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Real-time, two-way transmission of American Sign Language (ASL) video over cel-

lular networks provides natural communication among members of the Deaf com-

munity. Bandwidth restrictions on cellular networks and limited computational

power on cellular devices necessitate the use of advanced video coding techniques

designed explicitly for ASL video. As a communication tool, compressed ASL

video must be evaluated according to the intelligibility of the conversation, not ac-

cording to conventional definitions of video quality. The intelligibility evaluation

can either be performed using human subjects participating in perceptual exper-

iments or using computational models suitable for ASL video. This dissertation

addresses each of these issues in turn, presenting a computational model of the

intelligibility of ASL video, which is demonstrated to be accurate with respect

to true intelligibility ratings as provided by human subjects. The computational

model affords the development of video compression techniques that are optimized

for ASL video.

Guided by linguistic principles and human perception of ASL, this dissertation

presents a full-reference computational model of intelligibility for ASL (CIM-ASL)

that is suitable for evaluating compressed ASL video. The CIM-ASL measures

distortions only in regions relevant for ASL communication, using spatial and

temporal pooling mechanisms that vary the contribution of distortions according

to their relative impact on the intelligibility of the compressed video. The model



is trained and evaluated using ground truth experimental data, collected in three

separate perceptual studies. The CIM-ASL provides accurate estimates of sub-

jective intelligibility and demonstrates statistically significant improvements over

computational models traditionally used to estimate video quality.

The CIM-ASL is incorporated into an H.264/AVC compliant video coding

framework, creating a closed-loop encoding system optimized explicitly for ASL

intelligibility. This intelligibility optimized coder achieves bitrate reductions be-

tween 10% and 42% without reducing intelligibility, when compared to a general

purpose H.264/AVC encoder. The intelligibility optimized encoder is refined by

introducing reduced complexity encoding modes, which yield a 16% improvement

in encoding speed.

The purpose of the intelligibility optimized encoder is to generate video that

is suitable for real-time ASL communication. Ultimately, the preferences of ASL

users determine the success of the intelligibility optimized coder. User preferences

are explicitly evaluated in a perceptual experiment in which ASL users select be-

tween the intelligibility optimized coder and a general purpose video coder. The

results of this experiment demonstrate that the preferences vary depending on the

demographics of the participants and that a significant proportion of users prefer

the intelligibility optimized coder.
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CHAPTER 1

INTRODUCTION

Real-time, two-way transmission of American Sign Language (ASL) video over cel-

lular networks can provide natural communication among members of the Deaf 1

community [64]. For Deaf users of ASL in the United States, current communi-

cation technologies include video relay services, Internet-based video conferencing

(e.g., Skype or Facetime), TTY/TTD services, and text-based communication.

These technologies have significant limitations when compared to the potential ca-

pabilities of a mobile communication system for ASL using cellular phones. Video

relay services and video conferencing each require a high-bandwidth Internet con-

nection and dedicated hardware, severely limiting the user’s mobility. Text mes-

saging technologies, such as TTY/TTD and cellular SMS, can be unnatural and

cumbersome for two reasons. First, these technologies rely on written English,

which is not the first language of many ASL users. Second, communication via

text messaging is significantly slower than with sign language, which has a com-

munication rate comparable to that of spoken languages [34].

A cellular-based video calling system for ASL requires real-time capture, en-

coding, and decoding of digital video on a cellular device for transmission over the

U.S. cellular network. Cellular devices have limited processing power and battery

life, imposing constraints on the complexity of the encoding and decoding algo-

rithms. The limited bandwidth of the U.S. cellular network constrains the data

rate at which ASL video can be transmitted. The bandwidth available on GPRS

networks is asymmetric and is limited to at most 40 kbps downlink and 20 kbps

uplink [35]. Newer network technologies, such as 3G/4G, provide significantly in-

1Capitalized Deaf refers to people who are active in the signing Deaf Community and Deaf
Culture.
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creased data rates but are not ubiquitously available. Furthermore, regardless of

the network technology, the true available bandwidth depends on several factors,

including the user’s distance from a cell tower and the number of concurrent users

on the network. Delivering intelligible ASL video at extremely low data rates

alleviates the geographical limitations and capacity restrictions imposed by the

network, maximizing accessibility of the technology among the Deaf.

Modern video coding standards achieves excellent rate-distortion performance

for generic video content [89]. However, the current state of the art encoders cannot

reliably produce intelligible ASL video at the extremely low rates available on the

cellular network [13]. As a motivating example, an ASL video is encoded using

x264 (an open-source H.264/AVC coder) at 15 kilobits-per-second (kbps) and 15

frames-per-second (fps) is deemed unintelligible by fluent ASL users. Figure 1.1

illustrates a sample frame from the unintelligible video and highlights the severity

of the distortions in the signer’s face and hands at such a low bitrate. Clarity

in these regions is critical for intelligible communication and is not sufficiently

maintained by even a state of the art encoding algorithm, when constrained to

worst-case cellular data rates.

Two-way video communication on cellular devices requires real-time video en-

coding and decoding. While these devices are becoming increasingly powerful, they

still offer little computational power when compared to modern desktop computers.

Furthermore, on a mobile device, any reductions in the computational complex-

ity of the video encoder and decoder have a direct impact on the battery life of

the system [18]. For mobile video communication to be useful, low complexity

algorithms suitable for mobile devices must be employed.
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(a) Original video frame. (b) Sample frame taken from video
encoded using x264 [2] at 15 kbps
and 15 fps.

Figure 1.1: An advanced H.264/AVC encoder is inadequate for maintain-
ing intelligibility in compressed ASL video at low bitrates. The
severity of the distortions in the signer’s face and hands result in
unintelligible video, as rated by fluent ASL users [13].

Prior ASL-specific encoding systems primarily focus on addressing the band-

width constraints. These systems exploit the inherent structure of ASL, increasing

the compression efficiency over more general encoders while attempting to main-

tain the intelligibility of the ASL. Because ASL video is known to contain only a

single signer, the ASL-specific encoding systems apply spatially-varying levels of

compression to maintain clarity in the signer at the expense of clarity in the back-

ground [4, 54, 66, 67]. These systems appropriately consider the structure of ASL

video, allowing for increased compression without affecting intelligibility, when

compared to general encoders. However, each of these encoding systems relies on

a set of heuristics to distribute rate between the signer and the background. Fur-

thermore, these systems either make assumptions that intelligibility is unaffected

by the encoder or perform subjective experiments to determine the intelligibility

of the compressed video. The assumptions made by these systems will not be valid

at every operating point and performing subjective experiments is prohibitively

costly and difficult to incorporate into the design cycle of an encoding system.
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This motivates the need for a computational model that can accurately predict

the subjective intelligibility of compressed ASL video. Such a model provides a

method for comparing encoding systems and selecting the one which provides, on

average, the most intelligible video, without requiring subjective evaluation. The

computational intelligibility model can also be used for system design or refine-

ment; compression algorithms can be designed to maximize an objective intelli-

gibility criteria, and consequently maximize subjective intelligibility, without the

need for heuristic encoding techniques.

Contributions

In the absence of prior computational models for intelligibility, a straightforward

approach is to apply computational techniques designed to measure video quality or

video fidelity. The most common technique for evaluating the fidelity of compressed

video is to measure the mean squared-error (MSE) or the peak signal-to-noise ratio

(PSNR). Efforts in recent years have focused on developing models that more

accurately predict human ratings of perceived quality, in terms of visual aesthetics

or perceptual similarity to a source video [7, 55, 69, 87].

One contribution of this dissertation is to demonstrate that objective measures

of video quality cannot reliably estimate the subjective intelligibility of compressed

ASL video, as rated by fluent ASL users. ASL video is a communication tool and,

as such, the video must be evaluated in terms of intelligibility. The techniques

described in [7,55,69,87] are designed to predict how an observer will perceive visual

distortions in a video and quantify the impact of the perceived distortion on the

perceived quality. A fluent ASL user will ignore many of the visual distortions when

watching a compressed sign language video; her ultimate goal is understanding.
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This work presents a computational intelligibility model for ASL video (CIM-

ASL), which is based on models of ASL perception. The CIM-ASL measures

distortions only in regions relevant for ASL communication (i.e., the signer’s face,

hands, and torso), quantifying the impact of these distortions on both the spa-

tial and temporal structure of ASL. The CIM-ASL accurately predicts subjective

intelligibility on three separate experimental datasets.

In addition, the CIM-ASL is incorporated into an H.264/AVC compliant en-

coding algorithm in order to demonstrate the effectiveness of the model when used

for generating intelligible ASL video. The H.264/AVC standard is selected for its

state of the art compression efficiency. This intelligibility optimized encoder yields

intelligibility equal to a general purpose video encoder with bitrate reductions of

10% to 40%. The CIM-ASL is also used to refine the encoding algorithm in the

presence of a complexity, allowing for real-time operation on a cellular device.

The intelligibility optimized encoder achieves bitrate reductions by heavily dis-

torting the background video region, while maximizing the fidelity of the signer.

A subset of participants in a subjective experiment qualitatively reported distrac-

tions due to heavily distorted backgrounds, even when they considered the videos

to be intelligible. Allowing the user to adjust the level of background distortion

addresses this problem, but lowering the distortion in the background region nec-

essarily increases the distortion in the signer and can lead to an unintelligible

video.

The intelligibility optimized encoder is further refined to accommodate varying

user preferences. A quality-intelligibility coder is developed, which is parameter-

ized by a single, user controlled value. Depending on the user’s preference, the

quality-intelligibility coder jointly maximizes the CIM-ASL and a quality criteria,
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defined as MSE. A user study is conducted to identify the preferences of ASL users

in terms of this quality versus intelligibility trade-off, specifically identifying when

a user is willing to sacrifice intelligibility (as measured by the CIM-ASL) for an

increase in video quality (as measured by MSE). The study demonstrates that the

user preferences vary depending on the demographics of groups of users.

The contributions of this dissertation are summarized as follows.

• Evidence that computational models of video quality cannot reliably estimate

the subjective intelligibility of compressed ASL video [20,21].

• A full-reference computational model of the intelligibility of ASL video (CIM-

ASL), which is based on models of ASL perception and is accurate in the

presence of compression-type distortions [21].

• The design, implementation, and analysis of three subjective experiments

that characterize and quantify the intelligibility of distorted ASL video [20,

24,26].

• Applications of the CIM-ASL for operational rate-distortion-complexity op-

timization. The CIM-ASL is applied in a rate-distortion optimization al-

gorithm, which provides a closed-loop solution for generating optimally

coded ASL video [25]. Additionally, the CIM-ASL is applied to distortion-

complexity optimization, which includes the development of novel complexity

allocation techniques [28].

• A refined ASL encoder that accommodates user preferences [22] and a percep-

tual experiment that verifies the need for this accommodation and identifies

groups of ASL users who have varying preferences [27].
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Organization

This dissertation proposes an accurate computational intelligibility model for ASL

(CIM-ASL) and applies the model to several video coding applications. The CIM-

ASL is based on models of ASL perception, introduced in Chapter 2. Chapter 2

also describes the effect of video coding distortions on ASL communication, which

informs the design of the CIM-ASL. Ground-truth subjective ratings of the in-

telligibility of distorted ASL video are collected via three experiments described

in Chapter 3. The experimental data is used to parameterize and evaluate the

CIM-ASL. Chapter 4 presents the CIM-ASL, describing the computational tech-

niques for modeling intelligibility and the parameter optimization procedure. As

demonstrated in Chapter 5, the performance of the CIM-ASL, and several compu-

tational video quality models, is determined by the statistical accuracy with which

the model predicts the ground-truth intelligibility ratings.

Given an accurate computational model, the CIM-ASL is applied in two ways.

Following an introduction to motion compensated video coding in Chapter 6, the

CIM-ASL is used to create compressed ASL video having maximal intelligibility.

The CIM-ASL is applied to perform joint rate-distortion-complexity optimization

of an H.264/AVC video coder, as detailed in Chapter 7. Chapter 8 presents a

modification to the optimal ASL coder that allows for varying user preferences

and identifies groups of ASL users who have varying preferences.
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CHAPTER 2

AMERICAN SIGN LANGUAGE COMMUNICATION AND

DISRUPTIONS

2.1 Introduction

To accurately predict intelligibility, the CIM-ASL must incorporate models of ASL

communication. Furthermore, the CIM-ASL must effectively quantify the impact

of distortions on the communication process. Semantic information in ASL is

communicated through the hand signs and facial expressions of the signer. The

phonology of ASL defines the elementary units that combine to differentiate mean-

ingful handshapes and movements from arbitrary gestures. An understanding of

ASL phonology is essential for informing computational techniques that will as-

sess intelligibility. The CIM-ASL must identify distortions that interfere with the

phonological units in order to quantify the impact of video coding distortions on

the subjective intelligibility. Section 2.2 reviews ASL phonology, which describes

the formation of semantic information and the communication process from the

signer to the ‘listener’, commonly denoted the receiver. An additional feature of

the communication process from signer to receiver is the face-centric viewing pat-

terns of the ASL receiver. Section 2.3 discusses this phenomenon and its impact

on ASL communication.

Understanding the phonology of ASL is critical for the design of the CIM-ASL.

However, the robustness of ASL communication in the presence of video coding

distortions cannot be determined from the phonology alone. Two classes of sub-

jective experiments, denoted receiver-centric and encoder-centric, provide insight

into the impact of video coding distortions on ASL communication. Receiver-
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centric studies measure the receiver’s performance in response to reductions to

visual fidelity, rather than evaluating a specific encoding system. The distortions

that are applied to videos in these receiver-centric studies are chosen a priori in

order to characterize sign language perception in the presence of a specific type of

distortion. In contrast, encoder-centric studies analyze the intelligibility provided

by real systems and characterize the encoding system. Encoding systems designed

explicitly for sign language video can lead to reductions in intelligibility caused

by distortions that are not necessarily encountered and quantified by the receiver-

centric studies. The encoder-centric methodology facilitates the analysis of the

distortions that can occur in real systems, which must be properly accounted for

by the CIM-ASL.

Following the discussion of ASL phonology in Section 2.2 and Section 2.3, a

discussion of relevant receiver-centric perceptual experiments is provided in Section

2.4. Section 2.5 reviews prior ASL-specific video encoding systems and discusses

their associated encoder-centric studies. Finally, Section 2.6 describes the types

of distortions that occur in these systems under resource-constrained encoding

scenarios.

2.2 Relevant Phonology in ASL Linguistics

The phonology of a language defines the smallest units that provide contrasting

information. ASL signs combine five basic units to form meaningful gestures:

handshape, location, orientation, movement, and nonmanual signals (e.g., facial

expressions) [80]. Signs have both spatial structure, defined by the handshape,

location, and orientation, and temporal structure, defined by the relevant move-
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ments. If any of these five basic elements differs between signs, the signs will carry

different meaning. For example, the signs for apple and onion are identical in both

their handshape, movement, and orientation and differ only in location. Apple oc-

curs at the top of the cheek while onion occurs next to the eye. Many noun-verb

pairs, such as sit and chair, differ only in their movements, having identical spatial

configurations [76].

In addition to the basic hand movements associated with some signs, further

temporal structure in ASL is described by the hold-movement-hold model [48].

