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ABSTRACT

Let XI’XZ"“’Xn be n independent, identically distributed, non—negative
random variables and put S, = ZIilzl X, and M = V?Zl X,. Let p(X,Y) denote the
uniform distance between the distributions of random variables X and Y; i.e.

p(X,Y) = sup |P(X <x)—P(Y <x)|. We consider p(Sn,Mn) when P(X; > x) is
x€R

slowly varying and we provide bounds for the asymptotic behaviour of this quantity as
n - w, thereby establishing a uniform rate of convergence result in Darling's law for

distributions with slowly varying tails.
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1. Introduction
Suppose that Xl,XQ,... is a sequence of non—negative, independent, identically
distributed (i.i.d.) random variables with common distribution function (d.f.) F, and
. B _.n B
denote F =1—F. Put Sn = E?:l Xi and Mn =Vi_g Xi’ n=123,...
F is said to be regularly varying at infinity with index —a (a > 0) iff

(1.1) lim EEQ: t~% for every t > 0.
x-0 F(x)

If =0 in(1.1), F is called slowly varying. In the sequel, we will denote (1.1) as
Fe# .

If Fe & o With a#0, it is well known that there exist linear normalizations
such that S~ and M, converge weakly to (different) non—degenerate limit laws.
Moreover, the concept of regular variation is widely accepted to be the natural way of
characterizing domains of attraction in these limit relations, see e.g. Doeblin [6],

Feller [7], de Haan [4], Bingham et al [2], Resnick [12].

If F isslowly varying (a = 0), EX{ = o for every p > 0 and Lévy [9] pointed
out that for such distributions, every linear normalization of S, (or Mn) leads to a
degenerate limit law. Hence one is forced to consider nonlinear normalizing functions

and in this setup, Darling [3] showed that if F € o>

(1.2) nF(s,) = E

where = denotes weak convergence and E is an exponential random variable with

parameter 1. Also

nF(M ) = E



so that by uniform convergence,

(1.3) P8 My = S1 |P[nF(S,) < x] — PF(M

RE

=sup |P(S, <x)—P(M <x)| -0 as n-w
x>0

Another interpretation of this result is given in Resnick [11, section 5] where it is shown

that

at(MS,) = (68)

where nF(a,n) =1 (n=12,...) and ¢ issuchthat P({=0) = e !

=1-P(t=w).
Thus F € 520 implies that p(Sn,Mn) -0 as n- o and in this paper we are interested
in the rate of convergence to zero of p(Sn,Mn). In order to obtain a precise rate, it is
natural to specify the manner in which F is slowly varying. This is done in the next

section where we discuss II—varying tails. Section 3 contains the results on the rate of

decay of p(S ,M ) under various conditions on F.

2. Preliminaries

From Karamata's Theorem ([2], [4], [7], [12]) it follows that F € &, iff

We can specify the way in which F is slowly varying by being more precise about the

o—term in this relation. Therefore, suppose that



(2.1) XL Z udF(u) = V(1/F(x)),

where V is a non—negative measurable function such that xV(x) - 0. More precise
conditions on V will be given later.

In section 3 we show that (2.1) is a natural condition for obtaining a rate of
convergence to zero of p(S ,M_). Here our first concern is to interpret the condition in
(2.1) by translating it into an equivalent form containing only F. In order to state the
result, we introduce some necessary definitions and notations: A non—negative
measurable function U is II-varying (U € II) iff there exists a function b€ # such

that

Ultx) - U

X} _
3 = log t.

(2.2) lim

X= o

(Ct. [2], [4], [12].) b is usually called an auxiliary function (a.f.) of U and it is shown
in [4] that U e I iff XL J )5 sdU(s) € &, in which case we may take

b(x) = x ! / )5 sdU(s). If U is monotone, non—decreasing and right continuous, the
inverse of U is defined as U"(x) = inf{y: U(y) > x} and it is well known in this case

that U € I with a.f. b iff U is I'—varying with a.f. f(x) = b(U(x)); i.e.

