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The singular values of a matrix are conventionally computed using either the bidiagonalization
algorithm by Golub and Reinsch (1970) when m/n < 5/3, or the algorithm by Lawson and
Hanson (1974) and Chan (1982) when m/n > 5/3. However, there is an algorithm that is
faster and that does not involve a discontinuous choice, as follows: in all cases, perform a QR
factorization as in Lawson-Hanson-Chan, but rather than do this right at the beginning, do it after
zeros have already been introduced in the first j = 2n — m rows and columns.

The same technique applies when computing singular vectors, with one small modification.
If left singular vectors are needed, the new algorithm becomes advantageous only when m >
1.2661n, and the best j in this case is 3n — m.

The benefits of the new algorithm appear in terms of classical scalar floating-point operation
counts; the effects of locality and parallelization are not considered in the analysis.

1 Bidiagonalization of Skinny Matrices

We seek a bidiagonalization of A, that is, a matrix
B =UTAV (1)

where U and V are orthogonal and b;; = 0 for j # ¢,% + 1.

Golub and Reinsch [GR 70] suggest that to bidiagonalize an m X n matrix, House-
holder reflections be applied alternately on the left and right so that, at the ith step, zeros
are introduced into the i + 1, ..., m entries in the sth column and in the 2 + 2,...,n

entries in the ith row. The number of flops required (including additions) is 4mn? — $n3.

One-Phase Golub-Reinsch Bidiagonalization

A UTAV
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Lawson and Hanson [LH 74, p.119] and also Chan [Chan 82] notice that if the ratio
m/n is sufficiently large, it is cheaper to bidiagonalize in two phases. They first compute
the QR factorization of the matrix, and then they apply the Golub-Reinsch procedure to
bidiagonalize the resulting square R matrix. The QR factorization requires an additional
2mn? — 2n? flops, but the bidiagonalization of the remaining n x n matrix R uses only
§n? flops, for a total of 2mn? + 2n3, cheaper than Golub-Reinsch if m/n > 3

Two-Phase Lawson-Hanson-Chan Bidiagonalization

A QTA UTQTAV

2 Bidiagonalization of Medium-Shaped Matrices

Extending the idea of Lawson and Hanson and Chan, we make the observation that,
in the process of applying Golub-Reinsch bidiagonalization to any m x n matrix with
m > n, the problem of bidiagonalizing skinny submatrices resurfaces. After the ith
step of Golub-Reinsch, the remaining problem is to bidiagonalize the (m — i) x (n — 1)
lower-right submatrix, and this submatrix can become arbitrarily skinny. If the aspect
ratio (m —14)/(n —1) is sufficiently large, a QR factorization of the remaining submatrix
is warranted to reduce it to a square matrix.

Three-Phase Bidiagonalization

A UTAV, QTUTAV,  UFQTUFAVIV

The only remaining problem is to determine the best point at which the QR factor-
ization should be applied. A brief calculation follows.

If the Golub-Reinsch algorithm is interrupted after j steps in order to apply a QR
factorization before proceeding with the rest of the bidiagonalization, the total number
of flops used is asymptotically

amn? — 5n® — 2(m — j)(n — 5 + 5 (n = )% 2)



We wish to find 0 < j < n that minimizes this formula. Local minimization yields the
solution when n < m < 2n; for these matrices, the j we seek is

j=2n-m. (3)

In other words, it is best to apply QR factorization at the point at which the remaining
(m — j) x (n — j) submatrix has aspect ratio

m-—j 2m-2n _

= mn =2 (4)

Using this choice of j, we find that, for n < m < 2n, the number of flops required to
compute a bidiagonalization is asymptotically

2 43 2 3
4mn 3" "3 (m —n)°. (5)
For . = n our algorithm reduces to Golub-Reinsch bidiagonalization. For m > 2n,
we get j = 0, and it reduces to Lawson-Hanson-Chan bidiagonalization. In between,
new algorithm is slightly cheaper than either of the other algorithms for matrices with
n < m < 2n, at least in terms of classical, scalar floating-point operation counts. The
new algorithm uses 3.7% fewer flops when m/n = 3.