In this model, signs are composed of a sequence of the five basic units and can

be characterized by an initial articulation of the hands, defined by the handshape,

location, orientation; a movement period; and a final hand articulation. The move-

ment period can refer to either the semantically relevant movements of the hands

or the period when one or more of the basic units is in a transient state. Funda-

mentally, this model highlights that a sign is not an instantaneous event defined

by the current hand gesture and facial expression. Signs are inherently formed

simultaneously across space and time.

ASL signs are supplemented by additional gestures known as fingerspelling.

In fingerspelling, individual signs correspond to English letters and are used to

explicitly spell out words, proper nouns, or technical terms for which there is no

associated ASL sign. Fluent ASL users can fingerspell at a rate of up to 10 letters

per second.
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2.3 Face-centric Communication

Nonmanual signals, consisting primarily of facial expressions and head movements,

add a substantial amount of contextual information to a conversation [6, 47]. A

signer’s gaze can indicate pronomial references or quotations. Raising or furrowing

the eyebrows indicates a question or a negation, respectively. The contextual detail

added through nonmanual signs suggests that accurate interpretation of facial

expression is essential for understanding ASL.

When having a sign language conversation, the receiver tends to fixate on the

signer’s face [8, 73]. This has recently been confirmed by eye tracking studies

[4, 13, 30, 53] that demonstrate that a fluent sign language user will gaze at a

signer’s face approximately 95% of the time, with brief excursions to the hands.

When these excursions occur, they are almost always because the signer’s gaze

directs the receiver’s gaze to the hands, i.e., the receiver looks away from the

signer’s face when the signer looks at her own hands [30]. This face-centric nature

of ASL communication has been explained in two ways. The first hypothesis

claims that features of the human visual system have influenced the evolution

of sign language [73]. Visual acuity is at its maximum at the point of fixation

and decreases significantly in the periphery. In regions of high visual acuity, an

observer can differentiate finer details more easily. For example, fingerspelling

occurs near the face, because the receiver is looking at the face and needs to be

able to differentiate each of the fingerspelled letters.

The second hypothesis claims that fixation on the face is a result of a greater

number of visual ‘landmarks’ in that region, such as the signer’s lips, chin, eyes,

or nose [8]. The signer’s face contains 29 unique locations at which a sign can be

formed, compared to only 19 on the torso and 6 on the arm [48]. The high level of
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information contained in the signer’s facial expressions implies that when coding

ASL video for communication, maintaining higher fidelity in the signer’s face is

important. Maintaining high fidelity in the face matches the viewing patterns of

ASL because the receiver is known to be looking at the signer’s face and because

visual acuity is maximized at the point of fixation.

2.4 Receiver-centric Studies of Temporal and Spatial Fi-

delity Reductions

A review of ASL phonology describes the use of gestures for communication be-

tween ASL users. However, an understanding of the phonology produces only

hypotheses that predict the effect of fidelity reductions caused by video coding

and transmission distortions on ASL communication. Receiver-centric perceptual

experiments with fluent ASL users provides a method for testing the hypotheses

provided by the phonology alone. The intelligibility of ASL has been explored in

the context of reductions to both spatial and temporal fidelity for either individual

signs or for well-formed sentences. Frame size has also been studied, but has no

demonstrable effect on intelligibility for resolutions as low as 240×180 [41], which

is exceeded by the display sizes of modern mobile devices.

ASL communication is very robust to substantial changes in the image rep-

resentation. In two separate studies, [77] and [62] both analyze the intelligibility

of point-light presentations of individual ASL handshapes. In these experiments,

reflective tape was fixed to a signers hand in multiple locations and signs were

recorded in low light settings. The signs were presented to participants as moving

points of light and participants were able to consistently and accurately discrim-
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inate different signs. Evaluating the intelligibility of such sparse representations

is a difficult task and beyond the scope of this work. However, these experiments

serve to demonstrate the robustness of ASL communication. Despite a radically

changed spatial representation, these systems maintain the basic features of the

signs, i.e., the handshape, location, orientation, and movement, allowing for accu-

rate recognition.

For natural video sequences, several studies evaluate ASL comprehension for

videos with varying frame rates, in the absence of compression, both for individ-

ual signs and for conversational sign language. The accurate discrimination of an

individual sign depends only on the fidelity of the handshape, orientation, and

movement, and does not rely on nonmanual signals. Through an analysis of the

biological limits of human movement, the bandwidth of human motion used dur-

ing signing was found to be limited to 3 Hz [31]. Using stick figure animations,

sampling individual signs at the Nyquist rate of 6 frames per second (fps) is suf-

ficient for capturing the relevant movements. This result is supported by several

other studies [39,58,79]. In particular, [39] demonstrated that, for individual signs,

recognition accuracy was greater than 91% at 6 fps.

However, these intelligibility experiments were performed for individual signs,

not full sentences in which facial expressions have a large impact on meaning. For

fully formed sentences, [39] demonstrated that accuracy dropped significantly at

frame rates below 10 fps. A separate study evaluated the intelligibility of full sen-

tences with variations in the frame rate of fingerspelling segments versus signing

segments of an ASL conversation [17]. In this study, periods of signing were pre-

sented at frame rates of 5, 10, and 15 fps. Periods of fingerspelling were presented

with increased frame rates with respect to the signing segments, e.g., when sign-
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ing was presented at 5 fps, fingerspelling was presented either at 5, 10, or 15 fps.

The subjective intelligibility ratings for a particular signing frame rate were nearly

identical regardless of the varying fingerspelling frame rates, indicating that the

overall intelligibility of a sequence depends on the frame rate during signing. Fur-

thermore, when signing segments were 10 fps and 15 fps, there was little difference

in intelligibility, while each of these cases provided significantly higher intelligibility

than videos at 5 fps.

Similarly, [41] analyzed the effects of frame rate on learner comprehension and

came to a similar conclusion. Participants viewed stories at frame rates of 18 fps,

12 fps, and 6 fps and repeat the story to a video camera. Statistically significant

decreases in story-retell performance only occurred for the 6 fps case. Based on

these studies, the intelligibility of videos with increasing frame rates rises rapidly

but quickly reaches an asymptote around 10 fps, beyond which further increases

in frame rate provide diminishing improvement in intelligibility.

When sufficient frame rate is provided, intelligibility is greatly reduced when

spatial fidelity is lost. If the face and hands are not perceived clearly, relevant

gestures in ASL cannot be identified and communication will be difficult. In [43],

the reliance on text messaging is studied in the context of decreasing video tele-

phony bitrates. Two participants communicated through H.323 videoconferencing

terminals, capable of transmitting both video and text messages. The encoding

bitrate of the video was fixed at either 400 kbps, 128 kbps, or 64 kbps and partici-

pants were free to ask and to respond to questions either by signing or by sending

a text message. During a practice session, the participants were instructed to ad-

just a slider controlling the video quantization factor, trading-off spatial quality

and frame rate for fixed frame size (the frame size was not reported). The frame
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rates vary between less than 10 fps and 15 fps, however, the authors do not re-

port at what frame rate the videoconferencing sessions ultimately took place. At

the highest tested bitrate of 400 kbps, participants used text messaging 9% of the

time while at 64 kbps, text messaging was used 31%. As the video quality was

reduced, participants had difficulty communicating using sign language and relied

more heavily on text messaging.

To explicitly evaluate the trade-off between spatial fidelity and frame rate for

frame rates beyond 10 fps, [13] analyzed the intelligibility of videos encoded at

fixed bitrates of 15 kbps, 20 kbps, and 25 kbps each at frame rates of 10 fps

and 15 fps. The videos were encoded at a resolution of 320×240 pixels using an

H.264/AVC compliant encoder. For all the tested bitrates, intelligibility was higher

for sequences at 10 fps than at 15 fps. Since a fixed bitrate encoding scheme was

used, individual frames at 10 fps are less heavily quantized and have fewer spatial

distortions. The increase in spatial fidelity was more important for intelligibility

than was the corresponding reduction in frame rate, providing that the frame rates

were sufficiently high.

Collectively, the above experiments demonstrate that spatial fidelity is the most

important for both conversational ASL and for single sign recognition, when the

frame rate exceeds approximately 10 fps. If the face and hands of the signer are not

clear, the sign cannot be accurately perceived. Conversational ASL is less robust

to reductions in temporal resolution than individual signs, implying that relevant

events contained in subtle facial expressions, present only in conversational ASL,

are no longer perceptible at low frame rates.
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2.5 Encoder-centric Studies of Prior ASL Encoding Sys-

tems

The previous sections discussed the formation and communication of information

in ASL and reviewed several receiver-centric studies that characterize the impact

of various video coding distortions on ASL intelligibility. Understanding these

components affords the design of ASL-specific encoding algorithms, typically de-

signed to encode intelligible ASL video with limited resources such as bitrate. This

section reviews several ASL-specific encoding algorithms, highlighting those that

were evaluated in encoder-centric studies.

Early ASL encoding systems operated at low bitrates by transforming the input

video into a binary representation [46, 50, 74]. The intelligibility experiments us-

ing point-of-light presentations discussed in Section 2.4 demonstrate that a binary

image sequence may be a viable representation for intelligible ASL communica-

tion. Each of these systems generates a sequence of binary cartoon images which

preserves the edges and contours in the original video frames. Because these rep-

resentations are sparse, they can be encoded efficiently at low bitrates.

While these systems are capable of satisfying the bandwidth constraints of a cel-

lular network, they require specialized encoding and decoding algorithms capable

of compressing binary images, making implementation on complexity-constrained

devices difficult. Additionally, in each of the binary encoding systems presented,

the original videos were recorded in a controlled setting, i.e., smooth and static

background with controlled lighting. In all cases, this allows the edge-detection

algorithm to only capture edges and contours belonging to the signer. While not

addressed in the previous work, natural background scenes (such as an outdoor
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setting) will likely cause problems for the edge-detection algorithms.

Substantially more effort has been placed on developing block-based, motion-

compensated video coders, which provide efficient compression of natural video.

Common among all block-based encoding algorithms designed for ASL video is

the allocation of more bits to the blocks containing important regions such as the

signer’s face or hands [4,54,66,67]. More specifically, most ASL-specific algorithms

can be placed into two classes: foveated video encoding and region-of-interest

(ROI) encoding.

The foveated video encoding algorithms exploit the face-centric viewing pat-

terns of ASL [4, 54]. In foveated video coding, the video frame is encoded with

non-uniform, decreasing quality away from the the observer’s point of fixation,

attempting to match the visual acuity of the human visual system [45]. Because

the ASL receiver primarily gazes at the signer’s face, the fixation point is assumed.

In [4], the face is identified automatically using skin segmentation and facial fea-

ture detection, and foveated processing is applied to generate a map of priority

regions. Given the location of the face, a foveation model assigns macroblocks to

the priority regions. Increasing quantization step sizes are applied to each region,

allowing blocks nearest to the face to be coded with more bits than blocks farther

away. These modifications conform to the H.264/AVC standard and were applied

to four CIF size sequences recorded at 25 fps. At average rates of 217 kbps, this

algorithm achieved an average bitrate reduction of 40% over the H.264/AVC refer-

ence encoder (JM) without affecting the intelligibility of the sequence, as verified

through subjective evaluation.

In [54], three techniques are applied for improving SL compression in H.263:

foveation-weighted bit allocation, modified macroblock processing order, and
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forced SKIP mode in background blocks. The weighted bit allocation decreases

the rate allocated to each macroblock as a function of increasing distance from the

face. The modified processing order adjusts the analysis of blocks, such that blocks

near the face are analysed first. The encoder will obtain information about the face

blocks earlier in the encoding process. Finally, a set of background macroblocks

at the edges of the frame are identified and are always encoded in the SKIP mode.

These techniques allowed more bits to be assigned to the face and regions near the

face, but requires that the weights and block labeling are manually tuned prior to

encoding. The source content used was 15 fps sequences at both CIF (352×288)

and QCIF (176×144) resolutions. A subjective experiment demonstrated that at

fixed bitrates of 256 kbps, 128 kbps, and 64 kbps, the proposed algorithm had

higher mean opinion scores than the H.263 test model.

Knowing that information in ASL is communicated through hand gestures and

facial expressions, ROI encoding algorithms use segmentation techniques to iden-

tify the signer’s face and hands and encode these regions with a higher quality than

the rest of the video frame. Both [67] and [66] use automatic skin segmentation to

identify the ROI. These algorithms assign more bits to the face and hand blocks by

adjusting quantizer values and severely compressing all non-skin blocks. In [67],

QCIF (176×144) sized videos were encoded at fixed bitrates of 64 kbps and 128

kbps using H.261. Reductions of 10-15% in the number of bits per picture led to

slight increases in the effective frame rate, relative to an encoding technique that

assigns a uniform quantizer to the entire frame. The effective frame rates for the

sequences were 16.3 fps at 64 kbps and 17.7 fps at 128 kbps.

Similarly, a more recent approach encodes the non-ROI using the largest pos-

sible quantization step size and an additional preprocessing step that blurs all the
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non-skin regions, with the intention of reducing blockiness in the background [66].

MPEG-1, motion JPEG, and the Windows Media Encoder were applied to video

sequences recorded at 30 fps with a resolution of 160×120. By reducing the quality

in the background region, bitrates were reduced by 25% over the cases in which

no region-of-interest coding was used. In both [67] and [66], no formal subjective

study was performed to evaluate the intelligibility of the compressed ASL video.

Each of these encoding techniques appropriately considers the viewing patterns

of a sign language receiver, but heuristically distributes rate between the regions-

of-interest. Furthermore, in the two applications that incorporated an encoder-

centric subjective experiment [4, 54], the videos were evaluated and encoded at

relatively high rates, resulting in fully intelligible video for both the standard

approach and the ASL optimized approach. As the encoding bitrate is reduced, the

impact on intelligibility of the distortions introduced by the ASL-specific encoding

algorithms is different than the impact of distortions caused by a standard encoding

approach. The following section analyzes the behavior of these encoding systems

at the extremely low bitrates available on cellular networks.

2.6 Distortions Caused by ASL Encoding Systems and

Their Impact on Intelligibility

The foveated coding approaches achieve bitrate reductions by increasing the quan-

tization step size for macroblocks with increasing distance from the signer’s face.

To be consistent with models of visual acuity, the quality degrades gradually be-

tween the macroblocks in the highest priority region (the signer’s face) and the

macroblocks in the lowest priority region (video frame edges). Rate control is per-
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(a) Original video frame. (b) A segmentation error fails to
identify the signer’s right hand, re-
sulting in severe compression arti-
facts.

(c) Improperly coding background
blocks creates residual hand arti-
facts that reduce intelligibility.

Figure 2.1: Comparison of distortions that can impact the intelligibility of
the video. Intelligibility is reduced when spatial distortions occur
in relevant regions of the signer, such as the hands in (b) or
when background distortions interfere with the receiver’s ability
to accurately interpret the motion of the signer, as illustrated in
(c).

formed by selecting the desired quantization step size for the highest priority region

and computing the remaining step sizes according to the foveation model. Because

the foveated coders do not explicitly differentiate between signer and background,

the background regions near the signer’s face are allocated a significant proportion

of the total bitrate. In order to achieve extremely low target bitrates, the foveated

coders must select a large quantization step size for the signer’s face, resulting

in distortions common to all motion-compensated, block-based encoders, such as
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blurring and ringing, which reduce the perception of finer details in the image [92].

Fine details in the signer’s face are critical for the receiver’s understanding and

distortions here will significantly reduce intelligibility.

