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We develop efficient and powerful statistical methods for high-dimensional

data, where the sample size is much smaller than the number of features (the

so-called ‘large p, small n’ problem).

We deal with three important problems. First, we develop a mixture-model

approach for parallel testing for unequal variances in two-sample experiments.

The treatment effect on the variance has received little attention in the statistical

literature, which so far focused mostly on the effect on the mean. The effect on

the variance is increasingly recognized in recent biological literature, and we

develop an empirical Bayes approach for testing differences in variance when

the number of tests is large. We show that the model is useful in a wide range of

applications, that our method is much more powerful than traditional tests for

unequal variances, and that it is robust to the normality assumption.

Second, we extend these ideas and develop a novel bivariate normal model

that tests for both differential expression and differential variation between the

two groups. We show in simulations that this new method yields a substan-

tial gain in power when differential variation is present. Through a three-step

estimation approach, in which we apply the Laplace approximation and the

EM algorithm, we get a computationally efficient method, which is particularly

well-suited for ‘large p, small n’ situations.

Third, we deal with the problem of variable selection where the number of



putative variables is large, possibly much larger than the sample size. We de-

velop a model-based, empirical Bayes approach. By treating the putative vari-

ables as random effects, we get shrinkage estimation, which results in increased

power and significantly faster convergence, compared with simulation-based

methods. Furthermore, we employ computational tricks which allow us to in-

crease the speed of our algorithm, to handle a very large number of putative

variables, and to control the multicollinearity in the model. The motivation for

developing this approach is QTL analysis, but our method is applicable to a

broad range of applications. We use two widely-studied data sets, and show

that our model selection algorithm yields excellent results.
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CHAPTER 1

INTRODUCTION

1.1 Overview

In recent years we have witnessed incredible technological advances which re-

sulted in massive data sets. Furthermore, the rate and fidelity in which data are

produced continue to increase, and the consensus is that this trend will persist,

with more types of data, and at increasingly finer resolutions. For instance, less

than a decade ago, advanced genetic research involved microarrays with thou-

sands of assayed genes. Today, next-generation sequencing, quantitative trait

loci (QTL) mapping, metabolomics, proteomics, and gene methylation analysis

consist of tens, or hundreds of thousands of features, or variables of interest.

In neuroscience, scientists hope that high-resolution technologies such as func-

tional Magnetic Resonance Imaging (fMRI) and Diffusion Tensor Imaging (DTI)

will provide insight into cognitive processes, memory, and mental conditions.

These technologies usually yield millions of observations, since they consist of

repeated measures over tens or hundreds of thousands of voxels in the brain.

While these new technologies offer a much more detailed view of complex pro-

cesses, they also introduce significant computational and statistical challenges.

Traditional statistical methods are not adequate for the new paradigm in which

the sample size is usually much smaller than the number of features (the ‘large

p, small n’ problem). As a result, to meet these new challenges, statistical and

computational methodologies are also evolving rapidly.

Changes in statistical methods are not limited just to new computational

techniques. Even the most fundamental concepts are viewed through a differ-

1



ent prism. For example, for many years shrinkage estimation was referred to as

‘the James-Stein paradox’, and the original paper [50] was viewed mostly as a

curious result in theoretical statistics. Today, this method is considered among

the most powerful in high-throughput data analysis. More generally, it is now

widely recognized is that in order to deal with the ‘large p, small n’ problem,

one has to ‘borrow strength‘ across genes, and an efficient way to do it, is via

mixed-models where the differential expression of nonnull genes is assumed to

be a realization of a random effect. Such models induce James-Stein shrinkage,

and thus increase the power to detect significant genes.

Simulation-based techniques have also evolved rapidly in recent years,

thanks to advances in computing and the need to handle a large number of

hypotheses. Markov Chain Monte Carlo (MCMC, [20]) and the bootstrap [31]

are two notable examples. Many computational problems in statistics can only

be solved via approximations and computer simulations. This is especially true

for high-dimensional data sets, where closed-form solutions to estimation prob-

lems are often not feasible.

In this dissertation we develop efficient and powerful statistical methods for

high-dimensional data.

In Chapter 2 we deal with one of the most common research questions –

which genes are affected by a treatment. Just like in the traditional two-sample

test, the most common interpretation of this question is to estimate the effect

of the condition on the mean of expression levels. We argue that the effect can

also be on the variance, and develop a powerful method to detect this effect. The

effect on the variance is increasingly recognized in recent biological literature.

For instance, Hansen et al. [43] say that: “The increased across-sample variabil-

2



ity in methylation within the cancer samples of each tumor type compared to

normal was even more striking than the differences in mean methylation.” We

show that our model is useful in a wide range of applications, including gene-

expression, gene methylation, metabolomics, and brain imaging. We also show

that our method is much more powerful than traditional tests for unequal vari-

ances, and that it is also robust to the normality assumptions imposed by the

model.

In Chapter 3 we extend the ideas from Chapter 2 and previous work [3],

and develop a novel approach to estimate the treatment effect on genes. We

introduce a unified, bivariate normal model that accounts for both differential

expression and differential variation between the two groups. We show that

this model fits a wide range of data sets very well. Furthermore, we show

in simulations that this new method yields a substantial gain in power when

differential variation is present. Through a three-step estimation approach, in

which we apply the Laplace approximation and the EM algorithm, we get a

computationally efficient method, which is particularly well-suited for ‘large p,

small n’ situations.

Chapter 4 deals with the problem of variable selection where the number of

putative variables is large, possibly much larger than the sample size. We de-

velop a model-based, empirical Bayes approach. By treating the putative vari-

ables as random effects, we get shrinkage estimation, which results in increased

power and significantly faster convergence, compared with simulation-based

methods. Furthermore, we employ a couple of computational tricks which al-

low us to increase the speed of our algorithm, to handle a very large number

of putative variables, and to control the multicollinearity in the model. The
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motivation for developing this approach is QTL analysis, but our method is ap-

plicable to a broad range of applications. We apply it to two widely-studied

data sets, and show that our model selection algorithm yields excellent results.

1.2 The General Approach

All three chapters of this dissertation share the same principled approach. In

this section we describe the general philosophy and methodology, in order to

provide the ‘big picture’ for the rest of this manuscript. The principles described

below can be divided into three categories: (i) the statistical model, (ii) the es-

timation and inference procedures, and (iii) computational considerations and

tools.

1.2.1 The Statistical Model

The model-based approach: in any statistical analysis problem, it is a good idea to

start with a model that can reasonably describe the data. Among the models that

fit the data well, we tend to prefer the simplest one. This is known in the folklore

as “Occam’s razor” or “lex parsimoniae” (the law of parsimony). When dealing

with very large data sets, this approach has the potential to greatly reduce the

dimensionality and complexity of the estimation problem.

Random effects: in the context of detecting differential genes or in model se-

lection problems where the number of candidate variables is very large, we find

that the mixed-model approach is particularly appropriate. Rather than estimat-

ing thousands of fixed effects (for each gene individually), we assume that the

4



gene-specific effects are realizations of a parametric distribution. This reduces

the number of estimated parameters significantly. In fact, the number of param-

eters in the mixed-model approach remains fixed, regardless of the number of

tests. This feature contributes to an increase in power, and to the scalability of

the computational algorithm.

Shrinkage estimation: integrating out the random effects in linear mixed mod-

els leads to shrinkage estimation [50] as was shown in [33]. Shrinkage estimators

borrow strength across levels, and thus increase the power. This is particularly

important when the sample size is small but the total number of observations

is large (for example, we typically see microarray data sets consisting of tens of

thousand of genes, but only a handful of individuals).

Mixture models: ultimately, our goal is to classify variables. For example,

in gene expression analysis we want to identify differentially expressed genes

versus ‘null’ genes. In variable selection algorithms we seek a binary classifi-

cation of explanatory variables – either a variable is significant to the model,

or it is not (and should be excluded). Incorporating these latent classification

variables into the model is done via mixture models. Specifically, suppose that

there are two classes, namely ‘null’ and ‘nonnull’ (or ‘alternative’, in the tradi-

tional two-sample terminology). In our parametric, model-based approach, we

assume that the ‘nulls’ and the ‘nonnulls’ follow distribution functions f0 and

f1, respectively. We define Bernoulli random variables bg ∼ Ber(p), and say that

the response follows a mixture distribution, so that y ∼ (1 − bg) f0 + bg f1.

The advantage of using mixture models becomes apparent in the estimation

and inference phase, where we have a single procedure to fit the data and de-

termine the null status of each variable. This, again, contributes to the overall
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power, since by accounting for the classification status, or more precisely, the

null probability of each variable, we reduce the bias in the estimators.

For the remainder of this section it will be convenient to have a generic mix-

ture model which includes random effects. Let f is the probability density func-

tion of the normal distribution, and let bg ∼ Ber(p). We assume that the response

is a mixture of two normal distributions:

y ∼ (1 − bg) f (µ0, σ
2
0,g) + bg f (µ1,g, σ

2
1,g) . (1.1)

We assume that µ1,g are drawn from a normal distribution, and that σ2
j,g are

drawn from an inverse gamma distribution, IG(α, β), for j = 0, 1.

This model seems to fit different types of data sets very well, including the

logarithm of gene expression data, metabolite levels, etc. However, the method-

ology presented here is far more general. In some (non-normal) cases the deriva-

tions of the likelihood or the parameter estimates may be more difficult, but the

principles presented here (parsimonious hierarchical mixture-models, involv-

ing random effects) remain just as useful and effective.

1.2.2 Estimation and Inference Procedures

The EM algorithm: the main objective in our analysis is to estimate the la-

tent null status variables. When dealing with ‘missing data’ situations, one of

the most powerful and computationally efficient methods is the Expectation-

Maximization (EM) algorithm [29]. To apply this iterative algorithm, we write

the complete data likelihood function, ignoring the fact that the null status vari-

ables are missing. Then, in the E-step we plug in their expected values, and
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in the M-step we maximize with respect to the parameters in the model. We

continue this process until some convergence criterion is met. In our case, the

expected values are obtained by a simple application of Bayes rule:

Pr
(
bg = 1

)
=

p · f (y; µ1,g, σ
2
1,g)

p · f (y; µ1,g, σ
2
1,g) + (1 − p) · f (y; µ0, σ

2
0,g)

. (1.2)

Frequentist inference – the False Discovery Rate: the parametric, model-based

approach leads to an explicit likelihood function. Since the likelihood under the

null is known, we can readily compute the p-values for each hypothesis, and

select the significant ones, while controlling for the false discovery rate using

the FDR algorithm [8].

Bayesian inference: the latent variables are estimated by their posterior distri-

bution, and hence we can take an empirical-Bayesian inference approach and

declare a test (e.g., gene) significant if its posterior null probability is below a

certain threshold.

In practice, the two inferential approaches typically yield similar results.

However, there is a philosophical difference, since the FDR-based method is

based solely on the null distribution, whereas the empirical-Bayesian inferential

procedure takes into account the form of the alternative, or nonnull distribution.

The estimation and inference approach described here falls into the ‘empiri-

cal Bayes’ framework, where the prior distributions are estimated from the data

(via the EM algorithm). However, as was demonstrated in [5], the model-based

approach and its hierarchical nature lends itself naturally to fully Bayesian im-

plementations, via MCMC simulations [54]. While usually quite slower than

the EM algorithm, the fully Bayesian method has two appealing futures. First,

it is not necessary to integrate out random effects, which could be hard in some
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configurations. Second, MCMC simulations yield posterior distribution, rather

than point estimates for each parameter. This could be used to assess conver-

gence, but more importantly to perform sensitivity analysis. However, we find

that in terms of the end-result, the EM algorithm and the MCMC method give

similar results. Therefore, considering the tradeoff between these two features

of MCMC and the speed or the EM algorithm, the latter is preferred in the appli-

cations we are dealing with, since the computational efficiency is critical when

dealing with so many tests (genes, voxels, etc.)

1.2.3 Computational Considerations and Tools

In the process of developing the models and the estimation procedures, it is

important to keep in mind implementation considerations. For example, inte-

grating out random effects (and thus inducing shrinkage estimation) is often an

analytically-intractable problem. Furthermore, obtaining maximum likelihood

estimators is straightforward in principle, but in practice one has to resort to

numerical solutions. This subsection highlights the main computational tools

used in this dissertation.

The Laplace approximation: in models such as (1.1), where the error variance

is assumed to random, it is often not possible to integrate out the random ef-

fect analytically. However, a simple and accurate approximation is obtained via

the Laplace approximation [27, 16]. For details specific to the applications in

this dissertation, see [3]. Generally, suppose we have an unnormalized prob-

ability density, p(x), for x ∈ Ω, and we need to find its normalizing constant,

K =
∫
Ω

p(x)dx. Also suppose that p(x) is unimodal, and has its mode at x0. Then,
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using a Taylor expansion of ln p(x), we can get an approximation of K:

K̃ = p(x0)
√

2π/c , (1.3)

where

c = − ∂
2

∂x2 ln p(x)|x=x0 . (1.4)

In other words, we replace the integral with a function of the second derivative

of the log-likelihood, evaluated at the mode.

Matrix algebra: many derivations are made simple if the right tools are used.

In linear models, and especially normal models, matrix algebra is a very pow-

erful tool. Quite often, a matrix representation of a linear model greatly simpli-

fies the derivation of likelihood functions and maximum likelihood estimators.

Many useful formulas in matrix algebra are provided in ‘The Matrix Cookbook’

[63]. In our application of the EM algorithm in Chapter 4, we also find the book

’Variance Components’ [60] to be an indispensable resource. General compu-

tational considerations and algorithms pertaining to matrix algebra (as well as

other techniques) are provided in [42].

Programming: statistical programs have become an essential component in

the statistician’s toolbox. In particular, we find that R [64] with its rich set of

built-in distributions, operators and functions, specialized packages, and its

vectorized computation philosophy, is particularly useful. For example, when

dealing with complex data or models, it is often impossible to derive closed-

form formulas, and the only way to compute estimators, evaluate likelihood

functions, etc, is through optimization functions (e.g. nlminb.)
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CHAPTER 2

A MIXTURE-MODEL APPROACH FOR PARALLEL TESTING FOR

UNEQUAL VARIANCES

2.1 Introduction and Motivation

Testing for unequal variances is usually performed in order to check the validity

of the assumptions that underlie standard tests for differences between means

(the t-test and anova). However, existing methods for testing for unequal vari-

ances (Levene’s test and Bartlett’s test) are notoriously non-robust to normality

assumptions, especially for small sample sizes. Moreover, although these meth-

ods were designed to deal with one hypothesis at a time, modern applications

(such as to microarrays and fMRI experiments) often involve parallel testing

over a large number of levels (genes or voxels). Moreover, in these settings

a shift in variance may be biologically relevant, perhaps even more so than a

change in the mean. This chapter introduces a parsimonious model for paral-

lel testing of the equal variance hypothesis. It is designed to work well when

the number of tests is large; typically much larger than the sample sizes. The

tests are implemented using an empirical Bayes estimation procedure which

‘borrows information’ across levels. The method is shown to be quite robust

to deviations from normality, and to substantially increase the power to detect

differences in variance over the more traditional approaches even when the nor-

mality assumption is valid.