Bidiagonalization Flops for m x n Matrices

Three-phase bidigaonalization

T
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3 Computing Singular Values

Once a bidiagonalization is obtained, singular values are obtained by an iterative process
related to the QR algorithm that applies Givens rotations to both sides of the matrix.
The algorithm is described in [GVL 8.3.2]. After a O(n?) Givens rotations, the off-
diagonal elements converge sufficiently to zero, and the singular values are left on the
diagonal. For future reference, let C' be the constant that gives sufficient convergence
when Cn? rotations are applied on each side (typically C = 2).

The flop requirement of this process is only O(n?), so the work of the SVD algorithm
is dominated by the O(mn?) flops of the bidiagonalization.

4 Computing Singular Vectors

If the singular vectors as well as the singular values need to be computed, the three-
phase algorithm continues to be a cheaper alternative to the Golub-Reinsch and Lawson-
Hanson-Chan algorithms in certain cases. The analysis is presented here.

4.1 Roster of Orthogonal Operations

The left and right singular vectors are computed by accumulating many small orthogonal
operations. To analyze the cost of the accumulation, we begin by giving names to each
elementary operation.

The first bidiagonalization phase operates by applying Householder reflections on
the left and the right of A to obtain U7 AV;. Explicitly,

n, = [Jus Q]
vi = v ™

where the applicaion of U; = U7 to the left of a dense m x n matrix requires 4n(m —
i + 1) flops, and the applicaion of V; = VT to the right requires 4m(n — %) flops.

The QR phase applies Householder reflections only on the left of the resulting
matrix; let us write the reflections

e = Jlu ®
i=j+1

as a natural extension of the sequence of U;; each reflection still requires 4n(m —i+1)
flops to apply.



The secondary bidiagonalization phase again applies Householder reflections on
the left and the right of the matrix; we write out the reflections as follows.

U, = HW; ()]
i=j+1
v o= [Iv (10)

i=j+1

In comparison to the previous left reflections U;, the reflections applied on the left now
are relatively cheaper because they operate on fewer rows. Each reflection W; = wr
applied to the left of a dense m x n matrix requires only 4n(n — i + 1) flops. The
reflections V; applied on the right cost as much as before: 4n(m — ) flops.

Finally, reduction of the bidiagonal matrix B to a diagonal matrix X is accomplished
by a sequence of Givens rotations on alternating sides of B. (Notice that, although the
Givens operations must be realized as true Givens rotations when reducing B to I, they
can be accumulated using fast Givens when constructing singular vectors, as long as
attention is given to controlling the scaling of the fast Givens multipliers.)

If GT is the accumulation of rotations on the left and G g is the accumulation of
rotations on the right, we have

X = GTBGr (11)
Ccn?

G, = (HMi) Dy 12)
=1
Cn?

Gr = |][Ni| D= (13)
=1

The cost of applying a single fast Givens transformation on the left of a dense m x n
matrix is 4n flops; the cost of applying a fast Givens transformation on the right is 4m
flops. Observe that for m > n, applying Givens on the left can be significantly cheaper
than applying Givens on the right. This fact will impact the cost of accumulating left

singular vectors.
Expanding B in full we have
r = UTAV 14)
GITUIQTUT AViVaGr (15)
j n n Ccn?
U = U; HU,- HW,' HMi Dy, (16)
i=1

i=j+1 i=j+1 i=1

n J n
v = IIv IIv II¥ D= an

i=j+1 =1 =1



4.2 First Method for Computing Left Singular Vectors

The left singular vectors are the first n columns of U, in other words, U = Ulnn,
where I, is the m x n principal submatrix of the identity. Perhaps the most natural
way to compute this matrix is to multiply terms into I, starting from right to left.
However, there are two other ways to compute this matrix that do better at exploting
sparsity. The first method can be written by inserting parentheses into (16) as follows.

] n n Cn?
U= ITv:{ | TI v:] TIw:| | II ™:) Do | Imn.  (18)
=1 i=1

i=j+1 i=j+1
Let’s begin with a breakdown of this approach. It consists of several steps.