(2.3) limUk(X + tf(x)

- ) - e for every t €R.
X+ 00 U (x)

(Cf. [2], [4], [12].) One can show (cf. [2], [4], [8], [12]) that if { is the a.f. of a function

in the class I', then f is self—neglecting (f € SN); i.e.

lim f(x +xuﬂx“ =1,
X 00



locally uniformly in u € R. Furthermore, if f is any SN function we have
exp{ ji( (1/f(u))du} € . In order to prove the main result of this section we need some

special relations between II and I' which are gathered in the following lemma.

Lemma 2.1. Suppose U, H are non—decreasing on (0, o).
A. (i) T UeT withaf f(t)e % nSN then log U eIl witha.f.
a(t) = t/1(t).
(if) If HelIl withaf. H.(t)L(t)/logt where t/L(et) € SN, then H(et) el
with a.f. t/L(e').

B. () If Uel withaf fe %, a>0 then log Ux) ~a x/f(x) € &,

1—o’
(ii) If Hell witha.f H(t)/alogt for some o> 0 then H(e*)e ﬁl/a‘
C. (i) If Ux)-o and Uel withaf f where t2/f(t) € T' witha.f. h, then
log U eI with a.f. h.
(i) If Hell withaf H(t)L(t)/logt where L(t)-0 and L(e") € &, then

H(e¥) € II with a.f. H(eb)L(eb).

Proof. A. (i) If Ue€T, we have the Balkema—de Haan representation (cf. [12], for

example)

U(x) = c(x)exp {}{( (1/£;(u))du }

where c(x) - ¢ >0 and f; ~f, so that f; € &, N SN. Hence

(2.4) log U(x) = log c(x) + [ (1/f;(u))du.

o ey 24

Now ji( (l/fl(u))du € II with a.f. t/fl(t) - o because it is the integral of a

—l—varying function. Since log c(x) - log ¢, it follows from (2.4) that log U € II.



(ii)  Since we can always represent the a.f. of H as x I )6“ udH(u) =

H(x) — KL / )8 H(u)du we have for some function b(x), b(x) -1, that

H(x) — X! }f; H(u)du = b(x)H(x)L(x)/log x

whence
[ ] 3 -1
f}SHHD((u)du = [ (1 -"he5))

and integrating from 1 to x produces

ZH(u)duzcexp{}{{ (s [1_%]]—1@}.

Since
Z H(u)du = xH(x)[ 1-— M}f%éi%)]
we get
-1 X -1
) = o7 [1 =2 T e {7 [ (1245800 |
— o[ 1YL ] lexp{ff[m%g 1) 1@3}
and thus



Set, £ (x) = x(b(eN)L(E)) ™ and we get
B = (60— D/ (ewp | Z 16 ()~ 1)as |

Now observe that since the auxiliary function of H is H(x)L(x)/log x we have
H(x)/(H(x)L(x)(log x)ﬂl) = log x/L(x) = o (cf. [4], [12]) and thus f*(x) -+ o whence
() =1)/f (x)=1 and £ (x)—1~f €SN. Thus H(e¥)eT.

B. (i) From (2.4) and Karamata's Theorem
—1 1
log U(x) ~ & “x/f;(x) ~ a "x/f(x).

(i)  From (2.5) we have with L(x)=1/a

X) o ex x y dy
e vee p{(fuay/b(eyn = %)

and since y/((ay/b(e¥)) —1) = a“l, the result follows from Karamata's representation

of a regularly varying function ([2], [4], [12]).

C. (i) From (2.4) and the assumption U(x) - » we have
log U(x) ~ f)l( (l/fl(u))du where l/fl(u) = 7(11)/112 and 7€ T with a.f. h. Now
v€ D' with a.f. h implies 7(u) /u2 € I' with a.f. h and this in turn implies
f)l( 7(u)/u2du e I' with a.f. h (cf. [4], p. 45.).
(ii)  From (2.5) it follows that

H(eX) ~ ¢ exp { b’ (s)L(e%)/sds }

O Sy A

* . —_
where b (s) := b(e®)(1—s 1b(eS)L(eS)) 151 and since L(x) » 0 we get from the

Karamata representation that H(e™) ¢ - Because H eIl we may write (1L,[2)



H(x) = d(x) + }{( a(s)/s ds

where d = o(a;) and a;(t) ~ H(t)L(t)/log t. Thus

H(e™) = d(e*) + Z al(ey)dy
where
aq(e”) ~ H(e")L(e")/y € 2_,
and
| CdWay )y
Lim de/HEOLE) = 1im 5 rgmereg = 1 amtog < =%

Now | }8 ay (e¥)dy, being the integral of a —l—varying function, is in II with a.f.