Research questions are often framed in terms of the effect a treatment has

on a response. When comparing two conditions (say control and treatment)

the question is typically interpreted in terms of the difference between the two
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means. When the response is continuous, the most widely-used test to detect

the effect of the treatment is the two-sample t-test. In this context, a test for

unequal variances can be performed to assess the validity of the equal variance

assumption. However, unlike the t-test, tests for equality of variances are no-

toriously non-robust, as highlighted by George Box’s famous quote, “To make

the preliminary test on variances is rather like putting to sea in a rowing boat

to find out whether conditions are sufficiently calm for an ocean liner to leave

port!” [12]. Reviews of the literature on testing equality of variances can be

found in [10], [11] and [40].

Increasingly, however, there are new insights that suggest that biological

variance plays an important role in determining cellular and organismal pro-

cesses. This chapter deals with problems in which testing for unequal variances

is of scientific importance in its own right. Furthermore, the focus is on sit-

uations in which a large number of parallel tests are conducted. A parsimo-

nious model and empirical Bayes estimation procedure is developed that ‘bor-

row strength’ across the levels being tested. This results not only in increased

power over standard tests when the normality assumption holds, but also in

substantially improved performance when it does not. The wide applicabil-

ity of the approach is illustrated using four different types of data sets: gene

expression, gene methylation, functional Magnetic Resonance Imaging (fMRI),

and metabolomics data. In these settings changes in the variance under the

treatment are often biologically relevant. Moreover, failing to account for un-

equal variances can undermine the performance of methods for detecting for

changes in the mean. We address this last point in the next chapter.

As a specific example, consider a simple Pavlovian-type learning experiment
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in which the response is measured in terms of volume of blood flowing through

voxels in the brain. Both control and treatment groups receive a simple visual

signal in regular intervals. The subjects in the treatment group also receive an

auditory stimulus in addition to the visual signal. Since the stimulus does not

require complicated cognitive processing, it is conceivable that the overall mean

response levels will not differ between the groups. However, in the treatment

group, in preparation for the audio signal relevant areas in the brain might have

smaller variability, to ensure the availability of the necessary level of blood for

the anticipated task. Similarly, areas not involved in processing the audio signal

might exhibit increased variability among the treatment subjects.

Variation, in genetic and phenotypic terms, has been thought to be a compo-

nent of population fitness and adaptability. One way to interpret the association

between expression variance and phenotype is to consider changes in pathways.

If the genes in a particular pathway have very low variance, a natural interpre-

tation is that those genes are highly constrained. Ho et al. [45] report that they

“found that changes in expression variability are associated with changes in

coexpression patterns. Therefore, differential variability is potentially an im-

portant manifestation of changes in gene regulation.” Hansen et al. [43] say

that “the increased across-sample variability in methylation within the cancer

samples of each tumor type compared to normal was even more striking than

the differences in mean methylation.” Other recent examples where biological

sources of variation play an important role in determining cellular and organis-

mal processes can be found in [17, 21, 37, 38, 53, 55, 56, 57, 59, 62, 65].

The recent methodology proposed in [56] for assessing the variance of gene

expression uses a one at a time analysis of the coefficient of variation. They
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compute the coefficient of variation for each gene by dividing the standard de-

viation of its expression measures across a sample population by its average

expression. They then designate low variance genes as those falling below the

lower 25th percentile of the genome-wide coefficient of variation distribution

based on all donors and high variance genes as those above the 75th percentile;

those genes in the range between the 25th and 75th percentile they refer to as

the mid variability gene set.

In the microarray context it is now widely recognized that methods that bor-

row strength across genes, by assuming that the gene-specific variances come

form a common distribution, are more powerful for detecting mean treatment

effects, [3, 49, 69]. However, these methods all assume variance homogeneity

across conditions. We develop a new model-based approach to parallel test-

ing for unequal variances that complements the existing methods for detecting

changes in the mean. Although the methodology can be applied in a variety of

settings, for simplicity of exposition, we use terminology from the microarray

literature, and so the parallel tests concern variability in gene-specific expres-

sion in arrays based on samples from control and treatment groups.

Our model assumes that the ratio of the sample variances from the control

and treatment groups arises from a three components mixture: a null compo-

nent in which the ratio is proportional to an F-statistic; and two non-null groups

representing inflated and deflated variance in the treatment group relative to

the control. The three component mixture is identified by a latent multinomial

random variable which is treated as missing data when fitting the model via

the EM algorithm. Two variants of the model are considered: one in which

the inflation/deflation factors are constant across all the parallel tests; and one
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in which they are assumed to come from a log normal distribution. Genes are

declared as non-null if their posterior null probability is less than a predefined

threshold. Alternatively, frequentist inference can be conducted by controlling

the false discovery rate using the estimated null distribution.

Our approach to determining high and low variance is in line with a grow-

ing literature on empirical Bayesian analysis of high dimensional data [3]. The

hierarchical nature of our proposed method yields shrinkage estimation which

results in high power and accuracy, while maintaining a low false discovery

rate. Furthermore, as will see in Section 2.5, the inference based on our ap-

proach is quite robust.

The chapter is organized as follows. The mixture model is defined in Section

2.2. Section 2.3 outlines the details of the EM algorithm. The Bayesian and fre-

quentist inference procedures are described in Section 2.4. A simulation study

demonstrating the improved power, robustness, and accuracy of the method

relative to ‘one gene at a time’ approaches is discussed in Section 2.5. Section

2.6 presents results from four case studies and some concluding remarks are

given in Section 2.7.

2.2 The Mixture Model

Denote the (normalized) response for gene g in array j under condition i by yi jg,

and suppose that, given the gene-specific variances, σ2
1g and σ2

2g,

yi jg ∼ N(µig, σ
2
ig) (2.1)

14



independently, for all i, j and g, where i = 1 for arrays in the control group and

i = 2 for the treatment group, j = 1, . . . , nig, and g = 1, . . . ,G. Typically G is in the

hundreds or thousands, whereas the sample sizes, nig, are much smaller, often

only in the single digits.

The sample variance for gene g in condition i is given by

s2
ig =

nig∑
j=1

(yi jg − ȳi·g)2/ fig , (2.2)

where fig = nig − 1. It follows from the normality assumption (2.1) that the ratio

of variances in the control and treatment samples is proportional to a central

F-statistic; that is,

rg|ρg ∼ ρg

χ2
f2g
/ f2g

χ2
f1g
/ f1g

, (2.3)

where rg = s2
2g/s2

1g and ρg = σ
2
2g/σ

2
1g. In order to classify the genes as having the

same, inflated or deflated variance under treatment we suppose that each ra-

tio, ρg, g = 1, . . . ,G, is drawn from a three components mixture with probability

vector, p = (p0, p1, p2). Associated with each gene is a trivariate latent indica-

tor vector δg = (δ0g, δ1g, δ2g) distributed as multinomial(1, p) which determines

whether the variance in the treatment group is null, inflated or deflated with

respect to the control group. More specifically,

ρg|δg, λg ∼ τλδ1g−δ2g
g , (2.4)

where λg > 0 is a gene-specific inflation/deflation factor, and the parameter τ

allows for the incorporation of fixed covariate effects into the model. In the sim-

plest case, with no covariates, τ represents a constant multiplicative difference

between the variances in the control and treatment groups which is often no-

ticeable in real data. For example, in fMRI data the stimulus presented to the
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treatment group may affect subjects overall brain activity, and not just regions

in the brain that are associated with the task.

We consider two variants of the model: a fixed inflation factor model in which

λg ≡ λ, where λ is constant across all genes; and a random inflation factor model

in which the λg’s are assumed to come from a lognormal distribution. These as-

sumptions both lead to inferences about the variance ratios that borrow strength

across the genes, resulting in greater power to detect inflated or deflated vari-

ance under treatment.

The assumption of a lognormal distribution for λg can be motivated from

the perspective of classical shrinkage estimation [50] and its connection to

BLUPs arising in linear mixed models [33]. Specifically, consider the variable

xg ≡ log(rg). Equations (2.3) and (2.4) imply that

xg = log τ + (δ1g − δ2g) log λg + ξ2g − ξ1g (2.5)

where ξig = log(χ2
fig
/ fig), i = 1, 2, have known mean and variance given by E(ξig) =

ψ( fig/2) − log( fig/2) and Var(ξig) = ψ′( fig/2), ψ and ψ′ being the digamma and

trigamma functions, respectively. Using independence and applying the delta

method implies that ξ2g − ξ1g is approximately normal with mean and variance

given by

θg = ψ( f2g/2) − log( f2g/2) − ψ( f1g/2) + log( f1g/2) (2.6)

and

κ2
g = ψ

′( f1g/2) + ψ′( f2g/2) . (2.7)

Thus, if log λg ∼ N(θ, κ2), equation (2.5) has the form of a mixture of linear mixed

models, and shrinkage estimates of individual components of log λg can be esti-

mated by their posterior expectations given the observed xg, g = 1, . . . ,G [33].
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The random inflation factor model assumes that the logarithm of the sam-

ple variance is approximately normal. This may not be the case when the error

distribution is misspecified, because generally, the distribution of the sample

variance may depend on the population mean. Thus, in general it is not clear

how the method described in this section will perform when the normality as-

sumption does not hold. However, we see (empirically) in this section that (i)

the normality assumption is quite reasonable for a wide range of applications;

and (ii) even when the assumption does not hold, our methods performs quite

well, and much better than one at a time methods. Furthermore, the effects of

non-normality and heterogeneity of variances are investigated in [25, 26, 24]. In

these references, it has been observed that the normal approximation to the log

of the ratio between variances is very reasonable under very general departures

from the null hypothesis of normality and variance homogeneity.

2.3 The EM Algorithm

2.3.1 Complete data log-likelihood

Regarding the latent indicator vector δg as missing data, we obtain the complete

data log-likelihood to implement the EM algorithm.

For the fixed inflation factor model where λg ≡ λ, the complete data log like-

lihood (omitting terms that do not depend on unknown parameters) is obtained

directly from the identities (2.3) and (2.4) as

G∑
g=1

ℓF(rg) =
G∑

g=1

 2∑
k=0

δkg log pk +
f1g

2
log

(
τλδ1g−δ2g

)
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−
f1g + f2g

2
log

(
τλδ1g−δ2g + rg f2g/ f1g

)}
=

G∑
g=1

2∑
k=0

δkg log pk +

G∑
g=1

f1g

2

{
log τ + (δ1g − δ2g) log λ

}
−

G∑
g=1

f1g + f2g

2

{
δ0g log

(
τ + rg f2g/ f1g

)
+δ1g log

(
τλ + rg f2g/ f1g

)
+ δ2g log

(
τ/λ + rg f2g/ f1g

)}
. (2.8)

For the random inflation factor model, using the normal approximation to

the log chi-squared distribution, and the mixed linear model representation in

(2.5), we obtain

G∑
g=1

ℓR(xg) =
G∑

g=1

2∑
k=0

δkg log pk −
1
2

G∑
g=1

log[(δ1g − δ2g)2κ2 + κ2
g)]

−1
2

G∑
g=1

[xg − µg − (δ1g − δ2g)θ]2

(δ1g − δ2g)2κ2 + κ2
g

=

G∑
g=1

2∑
k=0

δkg log pk

−1
2

G∑
g=1

[
δ0g log(κ2

g) + δ1g log(κ2 + κ2
g) + δ2g log(κ2 + κ2

g)
]

−1
2

G∑
g=1

δ0g
[xg − µg]2

κ2
g

− 1
2

G∑
g=1

δ1g
[xg − µg − θ]2

κ2 + κ2
g

−1
2

G∑
g=1

δ2g
[xg − µg + θ]2

κ2 + κ2
g

, (2.9)

where µg = log τ+θg is the expected value of xg in the null case (i.e. when δ0g = 1).
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2.3.2 The E-step

The E-step of the EM algorithm involves taking the expectation of the complete

data log-likelihood conditional on the observed data. In the context of our mix-

ture model, strict implementation of the E-step requires evaluating the expecta-

tion of all components of the complete data log-likelihood that are functions of

the latent indicator, δg, g = 1, . . . ,G. In particular, if the complete data likelihood

is linear in the latent indicator, as in (2.8) the E-step reduces to evaluating the

posterior probabilities,

pr(δkg = 1|rg) =
pkLk(rg)∑2

l=0 pl Ll(rg)
, (2.10)

at the current iteration parameter estimates, where Lk(rg) = exp{ℓF(rg)} with

δkg = 1. The same argument holds for the random inflation factor model with ℓR

replacing ℓF in the posterior probability formula (2.10).

2.3.3 The M-Step

Let φ denote the complete vector of model parameters, and let Q(φ, φ(t)) =

Eφ(t)[ℓ({rg})] denote the Q-function obtained by substituting the estimated pos-

terior probabilities, δ̂(t)
kg, after iteration t in (2.8) or (2.9). The M-step at the (t+1)st

iteration involves maximization of Q
(
φ, φ(t)

)
with respect to each parameter in

φ. That is,

φ(t+1) = arg max
φ

Q
(
φ, φ(t)

)
.

Maximization of the Q-function with respect to the multinomial probabilities

is the same for both fixed and random inflation factor models, the update at
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iteration t + 1 being

p̂(t+1)
k =

1
G

G∑
g=1

δ̂(t)
kg . (2.11)

The other parameters updates depend on the assumptions regarding the infla-

tion factors.

M-Step: Fixed Inflation Factor

Differentiating (2.8) results in the following update equations for τ and λ, re-

spectively:
G∑

g=1

f1g f2g

(
rg − τλδ̂1g−δ̂2g

)
f2grg + f1gτλδ̂1g−δ̂2g

= 0. (2.12)

and
G∑

g=1

f1g f2g(δ̂1g − δ̂2g)
(
rg − τλδ̂1g−δ̂2g

)
f2grg + f1gτλδ̂1g−δ̂2g

= 0 . (2.13)

If δ̂1g = δ̂2g = 0 for all g, set λ̂ = 1.

M-Step: Random Inflation Factor

Differentiating (2.9) results in the update equations for τ, θ and κ2:

log τ̂ =

∑G
g=1

[
δ0g(xg−θg)

κ2
g
+

(δ1g+δ2g)(xg−θg)+(δ2g−δ1g)θ
κ2+κ2

g

]
∑G

g=1

(
δ0g

κ2
g
+

δ1g+δ2g

κ2+κ2
g

) (2.14)

θ̂ =

∑G
g=1(δ1g − δ2g) xg−µg

κ2+κ2
g∑G

g=1
δ1g+δ2g

κ2+κ2
g

, (2.15)

and

κ̂2 =

∑G
g=1 δ1g

[
(xg − µg − θ)2 − κ2

g

]
+ δ2g

[
(xg − µg + θ)2 − κ2

g

]
∑G

g=1(δ1g + δ2g)
, (2.16)

and θ̂ = κ̂ = 0 if δ̂1g = δ̂2g = 0 for all g.
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2.4 Inference

2.4.1 The Frequentist and Bayesian Procedures

Our model-based approach allows us to assess the null status of a hypothesis,

either using a frequentist procedure based on false discovery rate (FDR, [8]); or

using empirical Bayes inference via the posterior null probabilities.