The ROI algorithms explicitly identify the signer’s face and hands and achieve

very low bitrates by allowing the non-ROI regions to be allocated almost zero bits.

This encoding technique can potentially generate intelligible videos at lower bi-

trates than the foveated coding techniques. However, the ROI encoding approach

relies on the accurate detection of both the signer’s face and hands, increasing the

complexity of the encoder due to the need for more advanced segmentation algo-

rithms. If the ROI is not correctly segmented, important regions will be heavily

distorted. For example, in the frame in Figure 2.1(b), the signer’s hand is incor-

rectly labeled as belonging to the background. The frame is encoded using an ROI

technique, which leads severe compression artifacts in the mislabeled hand, obscur-

ing the handshape and severely reducing intelligibility. Foveated coding techniques

are more robust to this type of distortion, because they only require the identifica-

tion of the signer’s face and code all macroblocks in the frame with at least some

nominal rate.

In addition to accurate segmentation, the ROI encoding techniques require in-

telligent processing of the non-ROI macroblocks. A direct application of spatial

ROI coding can lead to insufficient rate allocated to the non-ROI macroblocks,

creating distortions outside of the ROI that negatively impact intelligibility. In

a motion-compensated encoding framework, the lowest possible rate for a coded

macroblock is achieved by applying the SKIP mode, which simply copies to the cur-

rent frame the co-located macroblock in the previous frame. In the ROI encoding

techniques, the background macroblocks are commonly skipped to conserve rate
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for the ROI. If all the background macroblocks are encoded using the SKIP mode,

when a particular macroblock contains a face or hand in one frame and contains

only background in the next frame, residual pieces of the face and hand remain in

the macroblock. An example of a frame with many residual face and hand mac-

roblocks is provided in Figure 2.1(c). These residuals will propogate either until the

macroblock is coded as a face/hand or until an intra frame is inserted. Fluent ASL

observers note that these types of compression artifacts make it difficult to follow

the hand movement and to focus on the signs. Perceptual evidence suggests that

the human visual system (HVS) extrapolates the current visual stimulus to predict

the location of objects in the next perceived moment [16]. Because these distorted

background macroblocks are temporally correlated with relevant objects, such as

the signer’s hands, they interfere with the expecations of the HVS and inhibit the

receiver’s ability to accurately interpret the sign movements.

2.7 Summary

This chapter describes the ASL communication process, detailing how information

is distributed among the signer’s face, hands, and body. Both receiver-centric

and encoder-centric perceptual experiments describe the impact of degradations

on perceived intelligibility. These studies, as well as an analysis of ASL encoding

systems, define the relevant distortions and their perceptual impact, which informs

the design of the CIM-ASL.
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CHAPTER 3

SUBJECTIVE EVALUATION OF INTELLIGIBILITY

3.1 Introduction

Three experiments verify and refine the conclusions drawn in the studies reviewed

in Chapter 2. More importantly, these experiments yield a quantifiable measure of

the subjective intelligibility for a collection of distorted ASL videos. This ground-

truth experimental data is critical for parameterizing the CIM-ASL and for evalu-

ating the accuracy of the CIM-ASL, as well as other computational models. The

three experiments use consistent methodologies and source videos, but vary the

treatments applied to the videos. Each experiment was designed to evaluate the

effect on intelligibility of different video coding distortions. A specific combination

of experiment parameters, namely the encoding algorithm, encoding bitrate, and

encoding frame rate, is denoted a hypothetical reference circuit (HRC) [84]. A ref-

erence video is processed by a particular HRC to create a processed video, which

is displayed to and rated by the participant. The HRCs varied in each of the three

experiments. An HRC can be used to create specific distortions for a receiver-

centric study, as in experiments 1 and 3. It can also correspond to an encoding

system evaluated at a specific operating point (or points), as in the encoder-centric

experiment 2.

The experimental methodology common to each of the experiments is described

in Section 3.2. Specific details for each experiment, including a description of the

HRCs and a discussion of the experimental results, are provided in Section 3.3.

The procedure described in Section 3.4 identifies and eliminates unwanted bias in

the ground-truth subjective intelligibility scores.
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3.2 Experimental Methodology

3.2.1 Reference Stimuli

The reference video sequences for each study consist of sign language stories told by

a fluent signer at her natural signing pace. The stories were filmed in two different

locations: an indoor studio with a static background, denoted indoor videos, and

an outdoor location on a busy street, denoted outdoor videos. The sequences all

have a spatial resolution of 320×240, which matches the display of the testing

device. The videos used in experiment 1 were filmed at 30 fps, while the videos

used in experiments 2 and 3 were filmed at 60 fps.

3.2.2 Test Procedure

The test procedure for each of the three experiments was identical. The subjective

experiment followed a single stimulus testing procedure. Participants viewed a

processed video and, following the viewing, were asked three questions designed to

evaluate their comprehension of the story, the intelligibility of the test video, and

the usability of the test video. Specifically, the first question asked about the story

content, encouraging participants to remain focused while watching the video. The

second question asked “How easy or how difficult was it to understand the video?”

and participants responded on a 5-point scale ranging from “very difficult” to “very

easy”. The response to this question is denoted the intelligibility score. The third

question asked “If video of this quality was available on a cell phone, would you

use it?” and participants responded on a 5-point scale ranging from “definitely

no” to “definitely yes”. The response to the question is denoted the usability score.
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Because of the nature of the intelligibility assessment task, no single sign language

story was viewed by the same participant twice, eliminating any possible learning

effects.

In order to simulate the use of a cellular device for ASL communication, pro-

cessed videos were displayed to participants on an HTC Apache pocket PC with

a diagonal screen size of 2.8 inches and a screen resolution of 320×240 pixels.

Participants were allowed to hold the device at a comfortable viewing distance.

3.2.3 Participants

A total of 50 fluent ASL users participated in the three experiments: 18 in exper-

iment 1, 16 in experiment 2, and 16 in experiment 3. Participants were screened

for consistency using their answers to the story content questions. If a participant

answered this question incorrectly and rated the video with either a 4 or 5, i.e.,

easy to understand, this rating was flagged as an error. If more than 25% of a par-

ticipant’s scores were flagged as errors, that participant’s scores were considered

invalid and the participant was discarded as an outlier. If fewer than 25% of a

participant’s scores were flagged as errors, the participant’s scores were considered

valid and none were discarded. Using this approach, 2 participants were removed

from experiment 3.
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Table 3.1: Details for the experimental data from three experiments, which
are used in the training and validation of the CIM-ASL. The total
number of processed videos in an experiment is the multiplication
of the number of videos per HRC and the number of HRCs studied
in the experiment. The ratings per processed video corresponds
to the number of participants who rated a specific reference video
encoded using a specific HRC. This number varies in experiment
3 because of the removal of 2 outlying participants. Each ex-
periment is divided into video subsets, which are used to train
different components of the CIM-ASL.

Experiment
Number of

Participants

Number of

HRCs

Number of

Videos per

HRC

Ratings per

Processed

Video

Video

Subset

Number of

Processed

Videos

CIM-ASL

Parameters

Trained on Subset

Experiment 1 18 18 6 3
10 FPS 54

αk, βk

15 FPS 54

Experiment 2 16 16 4 4
Indoor 32

αk, βk

Outdoor 32

Experiment 3 14 15 5 2 or 3

6 FPS 15

a1, a2, a3

7.5 FPS 15

10 FPS 15

15 FPS 15

20 FPS 15
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3.3 Experimental Results

3.3.1 Experiment 1: Varying spatial quality in a fixed

region-of-interest

Experiment 1 was a receiver-centric study that determined the impact on ASL

intelligibility of varying levels of spatial distortions [13]. A collection of 18 in-

door videos were used in this study, with videos ranging in length from 58 seconds

to 177 seconds. In this study, 18 different HRCs were evaluated, corresponding

to combinations of the following parameters: three bitrates (15 kbps, 20 kbps,

and 25 kbps), two frame rates (10 fps and 15 fps), and three region-of-interest

(ROI) rate allocation schemes. The videos were coded using x264, an open-source,

standards-compliant implementation of the H.264/AVC standard [2]. For the ROI

rate allocation, a fixed region was defined around the signer’s face and the quanti-

zation parameter for macroblocks in that region was offset by either 0, -6, or -12,

resulting in fewer distortions around the face at the expense of increased distortions

in the rest of the frame.

Analysis of variance (ANOVA) is used to identify statistically significant effects

on the subjective intelligibility ratings and all three studied parameters demon-

strate a significant effect. For each tested bitrate, the higher rates are statistically

preferred over the lower rates, i.e. 25 kbps is preferred over 20 kbps which is

preferred over 15 kbps (F (2, 34) = 51.12, p < 0.01). Participants preferred videos

encoded at 10 fps over videos at 15 fps (F (1, 17) = 4.59, p < 0.05). As high-

lighted in Chapter 2, 10 fps is sufficient for ASL conversations and, since the

videos were encoded at a constant bitrate, the videos at 10 fps have less distortion
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than the videos at 15 fps. Finally, the participants preferred the -6 quantiza-

tion parameter offset, while the 0 and -12 offsets were not statistically different

(F (2, 34) = 13.69, p < 0.01). With no offset, the face was not clear enough and

with a -12 offset, the distortion outside of the ROI (e.g., in the signer’s hands) was

too high relative to the improvement in the signer’s face.

3.3.2 Experiment 2: Encoder-centric algorithm compari-

son

Experiment 2 was an encoder-centric study that evaluated the performance of three

different video encoding algorithms designed for sign language video in addition

to a traditional H.264/AVC MSE-based rate control algorithm [20]. A collection

of 8 indoor and 8 outdoor videos were used in this study, having lengths ranging

from 17 seconds to 69 seconds. The average story length for the indoor sequences

was 35 seconds and the average story length for the outdoor sequences was 56

seconds. The test set of videos evaluated in this study were generated using 4

different encoding algorithms each operating under both a high bitrate and low

bitrate setting. Two different sets of rates were selected for the indoor and outdoor

videos such that at each location, the most intelligible videos would be very easy

to understand and the least intelligible video would be very difficult to understand.

Outdoor videos were encoded at rates of 50 kbps and 80 kbps; indoor videos were

encoded at rates of 30 kbps and 45 kbps. The combination of 4 encoding algorithms

and 2 different bitrates at each location results in 8 HRCs for the indoor videos

and 8 HRCs for the outdoor videos. All the videos in experiment 2 were encoded

at 15 fps.
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Each of the 4 encoding algorithms evaluated in this study operate within the

H.264/AVC standard and provide rate control that meets an average target bitrate.

Three sign language specific encoders and a general purpose video encoder were

evaluated. The four encoding algorithms used were a traditional MSE-based rate

control algorithm [2], described in Chapter 6; a foveated video encoding algorithm

[4], described in detail in Chapter 2; and two ROI encoding techniques, one using

a spatial ROI and one using a spatial-temporal ROI, in which segmentation labels

are propagated into the future for a fixed duration. The ROI encoding techniques

were preliminary versions of the coder described in Chapter 7 and they allocate

bits primarily to the face and hands of the signer by varying the quantization step

size in each coded macroblock.

The ANOVA identifies a significant effect for the encoding algorithm

(F (3, 206) = 3.90, p < 0.01) and encoding bitrate (F (1, 206) = 31.46, p < 0.01).

For the high bitrate videos, there is no statistical difference in intelligibility be-

tween the x264, foveated, and spatial-temporal ROI encoding algorithms. Both the

x264 encoder and the foveated encoder yield statistically significantly higher in-

telligibility than the spatial ROI encoder. The reduced performance of the spatial

ROI encoder is a consequence of compression distortion artifacts in the signer’s

face and hands due to ROI segmentation errors. The spatial-temporal ROI en-

coder is less susceptible to segmentation errors because the region labels persist

across time, eliminating any short duration segmentation errors. For encoding al-

gorithms that rely heavily on region-based rate allocation, accurate segmentation

is an important factor in the final subjective intelligibility. At low bitrates, all three

of the ASL-specific encoding algorithms provide statistically significant improve-

ments over x264 in the average intelligibility scores. The differences in intelligibil-

ity between the three ASL-specific encoders are not statistically significant. This
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experiment demonstrates that encoding algorithms designed specifically for ASL

can provide statistically significant improvements in intelligibility over traditional,

MSE-based encoding algorithms.

3.3.3 Experiment 3: Varying frame rate at fixed levels of

compression

Experiment 3 was a receiver-centric study that quantified the reductions in ASL

intelligibility due to changes in the temporal resolution, using 15 indoor videos

having lengths ranging from 28 to 62 seconds [26]. Processed videos evaluated in

this study were generated according to 15 HRCs: 5 frame rates (6, 7.5, 10, 15,

and 20 fps) each at 3 levels of spatial distortion (high, medium, and low). In this

experiment, a reference video was processed at only one level of spatial distortion

and all 5 frame rates. In order to accurately quantify only the effect of frame

rate on intelligibility, the spatial distortion was held constant for each frame in a

sequence, regardless of the frame rate. As a result, the bitrate varies across each

sequence.

The ANOVA results for experiment 3 demonstrate a significant effect due to

varying frame rates (F (4, 165) = 8.87, p < 0.01) and due to varying spatial dis-

tortion (F (2, 165) = 76.94, p < 0.01). Consistent with the prior experiments

described in Chapter 2, videos are 20 fps are not significantly different from

videos at 15 fps and 10 fps, but they are significantly better than 7.5 fps and

6 fps. The interaction between frame rate and spatial distortion is not significant

(F (3, 206) = 3.90, p < 0.01), indicating that the effect on intelligibility of reduced

frame rate is consistent across all three levels of spatial distortion.

30



These three experiments provide a collection of subjective intelligibility scores

associated with a set of processed videos. Table 3.1 summarizes the experiments,

providing for each experiment the number of participants, the number of HRCs

evaluated, the number of processed video per HRC, and the number of intelligi-

bility scores per processed video. The following section describes the processing

that is applied to the subjective data. The raw intelligibility scores collected in

the subjective experiments are converted to z-scores prior to their use in parame-

terizing the CIM-ASL (cf. Chapter 4). Converting to z-scores necessarily removes

a bias in the intelligibility ratings of a subset of participants, identified through

the statistical analysis provided in the following section.

3.4 Processing the Subjective Intelligibility Data

In experiments 1 and 2, demographic data was collected to identify and eliminate

any potential sources of bias in the intelligibility scores. In particular, participants

in experiment 1 belonged to one of three categories: hearing child of deaf adult

(CODA), deaf, or hearing. Participants in experiment 2 were asked to report

their preferred language as either English, ASL, or both. These categories are not

exactly one-to-one matches, e.g., a deaf individual may prefer to communicate in

either ASL or English. However, these demographic categories identify the group

of participants who would most benefit from the availability of a mobile device

capable of facilitating conversations in ASL, namely people who are deaf or people

whose preferred language of communication is ASL. Analysis of variance (ANOVA)

demonstrates that this group provides a biased response to both the intelligibility

and usability questions.
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For the intelligibility scores, ANOVA determines that the demographic group

has a statistically significant effect on the scores. (In experiment 1, F (2, 321) =

11.17, p < 0.001 and in experiment 2, F (2, 206) = 28.87, p < 0.01).) When

ANOVA identifies that a statistically significant effect exists, Tukey’s multiple

comparison test is applied to identify specifically which demographic groups have

different mean intelligibility scores.