H(et)L(et) and the same is true of H(e™). o
We are now ready to formulate our theorem which interprets (2.1).

Theorem 2.1. Define g = 1/(1-F) and consider the following relations:

(i) For some non—negative, measurable function V satisfying 1im xV(x) =0
X~ oo

(2.1) X1 Z wdF(u) = V(g(x)).

(ii)  For some function L(x) >0, ge II with a.f. g(x)L(x)/log x, or
equivalently,
F(tx)

(2.6) — 1~ (-og t)(L(x)/log x), X = o.

5]
Na¥

Then we have



A. () holdsand Ve #_, iff (ii) holds and x/L(¢") € SN.
B. (i)holdsand Ve #_,__ (a>0) iff (i) holds and lim L(x) = o .
X0
C. (i) holdsand 1/V €T iff (i) holds, L(x) -0, and L(e") € %,
If one of the equivalences in A, B, or C holds, there is a function b(x)-1 and F is of

the form (c > 0)
_ b(x)L(x) ) ! X b(u)L d
(iil) F(x)=c ( 1+ “E%—%l] EXp "{ [log u(i)bﬁﬁﬁuu) )_3

and furthermore L and V determine each other asymptotically through the relation

L(x) ~ g(x)V(g(x))log x.

Proof. The proofs of A, B and C heavily rely on the corresponding statements in
Lemma 2.1 A, B and C. Suppose (2.1) holds for some function V(x) satisfying
xV(x) = 0. Since from (2.1)

x(e2(x) é wdF(w) ™ = (620 V(g(x)) !

we get upon integrating with respect to dg(x) that for T > 1

T ar(x T -1
== OV(g(x de(x
{ fi){ wdF(3) { (g"(x)V(g(x)) “dg(x)

=51 ot
g(1)

and since the left side is

T 1
log(/ xdF(x)/[ xdF(x))
0 0



we obtain for some ¢ > 0 the representation

T M oo
Jxar() = cexp { [ (Vi) ay |
0 1

So using (2.1)

g(x)

@7 x=(e/Vigtexp { 1" (V) Ty |
Thus if we set
(2.) () = (e/Veesp { [ 62V ™ |
then

x = H o g(x)

and g is the inverse of H.

To prove (A), suppose that both (2.1) holds and V € #_;. Since Ve &_; and
xV(x) - 0 it follows that f(x):= XQV(X) € SN since f(x)/x = xV(x) -0 and thus as
t -

f(t + xf(t)) (6 + xf(t))% V{ + xf(t))

HEO 2 \6)

- 1.

Hence H e I' with a.f. f(x) whence g e II with a.f. fog(x)= g2(x)V(g(x)). This

proves (ii) and it remains to set L(x) = g(x)V(g(x))log x and show

x/L(€%) v ——2 € SN.
S V)

However since H eI withaf. feSNn %, it follows from Lemma 2.1.A.(i) that
log H € IT with a.f. a(t) = t/f(t) = 1/tV(t) and therefore (log H)” € ' with a.f.
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a((log H)™(t)) = 1/((log H)"(t))V((log H) (t)) € SN and the desired result follows since
(log H)"(x) = g(e").

Suppose now that (ii) holds and x/L(e*) € SN. We show (i) holds with
VeR ;. Weassume gelIl with a.f. g(t)L(t)/log t which implies F € IT with a.f.
F(t)L(t)/log t whence

F(t)L(t)/log t ~ t 2 wdF(u).