Under the fixed inflation factor model the statistic, rg/τ has an F-distribution

under the null. In this case the frequentist p-value for gene g is equal to

pr(τF < rg,obs) if rg/τ < 1 and pr(τF > rg,obs) if rg/τ > 1, where F ∼ F( f2g, f1g).

For the random inflation factor model the corresponding p-value is given by

pr
(
|Z| > (xg,obs − µg)/κg

)
, where Z is a standard normal variate.

The empirical-Bayesian approach is to classify genes based on the estimated

posterior probabilities, δ̂kg, k = 0, 1, 2. Thus, a gene is declared nonnull if either

δ̂1g or δ̂2g exceed a given threshold.

2.4.2 Shrinkage Estimation

For the random factor model, the posterior probability of δ1g = 1 can be rewrit-

ten in form

pr(δ1g = 1|xg) =
1

p0·L0(xg)
p1·L1(xg) + 1 + p2·L2(xg)

p1·L1(xg)

,

where the ratio L0/L1 is given by

L0(xg)
L1(xg)

=
(2πκ2

g)−1/2 exp
{
−(xg − µg)2/2κ2

g

}
[2π(κ2 + κ2

g)]−1/2 exp
{
−(xg − µg − θ)2/2(κ2 + κ2

g)
}
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= (1 − cg)−1/2 exp
{
−1

2
[cg(xg − µg) + (1 − cg)θ]2

cgκ2
g

+
θ2

2κ2

}
∝ (1 − cg)−1/2 exp

{
−1

2
T 2

g

}
, (2.17)

say, with the constant of proportionality being exp(θ2/2κ2), and where

cg =
1
κ2

g

(
1
κ2

g
+

1
κ2

)−1

=
1

1 + κ2
g/κ

2 .

Similarly, for the other likelihood ratio we have

L2(xg)
L1(xg)

= exp
{
−

2(xg − µg)θ
κ2 + κ2

g

}
. (2.18)

Suppose that θ > 0, so that δ1g is an indicator of inflated variance. Then,

L2/L1 converges to zero as xg increases to infinity and so, in the limit, δ1g is solely

a function of the ratio, L0/L1, and hence of the statistic, Tg. On the other hand,

L2/L1 converges to infinity as xg decreases to −∞ so that δ1g converges to zero.

This makes sense since, in this case, it is highly unlikely that the gene is in the

inflated variance nonnull group. Parallel arguments can be made regarding δ2g.

Note that xg − µg is the observed difference between the log variances in the

control and treatment groups for gene g (after adjusting for the covariate effects),

and θ represents the expected difference if the gene has inflated variance under

treatment (assuming θ > 0). Thus, the numerator of the statistic, Tg, has the form

of classical James-Stein shrinkage estimator of difference in the log variances,

with the amount of shrinkage of the observed difference towards θ determined

by the ratio of variances κ2
g/κ

2.

22



2.5 Simulation Results

We compared the performance of the two estimation procedures in terms of

power, accuracy, and false discovery rate with the ‘one hypothesis at a time’

approach, using the median centered robust version of Levene’s test [15, 52].

We chose the Levene test since previous studies have shown it to be relatively

robust and powerful [40]. We also compared our estimation and inference pro-

cedure with other well-known ‘one at a time’ methods, like Bartlett’s test [7].

The traditional methods that do not borrow strength across levels lack power,

especially when the sample sizes are small. For a comprehensive review of ‘one

at a time’ methods and their power and robustness properties, see, for example,

[10] or [11].

Similarly, methods that do borrow strength across hypotheses but are look-

ing for significant differences between the means of the two groups (for exam-

ple, LEMMA [3], Limma [69]) perform very poorly in terms of power and accu-

racy. It should be noted that by design, the mean-based tests excel when there is

a difference in the mean response between the group, and are expected to have

low power and accuracy when the mean is not significantly different, but the

variance is.

In our simulations we varied the sample sizes, ranging from ni = 2 to ni = 30

and allowed for the two groups to have different sample sizes. We also varied

the inflation factor, so that 2 ≤ λ ≤ 10. We also used a variety of underlying

distributions, including normal, Cauchy, lognormal, and exponential, in order

to assess robustness. Each simulation configuration was repeated 20 times, and

the results are reported in terms of the mean of the 20 experiments. The config-
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Figure 2.1: Power as a function of the inflation factor, λ. The solid and
dashed lines correspond to the random and fixed factor mod-
els, respectively. The thick and thin lines correspond to the nor-
mal and lognormal data, respectively.

urations reported in this chapter consist of n1 = 4, n2 = 7, the total number of

‘genes’ is G = 2000 and the proportion of the inflated-variance subset is p = 0.1.

The underlying distributions of the response, yi jg are N(0, 0.25) and LN(0, 0.25),

and Cauchy distribution, with location and scale parameters equal to 0 and 0.1,

respectively. The results reported here are representative of the wide range of

simulation studies that we performed.

Figure 2.1 shows the power of the random inflation factor model (solid line)

and the fixed inflation factor model (dashed line) for two configurations: one,

for normal data, ynull ∼ N(0, 0.25) (thick lines), and one for lognormal data,

ynull ∼ LN(0, 0.25) (thin lines). To generate these power plots we used the

frequentist-type inference, and controlled for false discovery rate at the 5% level.

The ‘one hypothesis at a time’ approach which uses the Levene test and the
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mean-based approach (using lemma) yielded no discoveries for any λ (after ap-

plying the Benjamini-Hochberg adjustment), and are not included in the plot.

The ‘random inflation factor’ is more powerful than the ‘fixed factor’ proce-

dure, in both configurations. As expected, as the true inflation factor increases

both procedures become more powerful. Also, the power is higher when the

underlying data are normally distributed.

Of course, in addition to power we would like the methods to have high level

of accuracy (the total percentage of correct classifications, i.e., 100×(True Posi-

tive + True Negative)/G). Figure 2.2 shows (for normal and lognormal data)

that both methods are quite accurate, and their accuracy increases as the infla-

tion factor increases. In contrast, the conservative one-at-a-time approach, as

well as the mean-based methods (not shown in the plot), yield approximately

constant level of accuracy (in this case, 0.9, since by not rejecting any test, it

correctly classifies all the null subset.)

In terms of false discovery rate, the fixed factor approach is more conserva-

tive, and has a lower FDR for all λ (but also less power). When the data are

normally distributed and λ > 2 both methods have low false discovery rate. For

smaller values of λ the false discovery rate is higher, especially with the random

factor method (approximately 0.25, vs. 0.1 with the fixed factor method.) When

the data are not normally distributed, y ∼ LN(0, 0.25), the false discovery rate

increases quite dramatically for small values of λ, especially with the random

factor method.

ROC curves (of the average true positive rate versus the false positive rate)

are given in Figure 2.3 for the normal, lognormal, and Cauchy data, when the

inflation factor is λ = 4. The three ROC plots are confined to a false positive rate
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Figure 2.2: Accuracy as a function of the inflation factor, λ. The solid and
dashed lines correspond to the random and fixed factor mod-
els, respectively. The thick and thin lines correspond to the nor-
mal and lognormal data, respectively.

of less than or equal to 0.2 since higher error rates than this would clearly be

undesirable. In all cases the random factor model has the best performance. For

example, when the data are normal, at a false positive level of 0.05 the average

true positive rates are approximately 0.2, 0.5, and 0.65 for the (median-centered)

Levene, fixed inflation factor, and random factor methods, respectively.

When the data are normal or lognormal, both the random and fixed factor

models are much better than the median centered robust version of Levene’s

test. In particular, the middle plot shows that Levene’s test is not at all robust

to the normality assumption, as its ROC curve falls below the ‘random classifi-

cation’ line (in grey). In contrast, under the lognormal data generation scheme,

both the random and fixed factor models are quite robust. Furthermore, for all

the simulated distributions the performance of our methods improves as the
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Figure 2.3: ROC curves, λ = 4. The solid and dashed lines correspond to
the random and fixed factor models, respectively. The dotted
lines correspond to the median centered robust version of Lev-
ene’s test. ‘Random classification’ is represented by the dot-
dashed line.

inflation factor increases, but the Levene method does not exhibit any improve-

ment (not shown in the plot).

The fixed factor method performs very poorly with Cauchy data (right

panel). In fact, it is even worse than the Levene method. An explanation is

that the estimate of λ is not consistent because the mean of the Cauchy distri-

bution does not exist, so the fixed factor model is clearly not appropriate in this

extreme case. In contrast, the random factor model allows for variability in the

distribution of the inflation factor, and is able to detect a reasonable number of

the genes with differential variance while maintaining a low false positive rate.

Note that the interpretation of the ROC plot requires care. It seems that for

the normal data the ‘one at a time’ method has comparable performance to that

of our model-based approach, since the Levene-based ROC curve is below the

other two thick curves, but above the diagonal (in grey). However, it merely

depicts that for a certain threshold of the p-values, the number of true positives

exceed the number of false positives. In practice, the thresholds used to plot
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the ROC curve for the Levene test are much too high to be practical in real-life

applications, since, as we discussed above, the ‘one at a time’ method yields no

discoveries at any reasonable FDR threshold when the number of tests is large.

2.6 Case Studies

We consider four different statistical applications to genetics and molecular bi-

ology to demonstrate the wide range of data sets to which our method can be

applied. In all cases we find strong evidence that there is a subset of the data in

which the variance in the treatment group is significantly higher or lower than

in the control group but there is no significant difference between the means.

The first case study involves a gene expression data set. The second deals with

epigenetic data (methylation), while the third uses data from a brain imaging

experiment (functional MRI data). The final example concerns metabolomics

data.

The results in this section illustrate two things that are relevant to our pre-

vious derivations. First, we see that the observed distributions of the statistics

rg and xg in the applications considered are very close to the ones in our model.

In particular, the normal approximation of xg appears to be very appropriate.

Second, when the overall mean does not change due to the treatment, but the

variance does, our method is able to detect it. In that sense, it complements

the mean-based methods, which would (most likely) fail to detect the change in

variance, unless it is coupled with a significant change in the mean response.
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2.6.1 Microarray Data

Callow et al. [18] used gene targeting in embryonic stem cells to produce mice

lacking apolipoprotein A-1, a gene known to play a critical role in high density

lipoprotein (HDL) cholesterol levels. In our analysis, we used the data and nor-

malization method provided with the limma R package [70], which consists of

5,548 ESTs, from eight control (wild type “black six”) mice and eight “knockout”

(lacking ApoA1) mice. Common reference RNA was obtained by pooling RNA

from the control mice, and was used to perform expression profiling for all 16

mice. Using the lemma package [4], which is designed to detect genes that are

differentially expressed, 9 genes are detected (with a 0.2 posterior probability

threshold) including the ApoA1 gene and others closely related to it. The same

set of the top eight genes were also identified as nonnull (among others) when

using other (mean-based) packages like limma and locfdr [36]. These genes

were confirmed to be differentially expressed in the knockout versus the control

line by an independent assay.

Applying the method in this chapter while controlling the false discovery

rate at 5% we find 21 genes in which the variance in the treatment group was

significantly higher than in the control, and 21 genes in which the variance was

significantly smaller in the treatment group. Most of these genes had very small

mean-response difference (defined as dg = ȳ2·g − ȳ1·g) and were not detected by

any mean-based method, or by ‘one at a time’ test for unequal variance.

Figure 2.4 shows the distribution of the statistics {xg}. The scatter plot on

the left shows the genes with significantly higher and lower variance, marked

by upper red or lower blue triangles, respectively. The scatter plot and the his-

togram (right) show that the normal approximation fits the distribution of xg
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set. Number of genes G = 5, 548, sample size n1 = n2 = 8, FDR
threshold=0.05.

very well. The green dashed line represents the overall mean of xg (which, in

our previous notation, we referred to as log(τ).)

We investigated the functional status of the genes that had deflated and in-

flated variances using the National Institute of Health Gene tool and Genomenet

(http://www.ncbi.nlm.nih.gov/gene and http://www.genome.jp/,

respectively). It turns out that the inflated variance genes mostly have to do

with cell signaling, while the deflated variance genes seem more related to

tighter regulation of a lipid metabolism gene network. Given that the gene of

primary focus in the study, ApoA1, encodes apolipoprotein A-I, which is the

major protein component of high density lipoprotein (HDL) in plasma these

results are biologically plausible.
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2.6.2 Methylation Data

DNA methylation plays an important role in regulation of gene expression. Re-

cent studies have shown that hyper- or hypomethylation are associated with

cancer (either as a causal effect or as an early indicator of the disease). In the

following analysis, we used an unpublished data set with 119,260 genes, and

three subjects in each group. Using the mean-based approach [3] we did not

find any significantly hyper or hypomethylated genes. However, applying the

methods developed in this chapter we found a total of 153 genes with inflated

methylation, and 150 with deflated methylation (at the FDR level of 5%). In con-

trast, traditional ’one at at time’ methods yield no discoveries, after accounting

for multiple testing.

The observed mean differences (dg) are rather small, but the observed log-

ratio between the mean squared errors were very large (in absolute value) for

some genes. Figure 2.5 shows the boxplots of the three mixture components.

The distribution of xg in the null component is approximately normal with mean

0, and the significant genes have |xg| > 7. Recall that xg is on the logarithmic

scale, so for the significant genes this corresponds to at least four orders of mag-

nitudes in the ratio between the mean squared errors between the two groups.

2.6.3 fMRI Data

Functional magnetic resonance imaging (fMRI) is used to measure the change

in blood flow in the brain during certain neural or cognitive activity. In this

example we use data from a Pavlovian-type experiment, in which both groups

were shown a visual cue, but for the treatment group it was immediately fol-
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sample size n1 = n2 = 3, FDR threshold=0.05.

lowed by an auditory signal [71]. One of the goals of the experiment was to test

whether after several training cycles there will be a difference in the response

to the visual cue between the two groups, and if so, in which region of the

brain. According to the Pavlovian paradigm, it is expected that once trained,

the treated subjects will respond to the visual cue as if they receive the audi-

tory cue. For more details about the experiment, see the ‘Supporting Online

Material’ document in [71].

