN such that n > |s] > 1.

For n = 2, (5) clearly cannot hold, If n > 3, then for 5 = {1,2} and

S = {1,3}, (5) gives the following inequalities

both of which clearly cannot hold. Therefore, vl must be an extreme point

+ .
»sV, are extreme points of

of Cn - R n . Similarly, v
27 -n-2
+

C - R . A
n 2n~n—2

ITALTER
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Lemma 1 and Lemma 2 are summarized in the following theorem.

Theorem 2. The simple games V,,V,,...,V, 2are the extreme points of

+
C -R .
n 2n~n-2

Applying Corollary 3 of section 2.1, we obtain the following corollary

to Theorem 2.

Coroliary 1. If v e Cn’ then the core of v consists of only one impu-
tation, Furthermore, if v' € Cn’ v' # v, and X, x' are the imputations
in their respective cores, then x # x'.

The next corollary follows from Corollary 5 of section 2.1 and states
that the set of all imputations can be embedded in the game space R2n ,
in a natural way. —n~
Corollary 2. There exists a one-to-one correspondence between the set of
imputations and the set Cn in R .

2 -n-2

The next corollary is an application of Corollary 6 of section 2.1.
Corollary 3. An n-person game V has nonempty core if and only if
{({v} + R*n )L Cn is nonempty. Also, if v has nonempty core, then the

2 -n-2
core of v consists of all imputations x for which

L
XUy * KV, *eat XV e ({v} + Rzn”n_z) n ¢, -

The important point about Corollary 3 is that the set Cn in the game

space R n is used to determine whether or not a game has nonempty core.

2 ~n-2
If v has nonempty core, Cn also determines the core of v.
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2.3 A Modified Nucleolus and its Interpretation in the Game Space

Schmeidler [14] has introduced the nucleolus as a solution concept in
n-person game theory. Schmeidler {14] has shown that the nucleolus consists
of a unique imputation for each game. Also, the nucleolus is continuous
[14] and piecewise linear [10], {41 as a function from games to imputations.
The nucleolus is contained in the kernel of Davis and Maschler [6] which
itself is contained in the bargaining set Mfi) of Aumann and Maschler [1].
If a game has nonempty core, then it's core contains the nucleolus {14].

In this section we introduce a modified nucleolus which has the above
properties of the nucleolus, except as regards the kernel, and can be inter-
preted in the game space Rzn , in terms of Cn' A modified kernel can
be introduced which contains ;2; modified nucleolus and itself is contained
in the bargaining set Mgi).

For each imputation x and each coalition S €N, we let

For a fixed n-person game v and a fixed imputation x, let 6(x) be a
vector in Rzn 2, the components of which are the numbers v{S) - x(S),
arranged accoré;;g to their magnitude, where $ runs over the proper subsets
of N such that |[S] > 1, i.e. i< j implies Bi{x) > ej(x}. We say ©O(x)
is lexicographically smaller than ©O(y), written 0{x) <- o{y) if and only

if the first non-zero component of 0(y) - 6(x) is positive. The modified

nucleolus for the n-person game v is the set N(v) given by

N(v) = {x e A: 8(X) <+ o(y) for all y e A} .*

*
A 1is the set of all n-dimensional imputations.
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In Schmeidler'sdefinition of the nucleolus (see page 1163 of [14]),
the excesses x(S) - v(8) for the one-person coalitions are also components
of ©(x) and hence in his solution concept, the one-person coalitions
have two roles: first, they are included in the definition of an imputation
by the requirement X5 > v({i}} for i e N; and second, the excesses
x; - v({i}) are components of 6(x). Given the first role, this second
role seems perhaps to give the one-person coalitions '"too much' influence
in determining the final outcome of the game. One may argue that once each
player i has been guaranteed at least v({i}), the role of the one-person
coalitions is ended and the final outcome must be determined by only the
coalitions containing more than one player.

The following theorems on the modified nucleolus are proved exactly in

the same manner as the corresponding theorems for the nucleolus.

Theorem 1. The modified nucleolus of a game consists of one and only one

imputation (see Theorems 1 and 2 on page 1164 of [14]).
We now define a modified kernel. If v is an n-person game, then for
each pair of distinct players i and j and each imputation x set

sij(x} = maximun {v(S) - x(S): S EN, ie$5,j ¢S, Is| > 1}

An imputation x 1is said to be in the modified kernel K(v) of 2 game v

if and only if

(sij(x) - sji(x))xj < 0 for all pairs of distinct players i and j.
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Theorem 2. For an n-person game v, H(v) < R(v) CZMgl) (see Theorem 3

on page 1165 of [14] and Theorem 5.1 on page 233 of [6]).

proof. To prove N(v) ©K(v) one can apply Schmeidler's proof on page 1167
of [14] of the corresponding result for the nucleclus. Similarly, to prove
K(v) Cngi) one can apply the proof on page 233 of [6] of the corresponding
result of Davis and Maschler for the kernel. This result holds because in
the definition of M%i) the one person coalitions cannot make objections

(see [1]). A

Theorem 3. The modified nucleolus is a continuous piecewise linear function
of the characteristic function (see Theorem 5 on page 1165 of {14] and

Theorem 4 on page 64 of [11]).

Theorem 4. The modified nucleolus is contained in the core of any game with
nonempty core (see Theorem 4 on page 1165 of f141).

We now want to interpret the modified nucleolus in terms of Cn. For
a given n-person game v and for a fixed game u ¢ Cn’ let ¢(u) be a
vector in Rz“ 2, the components of which are the numbers v{8) - u(S),
arranged accoré?%g to their magnitude, where S rtuns over the proper subsets

of N such that |S| > 1, i.e. i< j implies ¢i(x) > ¢j(x). We say that

the game u is lexicographically closest in C( to V if and only if the

first nonzero component of ¢(w)} - ¢{u) is positive for all we Cn'

Theorem 5. The game u ¢ Cn is lexicographically closest to a given n-person

game v if and only if

U= XV, + XV_ +,..% XV
11 2 2 nhn

where x & N{v).
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Proof. For each imputation x, 6(x) = ¢{x1v1 XV, bt xnvn) since

= c
x,v, (8) + xzvz{s) *ooor x v (8) x(5) for all $ ©N such that |§] > I.