From Lemma 2.1.A.(ii) we have g(e*) e I' with a.f. x/L(e*) whence by inversion

log g (y) € IT with a.f. log g™ (y)/L(g" (y)) € # and thus we conclude

(..-
vy =B M) _cgq .
t log g (t)
So we have

V(g(t)) ~ F(t)L(t)/log t ~ t 2 udF(u)

as desired.

The derivation of (iii) is carried out as in Lemma 2.1.A.(ii).
B. Given (2.1) with Ve & |, wehave f(t) := t*

from (2.8) we have H(x) e I' with a.f. f(t) = tQV(t) so H(x) = g(x) € II with a.t.

V(t) € #,_,, € SN and hence

gQ(t)V(g(t)). From Lemma 2.1.B.(i) we have log H(x) ~ oz_lx/f(x) € R, so
-1
log H(g(x)) ~ log x ~ (ag(x)V(g(x)))
and so the a.f. of g is

g2 (t)V(g(t)) ~ g(t)(a log t) !

as desired.



11

Conversely assume g € II with a.f. g(t)/alogt. Then F eIl with a.f.
F(t)/alog t and so

- Z udF(u) ~ F(t)/a log t.

From Lemma 1.B.ii we have g(e¥) ¢ 2 /a whence log g™ (y) € x, S0

V(t) == (at log g™ (1)) ' € &, and

t
V(g(t)) ~ F(t)/alog t ~t T [ udF(u)
0
as desired.

C. Given (2.1) and 1/V €T with a.f. h we have that (1/V)™ € II with a.f.
ho (1/V) € #q- We use this to check that yQV(y) € SN. Note lim tQV(t)/h(t) =0

t—w

since this limit equals

Lim ((1/V) )y R/ V) ()

Yoo

which is the limit of a function in %#_;. Therefore

Lim (4 x2V) 2V + xt?v(e)
t— o tQV(t)

=1lim (1 + xtV(t))2V(t + xh(t)(t2V(t) /h(t)))/V(t)

t= o0
= exp{~lim xt2V(t)/h(t)} = 1
t~ o
which says that yQV(y) € SN. Furthermore tQV(t)/h(t) - 0 implies V(t)/h(t) -0
and the above argument can be repeated to show V € SN. Thus H in (2.8)isin T’

with a.f. yz\/(y) whence from Lemma 2.1.C.(i) log He I' with a.f. h and inverting
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we conclude g € II (one desired conclusion) with a.f. gQV(g) and g(e¥) e Il with a.f.
h(g(e")) € &,
It remains to show that the a.f. of g
2
g (x)V(g(x)) ~ g(x)L(x)/log x

where L(e¥) € &.; i.e. we show

xg(e*)V(g(e")) € &

However 1/V € T' with a.f. h implies ()(2\/(}())_1 e ' with a.f. h so that ([4], p. 45)

X

() ~ XV o) [ 1/(7V()dy
and from (2.8)
h(x) ~ x2V(x)log g (%)
s0 that since h(g(e™)) € &, we get

h(g(e¥)) ~ g(€*)V(g(e¥)x € 2,

and since g(e*) eIl c F#y we also get

xg(@)V(g(e")) € 2,

Furthermore since h(t)/t -+ 0 as a consequence of h being an auxiliary function, we

have

L(g(e™)) ~ h(g(e"))/g(e”) = 0

whence L(x) - 0.
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Conversely, suppose g € IT with a.f. g(x)L(x)/log x where L(x) - 0,
L(e*) e Ao Asin A and B we have

F(x)L(x)/log x ~ x * Z udF(u)

so it remains to check that

V(x) := L(g"(x))/(x log g™(x))

satisfies 1/V € I'. However from Lemma 2.1.C.(ii) g(et) € IT with a.f. g(et)L(et)
whence log g~ € I' with a.f. tL(g™(t)) =: h(t). This implies

log g™ (x)/(xL(g"(x))) € T with a.f. h

and further that

x?log g (x)/(xL(g"(x))) = x log g (x)/L(g"(x)) = 1/V €T
with a.f. h as desired. o

Theorem 2.1 informs us that condition (2.1) means F is II—varying with a
special form for the auxiliary function. In the next section we will show that (2.1) is a

condition which is natural for obtaining a rate of convergence for p(S Il,Mn).