Again, no voxels were found to have significantly different mean levels of

response when using mean-based methods. However, we do find many voxels

which exhibit significantly different levels of variability. Figure 2.6 shows the

boxplots of the three mixture components that our method identified from a to-

tal of 36,145 voxels. A total of 1,276 voxels had a significantly increased variance

in the treatment group, and 1,142 voxels had a significantly decreased variance

in the treatment group.
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2.6.4 Metabolomics Data

Our final example uses data from the area of metabolomics (“the study of

unique chemical fingerprints that specific cellular processes leave behind”). In

this (unpublished) experiment, two groups of pregnant women were treated

with two different levels of choline. The levels of nearly 250 metabolites were

measured during the first and the twelfth weeks of the pregnancy. Here, we

analyze the effect of the treatment on metabolite levels after 12 weeks (taking

week 0 as the baseline for each woman). Once again, testing for differences in

mean response levels between the groups yields no discoveries. However, with

our method we found four metabolites whose variance increased significantly

due to the treatment, and seven whose variance decreased (see Figure 3.7).
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2.7 Conclusions

This chapter introduced a new model and an estimation procedure (based on

the EM algorithm) for parallel testing for inequality of variances. The model

borrows strength across the entire data, resulting in increased power and accu-

racy, while maintaining a low false discovery rate. Simulations show that the

method performs well even when the number of tests is very large and the sam-

ple sizes are small, and that it is quite robust to deviations from normality. The

analysis of four different data sets shows that the model assumptions are real-

istic, that the method is broadly applicable, and that it complements methods

that test for differences in means.
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CHAPTER 3

THE BIVARIATE MODEL – SIMULTANEOUS TEST FOR MEAN AND

VARIANCE

3.1 Introduction

Recent advances in technology allow researchers to measure responses at in-

creasingly finer resolutions. For example, microarrays are used to measure

expression levels for thousands of genes, and functional Magnetic Resonance

Imaging (fMRI) is used to measure volume of blood-flow in tens or hundreds of

thousands of voxels in the brain. The large number of responses, combined with

the high cost of such experiments introduces a severe multiple-testing prob-

lem, since the number of hypotheses is much larger than the sample size (the

so-called ‘large p, small n’ problem). Although the method developed in this

chapter can be used in a broad range of applications, we use the terminology of

gene expression experiments in the rest of this chapter, for convenience of the

exposition.

To address the problem of multiple testing, methods that ‘borrow strength’

across genes have been developed. Some of the most powerful methods gain

power by cleverly reducing the dimensionality of the problem. To do that, they

assume a certain parsimonious model that governs the distribution of the re-

sponses (see, for example [3, 49, 69]). This model-based approach yields shrink-

age estimation of a small number of parameters, involving all the data, and thus

borrowing strength across genes. One aspect in which these methods often dif-

fer, is in the way the random error variance is modeled. The most powerful

among them assume that the error variances are also generated by a random
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process, and they estimate the hyper-parameters of the (assumed) underlying

distributions. However, these methods all assume variance homogeneity across

treatment groups. In the previous chapter we introduced a different approach

to modeling the distribution of the error variances. According to our model, the

error variance in the control group follows an inverse gamma distribution, but

in the treatment group the error variances follow a three-component mixture

distribution. In the null component the error variances follow the same inverse

gamma distribution, up to a constant factor. In the other two components, the

error variances are additionally inflated or deflated by a random factor.

Here, we introduce a unified model that accounts for both differential ex-

pression and differential variation between the groups. Combining the ap-

proach in [3] for estimation of differential expression with the model for differ-

ential variation in Chapter 2, we derive a bivariate normal model for the mean-

difference and the logarithm of the ratio of the error variances. According to

the model, genes in the treatment group may exhibit higher or lower expres-

sion levels compared with the control, or the two groups may differ in their

gene-specific error variances.

To fit the bivariate model to gene expression data, we use an empirical Bayes

approach and the EM algorithm. To set up the EM algorithm, we define the

‘missing data’ as pairs of independent indicator variables that encode the dif-

ferential expression and variation status of each gene. The nonnull components

are assumed to be realizations of normal distributions. Therefore, to compute

the complete data log likelihood, these random effects, as well as the random

error variance, have to be integrated out. Although an analytical integration is

not tractable, we develop a three step procedure which is both computationally
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efficient, and powerful. First, to estimate the differential variation parameters

we show that they do not depend on the differential expression parameters, and

use the method in Chapter 2. Second, we define the re-weighted mean squared

errors, which take the differential variation into account, and estimate the pa-

rameters of the error variance distribution, similarly to [3]. Finally, we apply

the Laplace approximation to estimate the differential expression parameters,

by plugging in the posterior mode of the gene-specific error variances.

The null status of genes with respect to differential expression, variation, or

both, is determined by the posterior distribution of the aforementioned indica-

tor variables. Alternatively, the bivariate model allows for a simple frequentist

inference approach, while controlling the false discovery rate.

We show that the unified model increases the power to detect differentially

expressed genes, because the shrinkage estimation of the error variance is more

accurate than existing methods. Furthermore, unlike existing methods, the bi-

variate model detects differential variation, which is sometimes of scientific im-

portance in its own right.

This chapter is organized as follows. In Section 3.2 we introduce the bivariate

mixture model. In Section 3.3 we derive the estimation procedure based on

the Laplace-approximated EM algorithm. Section 3.4 deals with the frequentist

and Bayesian inference procedures, and in Section 3.5 we describe a method

for power/sample size estimation. In Section 3.6 we describe results from a

simulation study. Section 3.7 includes two case studies, and we conclude with

Section 3.8.
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3.2 The Model

Using the same notation and assumptions from Chapter 2, suppose that the

response for gene g for subject j in treatment i, follows a normal distribution:

yi jg ∼ N
(
µig, σ

2
ig

)
, (3.1)

with i = 1, 2, j = 1, . . . , nig and g = 1, . . . ,G. We denote the sample mean of gene

g in treatment group i by mig. We also assume that σ2
1g are distributed inverse-

gamma, with shape and scale parameters α, β.

Under model (3.1) the within-group sample mean is

mig =
1

nig

nig∑
j=1

yi jg ∼ N
(
µig, σ

2
ig/nig

)
. (3.2)

Denote the observed difference between the treatment groups for gene g by

dg ≡ m2g − m1g. We assume that dg are drawn from a mixture of three distribu-

tions, with probabilities q = (q0, q1, q2). In particular, we assume that for non-

differentially expressed genes µ2g−µ1g = ν, and for differentially expressed genes

µ2g − µ1g = ν +
(
γ1g − γ2g

)
ψg, where

ψg|γg ∼ N(ψ,σ2
ψ) , (3.3)

γ = (γ0g, γ1g, γ2g) ∼ multinomial(1, q). (3.4)

In Chapter 2 we defined the sample variance for gene g in group i, s2ig (2.2),

and we defined λg which we assumed satisfies log λg ∼ N(θ, κ2). We also defined

δg = (δ0g, δ1g, δ2g), a vector distributed as multinomial(1, p) which determines

whether the variance in the two groups is the same (up to a constant factor, τ),

or if it is inflated or deflated in the treatment group (relative to the control).
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Define the random variable zg = (dg, xg)′, where xg is as defined in (2.5). Then,

since mig and s2
ig are independent, the distribution of zg, conditional on ψg,γg, λg

and δg, is bivariate normal:

zg ∼ N


 ν +

(
γ1g − γ2g

)
ψg

θg + log τ +
(
δ1g − δ2g

)
log λg

 ,


σ2
1g

n1g
+

σ2
2g

n2g
0

0 κ2
g


 (3.5)

Note that for null genes γ0g = δ0g = 1, and the distribution of zg is given by

zg|
(
γ0g = δ0g = 1

)
∼ N


 ν

θg + log τ

 ,


σ2
1g

n1g
+

τσ2
1g

n2g
0

0 κ2
g


 . (3.6)

We will use this later to construct the test to determine the null status of genes.

It is also worth noting in other hierarchical models that incorporate random

effects to detect differentially expressed genes (e.g. LEMMA [3], LIMMA [69])

the variance of dg in the nonnull distribution is larger than in the null group.

This is simply a result of the commonly used assumption that the error variance

distribution is the same across the two conditions. Thus, when integrating out

the random effect, ψg, the total variance is the sum of the random error and the

variance of the random effect. Occasionally, this does not seem to be justified

when analyzing real data. In contrast, our model allows for some (nonnull)

genes to have a deflated variance in the treatment group (by a factor of λg).

Consequently, the total variance of dg for such genes is smaller compared with

the null genes. Even for null genes, if the data are generated by a process in

which the overall inflation factor τ is not 1 and it is not accounted for by the

estimation procedure, the null variance may be biased. In particular if the error

variance of the null is over estimated, the test procedure will lack power to

detect nonnull genes.
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3.3 Estimation

3.3.1 The Laplace Approximation

The bivariate distribution of zg given in (3.5) involves unobserved variables ϑg =

{γg, δg, ψg, λg}. Thus, to estimate the set of parameters in the model, we turn to

the EM algorithm [29], with ϑg playing the role of the ‘missing data’. Denote the

set of parameters in the model by φ = {p,q, ν, τ, ψ, σ2
ψ, θ, κ

2, α, β}. In the E-step of

the algorithm, we compute the expectation of the log likelihood, conditional on

the current parameter values at the t-th iteration, and the observed data:

Q
(
φ|φ(t)

)
= Eϑg |zg,φ(t)

[
log L

(
φ; zg, ϑg

)]
. (3.7)

The complete data log likelihood is a non-linear function of the latent indi-

cator variables γg and δg, making the integration with respect to these variables

analytically intractable. We solve this problem by updating γg and δg by their

posterior expectations using Bayes rule in each iteration. Using these posterior

expectations, we obtain estimates for p and q. For k = 0, 1, 2,

p̂(t+1)
k =

1
G

G∑
g=1

δ̂(t)
kg , (3.8)

q̂(t+1)
k =

1
G

G∑
g=1

γ̂(t)
kg . (3.9)

In order to estimate the other parameters in φ we need to integrate out the

random variables ψg, λg, and σ2
1g in (3.7). Now, under the assumption of vari-

ance homogeneity across treatment groups, where τ = 1 and λg = 1 for all

g, the distribution in (3.5) reduces to a univariate mixture model for the dif-

ferential expression (dg). The reduced model, in which σ2
ϵ,g ≡ σ2

1g = σ2
2g, and
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σ2
ϵ,g ∼ invGamma(α, β) is identical to the ‘RR’ model in [3]. Integration in (3.7)

with respect to σ2
ϵ,g is also intractable. To address this problem [3] apply the

Laplace approximation, replacing the integral with respect to σ2
ϵ,g with a func-

tion of its posterior mode. This yields an approximated version of complete

data likelihood, which is very accurate and computationally efficient. This is

followed by straightforward integration with respect to ψg, which is assumed to

be normally distributed. However, in the more general case, the random vari-

ables {σ2
2g} depend on the variational null-status of the genes (δg), and are not

assumed to follow the same distribution as {σ2
1g}. Therefore, a direct extension

of the Laplace approximation approach is not possible.

Furthermore, the parameter τ and latent variables log λg enter into the full

(bivariate) complete data loglikelihood in a nonlinear way that makes exact ap-

plication of the EM algorithm intractable. Thus, we take a three-step estimation

approach, involving two simple and accurate approximations.

Step I: The distribution of xg does not depend on estimating the mean pa-

rameters. Also, recall that κ2
g and θg are known, since they depend only on the

sample sizes. Hence, to compute Q
(
φ|φ(t)

)
, we first integrate the complete data

log likelihood of just xg with respect to λg. Then, we obtain maximum likelihood

estimates for the variance-inflation parameters τ, θ, κ2, and δg, based only on the

statistics xg. The method is described in detail in [6].

Note that the distribution of zg as given in (3.5) suggests that dg also contains

information about τ, θ, κ2, and δg. However, since G is large, the approximated

EM estimates of these parameters based on just xg, are very accurate.
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Step II: Define fg = n1g + n2g − 2, and the re-weighted mean square error,

s2
g =

1
fg


n1g∑
j=1

(
y1 jg − ȳ1·g

)2
+

n2g∑
j=1

(
y2 jg − ȳ2·g

)2

τλ
δ1g−δ2g
g

 . (3.10)

Plugging in the estimate for τ and the posterior means of λg and δkg from

Step I into (3.10), we obtain an approximation for s2
g. Now, (xg, log λg)′ fol-

lows a bivariate normal distribution with mean m and variance-covariance

matrix S , such that m = (log τ + (δ1g − δ2g)θ, (δ1g − δ2g)θ)′, S 1,1 = κ2 + κ2
g, and

S 1,2 = S 2,1 = S 2,2 = κ2. Hence, conditional on xg, the posterior mean of λg is

E
(
λg| exp(xg)

)
= exp

[
E

(
log λg|xg

)
+ 1

2Var
(
log λg|xg

)]
. Let η̂g = κ̂2/(κ̂2 + κ2

g). Then,

the posterior mean of λg can be written as:

λg|xg, δg = exp
[
(1 − ηg)(δ1g − δ2g)θ + ηg(xg − log τ − θg + κ

2
g/2)

]
. (3.11)

Now, the normality assumption in (3.1) implies that s2
g|σ2

1g ∼ σ2
1gχ

2
fg
/ fg. Com-

bining this with the assumption σ2
1g ∼ IG(α, β), we obtain a likelihood function

for estimation of α and β. Maximum likelihood estimates are derived, for exam-

ple, in [3] (Section 3). Alternatively, the method of moments results in closed-

form estimates of α and β. Similar derivations appear in [69] based on the ar-

gument that the mean square errors (assuming variance homogeneity) follow a

scaled F-distribution. Let M1 =
∑G

g=1 s2
g/G and M2 =

∑G
g=1(s2

g)2/G. Then

α̂ =
2M2 − (1 + 2/ f )M2

1

M2 − (1 + 2/ f )M2
1

(3.12)

β̂ =
1

M1(α − 1)
. (3.13)

Step III: To obtain estimates for the mean parameters, ν, ψ, σ2
ψ and γg, we

need to integrate out the random variables ψg in the likelihood function of dg.

To do that, we apply the Laplace approximation by replacing the integral with
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respect to σ2
1g with the posterior mode, which we compute using the estimates

from Step II. The resulting estimation equations for ν, ψ, σ2
ψ and γg are the same

as in [3], except for the plug-in estimator for σ2
1g, which now takes into account

the possibility that the variance in the treatment group is not the same as in the

control, and that some genes may have inflated/deflated variance. Specifically,

the posterior mode of the random error variance conditional on s2
g, denoted by

σ̃2
1,g satisfies

σ̃2
1,g =

s2
g fg/2 + 1/β̂

fg/2 + α̂ + 1
. (3.14)

We now let σ̃2
g = σ̃

2
1,g

(
1

n1g
+ τ̂λ̂

δ̂1g−δ̂2g

n2g

)
and write the Laplace approximated complete

data log-likelihood function of dg:
G∑

g=1

ℓ(dg) =
G∑

g=1

2∑
k=0

γkg log qk

−1
2

G∑
g=1

[
γ0g log(σ̃2

g) + (γ1g + γ2g) log(σ2
ψ + σ̃

2
g)
]

−1
2

G∑
g=1

γ0g
(dg − ν)2

σ̃2
g
− 1

2

G∑
g=1

γ1g
(dg − ν − ψ)2

σ2
ψ + σ̃

2
g

−1
2

G∑
g=1

γ2g
(dg − ν + ψ)2

σ2
ψ + σ̃

2
g

. (3.15)

See [3] for the detailed derivation of estimates of the mean parameters from

equation (3.15).

3.3.2 Incorporating Gene-Specific Priors

High-throughput experiments (as in genomics, metabolomics, and fMRI for

brain imaging) often involve thousands of tests and there is no prior knowl-

edge about which gene is differentially expressed. However, as more informa-

tion is collected from other experiments one may have a good idea whether
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some genes are more likely to be differentially expressed. Model (3.1) allows to

incorporate gene-specific priors to account for such knowledge. For simplicity,

our focus in this subsection is on priors on the differential expression latent vari-

ables, γg, which appear in the likelihood of dg, but the same derivations apply

to the differential variational latent variables δg.