In experiment 1, participants identified as being deaf responded with statisti-

cally significantly higher intelligibility ratings than both the CODA and hearing

groups. In experiment 2, participants who reported ASL as their preferred lan-

guage responded with statistically significantly higher intelligibility ratings than

both the group preferring English and the group preferring either ASL or English.

In both experiments, higher fluency is unlikely. As an objective measure of fluency,

the ratio between years of using ASL and age is computed for each participant. In

experiment 1, the CODA group has the same average ratio of experience with ASL

as the deaf group. In experiment 2, the group preferring both ASL and English

has the same average ratio of experience as did the group preferring only ASL.

Discounting higher fluency, it is more likely that both the ASL group and deaf

group were biased toward higher intelligibility ratings. This is a consequence of

the increased desire a deaf user likely has for a mobile phone that offers video

communication; making cell phone calls in their preferred language is currently

unavailable for only this group of participants.

This phenomenon is confirmed by applying ANOVA to the subjective usability

ratings. Similar to the results for intelligibility, the participant’s demographic cat-

egory is a significant effect and both the deaf group and the group preferring ASL

responded statistically significantly higher to the usability question, emphasizing
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their increased desire for such a technology.

In order to confidently apply the subjective intelligibility scores to the train-

ing and testing of the CIM-ASL, this bias must be eliminated. The subjective

intelligibility scores are converted to z-scores, which has the desired consequence

of removing information about between subject differences [81]. The z-scored in-

telligibility scores are used for all further analysis. Subsequent use of subjective

intelligibility scores refers to the z-scored values. The processed videos and their

associated intelligibility scores are used to train the model parameters and to test

the performance of the CIM-ASL, in addition to other computational models of

video quality.

3.5 Summary

Three perceptual experiments were presented to evaluate the subjective intelli-

gibility of degraded ASL video. The experiments confirm the results described

in Chapter 2 and provide ground-truth ratings of intelligibility for a collection of

videos. The use of z-scored data is justified via ANOVA, which confirms a statis-

tical bias in a group of participants. The results of these experiments will be used

for training and testing the CIM-ASL.
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CHAPTER 4

CIM-ASL: A COMPUTATIONAL INTELLIGIBILITY MODEL FOR

COMPRESSED ASL VIDEO

4.1 Introduction

The ASL optimized encoders discussed in Chapter 2 either relied on assumptions

that intelligibility was unaffected by the coder or performed encoder-centric subjec-

tive studies to determine the intelligibility of the compressed video. The assump-

tions are not necessarily valid in all scenarios and performing subjective experi-

ments is costly and difficult to incorporate into the design cycle of an encoding sys-

tem. The CIM-ASL provides a method for reliably predicting the performance of

an ASL specific encoding system without the need for subjective testing. Further-

more, a suitable model can be used to create an ASL optimized video encoder by

incorporating the model into a rate-distortion optimization algorithm (cf. Chapter

7). The CIM-ASL must accurately quantify the impact of distortions that reduce

intelligibility, particularly those highlighted in Chapter 2, by applying knowledge

of ASL phonology.

As illustrated in Chapter 2, information in ASL is communicated through ges-

tures in the signer’s face and hands. The gestures are formed in a systematic way

and can be described by their spatial and temporal configurations. We define the

spatial coherence as the consistent and semantically valid organization of a sign

across space. The spatial coherence is determined by the location, orientation,

handshape, and nonmanual signals associated with a particular sign. The loss

of spatial fidelity in the signer has a strong effect on intelligibility, because the

distortions that impact spatial fidelity disrupt the spatial coherence of the sign.
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Disruptions to spatial coherence can be quantified by measuring the distortion in

only the pixels containing the signer’s face, corresponding to the nonmanual signals;

hands, corresponding to the handshape and orientation; and torso, corresponding

to location of the hand relative to the torso.

We define the temporal coherence as the consistent organization of a sign across

time; it is determined by movements in the signer’s hands and by the sequen-

tial transitions in spatial configurations characterized by the hold-movement-hold

model. Temporal coherence in ASL video can be disrupted either by distortions

that reduce the perception of smooth motion across frames or by distortions that

obscure the transitions defined by the hold-movement-hold model. Frame rate re-

ductions in the coded ASL video affect both the perception of smooth motion and

obscure the hold-movement-hold transitions; appropriately considering the frame

rate is therefore essential for quantifying intelligibility.

In addition to decreasing frame rate, temporal coherence is disrupted by the

following two video compression artifacts. First, improperly coded background

blocks in the frame can result in distortions that affect the receiver’s ability to

follow the hand movements (see Figure 2.1(c)). These erroneously skipped blocks

are differentiated from background blocks that do not interfere with the temporal

coherence, in order to quantify their impact on intelligibility.

Second, because ASL signs are defined by a sequence of the basic components,

any disruptions to this sequence will affect the temporal coherence of the ASL

video. Large increases in spatial distortions occurring over multiple frames can

reduce intelligibility by making relevant portions of the hold-movement-hold se-

quence imperceptible. Detecting and measuring large temporal fluctuations in the

distortions can quantify this disruption to the temporal coherence.
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Only video coding distortions that disrupt either the spatial coherence or tem-

poral coherence of a sign will reduce intelligibility (other distortions may cause

annoyance, but will not impact intelligibility). The goal of the CIM-ASL is to

quantify the extent to which such distortions impact the spatial and temporal

coherence. The CIM-ASL is a full-reference distortion measure, which compares

an uncoded reference video to a distorted test video and assumes the reference

ASL video is maximally intelligible, i.e., easy to understand in the absence of any

compression. The full-reference CIM-ASL can be used to estimate the subjective

intelligibility of coded ASL video and to optimize an ASL-specific encoding system

in order to generate compressed video having maximized intelligibility.

The remainder of this chapter details the CIM-ASL, which computes distor-

tions in regions relevant to ASL communication with respect to their impact on

spatial and temporal coherence. Section 4.2 explains the segmentation of the in-

put video sequence into the relevant regions, namely, the face, hands, torso, and

background. Given the region segmentation, the CIM-ASL quantifies the disrup-

tions to the spatial coherence by measuring the distortion in the signer’s face,

hands, and torso, as detailed in Section 4.3. Section 4.4 describes three methods

for quantifying disruptions to temporal coherence: a model of the temporal varia-

tion of the spatial distortions, a model for identifying and quantifying the impact

of incorrectly coded background blocks, and a model that computes the reduc-

tion of intelligibility as a function of the video frame rate. The region distortions,

which quantify disruptions to spatial coherence, are temporally pooled and com-

bined with the temporal coherence measures. The final intelligibility score given

by the CIM-ASL is the weighted combination of the pooled distortion measures for

each region. The weighting mechanism accounts for the varying importance of the

signer’s face, hands, and torso. The pooling mechanism and weighting procedure
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are described in Section 4.5. Optimal values for the model parameters are selected

using a heuristic optimization technique, described in Section 4.6.

4.2 Frame Segmentation

The input video is segmented into macroblocks containing either the face, hands,

torso, or background; distortions in each of these regions have a varying impact

on the spatial and temporal coherence and must be treated separately. The pro-

posed segmentation simply adopts principles from several techniques proposed for

segmenting the face and hands in sign language video, combining skin color mod-

els [5,36,61] for skin detection with classifier cascades for refined face detection [83].

Appendix A provides a more thorough treatment and analysis of segmentation

techniques appropriate for real-time face and hand detection on a mobile device.

Combining the results from the skin segmentation and face detection, the mac-

roblocks containing skin pixels that do not belong to the signer’s face are identified

as the signer’s hands. The torso region is identified as the blocks below the signer’s

head having a width that is twice that of the face bounding box. The remaining

unlabeled blocks are considered background blocks.

The background blocks are further differentiated into new background blocks

and sustained background blocks. A co-located block that contains a face, hand,

or torso in frame n − 1 and contains only background in frame n is labeled as

new background. All remaining blocks are labeled as sustained background. These

new background blocks must be treated differently from the sustained background,

because the new background blocks potentially contain the temporally correlated

distortions highlighted in Figure 2.1(c), which reduce the temporal coherence of
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the sign.

4.3 Computing Disruptions to Spatial Coherence

Given the frame level segmentations, disruptions to the spatial coherence of ASL

video can be computed as a function of the spatial distortions in the signer’s

face, hands, and torso. The CIM-ASL is computed using only the Y channel

of the YCbCr component color space, the standard color space for MPEG and

H.26x video encoding. Within each frame, a pixel-level map of distortions can be

computed as errors in contrast,

ec(i, j, n) =
(Y (i, j, n)− Y (n))

Y (n)
−

(Ŷ (i, j, n))− Ŷ (n)

Ŷ (n)
, (4.1)

where Y (i, j, n) and Ŷ (i, j, n) are the luminance pixel values of the original and

processed videos at spatial location i, j in frame n. Normalization by the average

pixel value in the original video frame and processed video frame, Y (n) and Ŷ (n),

is an approximation of Weber’s law; a fixed amount of error is more difficult to see

in increasingly bright images [15].

In the domain of motion-compensated video encoding, the mean of each frame

will not be significantly changed due to compression and Y (n) ≈ Ŷ (n). In this

case, the errors in contrast are approximated by

ẽc(i, j, n) =
(Y (i, j, n)− Ŷ (i, j, n))

Y (n)
, (4.2)

where ẽc(i, j, n) ≈ ec(i, j, n).

Given the pixel-level error map, the spatial distortions within the regions cor-
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responding to the signer can be computed independently, according to

dk(n) =
1

Nk

∑

i,j∈Region k

ẽc(i, j, n)
2, (4.3)

where dk(n) is the mean squared error in contrast in frame n for region k ∈

{face, hands, torso} averaged over Nk pixels. The measure dk(n) is a temporal

trace of the distortion within a region across time.

When observing a video sequence, viewers track relevant, moving objects and

are more sensitive to distortions in and around these objects. An observer does

not integrate the distortions at a fixed pixel location over time, unless the pixel

corresponds to a stationary object. For arbitrary video content, recently proposed

quality assessment algorithms use motion prediction models to track the trajectory

of objects, estimating the quality along those trajectories [7, 55, 69]. For ASL

video, motion prediction models are unnecessary because the relevant objects are

known to be the face, hands, and torso of the signer. By computing per-frame

distortions separately for each region according to Eq. (4.3), the CIM-ASL is

explicitly tracking the distortion in the objects across frames. The following two

sections quantify the impact of temporal variations in these spatially-defined region

distortions and describe the spatial and temporal pooling stage.

4.4 Computing Disruptions to Temporal Coherence

The disruptions to temporal coherence are quantified by three measures: a mea-

sure of the temporal variations in the spatial distortions computed in Eq. (4.2), a

measure of distortions only in the new background blocks, and a measure of the

intelligibility variations due to the video frame rate. Before computing the tem-

poral variations of the per-frame spatial distortions, a temporal median filter is
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applied to the distortion traces from Eq. (4.3). Because of the temporal structure

of sign language phonology, a single sign is formed over several video frames. If a

distortion appears in only a small subset of those frames, the observer is still able

to interpret accurately the sign being formed. The median filter eliminates short

duration spikes in the distortion traces that are not likely to have a strong effect

on the overall intelligibility of the sign and is applied to the region distortions

according to

d′k(n) = median

(
dk(n−

γ − 1

2
) . . . dk(n+

γ − 1

2
)

)
, (4.4)

where d′k(n) is the output of the median filter having odd-length γ. The median

filter length, γ, depends upon the video frame rate and is selected to correspond to

the number of frames in 500 msec, which is the average duration of an ASL sign.

Fluctuations in distortions less than half the average sign length are removed.

The filtered region distortions, d′k(n), capture the spatial errors that reduce

the intelligibility of the processed video. However, computing only the average

distortion across all frames cannot account for the temporal distribution of distor-

tions, which can have a large impact on the final intelligibility. A measure of the

temporal variation of the distortions is adapted from [55]. For each of the regions,

the temporal variation is computed as the average of the largest 5% of the positive

gradients, which is given by

tvk = avg5%(max (∇d′k(n), 0)), (4.5)

where tvk measures the temporal variation for region k ∈ {face, hands, torso}.

The temporal variation parameter penalizes abrupt increases in distortion that

are not captured by a simple average of the frame level distortions. In particular,

the temporal variation will be significantly higher for sequences in which a relevant
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region has been improperly coded, e.g., due to a segmentation failure in labeling

the face or hands. Only positive gradients are used in this computation to avoid

penalizing decreases in distortion.

The second measure of disruptions to the temporal coherence quantifies the

impact of distortions in improperly coded new background blocks. As described

in Section 4.2, new background blocks, or NewBG blocks, are identified as mac-

roblocks that contain a face, hand, or torso in frame n − 1 and contain only

background in frame n. Erroneously encoding a NewBG block using the SKIP

mode creates residual distortion artifacts that inhibit the perception of coherent

motion in the signer, disrupting temporal coherence, as illustrated in Figure 2.1(c).

NewBG blocks that do not contain these artifacts are treated as sustained back-

ground blocks because the distortions do not disrupt the temporal coherence (i.e.,

are encoded appropriately).

In order to differentiate the improperly coded NewBG blocks, the blockwise

correlation coefficient is measured in the encoded video frames between the NewBG

block in frame n and the co-located block in frame n− 1. If the NewBG block was

coded, the correlation will be low. If the current block was copied from the previous

frame and contains residual hand or face artifacts, the correlation will be close to 1.

The H.264/AVC encoding standard applies a deblocking filter to the coded video

at macroblock boundaries. If the deblocking filter is not used, the correlation

between skipped, co-located blocks will be equal to 1. It was empirically verified

that a threshold of 0.9 was able to account for the changes caused by the deblocking

filter. The distortion in only NewBG blocks having correlation coefficient greater

than 0.9 is computed using the distortion contrast measure in Eq. (4.2) and is
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given by

DNewBG =
1

N

N∑

n=1

1

Nk

∑

i,j∈NewBG

ẽc(i, j, n)
2, (4.6)

which is averaged over Nk NewBG pixels and over N frames.

The final measure of disruptions to the temporal coherence quantifies the im-

pact of reductions in video frame rate on intelligibility. For the same level of

spatial quality, reductions in frame rate cause consistent and quantifiable reduc-

tions in subjective intelligibility [26]. The loss of linguistically important motion

at reduced frame rates is modeled by an offset of the intelligibility measure, where

the offset is determined by a sigmoidal function given by

f(rf ) = a1 ∗
(
1− e−e

a2−a3rf
)
, (4.7)

where a1 controls the lower asymptote, a2 and a3 control the convergence locations

and growth rate, and rf is the frame rate in frames-per-second. A sigmoid is

selected because the gains (or reductions) in intelligibility converge as frame rate

increases (or decreases). The values for a1, a2, and a3 are fit to experimental data.

4.5 Temporal and Spatial Pooling

The intelligibility score given by the CIM-ASL is computed by first temporally

pooling the region distortions across all frames, before spatially pooling each of

the regions, according to

Dk =
1

N

N∑

n=1

d′k(n) + βktvk, (4.8)

where Dk is the temporally pooled distortion trace, d′k(n), for region k ∈

{face, hands, torso}, including the corresponding measure of temporal variation,
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tvk. The temporal variation weight βk controls the relative importance of the

temporal variations with respect to the mean distortion level within a region.