3. Rates of convergence

Darling [3] showed that if F € R

Sn
Em—ﬁl as n - ow.
n

Defining 6121 = E[ M’E} — 1, we thus have that €, 0 as n-w. The first simple step
n

expresses p(S n,Mn) in terms of ¢ .
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Lemma 3.1. Let Fe ‘%O‘ Then

(3.1) pS, M) <€, + sup (F(x) = F™(x(1+¢,) 7).

Proof. We have for any x> 0,
-1
P(Mn> X) SP(Sn>x) =P(Sn>x, M S, > 1+en)
. ML
+P(S,>x, M "S5 <l+4e))

<PM_TS 1> € ) + P(M,(I+e ) > x).

Since M;l .S N 1> 0, we can apply Markov's inequality giving that

-1 1 -1
P(M, -8 —1 > €) < ?I;E(M S 1) =,

Using this upper bound, we get that

" -1
P(M_ >x) <P(S, >x) <, +P(M > x(1+¢,) )
whence

-1
0<P(S, >x)—P(M, >x) < e, +Flx) —F(x(1+¢)7).

Taking suprema over x gives the result. o

It is clear from Lemma 3.1 that in order to bound p(Sn,Mn) we need to examine
the two terms in the right hand side of (3.1). We first show that the conditions on F
assumed in the previous section allow us to establish the precise asymptotic behaviour of

€, 3 - This is done in the next lemma.
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Lemma 3.2. Suppose (2.1) is satisfied.
2 N
n
(i)  Set ¥(x)=x ‘(—og V) (x V). If Jlog Ve R, §>0 then

Hog ¢ ~ 3 (14 A 1w () (n-w) and ¢ = exp{-W(n)} where

(i) If Ve& ; ,0<a then ¢ ~I(a+2)-nV(n) (n-w)

We Zs/(1+p)

Proof. We have from Darling [3] or from Maller and Resnick [10, Lemma, 1.1] that
2 ? n—2 -1
& =n-1) / F'(y) (v J udF (u))dF(y),

and using (2.1) this becomes

2 _ n(n—1) [ FR2 1 .
=) ¥ (y)V[F(y)]dF(y)

Define V; by (0<s<1)

1] _ 1
V{5 ) =i (=)
and set q(x) = —log F(x), x> 0. Then
2 T o—(n-1)a(y) 1 —a(y)
hil = (n+1)n (f) e vy ( (—1—67) de

w0
= (n+1)n [ e ™ \ (%] ds
O )

and it seems irresistable to get the asymptotic behavior of ¢ 1 from well known
Abel-Tauber theorems for Laplace transforms; see [2]. If V € R_1_o @20, it follows

that V(x) ~V,(x) (x-=w), so that via standard methods [2],
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2

€pp1 ~ V() Tla+2) (n-w).

This proves (i).
As for (ii), we use an Abel—Tauber theorem for Kohlbecker transforms

[2, Theorem 4.12.11.9iii)] which immediately implies the result. o

Remarks. 1. It would be worthwhile to establish a general Abel—Tauber theorem for

Laplace transforms of functions in the class I'. Since this is not known, we concentrated
in Lemma 3.2(ii) on the special case that —log V € &, 3> 0, which covers most cases.
2. We can get the converse assertions in Lemma 3.2(1) (or (ii)) by imposing a Tauberian

condition on V (or —log V), see Bingham et al. [2].