Suppose that the user specifies a subset of genes that are thought to be dif-

ferentially expressed. We denote the set by A1 and its complement by A0 ≡

{1, . . . ,G} \ A1. To incorporate this prior information, we change the assump-

tion regarding the distribution of the latent variables, γg, so that if g ∈ A1 then

γg ∼ multinomial(1,qA1), and if g ∈ A0 then γg ∼ multinomial(1,qA0). The first term

in log-likelihood function in (3.15) changes slightly, and we have∑
g∈A1

2∑
k=0

γkg log qA1k +
∑
g∈A0

2∑
k=0

γkg log qA0k.

The estimation of the latent variables γg is based on their posterior probabil-

ities, conditional on whether the gene is in A0 or A1:

pr(γkg = 1|dg, g ∈ A0) =
qA0kLk(dg)

qA00L0(dg) + qA01L1(dg) + qA02L2(dg)
,

pr(γkg = 1|dg, g ∈ A1) =
qA1kLk(dg)

qA10L0(dg) + qA11L1(dg) + qA12L2(dg)
.

To estimate the vectors qA0 and qA1 , we simply average the posterior proba-

bilities in group A0 and A1, respectively:

q̂(t+1)
A0k =

1
|A0|

∑
g∈A0

γ̂(t)
kg

q̂(t+1)
A1k =

1
|A1|

∑
g∈A1

γ̂(t)
kg.

This formulation generalizes trivially to any partition of the set of genes

{1, . . . ,G}.
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3.4 Inference

3.4.1 The Frequentist Approach

As we pointed out earlier, the null distribution of zg is known, and given by

equation 3.6. Let the null mean and variance-covariance matrix be µ0g and Σ0g,

respectively. Thus, applying theorem 5.2.1a in [58] we construct a test for the

hypothesis that a gene is in the null group (that is, it is neither differentially ex-

pressed, nor is its variance inflated or deflated in the treatment group.) Specifi-

cally, under the (gene-specific) null distribution,

(zg − µ0g)′Σ−1
0g (zg − µ0g) ∼ χ2

2. (3.16)

Sometimes one has to consider specific alternatives in order to know more

precisely why a gene has been rejected from being null. For example, is it dif-

ferentially expressed, or is it because of differential variation, or perhaps both?

This can be achieved by means of linear contrasts. In this setting the null hy-

pothesis takes the form H0 : Rµ = r where R is the contrast matrix. The test

statistics are (Rzg− r)′(RΣ0gR′)−1(Rzg− r), and under the null they are distributed

χ2
1.

For example, to test for differentially expressed genes, we set R = (1, 0) and

r = (0, 0)′. Similarly, to test for differential variation we set R = (0, 1) and r =

(0, 0)′.

Another possible alternative hypothesis is that a gene is both differentially

expressed and has inflated variance in the treatment group, and furthermore,

that for nonnull genes µA,g = (c1, c2)′ for some known constants, c1, c2. For ex-
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ample, it is common practice to require that for nonnull genes the minimum

log fold-change is greater than some threshold, say, c1 = 1.5. In this case, the

appropriate contrast matrix is R = (1/c1,−1/c2). (See theorem 5.3.1a in [58]).

To account for the large number of hypotheses, we apply the Benjamini-

Hochberg procedure [8] to the set of G p-values obtained from these chi-square

tests, and control the false discovery rate at the desired level. If in addition we

test L contrasts, we divide the desired false discovery threshold level by L before

applying the Benjamini-Hochberg procedure to the p-values of each contrast.

3.4.2 A Note on Multiple Testing

The Benjamini-Hochberg procedure [8] guarantees that the expected false dis-

covery rate is controlled at a given threshold. By focusing on the false discovery

rate, rather than trying to control the Type-I error for each test, this method

provides a more powerful approach in modern applications. Previous multiple

testing approaches (e.g. Bonferroni [46], Dunnett [30], Hsu [48]) are suitable for

cases in which the total number of tests is small to moderate, but typically yield

no discoveries when the number of hypotheses is large, as is the case in most

experiments in genomics.

Denote the number of null and nonnull genes by N and m, respectively, and

let M = N + m. We show that even the FDR procedure becomes weaker as

m/M → 0. Suppose that the researcher includes a large number of null genes,

and a small number of nonnull genes, of which g∗ has the smallest p-value,

denoted by p∗. The Benjamini-Hochberg procedure declares as significant the

first k (sorted) p-valued, for which p(i) < i ·α/M, and in particular the smallest p-
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value has to satisfy p(1) < α/M. So for a sufficiently large N, we have α/M < p∗,

and N ≈ M. Now, the distribution of the smallest order statistics among the

null genes is known, and we have P
(
p(1) >

α
M

)
=

(
1 − α

M

)M
≈ exp(−α) ≈ 1 − α. In

other words, for a sufficiently large number of null genes, the probability that

the procedure will not detect any genes, and therefore not detect g∗, is 1 − α.

We return to these observations in Section 3.5, where we elaborate on power

and sample size.

3.4.3 The Empirical Bayesian Approach

The bivariate model and the EM-based estimation procedure allow for

empirical-Bayesian inference in terms of posterior probabilities or the ‘local fdr’

[35]. Specifically, each gene can be classified into one of nine possible categories,

depending on the values of the pairs (γg, δg) ∈ {−1, 0, 1} × {−1, 0, 1}, and a gene is

in the null group if and only if γg = δg = 0. The posterior null probability of a

gene is given by

P0,g ≡
p0 f0(zg)∑

c,d p(c,d) f(γg=c,δg=d)(zg)
≡

p0 f0(zg)
f (zg)

(3.17)

where c and d equal -1, 0 or 1; p(c,d) is the joint probability of (γg = c, δg = d);

and f(γg=c,δg=d)(zg) is the probability distribution function at zg under the bivariate

model (3.1) with γg = c and δg = d. We say that gene g is nonnull if its posterior

null probability is less than a given threshold, u.

Using the cumulative distribution functions instead of the p.d.f, the statisti-

cal inference can be done based on the ‘Bayesian FDR’, defined in [34], so that

Fdr(zg) ≡ p0F0(zg)/F(zg).
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The posterior probability formulation allows us to classify genes by their

latent variable status. In particular, for any gene that is declared nonnull by the

criterion P0,g < u, we infer that they are differentially expressed if γg , 0, and/or

have inflated/deflated variance in the treatment group if δg , 0.

We now return to the issue of multiple testing, this time in the context of a

Bayesian analysis. Müller et al. [61] say that “Posterior inference adjusts for

multiplicities, and no further adjustment is required”, but add that in order for

this statement to hold, the prior probability of non-differential expression must

be positive and non-degenerate for each gene. This is obviously the case in our

model, where the prior is estimated by borrowing information across genes, and

is not assumed to be fixed throughout the estimation algorithm.

Both inference methods (the frequentist and the empirical-Bayesian) use

the same random-effects model that induces shrinkage, and increases power.

The frequentist inference depends only on the null distributions, whereas the

empirical-Bayesian approach takes into account the distributions of the nonnull

genes, as well as the proportion of null group.

3.5 Power and Sample Size

Recent advances in bioinformatics prompted an impressive growth in data

throughput, and a radical change in the statistical analysis paradigm, since an-

alysts are now required to perform thousands of simultaneous tests using rela-

tively small sample sizes. The large number of tests makes it essential to control

the false discovery rate (FDR). Over the last couple of decades, methods that

involve ‘borrowing information across genes’ greatly improved the power to
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detect the so-called ‘nonnull genes’, while maintaining a low FDR.

Paradoxically, despite the consensus in the literature that testing ‘one gene

at a time’ has a substantially lower power compared to modern methods that

borrow information across genes, when designing an experiment with thou-

sands of tests, the sample-size estimation is still, in many applications, based on

the traditional ‘one at a time’ approach. Determining the required sample size

based on a single gene, while adjusting the critical value to account for multiple

testing, yields inflated, and usually unrealistic estimated sample sizes.

The cost of new high-throughput technologies and the need to ensure min-

imal power require new experiment-design methods that will provide a better

sample size estimation.

We develop power and sample size estimation procedures that parallel the

estimation and inference method described in this chapter. Specifically, we en-

able ‘borrowing information across genes’ in the design phase, by assuming a

parametric model for the null and nonnull genes, and by assuming that gene-

specific parameters are actually realizations of prior distributions. We note that

in general, the only meaningful sample size (or power) estimation procedures

are ones which rely on the same model assumptions and estimation procedures

that are actually used in the discovery phase.

In the remainder of this section we assume that the sample size is n in both

groups. Under the null model the bivariate mean is (ν, log τ) and the variance

matrix is diag(σ2
1g(1 + τ)/n, 2ψ′((n − 1)/2)).

Determining the power or sample size under the bivariate model is compli-

cated for two reasons.
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µA

µ0

Figure 3.1: Type II probability in the bivariate case – the grey lines cor-
respond to the variance-covariance matrix for nonnull genes,
and the red ellipse corresponds to the (1−α)% quantile for null
genes. The power is the integral of the nonnull probability dis-
tribution function over the rejection region (outside the ellipse).

First, unlike the well-known, univariate situation, computing the probability

of a type-II error in the bivariate case is known to be a hard problem for which

there is no closed-form solution. To help illustrate this difficulty, consider Figure

3.1, where µ0 is the hypothesized mean under the null, i.e. (ν, log τ)′; and µA is the

hypothesized mean for nonnull genes. The variance-covariance matrix under a

normal model is translated graphically into ellipse-shaped contour lines, which

determine the quantiles of the bivariate distribution. For instance, the grey lines

correspond to the variance-covariance matrix for nonnull genes, and the red

ellipse corresponds to the (1 − α)% quantile for null genes (and note that The

variance-covariance matrix for null genes is not assumed to be the same as for

nonnull.) Computing the probability of a type-II error amounts to integrating

the probability distribution function of the alternative in the acceptance region

of the null (i.e., inside the red ellipse). This requires the computation of incom-
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µA

µ0

Figure 3.2: The power depends on the gene-specific realization of the er-
ror variance, σ2

1g, since each one determines a difference accep-
tance region (the red ellipses)

plete elliptic integrals within the acceptance region of the null. To address this

difficulty, we can compute the Type II probability numerically by summing the

probability density function of the alternative on a fine grid over the acceptance

region.

The second complication is due to the fact that the null distribution depends

on a random variable, namely σ2
1g. This is illustrated in Figure (3.2), where three

different realizations of σ2
1g are represented by the red, thick ellipses. Clearly,

the probability of Type II error will be different for every realization, and we

need to account for that in our power or sample size computation. One way

of dealing with it is to take the mean (or the mode) of the random distribution

from which the error variances are drawn.

Instead of attempting to evaluate the integral analytically or numerically, we

take a Bayesian approach as in [72]. In this setting, the researcher specifies the

parameter values (α, β, ν, τ, ψ, σ2
ψ, θ, κ

2) and the prior distributions in (3.5), and

we generate K independent values of σ2
1g, ψg, and λg. For each k = 1, . . . ,K we
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compute the posterior sample size, {nk}, if the desired probability of Type II error

is specified, or the posterior power, {βk}, if the sample size is given.

The graphical user interface for the power or sample size analysis is shown

in Figure 3.3. It is written in R [64] (using the package tcltk) and runs on Win-

dows and Linux. Note that unlike the traditional power calculation tools, we

have an element of randomness here since the error variance is specified as an

inverse gamma distribution, rather than a fixed value, and the gene-specific dif-

ferential and log-variational expression are normally distributed. The user spec-

ifies both the differential and log-variational expression mean and variance pa-

rameters and the proportions of nonnull genes. The user can choose a variable

and specify it in terms of a range of values, in the form from:by:start. For

instance, in this figure the mean differential expression is given by 0.5:0.5:4,

so the power analysis is performed for ψ = 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4.

The ‘Simulation variables’ section of the power analysis interface contains

three variables. The first is simply the number of simulated genes. The second

is the number of bootstrap iterations. Since we simulate data rather than solve

for power analytically, we need to be able to estimate the variability in the re-

sults that is due to the simulation. Therefore, we use non-parametric bootstrap,

and obtain confidence intervals or predictive distributions for any estimated

quantity (e.g., power, accuracy, false discovery rate). Finally, the third field in

this section is the FDR threshold that is used to determine the null status of the

genes.

Figure 3.4 shows an example of the output from the power/sample size anal-

ysis tool. The parameters were set up as follows. The sample sizes are n = 3 for

both groups. The inverse Gaussian mean and variance are 0.5 and 0.1 respec-
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Figure 3.3: The graphic user interface of the power/sample size calcula-
tion program

tively. The nonnull probabilities are p1 = p2 = q1 = q2 = 0.1, and note that this

means that on average, 39.6% of the genes will be nonnull. The differentially

expressed genes are distributed N(ν + ψ, 0.5) where ν = 0 and ψ = 1, 1.5, 2, 2.5, 3.

The overall variance inflation factor is τ = 1 and λg ∼ N(1, 0.25). We simulated

20,000 genes, and set the false discovery rate threshold at 0.1. We ran the simula-

tion with 30 bootstrap iterations to assess the variability in the power, accuracy,

and false discovery rate. Here we show the plots for one of these bootstrap

iterations.
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Figure 3.4: Output from the power/sample size calculation program

The output contains four plots. The ‘Power’ panel shows that for this pa-

rameter set-up, the power is less than 0.2 for detecting log fold change of 1, and

it increases to almost 0.6 for ψ = 3. The ‘Accuracy’ panel shows the fraction of

correct classifications. Recall that approximately 60% of the genes in this set-

up are null, so a very conservative method is expected to have an accuracy of

about 0.6. As ψ increases in the given range, so does the accuracy, to levels of

approximately 0.8 for large ψ.

The ‘FDR’ panel shows that the actual false discovery rate is below the se-

lected threshold. Finally, the ROC plot shows the true positive rate vs. the false
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positive rate for each ψ, from 1 (bottom, black) to 3 (top, light blue). The straight

gray line shows the random classification line. In this scenario, all the plots are

above the gray line, and the area under the curve increases with ψ.

Yet another measure of the quality of the classification of our bivariate

method, is the so-called MCC, or Matthews’ Correlation Coefficient [2], also

known as the ϕ coefficient. Unlike the FDR, power and accuracy measures, it

takes into account all the values in the ‘confusion matrix’ (namely, TP, FP, FN,

and TN, are all included in the computation of MCC). The MCC is given by

MCC =
T P · T N − FP · FN

√
(T P + FP) · (T P + FN) · (T N + FP) · (T N + FN)

,

and if the denominator is 0 we set MCC=0.

MCC is often preferred to other measures because it can be used even if the

proportion of null and non-null genes are very different. For example, when

most of the genes are null, a very conservative method will have high accuracy

(because if it does not reject anything, it correctly classifies the majority of the

genes). However, this does not convey any information about the power of the

method.

