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Mycobacterium avium subsp. paratuberculosis (MAP) causes infections in ruminants 

characterized by long latent periods, imperfect diagnostic tests, and production effects 

sufficient to result in early culling.  In order to optimize control of this pathogen, the 

exact effects of both the infection and the control strategies must be understood.  The 

goal of this dissertation is to statistically analyze various aspects of MAP in dairy 

herds, including the production effects of infection, its distribution in the dairy herd 

environment, and the transmission rates of animals shedding MAP.  For this purpose, 

longitudinal data sets from commercial dairy herds have been analyzed, allowing for a 

more thorough understanding of MAP in typical farms.  Cows in the high-shedding 

category (>30 cfu/g of MAP in feces) were found to produce approximately 4 kg less 

milk per day, on average, and to have higher culling rates and lower calving rates than 

non-shedding cows.  In addition, the number of high-shedding animals in a pen was 

positively correlated with the amount of MAP cultured from the environment in that 

pen.  In contrast, low-shedding cows were found to have higher culling rates than non-

shedding cows, but no significant difference in calving rates or milk production.  The 

average amount of fecal shedding in the herd was found to be predictive of both the 

odds of MAP being found in environmental samples and the amount of MAP in those 

samples, but environmental sampling was not found to be a sensitive herd-level 

diagnostic test. These results will enable optimization of economic models for MAP 



 

control by providing quantitative estimates of the effect of MAP on commercial dairy 

farms.  In addition, it was found that reversible-jump Markov Chain Monte Carlo 

models are unable to estimate transmission rates for MAP using current longitudinal 

data sets, due to the large amount of missing data. 
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INTRODUCTION 

STATISTICAL MODELING OF LONGITUDINAL DATA FROM DAIRY HERDS: 

MYCOBACTERIUM AVIUM SUBSP. PARATUBERCULOSIS 

 The US dairy industry has been faced in recent years with a difficult economic 

situation.  The low price of milk and the high price of fuel and feed have decreased the 

profit margins for dairy production, sometimes to the point of net losses (Karszes et 

al., 2009; Knoblauch et al., 2009).  In these circumstances especially, disease control 

recommendations for dairy producers should be economically justified. 

Among the major endemic pathogens the US dairy industry would like to 

control is Mycobacterium avium subsp. paratuberculosis (MAP) (2007), a slow-

growing, gram-negative species of the common mycobacterial genus.  Cattle and other 

ruminants infected with MAP generally experience a long latent period, with no 

clinical or subclinical signs, followed by gradual, chronic progression to Johne‟s 

disease (JD) (Whitlock et al., 2000).  Subclinical JD is known to cause decreased milk 

production (Nielsen et al., 2008; Smith et al., 2009), and clinical JD results in wasting 

(Kennedy and Benedictus, 2001), which decreases slaughter value.  Between milk loss 

and low slaughter value, JD is thought to cost the US dairy industry $200 million/year 

(Ott et al., 1999).   

Control of MAP, however, is difficult, and eradication may be impossible.  In 

the dairy environment, MAP can survive up to 6 months, especially in areas of fecal 

concentration like manure slurry (Whittington et al., 2004; Whittington et al., 2005). 

Animals latently infected with MAP are not detectable antemortem; animals with 

subclinical JD may be detected with a variety of diagnostic tests (Collins et al., 2006), 
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but the diagnostic sensitivity of these tests is low (Whitlock et al., 2000).  All of these 

factors contribute to the persistence of MAP in dairy farms, even with the toughest 

(and most expensive) control programs (Raizman et al., 2006; Wells et al., 2008).  In 

fact, the cost/benefit ratio of strict control may be too high to be feasible; the 

economically optimal MAP control strategy in dairy herds may very well be less 

stringent than the biologically optimal control strategy (Lu et al., 2010).  In order to 

determine the economically optimal MAP control strategy, however, the exact effect 

of MAP infection on production and the exact effect of MAP control on infection must 

both be estimated.   

As JD is chronic, slow to develop, and difficult to identify, the best estimates 

will come from repeated testing and longitudinal production data.  Statistical analysis 

of longitudinal data requires distinguishing covariates as time-dependent (such as 

disease status), time-independent (such as breed), or random effects (such as herd); 

response variables may be repeated measures (such as milk production or test results) 

or event data (such as infection or calving).  When all variables are known or can be 

reasonably estimated, classical statistical approaches can be used to estimate 

parameters; for example, mixed models of repeated measures can be handled with an 

autocorrelation structure (Greene, 2008).  When crucial variables are unknown, 

however, the classical statistical approach breaks down.  Bayesian methods, however, 

are capable of handling unknown variables, however, by treating them as nuisance 

parameters (Carlin and Louis, 2009; Gelman et al., 2004).  In the following work, 

classical statistics have been used wherever they are appropriate (Chapters 1-3); in 
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Chapters 4 and 5, classical methods were insufficient, and a Bayesian method 

(reversible-jump Markov Chain Monte Carlo modeling) was used. 

The objective of the research described in this dissertation is to provide 

accurate estimates of the effect of MAP on dairy herd production, specifically milk 

production (Chapter 1) and reproduction and culling (Chapter 2). This research also 

attempts to estimate the efficacy of MAP control programs, specifically, 

environmental testing (Chapter 3) and vaccination (Chapter 5).  In the process, a 

generalizable model is presented that can estimate the transmission rate of MAP in a 

given dairy herd (Chapter 4), which will allow estimation of the efficacy of MAP 

control programs focusing on decreasing transmission rates, such as those focused on 

hygiene.  The results of this research can be directly applied within economic models 

for MAP, allowing for more accurate predictions of the economically optimal MAP 

control strategy. 
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CHAPTER 1 

 

A LONGITUDINAL STUDY FOR THE IMPACT OF JOHNE‟S DISEASE STATUS 

ON MILK PRODUCTION IN INDIVIDUAL COWS 

originally published as: 

The impact of Johne’s Disease status on milk production in individual cows.  Smith, 

R.L.; Grohn, Y.T.; Pradhan, A.K.; Whitlock, R.H.; Van Kessel, J.S.; Smith, J.M.; 

Wolfgang, D.R.; Schukken, Y.H.  J. Dairy Sci. 2009.  92(6): 2653-2661. 

Abstract 

Longitudinal data from three commercial dairy herds in the Northeast United 

States were collected from 2004 to 2007.  Johne‟s Disease status, as indicated by 

Mycobacterium avium subsp. paratuberculosis infection levels, was determined 

through quarterly ELISA serum testing, biannual fecal culture, and culture of tissues at 

slaughter.  Milk production data were collected from the Dairy Herd Improvement 

Association.  The effect of Johne‟s Disease status on milk production was analyzed 

using a mixed linear model with an autocorrelation random effect structure.  Infected 

animals produced more milk than uninfected cows before they began shedding 

Mycobacterium avium subsp. paratuberculosis.  Cows infected with Mycobacterium 

avium subsp. paratuberculosis had monthly decreases of 0.05 to 1 kg in daily milk 

production relative to uninfected animals, with greater decreases in progressive 

disease categories.  Animals with fecal culture results of more than 30 cfu/gram 

produced approximately 4 kg less milk per day compared to uninfected cows.  These 

results will be valuable in calculating the economic effect of Johne‟s Disease. 
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Introduction 

 Johne‟s Disease (JD) is a chronic disease of ruminants caused by intestinal 

infection with the pathogen Mycobacterium avium subsp. paratuberculosis (MAP).  

The pathogen is pervasive on US dairy farms, with a herd prevalence of approximately 

68% (NAHMS, 2007).  Infection with MAP typically occurs in calves (Clarke, 1997), 

which then enter a latent, non-shedding stage of varying length.  This latent stage is 

followed by a period of low and intermittent shedding of MAP with no obvious 

clinical symptoms (Whitlock et al., 2000).  If allowed to progress, clinically apparent 

JD may develop, with a high level of MAP shedding (Whitlock et al., 2000).     

The most commonly used ante-mortem tests for identifying MAP shedding are 

fecal culture and serum ELISA (NAHMS, 2007).  Culture techniques are used to 

determine both the presence and the magnitude of MAP shed in the feces, while serum 

ELISA testing is used to detect an immune response to infection.  Both of these tests 

are sensitive in identifying high-shedding animals, but are much less sensitive for low-

shedding animals and often fail to detect latent infections (Eamens et al., 2000; 

Whitlock et al., 2000).  Identification of infected animals is best achieved by repeated 

sampling (van Schaik et al., 2003).  Post-mortem culture of tissues, including 

intestinal epithelium and lymph nodes, can identify infection at any stage, including 

latency, but the procedure is more sensitive in animals with advanced infections (Huda 

and Jensen, 2003). 

Structured control programs often include immediate culling of high shedding 

animals to limit environmental contamination and the transmission of MAP to 

herdmates, particularly calves.  However, a combination of imperfect diagnostic 



 

8 

 

techniques and slow development of clinical symptoms often results in delayed culling 

or retention of low-shedding animals.  Additionally, low-shedding animals are 

frequently retained due to the high cost of purchasing replacements (Dorshorst et al., 

2006). 

Johne‟s Disease has been estimated to cost the US dairy industry $200 to $250 

million annually (Ott et al., 1999).  The cost of JD is manifested in a variety of ways, 

but milk production losses are the most insidious.  Decreased milk production is 

believed to occur in sub-clinical and clinical animals (Kennedy and Benedictus, 2001), 

but the precise magnitude of the reduction has not been previously calculated.  One 

study found no significant decrease in 305-day mature equivalent (ME) milk 

production for a small cohort of animals positive for JD by ELISA and/or fecal culture 

(Johnson et al., 2001).  However, in that study, animals were followed for only 18 

months with tests at the onset and finish of the study.  Given the low sensitivity of the 

diagnostics to low-shedding animals, there was a high probability of misclassification 

of control animals.  Another study noticed a significant decrease in 305-day ME in 

fecal culture-positive animals (Wilson et al., 1993).  Other studies found that total 

milk production was decreased over the course of a lactation in fecal culture-positive 

animals (Raizman et al., 2007), and that ELISA-positive animals had lower ME 305-

day production and lifetime milk production (Lombard et al., 2005) compared with 

test-negative animals.  The magnitude of continuous test results from the milk ELISA 

for MAP antibodies have also been found to be significantly related to the shape of the 

lactation curves (Kudahl et al., 2004).   
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Each of these 3 studies, however, based their results entirely on a single test 

per animal and were thus potentially biased by the high probability of false-negative 

results.  False-negative results would misclassify an infected animal as a control and 

thereby reduce the calculated impact of infection on the outcome of interest.  Also, an 

infection status change, for example, from low to high shedding, during the data 

collection period would not have been taken into account in these studies.  Now, more 

precise estimates of production life can be estimated using test day milk yield models, 

which account for random cow effects, repeated observation, and time-dependent 

covariates indicating disease status (Wilson et al., 2004).  Because of the high 

uncertainty associated with the previous estimates, the reduction of milk production 

attributed to MAP infection contributes most of the uncertainty in economic models 

for the cost of JD (Losinger, 2005).   

Without accurate milk loss predictors, the economic impact of MAP infection 

cannot be known with certainty.  The objective of this study is therefore to estimate 

the effect of JD status on individual cow milk production using longitudinal data 

collected over a 4-year period from 3 US dairy herds. 

Materials and Methods 

In 2004, the Regional Dairy Quality Management Alliance (RDQMA) 

identified 1 commercial dairy herd in 3 of its member states (NY, VT, and PA) to 

serve as a longitudinal study herd.  The details of this study have been described 

previously (Pradhan et al., 2009).  Briefly, these 3 herds, which are endemically MAP-

infected and consist primarily of Holstein cattle, were visited on a quarterly basis to 

collect samples, and all monthly production, breeding, and health records were 
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obtained through the Dairy Herd Improvement Association (DHIA).  Serum samples 

were collected quarterly and fecal samples were collected biannually from each adult 

animal in each herd, and all samples were shipped overnight to The University of 

Pennsylvania Johne‟s Laboratory.  In addition, samples (including serum, feces, 

intestinal epithelium, and intestinal lymph nodes) were collected from almost all 

animals sent to slaughter and a majority of animals that died on-farm during the study 

period.  These samples were refrigerated at the slaughterhouse and shipped within one 

day of collection.  Serum samples were tested by the ParaChek
®
 by Prionics  (Prionics 

USA Inc., La Vista, NE; formerly CSL/Biocor) enzyme-linked immunosorbent assay 

(ELISA) for antibody reactions to MAP antigens.  Fecal and tissue samples were 

tested by four-tube fecal culture for presence of viable MAP organisms  (Pradhan et 

al., 2009).  Diagnostic results were reported as positive or negative for ELISA and as 

cfu/g for culture.   

Johne‟s Disease status (stage of MAP infection) was divided into 4 categories: 

uninfected, latent, low-shedding, and high-shedding (defined below).  Uninfected 

animals were defined as animals for which all lifetime diagnostic tests were negative 

and for which there were at least 2 diagnostic test results reported.  Animals with only 

1 diagnostic test, if the result was negative, were removed from the analysis due to the 

lack of diagnostic sensitivity.  Animals were assumed infected if at least 1 diagnostic 

test had a positive result.  Johne‟s Disease status was assigned separately for each 

combination of animal and test day.  All milk test days (days on which milk weights 

were recorded) prior to the first positive diagnosis were categorized as latent because 

the animals were assumed to be infected in calfhood.  Animals with positive tissue 
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culture results were categorized as latent for all milk test days if no antemortem tests 

were positive.  A cut-off value of 30 cfu/g was used to separate low- and high-

shedding culture results, as representing the midpoint of the moderate-shedding level 

previously defined by Whitlock et al. (Whitlock et al., 2000).  Milk test days after a 

fecal culture result of at least 30 cfu/g were categorized as high-shedding.  All other 

milk test days in positive animals (falling after a positive diagnosis by ELISA or a 

fecal culture of less than 30 cfu/g) were categorized as low-shedding.  Positive results 

on ELISA tests are generally considered to follow positive results on fecal culture (van 

Schaik et al., 2003), so ELISA-positive animals may be categorized as low-shedding 

rather than latent. 

Parity was divided into first and later lactations to account for the different 

shape of the lactation curve in first parity animals.  Calving season was categorized as 

winter (January to March), spring (April to June), summer (July to September), and 

fall (October to December).  A separate variable was created for milk test day number 

(TDnr), indicating the number of milk test days for a given animal since the beginning 

of the study.  It was assumed that 2 milk test days passed between lactations to 

account for time spent in the dry period, for which the US standard is approximately 

60 days.  In addition, a variable for the number of milk test days in the current JD 

status category (MthJ) was created for test-positive animals; MthJ was set equal to 0 

for uninfected animals.  Daily milk production (in kilograms), somatic cell linear score 

(LS, indicating the log of the somatic cell count), and days in milk in the current 

lactation (DIM) were used as reported by DHIA, with any recorded non-numeric and 

zero values for milk production and LS removed from the analysis. 
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Mixed model analysis was performed using the Mixed procedure in SAS® 

version 9 (SAS Institute Inc., Cary, NC, USA).  Wilmink‟s correction (Wilmink, 

1987) was used to model the lactation curve, with an interaction of parity and lactation 

curve to capture the different shape of the first-lactation curve.  Parity, LS, herd, and 

calving season were included as fixed effects.  Cow was included as a random 

variable, with first-order autoregression for each combination of cow and lactation 

using TDnr to identify the time lag between observations.  The model structure was: 

Equation 1.1     

 
 

 nmptlitiitlin

mtliptlip

tlitlitliptli

uJD

seasonparityDIMparityDIM

LSDIMDIMparitymilk

,,,,,1,,,,6

,5,,,2,,,1

,,4,,3,,2,10,,

                

**1.0exp*                

*1.0exp













 

where the outcome is daily milk production (in kg), i indicates cow, l indicates the 

present lactation, and t indicates milk test day.  β1,p is the fixed effect of the 

dichotomized p
th

 parity (p = 1, >1), β2 is the effect of DIM, β3 is the effect of 

Wilmink‟s correction, β4 is the effect of LS, β5,m is the fixed effect of the m
th

 season (m 

= winter, spring, summer, fall), and β6,n is the fixed effect of the n
th

 JD status (n = 

uninfected, latent, low-shedding, high-shedding).  The interaction coefficient δ1,p is the 

effect of the interaction between DIM and the p
th

 parity, while the interaction 

coefficient δ2,p is the effect of the interaction between Wilmink‟s correction and the p
th

 

parity.  The term ρiεi,t-1 provides the first-order autoregression between milk test days 

in individual cows, and µi,l,t,p,m,n is the error term for each test date.  Differences in 

milk production were tested between each level of JD status using a standard F-test.   
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 A subsequent model was built to take into account the monthly decrease in 

milk production within each JD status category, with the structure: 

Equation 1.2     

 
 

 nmptlitiitlitlintlitlin

mtliptlip

tlitlitliptli

uMthJJDMthJJD

seasonparityDIMparityDIM

LSDIMDIMparitymilk

,,,,,1,,,,,,8,,7,,,6

,5,,,2,,,1

,,4,,3,,2,10,,

*                

**1.0exp*                

*1.0exp













 

Where most parameters are as defined in equation 1.1 and β7 is the linear effect of 

MthJ, β8,n is the fixed effect of the interaction between MthJ and the n
th

 JD status, and 

MthJ is a measure of time spent at the current JD status (described above).  This model 

is hereafter defined as the „time-based‟ model.  All effects were considered significant 

at the α = 0.05 level.   

Results 

A description of the data available for analysis is included in Table 1.1.  There 

were 24,474 observations available for analysis, representing 1,332 individual cows 

and 2,713 individual lactations (934 first lactations) for the period of January 2003 to 

December 2007.  No fecal culture results had been reported for 2007 at the time of 

analysis.  A total of 2,775 observations, approximately 10% of all observations, were 

deleted for lacking sufficient test results (at least one positive or two negative tests), or 

appropriate milk weights or LS (numeric, non-zero values).   

Convergence criteria were met for all models.  The results of the 2 models used 

are presented in Table 1.2.  Classes not included in the variable list were considered 

baseline values and are included in the intercept.  Tests of significance between JD  
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Table 1.1: Longitudinal data from three commercial dairy herds in the Northeast 

United States to assess the impact of Johne‟s Disease on milk production 

 

Herd State 
Years  

followed 

Number  

of adult  

cows in  

study  

Johne‟s  

Disease status 

Average 

days  

in milk  

(standard  

deviation) 

Average daily 

milk  

production in kg  

(standard 

deviation) 

A NY 4.9 865 

Negative 204 (141) 38.07 (10.72) 

Latent 204 (139) 41.23 (12.35) 

Low-shedding 262 (178) 34.62 (11.04) 

High-shedding 234 (123) 30.42 (13.39) 

B PA 3.3 226 

Negative 200 (136) 32.67 (10.56) 

Latent 190 (127) 32.33 (7.7) 

Low-shedding 260 (217) 31.53 (10.42) 

High-shedding 253 (153) 26.42 (8.3) 

C VT 2.5 241 

Negative 206 (135) 27.61 (10.32) 

Latent 171 (106) 30.54 (11.73) 

Low-shedding 224 (138) 27.51 (11.59) 

High-shedding 185 (107) 23.86 (10) 

Total 1,332  205 (141) 35.77 (11.5) 

  

Herd 

Number 

of cows 

in 

category 

Average 

parity 

(standard 

deviation) 

Total 

number 

of milk 

test 

results 

Number 

of first-

lactation 

results 

A 

802 2.1 (1.2) 15,317 6,096 

62 2.8 (1.5) 1,211 222 

49 3.3 (1.5) 596 70 

8 3.2 (1) 45 0 

B 

214 2.3 (1.3) 3,623 1,441 

11 1.9 (0.8) 62 20 

6 3.2 (1.2) 60 5 

2 4.1 (1.4) 25 0 

C 

210 2.1 (1.2) 3,072 1,228 

24 2.3 (1.1) 142 43 

29 2.4 (1) 304 56 

3 3.3 (0.6) 17 0 

 N/A 2.2 (1.3) 24,474 9,181 
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Table 1.2: Results of 2 linear mixed models for daily milk production (in kg).   In the 

first model, only the categorical Johne‟s Disease (JD) status of the animal at the time 

of the milk test is considered.  In the second model, the number of months spent in the 

JD status category is added to the model (JD time=0 for uninfected animals).  Herd 

was included as a fixed effect in the model, but is not reported here. 