A



CHAPTER III

CENTERS OF GAMES

3.1 The Two-center of a Game

In the previous chapter we interpreted the core and the modified nucleo-
lus of an n-person game v in terms of v's 'closeness' to the set Cn
in Rzn n-z. This appears to be a reasonable thing to do because the set
of all imputations was identified in a natural way with the set Cn' In
this section we will define new solution concepts for a game v in temms
of other notions of v's closeness to the set Cn.

The imputation associated with the game in Cn closest in Euclidean
distance to a given game Vv seems a reasonable one point solution concept
for the game v. This solution, called a two-center, is defined below, its
properties are discussed, and an algorithm for its computation is developed.*

Let n be a fixed positive integer and let N = {1,2,...,n} be the

set of players. Throughout this chapter we will use the following conven-

ient notation:

{S ©N: n> |{S] > 1}

Q:
Qi = {8§e¢Q: iesSt for i=1,2,...,n.

Definition 1, Let v be an n-person game. An imputation is called the

two-center of v if it is a solution to the fellowing constrained minimiza-

tion problem

Charnes and Kortanek [4] and Keane [9] also define "nuclei” for n-person
games using the Euclidean metric, but their definitions differ from the one
presented here (in fact, their nuclei need not be imputations). My analysis
proceeds in an entirely different direction than theirs.

17
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minimize ||v - x;v, - .- X vn{|2

!
subject to
(1) -
}Ci"'xz“';'."‘x "1
x> 0 for i-=1,2,...,n,
2 . 1/2 . . s s
where |[w[], = I [w(s)1%, i.e. || }];'" is the Euclidean metric in
5eQ
R " .
2 -n-2

It follows from the definitions of the games vl,vz,...,vn that the

minimization problem (I) in Definition 1 can be rewritten:

minimize § {v(8) - x(S}]2
5eQ

subject to

(I X, + X, +,,.+ X =1

For a given game v, v(5) - x(S8) is called the excess of coalition § with

respect to the imputation x.
Recall that Cn is a convex set in R n . The following theorem is
2 ~-n-2
a direct application of a well-known theorem on minimal distance problems

over convex sets in a Hilbert Space (see, for example, Theorem 1 on page 69

of [12]).

Theorem 1. If v is an n-person game, then there exists a unique game

u e Cn such that
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I]vﬁuliz < ]]v-wltz for all weC_ .

Furthermore, a necessary and sufficient condition that u be the unique

minimization game is that

(1 T (v(S) - u(8))(w(S) - u(8)) < 0 forall weC .
5¢Q

Since Cn is the convex hull of the set {VI’VE""’Vn}’ (1
holds for all w e Cn if and only if it holds for each v, where

i=1,2,...,n. Thus, (1) in the above theorem can be replaced by

(1) J v(S) - us)) < § uS(v(S) - u(s)) for i=12,....n.
SsQi SeQ

Corollary 2 of Section 2.2 states that each game in Cn is identified
with a unique imputation. This identification together with Definition 1 imply
that the two-center of a game v is uniquely determined by the game u of

Theorem 1. This fact together with the simple equation

I ~—3

I x(S)(v(s) - x(8)) =

X, z (V(S) - X(S)) s
SeQ ] !

1 Se(.
EQJ

where x is an imputation, give the following theorem.

Theorem 2. Let v be an n-person game and for each imputation x let

wi(x) = z (v(8) - x(8)) for i=1,2,...,n .

SeQi
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An imputation x is the two-center for the game v if and only if

wi(x) < 'E xjw.(x) for i=1,2,...,n .
jeN

The following corollaries follow immediately from Theorem 2.

Corollary 1. x is the two-center of game v if and only if xj > 0 dimplies
wj(x) = maximum {wi{x}: i=1,2,...,n} .

Corollary 2. x 1is the two-center of game v if and only if wj(x) < wi(X)
for some players i and j implies xj = 0,

The above corollaries hint that the two-center of a game has a "nucleolus-
like" interpretation. Theorem 3 demonstrates that this is indeed so.

Given an n-person game v and an imputation X, let vy(X) be a vector
in Rn, the components of which are the numbers wi(x), defined in Theorem 2,
arranged according to their magnitude, i.e. 1 < j implies yi[x) > yj(x).
We say vy(x) is lexicographically smaller than vy(y), writtem vy(x} < y(¥}
if and only if the first non-zero component of vy(y) - v(x) is positive.

The total nucleolus N(v) of the game v is the set of all imputations X

for which
v(x) < y(y} for all imputations vy .
Lemma 1. If v is an n-person game and x is an imputation, then

W (x) = py (V) - @2 10sx) for i=1,2,...,n
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where p.(v) = Z v{S) for i=1,2,...,n,
1
Seq.
1
Proof. For a given imputation X,
w.x) = [ (v(8) - x(8))
5eq.
1
=p; M - § x5
SeQ.
1
= p,m - (hx - @2y T ox,
i
- b - P lox, - @D a-x)
Py i i
n-1 .
= pi(v) - {2 -1)(1+xi] for i=1,2,...,n . A

Theorem 3. The total nucleolus of a game consists of one and only one impu~

tation and it is the two-center.

proof. The existence of N(v) for a game Vv is verified by methods similar
to those of Schmeidler (see proof of Theorems 1 and 2 on page 1166 of [14]).
Let x be an imputation in the total nucleolus of game v. Lemma 1

states that
(2) w () = p; (V) - @21 0sx) for i=1,2,...m .