The spatial pooling provides a measure of the distortions that reduce intelligi-

bility for the coded video, which can be mapped to an objective intelligibility score

as,

DIntell =
∑

k∈{face,hands,torso}

αkDk +DNewBG + f(rf ) (4.9)

CIM-ASL = log10
C

DIntell

, (4.10)

where DIntell is intelligibility distortion computed for the entire video and CIM-

ASL is the final objective intelligibility score. The constant C = 1102 is chosen

empirically to map from a distortion measure to an intelligibility measure, where in-

creasing CIM-ASL implies increasing subjective intelligibility ratings. The weights

αk reflect the relative importance of each region k, consisting of the face, hands,

and torso.

The values of αk, βk, and the parameters in f(rf ) are optimized using the

ground truth subjective intelligibility ratings described in Chapter 3. The opti-

mization procedures and optimal parameter values are described in the following

section.

4.6 Parameterizing the CIM-ASL

With the appropriate selection of parameter values based on training data, the

proposed CIM-ASL can be used to accurately estimate subjective intelligibility.

The proposed intelligibility measure is parameterized by the median filter length

γ from Eq. (4.4); by the weights applied to the region pooling, αk from Eq. (4.9)
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and temporal variations, βk from Eq. (4.8); and by the coefficients in the frame

rate offset model, a1, a2 and a3 from Eq. (4.7).

The median filter length is determined from ASL linguistics, while the remain-

ing parameters are trained using the ground-truth subjective experimental data

(see Table 3.1). Optimal values of αk and βk are selected using a genetic algo-

rithm, which minimizes the root mean squared error (RMSE) of a linear mapping

from the predicted intelligibility given by the CIM-ASL to the ground truth subjec-

tive intelligibility ratings from experiments 1 and 2. Non-linear regression analysis

using data from experiment 3 provides the optimal frame rate coefficients, a1, a2

and a3.

Because the training procedure relies on the subjective intelligibility ratings of

degraded videos, it is important to highlight the range of distortions present in

the training videos. The distortions contained in experiment 1 primarily disrupt

only the spatial coherence of the ASL videos. In this experiment, a fixed region-of-

interest was defined around the signer’s face and this region was always encoded

at either the same or higher quality than the rest of the frame. As a result,

the distortions in the signer’s face are low and do not vary significantly across

time. Conversely, the signer’s hands and torso will have a relatively high level of

distortion, increasing with the increasing region quantization parameter offset.

In experiment 2, 4 different encoding algorithms applied to videos in 2 different

locations results in a wide range of distortions, which disrupt both spatial and

temporal coherence. The MSE-based rate-distortion optimization generates videos

that have relatively consistent levels of distortion in each spatial location across

the entire frame, which results in lower quality in the signer’s face and hands

when compared to the ASL specific encoding algorithms. The ROI-based encoding
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algorithm occasionally suffers from segmentation errors, causing frames in which

the signer’s hands are encoded with high levels of distortion, which leads to large

temporal variations in the hand distortions.

Experiments 1 and 2 contain distortions that impact both the spatial coher-

ence and temporal coherence, making them appropriate for identifying the optimal

values of αk and βk. The distortions in experiment 3 were designed specifically to

quantify the disruption to temporal coherence caused by frame rate reductions.

In this experiment, each video was encoded with a fixed level of spatial quality,

independent of bitrate and frame rate. As a consequence, there is no temporal

variation of the distortions and there is very little spatial variation between the

face, hand, and torso distortions. This experiment is used only for identifying the

optimal frame rate coefficients, a1, a2 and a3.

4.6.1 Model parameter optimization procedure

For training purposes, when computing the objective intelligibility, the ROI seg-

mentation maps are generated from the original video as described in Section 4.2

and are manually corrected to remove any segmentation errors, guaranteeing that

the results fairly characterize the performance of the proposed measure and not

the accuracy of the segmentation algorithm.

The accurate recognition of a single sign, which occurs over multiple video

frames, is not affected by distortions with short temporal durations. The median

filter length, γ, is selected to be 500 msec, equivalent to the average duration of

an ASL sign, such that fluctuations in distortions less than half the average sign

length are removed.
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Table 4.1: The optimal parameter values for the objective intelligibility mea-
sure. The median filter is selected according to the average length
of an ASL sign and is identical for each segmented region. The
temporal variation weight, β, controls the relative weighting be-
tween the average spatial distortion d′k(n) and the temporal vari-
ation tvk. Because the hands contain more temporal phonological
structure than the face, βhand is larger than βface. The spatial
pooling weight, α, controls the relative importance of each of the
segmented regions. Because the signer’s facial expressions carry
a significant amount of meaning in ASL, αface is greater than αk

for each of the other regions.

Parameter Face Hands Torso NewBG
Relevant Equation (k corresponds

to either face, hands, or torso)

Median Filter γ 500 ms 500 ms 500 ms - d′k(n) = median
(
dk(n− γ−1

2
) . . . dk(n+ γ−1

2
)
)
(4.4)

Temporal Variation Weight β 2 4 0 - Dk =
1
N

∑N

n=1 d
′
k(n) + βktvk (4.8)

Spatial Pooling Weight α 1.6 0.5 0.1 1 DIntell =
∑

k∈{face,hands,torso} αkDk +DNewBG + f(rf ) (4.9)

46



The region distortion weights αk and the temporal variation weights βk for

each region are determined using a genetic algorithm (GA) optimization technique,

trained on the 10 fps and 15 fps video subsets from experiment 1 and the indoor and

outdoor video subsets from experiment 2. The GA is an iterative technique that

efficiently searches a large space of parameter values. At each iteration, the GA

generates a population, where each member of the population contains a selection

of values for αk and βk, for all k ∈ {face, hands, torso}. Different population

members have different values for αk and βk and each population member has an

associated cost. Successive iterations in the GA propagate the population members

with the lowest cost until either the cost no longer improves or an iteration limit

is reached.

The GA computes cost in the following way. Given a population member, cor-

responding to values for αk and βk, the CIM-ASL is computed for the processed

videos according to Eq. (4.10). For each of the 4 video subsets listed in Table 3.1,

least-squares linear regression generates a mapping from the objective intelligibil-

ity measure to the subjective scores. The linearly mapped objective measure is

denoted the objective estimate of the ground truth subjective intelligibility score.

The root mean squared error (RMSE) is computed between the objective estimates

and the intelligibility scores, as a measure of the accuracy of the objective estimate.

Variations in the number of data points in each of the 4 video subsets taken

from experiments 1 and 2 can potentially bias the optimization to be overly sensi-

tive to a single video subset and, consequently, a subset of the relevant distortion

artifacts. To mitigate overfitting to the data, the GA jointly optimizes the predic-

tion accuracy on each of the 4 subsets by computing the final cost as the sum of

the 4 RMSE values, one for each video subset. The sensitivity of the CIM-ASL to
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each of the subsets is further explored in Chapter 5.

Overfitting is further avoided using a 3-fold cross validation technique, which

partitions the data into sets of 3 and trains on only two-thirds of the data. Each

fold yields slightly different values for αk and βk, but the statistical performance

is consistent across each fold. The average of the three sets of parameter values

(one from each fold) is chosen for the CIM-ASL. For each of the three folds, the

RMSE when using the average parameters is statistically identical to the RMSE

when using the optimal values for that fold.

4.6.2 Optimal parameter values and discussion

The GA identifies the optimal parameter values as αk = [1.6, 0.5, 0.1] and βk =

[2, 4, 0] for the face, hands, and torso, respectively; these values are summarized

in Table 4.1. Recall from Eq. (4.8) and Eq. (4.9), also included in Table 4.1

for reference, the parameter αk controls the relative contribution of distortions in

each region to the overall intelligibility distortion measure. The optimal values

of αface = 1.6 and αhand = 0.5 illustrate that spatial distortions in the signer’s

face will result in a larger decrease in intelligibility than spatial distortions in the

signer’s hands. Based on Eq. (4.9), the distortion weight for NewBG blocks is

fixed to be 1 and is not included in the optimization procedure. In comparison

to the optimized values for αk, the temporally correlated distortions caused by

NewBG blocks reduce intelligibility more than purely spatial distortions in the

signer’s hand but have a lesser impact than distortions in the signer’s face. Ul-

timately, the optimal parameters are intuitively consistent with the semantics of

sign language, i.e., larger weights are applied to distortions in regions containing

more information. Distortions in the signer’s face have the largest impact on the
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intelligibility because facial expressions carry a substantial amount of information.

According to Eq. (4.8), the parameter βk controls the contribution of the tem-

poral variation measure to the total distortion measure within a particular region,

before the cross-region pooling, i.e., before the weight of α is applied. A higher

value of βk reflects a larger impact on intelligibility of the temporal variations

in the distortions relative to the purely spatial distortion. The optimal values of

βhand = 4 and βface = 2 illustrate that, prior to applying the region weight αk,

temporal variations in the hand distortions are twice as costly as temporal varia-

tions in the face distortions, in terms of the total spatial distortion. Once again,

the optimal values are consistent with ASL linguistics. The temporal coherence of

ASL is primarily determined by the consistent organization of handshapes across

time. Relative to the purely spatial distortion d′k(n), temporal variations in the

hand distortions have a larger impact on the temporal coherence than do temporal

variations in the face distortions, which is reflected in the optimal values of βk.

Furthermore, the signer’s torso does not contribute to the temporal structure of

ASL and is only necessary for spatial coherence, as illustrated by the values of

αtorso = 0.1 and βtorso = 0 for the signer’s torso.

Given values for αk and βk, the frame rate offset model is parameterized as fol-

lows, using subjective data from experiment 3. By the design of experiment 3, the

computational intelligibility scores are nearly identical for a fixed level of spatial

quality (high, medium, or low), when excluding the frame rate offset. The sub-

jective intelligibility scores decrease for decreasing frame rate and the magnitude

of the decrease is observed to be consistent across all three quality levels. This

decrease in subjective intelligibility is modeled by the sigmoidal function in Eq.

(4.7). Non-linear, least-squares regression is used to select the model parameters,
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Figure 4.1: Sigmoidal relationship between the increase in intelligibility dis-
tortion caused by frame rate reductions, defined by f(rf ) =

a1 ∗
(
1− e−e

a2−a3rf
)
. Error bars indicate the 95% confidence

intervals. This model achieves R2 = 0.93 and is within the 95%
confidence interval for all of the experimental data.

which are given by: a1 = 1.3, a2 = 0.26, a3 = 0.34. The experimental data and

the functional mapping are plotted in Figure 4.1. This model is consistent with

the receiver-centric experiments discussed in Chapter 2; intelligibility decreases

rapidly at frame rates below 10 fps.

4.7 Summary

This chapter described the computational model of intelligibility for ASL (CIM-

ASL), which is based on linguistic principles of ASL. The CIM-ASL measures

distortions only in regions relevant for ASL communication, using spatial and tem-

poral pooling mechanisms that vary the contribution of region-based distortions

according to their relative impact on intelligibility. The parameters incorporated in

the CIM-ASL, trained using a heuristic search technique, are intuitively consistent
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with the perception of ASL.

51



CHAPTER 5

ESTIMATING SUBJECTIVE INTELLIGIBILITY - STASTICAL

PERFORMANCE AND DISCUSSION OF COMPUTATIONAL

MODELS

5.1 Introduction

In the absence of alternative measures of intelligibility, the CIM-ASL is compared

against computational techniques traditionally applied to video quality assessment.

This section analyses the performance of these distortion measures, along with

the proposed model, as estimators of subjective intelligibility. The experimental

data consists of the processed videos and their associated intelligibility ratings

taken from the 3 experiments discussed in Chapter 3 and summarized in Table

3.1. The ability of a computational model to estimate subjective intelligibility

is determined via the linear regression between the objective scores computed by

the model and the subjective scores, which generates a linear mapping from the

objective scores to the subjective scores. The linearly mapped objective score is the

objective estimate of the subjective intelligibility. The performance of an objective

estimate is evaluated in terms of estimation accuracy, consistency, linearity, and

monotonicity [85]. These four criteria are quantified by the statistical metrics of

root mean squared error (RMSE), outlier ratio (OR), Pearson’s linear correlation

coefficient (r), and Spearman’s rank order correlation coefficient (ρ), respectively.

When comparing the performance of two objective measures, it is critical to

determine whether absolute differences in the statistical metrics are statistically

significantly different. For the metrics r, ρ, and OR, the Student’s t-test identifies

statistically significant differences. For RMSE, the F-test identifies statistically sig-
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nificant differences [85]. Because of the high variance in the subjective scores, due

to a limited number of scores per processed video, hypothesis tests are performed

using 90% confidence level, rather than the typical 95% level. If two statistical

metrics are statistically different at the 90% level, they may not be statistically

different at the 95% level. However, if two statistical metrics are statistically

equivalent at the 90% level, they will also be statistically equivalent at the 95%

level.

Existing objective quality measures fail to accurately estimate subjective intel-

ligibility and the proposed CIM-ASL achieves statistically significant performance

improvements over the quality measures. Section 5.2 compares the performance

of the objective measures when estimating the intelligibility of individual videos

within each experiment. Section 5.3 analyses the performance of the objective

measures when estimating the average intelligibility provided by each HRC [85].

An HRC can be considered a particular encoding system, or a combination of en-

coding algorithm, bitrate, and frame rate. This system-level analysis illustrates

the effect on intelligibility due to encoding an arbitrary ASL video using a spe-

cific HRC. If, on average, an HRC yields highly intelligible videos, the HRC will

be expected to work well in general, e.g., when deployed in a mobile device for

real-time ASL communication. If a computational model can accurately predict

this system-level performance, the model can be applied in the system selection

process without the need for expensive subjective evaluation.

Following the demonstration of the performance of the CIM-ASL, Section 5.4

explores alternative methods for computing the spatial error measure (Eq. (4.2))

and the temporal variation (Eq. (4.5)). This analysis demonstrates that the success

of the CIM-ASL can be attributed to the high-level structure of the model and the
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performance is robust to changes in the low-level implementation.

5.2 Estimating Intelligibility of Individual Videos Within

an Experiment

The proposed CIM-ASL is compared against two objective techniques traditionally

applied to quality assessment: PSNR and the structural similarity index for video

(VSSIM) [87]. PSNR is selected for its simplicity as a signal-based error measure.

VSSIM is selected for its demonstrated improvements over PSNR in terms of ob-

jective quality assessment. On each video frame, VSSIM computes the structural

similarity index (SSIM), which measures the similarity between a reference and

a distorted image as a function of local means, variances, and cross-correlations.

VSSIM computes a score for a video sequence using a weighted temporal pooling,

in which errors in frames with high motion activity are weighted less heavily than

errors in frames with low motion activity.

Both PSNR and VSSIM fail to accurately estimate subjective intelligibility in

all three experiments, having high RMSE and low correlation coefficients, as sum-

marized in Table 5.1. In all three experiments, the proposed CIM-ASL achieves

statistically significantly lower RMSE and higher linear and rank-order correlation

than both PSNR and VSSIM. The performance improvement of the CIM-ASL is

largest in experiment 2, because the videos in this experiment have the most di-

versity in the types of distortions present. The four different encoding algorithms

studied in experiment 2 create distortions which vary both spatially and tempo-

rally to different degrees. The varying distribution of the distortions is especially

challenging for the quality estimators PSNR and VSSIM.
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The poor performance of PSNR and VSSIM can be attributed to their equal

treatment of all distortions in a frame, regardless of their spatial location. Any

full-frame distortion measure will perform poorly because it cannot differentiate

between distortions in the signer’s face and distortions in the background, each of

which affect intelligibility in extremely different ways. As a consequence, tradi-

tional measures of quality cannot reliably estimate intelligibility.