1. The first n columns of H?: i1 U; are accumulated by multiplying them into
Inn, beginning with the rightmost terms. This step requires 2(m — j)(n — j)* —
(2/3)(n — j) flops.

2. The Householder reflections from the QR factorization [} ;j+1 Wi are accumu-
lated on to the right side of result from the first step by multiplying the leftmost
terms first. This step requires 2(m — j)(n — j)? flops.

3. The Householder reflections of of Hle U; are accumulated on to the left side
of the result from the second step by multiplying the rightmost terms first. This
step requires 2mn? — 2(m — j)(n — ) — (2/3)n* + (2/3)(n — 4)? flops.

4. The fast Givens operations are accumulated on to the result from the last step
beginning with the leftmost terms. At the end, the diagonal scaling factor is
multiplied in. The accumulation requires 4Cmn? flops.

The total number of flops is
(4C + 2)mn? + 2(m — j)(n — j)* — (2/3)n’. (19)

When j = n, this reduces to the (4C + 2)mn? — (2/3)n®, which is the cost of
accumulating left singular vectors using the algorithm of Golub and Reinsch. In fact,
this is the right way to use this method, because, as will be shown now, j = n is the
optimal choice of j.

The total cost of computing left singular vectors, including the bidiagonalization
cost discussed earlier, is

(4C + 6)mn? — 20> + (10/3)(n — j)*. (20)

Differentiating and optimizing (the derivative is —10(n — j )?), we find that j = n is
the optimal choice of j. In other words, the best strategy when using this method for
accumulating left singular vectors is to stick with the Golub-Reinsch algorithm and
never execute a QR factorization.



The best cost in flops with this method is therefore, as mentioned before,
(4C + 6)mn? — 2n* (21)

This is the performance of the Golub-Reinsch algorithm. In a moment, however, we
shall see that for matrices with m/n slightly larger than 1, there is a more efficient
algorithm for computing left singular vectors, based on a different multiplication order.

4.3 Second Method for Computing Left Singular Vectors

The second method for computing the left singular vectors is merely based on accumu-
lating the product (16) in another order. The method can be written as follows:

j n Ccn?
U= f[U,- f[ U; [Iw: | [IM:] Do) Imn-  (22)
=1

i=j+1 i=j+1 i=1
Following is an algorithmic breakdown of the method.

1. The first n columns of []._, U; are accumulated by multiplying the Householder
reflections into I,,,, beginning with the rightmost terms. This requires a total of
2mn? — (2/3)n flops.

2. The (n — j) nontrivial columns and rows of H?:,' +1 Wi are accumulated by
multiplying the rightmost terms first into I.,,. This requires (4/3)(n — 4)? flops.

3. The fast Givens operations are accumulated on to the result from step two,
begnning with the leftmost terms (and, at the end, the diagonal scaling factor
is multiplied in). On a dense starting matrix, the accumulation would require
4Cn3 flops. However, the matrix from step two is not dense; the first j rows
have many zeros that are largely preserved by the particular Givens operations
we are multiplying. Each sequence of Givens operations combines a column ¢
with ¢ + 1, and they are applied a sequences of increasing ¢. After n Givens
operations, at most one column and one subdiagonal element of the other sparse
columns are filled in. The upshot is that the flop count is slightly lower than the
dense case: the total accumulation requires 4Cn> — (2/3)5° — 25%(n — j) flops.

4. The m x n matrix from the first step is multiplied by the m x n matrix from
the third step, using an elementwise matrix multiplication. The number of flops
required is 2mn?.

The number of flops totals 4mn2+ (4C —2/3)n3— (2/3) 53 —22(n—j) +(4/3)(n—3)>.
When j = 0 this reduces to (4C + 2/3)n> + 4mn?, which is the cost of accumulating
left singular vectors using the Lawson-Hanson-Chan scheme.

Notice that, when m is large relative to n, the second method promises to be more
efficient than the first because it avoids multiplying the Givens operations by too many



rows. On the other hand, when m is very close to n, the first method will be more
efficient because it avoids the extra step of an explicit matrix multiplication. The correct
crossover point between the two methods will be calculated in a moment; first we finish
the analysis of the second method.