1f X, > 0 and xj > 0 for distinct players i and j, then (2) implies

that wi(x) = wj(x). If xj = 0, then (2) also implies that wj(x) g_wi{x)
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for all i such that X, > 0. Corollary 1 implies that x must be the
two-center of game v. Therefore, ﬂ(v) must consist of one and only one

imputation. A

Kohlberg uses the fact that the nucleolus of a game can be computed
by means of a finite sequence of linear programs to show that the nucleolus

is a continuous piecewise linear function from R n to Rn (see Theorem
2 -n-2

4 on page 64 of [111). [Schmeidler [14] had previously shown the continuity
of the nucleolus by other means.} The total nucleolus can also be computed
by a sequence of linear programs (a simpler algorithm will be presented in

the next section) and hence we have the following theorem.

Theorem 4, The two-center of a game is a continuous piecewise linear func-

tion from R n to Rn’
2"-n-2
The following corollary follows immediately from Theorem 2 and its

corollaries.

Corollary 3, If VS is the set of all n-person games whose two-centers
have the i-th component positive when 1 ¢ 5§ and zero when 1 £ 8, then the
two-center is a linear function over VS‘
The computational algorithm of the next section will determine the
inequalities which characterize the regions of linearity for the two-center.
Two-centers for 0-1 normal games are defined by (II). If a game v 1is

not 0-1 normalized, then the two-center for the game v is the unique solu-

tion to the following minimization problem
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minimize ! Iv(s) - 1(5)}2

{SCN: |S]>1
en: 5]
subject to
Xy ¥ Xy Fo.t X = v{N)
X, > v({i}) for i =1,2,...,n ;
where it is assumed that v(N) - Z v({i}) > 0. This minimization problem

ieN
differs from (II) only in the constraint region. All the above results hold

for sets of n-person games for which v(N) and v({i}) for i =1,2,...,n
are fixed. 1In particular, Theorem 2 holds and the following properties of

the two-center are simple consequences of Theorem 2,

V' . .
Let x be the two-center of game v, not necessarily in 0-1 normal
form.
Monctony, (i) XI is a monotonically non-decreasing function of v(S)

for each S for which 1 & 8.

(ii) xz is a monotomically non-increasing function of v{5)

for each S for which 1 ¢ 5.

Symmetry, A game v is symmetric in players i and j if v(S U {i}) =

v(5 U{j}) for all SCN such that i¢ S, j£S. If v

. .. . . v v
is symmetric in players i and j, thenm X, = xj.

Equivalence, If, for n-person games v and w, there are constants
{al,az,...,an} such that w(S) = v(S) + } a; for all
ieS
w v .
S, then xi = xi + a, for i=1,2,...,n.

. cv v
Homogeneity. X = = c¢x  for every constant ¢ > 0.
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When the above two properties hold for a solution concept, the solution

concept is said to satisfy the property of strategic equivalence.

Inessential Game. If v is additive, i.e. v(8) = z v({i}), for all
ieS
S € N, then x}: = v({i}) for i =1,2,...,n

Pure Bargaining Game. If v(8) = 0 for all S;EBL then xz = %-V(N)
for i=1,2,...,n if v(N) > 0.
Unfortunately, the following results hold:

(a) The two-center of a game is not necessarily in its core.
(b) A dummy player, i.e. a player i for which v(8 U {i}} - v(8) =0

for all S €N such that i £ 8,for game v may have x:.: > 0.
The following example illustrates both (a) and (b):

Let N = {1,2,3,4,5} and let v be the simple game defined by

v(1234) = v(12345) = 1

v(S) = 0 for all other S ©N.

Player 5 is a dummy player for this game. The two-center of v is

(8/35,8/35,8/35,8/35,3/35) which is not in the core of V.

3.2 An Algorithm for Finding the Two-Center of a Game

The following algorithm is in fact a search for the Lagrange Multipliers
of problem (II) to determine the two-center of a given game. The algorithm
is computationally easy and has a certain intuitive appeal as a bargaining
procedure among the players. Each player has an "index of power" and uses

this power in the bargaining procedure to sequentially weed out those players
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whose power is too low to sustain their participation in the bargaining., At
the conclusion of the bargaining procedure, the strong players are paid off
in accordance with their index of power.

Let v be an n-person game. Recall that pi[v) = E v(S} for
SEQi
i=1,2,...,n, pi(v) is the "index of power" of player i. Suppose without

loss of generality that
(1) P, (v} <p, (V) <.oocp (V).

Let y1 € Rn and XA, € Rl be determined by the following n + 1 equa-

1
tions:
I vs) -y's) =, for i=12,...m
Seq,
i
11 1
(2) Yyt Yy teet ¥, < 1
Hence,
p.(v) - A
y? = A1 1 for i=1,2,...,n
i n-2 -1
and by (2)

t: n-2
Ip;0) - @751
1 n-2

Therefore, we have



26

If yi > 0, then Theorem 1 wiil demonstrate that yl is the two-center of
game Vv,

if yi < 0, then define yz £ Rn by

2,
yl =0
1 I
5 1 pi(v) - r';:i" jZ Pj(v)
Yi® a1t 2 ] for j =2,3,....n,

i.e. player 1 is dropped from the bargaining and the remaining players
2

reaccess the import of their own power in determining an outcome. if Yy 2 0,
then Theorem 1 will demonstrate that y2 is the two-center of game V.
In general, if yt < 0, then define yk+1 £ Rn by
yYlao  1f i=1,2,..0k
1 n
Pi(V) vy I p.(V)
k¢l 1 jeke1 J .
y. % ——— # for i = k+l,ke2,...,0 .
i n-k n-2
2 -1
1f yizi >0, then by Theorem 1, yk+1 is the two center of v. Otherwise,
k+2

define vy * . Clearly, this process must terminate after at most n steps.
Theorem 1 will demonstrate that the imputation determined by this procedure

is the two-center of v,
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Theorem 1. If v is an n-person game satisfying (1) and x is the impu-

tation defined by the above procedure, then Xx is the two-center for game
Proof. Suppose the above procedure defines x = yk. In this case,