 

Variable Categorical Time-Based 

 Class Parameter t 

(P-value) 

Parameter t  

(P-value) 

Intercept  33.38 70.79 

(<0.001) 

33.29 69.70 

(<0.001) 

Parity 

(base is first lactation) 

> 1 

lactation 

11.15 29.08 

(<0.001) 

11.23 29.09 

(<0.001) 

Days In Milk (DIM)
 

 -0.03 -25.06 

(<0.001) 

-0.03 -25.00 

(<0.001) 

e
-0.1*DIM 

 -24.45 -28.28 

(<0.001) 

-24.45 -28.30 

(<0.001) 

DIM*parity 

(base is first lactation) 

> 1 

lactation 

-0.04 -26.64 

(<0.001) 

-0.04 -26.65 

(<0.001) 

e
-0.1*DIM

*parity 

(base is first lactation) 

> 1 

lactation 

-4.30 -4.01 

(<0.001) 

-4.48 -4.17 

(<0.001) 

Linear Score  -0.79 -29.02 

(<0.001) 

-0.78 -28.70 

(<0.001) 

Calving season 

(base is winter) 

Fall -0.48 -1.49 

(0.181) 

-0.50 -1.53 

(0.170) 

Spring -0.43 -1.26 

(0.247) 

-0.38 -1.08 

(0.314) 

Summer -1.44 -4.32 

(0.004) 

-1.41 -4.19 

(0.004) 

JD status 

(base is uninfected) 

latent 2.30 5.06 

(<0.001) 

3.15 4.73 

(<0.001) 

Low-

shedding 

0.20 0.37 

(0.709) 

0.86 1.20 

(0.234) 

High-

shedding 

-3.70 -1.94 

(0.056) 

0.84 0.33 

(0.744) 

JD time   -1.12 -2.54 

(0.011) 

JD time*JD status 

(base is high-shedding) 

latent 1.08 2.44 

(0.015) 

Low-

shedding 

1.05 2.36 

(0.018) 
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status levels, based on each of the models, are shown in Table 1.3.  All meaningful 

comparisons are included.  Inclusion of a linear variable for the cfu/gm recorded in the 

most recent positive fecal culture resulted in a small, non-significant parameter 

estimate, and was therefore removed from the model. 

 

Table 1.3: Comparison tests for the effect of JD status levels on daily milk production.  

The categorical model only considers the JD status at the time of the milk test.  The 

time-based model also considers the effect of the number of months the animal has 

spent in the JD status category (MthJ) 

 

 

 

Comparison 

Categorical Time-Based 

Difference  

(kg) 

F p-value Difference 

(kg) 

F p-value 

Latent vs. 

 negative 

+2.3 5.06 <0.001 +3.15 

-0.04*MthJ 

4.73 <0.001 

       

Latent vs.  

low-shedding 

+2.1 13.40 <0.001 +2.29 

+0.03*MthJ 

0.15 0.695 

       

Latent vs. 

 high-shedding 

+6.0 9.82 0.003 +2.31 

+2.2*MthJ 

5.94 0.015 

       

Low-shedding vs.  

negative 

+0.20 0.37 0.709 +0.86 

-0.07*MthJ 

1.20 0.234 

       

Low-shedding vs. 

 high-shedding 

+3.9 3.99 0.050 +0.02 

+2.17*MthJ 

5.59 0.018 

       

High-shedding vs.  

negative 

-3.7 -1.94 0.056 +0.84 

-1.12*MthJ 

-

2.54 

0.011 

 

Several cows had recorded lactation lengths that were much longer than 

typical; although the expected lactation length is approximately one year, 2,828 

observations were more than 365 DIM and 104 observations were more than 730 

DIM.  This is likely due to a failure to report late-term abortions as the onset of new 

lactations, as many of these lactation curves resembled two contiguous lactation 

curves.  If all observations with DIM greater than 390 days are removed from the 
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analysis, the results of the categorical model are not changed significantly but MthJ 

time in the time-based model becomes borderline significant (data not shown). 

A graph of average predicted milk production compared to average observed 

milk production over the first 5 lactations in herd A is shown in Figure 1.1 to 

demonstrate that the model adequately predicts the shape of the lactation curve for the 

different parities; because of the similarities between cows in the older (≥2) parities in 

the analysis, only the first two parities were figured.  Figure 1.2 shows the predicted 

lactation curves for different levels of infection for an average cow in herd A in the 

third lactation.  Predicted values in both curves are generated with the time-based 

model (equation 1.2). 

 

 
Figure 1.1: Average predicted and observed lactation curves for uninfected cows in 

herd A, starting in the first parity, with milk reported in kilograms (kg). The predicted 

values come from the full model, as detailed in Table 1.2. 
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Figure 1.2: Predicted milk yield, in kilograms (kg), for an average cow in herd A in 

the third lactation, comparing an uninfected animal to an animal with changing 

infection status levels (at 100 and 200 days in milk, indicated by arrows). Changes in 

infection status levels were simulated for demonstrative purposes. 
 

Discussion 

 The model presented is the first assessment of the effect of JD on milk 

production in individual animals over a period of several years.  The results may be 

somewhat limited by the lack of large numbers of test day results for high-shedding 

animals, as few animals are retained in the herds when they are known to be shedding 

large quantities of MAP.  Producers in the study herds were made aware of test results 

and were encouraged by their veterinarian, in association with the research team, to 

cull these animals immediately.  The results may also be biased by the lack of 

diagnostic results for approximately 10% of animals in the study, which may have 

caused the loss of data on animals, especially low-producing animals, culled before 
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diagnosis was possible.  However, the latter would have biased the results observed 

towards non-significance.  In addition, no fecal culture results were available for 2007, 

which may have misclassified animals as uninfected or low-shedding.  This 

misclassification, however, would be uninformative (assuming no correlation between 

milk production and presence in the herd in 2007), and should not bias the results. 

All possible confounding variables included in the model (parity, DIM, LS, 

and calving season) were significant, with robust parameter values similar to those 

observed in other models of milk production (Macciotta et al., 2005), implying a large 

degree of stability in the analysis.       

An interaction term was included to account for the unique shape of the 

lactation curve in first-lactation cows.  Cows in their first lactation could have been 

modeled separately from multiparous animals.  However, with the long latent period 

in JD, the majority of MAP-infected first-lactation cows would be latent and the latent 

first-lactation animals would represent a small proportion of the total MAP-infected 

group.  This would decrease the power of our analyses, so it was therefore more 

valuable to combine all data in 1 model.  As Figure 1.1 demonstrates, the final model 

was well able to predict the shape of the first lactation curve. 

Johne‟s Disease status was found to have a significant effect on milk 

production, and this effect was not uniform across JD status categories.  This confirms 

the importance of separating latent, low-shedding, and high-shedding animals in the 

analysis, as well as the importance of the category definitions.  However, as seen in 

Tables 1.2 and 1.3, the effect is not always significant between groups.  The difference 

between latent and negative or latent and low-shedding animals is relatively large and 
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statistically significant.  The difference between negative and low-shedding animals is 

small and non-significant.  Our observation that latent animals show an approximately 

2 kg higher daily milk production compared to negative animals is currently not fully 

understood.  However, this observation is very similar to what is observed in other 

infectious diseases in dairy cows. Cows with higher milk production are more 

susceptible to clinical mastitis (Bar et al., 2007), a relationship partially explained by a 

positive genetic correlation between milk production and mastitis. Similarly, in our 

data, cows that eventually will show low and high shedding of MAP are out-producing 

MAP-negative animals in the herd. Following the same argument, we speculate that 

there may be a genetic component to JD susceptibility, with a possible positive genetic 

correlation to higher milk production.  This was not observed in one study examining 

a genetic link between ELISA values and milk production, but that study was not able 

to separate latent and uninfected animals in their analysis (Mortensen et al., 2004).  In 

terms of loss of potential milk production, we would argue that MAP infected latent 

cows have a production potential that is 2.3 kg higher than uninfected herd mates.  It is 

possible that low-producing latent cows were culled before infection became 

detectable, but the use of tissue culture at slaughter should have minimized that bias.  

The decrease in daily milk production due to low-shedding (2.1 kg) and high shedding 

(6.0 kg) of MAP would have to be accounted for in a complete economic analysis of 

JD. These are useful numbers for the producer to have when making economic 

decisions. Culling of low-shedding or high shedding animals may be based solely on 

the negative effect of JD on milk production, but should also take into account the 

contribution of shedders to MAP infection spread within the herd and other potential 
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negative economic effects, such as delayed reproduction.  In the study herds, culling 

decisions were made with knowledge of MAP diagnostic results, but cattle were culled 

more often for low production and reproductive problems than for JD (data not 

shown). 

In terms of this analysis, these results explain the previously observed lack of a 

significant difference in milk production between MAP uninfected and MAP infected 

animals: the higher milk production in latently MAP infected animals balances out the 

lower milk production in high-shedding animals (Johnson et al., 2001).  Additionally, 

the stress associated with failing to meet the nutritional requirements of high milk 

production could increase the probability of shedding MAP in the future. 

Considering only categorical JD status, there is a significant decrease in milk 

production when animals move between subsequent levels of JD status.  This decrease 

is especially pronounced between low- and high-shedding animals.  These results are 

not unexpected; high-shedding animals are more likely to be clinically affected by JD, 

with decreased performance linked to decreased intestinal absorptive capabilities 

(Johnson-Ifearulundu and Kaneene, 1997). 

When a variable is added to the time-based model for time spent in any given 

JD status category, the progression of JD leads to an increase in milk production loss 

over time.  While latent animals produce more milk than uninfected animals, that 

difference decreases over the course of time in the latent infection state.  When an 

animal starts shedding low levels of MAP, the model predicts an initial milk 

production that is slightly higher than uninfected herd mates, but there is a greater rate 

of decrease in milk production compared to the latently infected animals.  Finally, 
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animals in the high-shedding category have a meaningfully lower milk production 

than uninfected herd mates, with large decreases in production over time when 

remaining in the herd.   

Figure 1.2 shows the predicted lactation curves for an average animal in herd 

A compared across JD status categories.  A higher milk yield is evident during 

latency, compared to uninfected herd mates, but the discrepancy in yield decreases as 

the disease progresses over time.  This MAP-induced decrease in milk production is 

supported by the clinical progression of JD.  As the organism invades the intestinal 

epithelium and begins to affect nutrient absorption, feed efficiency decreases and milk 

production is negatively impacted.  This is also consistent with the findings of Kudahl 

et al. (2004), who demonstrated that an increase in ELISA positivity (OD values) 

caused depressed lactation curves with more negative (decreasing) milk production 

slopes in late lactation. The magnitude of this effect was reported to have increased 

with parity (Kudahl et al., 2004).  An advantage of time-based models such as the one 

described here (equation 1.2) is the possibility to study the continuous nature of 

biological processes, such as disease progression and milk production.  Culling is a 

daily or weekly decision, and by modeling the biological process as closely as 

possible, the optimal time for culling any individual JD-positive animal can be 

narrowed to a specific month after testing results. 

The main disadvantage of these models is the quality of data gathered from the 

available diagnostics.  Sensitivity is low, especially with fecal culture, and recent 

studies have cast doubt on the specificity of fecal culture (Whitlock et al., 2000).  

Some of the animals considered JD-negative in these data may well have been latently 
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infected, or even intermittently shedding low quantities of MAP.  Some of the low-

shedding (or ELISA-positive only) animals may be experiencing “passive infections”, 

in which they are not truly shedding MAP, but simply latently infected animals 

serving as passive vectors for MAP organisms present in their environment (Whitlock 

et al., 2008).     

It was assumed that all ELISA-positive animals were low-shedding unless a 

high-positive fecal culture existed.  This should be an acceptable assumption, as 

ELISA results indicative of heavy shedding have been observed to follow the 

corresponding fecal culture results (van Schaik et al., 2003).  However, fecal culture 

frequency was lower than that of ELISA tests (biannual as compared to quarterly), so 

some animals may have been misclassified as low-shedding for several months after 

high-shedding began.  In this case, the milk test results (with a monthly frequency) 

would be misclassified.  It would be possible to assume a back-dated positive status, 

for example, a date between low-shedding and high-shedding results.  However, 

producers will rarely perform fecal culture more than once a year, so MAP shedding 

results are generally available only on an annual basis. 

Additionally, it was assumed that all MAP-infected animals were infected as 

calves.  This allowed animals to be categorized as latent at all test days previous to 

their first positive diagnosis.  The idea of calf-hood infection or, at the very latest, 

infection in the first year of life, is supported by a recent review article (Begg and 

Whittington, 2008), so this assumption was considered to be reasonable. 

This analysis provides strong support that JD status impacts milk production in all 

infected animals, with increasing losses in milk production as disease progresses.  The 
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above-average milk production of animals later affected by JD further highlights the 

important loss of milk production in high potential animals.  These results will be 

useful in making culling decisions on an individual-animal, economic level, especially 

as animals shedding MAP also spread the infection through environmental 

contamination.



 

25 

REFERENCES 

 

 2007. NAHMS 2007: Johne's Disease on U.S. Dairy Operations. 

USDA:APHIS:VS:NAHMS, Fort Collins, CO, pp. 1-4. 

 

Clarke, C.J., 1997. The pathology and pathogenesis of paratuberculosis in ruminants 

and other species. J. Comp. Pathol. 116, 217-261. 

 

Dorshorst, N.C., Collins, M.T., Lombard, J.E., 2006. Decision analysis model for 

paratuberculosis control in commercial dairy herds. Prev. Vet. Med. 75, 92-122. 

 

Eamens, G.J., Whittington, R.J., Marsh, I.B., Turner, M.J., Saunders, V., Kemsley, 

P.D., Rayward, D., 2000. Comparative sensitivity of various faecal culture methods 

and ELISA in dairy cattle herds with endemic Johne's disease. Vet. Microbiol. 77, 

357-367. 

 

Huda, A., Jensen, H.E., 2003. Comparison of histopathology, cultivation of tissues and 

rectal contents, and interferon-gamma and serum antibody responses for the diagnosis 

of bovine paratuberculosis. J. Comp. Pathol. 129, 259-267. 

 

Johnson, Y.J., Kaneene, J.B., Gardiner, J.C., Lloyd, J.W., Sprecher, D.J., Coe, P.H., 

2001. The effect of subclinical Mycobacterium paratuberculosis infection on milk 

production in Michigan dairy cows. J. Dairy Sci. 84, 2188-2194. 

 

Kennedy, D., Benedictus, G., 2001. Control of Mycobacterium avium subsp. 

paratuberculosis infection in agricultural species. Rev. Sci. Technol. 20, 151-179. 

 

Kudahl, A., Nielsen, S.S., Sorensen, J.T., 2004. Relationship between antibodies 

against Mycobacterium avium subsp. paratuberculosis in milk and shape of lactation 

curves. Prev. Vet. Med. 62, 119-134. 

 

Lombard, J.E., Garry, F.B., McCluskey, B.J., Wagner, B.A., 2005. Risk of removal 

and effects on milk production associated with paratuberculosis status in dairy cows. J. 

Am. Vet. Med. Assoc. 227, 1975-1981. 

 

Losinger, W.C., 2005. Economic impact of reduced milk production associated with 

Johne's disease on dairy operations in the USA. J. Dairy Res. 72, 425-432. 

 

Ott, S.L., Wells, S.J., Wagner, B.A., 1999. Herd-level economic losses associated with 

Johne's disease on US dairy operations. Prev. Vet. Med. 40, 179-192. 

 

Pradhan, A., Van Kessel, J.S., Karns, J.S., Wolfgang, D.R., Hovingh, E., Nelen, K.A., 

Smith, J.M., Whitlock, R.H., Fyock, T.L., Ladely, S., Fedorka-Cray, P.J., Schukken, 

Y.H., 2009. Dynamics of endemic infectious diseases of animal and human 

importance on three dairy herds in the Northeastern US. J. Dairy Sci. 92, 1811-1825. 



 

26 

 

Raizman, E.A., Fetrow, J.P., Wells, S.J., Godden, S.M., Oakes, M.J., Vazquez, G., 

2007. The association between Mycobacterium avium subsp. paratuberculosis fecal 

shedding or clinical Johne's disease and lactation performance on two Minnesota, 

USA dairy farms. Prev. Vet. Med. 78, 179-195. 

 

van Schaik, G., Rossiter, C.R., Stehman, S.M., Shin, S.J., Schukken, Y.H., 2003. 

Longitudinal study to investigate variation in results of repeated ELISA and culture of 

fecal samples for Mycobacterium avium subsp paratuberculosis in commercial dairy 

herds. Am. J. Vet. Res. 64, 479-484. 

 

Whitlock, R.H., Wells, S.J., Sweeney, R.W., Van Tiem, J., 2000. ELISA and fecal 

culture for paratuberculosis (Johne's disease): sensitivity and specificity of each 

method. Vet. Microbiol. 77, 387-398. 

 

Wilmink, J.B.M., 1987. Adjustment of test-day milk, fat, and protein yield for age, 

season and stage of lactation. Livest. Prod. Sci. 16, 335-348. 

 

Wilson, D.J., Gonzalez, R.N., Hertl, J.A., Schulte, H.F., Bennett, G.J., Schukken, 

Y.H., Grohn, Y.T., 2004. Effect of clinical mastitis on the lactation curve: a mixed 

model estimation using daily milk weights. J. Dairy Sci. 87, 2073-2084. 

 

Wilson, D.J., Rossiter, C.A., Han, H.R., Sears, P.M., 1993. Association of 

Mycobacterium paratuberculosis infection with reduced mastitis, but with decreased 

milk production and increased cull rate in clinically normal dairy cows. Am. J. Vet. 

Res. 54, 1851-1857. 

 

 



27 

CHAPTER 2 

THE EFFECT OF JOHNE‟S DISEASE STATUS ON REPRODUCTION AND 

CULLING IN DAIRY CATTLE 

originally published as: 

The Effect of Johne’s Disease Status on Reproduction and Culling in Dairy Cattle. 

Smith, R.L.; Strawderman, R.L.; Schukken, Y.H.; Wells, S.J.; Pradhan, A.K.; Espejo, 

L.A.; Whitlock, R.H.; Van Kessel, J.S.; Smith, J.M.; Wolfgang, D.R.; Grohn, Y.T. J. 

Dairy Sci. 2010 93(8):3513-3524. 

Abstract 

Among the costs attributed to Mycobacterium avium subsp. paratuberculosis 

(MAP) infection in dairy cattle, the impacts on reproduction and culling are the least 

documented.  In order to estimate the cost of MAP infections and Johne‟s Disease 

(JD) in a dairy herd, the rates of calving and culling were calculated for cows in each 

stage of MAP infection relative to uninfected cows.  Data from 6 commercial dairy 

herds, were used for analysis, consisting of 2,818 cows with 2,754 calvings and 1,483 

cullings.  Every cow in each study herd was tested regularly for MAP, and herds were 

followed for between 4 and 7 years.  An ordinal categorical variable for JD status 

(test-negative, low-shedding and/or ELISA-positive, or high-shedding) was defined as 

a time-dependent variable for all cows with at least one positive test result or two 

negative test results.  A Cox regression model, stratified on herd and controlling for 

the time-dependent infection variable, was used to analyze time to culling.  Non-

shedding animals were significantly less likely to be culled in comparison with 

animals in the low-shedding/ELISA-positive category, and high-shedding animals had 
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non-significantly higher culling rates than low-shedding/ELISA-positive animals.  

Time to calving was analyzed using a proportional rates model, an analog to the 

Andersen-Gill regression model suitable for recurrent event data, stratifying on herd 

and weighted to adjust for the dependent censoring caused by the culling effects 

described above. High-shedding animals had lower calving rates in comparison with 

low-shedding/ELISA-positive animals, which tended to have higher calving rates than 

test-negative animals. 

Introduction 

Johne‟s Disease (JD) is a chronic disease of ruminants caused by intestinal 

infection with the pathogen Mycobacterium avium subsp. paratuberculosis (MAP).  