The number of flops required to compute left singular vectors if the second method
is use (including the cost of bidiagonalization) is

8mn +(4C - 2)n* ~2(m—j)(n 1)’ +(14/3)(n— )~ 2> (n— ) - (2/3)5". (23)
Setting the derivative (which is 4(n — j)(m — 3n + j)) to zero, we obtain the

following solution to j:

. 0 ifm >3n
J={ = (24)

3n—m ifm<3n

For m > 3n the method reduces to the algorithm of Lawson, Hanson, and Chan.
The cost in flops is 6mn? + (4C + 8/3)n>.
For m < 3n we have j = 3n — m, so the cost in flops is

~ 2w+ 4mPn + (4C + I (25)

The formula for this flop count involves m3 and m?n terms which are not terribly
enlightening; a plot of the flop count for matrices of various aspect ratios is more so.

Flops to Compute the Left Singular Vectors of m x n Matrices
357

30

15

10

aspectratio m/n



The graph is drawn assuming that C = 2. The original Golub-Reinsch SVD is
faster than the newly proposed method for m close to n; the crossover point where the
flop counts (25) and (21) are equal isatm/n = 1.2661. Atm/n = 13, the new method
requires 10.5% fewer flops than either the Lawson-Hanson-Chan or the Golub-Reinsch
methods.

4.4 Right Singular Vectors

The right singular vectors are the columns of V; we compute them by evaluating the
product (17) in the following order:

vV = HV <Hv) i]i[lN,- Dr (26)

i=j+1 i=1
The multiplication goes in two phases:

1. The Householder reflections [] - ; V; are accumulated onto the left of I,,, begin-
ning with the rightmost terms. Thxs requires (4/3)n3 flops.

2. The Givens rotations are accumulated onto the right of the resulting matrix,
beginning with the leftmost terms. This requires 4Cn3 flops.

The total number of flops is
(4C + 4/3)n>. (27)

Notice that the acummulation of right singular vectors has no dependence on the
choice of j. Therefore, it doesn’t make any difference whether Golub-Reinsch, Lawson-
Hanson-Chan, or the three-phase method is used: the cost of computing right singular
vectors is the same in all three cases.

The choice between the various algorithms and choices of j should be made based
on the cost of computing the bidiagonalization and the left singular vectors if they are
needed. The best algorithm for the case where right singular vectors are not computed
will remain the best algorithm for the case where right singular vectors are computed.

5 Summary of Results

The new algorithm for computing singular values provides a pleasing, unified frame-
work in which both the Golub-Reinsch algorithm and the Lawson-Hanson-Chan algo-
rithm can be described as special cases.

The new algorithm does not reduce smoothly to the Golub-Reinsch algorithm when
left singular vectors are needed because Golub-Reinsch uses a method for accumulating
left singular vectors that does not generalize well for different choices of j. On the other
hand, when using the new algorithm to compute left singular vectors, a 10% reduction
in floating point operations can be achieved for certain m/n, making the algorithm
interesting from the point of view of performance.



The reduction in floating point operations of the new algorithm is not dramatic;
with modern computer architectures, this degree of savings in reduced floating-point
opereration counts may be dwarfed by the effects of data locality and parallelization.
However, an adjustment of the parameter j that is chosen to minimize clock cycles
rather than floating point operations will likely allow the new algorithm to achieve a

performance advantage in practice.

SVD Flops for m x n Matrices
Result G/R SVD 3-Phase SVD L/H/C SVD
z 4mn? — §n3 | 4mn? - ind — (m —n)? | 2mn? + 2n3
IV 4mn? +8n3 | 4mn? +8n% — 3(m - n)® | 2mn? + 3n?
X, U 14mn? — 2n3 —%m3 +4m?n + %nf’ 6mn? + %nﬁ

a

L0,V | 14mn? + 203 —2m?®+4m?n+20n° | 6mn? 4+ 20n°

Aspect Ratios for the Three Algorithms
Result G/R SVD 3-Phase SVD L/H/C SVD
Yor X,V m=n n<m<2n 2n<m
5,0 or T,U,V | m<1266ln|1266ln<m<3n| 3n<m
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