1 n
L E® aer Lo
n-kel =

i

n-2
wi(x) = py(v) - (27 -1+ T

2 1

1 ) + 1
n-k+l1 n~-k+1 3

n
~@* iy« I pj(v) for i=lkkel,...pn.
=

Clearly, wi(x) = wj(x) for i = k,k+1,...,n. We must now show that
wi(x) f_wk(x) for i=1,2,...,k-1. For i <k,
W () = py(v) - (27D
i i

and by (1) we need only show that wk_l(x) f'wk(x), i.e, we must show

n
‘Zk ;) - %1

]
pk-ltv) < n-k+1

The fact that yt: < 0 implies that

1
1
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jek-1
P.1(V) < -
n n
I pv) - @2 1 pw - ("2
j=k_J , i=k-1

n-k+?2

w

[ n-2 1
-{2 pj(v)} - @ty] ] ——
j= m=1 (n-k+2)

M

a n-2
Y op.(v) - (27751
j=k_

n-k+1

Therefore, the imputation x satisfies the conditions of Theorem 2 of

Section 3.1 and so x 1is the two-center of game V. A

3.3 p-Centers of a Game and an Absolute Nuclieolus

In the previous section the two-center of a game was determined by
finding the game in Cn closest in Euclidean distance to the given game.
Though Cn seems to be a reasonable set by which to define such solution
concepts, it is not at all clear that the Euclidean metric (or any metric)
is a reasonable motion of closeness for games. In this section we will define
the p-center of a game using the gpwmetric and show that as p approaches
infinity, the p-center of a game converges to a inucleolus” which differs
from the modified nucleolus in that absolute values of excesses are used to

define it rather than the excesses themselves.
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Definition 1. Let v be an n-person game. An imputation is called a

p-center of v if it is a solution to the following constrained minimization

problem:
minimize ||v - x;v, - XV, -...- xnvnHP
subject to
XX, ot X = 1
x, >0 for i=1,2,...,n

where ||w|{_ = } ws)1¥ , i.e. |l III/p is the Minkowski p-metric in

P seq P
R 1 associated with the real number p > 1.
2 -n-2 -

From remsrks in the previous section, the objective function of problem

(1) can be written:

(D 7 oives)y - x(|P .
SeQ
Since (1) defines a strictly convex function over R for p>1 and

n
27-n-2
since Cn is a convex set, the p-center of a game always exists and is a

unique point (see for example page 263 of [13}). Clearly, the p-center is
a continuous function of v from Rzn , to Rn and satisfies the condi-
tion of strategic equivalence, a

For a fixed n-person game v and an imputation x, let w(x) be a
vector in R _ , the components of which are the numbers lv(s) - x(8)],

2 -n-2
arranged according to their magnitude, where S rTuns over the proper subsets
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of N satisfying |S| > 1, ¢{x) is lexicographically smaller than ¥ (¥).
written ¢{x) < ¢(y), if and only if the first nonzero component of

y(x) - y(y) is positive, The absolute nucleolus ﬁ(v) of a game v is

defined to be the set of all imputations x for which ¢(x) < ¥(y) for all
imputations vy,

By arguments analogous to Schmeidlers for the nucleolus, ﬁ(v) consists
of one and only one imputation and ﬂ(v) is a continuous function of v
from Rzn , to Rn {see the proofs of Theorem 2 on page 1166 and Theorem
5 on page_?167 of [14]).
Lemma 1. If v is an n-person game and X is an imputation not in Q(v},
then there exists a number P, > 1 such that x is not a p-center for v

for all p > Py

Proof. Suppose ¥ € ﬁ(v). Since X ¢ Q(v), the first nonzero component
of the vector ¢(x) - ¢(y) must be positive. Suppose it is the k-th compo-

nent and let 4 = wk(x) - ¢k(y). Then, there exists a P, > 1 such that

Iwk(y)+d§p > [2"-n-1-K] |zpk(y)|p for all p>p, .

1 -1
n _ 4 P
Thus, [{v - izi yivi!|p < [2"-n-1-K] |¢k(Y)| + jzl ]wk(Y)l
k-1 p
< foy 0+af? + 1 ln e
J=

n
< [v - '21 xivillp for all p > p, -
ja

Hence, X cannot be the p-center of game v for all p 2 Pys A
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Lemma 2, If v is an n-person game, A is the set of all imputations,
and D is a closed subset of A - N(v), then there exists a number p(D} > 1

such that the set D contains no p-centers of v for all p > p(D).

Proof. By the previous lemma, for each point X in D there exists a
number P, > 1 such that x 1is not a p-center of v for all p > Pye

Since each component by of ¢ is a continuous function over A, then there
exists a neighborhood M(x) of x in A such that no point of M(x) is

a p-center for v for all p > P, (Py is determined as in the proof of
Lemma 1.). Since {M(x): x ¢ D} is an open cover of the compact set D, then
b has a finite subcover {M(xl),...,M(xm)}. Choose p(D) =

maximum {p(xl),...,p(xm)}. A

Therefore, for each open set M containing WN(v), there exists a number
p(A~-M) such that all p-centers of v are contained in M for p zdp(A-M).

Hence, we have the following theorem.
Theorem 1. If v is an n-person'game, X is its p-center and x the

unique imputation in its absolute nucleolus, then

limit xF = x .
p-')-m

The following theorem and corollary completes our discussion of p-centers.