PSNR can be modified to incorporate knowledge about the underlying structure

of sign language. A foveated PSNR is computed by weighting the squared error

with decreasing weights for increasing distance from the signer’s face. The error

weights are adapted from [45], which computes foveated super pixels that increase

in size to match the reduction in visual acuity away from the point of fixation.

The weight applied to the error for a pixel is inversely proportional to the size of

its foveated super pixel, resulting in an objective measure in which distortions in

and around the signer’s face are more heavily weighted than distortions close to

the edges of the video frame. This foveated PSNR model is intuitively consistent

with the behavior of an ASL receiver; the ASL receiver is known to be fixating on

the signer’s face.

When compared to PSNR, the foveated PSNR has statistically significantly im-

proved RMSE and correlation coefficients only for experiment 1. This experiment

has few distortions that impact temporal coherence; simply emphasizing the impor-

tance of distortions in the face improves the estimation accuracy. However, this is

insufficient for experiments 2 and 3, as the distortions present in these experiments

affect both spatial and temporal coherence. The proposed CIM-ASL properly ac-

counts for both spatial and temporal distortions and is statistically significantly

more accurate, having lower RMSE, than the foveated PSNR in all three experi-

55



ments, despite the consistency between a foveation model and the known fixation

patterns of ASL receivers.

5.3 Estimating Average Intelligibility of an HRC

The analysis provided in Section 5.2 yields an objective estimate for every processed

video by applying the appropriate linear mapping to the objective distortion mea-

sure. Within each experiment, the mean objective estimate and mean subjective

intelligibility score can be computed for an HRC by averaging the scores across

all the videos processed by that HRC. For example, experiment 1 consisted of 18

HRCs, each of which was applied to 6 reference videos, resulting in 6 compressed

videos per HRC. The objective and subjective scores for a single HRC are com-

puted as the average score of all 6 videos processed using that HRC. For experiment

1, this results in a collection of 18 averaged subjective and objective scores, each

corresponding to a single HRC.

The number of data points in an experiment, after averaging across videos,

is equal to the number of HRCs evaluated in that experiment, summarized in

Table 3.1. Computing the four statistical metrics on these averaged data points

determines the accuracy of the objective model when estimating the subjective

intelligibility of an HRC. Averaging over each of the stories mediates any potential

differences between them, such as variations in story complexity.

For all the experiments, the proposed CIM-ASL provides a more accurate esti-

mate of the average subjective score for an HRC, as demonstrated by the statisti-

cally significantly lower RMSE values summarized in Table 5.1. For experiments

1 and 3, the CIM-ASL performs very well, having correlation coefficients r and ρ
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near one and RMSE and OR values near zero. The performance of the CIM-ASL

is slightly lower in experiment 2. However, noting the extremely poor performance

of PSNR and VSSIM, experiment 2 provides the most challenging set of videos

for accurately predicting subjective intelligibility. This experiment is most consis-

tent with real usage scenarios, having both indoor and outdoor videos encoded at

multiple bitrates using multiple encoding algorithms.

5.4 Robustness to Temporal Variation and Spatial Distor-

tion Measures

Section 5.2 and Section 5.3 established that the CIM-ASL is a feasible model for

estimating subjective intelligibility and significantly outperforms objective tech-

niques typically applied to video quality assessment. This section demonstrates

that the accuracy of the CIM-ASL is unaffected by alternative methods of com-

puting the spatial error map and the amount of temporal variations. The high-level

structure of the model therefore provides the proper framework for estimating in-

telligibility and the performance is robust to the low-level details. The individual

components can be selected to suit the intended application.

Fine scale partitions of the experimental data more effectively highlight the

impact on the CIM-ASL when applying different methods for computing the indi-

vidual components. In this section, the objective model performance is computed

separately on each of the video subsets from experiments 1 and 2 listed in Table

3.1 and not on the collective experimental data, as in the previous sections. The

five video subsets from experiment 3 are excluded from this analysis because the

videos within these individual subsets contain only a single frame rate and a sin-
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gle encoding algorithm operating at three levels of spatial quality. Any distortion

measure that exhibits monotonic behavior can accurately predict intelligibility in

these extremely homogeneous video subsets. The remaining four subsets from ex-

periments 1 and 2 contain varying distortions that challenge the necessity of the

individual components in the CIM-ASL.

For the video subsets used in this analysis, Section 5.4.1 develops a performance

bound based on the minimum achievable RMSE for each subset. The following

two sections demonstrate the robustness of the CIM-ASL when selecting the tem-

poral variation and spatial distortion measures. Specifically, different methods of

computing the temporal variation are evaluated in Section 5.4.2 to demonstrate

the necessity of using an appropriate measure of the temporal variations of the

spatial distortions. In Section 5.4.3, different pixel-based error measures applied

within the proposed framework yield nearly identical performance.

5.4.1 Computing a performance bound on individual video

subsets

Section 5.2 established that objective quality estimators, namely PSNR and VS-

SIM, cannot reliably estimate intelligibility. Because of the poor performance of

these quality estimators, they cannot provide an adequate performance benchmark

for the proposed CIM-ASL; a more meaningful benchmark is required. For a single

video subset, a performance benchmark for the CIM-ASL is developed by training

the model parameter values (αk, βk) using only one video subset.

As described in Chapter 4, the values for αk and βk used in the CIM-ASL

are trained jointly on all four video subsets. The GA optimization, when trained
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on a single video subset, selects parameters αk and βk that achieve the lowest

possible RMSE for only that subset, independent of the other three video subsets.

Because these parameters are trained on only a single video subset, they will be

overly sensitive to the distortions contained in that subset and will not be able

to accurately estimate the effects of distortions contained in the remaining three

subsets. Despite this, the performance achieved in a single video subset, when

overtraining the model parameters to only that subset, serves as a benchmark for

the CIM-ASL, when properly trained to avoid overfitting.

In all statistical metrics, the CIM-ASL performs statistically identical to the

performance benchmark, as summarized in Table 5.2. The relatively low correla-

tion coefficients, r and ρ, for the indoor videos from experiment 2 for both the

benchmark and the proposed reflect the difficulties in estimating intelligibility for

this set. Despite differences in the correlation coefficients, the estimation accuracy,

quantified by RMSE, is consistent across all 4 video subsets. The following sections

compare the performance of the intelligibility measure when varying the individual

components.

5.4.2 Robustness to temporal variation measures

This section evaluates the performance of the CIM-ASL when using two different

measures of temporal variations, each of which achieves statistically identical per-

formance. The proposed model is also computed using only the spatial component,

which results in a performance decrease compared to the full intelligibility mea-

sure. This demonstrates that an appropriate measure of the temporal variations of

the distortions is required to accurately estimate intelligibility, but the framework

is robust to the exact measure used.
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Because the computation of the temporal variation component of the CIM-ASL,

as computed in Eq. (4.5), relies on a percentile of temporal gradients, it can only

be computed if the entire sequence is available. A real-time computable measure

of temporal variation is necessary for implementing the intelligibility measure in a

rate-distortion optimization scheme for real-time video encoding (cf. Section 7.1).

Such a suitable real-time measure achieves identical statistical performance.

The percentile-based measure in Eq. (4.5) will almost always be non-zero (ex-

cept in the case of constant distortion in every frame). Despite this, it does not

always have a large contribution to the final intelligibility value, e.g., when the

average distortion is high but does not significantly vary across frames. An em-

pirical analysis of the percentile-based temporal variation measure reveals that it

primarily contributes to the overall intelligibility measure when the average spatial

distortion within a region increases by more than 30% between frames.

The real-time measure of temporal variation, denoted the threshold-based tem-

poral variation, is the average gradient for only frames in which the spatial dis-

tortion has increased by more than 30% from the previous frame, after applying

the median filter. Due to the median filter, this computation is not truly causal,

but it can be computed instantaneously given a buffer for the filter. The relevant

frames are identified as

Nk,30% =

{
n ≤ ncurrent

∣∣∣∣
∇d′k(n)

d′k(n− 1)
> 0.3

}
, (5.1)

where Nk,30% is the subset of all frames n, up to frame ncurrent, for which the

median-filtered spatial distortion, d′k(n), has increased by more than 30%. The

subset of frames are region-specific, with k ∈ {face, hands, torso}, and may be

disjoint for each of the regions. The threshold-based temporal variation computes
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the average of the gradient only in frames Nk,30% and is given by

tvk =
1

‖Nk,30%‖

∑

n∈Nk,30%

∇d′k(n) (5.2)

Both the percentile-based and threshold-based measures of temporal variation

compute the average gradient in a subset of the total video frames. The subset

defined by the percentile-based measure can only be identified using the entire

video sequence, while the subset defined by the threshold-based can be identified

in real-time. The CIM-ASL using either of these measures of temporal variation is

compared with only the spatial component of the model, which discards completely

the temporal variation measure.

In terms of prediction accuracy (RMSE) and correlation (r, ρ), the purely

spatial measure exhibits statistically significantly worse performance in only the

outdoor videos from experiment 2 (RMSE = 0.602, r = 0.590, ρ = 0.618). The

outdoor videos from experiment 2 contain the largest temporal variations of all

the video subsets. Outdoor videos coded using the ROI encoding algorithms are

subject to segmentation errors in coding, which leads to large temporal variations

in the hand distortions. The MSE-based rate control algorithm allocates more

rate to the macroblocks with higher motion activity. When the background activ-

ity increases, this coder necessarily allocates more rate to the background at the

expense of the signer, resulting in increased distortions in the signer that create

large temporal variations in the distortions.

The purely spatial measure performs statistically identical to the full model on

the remaining three video subsets. These videos do not have significant temporal

variations in distortions. As a result, computing only the spatial component of the

CIM-ASL is sufficient for estimating intelligibility in these cases.
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The causal computation of temporal variation performs statistically identically

to the proposed percentile-based method in all four video subsets and all statistical

metrics. The use of an appropriate measure of temporal variation is required for the

accurate prediction of subjective intelligibility; however both the percentile-based

and threshold-based methods perform equivalently.

5.4.3 Robustness to the spatial distortion measure

The CIM-ASL can be calculated using any spatial error measure, provided that

the error can be pooled separately over each of the different regions. In addition to

the MSE in contrast computed in Eq. (4.2), both the structural similarity (SSIM)

index and the natural image contour evaluation (NICE) are evaluated as potential

spatial distortion measures. The SSIM index, commonly used for image quality

assessment, computes the similarity between a reference and a distorted image as

a function of the mean, variance, and cross-correlation [86]. NICE was designed

for image utility assessment, in contrast to image quality assessment, which makes

it potentially more applicable for intelligibility assessment. NICE computes image

utility by comparing the contours of the reference and test images, identifying

errors as differences in the contours [65].

For both SSIM and NICE, the genetic algorithm optimization procedure, de-

scribed in Section 3.1, identifies appropriate values for αk and βk for the corre-

sponding spatial distortion error measures. These values are different for each

error measure, but they maintain the high-level, linguistic features, namely, errors

in the signer’s face are most heavily emphasized. The performance of the CIM-

ASL, when using three different spatial error measures, is statistically identical in

all statistical metrics for three of the four video subsets. In the fourth video sub-
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set, the 10 FPS videos from experiment 1, the CIM-ASL using MSE in contrast

performs statistically significantly better only in terms of the OR. Even in this

case, using SSIM or NICE in the intelligibility measure perform very well, having

low ORs of 0.089 and 0.111.

Fundamentally, these results demonstrate the importance of identifying the dis-

tribution of information within the video frame. Because ASL users are extracting

information from the face and hands of the signer, properly weighting and pooling

the errors in these regions is of primary importance. NICE applies a very different

paradigm from pixel-based error measures, such as SSIM and MSE in contrast.

Despite these differences, using NICE as the spatial error measure in the proposed

model, which properly combines the region distortions, results in very good per-

formance. Ultimately, the choice of a particular error measure is secondary to the

selection of an appropriate pooling mechanism and can be chosen to suit the needs

of a particular application.

5.5 Summary

This chapter demonstrated that the CIM-ASL accurately estimates the subjective

intelligibility of ASL video and exhibits statistically significant improvements over

computational models traditionally applied to measure video quality. Further-

more, the CIM-ASL properly models the distribution of information in an ASL

conversation and is robust to the specific choice of spatial and temporal distortion

measures.
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Table 5.1: Comparison of statistical performance metrics for the CIM-ASL,
PSNR, VSSIM, and foveated PSNR in two cases: estimating the
intelligibility of individual videos in an experiment and estimat-
ing the intelligibility provided by the hypothetical reference circuit
(HRC), averaged over source videos processed by that HRC. Bold
values are statistically identical to the CIM-ASL, which is the
top-performing model in all cases. In the case of foveated PSNR,
italicized values are statistically significantly better than PSNR.
For individual videos, the CIM-ASL performs statistically signifi-
cantly better than PSNR and VSSIM in terms RMSE, r, and ρ in
all three experiments. For HRCs, the CIM-ASL performs statisti-
cally significantly better than PSNR, VSSIM, and foveated PSNR
in all three experiments in terms of RMSE and r.

Measure Video Subset

CIM-ASL

Exp. 1
Exp. 2
Exp. 3

PSNR

Exp. 1
Exp. 2
Exp. 3

VSSIM

Exp. 1
Exp. 2
Exp. 3

Foveated

PSNR

Exp. 1
Exp. 2
Exp. 3

Individual Videos
RMSE OR r ρ

0.412 0.100 0.862 0.865

0.479 0.172 0.702 0.704

0.450 0.129 0.849 0.807

0.603 0.156 0.671 0.657
0.637 0.234 0.320 0.331
0.579 0.214 0.734 0.688

0.591 0.156 0.687 0.674
0.633 0.250 0.335 0.317
0.593 0.229 0.718 0.683

0.517 0.156 0.772 0.773
0.611 0.203 0.417 0.373
0.558 0.200 0.756 0.743

HRC
RMSE OR r ρ

0.148 0.111 0.982 0.988

0.330 0.250 0.804 0.776

0.185 0 0.970 0.950

0.480 0.500 0.760 0.695
0.511 0.375 0.390 0.382
0.387 0.533 0.867 0.886

0.465 0.500 0.778 0.717
0.510 0.375 0.394 0.356
0.394 0.533 0.860 0.889

0.361 0.556 0.873 0.897
0.478 0.375 0.509 0.409
0.389 0.400 0.861 0.911
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Table 5.2: Statistical performance metrics for training on a single video sub-
set, which provides a best-case performance benchmark. When
compared with the proposed CIM-ASL, none of the differences in
the statistical metrics are statistically significant.