The pathogen is pervasive on US dairy farms, with approximately 68% of herds 

infected (USDA:APHIS:VS:NAHMS, 2007).  Infection with MAP typically occurs in 

calves (Clarke, 1997), which, after a period of transient shedding (van Roermund et 

al., 2007), then enter a latent, non-shedding stage of varying length.  This latent stage 

is followed by a period of low and intermittent shedding of MAP with no obvious 

clinical symptoms (Whitlock et al., 2000).  If left to progress, clinical JD may develop, 

with a high level of MAP shedding (Whitlock et al., 2000).   

Johne‟s Disease has been estimated to cost the US dairy industry $200 to $250 

million annually (Ott et al., 1999).  Two of the possible costs associated with JD are 

forced early culling and decreased reproductive performance. The primary economic 

factor in dairy production is undoubtedly milk production, but culling and 

reproduction  are important secondary factors.  Culling at the appropriate time allows 

for replacement of animals with higher-production-potential animals. In contrast, 
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culling too early can remove animals from the herd before reaching their production 

potential, resulting in an overall economic loss.  Calving can improve milk production 

by initiating a new lactation, increasing milk production for a period of months.  

Reproduction also provides calves for sale or replacement.  Both culling and 

reproduction may be impacted by infectious diseases (Fourichon et al., 2000; Grohn et 

al., 1998). 

Animals with JD may be culled due to onset of clinical signs, such as diarrhea 

or wasting (Collins, 2003).  Animals may also be culled for decreasing milk 

production, which is associated with progression of JD (Smith et al., 2009).  In 

addition, structured JD control programs often recommend immediate culling of high-

shedding animals to limit environmental contamination and the transmission of MAP 

to herd mates, particularly calves. Culling has been shown to be a potentially effective 

tool to reduce prevalence, but increased culling by itself is not expected to eliminate 

MAP infection from a dairy (Lu et al., 2008). In addition, a combination of imperfect 

diagnostic techniques and slow development of clinical symptoms often results in 

delayed culling or retention of low-shedding animals.  On most farms, low-shedding 

animals are retained due to absence of clinical signs in these animals and the high cost 

of raising or purchasing replacements (Dorshorst et al., 2006).   

It is hypothesized that clinical JD may cause a negative-energy and protein 

balance, which decreases fertility in dairy cows.  However, not all studies have found 

an association between JD and reproductive variables, and some have found an 

association in the opposite direction.  One prospective cohort study found that ELISA-

positive animals had significantly higher numbers of days open, but that fecal culture-
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positive animals had non-significantly fewer days open (Johnson-Ifearulundu et al., 

2000).  Several older studies found that MAP-infected cows were culled younger 

(Buergelt and Duncan, 1978), culled more frequently for owner-reported infertility 

(Merkal et al., 1975), or experienced longer calving intervals (Abbas et al., 1983) than 

uninfected cows.  A later longitudinal study did not find an association between MAP 

shedding and either calving success or early culling in seasonally bred herds (de Lisle 

and Milestone, 1989), although analysis of infertility was not the aim of that study and 

the observation was made using data collected for other purposes, meaning that 

reproductive issues were inferred rather than directly observed.  A slightly more recent 

case control study also found no association between JD status and calving interval 

(McNab et al., 1991).  A recent study even found that cows with a MAP ELISA-

positive serum test spent fewer days in a non-pregnant state (Lombard et al., 2005). It 

is important to recognize that this may be a biased result as ELISA-positive animals 

may be culled earlier. With these conflicting results, biases and confounding must play 

a major role.  One study has shown that sub-clinical MAP infection, as measured by 

ELISA positivity, may be associated with an increase in conception rates (Marcé et al., 

2009), but this association was seen to decrease with increased age and parity.  

Another study found that pregnancy rate increased with MAP positivity if ELISA and 

fecal culture were considered in parallel or if the analysis was limited to ELISA-

positive animals, but that limiting the analysis to animals positive by fecal culture 

resulted in a non-significant decrease in pregnancy rate (Gonda et al., 2007). 

Studies of reproduction need to be carefully analyzed to control for proper time 

at risk in all animals. In particular, when the risk of censoring (culling) is related to 
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both the risk of being ELISA-positive and the risk of the event (calving), care must be 

taken in the analyses to avoid biases due to dependent censoring. This issue of 

dependent censoring was highlighted in a recent prospective study. Raizman et al. 

(2007) evaluated the effect of MAP infection on reproduction in dairy cattle and found 

that infected animals are less likely to conceive (Raizman et al., 2007). Although this 

study employed standard time to event analysis to evaluate the impact of MAP status 

on reproduction, it still identified two potential biases that were not controlled. First, 

infected animals were bred fewer times than uninfected animals, thereby decreasing 

the probability of conception.  Second, MAP-infected animals were culled from the 

herd early based on clinical JD.  It has been previously shown that simulated positive 

dependence between culling and conception may bias the results of a proportional-

hazards model for time to conception (Allore et al., 2001). Since culling plays the role 

of a censoring variable in statistical models for calving, bias can also occur in the 

analysis of calving rates unless one properly controls for the interdependence between 

calving rates, culling rates, and JD.  

The purpose of this study was to obtain estimates of the effect of JD on both 

time to culling and time to calving in dairy cattle, using recent advances in statistical 

methods for analyzing recurrent event outcomes (i.e., calvings) subject to dependent 

censoring (i.e., culling). The results can be applied to economic models considering 

the cost of JD to the dairy industry. 

Materials and Methods 

These data are the combination of 2 datasets.  The first dataset is from of a 

longitudinal study on three dairy herds enrolled in an ARS-Regional Dairy Quality 
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Management Alliance (RDQMA) study.  In 2004, the RDQMA identified a 

commercial dairy herd in each of 3 of its member states (New York, Vermont, and 

Pennsylvania) to serve as longitudinal study herds.  The details of this study have been 

described previously (Pradhan et al., 2009).  Briefly, these 3 herds were visited on a 

quarterly basis to collect individual animal samples. During these visits all production, 

breeding, and health records were obtained through copying on-farm electronic 

records and through records obtained from the Dairy Herd Improvement Association 

(DHIA).  Herds A and C used a synchronization program for reproduction only 

sporadically, and herd C bred some animals naturally.  Serum samples were collected 

quarterly and fecal samples were collected biannually from each adult animal in each 

herd, and all samples were shipped overnight to The University of Pennsylvania 

Johne‟s Laboratory for analysis (Pradhan et al., 2009).  Serum samples were tested by 

the ParaChek
®
 (Prionics USA Inc., La Vista, NE; formerly CSL/Biocor) enzyme-

linked immunosorbent assay (ELISA) for antibody reactions to MAP antigens, for 

which sensitivity and specificity estimates for animals shedding MAP are 0.24-0.80 

and 0.98-0.99, respectively (Nielsen and Toft, 2008).  Fecal samples were tested by 

four-tube fecal culture for presence of viable MAP organisms (Pradhan et al., 2009) 

and the total sum of cfu across 4 tubes was multiplied by 5.3 to determine cfu/g, with 

estimated sensitivity and specificity of 0.7-0.74 and 1.0, respectively, for animals 

shedding MAP (Nielsen and Toft, 2008).  Diagnostic results were reported as positive 

or negative for ELISA and as cfu/g for culture.  Herd owners were informed of the 

results of all diagnostic tests and encouraged to cull animals with high-positive fecal 

cultures.   
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 The second dataset used was collected from herds in Minnesota participating in 

the Johne‟s Disease Demonstration Herd Project (JDDHP), which began in 2000 and 

has been described previously (Ferrouillet et al., 2009).  Briefly, serum and feces were 

collected from all adult cows at the initiation of the study and once per year in 

following years, either upon confirmed pregnancy or at a single date.  All monthly 

production, breeding, and culling records were obtained through the DHIA.  For repeat 

breedings, Herds D and E used a synchronization program and herd F used natural 

breeding.  Serum samples and fecal samples were processed by the Minnesota 

Veterinary Diagnostic Laboratory.  Serum samples were tested using an ELISA test kit 

for serum antibody detection (IDEXX Laboratories, Inc. Westbrook, ME) as indicated 

by the test kit label, with estimated sensitivity and specificity for animals shedding 

MAP of 0.24-0.74 and 0.88-1, respectively (Nielsen and Toft, 2008).  Fecal samples 

were tested for presence of viable MAP organisms using bacterial culture with 

Herrold‟s egg yolk (HEY) media using 72 h of sedimentation (Wells et al., 2002), with 

estimated sensitivity and specificity for animals shedding MAP of 0.7-0.74 and 1.0, 

respectively (Nielsen and Toft, 2008).  Diagnostic test results were reported as 

positive or negative for ELISA and as cfu/tube for culture.  Herd owners agreed to 

implement control measures that included limiting exposure of youngstock to adult 

cows and testing to identify and remove or quarantine infectious animals. 

For all cows, Johne‟s Disease status was initially divided into 3 categories: 

test-negative, low-positive (low-shedding or ELISA-positive only), and high-shedding 

(defined below).  At each time t, test-negative animals were defined as animals for 

which there were at least 2 diagnostic test results reported and for which all diagnostic 
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tests were negative.  Animals with only 1 diagnostic test, if the result was negative, 

were removed from the analysis due to the lack of diagnostic sensitivity.  Animals 

were assumed infected if at least 1 diagnostic test had a positive result. Animals were 

defined as low-positive after a positive ELISA or fecal culture of less than 30 cfu/g 

(RDQMA) or 50 cfu/tube (JDDHP).  ELISA status has been shown to correlate with 

fecal shedding, allowing ELISA-positive animals to be classified as low-positive 

(Nielsen, 2008; van Schaik et al., 2003).  Sensitivity differences between test methods 

were assumed to be negligible for purposes of this analysis.  Animals were classified 

as high-shedding upon detecting a fecal culture of at least 30 cfu/g or 50 cfu/tube, 

representing the midpoint of a previously defined moderate shedding level (Whitlock 

et al., 2000).  After classification as high-shedding, animals remained in this category; 

this is consistent with the progression of disease observed in the study herds.  For 

purposes of analysis, we thus considered JD status to be an ordinal categorical 

variable, JD(t), in which test-negative animals are the referent group and high-

shedding animals are to be compared to low-positive animals.  This ordinal structure is 

intended to reflect disease transitions through time (e.g., no detectable JD, progressing 

to subclinical JD, progressing on to clinical JD). Animals shedding high levels of 

MAP presumably must first pass through a low-shedding phase (whether or not such a 

state was observed); hence, a comparison between these two status levels is both more 

natural and informative than is a direct comparison between high shedding and test-

negative animals.  

The analyses of the relationship between time to culling and Johne‟s Disease 

can be performed using standard methods for time-to-event analysis, such as Cox‟s 
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proportional hazards model (Cox, 1972). However, because culling rates depend on 

other factors (e.g., parity, herd) in addition to JD status, care must be taken in order to 

obtain an accurate estimate of the impact of JD on calving rates. Here, we use methods 

described by Miloslavsky et al. (2004) to fit a proportional rates regression model that 

allows us to characterize the impact of JD on calving rates, a recurrent event, adjusting 

for dependent censoring by culling. The proportional rates regression model for 

recurrent events is described in Lin et al. (2000) and is directly related to the 

Andersen-Gill regression model (Andersen and Gill, 1982).   

Culling 

First calving and culling dates were reported for each animal by their 

respective herd managers.  Time to culling was calculated as the number of days 

between first calving and culling; 22 animals were removed from the dataset because 

they were culled before their first calving.  For each animal, this time was divided into 

separate records for each lactation, as shown in Figure 2.1, with time-at-risk in that 

parity beginning at the recorded calving date and ending with censoring at the 

following calving date when the animal is retained in the herd.  If the animal was 

diagnosed antemortem, the record for the parity in which it was diagnosed was 

censored at the first positive test and a new record was created for the animal in the JD 

status category.  

A Cox regression model was used to analyze time to culling; data were 

stratified by herd and lactation was included as a fixed effect.  This regression model 

relates time to culling to these covariates through the following hazard function: 
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Equation 2.1 

                tPtPtPtPtJDtJDtt H 5645342322110 exp  
 

where λ(t) is the hazard of culling at time t, t is the age in days, JD1(t) is a binary 

variable indicating that the animal is low-positive at time t, JD2(t) is a binary variable 

indicating that the animal is shedding high levels of MAP at time t, Pi(t) is a binary 

 

Parity JD status Culling/calving 

model time 

[start end) 

Culling 

event 

Calving 

event 

Insemination 

model time  

[start end) 

Insemination 

model event 

1 test-negative [0 428) 0 1 [0 67) 1 

2 test-negative [428 676) 0 0 [428 491) 1 

2 low-positive [676 822) 0 1 N/A
1
 N/A

1
 

3 low-positive [822 1044) 1 0 [822 883) 1 
1
Not Applicable 

 

Figure 2.1: Diagram of datalines for the models for time to culling, calving, and 

insemination for a hypothetical animal.  Solid circles indicate the start of a lactation, 

with the time in italics above being the start time for that lactation‟s first dataline.  

Stars indicate the first insemination during a given lactation.  Diamonds indicate the 

end of a lactation, with the time in italics above.  Arrows indicate positive test results, 

at which an animal is censored for the current dataline and a new dataline is started 

with the number in italics.  The solid square in the third lactation indicates culling, 

with the time in italics above.  Johne‟s Disease status is indicated by the line, with 

solid lines indicating non-shedding status and dashes indicating MAP shedding.  The 

chart shows the data that would be used in fitting each of the model 
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variable indicating that an animal is in parity i at time t, λ0H is an arbitrary and 

unspecified baseline hazard function for the given herd, β1 and β2 are the parameters 

associated with animals in the low-positive and high-shedding JD categories, 

respectively, and β3-β6 are the parameters associated with each parity (where parity 1 

is the baseline).  The variable P5(t) captures all animals having a parity of 5 or more. 

Since nearly all censoring in this analysis occurs as a result of animals remaining 

under observation until the end of the study, it is reasonable to assume that censoring 

occurs independently of culling for the purposes of this analysis. Importantly, the 

effects of JD and parity are both coded as ordinal categorical variables; thus, for 

example, while the regression coefficient β1 continues to measure the change in risk 

that occurs in moving from the test-negative referent group to the low-positive group, 

the regression coefficient β2 measures the change in risk that occurs in moving from 

the low-positive group to the high-shedding group (i.e., as opposed to measuring the 

change in risk relative to the referent group). A similar interpretation applies to each of 

the regression coefficients for parity. 

 To account for a possible synergistic effect between parity and JD status, a 

categorical variable, JP(t), was also created.  This is an interaction indicating parity    

> 3 and positive for MAP.  This resulted in the following hazard function: 

Equation 2.2 

   
           

  













tJP

tPtPtPtPtJDtJD
tt H

7

564534232211

0 exp



   

where JP(t) is a binary variable indicating that an animal is in parity 4 or higher and 

positive for MAP at time t, and β7 is its parameter.  
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Calving 

 For each animal, calving dates were recorded for each lactation by the herd 

managers.  Calculations were based on time elapsed from the first calving date (Figure 

2.1).  The end of the period of interest was the subsequent calving date, if available, or 

the date of right-censoring.  If the animal was culled, the culling date was used as the 

end of time at-risk.  If the animal was recorded as “do not breed” (DNB) in the herd 

records, the date of DNB was used as the end of time at-risk rather than the culling 

date; for the purposes of the reproductive model, any reference to “culling” includes 

DNB animals.  All animals were censored at the end of the study period.   

 Two models were used to analyze the effect of each of several JD status 

categories on time to calving, a recurrent event.  The first model is a proportional rates 

model for calving (Lin et al. 2000), with rate function given by: 

Equation 2.3 

                tPtPtPtPtJDtJDtt HR 5645342322110 exp    

where γR(t) is the risk of calving at time t, and γ0H(t) is an arbitrary and unspecified 

baseline rate function associated with herd H. The binary variables JD1(t) , JD2(t) , and 

Pi(t) are each coded as in the culling model of Eq. 2, thereby continuing to represent 

ordinal categorical effects, and the regression coefficients θ1 – θ6 corresponding to the 

main effects therefore have interpretations analogous to those effects in the culling 

model, measuring the change in calving rates as an animal moves between successive 

(i.e., adjacent) categories. This rate function makes no explicit assumptions regarding 

the relationship between the current rate and the past event history beyond the 

dependence on parity reflected in Equation 2.3. Valid estimates of the model 
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parameters appearing in Equation 2.2 may be obtained in the presence of censoring 

due to culling provided that calving and culling rates are independent given herd, 

current parity and current JD status (Lin et al., 2000; Miloslavsky et al., 2004). Since 

JD status may be positively associated with increasing parity, the variable JP(t), 

described above, was added to this model, giving the rate function:  

Equation 2.4   

   
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where JP(t) is a binary variable indicating that an animal is in parity 4 or higher and 

positive for MAP at time t, and θ7 is its parameter. It is important to note that these 

models each measure the impact of JD status conditionally upon the level of parity; in 

other words, the model of Equation 2.2 characterizes the impact of current JD status 

on calving rates after adjusting for any impact that past JD status might have on 

current and past parity. As illustrated in Wolfe and Strawderman (1996), care is 

needed to avoid fitting models that may inadvertently adjust for the effect of one time-

dependent variable (i.e., JD status) through the path of another (i.e., parity). 

The second model, also a proportional rates regression model, is given by  

Equation 2.5   

        tJDtJDtt HJD 22111 exp    

where γJD(t) is the risk of calving at time t, ηi measures the direct (i.e., unconditional) 

impact of the i
th

 JD status JDi(t), and η1H(t) is an arbitrary and unspecified baseline 

rate function associated with herd H. The interpretation of Eq. 5 is similar to Eq. 3, 

describing the calving rate among animals at risk adjusting for herd and JD status 
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only, with JD status coded ordinally as in the models described earlier. However, 

unlike Eq. 3, the impact of JD status on calving rates is now considered to be 

unconditional, and therefore intends to measure the impact of disease regardless of the 

level of parity. Unfortunately, estimates obtained from this model are also problematic 

in the presence of censoring by culling. In particular, since culling depends on parity, 

the failure to control for parity when analyzing the impact of JD status on calving rates 

actually creates dependent censoring, leading to bias in the estimated model 

parameters (Miloslavsky et al., 2004).  

In order to characterize the impact of JD status on reproduction rates using a 

model like that described in Eq. 5, adjustments for the bias induced by dependent 

censoring need to be made. In cases where the dependent censoring variable can be 

modeled, as in the case of culling, such bias can be corrected through the use of a 

weighting factor representing the inverse of the probability of censoring (Robins and 

Rotnitzky, 1992). An inverse probability of censoring weighted (IPCW) estimator of 

Miloslavsky et al. (2004) can be used for this purpose.  Therefore, we also consider 

estimating the parameters of the model in Eq. 5 using an IPCW-based method of 

estimation in which animals having a high probability of censoring, such as animals 

that have not been successfully impregnated early in lactation, are given greater 

weight to correct for the relative paucity of events.  