Theorem 2. If for a given game v, L is the p-center of v, then P is

a continuous function of p from (1,=) to A.

Proof. For a fixed game v, let f be the continuous function of x and

p defined by
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£(x,p) = ) |v(S) - x()|P .

{sg;y: Is{>1}

Suppose the theorem is not true, i.e. there exists a2 p > 1, ¢ > 0,

and a sequence {p(m): m= 1,2,...} such that for each m = 1,2,...

(@) PP > ¢ and [pep)] <

B {

Since A 1s a compact set, the sequence {xP(m): m=1,2,...} has a limit

point y in A. From (4) we have !!xp-yllz > ¢ and hence by the uniqueness
of ¥ we have & > 0 where 6 = flv,p) - £(x,p).
plm )
If {x "k : k= 1,2,...} is the subsequence of {xp(m): m= 1,2,...}
. plm)
which converges to y then the sequence {(x . p(mk)): k=1,2,...}

converges to (y,p) and by the continuity of f there exists a K > 1 such

that

p(m, )
J£(x " » p(m)) - £(y,p)| < 8/4

and

£GP, pm)) - £0P,p)] < 574

whenever k > K. Therefore,

p{m )
L pm)) - £6°, pm)) > /2

p(m)
which contradicts the fact that x k" is the p(mk)-center of v. There-
fore, x* 1is a continuous function of p. A

Combining Theorems 1 and 2, we have the following corollary:
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Corollary 1. The p-centers of a given game Vv constitute a continuous path
in A having an endpoint at the absolute nucleolus of the game v. This
path may consist of one point only, e.g. when v ¢ Cn.

The following proposition is a slight variation of a result of Keane

(see Proposition 4.2 on page 31 of [9]).

proposition 1, If the game v has nonempty core, then the imputation X

is a l-center if and only if it is in the core of v.

It follows from Proposition 1 that a game may have more than one l-center.
The author conjectures that as p approaches 1 from the right, the p-centers
of a game converge to a single l-center, but he is unable to prove it. This

completes our discussion of p-centers.

3.4 The Full-Center of a Game

In Chapter 2 it was shown that the set Cn was a rational subset in
Rzn , on which to base a discussion of solution concepts. In all the
abo;z discussions, the solution for a game vV ¢ Cn was the imputation X
satisfying

Vo= OX,V, + X, V., k...t XV,
i1 22 nn

The sclution for the game v, was the imputation e* defined by

i {:1 if j =1
e, =
J 0 otherwise .
Player i is the only veto player for game vy but he is not a dictator

as v({i}) = 0 by our assumption of 0-1 normal form. Since player 1 needs
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the cooperation of at least one other player to insure that he is in a winning
coalition, one can argue against ei as a solution point for game Vi
Although there are other persuasive arguments for accepting ei as the solu-
tion point of Vs, We see there is room for debate on this point.

The above paragraph raises the following question: Are there, in fact,
games with solution points so natural as to be, in a sense, beyond dispute?
In answer to this query, consider the following games: Let S be a coali-

tion such that S :EE% and |S| > 1. Let v_ be the n-person game defined

S
by
(1 if scT
vo(T) ={
0 otherwise, i.e.
Vg is the n-person monotone simple game for which coalition S is the set

of veto players. In fact, the coalition § is a dictator in the sense that
it wins by itself and only coalitions which contain S5 «can win. A natural

solution point for the game Vg is the imputation xs defined by

1 . .
XS= rs—rlf ig$8
1 0 otherwise ,

i.e. the veto players divide 1 equally leaving nothing for the remaining

players. It is difficult to imagine any dispute concerning the imputation

xS as a solution point for the game Vg-

The above analysis suggests utilizing the convex hull in R n of
27 en-2
the set {VS: S € Q}, denoted Hn’ in the way Cn was in the previous

sections for defining solution points. The computation difficulties are
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considerable in dealing with Hn, the convex huil of 2 -n-2 games, as
opposed to Cn’ the convex hull of only n games. Because of these diffi-
culties, we shall only briefly discuss the analog of the two-center.

For a given n-person game v, consider the following constrained mini-

mization problem:

minimize |]v-w|[2

subiect to

where !fu]lz = 3 [u(S)]%. The following theorem is another direct appli-
5¢Q
cation of Theorem 1 on page 69 of [12],

Theorem 1. For a given n-person game v there exists a unique V* ¢ Hn

such that

'1V”V*!‘2 < llv—w]lz for all we Hn .

Furthermore, a necessary and sufficient condition that v* be the unique

minimizing game is that

(1) I (T - v¥(M)W(T) - v¥(T)) <0 for all weH .
TeQ

Since H is the convex hull of the set {VS: S £ Q}, (1) in the above

theorem can be replaced by
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) (v - v*(T))(vg(T) - v¥(T)) < 0 for all SeQ.
TeQ

Therefore, v* is the unique minimizing game if and only if

(M ] (T - v¥(M) < § vHTI(V(T) - v¥(T)) for all Se Q.
TeQ TeQ
Lemma 1. The set {VS: S ¢ Q} is linearly independent in R .

on-2

Proof. Suppose the lemma is not true, i.e. suppose for some S e Q we

have

Ve = ) AV
S qq TT
T#S

where the 3_'s are real numbers. Therefore,

(2)

(3)

where U # S. The relation (3) implies

7]
IT]

sl

T

i
[

) A
{Teq: TC<S, |T|<|s|} T

A 0 forall UCS

T

]

)
{TeQ: TCU, |T|<|u}}

AT = 0 for all T S8 such that
Ap

=0 forall T CS8 such that

2. This result and (3) imply that

= 3, Continuing in this way, we get Ap = 0 for all T S such that

> |T| > 1. Therefore, (2) cannot hold and we have a contradiction. We

conclude that the set {vS: S ¢ Q} is linearly independent in R n . A

2 -n-2



17

The set {vS: S € Q} is linearly independent in R and so the
2 -n-2
game v* is a member of Hn if and only if there exists a unique game

z*¥ ¢ R n such that
2 -n-2

1 z*(8)
SeQ

#
ot
-

z*(8) > 0 for all SiN, |S| > 1, and

vt = z*{S)v,, .
sEQ S

Clearly,

(4) v*(T) = ) z* (U)
{UeqQ: u<s, jul<|s|}

If v is an n-person game and v* and z* are defined as above, then the

imputation x* defined by

(5) x* = J z*(S)xS

is called the full.center of v.