It is clear from Lemmas 3.1 and 3.2 that we can estimate p(S oM 11) if we bound the

second term in the right hand side of (3.1).
Lemma 3.3. If (2.1) holds and xV(x) - 0 and either

Ve

- @20

or
1/VeT and —logVe R, >0
then

sup [F7(x) = F(x(1+6,) ™) | = o(e,).
x>0

Proof. Clearly for every 0<z <y,
n n Y n—1
(3.2) Fo(y) = F(z) = [ aF"(t)dF(t)
z

<nF" L (y)(F(y) - F(z)).
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From Theorem 2.1 we have F € II with a.f. V(g) and so given 6§ > 0 there exists

Xg = xo(é) such that if x > x; we have
|[F(x) = F(x(1+¢,) )| < (1+)log(1+e )V(g(x(1+e, ) ™))

where we have used the fact that convergence in the definition of II—variation is locally

uniform. Combining this with (3.2) gives

F(x) — F(x(1+¢,) ") < nF" () (F(x) — Flx(1+¢,) 7))

< (1+nF" 7 (x) log(1+¢ )V (g(x(1+¢,) 1)), x> x,(8).

Therefore,
(3.3) sup [F™(x) — F(x(1+¢ ) )|
x>0

) - sup Fn_l(x) V(g(x(l—}-—en)“l)).

< nFn—l(xO) + (1+6)n log(1+e¢
XZXO

n

Since x is a fixed number and F(XO) < 1, it follows from Lemma 3.2 that
~1
nF " (xg) = o(e,) (0= ).
We now consider the second term in the right hand side of (3.3). To prove that

this is o(¢ ) obviously requires us to show that

sup nF" T (x)Vi(g(x(1+e ) 7)) = 0 (0 - ).
xZXO

w0 -
Let (xn) n—1 DPe asequence such that X, X .
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If x <w, clearly
o

nF™ (e V(g (1))~ nF 7 (x )V(g(x ) = 0 (0= o).

1

If x =w, weuse F=1-g = and

-1 -1 —n/g(x,)
nF" T (o V(g (14 €) 7)) ~an§;5e T elx)Viglxy)) (n-w).
which tends to zero since xe - is bounded on [0,0) and xV(x) -0 (x - ). This
proves the lemma.
Combining Theorem 2.1 and Lemmas 3.1-3.3, we have proved the following

theorem which gives a rate of convergence for p(S oM n).

Theorem 3.1. Suppose that x ! f}é udF(u) = V(1/(1 — F(x))) where xV(x) - 0.
(i) If Ve #_1_op < then

lim sup p(S,,M_)/(nV(n))!/2 ¢ (D(a+2))}/2

1 —0

(i)  Suppose 1/V €T and —log Ve &ty > 0. Set W(x) = X Y(og V) (x1)
and W(x) = (1 + o(1)) 5 1+8 DY 1) /0 (x) where (1) 40 as x-w so

that W(x) € '%ﬂ/( ) Then

1+4

lim sup p(S,M ) exp{W(n)} < 1.
1 0
Remarks. 1. The o—term in Theorem 3.1(ii) stems from the fact that we only have an
asymptotic expression for —log ¢ in Lemma 3.2(ii). If we want to specify this term we
need more information on V which enables us to use an Abel-Tauber theorem with

remainder for Kohlbecker transform in Lemma 3.2(ii).
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2. We assumed in Theorem 2.1 that V is regularly varying or that 1/V is I'—varying.

Clearly this can be generalized to O(o)—versions (see [2]), leading to O(o)—expressions

for the behaviour of € ~as n-w. This then gives O(o0)—type of results in Theorem 3.1.
We now give some examples.

1) Suppose F(x) = (logx)” 7, x>e, 7>0. Then

-1

F(x) = 1(log x)"fy“lx €ER

-1
so that F € II with a.f. a(t) = 7(log t)’fyﬁl. Since g(x) = (log x)7 we have
1

V) =g (x) = 1t e 2

and therefore from Theorem 3.1

limsup p(3, M )n'/27 < (yr(2+771) 12
11 =00
If y=1
limsup vn p(Sn,Mn) <y2.

N -0

2) If F(x) =exp{—(logx)7}, x>1,0< y<1, then

-1
V(x) = %(bg x) 7

so that

17

limsup p(Sn,Mn)(log n) 27 < 71/2.
1 —oo
3) If F(x)=(loglogx)"7, x>e ~4>0, then
1+
—
V(x) = 7x e



so that

limsup p(S,, M, Jexp{s (1 + o(1))(1+7)7~ Y/ 1+ Dl/(1+y ¢,

N o0

The pattern of the previous three examples, suggests that the more longtailed the

underlying distribution, the faster the rate at which p(S_,M n) tends to zero. The next

n’
theorem supports this view.