The MCC is a number between −1 and 1. It is, as the name suggests, a cor-

relation coefficient between the true and predicted binary classifications. The

fact that the MCC is on a scale that does not depend on the total number of ob-

servations in each class (null or non-null) allows for an intuitive interpretation.

If MCC=1, then the procedure provides perfect classification. If MCC=-1, then

the procedure gives the inverse prediction (i.e., it is wrong 100% of the time). If

MCC=0, then the classification procedure is as good random classification.

Figure 3.5 depicts the MCC as a function of ψ for the same configuration
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Figure 3.5: Matthews’ Correlation Coefficient as a function of ψ (using the
same configuration as in Figure 3.4)

used in Figure 3.4. It shows that even when the mean differential expression is

small, the bivariate model achieves a fairly high MCC, and it increases with ψ.

Obviously, power and sample size calculations depend on the user’s assess-

ment of certain parameters, and these are sometimes available from previous

experiments, but other times, they are not. In any case, it is recommended to use

this interface to perform sensitivity analysis and see how different (reasonable)

configurations affect the power, accuracy, false discovery rate, or the area under

the ROC curves. For example, if we use the same configuration, but increase the

estimated error variance to have mean 1 and variance 0.5, the estimated power

is smaller for all ψ in the range. By varying the parameters, one can choose a

sample size which is much more likely to yield the desired power, than when
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relying on ‘one gene at a time’ power estimation methods.

3.6 Simulation Study

We performed an extensive simulation study to evaluate the performance of the

bivariate method. We considered several performance metrics, including: (i) ac-

curacy of the parameter estimates under the assumed bivariate mixture model;

(ii) power to detect nonnull genes even when the data generation process differs

from the assumed model; (iii) true positive rate vs. false positive rate; (iv) total

number of correct classifications.

We use the simulation procedures in [3], where the total number of genes is

2,000, and for each configuration we created 30 data sets. The configurations

differ in the proportion of null genes, the error variance variability, the differ-

ential expression and differential variation parameters, and the sample sizes.

Since previous work demonstrated that the most powerful methods to detect

differential expression to date are ones that model the differential expression as

a random effect, and thus induce shrinkage [3, 49, 69], the focus of this section

is on the comparison between one such univariate method (LEMMA), and the

bivariate approach. In particular, we show that if there is no differential varia-

tion in the data our method performs as well as the most powerful univariate

methods. However, if there is differential variation, the bivariate model is more

powerful.

In the simulation described in the remainder of this section we have n1 =

n2 = 6 and for the inverse gamma parameters we set α = 2.1 and β = 10/33.

This configuration corresponds to E(σ2
1g) = 1 and high error variance variability.
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The differential expression of nonnull genes is distributed N(3, 1). Of the 2,000

genes, 200 were set as differentially expressed. In this configuration, we have no

differential variation (that is, τ = 1 and λg = 1). We then introduced additional

variability to a subset of 200 genes, of which 100 are differentially expressed.

For this subset of genes, the variance in the treatment group was, on average,

four times greater than in the control group. That is, in the second configuration

we have τ = 1 and λg = 4.

In our analysis, genes are declared as nonnull if their posterior null proba-

bility for the mean effect is less than 0.1. The comparison between the power

obtained by the univariate and bivariate methods, for the two configurations

(λg = 1 and λg = 4), is depicted in Figure 3.6. The plot clearly shows that when

there is no differential variation, the bivariate method has the same performance

as the univariate method, but when differential variation is present, the bivari-

ate method increases the power, while the univariate method decreases it.

We obtain very similar results with other performance measures, such as the

accuracy (total percentage of correct classifications), false discovery rate, and the

area under the ROC curve. The simulation study also shows that the estimation

procedure obtains accurate parameter estimates when the data are generated

under the bivariate model. We also see that inference based on the bivariate

model is robust to the normality assumptions. Since these results are consistent

with the observations in [3] and 2, which are special cases of the bivariate model

in this paper, we do not go into further details here.
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Figure 3.6: The power to detect nonnull genes, using the univariate
(LEMMA, [3]) and bivariate methods. In this example, n1 =

n2 = 6 and the error variances are distributed IG(α = 2.1, β =
10/33). The differential expression of nonnull genes is dis-
tributed N(3, 1), and the proportion of nonnull genes is 0.1. The
two boxplots on the left show the power when there is no dif-
ferential variation. The two boxplots on the right show the
power when the variability of the response is 4 times greater
in the treatment group for a set of 200 genes of which 100 are
differentially expressed.

3.7 Case Studies

We applied the bivariate model to several data sets, using different types of

data (including gene expression, methylation, fMRI, and metabolomics data).

The bivariate model seems to fit these data types very well. In this section we

report the results for two data sets. The first involves metabolomics data from

[66]. The second example involves gene expression data from the ‘Ross’ data set

in [67], which is provided with the MADE4 R-package [23].
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3.7.1 Metabolomics Data

In recent years the study of chemical processes involving metabolites has be-

come a popular complement to gene-expression analysis. Metabolites are the

product of cellular processes, and they include several pathways, like amino

acid (e.g., creatine, glutamine), lipid (e.g., choline, 2-hydroxyglutarate), and en-

ergy (citrate, pyrophosphate), just to name a few. Cancer researchers noted that

there are differences in cellular metabolism between normal and cancer cells

[28]. Here, we use a data set from [66] where over 200 metabolites in human

oligodendroglioma (HOG) cells were profiled to determine the effects of ex-

pression of IDH1 and IDH2 mutants on cellular metabolism using a glioma cell

line.

The data used here are from ‘Dataset S2’ in [66], which consists of 114

metabolites, and measured in four groups, called ‘vector control’, ‘IDH1-WT’,

‘IDH1-R132H’ and ‘Fresh media’. Each group had 3 replicates. This data set has

been re-scaled to have median equal to 1, and missing values were imputed with

the minimum. In our analysis we compared the R132H group with the control.

We removed one metabolite (2-hydroxyglutarate, 2HG) which had much higher

levels in the ‘IDH1-R132H’ group than in the control (the values in the ‘IDH1-

R132H’ group are 136.71, 118.87, 120.40, much higher than the supposed median

of 1). When included in the analysis, it is obviously detected as significantly dif-

ferent between the two groups. We excluded four additional metabolites from

the analysis, since they had zero within-group variability in one of the groups.

The bivariate analysis is depicted in Figure 3.7. Ten metabolites are de-

tected at the 5% FDR threshold (shown as red squares in the plot). These ten

metabolites with their corresponding statistics (dg, xg, and the bivariate Chi-
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square statistic X2) appear in Table 3.1. The five metabolites in bold, together

with 2HG were detected by the analysis in [66], and they write that “these six

metabolites are a subset of those that were altered in lysates of cells expressing

either IDH1-R132H or IDH2-R172K.”

Our method detects five additional metabolites. It is interesting that [66]

does not mention glycylleucine, since, using our method, it has the second

largest Chi-square statistic. We also note that dihomo-linolenate clearly exhibits

significant differential variation (xg = 7.49). This could be an artefact of the

small sample size, but recall that the bivariate model accounts for that through

the estimation of θg and κ2
g.

N-acetylmethionine has a relatively small mean-difference (-0.59) compared
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Figure 3.7: The bivariate distribution of zg = (dg, xg)′ for the metabolite data
in [66], comparing between the control group, and mutation
R132H. Number of metabolites: G = 109. Sample sizes: n1 =

n2 = 3.
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to the other on the list, but its bivariate statistic (18.56) is highly significant.

Furthermore, its adjusted p-value when testing for differential expression (in

terms of the statistic dg) is 0.0002. This is a clear case in which the resulting

shrinkage estimation which takes into account the differential variation, in-

creases the power to detect significant mean-differences that are otherwise very

hard to detect. Similarly, even pyrophosphate which has the highest (Benjamini-

Hochberg) adjusted p-value in this set according to the X2 statistic (p = 0.008),

is significant according to its dg statistic, with p = 0.02 after adjustment for mul-

tiple testing.

3.7.2 Gene Expression Data

The data, originally described in [67] and later in [22], contains gene expression

profiles from the NCI60 microarray expression project. In this project cDNA

microarrays were used to assess gene expression profiles in 60 human cancer

Metabolite Pathway dg xg X2

3-methyl-2-oxobutyrate Amino acid -0.76 -3.14 31.99
3-methyl-2-oxovalerate Amino acid -0.79 0.26 36.06
4-methyl-2-oxopentanoate Amino acid -1.23 -1.63 80.81
dihomo-linolenate (20:3n3 or n6) Lipid 0.18 7.49 16.45
glycerol 3-phosphate (G3P) Lipid 1.31 2.76 20.52
glycerophosphorylcholine (GPC) Lipid 0.88 -1.16 26.80
glycylleucine Peptide -1.21 -1.14 70.15
kynurenine Amino acid 0.89 1.03 33.94
N-acetylmethionine Amino acid -0.59 0.52 18.56
pyrophosphate (PPi) Energy 2.01 4.36 14.34

Table 3.1: The metabolites that were detected as significantly different be-
tween the control and the R132H groups, using the bivariate test,
at the 5% FDR threshold.
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cell lines as part of the National Cancer Institute’s drug discovery program. The

data were normalized and filtered, and the final data set in [23] contains 1,375

genes. The 60 cancer cell lines in this data set are: BREAST (8), CNS (6), COLON

(7), LEUK (6), MELAN (8), NSCLC (9), OVAR (6), PROSTATE (2), and RENAL

(8).

Here, we show the comparison between the breast, and ovarian cancer cell

lines. In this data set, the overall inflation factor is τ = 0.53, which means that

the variance in the breast cancer cell lines is, on average, twice the variance

in the ovarian cancer cell line. Hence, we fit the data using two models: (a)

the bivariate model; and (b) a univariate random effects model that assumes

variance homogeneity across treatment groups. The latter is a special case of

the bivariate model, where τ = 1, and λg = 1 for all genes. This reduces to the

LEMMA model in [3]. For both models, we use the 5% FDR threshold.

Figure 3.8 plots xg versus dg, along with their univariate boxplots. The

dashed green lines represent the means of dg and xg for the null distribution.

The blue diamonds show the 14 genes that are detected by either model (a or b).

The red squares represent the 29 genes that are only detected by the bivariate

model (a). In total, the bivariate model detects 43 genes, more than three times

the number of discoveries made under the assumption of variance homogeneity

across treatment groups.

The plot also shows that the bivariate model is very realistic. For example,

the boxplot on the right-hand side suggests that the three-group normal mixture

model fits the distribution of xg very well. More generally, the bivariate model

predicts that the null group has an elliptic shape, per equation (3.6). This seems

to be the case for all the (normalized) data sets we investigated, including not
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only gene expression data, but also gene methylation, fMRI, and metabolomics.

Finally, the plot supports the model assumption of non-zero mean under the

null (ν, θg + log τ)′.

3.8 Conclusions

In this chapter we introduced a novel approach for detecting treatment effects

in high-throughput data. The bivariate model extends powerful methods for

detecting differential expression by considering the effect of the treatment on
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Figure 3.8: The bivariate distribution of zg = (dg, xg)′ for the comparison
between the breast, and ovarian cancer cell lines. The blue dia-
monds show the 14 genes that are detected by both the bivari-
ate model, and LEMMA (which assumes variance homogene-
ity across treatment groups). The red squares represent the 29
genes that were only discovered by the bivariate model, at the
0.05 FDR level.
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the mean and the variance. This not only enables the detection of differential

variation, but it also increases the power to detect differential expression. We

show in simulations that the new method yields a substantial gain in power

when differential variation is present. Our case studies show that the model is

realistic in a wide range of data sets.

Modeling the differential mean and variance as random effects results in

shrinkage estimation, which is known to increase the power, since the estima-

tors borrow strength across genes. Furthermore, through a three-step estima-

tion approach, in which we apply the Laplace approximation, and by using the

EM algorithm, we get a computationally efficient method, which is particularly

well-suited for ‘large p, small n’ situations.

Finally, we intend to extend the bivariate approach to a broader set of mod-

els. In particular, we will develop similar models and estimation procedures for

count data. This involves an extension of the bivariate model to the Generalized

Linear Models (GLM) or to the quasi-likelihood frameworks.
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CHAPTER 4

AN EMPIRICAL BAYES APPROACH TO VARIABLE SELECTION AND

QTL ANALYSIS

4.1 Introduction and Motivation

This chapter focuses on variable selection in normal linear regression models

when there are a large number of candidate explanatory variables, most of

which have little or no effect on the dependent variable. We propose an em-

pirical Bayes, model-based approach to variable selection which we implement

via a fast EM algorithm.

Traditional regression problems typically involve a small number of ex-

planatory variables and an analyst can make educated decisions as to which

ones should be included in the regression model, and which should not. How-

ever, the new age of high speed computing and recent analytic needs and tech-

nological advances in genetics, for example, have dramatically changed this

paradigm. It is common practice to use linear regression models to estimate

the effects of hundreds or even thousands of predictors on a given response.

These modern applications present major challenges. First, there is the so-called

‘large p, small n’ problem, since the number of predictors, e.g. genetic markers

in a Quantitative Trait Loci (QTL) study, often greatly exceeds the sample size.

Methods controlling the experiment-wise false discovery rate in one predictor

at a time analyses often result in few or no discoveries. Second, the model space

is huge. For example, for a modest QTL study with 1000 markers, there are 21000

possible models. This renders traditional search-based algorithms impractical.
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Automated methods for variable selection in normal linear regression mod-

els have long been studied in the literature [47]. Recent work on this topic in-

cludes [13, 19, 41]. Virtually every statistical package contains an implemen-

tation of standard stepwise methods. These methods typically add or remove

one variable from the model in each iteration, based on sequential F-tests, or

based on the change in other goodness-of-fit type scores, including adjusted R-

square, Akaike information criterion (AIC) [1], Bayesian information criterion

(BIC) [68], or Mallows’ Cp. Other approaches use the false discovery rate (FDR)

procedure [8].

AIC and BIC belong to a family of criteria that take into account two compo-

nents: the likelihood of the model, and a term that penalizes complex models.

The Cp statistic is similar in nature, in that it involves a penalty term (2p−n), but

it depends on the residuals sum of squares. It is often used as a stopping rule for

stepwise variable selection procedures. Other approaches include variations of

the LASSO [73], which minimize the residuals sum of squares, subject to an L1

constraint, namely that the sum of the absolute values of parameter estimates

is bound. In other words, the constraint ensures that the number of non-zero

parameter estimates is controlled.

Our method is more related to Bayesian approaches, which include [19] and

[41]. However, we use an empirical Bayes approach and the EM algorithm,

rather than Gibbs sampling. Our model-based approach allows for a fully-

Bayesian implementation, but the EM algorithm, combined with a computa-

tional trick yield much improved performance. This is particularly important

in modern applications in which the running time of an MCMC sampler is too

long for many data sets.
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This chapter is organized as follows. We introduce the model-based ap-

proach in Section 4.2. In Section 4.3 we derive the complete data likelihood func-

tion, and the EM algorithm procedure. In Section 4.4 we illustrate our method

using well-known data sets and compare our results with others in the litera-

ture. In Sections 4.5 we discuss extensions and future plans, and we conclude

with Section 4.6

4.2 A Statistical Model for Automatic Variable Selection

Denote the (continuous) responses by yi, i = 1, . . . ,N. Suppose that for each re-

sponse we have J measurements , xi j, j = 1, . . . , J, of covariates of interest (e.g.

sex, population, age) which we want to include in the regression model. We

denote the mean effect of the j-th covariate by β j.