An algorithm analogous to that for the two-center can be constructed by
brute force but its complexity would be considerable. This complexity is
due in part to the fact that 2z* has 2"-n-2 components and partly to
relationship {4) which complicates the intermediate calculations in the

search for z*. As in the case of the two-center, the algorithm is a
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sequential search through a finite collection of systems of linear equations
for the particular system which determines the Lagrange multipliers. This

fact together with {5) implies that the full-center is a continuous piece~

wise linear function from R to R,
2"on-2 n
Below is a table for the full-center in the case when n = 3. Note
111 111 111
that the games VI’VZ’VS have full -centers (E,E,ZJ, (3,5333, {z,zyia,

respectively., The table is based on the assumption that

v(12} > v{(13) > v(23) .*

inequalities for region
full-center of linearity in R3
X = 1, v(12) + v(13) - 2v(23)
1 3 6
X = 1 . v(12) + v{23) - 2v(13) v(23) > v(12) + v(13) + v(23) - 1
2 3 6 - 3
_ 1, v({13) + v(23) - 2v(12)
3 3 6 '
X, = &
12 v(23) iv(l.’S) + ;(12) -1
_ 1 v(12) - v(13)
i I U 3
v(13) + v(12) - 1
L .1, v(s) - v(2) v{13) > 3
3 4 4
s %’
v({12) - 1 > v(13)
=1 -
<7z

ij denotes the coalition consisting of players i and j.
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In the four-person case, if it is known that 2z*(5) > 0 for S i}N,

Is| > 1, then
4 4
LW 1 e
£i)- S gi)- I —
X; = * for i=1,2,3.4
3 6
where f(i) = v(S) and g(i) = ) v(S).
{8eQ;* |8]=3} {Seq, : |s|=2}

The complex problem of computing full-centers makes the enumeration of

further cases difficult.



CHAPTER IV

4-PERSON SUPERADDITIVE GAMES

4.1 Extreme Points for 4-person Superadditive Games

A natural requirement for an n-person game v is that it be super-

additive, i.e.
(1)  v(S) + v(T) < v(S UT) for all disjoint coalitions S and T .

Since v is assumed to be 0-1 normalized, (1) implies that each component
of v is non-negative, If Kn is the set of all n-person superadditive

games, then Kn N (Cn - R+n } is the set of all n-person superadditive
2 -n-2

games with nonempty core. Condition (1) and its implication that each

superadditive game is non-negative imply that XK = and K n_ -=&* )
n n n 2"-n-2

are closed bounded convex polyhedrons in Rzn 2. Ideally, one would like
to know the extreme points of these polyhedroggt This appears to be a very
difficult problem. In this chapter, we determine the extreme points of

K, and use this result to produce a counterexample to a conjecture con-
cerning "totally balanced" games.

An n-person game V 1is constant-sum if and only if
(2) v{8) + v(N-8) = 1 for all coalitions S ©N .

1f Ln is the set of all superadditive constant-sum n-person games, then
from (1) and (2), Ln is a closed bounded convex polyhedron. With each
n-person superadditive game Vv is identified an n+l-person constant-sum

superadditive game V' defined by

40
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v({S) if n+l1 ¢ S
(3) v'(8) =

1 - v(N-5) if n+l e S .

Von Neumann and Morgenstern (see page 505 of edition 2 of [18]) call player

n+l in (3) the fictitious player. With player n+l fixed as the fictitious

player it is easy to see that (3) defines a one-to-one onto mapping from Kn

to L

ntl” Theoren 1 will show that this mapping maps the extreme points of

Kn onto the extreme points of Ln+2'

Theorem 1. The n-person game v 1is an extreme point of Kn if and only

if v' is an extreme point of Los1e

Proof, If v is not an extreme point of Kn’ then v' camnnot be an extreme

point of Ln+ since the components of v are also components of v'.

1
If v' 1is not an extreme point of Ln+1’ then v' = % wt o+ % u' where

wi,ut ¢ Ln+1 and w' # v'. By (2) w' must differ from v' in at least
two components, one of which is the value of a coalition not containing

player n+l. Therefore, v = %=w + %-u where w and u are the super-

additive "subgames" in Kn identified with w' and u', respectively. w # v

and s¢ v cannot be an extreme point of Kn. A

Gurk [8] has determined the extreme points of L We will use his

5

results and Theorem 1 to obtain the extreme points of K Gurk's results

4
are summarized in Theorem 2.

Definition 1. (see Gurk [8].) An L-chain of coalitions for a S5-person
constant-sum game Vv 1is an ordered collection (Tl,...,Té} of subsets of

{1,2,3,4,5} of the form
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{bd,ae,cd,ab,ce,bd)
where (a,b,c,d,e) 1is some permutation of (1,2,3,4,5) and V(Ti) = %
for i=1,2,,..,6. [bd denotes the subset of {1,2,3,4,5} consisting
of the elements b and d.]

Theorem 2 is a restatement of Gerk's Corollary 2 on pages 183-4 of

[8l.