The implementation of the IPCW estimator of Miloslavsky et al. (2004) in the 

current context requires survivor function estimates for each animal in each lactation 

obtained from two different culling models.  Using Equation 2.1, the first culling 
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model included stratification by herd and adjusts for both JD status and parity, giving 

a survivor function for culling of:  

Equation 2.6   
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where S1i(t,Ri(t)) is the survivor function (probability of having not been culled) at 

time t, Ri(t) refers to the event history for animal i at time t, λ0H is the baseline culling 

rate for herd group H, i indexes animal, and all other parameters are defined as for 

equation 1.  Analogously to Equation 2.5, the second culling model included only 

stratification by herd and adjustment for JD status, giving a culling survivor function: 

Equation 2.7  
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where S2i(t;Zi(t)) is the survivor function at time t, Zi(t) refers to the history of the JD 

variable for animal i until time t, λ2H is the baseline culling rate for herd group H, and 

δ1 is the coefficient for the effect of JD status, JDi(t). The ratio S2i/S1i was calculated 

for each cow-lactation-JD status combination (i.e., through time) to define a time 

dependent weight wi(t) that was subsequently used to estimate a culling-adjusted  

calving rate given MAP infection status only. The weight function wi(t) intends to 

adjust for the resulting impact of dependent censoring, assumed here to be created by 

omitting those variables from Equation 2.5 that appear in Equation 2.3.  A second 

version of wi(t) was also created by including the interaction term JP(t) in Equation 

2.6, allowing us to consider the effect of the interaction between positive MAP status 
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and parity > 3 on culling-adjusted calving rates. Estimation of the regression 

parameter  and baseline rate function γ1H(t) are easily accomplished using Cox 

regression software, provided this software provides the capability of incorporating 

these time-dependent weights. For example, the baseline rate γ1H(t) is estimated via 

Equation 2.8  
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where dNi(t) indicates an incremental increase in the count of events, in this case a 

calving, Yi(t) indicates that animal i is at risk for calving at time t and ˆ
i  is the 

estimated coefficient for the effect of the JD status variable JDi(t).  If censoring were 

independent of calving given only herd and JD status, wi(t) should approximately be 

equal to one for each t and Eq. 8 collapses to the standard estimator for the baseline 

rate function.   

 As management bias may enter the analysis, and producers may exert less 

effort to breed animals known to be infected, time to first insemination is also a 

variable of interest.  An unweighted Andersen Gill model with control for parity, 

similar to Equation 2.2, was fit to this data.  Times were calculated as days elapsed 

from first calving, with start time being the time of the current calving and end time 

being the time of the first insemination for that lactation, as shown in Figure 2.1. 

All survival and proportional rate regression analyses were performed with the 

PHREG procedure in SAS version 9.2 (© 2002-2008 by SAS Institute Inc., Cary, NC, 

USA.). PROC PHREG provides the ability to compute robust variance estimates 



 

43 

(required for use with proportional rate regression models) and time-dependent 

weights (required for adjusting the estimation of model parameters in a proportional 

rate regression models in the presence of dependent censoring). Variables were 

considered significant at the 0.05 level. An effect estimate of less than 0 indicates a 

lower risk of culling or rate of calving, respectively, while an effect estimate of greater 

than 0 indicates a higher risk or rate. 

Results 

Data used for the analyses are summarized in Tables 2.1 (culling) and 2.2 (time 

to calving).  Herds in the study provided data on calvings and cullings for between 3.5 

and 7 years, including data from cows born within 12 to 15 years prior to the end of 

the study period.  Point estimates were similar when analysis was performed on each 

regional database (RDQMA and JDDHP) separately (data not shown), so region was 

not included in the analysis. 

The results of the survival analyses for time to culling are presented in Table 

2.3.  The effect estimate for the low-positive MAP status variable, JD1(t), is significant 

for all analyses (p < 0.01), demonstrating that low-positive animals were more likely 

to be culled than test-negative animals, even after controlling for parity.  The effect 

estimate for the high-shedding MAP status variable, JD2(t), was not significant, but 

the interaction term between JD positive status and parity > 3 was significant when 

added.  Base culling rates were also observed to vary between herds.  The decline 

observed in culling rates with increasing parity bears comment. In particular, due to 

the way in which parity is coded, a comparison is made between the indicated parity 

level and its preceding category. Because time is measured since the first calving date,  
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Table 2.1: Longitudinal data analyzed for the effect of Johne‟s Disease status on time 

to culling in dairy cattle
 

Herd State 

Johne's Disease Status 

at culling/ end of 

study 

Number of 

adult cows 

in study 

Number of 

adult animals 

culled 

Average 

parity at 

culling 

Average time 

to culling 

(days) 

A
1
 NY 

test-negative 595 349 2.8 1769 

low-positive
3
  

(ELISA positive only) 

45 

(27) 

33 

(21) 

3.8 

(4.4) 

2285 

(2352) 

high-shedding 11 11 3.8 2074 

       

B
1
 PA 

test-negative 165 65 3.2 1942 

low-positive
3
  

(ELISA positive only) 

6 

(1) 

4 

(0) 

4.5 

(N/A
4
) 

2226 

(N/A
4
) 

high-shedding 0 0 N/A
4 

N/A
4
 

       

C
1
 VT 

test-negative 207 51 2.8 1925 

low-positive
3
  

(ELISA positive only) 

28 

(10) 

14 

(4) 

2.9 

(3.3) 

1969 

(2009) 

high-shedding 3 2 3.5 2169 

       

D
2
 MN 

test-negative 443 244 2.9 1872 

low-positive
3
  

(ELISA positive only) 

97 

(34) 

66 

(21) 

3.1 

(3.3) 

1926 

(2001) 

high-shedding 33 22 3 1796 

       

E
2
 MN 

test-negative 644 304 2.7 1771 

low-positive
3
  

(ELISA positive only) 

125 

(36) 

71 

(24) 

3 

(3.1) 

1875 

(1989) 

high-shedding 29 22 3.1 1776 

       

F
2
 MN 

test-negative 342 187 2.9 1938 

low-positive
3
  

(ELISA positive only) 

42 

(13) 

35 

(12) 

3.2 

(3.3) 

2033 

(2135) 

high-shedding 3 3 1.7 1364 
1
Data from a longitudinal study on 3 dairy herds through the Regional Dairy Quality 

Management Alliance from 2004 to 2007, visited quarterly to collect individual 

animal samples and all production, breeding, and health records. 
2
Data from the Minnesota Johne‟s Disease Demonstration Herd Project, which 

provided annual individual animal samples from each herd from 2000 to 2007.  All 

monthly production, breeding, and culling records were obtained through the DHIA.   
3
 Low-positive results are defined as either fecal cultures with ≤30 cfu/g of MAP 

and/or positive ELISA results 
4 

Not Applicable 
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Table 2.2: Longitudinal data analyzed for the effect of Johne‟s Disease status on 

calving interval in dairy cattle
 

Herd State 
Johne's Disease  

Status at calving 

Number of  

cow-lactations  

in study 

Number of 

calvings 

Average time of  

calving interval 

(days) 

A
1 

NY 

test-negative 1758 990 402.0 

low-positive
3
  

(ELISA positive only) 

32 

(18) 

12 

(6) 

394.3 

(417.0) 

high-shedding 7 1 391.0 

      

B
1
 PA 

test-negative 239 74 407.8 

low-positive
3
  

(ELISA positive only) 

2 

(0) 

0 

(0) 

N/A
4 

(N/A
4
) 

high-shedding 0 N/A
4
 N/A

4
 

      

C
1
 VT 

test-negative 406 171 427.1 

low-positive
3
  

(ELISA positive only) 

21 

(3) 

5 

(0) 

490.0 
 

(N/A
4
) 

high-shedding 4 1 362.0 

      

D
2
 MN 

test-negative 986 454 446.9 

low-positive
3
  

(ELISA positive only) 

196 

(31) 

92 

(18) 

406.7 

(399.5) 

high-shedding 10 3 380.3 

      

E
2
 MN 

test-negative 1352 624 412.7 

low-positive
3
  

(ELISA positive only) 

82 

(21) 

10 

(4) 

395.6 

(378.5) 

high-shedding 12 0 N/A
4
 

      

F
2
 MN 

test-negative 705 310 434.5 

low-positive
3
  

(ELISA positive only) 

32 

(7) 

7 

(2) 

412.7 

(414.0) 

high-shedding 1 0 N/A
4 

1
Data from  a longitudinal study on 3 dairy herds through the Regional Dairy Quality 

Management Alliance from 2004 to 2007, visited quarterly to collect individual 

animal samples and all production, breeding, and health records. 
2
Data from the Minnesota Johne‟s Disease Demonstration Herd Project, which 

provided annual individual animal samples from each herd from 2000 to 2007.  All 

monthly production, breeding, and culling records were obtained through the DHIA.   
3
 Low-positive results are defined as either fecal cultures with ≤30 cfu/g of MAP 

and/or positive ELISA results 
4 

Not Applicable 
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Table 2.3: Results of a proportional hazards model for effect of Johne‟s Disease (JD) 

status on time to culling. The model takes into account censoring due to end of the 

study, controls for parity, and is stratified by herd. The model was fit with and without 

a term for the interaction between JD status and parity > 3. 6163 observations were 

used in the analysis. 

Variable Level 

Effect Estimate (std. error) 

No Interaction Interaction 

Parity  

(1 is the base) 

2 -1.04 (0.06) -1.03 (0.06) 

3 -0.36 (0.06) -0.36 (0.06) 

4 -0.09 (0.08)
* 

-0.14 (0.08)
*
 

5+ -0.27 (0.13) -0.29 (0.11) 

    

Johne‟s Disease  

Status 

low-positive 

(base is test-negative) 
0.34 (0.06) 0.27 (0.13) 

high-shedding 

(base is low-positive) 
0.12 (0.13)

*
 0.15 (0.13)

*
 

Parity*Johne‟s Disease 

Status 
positive, parity>3 N/A

1 
0.26 (0.12) 

1
Not Applicable  

*
Not significant at the 5% level. 

 

rather than since the beginning of the lactation, animals with higher parity tend to be 

under observation longer, hence have longer culling times. Culling reasons were 

provided by herds A, B, and C for 393, 69, and 67 animals, respectively; 143 animals 

were recorded as having been culled for reproductive reasons, and a further 143 

animals were recorded as having been culled for disease reasons, including 8 high-

shedding animals recorded as having been culled for clinical JD.  Other reasons were 

given for culling a total of 243 animals, including injuries and production.  

The results for the proportional rate regression models for time to calving 

described in the previous section are presented in Table 2.4. For the models 

corresponding to Equations 2.3 and 2.4, the rate of calving decreased as parity 

increased (results not shown), with no evidence of a differential effect of JD status for  
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Table 2.4: Effect estimates are shown from 4 separate sets of proportional rates 

models for the effect of Johne‟s Disease (JD) status on calving interval, with standard 

error in parentheses. The unweighted model for Equation 2.3 adjusts for JD status, 

parity, and herd (through stratification). The unweighted model for Equation 2.4 

adjusts for JD status, parity, and herd (through stratification), and the interaction 

between test-positive status and parity >3. The unweighted model for Equation 2.5, 

using the baseline function of Equation 2.8 with weights set equal one, adjusts only for 

JD status and herd (through stratification), dropping parity. The weighted model for 

Equation 2.5, using the baseline function of Equation 2.8, controls for both the 

probability of culling and parity through weighting, with or without the interaction 

between test-positive status and parity > 3, controlling for herd through stratification.  

The results of an unweighted proportional rates model based on time to first 

insemination, controlling for parity and stratified by herd, are also included.  6163 

observations were included in the analysis. 

Comparison  

Unweighted Effect  

Estimate for Time  

to Calving 

 (Equation 2. 3) 

Unweighted Effect  

Estimate for Time  

to Calving with  

Interaction 

(Equation 2.4) 

Unweighted Effect  

Estimate for Time  

to Calving  

(Equations 2.5, 2.8) 

Low-positive 

(test-negative 

 is base) 

0.18 (0.07) 0.17 (0.08) 0.14 (0.06) 

    

High-shedding 

(low-positive  

is base 

-0.46
* 

(0.29) -0.45
*
 (0.29) -0.36

* 
(0.23) 

 

Comparison  

Weighted Effect  

Estimate for Time  

to Calving  

(Equations 2.5, 2.8) 

Weighted Effect 

Estimate for Time 

to Calving with  

Interaction  

(Equations 2.5, 2.8) 

Effect 

Estimate for 

time to first 

insemination 

Low-positive 

(test-negative 

is base) 

0.20
*
 (0.12) 0.23 (0.12) 0.01

*
 (0.06) 

    

High-shedding 

(low-positive 

is base 

-1.11 (0.52) -1.07 (0.50) -0.02
*
 (0.13) 

*
Not significant at the 5% level 

lower versus higher parities.   Animals low-positive for MAP (first row of Table 2.4) 

were also estimated to have a higher rate of calving compared to test-negative animals. 

This latter result was also reflected in the results obtained for both the unweighted and 
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weighted model fits corresponding to Equation 2.5, which no longer directly adjusted 

for parity in the rate model itself. The effect of low-positive status is not statistically 

significant (p = 0.116) when an interaction between parity and JD status is not 

included in the culling model used to compute the weights, but is borderline 

significant in the presence of this interaction (p = 0.046). 

Animals shedding high levels of MAP (the second row of Table 2.4) exhibited 

substantial, and more disparate, numerical decreases in the calving rate compared to 

low-positive animals in each case, with the impact under the weighted model fit 

corresponding to Equation 2.5 being both the strongest and the most statistically 

significant. Comparison of the effect estimates for the weighted and unweighted fits 

corresponding to Equation 2.5 show that the latter is more than twice the former. In 

our view, these results clearly illustrate two features of the proposed methodology. 

First, a comparison of the differences in effect estimates obtained for the unweighted 

and weighted fits corresponding to the model of Equation 2.5 demonstrates the impact 

of dependent censoring that results from a failure to control for the impact that parity 

has on culling (i.e., the dependent censoring variable). Here, we further observe that 

inclusion of the interaction term JP(t) did not qualitatively or quantitatively affect the 

estimates for any model. Second, a comparison of the model fits for Equation 2.4 and 

the weighted fits corresponding to Equation 2.5 illustrates the differences in 

interpretation of the regression coefficients in models that directly, versus indirectly, 

adjust for parity when analyzing the impact of JD status (Wolfe and Strawderman, 

1996). In particular, the regression coefficient in Equation 2.4 is attenuated, a 

reflection of the fact that a model that directly adjusts for both parity and JD status is 
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capturing the effect of JD status on calving rates that remains after adjusting for any 

effect it may have had on past and current parity. 

 Results of the analysis for time to first insemination (Table 2.4) further showed 

that time to first insemination was not significantly related to JD status. 

Discussion 

The models presented above analyzed the relationship between JD status (as 

defined by MAP shedding and ELISA results) and both the risk of culling and calving 

rates.  The results of the model for time to culling were easily influenced by producer 

decisions.  In all herds, producers were interested in controlling or eradicating JD and 

were informed of test results when available.  Based on culling reasons given for high-

shedding animals, in herds A and C, JD status was the most common reason stated.  

Thus, the results likely show a combination of both biological and producer-decision 

effects, with the latter influenced by expert advice. 

 Beyond the desire to control the spread of JD, producers often cull animals due 

to low or decreased milk production.  The authors have previously observed, with the 

same dataset, a significant relationship between JD status and decreasing milk 

production  (Smith et al., 2009).  While low-positive and test-negative animals did not 

have significantly different average daily milk production levels in that analysis, milk 

production in low-positive animals did decrease over time faster than test-negative 

controls.  High-shedding animals, when compared to all other animals, were observed 

to have both a significantly lower average daily milk production and a significantly 

greater monthly decrease in milk production.  This decreased milk production 

observed in MAP-positive animals would be expected to lead to the increased rate of 
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culling in MAP-positive animals observed in the present study, as an intervening 

variable on the causal pathway between JD and culling.  The increased culling rate 

could also be related to other effects of JD (including the hypothesized decreased 

calving rates), or to the producer‟s desire to control JD through culling.  The former 

has been observed previously; fecal culture-positive cows were observed to be culled 

for infertility at a higher rate than culture-negative cows (Merkal et al., 1975).  In 

these data, the latter was also known to play a role, as the herds participate in a JD 

control program that recommends culling of high-positive animals. 

 Inclusion of a term to capture the interaction between JD status and age (via 

the proxy of parity) was found to be necessary.  However, the use of a saturated 

interaction model would have required 8 additional terms in the full model. In addition 

to creating serious challenges in model interpretation (particularly given our use of an 

ordinal coding strategy), the presence of relatively sparse data available for high-

shedding animals raised questions of feasibility.  Our decision to utilize a simpler 

interaction term that differentiated older, positive animals from the rest was motivated 

by a preliminary data analysis using a simple 4-level variable that classified animals 

according to JD status (“any” vs. not) and age (“parity > 3” vs. not) and which 

suggested that the strongest effect was in these animals (results not shown). While this 

interaction term was found to be statistically significant in the full culling model of 

Eqn. 3, its inclusion did not qualitatively change the results of the culling model or the 

weighted calving models.  

 Due to the positive dependency between calving, culling, parity and JD status, 

indicated by the discrepancy in the results presented in Table 4 and the large 
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proportion of animals culled for reasons of reproductive problems, a correction to the 

standard proportional rates model was required to more appropriately analyze the 

effect of JD status on reproduction.  With the IPCWE approach of Miloslavsky et al. 

(2004), a direct estimate of the marginal effect of JD status can be obtained. Other 

methods, such as frailty models (Rondeau et al., 2007), might have been used instead 

to deal with the possibility of dependent censoring, as well as the dependence between 

multiple calvings in the same animal; however, such methods may yield less 

interpretable estimates of the effect of JD status.  In this study, the difference between 

the IPCWE-corrected (i.e., weighted) and basic (i.e., unweighted) models was found to 

be relatively small for the case of all low-positive animals and substantially larger for 

high shedding animals. For both levels of JD status, the weighted analysis was also 

found to be more conservative, resulting in larger standard errors.  The addition of an 

interaction term to capture the synergy between age and test-positive status did not 

qualitatively change the results of any model. Thus, for example, one can conclude 

that a synergistic relationship between age and JD status on culling rates is unlikely to 

be responsible for the observed increase in calving intervals in high shedding cows 

obtained when comparing the weighted and unweighted model fits corresponding to 

Equation 2.5.  

 There were possible biases in this study introduced by the method of 

measurement available.  As reproduction was measured based on the proxy of calving 

intervals, rather than time to conception, some animals censored for the end of study 

may have conceived, but not reached calving.  Animals were also considered at-risk 

for calving, in this model, during the voluntary waiting period, breeding, and early 
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gestation.  That was not precisely true, as animals were only at risk of calving in the 

end of gestation.  It was assumed that no bias arose from ignoring end-of-study 

censoring, the voluntary waiting period, and gestation time; all these should have been 

unassociated with JD status, and should not have impacted the estimates.  This left 

only the effects of JD status on breeding, which included both producer decisions and 

biological effects on conception.  However, a change in JD status may occur between 

conception and calving; in this analysis, the event of interest would be falsely 

attributed to the higher JD status.  Future studies may avoid these issues by recording 

conception dates when collecting data, allowing for a more direct analysis.  It would 

also be of interest to consider the effect of latent infection on production parameters, 

but such an analysis is not possible within the scope of these data.   

 The categorization of JD status could also lead to biased estimates; animals 

were assumed to be truly positive or negative, despite the imperfect specificity and 

sensitivity of the diagnostic tests.  Any passive shedders (animals with positive fecal 

samples that were not infected) would confuse the categories used, making differences 

difficult to detect.  False-positive results would also bias the estimates towards the 

null.  Further analysis of the question within research herds, with tissue culture of 

animals on slaughter to ensure proper categorization, may lead to stronger or more 

significant findings. 

This study also combined two separate databases, which were collected for 

similar purposes but with different methods.  The point estimates for the effects of JD 

status on both culling and reproduction were similar if the two databases were 
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analyzed separately; thus, we concluded that combining the datasets, leading to 

improved precision of all estimates, was appropriate. 

Milk production level is known to influence calving rates (Lucy, 2001), and 

the prevailing understanding is that high milk production is correlated with decreased 

calving rates. We did not include this in our analysis, however, in order to capture the 

full effect of JD status on calving rates.  In our study, high shedding cows tended to 

have lower calving rates than others, but previous analysis of the RDQMA database 

showed that high shedding cows had significantly lower milk production compared to 

all other cows (Smith, 2009).  Therefore, milk production could be considered an 

intervening variable in the pathway between JD status and calving rates, rather than a 

confounding variable.  Calving season may also impact on reproduction, but calving 

season was found not to be associated with JD status in our data, so we did not include 

it in the model. 