Suppose that there are K putative variables zik, k = 1, . . . ,K, of which only

a small subset should be included in the model. Let zik be the value of the k-

th putative covariate of the i-th subject. Here we assume that K is large, and

we have no information on which of these covariates should be included in the

regression model.

We assume that the response yi can be modeled using an additive combina-

tion of the covariates:

yi =

J∑
j=1

xi jβ j +

K∑
k=1

zikγkuk + εi (4.1)

where

uk
iid∼ N

(
µ, σ2

)
γk

iid∼ multinomial (0, 1,−1; p0, p1, p2)
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εi
iid∼ N

(
0, σ2

e

)
.

The multinomial random variables γk take the value 1 or -1 if and only if the

kth putative variable zik is included in the model. Its sign indicates whether the

mean effect of the kth variable on the response is positive or negative.

In this context, the problem of variable selection can therefore be seen as an

estimation procedure, where our main interest is in the latent variables {γk}.

It is convenient to express the model in matrix notation. Denote the N × K

matrix (zik) by Z, and write Γ ≡ diag (γ1, γ2, . . . , γK) , and µ = µ1K . Let Zk denote

the kth column of Z. Also, denote the N × J matrix X = (xi j), and the J−vector of

fixed effects β = (β1, ..., βJ)′. Then

y = Xβ + ZΓu + ε (4.2)

ε ∼ N
(
0N , σ

2
eIN

)
(4.3)

ZΓu ∼ N
(
ZΓµ, σ2ZΓ2Z′

)
. (4.4)

This is similar to the usual mixed-model representation, but with two no-

table differences. First, our model includes the diagonal matrix, Γ, which is

used to select the columns from Z. Second, the mean of the random effect terms

is not zero. Note that in the usual mixed model context, the mean of the random

effect is not identifiable separately from the overall mean, and therefore it is as-

sumed to be 0. However, in mixture models (e.g. [3]) this is not the case, and in

fact, not only are the two means identifiable, letting µ be non-zero increases the

power to detect significant variables. Furthermore, the non-zero mean allows

us to separate the significant covariates into two groups (positive and negative

mean effect), and increase the power even more (compared with the two-group

mixture model).
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We assumed here that the variables {γk} are independent and identically dis-

tributed. Clearly, this may be unrealistic and we need to consider possible corre-

lation between variables. We return to this point in Section 4.3.4, and show how

we mitigate the problem of multicollinearity in the selected model. We also

discuss how one can incorporate additional information about specific putative

variables.

Including interaction terms in this framework is straightforward. To add an

interaction between uk and um we simply augment Z by adding a column which

contains the element-wise product of the kth and mth columns.

Finally, categorical variables are represented by s − 1 binary columns in the

matrix Z, where s is the number of possible levels for that putative variable.

4.3 Estimation

4.3.1 The Complete Data Likelihood

We employ an empirical Bayes approach in which the parameters θ =

{β, µ, σ2
e , σ

2} are estimated via a modified EM algorithm, and upon convergence

we select a column Zk to be included in the model if the estimated poste-

rior probability of its latent indicator, γk, is greater than a predefined thresh-

old. The complete data likelihood, fC(y,Γ), is obtained by integrating out the

random effects, {uk}. Then the Q-function for the EM algorithm is given by

Q(θ|θ(t)) = Eθ(t){log fC(y,Γ)|y}.

We treat γk as missing values and denote γ[0] =
∑K

k=1 I
[
γk = 0

]
, γ[1] =
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∑K
k=1 I

[
γk = 1

]
, γ[2] = K − γ[0] − γ[1], where I [·] is the indicator function. Also

denote V = ZΓ. We can write the complete data likelihood conditional on σ2
e

and integrate the random variable Vu:

[
y|σ2

e , σ,Γ
]
= pγ[0]

0 pγ[1]
1 pγ[2]

2

∫ [
y|Vu, σ2

e

] [
Vu|σ2

]
dVu.

This leads to the following log-likelihood function:

ℓ = γ[0] log(p0) + γ[1] log(p1) + γ[2] log(p2) − N
2

log (2π)

−1
2

log
∣∣∣σ2

eIN + Zσ2Γ2Z′
∣∣∣

−1
2

(y − Xβ − Vµ)′ (σ2
eIN + Zσ2Γ2Z′)−1 (y − Xβ − Vµ) . (4.5)

Note that the likelihood function is simply the probability distribution function

of a multivariate normal random variable with mean Xβ + Vµ and variance-

covariance matrix Σ† = σ2
eIN + Zσ2Γ2Z′, multiplied by the prior probability of

the latent variables.

4.3.2 The EM Algorithm

To derive the equations for the maximum likelihood estimates, we start with

the mean parameters, µ,β. Denote W = [X,ZΓ1K] . The mean of the multivariate

normal distribution in the complete data likelihood is Wβ̃ where β̃ = (β′, µ)′.

Then the MLE for β̃ is given by

(β̂′, µ̂)′ = (W′(Σ†)−1W)−1W′(Σ†)−1y (4.6)

To estimate the variance parameters, we use the following equations (see

Section 8.3.b in [60]). Using the values from the tth iteration of the EM algorithm,
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define

τe = trace(σ2
eIN − σ4

e(Σ†)−1) + σ4
e(y −Wβ̃)′(Σ†)−2(y −Wβ̃) , (4.7)

and the t + 1 update to σ2
e is

σ2
e =

τe

N
. (4.8)

Similarly, let

τr = trace(σ2IK − σ4V′(Σ†)−1V) + σ4(y −Wβ̃)′(Σ†)−1VV′(Σ†)−1(y −Wβ̃) (4.9)

and the t + 1 update to σ2 is

σ2 =
τr

rank(V)
. (4.10)

For p0, p1, p2 we use Lagrange multipliers: p0+ p1+ p2 = 1 and γ[0]+γ[1]+γ[2] =

K, and obtain

pi =
γ[i]

K
(4.11)

so p̂1, p̂2 estimate the proportion of putative variables included in the model.

For the estimation of the latent variables γk we use Bayes rule to compute the

posterior probability that putative variable k is included in the model:

Pr (γk = 0) =
p(t)

0 f
(
y;γk = 0, γ−k = γ

(t)
−k

)
∑

s=−1,0,1 p(t)
i(s) f

(
y;γk = s, γ−k = γ

(t)
−k

) (4.12)

Pr (γk = 1) =
p(t)

1 f
(
y;γk = 1, γ−k = γ

(t)
−k

)
∑

s=−1,0,1 p(t)
i(s) f

(
y;γk = s, γ−k = γ

(t)
−k

) (4.13)

Pr (γk = −1) =
p(t)

2 f
(
y;γk = −1, γ−k = γ

(t)
−k

)
∑

s=−1,0,1 p(t)
i(s) f

(
y;γk = s, γ−k = γ

(t)
−k

) (4.14)

where f (·) is the likelihood in (4.5) given the current parameter estimates, and

i(s) = 0, 1, 2 for s = 0, 1,−1, respectively. The notation γ−k = γ(t)
−k means that
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to update the kth variable in the diagonal matrix Γ we hold all the other ones

constant, at their value from the previous iteration.

We set γk = 0 if Pr (γk = 0) is greater than a certain threshold. Otherwise, if

Pr (γk = 1) > Pr (γk = −1) we set γk = Pr (γk = 1) and if Pr (γk = 1) ≤ Pr (γk = −1)

we set γk = −Pr (γk = −1).

In other words, we include the k-th covariate if and only if Pr (γk = 0) is less

than a certain threshold. This will have significant computational benefits when

N and K are large, but only a small number of covariates have a significant effect

on the response. We elaborate on this in the next subsection. We refer to the

variables that are excluded from the model as ‘null’.

4.3.3 When N is Large – the Modified EM Algorithm

Application of the EM algorithm is not entirely straightforward, for two rea-

sons. First, the log complete data likelihood is a non-linear function of the latent

variables, making the E-step analytically intractable. We solve this problem by

updating the γk’s by their posterior expectations using Bayes rule, as we showed

in the previous subsection.

A second problem stems from the modeling of the putative variables as ran-

dom effects. When we integrate out the random effect, the variance-covariance

matrix of the posterior likelihood contains a large (N × N) matrix of the form

IN +
σ2

σ2
e
ZZ′, which has to be inverted to compute the iterative maximum likeli-

hood estimates. To address this computational problem we use the Woodbury

identity [42], and express fC(y,Γ) in terms of the K × K matrix Σ∗K = IK +
σ2

σ2
e
Z′Z.
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This simplifies the computation because the (k, l)th element of Z′Z is given by

⟨zk, zl⟩γkγl, where ⟨, ⟩ denotes the inner product of two vectors. In contrast, the

elements of ZZ′ involve all the γks. We set γ(t)
k = 0 if the posterior expectation of

the kth latent variable in the tth iteration is below a given threshold. Since only

a small number of the putative variables are truly associated with the response,

the matrix Σ∗K is relatively sparse and much easier to invert.

Thus, to deal with the inversion of the N × N matrices Σ† and W′(Σ†)−1W

when N is large we obtain the following form of (Σ†)−1:

(Σ†K)−1 ≡ (Σ†)−1 =
1
σ2

e
IN −

σ2

σ4
e
ZΓ

(
IK +

σ2

σ2
e
ΓZ′ZΓ

)−1

ΓZ′. (4.15)

For matrices A, B of dimensions K × N, the following identity holds:

∣∣∣IK + ABT
∣∣∣ = ∣∣∣IN + BT A

∣∣∣ ,
so we can rewrite the log-likelihood function:

ℓ = γ[0] log(p0) + γ[1] log(p1) + γ[2] log(p2) − N
2

log (2π)

−N
2

log
(
σ2

e

)
− 1

2
log

∣∣∣∣∣∣IK +
σ2

σ2
e
ΓZ′ZΓ

∣∣∣∣∣∣
− (y − Xβ − Vµ)′ (Σ†K)−1 (y − Xβ − Vµ) . (4.16)

Suppose that there are L variables for which γk , 0, and let ΓL be the corre-

sponding L×L matrix (ΓL is obtained by eliminating all the 0 columns and rows

in Γ). Let ZL be the sub-matrix obtained by eliminating the K − L columns that

correspond to γk = 0. Then we can rewrite (4.15):

(Σ†K)−1 ≡ (Σ†)−1 =
1
σ2

e
IN −

σ2

σ4
e
ZLΓL

(
IL +

σ2

σ2
e
ΓLZ′LZLΓL

)−1

ΓLZ′L. (4.17)

We now denote V = ZLΓL and W = [X,ZLΓL1L] . Updating equations
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4.6,4.7,4.9, and 4.16 is computationally simpler, since it involves the inversion

of L × L matrices, and we assume that L is smaller than N and K.

4.3.4 Additional Implementation Considerations

We address a number of important implementation considerations. First, we

often expect to have groups of highly correlated variables. This is particularly

true when dealing with QTL data, where it is known that loci that are physically

close, tend to be correlated. In general, one finds a region of loci (rather than a

unique locus) that have a significant effect on the quantitative trait. Failing to

account for the correlation is likely to cause a multicollinearity problem, and in

particular may inflate the standard errors of the parameters. This, in turn, may

result in failure to detect important covariates.

To account for correlation we include a variable, uk, in the model if and only if

1. its posterior null probability is less than a certain threshold, and

2. the model does not include any other variable, u j, such that cor(Z j,Zk) is

greater than a given threshold.

We define a correlation-based distance measure between any two columns

in the matrix Z. Let r jk be the correlation coefficient between the vectors Z j and

Zk, and let R2
jk be the corresponding coefficient of determination. Then, let

d jk = 1 − R2
jk (4.18)

and define

Ck =
∏
j,k

(1 − Pr(γ j , 0) + d jkPr(γ j , 0)) . (4.19)
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The adjusted posterior probabilities are now defined as follows:

P0(k) ≡ 1 −Ck +CkPr(γk = 0) (4.20)

P1(k) ≡ CkPr(γk = 1) (4.21)

P−1(k) ≡ CkPr(γk = −1) . (4.22)

Recall that in order to reduce the dimensionality of the matrices, when

Pr(γk = 0) (as defined in 4.12) is large enough, we set γk = 0. Similarly, for

the simplicity of the following arguments, if d jk is less than a specified threshold

we set it to 0, and otherwise we set it to 1. This means that if variables j and

k are highly correlated we set the distance between them to 0, and otherwise

we set it to 1. Of course, after we do this rounding, d jk is not a proper distance

metric, because d jk = 0 does not imply Z j = Zk, but it is still a distance function.

Consider now the kth variable and the term Ck. Any other variable, j, that

is not in the model, has Pr(γ j , 0) = 0 so these have a unity multiplicative

contribution to Ck. The majority of variables are in this category. A non-null

variable (Pr(γk , 0) > 0) contributes a factor of 1 − Pr(γ j , 0) + d jkPr(γ j , 0) to

Ck. For most of the variables we have d jk = 1, and hence they contribute a factor

of 1. When d jk = 0 we get a factor of 1 − Pr(γ j , 0). In other words, if a variable

that is not highly correlated with the kth variable is already in the model, it does

not affect the posterior probability that the kth variable is in the model. But, if

a variable that is highly correlated with the kth variable in the model, it reduces

the posterior probability that γk , 0 is in the model by a factor of 1 − Pr(γ j , 0).

In the extreme case where Pr(γ j , 0) = 1 we get P0(k) = 1 (that is, the kth variable

does not enter the model).
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The rounding of d jk is not essential since we assume that Pr(γ j , 0) = 0

for most of the variables. For j such that Pr(γ j , 0) > 0 we can make similar

arguments about the multiplicative contribution of variable j to Ck. However,

since the computation of d jk requires O(K2) operations and K might be very

large, it is sometimes practical to assume that most d jk are 0, and compute it only

for pairs for which we have reason to believe are highly correlated. For example,

when we deal with genetic data, we will set d jk = 0 if j and k correspond to genes

that lie on different chromosomes.

Incorporating the term Ck into the posterior probability helps to control the

correlation between variables that are included in the model. Hence, it may

be seen as a form of clustering, where we pick a single representative from a

cluster, which is determined by the threshold we put on d jk. Instead of picking a

representative, we can take an average of the cluster (representing its ‘center’),

or we could perform Principal Component Analysis (PCA) on the variables in

the cluster and include the first component in the model.