Theorem 2. If v is not a simple game, then v is an extreme point of

L if and only if v(8) = 0,1, or 5 for §C{1,2,3,4,5) and v has at
least one L chain.
We now define the notion of a chain for games in K4. Theorem 3

characterizes the extreme points of Ky

Definition 2. A K-chain of coalitions for a 4-person superadditive game

is an ordered collection (Tl"°"TS) of subsets of {1,2,3,4} of the

form

(ab,abc,bc,bed,cd)

for

Nil—-‘

where (a,b,c,d) is some permutation of (1,2,3,4) and v(Ti} =

i=1,2,...,5.

Theorem 3. If v is not a simple game, then v is an extreme point of

K4 if and only if v(S8) = 0,1, or % for $ ©€{1,2,3,4} and v has at

least one K-chain,

Proof. Suppose Ve K4 such that v(8) = 0,1, or % for S € {1,2,3,4}

and suppose v has a K-chain. Suppose also, without loss of generality,
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|l

that this K-chain is (12,123,23,234,34). Therefore, the game v' in 5

has v'{8) = 0,1, or %
The game v' has the L-chain (12,45,23,15,34,12) and is therefore an

for all § < {1,2,3,4,5} and v'(45) = v'(15) =

N3 b

extreme point of L. i1t follows from Theorem 1 that v is an extreme
point of K4.

Suppose v is a nonsimple’ extreme point of K4. It follows from
Theorem 7 that v' is an extreme point of LS' Therefore, by Theorem 2,
the components of v' and hence the components of v must only have values
1

5 Let (bd,ae,cd,ab,ce,bd) be the L-chain for game v'. Clearly,

players b and d have symmetric roles in this L-chain; this is also true

0,1, and
for players a,c,e. If b =5, then game v has K~-chain
(ae,ace,ce,cde,cd) .
If e = 5, then game v has the K-chain
(ab,abd,bd,bed,cd) . A
The following Table consists of the extreme points v of K, which

are not simple games and which have the K-chain (12,123,23,234,34), i.e.

v(12) = v(123) = v(23) = v(234) = v(34) = %

e
A gane v is a nonsimple extreme point of X, if it is an extreme point
of K, and if it is not a simple game.
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4.2 Totally Balanced Games, a Counterexample

Let v be an n-person game. For each coalition S ©N where |S| > 1
there is an |S|-person game V> defined by vS(T) = v(T) for all T CS.
For each S ©N where |S| > 1, V> is called a subgame of v. An n-person

game is totally balanced [17] if and only if each subgame has nonempty core.

It is easily seen that the set Hn of all totally balanced n-person
games is a closed bounded convex polyhedron contained in Kn. Therefore,
if an extreme point of K, is totally balanced, it is an extreme point of
Hh' Attempts were made to prove that the only extreme points of Hn were
the totally balanced simple games, i.e., the monotone simple games with veto

players. This conjecture is false. Consider the game Vv ¢ K, given by

B et

v(12) = v{123) = v(23) = v(234) = v(34) = v(124) = v(134) =
v{1234} = 1

v{8) = 0 for all other S € {1,2,3,4} .

It is easy to see that v is totally balanced. v contains the K-chain
(12,123,23,234,34) and therefore v is an extreme point of K4. Therefore,

v is also an extreme point of H,.



CHAPTER V

THE SHAPLEY VALUE AND GAMES WITH NONEMPTY CORE

5.1 Extreme Points for Non-negative Games with Nonempty Core

In this chapter we attempt to characterize games (not necessarily super-
additive} whose Shapley value is contained in its core.* To do this, we
need the results of Theorem 1 of this section. In Theorem 1 we characterize

the extreme points of {C_ - R+ ) N R+ . This theorem is an unpub-
n n
2 -n-2 2 -n-2

lished result of L. S. Shapley. The proof used here was suggested to the

author by Elon Kohlberg.

Lemma 1. If v is an extreme point of (C_ - R y AR’ and if
——rr n n n
2 -n-2 2 -n-2

the imputation x is in the core of v, then x(S) = v(8) for all SC N

for which v({S) > 0.

proof. Let v be an extreme point of (C_ - R )y N R . If x is
— n n n
2 -n-2 2 -n-2

an imputation in the core of v, then x(S) > v(§) for all S & N. Suppose
there exists 2 T ©N such that x{T) » v(T} » 0. Therefore, it is possible

to choose a real number ¢ such that
minimum {x{T) - v(T), v(D} > e > 0 ,

Define the n-person games uy and u, by

, v(S) if 84T
u, 5} =
viT) + ¢ if S =T

#*
This problem was suggested by a remark of Charnes and Sorensen in [5].

46
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v(5) if S#T

uz(S) = 4
i v(T) - ¢ if §=T

The imputation x 1is also in the respective cores of Uy and u, and so

u. and u., are members of (C_ - R y 0 R . The fact that
i 2 n n n
1 1 2 -n-2 2 -n-2 )
veEzu tzu, where uy # v contradicts the assumption that v 1s an
extreme point of {(C_ - R y Nr* . Therefore, x(T) = v(T) for
T n n
2 ~n-2 27 -n-2

all TSN for which v(T) > 0.

Lemma 2. If v is an extreme point of (C_ - R* y nr' , then

2"-n-2 2"-n-2
v(S8) = 0 or 1 for all S8 &N.

Proof. Suppose v is an extreme point of (C - R 1N R and
B n n n
27-n-2 2 -n-2

suppose there exists a coalition TCN such that 0 < v(T} < 1. Llet X

be an imputation in the core of v. It follows from Lemma 5 that x(T) =

Therefore, x{N-T) = 1 - x(T) > 0, and so there exists players i e T and

j € N-T such that x, > 0 and xj > 0. Choose a real number d so that
minimum {xi, xj, 1~xi, l-xj} >d>0,

and define the imputations xl and x° by

Xy if k # i,]

H
peds

xi = { x +d if K

]
ks

- x,. - d if k
]

v{T}.
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e if k#1i,i
2 . .
xk = X ~ d 1if k=1

x. +d if k = j
k|
. 1 2
Define the games v~ and v~ by

xk(S) if v(8) » 0

sy =
0 if v(S) = 0

for k = 1,2. The imputation xk is in the core of the game vk for

k = 1,2, and so v and vz are members of (Cn - R+n y 0 R+n .