Training Case Video Subset RMSE OR r ρ

Re-trained

For Each

Video Subset

Exp. 1 - 10 FPS 0.376 0.133 0.881 0.879

Exp. 1 - 15 FPS 0.412 0.022 0.863 0.828

Exp. 2 - Indoor 0.400 0.125 0.720 0.722

Exp. 2 - Outdoor 0.426 0.063 0.820 0.787

CIM-ASL

Exp. 1 - 10 FPS 0.394 0.133 0.868 0.881

Exp. 1 - 15 FPS 0.419 0.022 0.858 0.829

Exp. 2 - Indoor 0.429 0.156 0.667 0.609

Exp. 2 - Outdoor 0.432 0.125 0.814 0.819
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CHAPTER 6

INTRODUCTION TO MOTION COMPENSATED VIDEO CODING

6.1 Introduction

One of the primary applications of the CIM-ASL is to develop an intelligibility op-

timized coder explicitly for ASL video. This chapter discusses general principles of

motion-compensated, predictive video coding, which provides the necessary back-

ground information to understand the intelligibility optimized coder developed in

Chapter 7. Of particular focus will be general principles of predictive video cod-

ing and operational rate-distortion optimization in the context of the H.264/AVC

encoding standard.

6.2 Predictive Video Coding

The primary goal of compression is to remove redundant information from a signal.

Predictive video coding removes redundancies from a video signal by first gener-

ating an accurate prediction of the pixels in a video frame, then subtracting this

prediction from the video frame to form a residual signal. Accurate predictions

yield small residual values that can be efficiently compressed. The residual signal

is then transform coded. A block-based transform maps the residual signal into a

transform domain, which provides additional energy compaction. At this stage,

lossy compression is achieved via quantization of the transform coefficients. Addi-

tional lossless compression is achieved via entropy coding [63]. The block diagram

in Figure 6.1 describes a predictive video coder. Each component in the coder is

presented in more detail in the following subsections.
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Figure 6.1: Block diagram of a predictive video coder. The blocks T and
T−1 refer to transform and inverse transform. The blocks Q and
Q−1 refer to quantization and inverse quantization.

Forming prediction residuals

Video frames are divided into 16×16 pixel macroblocks and predictions are formed

for each macroblock. These predictions must be generated causally, i.e., the pre-

diction for a macroblock can only be computed from previously coded data. In

predictive video coding, the predictions can be formed by exploiting either the

temporal correlation across frames in the video or the spatial correlation within a

video frame.

Temporal predictions are used for interframe coding. In interframe coding,

a macroblock is predicted from another macroblock in a previously coded frame.

In the simplest case, the prediction is the co-located macroblock in the previous

frame. This frame differencing prediction effectively subtracts the previous frame

from the current frame. Unless there is no motion present in the video, the resulting

residual signal will be significantly large. In H.264/AVC, this type of prediction

mode is denoted SKIP.

More accurate predictions are formed using motion compensation techniques.

Pixel-wise differences between frames in a video can be attributed to the mo-
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tion of the objects within the frame, camera motion, or lighting/scene changes.

With the exception of lighting and scene changes, these interframe difference are

modeled as the translation of objects (corresponding to blocks of pixels) across

time. To form an accurate temporal prediction for a macroblock, motion com-

pensation techniques identify a motion vector, which defines the location of the

best-matching macroblock in a prior frame. In this case, both the residual signal

and the motion vector must be encoded into the bitstream. H.264/AVC allows

for motion vectors at both macroblock and sub-macroblock resolutions. The fol-

lowing prediction modes in H.264/AVC denote interframe coding having motion

vectors computed for blocks of size W×H: INTER16×16, INTER16×8, INTER8×16,

INTER8×8, INTER8×4, INTER4×8, INTER4×4.

Spatial predictions are used for intraframe coding. In intraframe coding, a mac-

roblock is predicted from spatially neighboring pixels in the same frame. Natural

images exhibit a high degree of spatial correlation between nearby pixels. Spatial

prediction modes exploit this correlation by extrapolating adjacent pixel values

to form the prediction for the current macroblock. In H.264/AVC, the prediction

can be formed either for the entire 16×16 macroblock or for 4×4 sub-macroblocks.

These intraframe prediction modes are particularly useful for frames in which the

temporal motion models fail, such as frames occurring at a scene change.

Transform and quantization

Block-based transforms applied to the residual signal achieve further energy com-

paction. H.264/AVC applies 2 different transforms, depending on the type of resid-

ual data. A 4×4 DCT-based transform is applied to sub-blocks in each 16×16

macroblock. A 4×4 matrix of DC coefficients, extracted from the DCT-based
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transforms applied to the macroblock, is additionally transformed using a 4×4

Walsh-Hadamard transform.

Mapping raw pixel values into residual signals and applying block-based trans-

forms to the residual signals yields efficient energy compaction for natural videos.

However, this amount of compression is insufficient for achieving the target bi-

trates of nearly all video communication and compression applications; lossless

compression techniques are required. H.264/AVC applies scalar quantization of

the form

Zij =

⌊
Yij

Qstep

⌋
, (6.1)

where Yij is the transform coefficient at spatial location (i, j), Zij is the quantized

value, and Qstep is the quantization step size. In H.264/AVC, Qstep can take one

of 52 values, indexed by QP∈ (0 . . . 51). Qstep doubles for every 6 QP values and

higher QP values correspond to more coarsely quantized coefficients (i.e. more

compression).

Entropy coding

The final stage in the predictive video coder applies an entropy coder for lossless

compression and for generating the binary bitstream representation of the video.

The entropy coder exploits statistical redundancies in data symbols, where a sym-

bol is composed either of the quantized transform coefficients in a macroblock or of

the side information necessary for reconstructing the decoded coefficients (e.g., the

motion vectors, prediction mode, or QP). H.264/AVC offers two different entropy

coders. A variable-length coder (VLC) represents symbols with a binary sequence,

where the length of the binary sequence varies with the probability of the symbol.

Symbols that occur with high probability are represented with shorter sequences
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and fewer bits. Alternatively, an arithmetic coder yields compression that is near

the theoretical optimum, at the cost of increased computational complexity for

both the encoder and decoder. In both cases, H.264/AVC uses context adaptive

entropy coding, where the models of symbol probabilities are adjusted according

to the local spatial or temporal statistics.

6.3 Operational Rate-Distortion Optimization

Video coding standards specify a syntax for describing a compressed video as a

sequence of bits (bitstream) and a method for decoding the bitstream and re-

constructing the compressed video. The decoding methodology defines the set

of admissible coding techniques, such as the type of spatial or temporal predic-

tion modes, transforms, and entropy coders. This framework allows for significant

flexibility in the design and operation of the encoder. The operation of the en-

coder is determined via the selection of encoding parameters, which are ideally

chosen to minimize the distortion in the video for a given bitrate. An encoder

that meets this criteria is considered rate-distortion optimal. This flexibility in the

encoder operation ultimately allows for the development of a standard compliant

H.264/AVC encoder that is optimized for ASL video, by choosing the CIM-ASL

as the distortion criteria (cf. Chapter 7).

A set of rate-distortion optimal encoding parameters is defined as follows. In

H.264/AVC, the rate and distortion in a macroblock is determined by the selection

of motion vector, mode, and quantizer [90]. The motion vector and mode determine

the prediction for a macroblock and are used to generate the residual, which is

transformed and quantized. The problem of optimal encoder control becomes
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choosing a parameter combination pi ∈ P ≡ {MV ×M×QP} for each macroblock

Xi over all N blocks. These coding decisions will affect total rate, R(X, p), and

total distortion, D(X, p). Given a rate constraint, Rmax, the optimization finds p

such that:

min
p∈PN

D(X, p) subj. to R(X, p) ≤ Rmax (6.2)

This rate constrained optimization problem is made into an unconstrained prob-

lem by using the Lagrangian relaxation technique. This reduces the optimization

in Equation (6.2) to:

min
p∈PN

J(λ,X, p) = D(X, p) + λR(X, p) (6.3)

For a fixed λ, the solution to Eq. (6.3) that results in a realized rate, denoted Rt,

is identical to the solution to Eq. (6.2) when Rmax = Rt [72].

The selection of the QP has the largest impact on the rate and distortion in

a macroblock. Furthermore, accurate prediction, leading to small residuals, is

desirable regardless of the quantization step size. Consequently, the QP for a

macroblock is typically chosen prior to identifying the motion vector and mode

for that macroblock [88]. The optimization then requires a two-step process: first,

find the optimal QP values for each macroblock in the frame according to the

Lagrangian cost for a fixed λ, second, find the optimal prediction (including motion

vector and prediction mode) according to the Lagrangian cost for a fixed λ and

fixed QP.

In H.264/AVC, the QP for the current block is coded as a delta offset from the

QP for the previous block. Because of this, the additional rate required to encode

large changes in QP can add non-trivial overhead to the bitstream, especially at

very low rates. In order to model this dependency, a trellis is built in which each
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stage corresponds to a macroblock in a row and each node in a stage corresponds to

a QP value [57,68]. The Viterbi algorithm is used to search for the path through the

trellis that minimizes the Lagrangian cost, J , for a particular row. The algorithm

then iterates over all rows in the frame. In terms of number of required Lagrangian

cost calculations, this algorithm has a complexity of O(Q2 ×N), where there are

Q possible QP values (52 for H.264/AVC), and N macroblocks in a frame.

The trellis search identifies the optimal QP for each macroblock in each video

frame. However, the computational complexity of the trellis search prohibits its

use in real-time video encoders. An alternative approach selects a single QP for

the entire frame according to a functional model relating λ and the QP, given by

the following, for H.264/AVC

λ = 0.85× 2
QP−12

3 . (6.4)

This model is empirically determined by applying the trellis search to a collection

of natural video sequences and analyzing the set of optimal QP values [88, 90].

For a fixed λ and QP, the remaining encoding decisions include the selection

of the prediction mode and, in the case of interframe coding, the optimal motion

vector. As shown in the Section 6.2, the space of possible prediction modes is

sufficiently small such that the Lagrangian cost associated with each mode can be

explicitly computed. The encoder simply selects the mode with the lowest cost.

6.4 Summary

Predictive video coding achieves efficient compression of video signals by exploit-

ing temporal and spatial correlations in the video to generate predictions for each
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coded block. The predictions are subtracted from the block to be coded to form

a residual signal, which is transformed, lossy compressed through quantization,

and losslessly compressed using an entropy coder. Operational rate-distortion op-

timization techniques are applied in order to identify quantization step sizes and

prediction modes that result in the minimum achievable distortion for a given rate

constraint.
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CHAPTER 7

APPLYING THE CIM-ASL TO OPERATIONAL

RATE-DISTORTION-COMPLEXITY OPTIMIZATION

7.1 Introduction

The proposed CIM-ASL accurately estimates subjective intelligibility and can be

applied to optimize ASL-specific systems. Incorporating the CIM-ASL into a rate-

distortion optimization procedure for H.264/AVC creates a closed-loop encoding

system designed for ASL video, denoted the intelligibility optimized encoder. For

videos encoded by this system, the rate is optimally distributed between the rele-

vant portions of the signer (denoted the regions-of-interest or ROI) and the back-

ground, without the need for heuristics. This intelligibility optimized coder pro-

vides significant bitrate reductions compared to a general purpose H.264 encoder

(x264 [2]) and a foveated video coder designed for ASL video [4].

The CIM-ASL is also applied to reduce the computational complexity of the

intelligibility optimized encoder. Three encoding parameters are developed that

allow the encoder to allocate computational resources differently between the ROI

and non-ROI. The CIM-ASL is included in an encoder parameter optimization

by modifying a fast, offline distortion-complexity optimization algorithm, result-

ing in parameter selections that demonstrate excellent rate-distortion-complexity

performance.

The remainder of this chapter is organized as follows. The intelligibility op-

timized encoder is described in Section 7.2. The rate-distortion performance of

the intelligibility optimized encoder is demonstrated in Section 7.3. Section 7.4

74



describes the complexity allocation encoding parameters. The encoding speed im-

provements when using these parameters are demonstrated in Section 7.5. Finally,

in Section 7.6, an offline distortion-complexity optimization procedure incorpo-

rates the CIM-ASL to efficiently identify optimal operating points in the joint

rate-distortion-complexity space.

7.2 Intelligibility Optimized Encoder

The trellis-based rate-distortion optimization procedure described in Chapter 6 se-

lects the optimal quantization parameter (QP) given a fixed Lagrangian parameter

(λ). While this cannot be applied in a real-time encoding scenario, applying this

algorithm to a collection of ASL videos affords the development of a λ-QP model

unique to the CIM-ASL. The trellis-based optimization is applied to four different

ASL videos, which vary in the amount of background activity and vary in the size

of the regions-of-interest relative to the frame size. As described in the previous

chapter, this optimization procedure minimizes the joint rate-distortion (R-D) cost

D + λR. For the intelligibility optimized coder, the distortion measure is defined

according to the the CIM-ASL as intelligibility distortion DIntell from Eq. (4.9).

In the intelligibility optimized encoder, each macroblock in a video frame is

labeled as belonging to one of the relevant regions (face, hands, torso, new back-

ground, and sustained background) using the algorithms described in Chapter 4.

The contribution to DIntell of local distortions varies depending on the region type.

Recall that αface = 1.6 and αhand = 0.5. Consequently, the optimization proce-

dure will select a smaller QP for face macroblocks than for hand macroblocks (i.e.,

the face is less heavily quantized than the hands). This is illustrated in Figure
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(a) Distribution of QP in the face macroblocks.

10
0

10
1

10
2

10
3

10
4

10

15

20

25

30

35

40

45

50

Lambda

Q
P

 V
al

ue

 

 

Video 1
Video 2
Video 3
Video 4
Highest Selection Occurrence
λ−QP Model

(b) Distribution of QP in the hand macroblocks.

Figure 7.1: Optimal QP values, selected via trellis search, versus λ. Ninety
percent of the macroblocks were coded with QP values among
the clouds of points. The Highest Selection Occurrence line is
the QP value that is selected most often by the optimization.
The empirical λ-QP model is also plotted.
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7.1, which plots the distribution of the optimal QP values selected for the face

macroblocks and hand macroblocks. The same trend holds for the other regions-

of-interest.

Real-time encoding of ASL video using the intelligibility optimized coder re-

quires a model that specifies the QP for each macroblock, given a fixed Lagrangian

parameter λ. An analysis of the optimal QP values over a range of tested λ values

reveals a functional relationship between λ, QP, and the spatial distortion weight

α. This relationship is given by

2
QP (X)−12

3 =
λ

0.65α(X)
, (7.1)

where QP (X) is the quantization parameter for macroblock X and α(X) is the

weight for macroblock X, determined by the macroblock’s segmentation label.

For face, hand, torso, and new background macroblocks, the weights are given by

αk = (1.6, 0.5, 0.2 1) as listed in Table 4.1. For sustained background macroblocks,

α = 10−3 to avoid numerical instabilities. Figure 7.1 plots the QP selected by the

model versus the empirical distribution of QPs, computed from the collection of

optimally coded ASL videos. Note that the model corresponds very closely with

the most commonly occurring QP value and this model holds across the different

regions-of-interest.

For increasing values of α, corresponding to increasing importance for intelligi-

bility, the quantization step size will decrease. As a result, more important regions

in the video frame, as defined by DIntell, are assigned a lower quantization step

size and are allocated more rate. Given a quantization step size for a macroblock,

the intelligibility optimized coder identifies the remaining coding decisions (i.e.,

macroblock coding mode and motion vector) that minimize the R-D cost.
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7.3 Rate-Distortion Performance Results

The intelligibility optimized coder is compared against x264 [2] and an ASL-

specific, foveated encoding technique [4]. As illustrated in Figure 7.2, the proposed

algorithm achieves substantial bitrate reductions at fixed levels of intelligibility

over both the x264 encoder and the foveated encoder. When compared to x264,

the proposed achieves reductions of 10% on indoor videos and between 26% and

42% on outdoor videos. When compared to the foveated encoding algorithm, the

proposed achieves reductions between 5% and 8% for indoor videos and between

19% and 31% for outdoor videos. Larger rate reductions are obtained for outdoor

video sequences, because of the higher level of background activity. The x264

and foveated encoders allocate a significant amount of rate to the background re-

gion. The proposed encoder only allocates rate to macroblocks containing the face,

hands, torso, and new background, maintaining high intelligibility at low rates at

the cost of high distortion in the sustained background. At fixed bitrates, the

proposed coder produces video with higher subjective intelligibility than the x264

coder, as rated by fluent signers [20].