To incorporate the distance measure into the linear model, we replace the

matrix Γ with the K × K matrix ∆ = (δ jk) where along the diagonal we have

δ j j = γ j, but in the upper triangle, i.e. for j < k we have δ jk = −γ jγk(1− d jk). As in

the matrix Γ, in the lower triangle ( j > k) we have δ jk = 0. It is easy to check that

no term, z j, appears more than once in the linear model, and if a pair of variables

have distance 0, at most one of them appears in the linear model. This prevents

the algorithm from including highly-correlated terms in the model. Like Γ, the

matrix ∆ is also very sparse. Most elements in the matrix are 0 because most of

the γk’s are 0. Of the remaining off-diagonal elements, some are 0 because the

distance between z j and zk is 1. While Γ is diagonal by definition, the matrix
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∆ contains an upper triangular matrix, but with dimension much smaller than

K × K. Thus, the computational advantages that we described earlier, still hold,

since inverting or multiplying ∆ is straightforward, due to its simple, sparse

structure.

When we have a choice which of two highly correlated variables to include

in the model, we may choose, for example, the one with more observations, or

the one with higher variance.

We can also consider other distance functions, d jk. We used R2, which means

that positive and negative correlations are treated the same way. It is reasonable

to require that a pair of negatively correlated variables will be considered farther

than positively correlated ones. Hence, one may define

d jk =
1 − r jk

2
. (4.23)

Thus, positively correlated variables have distance close to 0, while negatively

correlated variables have distance close to 1. A similar alternative is the Bhat-

tacharyya distance [9], defined as

d jk = cos B jk =

N∑
i=1

(
Zi jZik

)1/2
. (4.24)

Another possible modification of our model is to incorporate external infor-

mation about the putative variables. Specifically, the update to the posterior

probabilities, Pr(γk = s), in the general case is done by considering global values

of p0, p1, and p2. However, when more information is available for certain vari-

ables we can account for that in the prior probability distribution. One way do

it is to let p0, p1, and p2 depend on covariates and estimate them with a multi-

nomial logistic regression model. Alternatively, we can partition the covariates

as we did in Section 3.3.2, and assign each subset a different multinomial prior.
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Finally, when higher-order term are included in the model, we find that for

the stability of the estimation procedure it is highly recommended to standard-

ize all the variables. For example, if we let mk = mini{Zi,k} and Mk = maxi{Zi,k},

then the linear transformation Zk 7→ (2Zk − mk − Mk)/(Mk − mk) guarantees that

the values of the transformed variable are between −1 and 1. Thus, any higher

order term involving Zk is also between −1 and 1.

4.4 Case Studies

4.4.1 The Ozone Data

We applied our method to the well-known air-pollution data set which was first

introduced in [14] to illustrate the ACE procedure. It consists of daily measure-

ments of ozone concentration levels in the Los Angeles basin, collected over

330 days in 1976. There are eight meteorological explanatory variables, labeled

x1, . . . , x8 by [39] and subsequent authors (e.g., [44]). These variables are

x1: (vh) Vandenburg height,

x2: (wind) the wind speed (mph),

x3: (hum) the humidity (%),

x4: (temp) the temperature (Fahrenheit),

x5: (ibh) the temperature inversion base height (feet),

x6: (dpg) the pressure gradient (mm Hg),

x7: (ibt) the inversion base temperature (Fahrenheit),
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x8: (vis) the visibility (miles).

We refer mostly to a more recent analysis in [51], subsection 2.4.4, which also

uses x9, the day of the year (doy). Selecting a first-order linear regression model

can be done easily by checking all 29 = 512 possible models, but this strategy is

not feasible when we wish to include second, or third order terms (with 254 and

2219 possible models, respectively.)

We consider models with first and second order terms, with a total of 54

candidate predictors. We compare our results with those in [51], where they

compare their selected model (without specifying how it was obtained), with

models from [13]. The comparison in [51] is done in terms of the Akaike Infor-

mation Criterion (AIC), and we do the same here. Their model, labeled “2.8”

is

YLNP = Intercept + wind + temp + ibt + vis + doy + vis2 + doy2 . (4.25)

They fit the model with a GLM with log link, and a gamma error, and obtain

AIC score of 1743.3.

Our algorithm converged in a few seconds, and selected the following

model:

Y = Intercept + temp + ibt + vis + doy + vh · temp + vh · dpg + wind2 +

humid2 + humid · temp + humid · ibh + ibh2 + dpg2 + vis2 + doy2 . (4.26)

This model, which we call ‘Selected’, includes polynomials that are not well-

formed in the sense that some terms do not appear in the model as main effects ,

but they do appear in second order terms. We obtain the ‘Full’ model by adding

the missing first order terms (ibh, humid, vh, dpg, wind). Adding these terms
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Normal Gamma
Full Selected “2.8” Full Selected “2.8”

AIC 371.5 367.8 494.8 1630.9 1625.9 1743.4
MAE 0.312 0.313 0.391 0.768 0.772 0.791
R2 0.83 0.83 0.75 - - -

Table 4.1: Goodness of fit of the three models (Full, Selected, and “2.8”
from [51]) in terms of AIC and mean absolute error (MAE). For
the normal fit, we also compare the adjusted R2 values

may introduce multicollinearity (which our algorithm is designed to mitigate),

but we see in Table 4.1 that in this case the overall fit of the models with or

without the missing first order terms, is quite similar.

We fit the three models (Full, Selected, and “2.8” from [51]) with a GLM

with log link and a gamma error. We also use a normal fit to the logarithm of

the ozone level. Table 4.1 summarizes the goodness of fit of the three models

in terms of AIC and mean absolute error (MAE), and for the normal fit, we also

provide the adjusted R2 values. The MAE for the GLM models is computed with

the deviance residuals, that account for overdispersion. That is, we use rd/
√
ϕ

where rd are the GLM model residuals, and ϕ is the estimated overdispersion.

Using AIC as our model selection criterion, it is clear that our Selected model

has the best fit, under both fitting procedures (lm and glm). Notice that when

we fit a normal model to log(ozone) our models explain 83% of the variability, a

significant improvement over model “2.8” which explains 75%.

Figure 4.1 shows the diagnostics plots of the residuals. The left panel plot the

deviance residuals vs. scaled (log) fitted values. The right panel shows a QQ-

plot of the deviance residuals. These diagnostics plots provide further evidence

for the adequacy of the model selected by our method.
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Figure 4.1: Ozone data – diagnostics plots of the ‘Full’ version of the model

in 4.26 (including all main effects). Left: deviance residuals
vs. fitted values. Right: quantile-quantile plot of the deviance
residuals.

Table 4.2 shows the parameter estimates in our Selected model, using the

GLM approach. Note that the estimates are quite different than those in [51]

since we transformed the variables. However, the linear transformation does

not affect the predicted values and the residuals.

It is interesting that doy2 has the greatest absolute effect. The log(ozone)

level is a second degree polynomial with respect to doy, which has the terms

−0.9012 ·doy2−0.2131 ·doy. The maximum of this polynomial with respect to doy

corresponds approximately to June 21, the spring solstice. This makes sense,

since it is well known that daylight affects ozone levels.
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Estimate Std. Error t value Pr(>|t|)
Intercept 2.6046 0.0555 46.93 0.0000
temp 0.3601 0.1087 3.31 0.0010
ibt 0.6197 0.0965 6.42 0.0000
vis -0.1669 0.0431 -3.87 0.0001
doy -0.2131 0.0306 -6.96 0.0000
vh · temp -0.3769 0.1004 -3.75 0.0002
vh · dpg -0.4489 0.1356 -3.31 0.0010
wind2 0.2733 0.0843 3.24 0.0013
humid2 -0.3179 0.0757 -4.20 0.0000
humid · temp 0.4052 0.1096 3.70 0.0003
humid · ibh -0.2442 0.0464 -5.26 0.0000
ibh2 -0.1842 0.0540 -3.41 0.0007
dpg2 -0.8021 0.1016 -7.89 0.0000
vis2 0.2534 0.0706 3.59 0.0004
doy2 -0.9012 0.0885 -10.18 0.0000

Table 4.2: Parameter estimates for the ozone data with our ‘Selected’
model.

4.4.2 The Diabetes Data

The ‘Least Angle Regression’ (LARS) variable selection algorithm was intro-

duced in [32]. As a motivating example, they use the diabetes data set, where

the response is a quantitative measure of disease progression one year after

baseline. There are ten explanatory variables, including age, sex, body mass

index (bmi), average blood pressure (bp), and six blood serum measurements

(s1, . . . , s6). In total, there are n = 442 diabetes patients. All ten explanatory vari-

ables have been standardized to have mean 0 and unit length, and the response

was centered around 0, by subtracting the sample mean.

Here, we are interested in comparing our results with their quadratic model

which contained a total of 64 putative variables, with 10 main effects, 45 inter-

actions, and 9 squares (not 10, since sex is a binary variable, so sex = sex2). This
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data set has been recently analyzed using the care R package in [75], where

a new approach based on the so-called CAR scores to variable selection has

been introduced. CAR scores are defined as “the marginal correlations adjusted

for correlation among explanatory variables”, and according to [75] “the CAR

score provides a canonical ordering that encourages grouping of correlated pre-

dictors and down-weights antagonistic variables”. In our analysis, we used the

‘efron2004’ data set from the care package which contains the original ten vari-

ables, and we constructed the second-order terms.

Our algorithm selected the following model:

y = Intercept + sex · s1 + bmi · s3 + bp · s6 + s3 · s5 + s5 · s6 .

The parameter estimates for this model are given in Table 4.3. The selected

model has adjusted R2 = 0.51. In contrast, [32] obtain ‘true R2’ of 0.42, and fitting

the model with LARS, they get a ‘true predictive R2’ of about 0.40. Interestingly,

in their simulations they observe that the ”proportion explained” of the esti-

mates, as a function of average number of terms reaches a level of over 95%

with 6 terms, and a maximum of about 96% with additional variables. Our final

model has 6 variables.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.1801 0.0626 2.88 0.0042
sex · s1 -4.3729 1.1215 -3.90 0.0001
bmi · s3 -2.0439 0.2549 -8.02 0.0000
bp · s6 -0.7758 0.1500 -5.17 0.0000
s3 · s5 -1.4497 0.3292 -4.40 0.0000
s5 · s6 -1.1983 0.1659 -7.22 0.0000

Table 4.3: The selected model for the diabetes data.

We added the missing first order terms to construct the well-formed polyno-
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mial model, but because several of the second-order terms are highly correlated

with the original variables, some terms were no longer identifiable. (In partic-

ular, one reason high correlation exists, is because s1, s2, s3 and s5 correspond to

total cholesterol (TC) , LDL, HDL, and triglycerids (TG) respectively, and LDL is

obtained by a linear equation involving the other three, namely LDL=TC-HDL-

TG/5).

We used standard variable selection techniques to remove multicollinearity

problems from the complete model (with the well-formed polynomials), and

obtained the following model:

y = Intercept + sex + bmi + bp + s1 + s3 + s5 . (4.27)

Table 4.4 contains the parameter estimates of our final model. The adjusted

R2 of this model is 0.51, which is quite a bit higher than that obtained by the

simulations in [32].

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.1927 0.0627 3.07 0.0023
sex -0.1400 0.0374 -3.75 0.0002
bmi 0.9094 0.1107 8.22 0.0000
bp 0.5204 0.0997 5.22 0.0000
s1 -0.2488 0.1229 -2.02 0.0436
s3 -0.4424 0.1281 -3.45 0.0006
s5 0.9358 0.1294 7.23 0.0000

Table 4.4: The final model for the diabetes data, with R2 = 0.51

Figure 4.2 shows that diagnostics plots for the fitted model, 4.27. The QQ-

plot shows that the residuals are approximately normally distributed. The left

panel depicts the residuals by fitted values. Although the residuals seem to

have mean and variance approximately 0 and 1 respectively, there may be het-
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Figure 4.2: Diabetes data – diagnostics plots of the final model in 4.27. Left:

residuals vs. fitted values. Right: quantile-quantile plot of the
residuals.

eroscedasticity, since the residuals appear to be increasing with the fitted values.

This is likely due to the fact that the responses do not appear to be normally dis-

tributed, and require a transformation (square root seems appropriate, in this

case). However, since we are interested in the comparison between the meth-

ods, we do not include the details of the analysis of the transformed data here.

4.5 Extensions and Future Plans

In variable selection algorithms the statistician can divide the fixed effects into

two groups. The first group consists of variables that are ‘locked’, in the sense

that they will be included in any model being considered. The second group
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consists of putative variables, from which only a subset may be selected. To fa-

cilitate model selection in situations where the number of putative variables is

large, we assumed in model 4.2 that the mean of the response is a linear com-

bination of these two groups of variables. The Xβ term represents the ‘locked’

variables, and the ZΓu term represents the putative variables. We assumed that

the putative variables are realizations of a mixture distribution in which one

component consists of all the variables that have no effect on the response (the

‘null’ set, for which the indicator variables γk are 0), while the variables that

do have an effect on the response are assumed to be realizations of a normal

distribution.

This allowed for an efficient estimation of the posterior probability of the

indicator variables via the EM algorithm. However, the selected variables are

included in the final model as fixed effects. There are situations in which the

statistician wants to ‘lock’ additional random effects in the model. For example,

in biological applications (e.g. QTL analysis) one may want to include breed,

or kinship information as a random effect. This can be easily done, using the

same method that we used to estimate the variance parameters, since the up-

date equations for the EM algorithm extend to any number of variance compo-

nents (see the general formulation of the estimation in Section 8.3.b in [60]). Our

model then becomes

y = Xβ + Z0v + ZΓu + ε (4.28)

ε ∼ N
(
0N , σ

2
eIN

)
(4.29)

Z0v ∼ N
(
0N , σ

2
0I
)

(4.30)

ZΓu ∼ N
(
ZΓµ, σ2ZΓ2Z′

)
. (4.31)

Hence, the statistician can specify the matrix Z0, and we have just one ad-
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ditional parameter to estimate (σ2
0). This generalizes easily to any number of

variance components.

Our model was developed with the goal of analyzing very large QTL data

sets in order to detect loci that are associated with biological traits. Therefore,

adding interactions between fixed effects and SNPs is a very useful extension.

For example, if the quantitative trait is the Forced Expiratory Volume (FEV), it

may be the case that the significant loci have a different effect on the response

for heavy smokers, than for non-smokers. This requires a relatively simple mod-

ification to the model and the estimation procedure. We are also interested in

applying our approach to eQTL data, where the responses are normalized gene

expression, and to experiments involving repeated measure of the quantitative

traits.

Another enhancement that we are currently pursuing is to extend the model

to the generalized linear model framework in order to deal with binomial and

Poisson responses, as well as censored survival times using the artificial Pois-

son model as described by [74]. A viable approach is to combine our mixture

model framework with iterative estimation procedures such as Double Hierar-

chical Generalized Linear Models (DHGLM, [51]), which are extremely flexible,

and allow to specify non-linear models for the means, variance, and dispersion

parameters, separately.

4.6 Conclusions

We developed a model-based, empirical Bayes approach to variable selection.

The idea of treating the putative variables as random effects induced shrinkage
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estimation, which resulted in increased power and a significantly faster con-

vergence, compared with simulation-based methods. Furthermore, a couple

of computational tricks allowed us to increase the speed of our algorithm, to

handle a large number of putative variables, and to control the multicollinear-

ity in the model. Through simulations and case studies we confirmed that our

approach to variable selection provides excellent results in terms of power, ac-

curacy, and speed.
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