1.1 1.2 1 g, 22 2en-l
However, v = FV + 35V and v (T) » v(T) » v°(T). Therefore, v cannot
be an extreme point of (C_ - R y MR , a contradiction, Therefore,

n n
2 -n-2 2 -n-2
v(8) is 0 or 1 for all S ©N. A
Theorem 1. Game v is an extreme point of (C. - R ) NR* if
AR n n n
2 -n-2 2 -n-2
and only if it is a simple game with at least one veto player.
Proof. Let v be an extreme point of (C_ - R’ y N R* . Lemma 6
FI00% n n n
27-n-2 2 -n-2

implies that v is a simple game. Suppose v does not have a veto player,
i.e. there exists disjoint subsets S1 and S2 of N such that

V(Sl) = V{Sz) = 1, Clearly, no imputation x exists for which x(Sl) i.V(Sl)

and x{Sz) z.vfsz), and so Vv §£ ({In - R*n ). This contyadicts the fact
2°-n-2
that v is an extreme point of the closed set C_ - R n . Therefore,
2 -n-2

v must have at least one veto player.

Suppose v is a simple n-person game with at least one veto player.

If player i is a veto player of the simple game v, then the imputation X
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defined by
1 if =14
X, =
J 0 otherwise
is in the core of v. Therefore, v e Cn - R+n . Since no game w for
2 -n-2
which w(8) » 1 for some S ©N can have nonempty core, v must be an
extreme point of (C_ - R+n y A R+n . A
2 -n-2 27-n-2

5.2 Simple Games in which the Shapley Value is a Member of the Core

If v is an n-person game, then the Shapley value [16] of v is a

vector ¢{Vv) ¢ Rn defined by

@ ey T (sl-0lelsD! sy - ves - i)
SCN: ieS ’

for i=1,2,...,n. If the game v has nonempty core, it is not necessarily
true that ¢{(v) is in the core of v. If Yn is the set of all games with
nonempty core containing the Shapley value, then Yn is determined by the

inequalities

I ¢(v); > v(s) forall SCN.
ieS
Therefore, Yn is 2 closed convex polyhedron.

An alternate description of Yn would be the characterization of its

extreme points. Since Yn may be unbounded, we will restrict our attention
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to Y n R+n . Any extreme point of (C_ - R+n y A R+n which is
2 -n-2 2 -n-2 2°-n-2
also a member of Yn is clearly an extreme point of Yn N R+n . Theorem
2 -n-2

1 below describes those simple games with veto players which are contained

in Y .
n

Theorem 1. If v is a simple game with at least one veto player, then the
Shapley value of v is in the core of v if and only if v 1is a monotone

game and contains more than one veto player.

Proof. Let v be a monotone simple game with more than one veto player.
Let T be the set of veto players of the game v. If player i ¢ T, then
(1) implies ¢(v), = 0. § ¢(v), =1 and so [ ¢(v), = 1. The relation
* jeN ] jes J
(1) also implies that if i ¢ T, then q:(v).1 > 0. Therefore, ¢(v} 1is an
imputation in the core of v,
Let v be a nonmonotonic simple game with more than one veto player.

Let T be the set of veto players of the game v. If

W={S CN: TCS, v{S) = 0}, then the game v can be written

where Vip is the monotonic simple game with veto players T and eg is

the n-person game (not in 0-1 normal form) given by

1 if M=35

eg M) =
) otherwise .

The Shapley value ¢{VT) of the game vT is given by
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/s8] if ieT

o0y =

kY otherwise

If jeS, then oleg); = (n- 8 %f( S -1)! | 0. The linearity of the Shapley

value [16] implies that

o(v) = ¢{v.) - d(e.) .
T Sgw S

Since W is nonempty and T is contained in each member of W,

I o), < 1.
ieT
Therefore, ¢{v) cannot be in the core of v and so Vv ¢ Yn'
Let v be a monotone simple game with just one veto player, say player
1. The game v has a core consisting of the one imputation (1,0,0,...,0)

; _ 1 R .
in Rn. However, ¢(v}2 lEyewsy > 0. Therefore, ¢(v) is not in the core

of v and so v ¢ Yn' A
Unfortunately, there are extreme points of Yn n R+n which are
2 -n-2
not simple games, In the case n = 3, there are four such extreme points:

4 4 4 4 4 4 222
(gagao), (§,0,§3, (0,§,§9, (g,gsg)-



CHAPTER VI

QOPEN PROBLEMS

In Chapters IV and V, the open problems should be obvious even to the
casual reader and will not be discussed here.

The embedding of imputations in the game space is introduced in Chapter
11 and utilized to define "'centers" of games in Chapter III. This embedding
provides a framework for interpreting new and old solution concepts for a
game v in terms of v's relationship or “"closeness', in some sense, to
the embedded imputations. I think this idea can be explored further. In
Chapter 111 we formulated the notion "'closeness” as a metric concept and
used it to define solution points for a game. However, the notion of
ncloseness” in the space of games does mot have to be a metric one as the
core and modified nucleolus of Chapter II illustrate. I believe it would
be worthwhile to investigate new nonmetric notions of 'closeness” in the
game space. One might initially impose a few axioms on what is meant by
a solution in order to avoid difficulties like those at the end of Section
3.1. Such a notion of “closeness' together with these axioms may provide
very appealing solution concepts for n-person games.

The computational difficulties of Section 3.4 suggest that searches
for other ways of embedding the imputations in the game space may not be

very fruitfull,
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