 Our data also showed that low-positive animals had higher calving rates than 

test-negative animals.  This agrees with an earlier published study (Lombard et al., 

2005), which found that animals with a strong-positive ELISA had significantly fewer 

days open than ELISA-negative animals.  However, Lombard et al. were not able to 

distinguish between stages of JD, as fecal culture results were not provided in that 

study.  Marcé et al. (2009) also found higher calving rates among ELISA-positive 

animals, but the decrease of the effect with increasing parity suggests that disease 

progression may reverse the effect.  Our results suggest that movement from low-

positive to high shedding of MAP was associated with decreased calving rates, which 

would agree with Marcé et al.‟s findings.  The opposing effects of JD in low-positive 
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and high-shedding animals, also observed to some extent by Gonda et al. (2007) may 

explain the failure of previous studies (de Lisle and Milestone, 1989; McNab et al., 

1991) to find an effect in positive animals, especially as controlling for the effect of 

JD on culling proved to be necessary.   

Decreased calving rates can be an expensive loss for dairy herds, but the cause 

is uncertain.  They could possibly indicate a biological cause, such as the postulated 

effect of clinical JD leading to a negative energy balance, which can lead to an 

anovulatory state (Butler et al., 2006), significantly delaying time to conception 

(Butler, 2003).  However, it was not possible, with these data, to determine that the 

effect of the disease on calving was due to biological effects of disease rather than 

producer decisions.  Not every herd in this study recorded when an animal was labeled 

DNB, and even herds that did record it may have done so sporadically.  As such, 

animals that were not at risk for conception would have been mistakenly included in 

the dataset.  Producers may also have bred MAP-positive animals less frequently than 

MAP-negative animals, with an unconscious or unrecorded bias, artificially decreasing 

their risk of conception.  Raizman et al. (2007) found no association between JD status 

and days open, but did find that non-pregnant animals with positive fecal cultures 

were bred significantly fewer times than test negative animals.  In the same way, 

animals that were high milk producers (such as latently infected animals, in this 

model) may have been bred more intensively, with more inseminations than lower-

producing animals.  For this reason, we examined the time to first insemination as a 

proxy of producer effort.  However, time to first insemination was not significantly 
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affected by JD status, which suggests a biological cause for the observed effect on 

calving intervals. 

In conclusion, survival analysis indicated that detectable infection with MAP 

resulted in increased culling rates. We also observed an increased calving interval in 

animals shedding high levels of MAP compared to low-positive animals.
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CHAPTER 3 

ENVIRONMENTAL CONTAMINATION WITH MYCOBACTERIUM AVIUM 

SUBSP. PARATUBERCULOSIS IN ENDEMICALLY INFECTED DAIRY HERDS  

In press as: 

Environmental contamination with Mycobacterium avium subsp. paratuberculosis in 

endemically infected dairy herds. R. L. Smith, Y. H. Schukken, A. K. Pradhan, J. M. 

Smith, R. H. Whitlock, J. S. Van Kessel, D. R. Wolfgang and Y. T. Grohn. Preventive 

Veterinary Medicine 2011. 

Abstract 

Environmental contamination with Mycobacterium avium subsp. paratuberculosis 

(MAP) is thought to be one of the primary sources of infection for dairy cattle.  The 

exact link between fecal shedding of MAP by individual cows and environmental 

contamination levels at the herd level was explored with a cross-sectional analysis of 

longitudinally collected samples on 3 dairy farms.  Composite samples from multiple 

environmental sites in 3 commercial dairy herds in the Northeast US were cultured 

quarterly for MAP, providing 1131 samples (133 (11.8%) were culture-positive), and 

all adult animals in the herds were tested biannually by fecal culture (FC), for 6 years.  

Of the environmental sites sampled, manure storage areas and shared alleyways were 

most likely to be culture-positive.  Environmental sample results were compared to FC 

results from either the concurrent or previous sampling date at both the herd and the 

pen level.  At the herd level, a 1 log unit increase in average fecal shedding increased 

the odds of a positive non-pen environmental sample by a factor of 6 and increased the 

average amount of MAP in non-pen samples by 2.9 cfu/g. At the pen level, a 1 log 
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unit increase in average fecal shedding in the pen increased the odds of a positive 

environment by a factor of 2.4 and the average amount of MAP was increased by 3.5 

cfu/g.  We were not able to model the relationship between non-pen environmental 

sample status and the distance between shedding animals and the sample‟s location, 

and neighboring pens did not significantly affect the results of the pen-level analysis.  

The amount of MAP in pen-level samples and the probability of a pen testing positive 

for MAP were both positively but non-significantly correlated with the number of 

animals in the pen shedding >30 cfu/g of MAP.  At least 6 environmental samples met 

the criteria for the U.S. Voluntary Bovine Johne‟s Disease Control Program on 47 of 

the 72 sampling dates; of these, 19 of the 47 FC-positive sampling dates were positive 

by the 6-sample environmental testing method, resulting in a herd sensitivity of 0.40 

(95% CI: 0.26 to 0.54).  None of the 3 FC-negative sampling dates produced positive 

environmental samples. Although environmental sampling can be used as a tool in 

understanding the level of MAP infection in a herd or pen, it did not appear to be a 

sensitive diagnostic method for herd positivity in these low prevalence herds, and its 

use may require caution. 

Introduction 

 Johne‟s disease in cattle is caused by a chronic intestinal infection with 

Mycobacterium avium subsp. paratuberculosis (MAP), due to ingestion of the 

organism.  After a long latent period, animals infected with MAP begin to shed the 

organism in their feces (Benedictus et al., 2008), thereby contaminating the farm 

environment.  This environmental contamination with MAP is thought to be one of the 

primary sources of infection for dairy cattle (Nielsen and Toft, 2009).  
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Environmental sampling has been evaluated for identification of herd MAP 

status (Lombard et al., 2006; Raizman et al., 2004).  The number of MAP-positive 

environmental cultures (EC) on a dairy farm has been found to be proportionate to the 

seroprevalence in the herd (Berghaus et al., 2006) as well as the fecal culture (FC) 

prevalence (Pillars et al., 2009).  In assessing the reliability of repeat environmental 

samples, the majority of variation in MAP concentration has appeared to come from 

the source of the sample, both the dairy herd and the pen within the herd (Aly et al., 

2009; Pillars et al., 2009).  The National Animal Health Monitoring System 

(NAHMS) has used standardized environmental sampling (USDA:APHIS:VS, 2010) 

to determine the apparent herd-level prevalence of MAP nationally, currently 

estimated in dairy herds at 68% (USDA:APHIS:VS, 2008).  However, no studies have 

examined the relationship between the concentration of MAP in environmental 

samples and in the feces of individual cows.   

The objective of this study was to longitudinally describe environmental MAP 

contamination in endemically infected dairy herds, and to correlate that contamination 

to fecal shedding by individual animals. 

Materials and Methods 

Sample collection and isolation of MAP from samples used in this study have 

been previously described (Pradhan et al., 2009).  Briefly, 1 dairy herd in each of 3 

states (herd A in New York, herd B in Pennsylvania, and herd C in Vermont) was 

visited quarterly by members of the Regional Dairy Quality Management Alliance 

(RDQMA) from 2004 through 2009.  A number of environmental sites were 

consistently sampled on each quarterly visit from mapped locations using the same 
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method.  Source water, water from drinking troughs of cows and heifers, and standing 

water or manure slurry in freestall barns were collected by a tube scooped through the 

water/slurry. Feed from pens of cows and calves, calf bedding, corn silage, and 

manure composites from milking cows, nonlactating cows, periparturient cows, calf 

pens, and milking alleyways were collected manually by a freshly gloved hand; at 

each of these sites (i.e., an alleyway), material from 4-6 locations (i.e., 4-6 points 

along the alleyway) was combined into one composite sample.  On some sampling 

dates, bird droppings, flies and insects were also collected. The samples were 

classified as Alleyway, Pen (consisting only of adult cow pens), Pit (consisting of 

manure storage areas), and Other.  Biannually, fecal samples were collected rectally 

from every adult cow present in the herds.  All fecal samples were tested by four-tube 

fecal culture (Pradhan et al., 2009), and the total sum of cfu across 4 tubes was 

multiplied by the conversion factor, 5.3, to determine cfu/g (Pradhan et al., 2011). 

Environments sampled included the 6 minimum sites for herd-level MAP 

testing recommended by the Voluntary Bovine Johne‟s Disease Control Program 

(VBJDCP) (USDA:APHIS:VS, 2010): 2 each of cow housing alleyways or gutters, 

manure storage areas, and another manure concentration area.  The culture results of 

these 6 qualifying samples were combined to create a single variable, the Standard 6 

(S6). When more than 6 samples qualifying for the S6 were collected, 6 were chosen 

randomly from the qualifying samples to include in the S6 results.   

Statistical Analysis 

 Environmental samples were collected quarterly and fecal samples were 

collected biannually, so EC results were modeled with concurrent FC data if possible; 
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if no concurrent FC data were available, EC results were modeled using FC data from 

the previous quarter.  Physical distances between sampling locations were measured as 

straight lines between the center of each pen and the center of the sampling location 

using the ruler tool in Google Earth (©2010 Google), to represent the average distance 

that MAP must move from the pen to the sampling location.   

The vector of EC results can be defined as Y, where the Yi are independent 

Bernoulli random variables where 1 indicates the presence of MAP in an EC, 

E[Yi]=π(Xi) and Var(Yi)=π(Xi)*(1-π(Xi)), and Xi is the vector of explanatory variables 

for sample i, then  

Equation 3.1   

       
              

                
  

where β is the vector of the effects of explanatory variables, zi is the sampling date, 

and γ is normally distributed with a mean of 0 and variance of ζγ
2
.  A random effects 

model was used as ECs from the same sampling date were assumed to not be 

independent.  For this logistic model, several configurations of Xi were considered: all 

contained sample type (alley, pen, pit, or other) and herd (A, B, or C), the prevalence-

based model contained the natural log of the proportion of MAP-positive animals in 

the herd, the amount-based model contained the base-10 log of the average shedding 

level (cfu/g) of all individual adults, and the high-shedder-based model contained the 

number of animals shedding ≥30 cfu/g in the herd.  In addition, the results of EC may 

be modeled as a continuous variable θi, the amount of MAP (cfu/g) in the sample.  In 

this case,  
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Equation 3.2   

                      

with ei being the random error associated with sample i and all other variables defined 

as above for Equation 1.   

The logistic model in Equation 3.1 was also fit to the database with pen 

samples excluded, and to data limited to pen samples in which the FC results were 

limited to animals in the pen from which the sample was taken.  In the model of pen 

samples only, sample type was removed from Xi.  The linear model in Equation 3.2 

was also used for the separate databases (pen and non-pen samples), adding an 

additional term to Xi for the distance-corrected average shedding level in the pens 

        
  

  , where fi is the shedding level in pen i and di is the distance between pen 

i and the center of the sampled area (in meters); a similar analysis was also performed 

using the squared distance between pens, d
2
 (m

2
), as the effect of distance is not 

necessarily linear.      

VBJDCP samples 

 The primary analysis of the S6 evaluated whether there was a relationship 

between the presence of MAP in FC and the presence of MAP in the S6.  This 

evaluation was based on a logistic regression model (Equation 3.1), where π(Xi) was 

the probability that any FC were MAP positive, zi was unity, and Xi consisted of the 

herd (A, B, or C) and either the overall result of VBJDCP sampling (positive if ≥1/6 

S6 cultures was positive), the number of S6 cultures testing positive, or the base-10 

log of the average amount of MAP in the 6 S6 samples (cfu/g).  In any of these cases, 



 

66 

 

exp(βn) was the odds ratio for herd shedding status with a 1-unit increase in the S6 

results, where βn was the parameter estimate associated with that result.  The 

relationship between the results of the S6 and the MAP infection level within the herd 

was also examined, using a linear model with the natural log of the herd‟s fecal culture 

prevalence, ln(mi(η)), or the base-10 log of the average MAP shedding level for the 

herd, log(fi(η)), as the response variable; herd was included as a fixed variable.  The 

same three previously defined S6 predictor variables were examined separately. 

The sensitivity of S6 testing to detect animals shedding MAP in the herd was 

calculated using individual FC results as the gold standard.  This sensitivity estimate 

was used to calculate the true US national herd prevalence of MAP from the 68% 

apparent prevalence estimate produced by the NAHMS survey (USDA-APHIS-VS-

CEAH, 2008) and an assumed specificity of 1.  True prevalence was estimated  with a 

Bayesian approach (Messam et al., 2008) to the Rogan-Gladen prevalence estimation 

(Rogan and Gladen, 1978) in WinBUGS1.4 (©2003: Imperial College &MRC, UK), 

with a run-in of 500 iterations, a sample of 70,000 iterations, and a non-informative 

Beta(1,1) prior. 

Model Fitting 

 All models were fit with the lmer function in the lme4 package (Bates and 

Maechler, 2010) for R 2.11.1 (R Development Core Team, 2010), which was accessed 

through the Revolution R Analytics interface (© 2010 Revolution Analytics, Inc.). 

This function fits subject-specific generalized linear mixed models.  All interactions 

were included, and the models were fit with backward selection using BIC 

comparison; model hierarchy was maintained.  All statistical tests were considered 
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significant at the 0.05 level, with no adjustment for multiple testing.  All proportions 

were natural log transformed, with 0.05 added to all measures to avoid infinite 

estimates after transformation; all MAP cfus were log-10 transformed, with 0.5 added 

to all measures to avoid infinite estimates after transformation. Goodness of fit was 

determined for logistic models with visual comparison of predicted versus observed 

values using the plot.logistic.fit.fnc function in the languageR package; for linear 

models, goodness of fit was determined with visual observation of Q-Q plots of the 

residuals. 

Results 

All samples 

 A total of 1131 EC results were recorded on the 3 farms during the study 

period, 133 (11.8%) of which were positive for MAP.  Of these samples, 545 (125 or 

22.9% positive) had concurrent FC results and 383 (47 or 12.3% positive) were 

associated with FC results from the previous quarter.  The distribution of results across 

environmental sample type in the 3 herds is shown in Table 3.1.  Figure 3.1 shows a 

time series for the average amount of MAP in FCs and the number and results of ECs 

in the 3 study herds.  There is variation in the number of samples included, as on some 

Table 3.1: Distribution of 1131 environmental samples by type for 3 commercial dairy 

herds in the Northeast US; samples were collected quarterly over a 5 year period 

(2004-2009) and cultured for Mycobacterium avium subsp. paratuberculosis 

Herd 

Number of sample type (percent positive) 

Alley Pen
1 

Pit
2 

Other
3 

A 27 (11) 125 (15) 16 (13) 170 (0) 

B 94 (10) 48 (10) 22 (18) 43 (5) 

C 51 (25) 260 (18) 86 (35) 189 (0) 
1
Pens containing adult cows 

2
Manure storage areas, including pits and spreaders 

3
All other samples, including feed, water, and calf housing areas 
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sampling dates a greater number of ECs was collected for reasons associated with  

other research questions, while on others some of the samples were contaminated and 

could not be included in the results.     

 

Figure 3.1: Timeline of Mycobacterium avium subsp. paratuberculosis (MAP) 

sampling intensity and results for each of 3 commercial US dairy herds between 2004 

and 2009.  Bars represent the total number of environmental samples collected in the 

herd at that sampling date, with positive samples represented in dark grey and negative 

samples in light gray.  The base-10 log of the average amount of MAP (cfu/g) in 

individual fecal samples is represented by the black line, with error bars representing 

the base-10 log of the standard deviation of MAP (in cfu/g) in individual fecal samples 

as a rough indicator of the variability in samples. 
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The models using the full database were found to be poorly fitted, with 

normality and linearity assumptions failing. Thus, analysis was focused on the 

separate datasets of pen samples and non-pen samples, which were able to meet 

statistical assumptions and produce well-fitted models. 

There were 250 ECs from adult animal pens with full data for analysis, 42 of 

which were positive for MAP (16.8%).  The average number of high shedders in a pen 

at any timepoint was 0.27 for herd A (median=0, range 0 to 4), 0 for herd B, and 0.25 

for herd C (median=0, range 0 to 1).  Results of the logistic regression (Equation 3.1) 

for pen sample data are shown in Table 3.2; linearity assumptions for explanatory  

Table 3.2: Results of logistic regression for the probability of a Mycobacterium avium 

subsp. paratuberculosis (MAP)-positive environmental sample culture from an adult 

cow pen by average MAP shedding level (log(average cfu/g), above), the proportion 

of animals in the pen shedding MAP, or the number of animals in the pen shedding 

≥30 cfu/g MAP in their feces, in 3 commercial US dairy herds, either on the date of 

sampling or in the previous quarter, between 2004 and 2009.  Sampling date is 

included as a random variable
a
.   

Variable 

Estimate 

 (OR) 

Standard 

Error z value Pr(>|z|)     

 

Logistic Regression based on Fecal Shedding 

(Intercept) -1.98  0.26 -7.71 <0.01 

Average fecal shedding (log cfu/g)
 
  0.88 (2.41) 0.29  3.03 <0.01 

 

Logistic Regression based on Fecal Prevalence 

(Intercept) 0.40 0.93 0.42 0.67 

ln(fecal prevalence
b
) 0.86 (2.36) 0.34 2.50 0.01 

 

Logistic Regression based on High-Shedders 

(Intercept) -2.05 0.26 -7.96 <0.01 

high shedders
c
  0.63 (1.88) 0.32  1.98   0. 05 

 

a
Sampling date had a variance of 0.83 for the shedding model, 0.72 for the prevalence 

model, and 0.68 for the high-shedders model.   
b
expressed as a proportion, natural log (base e) 

c
number of animals shedding ≥30 cfu/g MAP in their feces 
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variables were met for all models.  A 1-log increase in average shedding level or an 

increase of 0.027 in the prevalence of fecal shedders in a pen resulted in a 2.4-fold 

increase in the odds of a positive sample, and 1 additional high shedder resulted in a 2-

fold increase.  Herd effects were not significant for any model.   

Median distance between pens was 43m for herd A (range 16 to 108), 39m for 

herd B (range 36 to 54), and 31m for herd C (range 23 to 48).  The linear models 

based on prevalence and number of high-shedders in the pen did not meet normality 

assumptions for explanatory variables and random errors and produced poorly-fitted 

models; the results of the linear model based on average fecal shedding in the pens is 

shown in Table 3.3.  A 2 log unit increase in the average shedding level of animals in 

a pen was required to raise the contamination of samples in that pen by 1 log.  The 

effect of MAP shedding by cows in other pens was not significantly related to the 

amount of MAP in a pen‟s environment. Herd effects were not significant for any 

model.   

There were 542 samples available for analyzing the results of EC from non-

pen sources, of which 55 (10.1%) were positive for MAP.  Results of the logistic and 

linear regressions based on whole-herd prediction variables are shown in Figure 3.2 

and Tables 3.4 and 3.5, respectively.  A 1-log increase in average shedding increased 

the odds of finding MAP 6-fold and the average amount of MAP by 0.5-log in 

alleyway or pit samples.  Fecal prevalence had a positive relationship with both the 

probability of finding MAP and the average amount of MAP in environmental 

samples, but this relationship was strongest in alleyway samples.  The number of high-
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shedding animals was not significantly related to the odds of finding MAP or the 

amount of MAP in a sample.  Herd effects were not significant for any model. 

Table 3.3: Results of a linear regression for Mycobacterium avium subsp. 

paratuberculosis (MAP) concentration (log(cfu/g)) in environmental samples from 

adult cow pens in 3 commercial US dairy herds, either on the date of sampling or in 

the previous quarter, between 2004 and 2009.  Sampling date is included as a random 

variable
a
. 

Variable Level Estimate 

Std. 

Error t value Pr(>t) 

χ
2
  

(Pr> χ
2
) 

Intercept   0.60   0.11   5.32 <0.01  

pen shedding
b
, log(cfu/g)

 
  0.54   0.07   8.01 <0.01  

neighbor shedding
c
, 

 log(cfu/g)/m
2 

35.70 38.67   0.92    0.25  

      

Pen  

(calving is 

base) 

1 -0.59   0.10 -5.74 <0.01 70.33 

(<0.01) 2 -0.67   0.11 -6.28 <0.01 

3 -0.64   0.10 -6.24 <0.01 

4 -0.86   0.11 -8.03 <0.01 

dry -0.61   0.11 -5.68 <0.01 

       
a
Sampling date had a variance of 0.09. 

b
Average shedding level for animals in the pen at the time of sampling. 

c
Sum of average shedding level for animals in other pens divided by squared distance 

(in m) between the center of the sampled pen and the center of the other pens. 