Theorem 3.2. Let F,, F, be two distributions satisfying (2.1) and denote the

corresponding V—functions appearing in (2.1) by V, and V,, If g =1 / (1~Fi) € 11,

i=1,2 then
L Vi) . )
a monotone function in & d (0 <d < w).
V,(x) V. (x)
.. ] 1 . . 1 . M
ii) 1lim =0 iff lim exists and F,(x)> F,(x for
) X~ Z(Xj X~ 00 Q(Xj 2( )2 1( )

all M2 1 and x > x5(M).

Proof. Set g :=—1—_1;Fr., i=12. As g; is Il-varying, g‘i" belongs to I', and we
i

denote the auxiliary function of g(i' by h.. Solving (2.1) in terms of V; yields
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From the remark in [4, p. 45] we get that XQVi(X) ~h(x) (x- ). Therefore

Vi) hy(x)
WNW (k-?w).

(i) First suppose V,(x)/V,y(x)~d € (0,0). Since gi' €' with a.f. h, we note that
gy €T withaf. dh, and therefore (g}(x))? € T with af. hy. Thus both (g7(x))4
and gg(x) have the same a.f. and from [5, Theorem 2.1] there exists monotone U € 21

such that

g5(x) = U((g](x) Y.

Set U d(x) == U(xd) € &, and we get

g5(x) = U 4(g](x))
or
g,(x) = £,(U,(x)
as desired.
Conversely, F,(x) = FQ(Ud(x)) iff gl(x) = gQ(Ud(x)) iff gg(x) = Ud(g;(x))
= U((g;(0)%) where Ux) = Ug(x/%) € 2. So g5(x) and (g(x)? are

I'functions with the same a.f. and the result follows.

Vi)
(ii)) If lim VlTﬂ =0, we can use [5, Theorem 2.1] to show that for every e,
2

X2

0 < € < 1, there exist monotone functions Ugl), U1 € 521 (U possibly depending

on ¢) such that

g () = uf!
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| . g
with Uy /e a monotone function in # /e Hence }{iiswzw for any
1 <M < 1/e. This implies that g}(x) > (g5(x))™ for all x > x)(M) for some xo(M)
whence there exists xo(M) such that 8o(x) 2 gl(xM) for all x> X (M).
We now prove the converse. Since Fo(x) 2 Fl(xM) forall M>1 and

x > x,(M), we have that

(3.4) li g;(x) fi M>1
. im = for an .
(oM y e
x-+00 (g5(x))
Vl(x)
Now denote 1im V.5 d. Using the same reasoning as before, it is not hard to show
X—~w 2

that d > 0 leads to a contradiction with (3.4). Hence d = 0. o

Clearly Theorem 3.2 implies that if Vl(x) ~ de(x), 0<d <1, ie. vV, is
asymptotically smaller than Vo, then Fy(x) > F,(x) for x> Xy, which means that
F1 has a fatter tail than F2.

Refinements of Theorem 3.2 are possible. For instance, if we assume that
Theorem 2.1.B holds, i.e., Vi € ‘%-—1-—a’ a>0, 1= 1,2, then in Theorem 3.2 it is easy

to see that the assumption lim V(%) /VQ(X) exists may be dropped from the right
X0

side of (ii).

An obvious problem which still remains is to assess how accurate are the bounds
in Theorem 3.1. We have not successfully calculated p(Sn,Mn) for any specific
example so this issue is unresolved. Two simulation studies (see figure 1, 2) show that
the asymptotic bound does not perform particularly well for values of n up to 200. The
simulations were for F(x) = (log log x)“l/ 2, x> e and F(x) = exp{—(log x)l/ 2},

x > 1. The simulations are somewhat inconclusive as it may be that the asymptotic

bound performs better for much larger values of n.
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. Uniform distance """ and asymptotic upper bound "....."
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Figure 2. F(x) = exp{—(log x)1/2}.
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