 

For the distance-corrected linear regression with non-pen samples, pit samples 

were excluded; 249 samples remained, of which 13 samples from alleyways and 0 

samples from other sites were positive for MAP (5.2%).  Median distance between 

non-pen sampling sites and any pen was 78m for herd A (range 19:174), 33m for herd 

B (range 11:93), and 50m for herd C (range 11:131).  Linearity assumptions were not 

met for these models (results not shown). 
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Figure 3.2: Predicted (lines) and observed (symbols) amounts of environmental 

contamination by Mycobacterium avium subsp. paratuberculosis (MAP) (in 

log(cfu/g)) in 3 commercial US dairy herds between 2004 and 2009 based on the 

sample type (shared alleys; manure pits; all other) and the average fecal sampling of 

MAP in all adult animals in the herd in the current or previous quarters (in log(cfu/g)).  

Shedding levels were log-transformed (base-10) after adding 0.5 to all values.   
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Table 3.4: Results of logistic regression for the probability of a Mycobacterium avium 

subsp. paratuberculosis (MAP)-positive environmental sample culture from a source 

other than adult cow pens by average MAP shedding level in the herd (log(average 

cfu/g)), the proportion of animals in the herd shedding MAP, or the number of animals 

in the herd shedding ≥30 cfu/g MAP in their feces, in 3 commercial US dairy herds, 

either on the date of sampling or in the previous quarter, between 2004 and 2009.  

Sampling date is included as a random variable
a
.   

 

Variable 

Estimate 

 (OR) 

Standard 

Error 

z 

value Pr(>|z|)     

χ
2
  

(p> χ
2
) 

 

Logistic Regression based on Fecal Shedding 

(Intercept) -3.34  0.49 -6.8 <0.01  

Average fecal shedding  

(log cfu/g)
 
 

 1.78 

(5.93) 
0.44  4.0 <0.01  

       

Type 

(Alley is base) 

Other -3.83 

(0.02) 
0.94 -4.1 <0.01 

78.32 

(<0.01) Pit 0.84  

(2.32) 
0.44  1.9   0.06 

 

Logistic Regression based on Fecal Prevalence 

(Intercept)      8.8      3.1  2.8 <0.01  

ln(prevalence)      4.5      1.2  3.6 <0.01  

       

Type 

(Alley is base) 

Other -398.8 73426  0.0   1.00 21.39 

(<0.01) Pit     -1.8      3.1 -0.6   0.56 

       

ln(prevalence): 

Type 

Other -133.4 24510  0.0   1.00 15.77 

(<0.01) Pit     -1.1      1.3 -0.8   0.41 

 

Logistic Regression based on High-Shedders 

(Intercept) -3.68 0.76 -4.8 <0.01  

high shedders
b
  0.64 

(1.90) 
0.40  1.6   0.11  

       

Type 

(Alley is base) 

Other -3.24 

(0.04) 
0.99 -3.3 <0.01 

54.12 

(<0.01) Pit 1.28  

(3.6) 
0.57  2.3   0.02 

 

a
Sampling date had a variance of 2.90 for the shedding model, 3.43 for the prevalence 

model, and 4.70 for the high-shedders model.   
b
number of animals shedding ≥30 cfu/g MAP in their feces 
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Table 3.5: Results of a linear regression for Mycobacterium avium subsp. 

paratuberculosis (MAP) concentration (log(cfu/g)) in environmental samples from a 

source other than adult cow pens by average MAP shedding level in the herd 

(log(average cfu/g)), the proportion of animals in the herd shedding MAP, or the 

number of animals in the herd shedding ≥30 cfu/g MAP in their feces, in 3 

commercial US dairy herds, either on the date of sampling or in the previous quarter, 

between 2004 and 2009.  Sampling date is included as a random variable
a
. 

Variable Level Estimate 

Std. 

Error 

t 

value Pr(>t) 

χ
2
  

(Pr> χ
2
) 

 

Linear Regression based on Fecal Shedding 

Intercept -0.13  0.07 -2.0   0.06  

average fecal shedding
b
, 

log(cfu/g)
 

  0.46  0.09   5.4 <0.01  

      

Type 

(Alley is base) 

Other -0.11 0.06 -2.0   0.06 12.06 

(<0.01) Pit  0.15 0.07   2.0   0.06 

       

shedding:Type 

(Alley is base) 

Other -0.43 0.08 -5.3 <0.01 34.69 

(<0.01) Pit   0.03 0.09   0.4   0.35 

 

Linear Regression based on Fecal Prevalence 

Intercept    2.21 0.49   4.5   <0.01   

ln(prevalence)   0.83 0.18   4.5   <0.01   

       

Type 

(Alley is base) 

Other -2.80 0.44 -6.4 <0.01 63.85 

(<0.01) Pit -0.02 0.48 -0.04   0.39 

       

ln(prevalence):Type 

(Alley is base) 

Other -0.97 0.16 -6.0 <0.01 49.43 

(<0.01) Pit -0.07 0.18 -0.4   0.36 

 

Linear Regression based on High Shedders 

Intercept  -0.11 0.12 -1.0   0.23   

number of high shedders   0.14 0.08   1.7   0.10   

       

Type 

(Alley is base) 

Other -0.05 0.10 -0.5 0.34 5.12 

(0.08) Pit   0.21 0.12  1.7 0.10 

       

high shedders:Type 

(Alley is base) 

Other -0.17 0.07 -2.5 0.03 12.13 

(<0.01) 

 Pit   0.04 0.08   0.5 0.34  
a
Sampling date had a variance of 0.13 for the shedding model, 0.18 for the prevalence 

model, and 0.19 for the high-shedder model. 
b
Average shedding level for animals in the herd at the time of sampling. 
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VBJDCP samples 

 Of the 483 collected environmental samples meeting the criteria for the S6, 92 

were positive for MAP (19.0%).  There were 50 sampling dates with both FC results 

and at least 6 S6 samples from the same or previous quarter.   

The results of the logistic model for VBJDCP results showed that none of the 

S6 results (dichotomous, count, or average contamination) were significant predictors 

of MAP presence in the herd (p=0.998 for each variable, data not shown).  Likewise, 

none of the S6 predictor variables were significantly related to the FC prevalence in 

the herd (p=0.4 for each variable, data not shown), nor was herd a significant variable 

in any of the models.  However, all S6 predictor variables were positively correlated 

with the average fecal shedding in the herd (Table 3.6). 

The S6 results correctly identified as positive 19 of 47 dates (40%) in which 

animals were shedding MAP (and correctly identified as negative 3 of 3 dates with no 

positive MAP FC samples).  This indicates a relative sensitivity of 0.40 (95% CI: 0.26 

to 0.54) compared to whole herd FC, and supported our assumption of a specificity of 

1. The NAHMS environmental survey, using similar sampling methods to our study, 

found a MAP prevalence of 0.681 among dairy operations.  Assuming the sensitivity 

of environmental sampling observed in our study, the true herd prevalence of MAP 

would therefore be 0.977 (95% CI: 0.921 to 0.983). 
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Table 3.6: Results of linear regression for average fecal shedding, log(cfu/g), of 

Mycobacterium avium subsp. paratuberculosis (MAP) in individual animals in 

commercial US dairy herds between 2004 and 2009 by results of 6 VBJDCP-standard 

environmental samples (the S6), by the dichotomous results (S6 result, top), the total 

number of positive samples (Positive count, middle) or the average MAP 

concentration in the samples (mean log(cfu/g), bottom) 

Variable Level Estimate Std. Error t value Pr(>|t|) 

Residual 

Deviance 

 

Dichotomous Model 

(Intercept)   0.79 0.14  4.84 <0.01 14.02 

S6 result   0.48 0.20  2.42   0.02 

      

Farm B -0.83 0.19 -4.39 <0.01 

(A is base) C -0.47 0.22 -2.18   0.03 

 

Count Model 

(Intercept)   0.74 0.13  5.73 <0.01 12.69 

Positive count   0.17 0.05  3.38 <0.01 

       

Farm B -0.92 0.18 -5.21 <0.01  

(A is base) C -0.46 0.19 -2.37   0.02  

 

Concentration Model 

(Intercept)   0.76 0.13  5.89 <0.01 12.71 

log(mean cfu)
 a
   0.27 0.08  3.36 <0.01 

       

Farm B -0.83 0.18 -4.68 <0.01  

(A is base) C -0.37 0.19 -2.01   0.05  
a
Log (base-10) transformation  

 

Discussion 

Our study showed that environmental contamination with MAP was 

significantly correlated with MAP shedding levels in individual animals.  Other 

studies have considered the relationship between environmental contamination and 

fecal shedding in dairy cattle, with similar findings.  Contamination of bedding with 

Klebsiella pneumoniae has been associated with fecal shedding in animals using the 

bedding, but only a subset of animals were sampled and there was insufficient 
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variation in Klebsiella concentration in bedding to allow further analysis (Munoz et 

al., 2006).  Environmental sample positivity in an endemically infected herd has 

appeared to correspond temporally with active Salmonella shedding (Wray et al., 

1989).  The current study shows that average shedding level, as well as shedding 

prevalence, is important in understanding the amount of environmental MAP 

contamination via feces.   Pillars et al. (2009) likewise found a relationship between 

prevalence and environmental MAP contamination, but did not consider either the 

amount of fecal shedding or the amount of environmental contamination.  The results 

presented here usefully extend their findings; the presence of one or two animals with 

extremely high shedding rates (super shedders) could bias a model based only on 

prevalence. 

This study confirmed that the environment of known MAP positive dairy 

farms can be contaminated by animals shedding MAP, though the proportion of 

positive samples was lower than in previous studies (Lombard et al., 2006; Pillars et 

al., 2009); the difference is likely a combination of herd prevalence (which was low 

for 2 of the 3 herds in this study) and sample types (which were more varied in the 

current study than in previous studies).  Certain environments on the farm were more 

likely to be contaminated with MAP and had higher average contamination levels.  

These high risk areas included manure storage areas and shared alleyways, parts of the 

farm in which the manure of adult cows are mixed.  High MAP concentration in fecal 

cultures increased the amount of MAP found in manure storage areas, which seems a 

logical and expected result; previous studies have found that MAP can survive in 

manure storage areas for >200 days (Jorgensen, 1977; Lovell et al., 1944).  Figure 3.2 
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shows that there were a large number of negative environmental samples even when 

high contemporary fecal shedding levels were measured; these negative environmental 

samples were primarily from areas labeled „Other‟ (Table 3.1), which were not 

frequented by adult cattle or in contact with their manure and which were often not 

sampled in previous studies of environmental contamination. However, negative EC 

samples from alleys and manure collection areas were also observed in some cases 

with high contemporary average FC shedding levels (Figure 3.2). 

Our data lacked quarterly fecal sampling, limiting our analysis to the effects of 

either concurrent samples or samples from the previous quarters.  A recent 

longitudinal study found that the number of MAP-positive EC samples increased with 

increasing FC prevalence, but the converse was not consistently true, indicating that 

some environmental contamination may remain despite successful reduction of 

incidence (Pillars et al., 2009).  Therefore, we chose to include fecal sampling results 

from the previous quarter as a proxy for the current shedding level.  As these herds 

were not yet provided with FC results from the previous quarter during the quarterly 

EC sampling, little or no test-based culling would be present to bias this assumption. 

We were interested in the effect of proximity of shedding animals on MAP 

contamination in farm environments, and we found that samples taken from freestall 

pens, in which adult animals directly shared an environment, were significantly related 

to the results of individual FC inside those pens.  The results of pen sampling were 

correlated with the concurrent presence of high-shedding animals.  As these animals 

have lower milk production (Nielsen et al., 2008; Smith et al., 2009) and longer 

calving intervals (Smith et al., 2010), it may be economically desirable to detect their 
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presence and remove them.  Additionally, high shedding animals pose an important 

risk for other MAP susceptible animals in the herd (Lu et al., 2010; Pradhan et al., 

2011). Our study observed a correlation between the probability of finding MAP in 

adult cow pens and the presence of high shedders, suggesting that regular sampling of 

adult cow pens may be a good method for detecting the presence of highly infectious 

animals, in agreement with Aly et al. (2009). 

We were also interested in the ability of shedding animals in the adult cow 

pens to contaminate other environments on the farm.  Specifically, we wanted to 

identify a link between EC results for non-pen/non-pit samples and the distance-

corrected shedding level in the herd.  Such a link could not be identified in the current 

data, as statistical assumptions were not met, although a relationship was observed 

between all non-pen samples and the herd-level results of FC; there were very few 

positive non-pen/non-pit environmental samples, so the power of the distance-

corrected analysis was low.  We also were limited to straight-line distance analyses, 

ignoring walls and fences, which does not necessarily reflect traffic patterns and other 

contamination methods.  In addition, on one farm (Herd C), alleyways frequently 

passed through adult cow pens, making distance calculations inappropriate.  However, 

the low number of positive samples suggests that the level of MAP contamination in 

feed bunks, water sources, and other such locations was negligible; this in itself 

suggests that the optimal use of hygiene program resources is to focus on MAP 

contamination of maternity pens and other known transmission methods.   

 Our study showed that a single S6 sampling had a relative sensitivity of only 

0.40 compared to whole-herd FC; there were only 3 sampling dates with no positive 
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fecal cultures, and the herds were known to be endemically infected, so specificity 

calculations would be inappropriate.  These results agree with the simulations of 

Tavornpanich et al. (2008), which estimated the herd sensitivity of this testing method 

to be 0.38 with a within-herd prevalence of 0.05; the 3 herds in this study had a 

prevalence of 0.05 for the majority of sampling dates.  This has important implications 

for the interpretation of results from this sampling method; a negative result by this 

method does not necessarily mean that the sampled herd is MAP-free.  The relative 

sensitivity of environmental culture was calculated based on the imperfect FC test, 

which is known to have low sensitivity in low-shedding animals (Collins et al., 2006); 

this would lead to a still lower true sensitivity for the VBJDCP protocol.  The S6 

samples were unable to significantly predict the presence of MAP in the feces of adult 

animals on the farm, nor the FC prevalence of MAP in the herd, although both of these 

could have been sensitive to the low number of sampling dates with no positive FC 

and the overall low prevalence of MAP in the herds.  However, the S6 samples, 

especially their average MAP cfu‟s, were able to predict well the average fecal 

shedding of the herd.  This would indicate that the S6 method is sensitive to the 

shedding level of animals within a herd, and may not be able to detect herds in which 

fecal shedding is low; this was noted by Pillars et al. (2009), who could not culture 

MAP from environmental samples taken from herds with a prevalence of <0.02, and 

by Raizman et al. (2004), who found that infected herds with 2 negative environmental 

cultures had ≤0.04 prevalence by pooled random sampling.  As this category includes 

newly-infected herds, in which the majority of animals would be latently infected or 
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low-shedding, S6 results may not be sufficient to detect herds with new MAP 

infections.   

This study shows that the presence of MAP in the environment of a farm or 

pen is correlated with fecal shedding in the cows; however, with our diagnostic 

methods, MAP may be absent from environmental samples despite high levels of fecal 

shedding in the cows. 
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CHAPTER 4 

ESTIMATING TRANSMISSION RATE PARAMETERS FOR ENDEMIC 

CHRONIC PATHOGENS USING A REVERSIBLE-JUMP MARKOV CHAIN 

MONTE CARLO MODEL: PARATUBERCULOSIS IN DAIRY CATTLE 

Abstract 

A Bayesian model was developed to estimate the transmission rates from two 

heterogeneous classes infected with an endemic chronic pathogen of dairy cattle, 

Mycobacterium avium subsp. paratuberculosis (MAP), using reversible-jump Markov 

Chain Monte Carlo (rjMCMC) methods.  Unobserved state transition times were 

treated as nuisance parameters.  As MAP diagnostics have poor sensitivity, infection 

status of test-negative animals was estimated with a hidden Markov model.  The 

model was validated with simulated data designed to mimic longitudinal field data 

from a commercial dairy herd.  The hidden Markov model implemented with the 

rjMCMC method was shown to be incapable of accurately estimating transmission 

rates for an endemically infected population due to imperfect diagnostics; the 

Bayesian model implemented with the MCMC method on a full simulated dataset (all 

transition times observed) was also incapable of accurately estimating transmission 

rates due to differences in model assumptions.  This model appears to be an 

inappropriate method for estimating the true transmission rate of MAP in commercial 

dairy herds. 

Introduction 

Endemic chronic infectious diseases can be difficult to characterize 

mathematically, especially when imperfect diagnostic tests result in a large number of 
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undiagnosed cases.  In these circumstances, the technique most capable of producing 

stable, accurate results is the rjMCMC model. These models are useful in situations in 

which multiple inter-related parameters must be estimated simultaneously using sparse 

data (Becker and Britton, 1999; Streftaris and Gibson, 2004b).  In addition, rjMCMC 

models can be used to convert discrete data, such as annual test results, into 

unobserved continuous variables, such as disease status (Green, 2003; Neal and 

Roberts, 2004; O'Neill, 2002; O'Neill and Becker, 2001; O'Neill and Roberts, 1999), 

and can correct for low diagnostic sensitivity by allowing for a test-negative individual 

to be classified as infected by the process of reversible jumps (Auranen et al., 2000; 

Forrester et al., 2007). 

While rjMCMC techniques have been developed to estimate mathematical 

model parameters for many infectious diseases with substantial latent periods 

(Cauchemez and Ferguson, 2008; Lekone and Finkenstädt, 2006; Streftaris and 

Gibson, 2004a) or imperfect diagnostics (Forrester et al., 2007; Glass et al., 2007), 

these techniques have only been applied to epidemic situations.  In these scenarios, the 

change in the infectious pressure over time due to the change in the proportion of 

infected allows for close pinpointing of transmission rates with minimal data.  In 

contrast, endemic diseases frequently show relatively small changes in prevalence, 

leading to a lack of variation in infectious pressure.  As the few observed changes tend 

to unfold over long timeframes, high levels of correlation may be observed between 

the estimated transmission rates of heterogeneously infectious groups, or between the 

transmission rate and the true status of test-negative individuals.  In order to study 
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endemic diseases, especially with imperfect diagnostics, longitudinal studies with 

repeated testing are likely to be necessary. 

In human medicine, these longitudinal studies may be economically or 

politically difficult; in these circumstances, livestock may serve as a model to first 

develop the necessary techniques (Lanzas et al., 2010).  One livestock example of an 

endemic, chronic infectious disease is Mycobacterium avium subsp. paratuberculosis 

(MAP), the causative agent of Johne‟s disease.  Ruminants exposed to MAP can 

develop chronic progressive intestinal infections leading to decreased milk production 

(Smith et al., 2009), wasting, and early culling (Smith et al., 2010).  A long latent 

period (Mitchell et al., 2008)  and imperfect diagnostic tests (Collins et al., 2006) have 

made detection of MAP infection difficult, requiring long follow-up times and 

repeated testing.  Estimates from experimental trials have been made of the duration of 

latency (Rankin, 1961) and the rate of disease progression (van Schaik et al., 2003).  

However, experimental trials fail to reproduce field transmission conditions, as cost 

issues prevent these trials from recreating all levels and types of infectious exposure.  

Previous attempts to estimate parameters for MAP transmission models have relied on 

large datasets, but have been limited by the poor sensitivity of diagnostic tests (Collins 

et al., 2006; Whitlock et al., 2000; Whitlock et al., 2007).  A model describing MAP 

transmission in dairy herds shows the importance of longitudinal studies; infectious 

pressure is dependent on the presence of animals shedding MAP transiently or 

intermittently, many of which will not be readily detectable (Mitchell et al., 2005; 

Mitchell et al., 2008).  Analyzing field data can be complicated, given the number of 
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confounding factors and the knowledge gaps caused by imperfect diagnostics and 

discrete data from continuous systems.   

Models for MAP transmission indicate that several classes of infectious 

animals (transiently shedding, low-shedding, and high-shedding) may be important in 

infection (Lu et al., 2008; van Roermund et al., 2007; Whitlock et al., 2005); therefore, 

multiple transmission parameters must be estimated.  In dairy herds, the exact source 

of a MAP infection is generally unknown and must be considered probabilistically.  

Infection with MAP generally occurs within the first year of age (Benedictus et al., 

2008), but the length of the latent period is such that several years are required for 

antemortem observation of the infection status of calves exposed to MAP.  As a result, 

field trials of MAP must cover long periods of time and analysis must include total 

animal histories.  The data available from commercial dairy herds tend to be the birth 

date and culling/death date of all animals, the dates at which animals are tested, and 

the test results. 

The objective of this study is to estimate transmission parameters for dynamic 

mathematical models of MAP commercial dairy herds using an rjMCMC model for 

the interpretation of longitudinal field trials for endemic chronic infections. 

Materials and Methods 

A model has been previously developed (Lu et al., 2008; Mitchell et al., 2008) 

to describe the dynamics of MAP in dairy herds; this model was simplified for the 

purposes of this study.  Figure 4.1 shows a flow chart describing the simplified model, 

with all variables described in Table 4.1. Susceptible calves (X1) may become resistant 

to infection at 1 year of age (X2), or they may be infected at rate λ. Infected calves (Tr) 
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transiently shed low levels of MAP until entering latency at rate θ; latent animals (H) 

become low-shedding animals (Y1) at rate ζ; low-shedding animals become high-

shedding animals (Y2) at rate ν.  High-shedding animals may be culled for clinical 

signs at rate α; otherwise, all animals over 1 year of age are subject to a constant 

death/culling rate of μ.  The force of infection for transmission, λ, at time t is 

Equation 4.1 

        tYtTrtYt 2211   ,  

where β1 is the transmission parameter for low-shedding animals and β2 is the 

transmission parameter for high-shedding animals.   

 
Figure 4.1: Flow chart of the mathematical model for MAP in a dairy herd used to 

define the rjMCMC model. 

 

Table 4.1: Variables used in the model of paratuberculosis spread in a dairy herd 

diagrammed in Figure 4.1 

Variable  Description 

X1  susceptible calves 

X2  resistant adults 

Tr  transiently shedding infected heifers 

H  latently infected animals 

Y1  low shedding infected adults 

Y2  high shedding infected adults 

 

This study will present a Bayesian model designed to include data from all 

animals in the herd during the study period and will estimate the disease transmission 

X1 

X2 

Tr 

H Y1 Y2 

μ μ μ μ 

λ 

α 

ρ υ 

ν σ 
adults 

μ 

calves 
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parameters (β1 and β2).  All calendar times are measured in months since the first 

whole-herd test. 

Model Specification 

This is a Bayesian hierarchical model for the transmission parameter β1, which 

is the base contribution of MAP-shedding animals to the infection rate; it is assumed 

that the contribution of high-shedding animals is 4 times the contribution of low-

shedding and transiently-shedding animals.  The compartmental variables (X1, I, Tr, 

Y1, Y2), henceforward referred to as π, are functions of the calendar times (tb, tI, tE, 

tY1, tY2, td) at which animals enter and leave the compartments (X1, Tr, H, Y1, and Y2, 

respectively).  Of these times, tb and td, are observed, as are testing result times tt1 and 

tt2, and we will refer to these observed times as τ; the remaining times (tI, tE, tY1, tY2), 

henceforward referred to as γ, are unobserved.  The joint density of the parameter, the 

observations, and the unobserved variables was 

Equation 4.2 

                               . 

As in Auranen et al. (2000) the components of the right-hand side of the equation are 

referred to as the observation level, the transmission level, and the prior level, 

respectively.   The structure of each level is explicitly stated below. 

Observation level 

The role of this level is to connect the unobserved (augmented) data, γ, with 

the observed data, τ.  This level is presented at the level of a single animal, i.  For the 

sake of clarity, we have omitted the indicator i.  The joint density of an animal‟s 

observed data is expressed as  
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Equation 4.3 

                                                  

where the components of the right-hand side of the equation refer to high-shedding, 

low-shedding, and infection, respectively.  This necessarily assumes that tt2 is 

independent of tb, and that both are independent of tt1 and td.  This assumption is 

reasonable as the time of birth is not related to the probability of testing positive given 

infection and with our previous assumption that all high-shedding animals will have 

high-positive test results regardless of time of death/culling. 

The distribution of an animal‟s high-positive result is a discrete uniform 

distribution, 

Equation 4.4 

                             
 

  
  

where I{} denotes the indicator function.  This distribution assumed that all high 

shedding animals had at least one high-positive test result, and that there is annual 

testing and no false-negative test results.   

The distribution of an animal‟s low-positive test result is the joint distribution of the 

positive test results given shedding onset, P(tt1,td|tY1), and the truncated exponential 

distribution for onset of latency, which is dependent on the experimentally-determined 

parameter υ: 

Equation 4.5 
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where the distribution of positive test results given shedding onset is the weighted sum 

of 2 discrete uniform distributions, 

Equation 4.6 

                           

  
  

              
             

    

                 
  

The weighting factor, Se, is the sensitivity of a fecal culture test to low-shedding 

animals and 1-Se, by extension, is the probability of a single false negative fecal 

culture test; annual testing is assumed.  

The distribution of an animal‟s birth date with respect to infection is given as  

Equation 4.7 

                            
 

  
                

     

    

  

with rate of infection λ, as described in Equation 4.1. 

Transmission level 

The distribution of the compartmental variables, which are direct functions of 

the unobserved data, is assumed to be Poisson distributed,  

Equation 4.8 

                    
           

    

     
 

 

where incidence I(t) is the count of infections at time t,                      , 

and X1(t) and λ(t) are as previously defined.   

Prior level 
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The prior for the parameter β1 was chosen to be uniform on the range [0,n] 

where n approaches infinity. 

MCMC Sampling 

We used a Markov chain Monte Carlo for estimation, constructed so the 

stationary distribution is the posterior distribution of the parameters and augmented 

data given the observed data, denoted P(γ,β1|τ).  For each test-positive animal and a 

proportion PFN of the test-negative animals, γ(i) was drawn from the distributions 

described in the observation level section above, Equations 4.3-4.7.  The chain was 

started with these augmented data and the initial seed was drawn from the uniform 

distribution U[0.0001,0.005].  We performed random-walk Metropolis sampling 

(Gilks et al., 1996), which should allow convergence to the desired posterior (Roberts 

and Tweedie, 1996). At each iteration, the model parameter β1 was resampled; if the 

current value was b, a new value b* was generated so that b*=p+δu and u was drawn 

from the uniform distribution U[-0.5,0.5] with δ selected so as to provide sufficient 

mixing.  At every fourth iteration, either the unobserved data γ was resampled (with 

probability 0.5) or a Metropolis sampling was performed in which a test-negative 

animal was randomly selected and a new γ(i) was drawn assuming that I{tI>0}=1-

I{tI*>0}. 

We performed 50,000 iterations for each run of the MCMC algorithm and the 

first 1300 were discarded as the burn-in period as recommended by the Raftery 

diagnostic test (Raftery and Lewis, 1992).  The remaining output was recorded to 

constitute a sample from the posterior distribution.  The convergence of the MCMC 

was tested with the Gelman-Rubin criterion (Gelman and Rubin, 1992): 2 chains were 
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run with different initial seeds and a Gelman-Rubin Information criterion (GRIC) 

value under 1.1 was a sign for convergence. 

Validation 

 We validated the model using data simulated by an individual-based model 

using a Gillespie algorithm (Appendix 1).  Data was provided from this model for 2 

values of β1, 0.001 and 0.002, which produced noticeably different predicted 

prevalences.  As this model output included the true transition times, τ, and therefore 

the compartmental variables, π, it was possible to model both the reversible-jump 

model, P(τ,γ,β), and the full-data model, 

Equation 4.9 

                     

where P(π|β1) is described in Equation 4.8.   

 As animals that have not been tested for MAP infection do not add 

information, only animals added to the herd at least 2 years prior to the end of the 

simulation were included in the analysis.  Additionally, only animals added to the herd 

at least 25 years after the beginning of the simulation were included, so as to include 

only data from herds in an endemic steady-state.  Deviation from the true value of β1 

was calculated by subtracting the true value from the predicted values in the 

converged chain.  Proportional deviation from the true value was calculated by 

dividing the deviation by the true value. 
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Results 

The posterior density functions of the deviation and proportional deviation, 

predicted from simulated data, are shown in Figure 4.2.  The full data chains have 

reached convergence  

 

Figure 4.2: Posterior density of deviation (top) and proportional deviation (bottom) 

from true MAP transmission rate (β1=0.001, solid black line; β1=0.002, dashed red 

line) for a full data model (left, Equation 4.9) and a reversible jump model (right, 

Equation 4.2). 
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(GRIC < 1.001) but the reversible jump chains have not (GRIC = 1.94 for β1 = 0.001, 

GRIC = 4.12 for β2 = 0.002).  The recommended chain length for the full data model, 

based on the Raftery diagnostic test, was more than 83,000 iterations; for the 

reversible jump model, the recommended chain length was more than 407,000 

iterations.  As an average iteration of the reversible jump model requires 5 seconds, 

the time required to reach this length for a single chain is 24 days. 

As seen in Figure 4.2, neither model (full data or reversible jump) accurately 

predicts the true transmission rate.  The full data model is able to converge to a stable 

distribution consistently lower than the true value, although the amount of this 

deviation is dependent on the true transmission rate.  In contrast, the reversible jump 

model results in poor, slow convergence, with the high transmission rate 

underestimated and the low transmission rate overestimated. 

Discussion 

 The proposed model for estimating MAP transmission rates in dairy cattle 

clearly is insufficient, even for simulated data.  The failure of the full data model is 

most likely due to some differences between the simulation model and the 

assumptions of the Bayesian model.  The primary difference in assumptions is that of 

stochastic aging as opposed to deterministic aging: in the simulation model, animals 

are susceptible for 1 year on average, but may become resistant earlier or later 

(depending on an exponential distribution with rate = 1 year).  In contrast, the 

Bayesian model assumes that all susceptible animals become resistant at 1 year of age, 

which could misestimate the number of susceptible animals.  This is most important 

when the transmission rate is high and most animals are infected, as the animals 
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leaving susceptibility early are more protected from infection; the result is an 

underestimation of the transmission rate, as observed.  It would be interesting to test 

the Bayesian model using data simulated under the same assumptions, but the time 

required for that is beyond the scope of this work at this time. 

 The failure of the reversible jump model is more easily explained: there is 

simply too little information provided by antemortem testing for MAP.  If postmortem 

testing is added to the model, with an ability to detect latently infected animals, the 

model converges more quickly, but the resulting posterior distribution is biased in the 

same way (results not shown).  Lacking information on the exact times at which 

animals become infected and begin shedding, the model is unable to accurately 

estimate the transmission rate. 

As the transmission model-based Bayesian methodology failed to estimate the 

transmission rate, other estimation methods should be considered for this system.  The 

values currently used in theoretical modeling studies (Lu et al., 2008; Mitchell et al., 

2005; Mitchell et al., 2008) were chosen empirically in order to reproduce the steady-

state prevalence values observed in different herds.  An observational study found an 

increased risk of infection from infected dams, higher shedding prevalence, or the 

presence of an infected calf, but the values provided by this were in terms of odds 

ratios rather than rates (Benedictus et al., 2008).  It may be of interest to consider a 

Bayesian time-to-event model, which would estimate a constant or time-dependent 

infectious pressure based on the time between birth and positive test results, 

incorporating existing knowledge of compartment transition rates and test sensitivity.  
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Similar models have been developed for clinical outcomes of disease in swine 

(Baadsgaard et al., 2004). 

 In summary, the Bayesian method proposed in this study was 

insufficient for accurately estimating MAP transmission rates in endemically infected 

commercial dairy herds.  Other estimation methods should be explored.  
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APPENDIX 1 

STOCHASTIC MODELING OF INDIVIDUAL ANIMALS FOR SPREAD OF 

MYCOBACTERIUM AVIUM SUBSP. PARATUBERCULOSIS IN ENDEMICALLY 

INFECTED DAIRY HERDS 

 

Introduction 

 In order to simulate data for validation of the Markov Chain Monte Carlo 

(MCMC) model, 2 stochastic models were developed.  Each produces individual 

animal information from endemically infected dairy herds, based on a user-defined set 

of parameters.   

Models and Methods 

 These models are based on the age-stratified map model first proposed by 

Mitchell et al. (Mitchell et al., 2008), shown in figure A.1.1.  Briefly, animals are 

classed into 3 age groups (calves, <1 year old: heifers, 1-2 years old; adults, >2 years 

old) and grouped according to infection status (X, susceptible; Tr, transiently 

shedding; H, latent; Y1, low-shedding; Y2, high-shedding). 

 

Figure A.1.1: A schematic diagram of the conceptual model used to simulate animal 

data.  All classes and parameters are defined in the text. 
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Calves are born at rate μ to be susceptible (X1), or vertically infected (Tr1) with 

probability γ.   Susceptible calves can be infected at rate λ to become transient 

shedders (Tr1) or can age into resistant heifers (X2) at rate ρ1.  Resistant heifers age 

into resistant adults (X3) at rate ρ2.  Transiently shedding calves age at rate ρ1 into 

transiently shedding heifers (Tr2), which become latent heifers (H2) at rate υ.  Latent 

heifers become latent adults (H3) at rate ρ2, and latent adults become low-shedding 

adults (Y1) at rate σ.  Low-shedding adults become high-shedding adults (Y2) at rate ν, 

and high-shedding adults are culled for clinical disease at rate α.  Each age class 

experiences a general mortality rate (calves, μ1; heifers, μ2; adults, μ3).  This model can 

be defined by the following system of ordinary differential equations (ODE): 

Equation A.1.1
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where 

Equation A.1.2 

  
              

 
 

                      

  
                                        

 
 

                               

and all parameter definitions and values are given in Table A.1.1.  As a reference, this 

model was simulated in the lsoda function of the odesolve package in R. 

Gillespie Algorithm 

 The first model presented used Gillespie‟s direct algorithm to simulate 

stochastic dynamics of MAP transmission (Keeling and Rohani, 2008).  In this 

method, the rate of each possible event is calculated; the sum of all rates is then the 

total rate of change of the system.  The time to the next event is calculated as an 

exponentially distributed random variable with a rate equal to the total rate of change.  

The event to occur is drawn at random from all possible changes, weighted by their 

relative rates.  For the MAP model, values for parameters are presented in Table A.1.1 

and the possible events and their individual rates are presented in Table A.1.2.   This 

model is based on the stochastic modeling system presented by Lu et al. (Lu et al., 

2010).  Herd size was set originally to 171, with 100 adult animals, 33 heifers 

(between 1 and 2 years of age), 33 susceptible calves (<1 year old), and 5 transiently 

shedding calves.  
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Table A.1.1: Parameter values for the compartmental model of MAP 

Parameter Definition Value (/year) Reference 

μ1 death rate of calves 0.111 1 

μ2 death rate of heifers 0.007 1 

μ3 death rate of adults ODE, tau-leap: 0.33  1 

Gillespie: μ3inv+μ3v 7 

μ3inv involuntary death rate of adults 0.048 1 

μ3vol voluntary death rate of adults 

without disease-based culling 

0.285  1 

μ3dz disease-based culling rate of 

adults 

δ1Y1/N3+(δ2+α)Y2/N3 7 

μ3v voluntary death rate of adults 

with disease-based culling 

μ3vol-μ3dz 7 

μb female birth rate 0.37 1 

δ1 culling rate of low-shedders 0 8 

δ2 culling rate of high-shedders 0 8 

α culling rate of high-shedders 

due to clinical disease 

0.7 2 

ρ1 rate of aging from calf→heifer 1 9 

ρ2 rate of aging from heifer→adult 1 9 

υ rate of transition from transient 

shedding to latency 

2 3 

σ rate of transition from latency to 

low shedding 

0.667 2 

ν rate of transition from low 

shedding to high shedding 

0.33 2 

γ1 probability of vertical 

transmission due to latency or 

low shedding 

0.15 4 

γ2 probability of vertical 

transmission due to high 

shedding 

0.17 4 

β1 infection rate of transient and 

low shedders 

0.002, 0.01, 0.05 8 

β2 infection rate of high shedders 4β1 7 

Se1 sensitivity of fecal culture to 

diagnose low-shedding animals 

0.5 5 

Se2 sensitivity of fecal culture to 

diagnose high-shedding animals 

0.9 6 

References: 1: (NAHMS, 1996); 2: (Whitlock et al., 2000) and (van Schaik et al., 

2003); 3: (Rankin, 1961); 4: (Whitlock et al., 2005); 5: (Whitlock et al., 2000); 6: 

(Collins et al., 2006); 7: calculated; 8: user-defined; 9: assumed 
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Table A.1.2: Events and their rates for the stochastic model based on the Gillespie 

algorithm 

Event Change Rate 

Death of X1 X1 →X1-1  μ1X1 

Death of X2 X2 →X2-1  μ2X2 

Death of X3 X3 →X3-1  μ3X3 

Death of Tr1 Tr1 →Tr1-1  μ1Tr1 

Death of Tr2 Tr2 →Tr2-1  μ2Tr2 

Death of H2 H2 →H2-1  μ2H2 

Death of H3 H3 →H3-1  μ3H3 

Death of Y1 Y1 →Y1-1  μ3Y1 

Death of Y2 Y2 →Y2-1  μ3Y2 

Cull Y1 Y1 →Y1-1  δ1Y1 

Cull Y2 Y2 →Y2-1  δ2Y2 

Clinical cull of Y2 Y2 →Y2-1  αY2 

Progression of Tr2 Tr2 →Tr2-1; H2 →H2+1   υTr1 

Progression of H3 H3 →H3-1; Y1 →Y1+1   σH2 

Progression of Y1 Y1 →Y1-1; Y2 →Y2+1   νY1 

Susceptible birth from X3 X1→X1+1 μbX3 

Susceptible birth from H3 X1→X1+1 (1-γ1)μbH3 

Susceptible birth from Y1 X1→X1+1 (1-γ1)μbY1 

Susceptible birth from Y2 X1→X1+1 (1-γ2)μbY2 

Infected birth from H3 Tr1→Tr1+1 γ1μbH3 

Infected birth from Y1 Tr1→Tr1+1 γ1μbY1 

Infected birth from Y2 Tr1→Tr1+1 γ2μbY2 

Direct transmission by Tr1 X1 →X1-1; Tr1 →Tr1+1 β1Tr1X1 

Direct transmission by Tr2 X1 →X1-1; Tr1 →Tr1+1 β1Tr2X1 

Direct transmission by Y1 X1 →X1-1; Tr1 →Tr1+1 β1Y1X1 

Direct transmission by Y2 X1 →X1-1; Tr1 →Tr1+1 β2Y2X1 

 

To produce individual animal data, the initial herd at time 0 was simulated by 

randomly sampling birth dates from a reasonable range of years for each group of 

animals, with years divided into tenths: calves from time 0 to time -1, heifers from 

time -1 to time -2, and adults from time -2 to time -7.  Infection time for transiently 

infected calves was set at time -1.  For each animal, the following information was 

recorded in a permanent file: birth date (tb), death date (td), infection date (tI), date of 

latency onset (tH), date of shedding onset (tY1), date of high-shedding onset (tY2), date 

of first low-positive test (tlow), and date of first high-positive test (thigh).  Any dates 
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corresponding to events that did not occur for an individual were recorded as 0.  

Current category status was also tracked for each animal, with possible statuses of X1, 

X2, X3, Tr1, Tr2, H2, H3, Y1, Y2, or dead.   

At the time of each event, an animal was selected from the eligible category for 

that event and the time of the event was recorded in that animal‟s history.  For 

example, if a direct transmission occurred, an animal would be chosen at random from 

those animals classified as X1 at time 1.  The chosen animal would be assigned an 

infection time tI=event time, and the animal‟s status would be changed to Tr1.  If the 

event was a birth, an animal was added to the herd with status X1 and tb=event time (if 

a susceptible birth) or status Tr1 and tb=tI=event time (if an infected birth).  If the event 

was a death, the oldest eligible animal was assigned a time of death td=event time and 

its status was changed to dead.   

 Two methods of animal aging were considered: stochastic and deterministic.  

For the stochastic aging model, the events in Table A.1.3 were added to the events 

listed in Table A.1.2 and aging was processed as any other event, with the oldest 

eligible animal moving to the next age category.  For the deterministic aging model, it 

was assumed that animals do not age at random, so aging was handled in parallel to 

the random events modeled in the Gillespie algorithm.  At each time step, after the 

random event was recorded, any animals that passed their first year of age during the 

time step (time-tb≥1) were moved from X1 to X2 or from Tr1 to Tr2, as appropriate.  

Then, any animals that passed their second year of age during the time step (time-tb≥2) 

were moved from X2 to X3, from Tr2 to H3, or from H2 to H3, as appropriate. 
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Table A.1.3: Additional events and their rates for the stochastic aging version of the 

model based on the Gillespie algorithm 

Event Change Rate 

Aging of X1 X1 →X1-1; X2 →X2+1  ρ1X1 

Aging of X2 X2 →X2-1; X3 →X3+1  ρ2X2 

Aging of Tr1 Tr1 →Tr1-1; Tr2 →Tr2+1  ρ1Tr1 

Aging of H2 H2 →H2-1; H3 →H3+1  ρ2H2 

 After the full simulation, test results were calculated at annual intervals.  Once 

in each year in the simulation, animals in category Y1 at the testing date were sampled 

with probability Se1; any sampled animals were assigned a low-positive test date 

tlow=time unless an earlier low-positive test result had been recorded.  Likewise, on the 

same date, animals in category Y2 were sampled with probability Se2 and sampled 

animals were assigned a high-positive test date thigh=time unless an earlier high-

positive test result had been recorded. 

Tau Leap 

The second model was simulated using the tau leap methodology (Keeling and 

Rohani, 2008).  In this method, time is advanced in regular intervals; the number of 

times an event occurs over the time interval is calculated as a Poisson-distributed 

random variable with parameter rate*δt, where rate is the rate of the event and δt is the 

time interval.  For the MAP model, infection pressure λ(t) at time t was calculated as  

Equation A.1.3 

                                    l 

where β1 and β2 are defined in Table A.1.1 and the compartments are defined above.  

The rate of infections, then, was λ(t)*X1(t).  After the number of infection events was 

drawn from the Poisson distribution for a time point, the animals to be infected were 
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chosen at random from all susceptible animals at that time point, X1(t), and assigned 

an infection time, tI=t.  

All other events were calculated from exponential distributions based on the 

parameters described in Table A.1.1.  At birth, a calf was assigned a date of death 

based on μ1; if that date was greater than the time at which the animal entered the 

heifer compartment, tage1, the animal survived to become a heifer, the first death date 

was discarded and a new date of death was assigned based on μ2; if the second death 

date was greater than the time at which the animal entered the adult compartment, tage2, 

the animal survived to adulthood and a third date of death was assigned based on μ3.  

In mathematical terms, 

Equation A.1.4 

    

                                       

                                                       

                                  

  

where td is the time of death.  The time of aging was modeled both stochastically and 

deterministically.  In the stochastic aging model, for each animal, tage1~Exp(ρ1) and 

tage2~Exp(ρ2)+tage1, with the restriction that tage1≤24 months and tage2≤36 months.  In 

the deterministic aging model, tage1=1 year and tage2=2 years for all animals.  The 

number of calves born in a timestep was set equal to the number of animals dying in 

that timestep; calves were born at time t with vertically-transmitted infection with 

probability γ(t), where  

Equation A.1.5 

                             

and all parameters are defined in Table A.1.1. 
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 Infected animals were assigned transition times (transient →latent, latent 

→low-shedding, low-shedding →high-shedding) based on the exponential 

distributions with the rates defined in Table A.1.1.  All transitions with times after the 

assigned time of death were assumed not to occur.  Animals that become high-

shedding were assigned a new death date with rate μ3+α.  All transition times were 

assigned at the time of infection.  For each animal, then, a permanent file is maintained 

with the following information: birth date (tb), death date (td), date of entering heifer 

group (tage1), date of entering adult group (tage2), infection date (tI), date of latency 

onset (tH), date of shedding onset (tY1), date of high-shedding onset (tY2), date of first 

low-positive test (tlow), and date of first high-positive test (thigh).   

 The model proceeded with the following algorithm: 

1. Time is updated, t=t+δt 

2. Newborn calves are added, based on number of deaths during previous time 

step, and vertical infections are added based on γ(t). 

3. The number of animals in each category (Figure A.1.1) is updated, and λ(t) is 

calculated. 

4. The number of horizontal infections is calculated, and transition times are 

assigned for each newly infected animal. 

5. The number of animals in each category (Figure A.1.1) is updated, and γ(t) is 

calculated. 

An initial herd was simulated with 100 newborn animals, and steps 1 and 2 were 

repeated for 120 months to establish stable population dynamics.  At that point, the 5 

youngest calves were assigned an infection time of 120 and all transition times were 
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assigned.  Steps 1 to 5 were then repeated until the time reached 110 years; 

simulations in which fadeout occurred were discarded, as only endemic dynamics 

were of interest. 

Comparisons 

 Test results were simulated post-hoc for the individual animal records; all 

animals were assumed to be tested on an annual basis with the fecal culture test.  The 

number of animals testing positive on a testing date was simulated as a binomial 

distribution with the number of animals shedding at a given level and the probability 

of testing positive being the sensitivity of fecal culture for animals at that shedding 

level.  The first date at which an animal tested positive at a level (low or high) was 

recorded. 

 All three models (ODE, Gillespie, and tau leap) were simulated for a set of 3 

transmission rates for low-shedding animals (β1), assuming that high-shedding animals 

were 4 times as infectious (β2=4β1).  All were simulated for an initial herd with 166 

animals.  For the Gillespie and ODE models, this consisted of 100 adults, 33 heifers, 

and 33 calves, 5 of which were transiently infected at the start time.  For the tau leap 

model, the herd was initialized with 166 calves, herd dynamics were stabilized at 120 

months, and the 5 youngest calves were infected.    The simulation was continued for 

100 years after introduction of infection to ensure endemicity; fadeouts were rare (0-2 

per 100 realizations) and were discarded. 

All models were programmed and simulated in R 2.11.1 (R Development Core 

Team, 2010), which was accessed through the Revolution R Analytics interface (© 

2010 Revolution Analytics, Inc.).   
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Results 

 All models reached endemic equilibrium within 25 years.  The deterministic 

endemic prevalence of the ODE model and the distribution of prevalence at 

endemicity for 15 realizations each of the Gillespie and tau leap models are shown in 

Figure A.1.2.  The distribution of test-positive animals present monthly in 15 

realizations each of the Gillespie and tau leap models are shown in Figure A.1.3.   

 

Figure A.1.2: Comparison of distribution of mean endemic prevalence for 100 

realizations each of the Gillespie and tau leap stochastic models with stochastic and 

deterministic aging, compared to the endemic prevalence from the deterministic 

(ODE) model, over 3 levels of transmission rate.  All herds had approximately 100 

adult animals and were simulated for 100 years. 
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Figure A.1.3: Comparison of distribution of average number of test-positive animals 

present each month at the endemic state for 100 realizations each of the Gillespie and 

tau leap stochastic models with deterministic and stochastic aging, over 3 levels of 

transmission rate.  All herds had approximately 100 adult animals and were simulated 

for 100 years. 

 

 The results of the Gillespie model with stochastic aging after 1000 simulations 

are shown in Figure A.1.4; a greater number of simulations decreases the amount of 

stochastic effect in the distributions, allowing for the true distribution to be seen more 

clearly. 
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Figure A.1.4: Comparison of the mean endemic prevalence, proportion of shedding 

animals, number of low-positive animals, and number of high-positive animals over 

1000 simulations of the Gillespie model with stochastic aging to the number predicted 

by the ODE model over 3 levels of transmission rate β1.  All herds had approximately 

100 adult animals and were simulated for 100 years. 

 

Discussion 

 Three models, one deterministic and two stochastic, were presented based on a 

similar understanding of MAP dynamics in dairy herds.  The stochastic models had 2 

different variations each for simulating aging.  These different methodologies 

produced similar results, but with some variations. 
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 The tau leap methodology is an approximation of Gillespie‟s direct algorithm, 

and the results shown here illustrate the effect of the approximation.  The tau leap 

model was more sensitive to the transmission rate than the Gillespie model with 

stochastic aging, as was the Gillespie model with deterministic aging. As expected, 

most results of the ODE model most closely resembled the results of the Gillespie 

model with stochastic aging, which used the most similar assumptions about the 

system.  The tau-leap method uses a timestep greater than the average timestep in the 

Gillespie direct algorithm.  This allows multiple changes to occur during each 

timestep, and these changes are not independent.  So long as multiple changes do not 

occur to the same animal during a single timestep, this lack of independence in not a 

fatal flaw; however, the impact may still be observed in the results.  For all outputs 

considered, the tau leap simulations showed less variability than the Gillespie 

simulations, and all models produced more variability when transmission rates were 

low.  Gillespie‟s direct algorithm has more inherent room for variability than the tau 

leap methodology, especially in this model, as it only allows a single event to happen 

at any timestep.  At low transmission rates, the lumpiness of the system (changes must 

occur on the level of whole animals) is more likely to increase the stochastic effect for 

all models, especially for small herd sizes such as considered here.  Figure A.1.4 

shows that, despite the variability in results, the mean of the Gillespie model with 

stochastic aging truly follows the predicted results in the ODE model. 

The results of the Gillespie model with deterministic aging also do not 

resemble the results of the ODE model so well as that with stochastic aging; the 

difference in assumptions about the duration of susceptibility allows for higher 
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prevalence at high transmission rates.  As no animals gain resistance before 1 year of 

age, more infections become possible; with stochastic aging, animals that aged out of 

the calf strata later were more likely to be infected. 

 All of the stochastic models predict a higher number of low-positive animals 

than the ODE model at high transmission rates.  The ODE model prediction is based 

on the probability of testing positive given a single test.  The stochastic models, on the 

other hand, simulate annual testing of animals, and animals that have previously tested 

positive retain that status, regardless of future test results.  Thus, an animal remaining 

in the herd for more than one year after a positive test result can increase the total 

number of test-positive animals in those future years, even if the animal were to test 

negative at all future times.  This effect is stronger for low-shedders and at high 

transmission rates because higher numbers of low-shedding animals are tested in 

general and higher numbers of shedding animals are tested in high transmission rate 

herds (with the corresponding high prevalence).  Testing more shedding animals 

increases the number of animals with previous test-positive results. 

 In all models, changes to the transmission rates produce a greater variation in 

the true prevalence than in the proportion of animals shedding or in the observed 

prevalence.  While true prevalence is sensitive to the transmission rates, observed 

prevalence is rather insensitive.  This is due to the limitations of the diagnostic 

method: sensitivity to low-shedding animals is poor and sensitivity to latent animals is 

0.  As latent and low-shedding animals comprise the bulk of the infected adults, and as 

only adults are tested for MAP, a large proportion of infected animals will remain 
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undetected.  This leaves a very small range of test-positive animals, which does not 

allow for a great deal of variability to be observed. 

 The purpose of the stochastic models presented here is to produce simulated 

datasets representing realistic animals in a dairy herd.  The information produced for 

each animal can include only what is observable in a herd (birth and death date, date of 

first low- and high-positive fecal culture) or can be expanded to include information 

we would like to observe (i.e., dates of infection and onset of shedding).  These data 

will be of use in validating statistical models designed for field data. 
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CONCLUSION 

DISCUSSION AND FUTURE AVENUES OF RESEARCH 

 The research presented in this dissertation has increased knowledge of 

Mycobacterium avium subsp. paratuberculosis (MAP) and Johne‟s disease (JD) 

biology, effects, and control in US dairy herds.  However, there are many paths open 

for further research, some opened by the results of this research. 

 Chapter 1 examined the effect that JD status has on milk production.  The 

results show that high-shedding animals have decreased average milk production and 

that the milk production of animals that test positive decreases over time, as the 

disease progresses.  The study also found higher average milk production in animals 

that will test MAP-positive, compared to animals that never test positive.  One 

possible explanation for this is a genetic link between high milk production and 

susceptibility to MAP or JD; this could be further studies with association studies for 

MAP infection status and genes known to affect milk production. 

 Chapter 2 looked at the effect of JD status on time to culling and on calving 

intervals.  The results of the culling analysis show that test-positive animals are culled 

at a faster rate than test-negative animals, which may be the result of the decreasing 

milk production observed in Chapter 1 or of the efforts to control MAP in the study 

herds.  The results of the calving analysis show that high-shedding animals have lower 

calving rates than test-negative animals, but low-shedding animals have higher calving 

rates than both groups.  Including culling probability in the calving analysis critically 

changed the results of the analysis in low-shedding animals, indicating that future 
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time-to-event studies of dairy reproduction should take into account the dependent 

nature of culling as a censoring method. 

 Chapter 3 attempted to analyze the presence of MAP in the dairy environment 

and to assess the association between MAP in the environment and test status of the 

cattle in the herd.  The results show that culture of environmental samples is not a 

sensitive method for detecting MAP in a dairy herd; however, the amount of MAP in a 

pen-level composite manure sample, over time, can be indicative of the number of 

high-shedding animals housed in that pen.  As the amount of MAP in the environment 

was related to the average amount of MAP shed by cattle in the herd, control strategies 

that remove high-shedding animals from the herd should be effective in decreasing the 

environmental load. 

 Chapter 4 presents a statistical model for estimating MAP transmission rates, 

using data that are readily available in many dairy herds.  Unfortunately, the amount of 

information available is limited by the sensitivity of the diagnostic tests, with the result 

that the model is unable to accurately predict the transmission rate from simulated 

data.  Other methods of determining the transmission rate will be necessary. 

 The initial purpose of the research presented here was to provide parameters 

necessary for economic modeling of MAP control in commercial dairy herds.  The 

impact of JD status on milk production and reproduction directly impacts the net 

present value (NPV) of a dairy cow, but the change in culling rates is most likely in 

response to that change in NPV.  In discrete-time economic models based on the 

compartmental model of MAP transmission, the distinction is not important and 

culling rates can be modeled based on JD status.  In agent-based models, however, a 
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decreased NPV would automatically raise the culling rate in JD-positive animals.  

Thus, the application of these results will change depending on the format of the 

economic model.  In contrast, the transmission rate results could be used in the same 

way by any economic analysis that considers secondary infections. 

 The application of this research in economic modeling has begun, and 2 

manuscripts are currently under review.  A compartmental model has been developed 

to optimize NPV under a given MAP control strategy, either by manipulating the herd-

wide culling rate or by vaccination in combination with culling.  This model can 

identify the MAP control strategy with the highest long-term NPV and/or the shortest 

time to fadeout.  Unfortunately, this model can only deal with averages, assuming 

homogeneity within compartments, and is not equipped for stochasticity.  Future 

research into stochastic optimization would be of interest. 

Others have considered the economic cost of MAP on dairy farms, and have 

found that the cost of uncontrolled MAP could be quite large.  The impact of milk 

production has been found to have the largest marginal effect on the cost of JD (Ott et 

al., 1999; Raizman et al., 2009), although decreased slaughter value and the loss of 

future value in infected cows have been included as well (van Schaik et al., 1996).  A 

field study of 6 herds implementing individually-designed control programs found that 

the category responsible for most MAP-associated economic losses was milk 

production (Pillars et al., 2009).  Over the course of a lactation, test-positive animals 

have been found to average less milk income and lower salvage value (Raizman et al., 

2009), as we would predict based on the results presented here.   
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We have found in the research reported here that the impact of MAP on milk 

production and reproduction is limited for subclinical animals, suggesting that 

identifying these animals through testing may not be necessary to maintain high 

production levels.  Instead, prevention of infection and removal of clinically infected 

(high-shedding) animals may be the best control strategy.  Preliminary results of the 

economic compartment model utilizing these results show that hygiene management is 

the most cost-effective strategy for controlling MAP (J. Cho, personal 

communication).  This has been found repeatedly by a number of different studies and 

models.  Considering a variety of test-and-cull and hygiene strategies, the JohneSSim 

model found that hygiene management was a cost-effective strategy and that test-and-

cull often was not (Groenendaal and Galligan, 2003), and the PTB-Simherd model 

also found that optimal hygiene management was better at controlling prevalence and 

increasing milk production and slaughter value (Kudahl et al., 2007).  A similar model 

for MAP control in beef herds found that test-and-cull added little to hygiene 

management improvements (Bennett et al., 2010).  Projecting an observed decline in 

MAP-associated losses over a 20-year time scale, Pillars et al. (2009) found that herds 

with established MAP control strategies would decrease their NPV by adding test-and-

cull to their existing management plans.  It is apparent from these models and from our 

results that removal of low-shedding (subclinical) animals from a well-managed dairy 

herd is not necessary. 

One of the impacts disease control has on the economics of dairy production is 

the reaction of consumers to the disease (Chi et al., 2003).  While consumers are 

currently unconcerned with the presence of MAP in dairy herds, the issue may become 
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more important in the future; there are some researchers positing a role for MAP in the 

etiology of Crohn‟s Disease (CD), a human disorder that superficially resembles JD 

(Mendoza et al., 2009; Uzoigwe et al., 2007).  Animals shedding MAP in feces also 

frequently shed MAP in milk, and MAP has been cultured from commercial, 

pasteurized milk (Eltholth et al., 2009).  In the case that a link between MAP and CD 

becomes more established, control of MAP in dairy herds will become a public health 

and public relations concern (Groenendaal and Zagmutt, 2008).  In that eventuality, 

control of MAP may be mandated (with limits to the amount of MAP in bulk tank 

milk being the most likely regulation) or encouraged through bonus payments for milk 

and heifers from MAP-free herds.  Under mandates, the economic model described 

above would need a further constraint, related to the amount of MAP shed in milk by 

low and high shedding animals.  Under bonus payments, the model would need a 

change in net revenue (for milk) and sale value (for heifers) in herds meeting the 

testing requirements to be considered MAP-free (USDA:APHIS:VS, 2010).  In either 

case, the optimization process would likely recommend different control programs. 

It is important to note, however, that all results discussed here presume well-

managed dairy herds.  There is a selection bias present in most on-farm studies of 

disease, in that producers willing to enroll in these programs are often more proactive 

and aware of disease control measures.  These herds often start studies with low 

prevalence and high hygiene levels.  The impact of test-and-cull may be much higher 

in herds with high prevalence, especially in the early stages of MAP control.  The 

agent-based model for MAP control should be able to predict the optimal length of a 

testing program in herds in which that program would be beneficial; no existing 
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models have considered testing strategies with a time span shorter than the length of 

the projection.  

It is also important to note that the true impact of hygiene management 

programs is difficult to assess.  These are aimed at decreasing transmission rates, or 

infectious pressure, between adults and calves.  However, until the current study, 

direct estimation of MAP transmission rates has been limited.  The model presented in 

Chapter 4 is unable to estimate transmission rates in herds, which could then be 

compared based on hygiene management strategies to establish a quantitative effect of 

such strategies on transmission, but other methods have been suggested and may prove 

useful.  However, this requires a large number of herds with a high variety of 

strategies to make any statistically meaningful comparison; it also requires that 

hygiene strategies remain fixed for at least 5 years in order to estimate impact 

properly.  In the future, we will be developing new methods to analyze the efficacy of 

hygiene strategies. 

The results above can provide us with several general guidelines for cost-

effective management of MAP in dairy herds.  In general, good hygiene management 

should be more effective than test-and-cull programs at reducing the losses due to 

MAP in well-managed dairy herds.  Removal of high-shedding animals is important, 

however, due to high infectiousness and low milk production and calving rates; these 

animals are frequently culled quickly on well-managed herds due to milk production 

losses.  Regular environmental testing of adult cow pens, while ineffective for 

determining MAP infection status, could also be used to identify the presence of high-

shedding animals to be removed.   
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 In conclusion, while the work presented within this dissertation has elucidated 

several areas of MAP biology and control, there are many avenues yet to be explored.  

This research will provide a foundation for 2 branches of further research: economic 

optimization of MAP control and statistical modeling of mycobacterial diseases in 

humans and animals.  Moving forward, we will continue to explore both of these 

avenues. 
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