7.4 ROI-based Complexity Allocation Parameters

Bandwidth and computation time are the two major resource constraints for a real-

time video communication system. As demonstrated in the previous section, the

intelligibility optimized encoder addresses the problem of constrained bandwidth

by providing maximal intelligibility for a fixed rate constraint. This rate-distortion

performance can be realized because bits are allocated to the regions-of-interest

according to their relative importance. A similar approach is used for constraints
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(a) Rate-distortion plot for a sample indoor ASL se-
quence. Depending on the encoding bitrate, the in-
telligibility optimized coder achieves between a 5%
and 8% rate reduction over the foveated coding ap-
proach and a 10% reduction over the x264 encoder.
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(b) Rate-distortion plot for a sample outdoor ASL
sequence. Depending on the encoding bitrate, the in-
telligibility optimized coder achieves between a 19%
and 31% rate reduction over the foveated coding ap-
proach and between 26% and 42% reduction over the
x264 encoder.

Figure 7.2: Rate-distortion plots for x264 [2], a foveated video coder [4], and
the intelligibility optimized coder, which incorporates the CIM-
ASL. The left y-axis provides the score given by the CIM-ASL.
The right y-axis provides the subjective rating categories corre-
sponding to the CIM-ASL values. For a fixed level of intelligibil-
ity, rate reductions are larger for outdoor sequences.
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on the computational complexity of the encoder. This section introduces three

encoding options that allocate computational complexity to the regions-of-interest.

The intelligibility optimization is implemented as a modification to x264, al-

lowing for the use of all the encoding parameters available to x264, the selec-

tion of which provides a trade-off between encoding complexity and R-D perfor-

mance. Specifically, four encoding parameters available in the x264 are varied to

achieve different R-D-C operating points: sub-pixel motion estimation (subme);

reference frames (ref); partition size (part); and entropy coding and quantization

(trellis). The subme has 7 options corresponding to the number of iterations for

half-pel and quarter-pel motion estimation. Additionally, subme controls whether

the R-D cost is fully evaluated in the pixel domain or estimated in the transform

domain. A maximum of 16 reference frames can be specified using ref. Eight

different part options specify the partition size from 4× 4 and above for intra (I),

predictive (P) and bi-predictive (B) macroblocks [82]. The trellis parameter has

four options that include uniform quantization with and without context adaptive

arithmetic coding (CABAC) (options 1 and 0); and two schemes that use CABAC

and Djikstra’s algorithm for finding the quantization for a block of DCT coefficient

such that the overall R-D cost is reduced (options 3 and 4). A vector of parameter

options is defined as parameter settings. An example of a parameter setting is

(subme=0, ref = 1, part=1, trellis=0), which has the lowest computational

complexity. In this section, the average encoding time is used as a measure of

complexity.

Three novel encoding parameters are added to the x264 encoder that allow

the encoding complexity to vary on a per-block basis, depending on whether the

block belongs to ROI or not. In H.264/AVC, as many as 12-15 different partitions
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are available for a given macroblock (cf., Chapter 6). The first ROI complexity

parameter, nonROI-part, restricts the partitions used by the encoder for the back-

ground blocks. Since distortions in background macroblocks do not contribute to

the CIM-ASL, background macroblocks can be encoded with very little rate (and

consequently, very high distortion). Motivated by this, the encoder is modified to

have two sets of available partition types, one for the ROI blocks and other for

the non-ROI blocks. For ease of integration into the pre-existing encoder struc-

tures, the nonROI-part has the same 8 options as part. This allows the search for

partitions in background macroblocks to be limited to only the coarsest partitions

while still enabling the finer partitions for the relevant blocks.

The second parameter, ROI-subme, has the same 7 options as the subme param-

eter and is applied to the ROI, while the subme option is applied to the non-ROI. In

addition to varying the complexity of sub-pixel motion estimation, the subme also

varies the accuracy and complexity for R-D cost computation. The highest subme

option computes the actual R-D cost by encoding and decoding a macroblock,

while the lowest option only estimates the R-D cost from the coded macroblock.

The ROI-subme together with subme, allows the encoder to use the fast R-D cost

estimate on non-ROI blocks while computing the accurate R-D cost and using high

complexity sub-pixel motion estimation for the ROI blocks.

The third ROI parameter addresses the complexity of the motion search. In

motion-compensated video coding, motion search comprises a significant portion of

the total encoding time. To speed up the motion search, a ROI-based motion search

parameter ROI-MS is included that specifies a potentially different motion search

method for the ROI and non-ROI macroblocks. The ROI-MS uses the following

three fast motion search methods provided by x264 in the order of increasing
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complexity: diamond (DIA), hexagon (HEX) and uneven multihexagon search

(UMH) [2]. The ROI-MS uses only the DIA search for the background and has

the following 8 options (1, . . . , 8) corresponding to the motion search in (face,

hand/torso, background) regions: (DIA, DIA, DIA), (HEX, DIA, DIA), (UMH,

DIA, DIA), (HEX, HEX, DIA), (HEX, UMH, DIA), (UMH, HEX, DIA), (UMH,

UMH, DIA), and (UMH, UMH, UMH).

For each of the encoding parameters, higher options often corresponds to higher

complexity. For example, a value of part = 8 is the most complex and enables the

encoder to search over of all possible macroblock partitions. Conversely, a value of

part = 1 restricts the search to only the coarsest partitions but offers the lowest

complexity. The lower complexity options can increase the speed of the encoder

but can can result in higher distortions at fixed bitrates.

7.5 Performance of the ROI-based Complexity Allocation

Parameters

Each of the three additional ROI complexity parameters is evaluated explicitly in

terms of its affect on the R-D-C performance. Both the standard implementation

of the x264 encoder and the intelligibility optimized encoder serve as performance

benchmarks. In each of these benchmark cases, 8 ASL test videos are encoded at

8 fixed bitrates, ranging from 5 to 75 kbps, using the highest complexity option

for each of the 4 parameters described in Section 7.4, without any of the ROI

complexity modes enabled. For each fixed bitrate, the CIM-ASL and the encoding

time are averaged over the set of 8 test videos.
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Using the highest complexity parameter options guarantees that the R-D per-

formance will be optimal, at the expense of average encoding time. The intelligibil-

ity optimized encoder demonstrates improved performance over the x264 encoder

in terms of both R-D and distortion-complexity (D-C). For the same level of in-

telligibility, the intelligibility optimized encoder achieves a reduction in rate from

the x264 encoder between 10% and 28% and a reduction in encoding time between

15% and 25%, depending on the encoding bitrate.

To achieve the same level of intelligibility, x264 must operate at a higher bitrate,

because it allocates rate to the non-ROI and the ROI indiscriminately, whereas

the ROI encoder allocates rate almost entirely to the ROI. The complexity gains

provided by using the intelligibility optimized encoder can be attributed to high

distortion in the non-ROI. When using the CIM-ASL for computing R-D cost,

distortions in the non-ROI do not contribute to the score. As a result, the encoder

is making encoding decisions that minimize the bitrate in the non-ROI. By design,

the x264 encoder (and, consequently, the intelligibility optimized encoder), applies

several heuristics to quickly encode a macroblock at very low rates, selecting only

coarse macroblock partitions or skip modes, in which the co-located macroblock

in the previous frame is copied without performing a full motion search.

Each of the three proposed ROI-based complexity allocation parameters are

evaluated independently in terms of their impact on the R-D-C performance of

the intelligibility optimized encoder. For each test case, the encoding parameter

settings are chosen such that the ROI is encoded with the highest complexity op-

tions and the non-ROI is encoded with the lowest complexity option. Specifically,

the three test cases are: ROI-subme = 6, subme = 0; ROI-MS = 7 (UMH for ROI,

DIA for non-ROI); and nonROI-part = 8, part = 1. The other x264 parameters
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described in Section 7.4 are all set to their highest complexity.

As illustrated in Figure 7.3(a), applying any of the ROI complexity options

results in a negligible effect on the R-D performance. Each of the three cases

performs nearly identical to the intelligibility optimized encoder when using the

highest complexity settings. Figure 7.3(b) illustrates the average complexity gains

achieved by the ROI complexity options. The ROI-subme and ROI-MS options

provide similar speed improvements of approximately 16%. In each of these test

cases, the complexity is reduced because of the integer-pixel motion estimation

(subme) and coarse motion search (ROI-MS) performed on the non-ROI. Some-

what surprisingly, the nonROI-part yields no speed improvement. Because x264

efficiently eliminates many of the candidate partition sizes, further restricting the

possible partition size available for non-ROI blocks does not significantly reduce

the complexity of the system.

7.6 Joint Rate-Distortion-Complexity Optimization using

DPSPA and the CIM-ASL

The H.264/AVC coding standard only specifies the operation of the decoder, leav-

ing virtually infinite flexibility in the operation of the encoder. The set of encoding

parameters discussed in Section 7.4 made available to the encoder determine the

achievable bitrate, distortion, and complexity. Ideally, a video encoder will select

the parameter setting which results in a compressed video that meets the target

rate and complexity constraints while minimizing the distortion, i.e. operates on

the convex hull of the R-D-C surface. To find the set of R-D-C convex hull param-

eter settings, an exhaustive search is required over all parameter settings. For the
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Figure 7.3: The R-D-C space for 5 different encoding scenarios. The x264
encoder and the intelligibility optimized encoder, each running
with the highest complexity settings, provide benchmark perfor-
mance levels. The three ROI parameters are compared against
the benchmarks.
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parameter settings defined here, an exhaustive search requires 1,605,632 encodings

per video per bitrate (7 × 16 × 8 × 4 × 8 × 7 × 8). Because it is impractical to

perform an exhaustive search of this R-D-C space, fast methods for choosing the

appropriate set of encoding parameters must be employed.

The dominant parameter setting pruning algorithm (DPSPA) [82] is applied

to determine close to optimal parameter settings without performing a full search.

DPSPA is a fast offline algorithm that uses significantly fewer encodings compared

to an exhaustive search to estimate the D-C convex hull. For a fixed bitrate,

DPSPA provides a collection of parameter settings which correspond to operat-

ing points lying approximately on the D-C convex hull, as illustrated in Figure

7.4. These points are nearly optimal in terms of their D-C performance; for a

fixed complexity constraint, the resulting distortion is minimized. Applying the

algorithm over a range of target bitrates approximates the full R-D-C convex hull.

Given a target bitrate and complexity constraint, the optimal parameter setting

can be chosen immediately, effectively creating a lookup table which provides the

appropriate parameter setting for each target rate and complexity.

Three combinations of training and test sets are created from a collection of

8 indoor ASL videos, filmed on a static background, and 8 outdoor ASL videos,

filmed on a busy street. The segmentation into ROI and non-ROI is performed

offline for each video. The three cases correspond to training and testing on only

the indoor videos, only the outdoor videos, and on both the indoor and outdoor

videos. The DPSPA algorithm is applied to a set of four training ASL videos and

four test ASL videos each having 176 × 144 frame resolution, 200 frames and a

frame rate of 15 fps. These experiments are conducted on a Windows XP PC

having a 2.01 GHz AMD processor and on an HTC TyTN II cell phone having a
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Figure 7.4: CIM-ASL vs. encoding time (lower y-axis) and the corresponding
encoding frame rate (upper y-axis) for the outdoor ASL training
set at 30 kbps, running on the HTC TyTN II cell phone. DPSPA
parameter settings obtained on either the PC or the cell phone
have similar performance on the cell phone.

400 MHz Qualcomm MSM7200 ARMv6 processor.

The x264 default parameter setting is the vector (subme = 5, ref = 1, part =

(P8× 8,B8× 8, I8× 8,I4× 4), trellis= 1). This parameter vector corresponds to

high complexity sub-pixel motion estimation; use of larger number of macroblock

partitions; one reference frame; and the use of the context adaptive arithmetic

coder (CABAC) with uniform quantization. The default settings do not use any

of the region-based complexity optimization options.

The DPSPA algorithm is executed for 15, 30 and 60 kbps. The DPSPA pa-

rameter settings are applied to the test set of ASL videos to obtain the average

encoding speed improvement and change in intelligibility of DPSPA parameter

setting over the x264 default parameter setting. Let CIM(p) and C(p) correspond

to the intelligibility distortion and encoding time of a parameter setting p. The
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change in intelligibility is defined as ∆CIM = CIM(default) − CIM(DPSPA)

and speed gain = (C(default)−C(DPSPA))
C(default)

× 100.

As demonstrated in Tables 7.1 and 7.2, the DPSPA parameter settings provide

average speed improvements of approximately 45% on the PC and 52% on the

cell phone with little decrease in intelligibility. A difference of approximately 0.2

corresponds to a statistical change in subjective intelligibility score (cf. Figure

7.2). Therefore, the average decreases in intelligibility shown in Tables 7.1 and 7.2

will not significantly reduce the perceived intelligibility.

Tables 7.1 and 7.2 demonstrate that for both the PC and cell phone encoding

scenarios, the largest speed increase is obtained on the outdoor test videos. Be-

cause these videos were filmed on a busy street, the level of background activity

is significantly high. The x264 encoder must spend computational resources en-

coding these non-ROI, whereas the intelligibility optimized encoder can use very

coarse, low-complexity parameter options. The overall speed improvement of the

intelligibility optimized encoder depends on the relative level of activity in the

non-ROI.

Tables 7.1 and 7.2 compare the performance against the x264 default param-

eter settings, which were chosen heuristically by its developers to provide good

R-D performance at a reasonable encoding speed. This default parameter set-

ting, applied to the intelligibility optimized encoder, is denoted the ROI default

parameter setting. The ROI default parameter setting results in an overall D-C

performance that lies on the DPSPA points, as illustrated in Figure 7.4. While

the ROI default parameter setting performs better than some encoder parameter

settings for the corresponding encoding speed, it is not fast enough for real-time

performance. DPSPA provides points which allow the encoder to run at or above
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Table 7.1: CIM-ASL difference (∆ CIM-ASL) and speed gain of DPSPA pa-
rameter setting over the x264 default parameter setting on a 2.01
GHz PC for different pairs of training and test videos. Negative
value for ∆ CIM-ASL indicates a lower intelligibility for DPSPA.

Bitrate Indoor Outdoor Indoor &

Outdoor

(kbps) ∆ CIM-ASL speed ∆ CIM-ASL speed ∆ CIM-ASL speed

gain gain gain

15 ≈0 31.2% -0.03 43% 0.01 40.8%

30 0.05 41.3% -0.05 48.2% 0.01 45.8%

60 0.03 45% -0.07 54.4% -0.02 50.7%

Average 0.03 39.2% -0.05 48.5% ≈0 45.8%

10fps, the nominal limit for full ASL conversations. [39]

DPSPA provides a collection of parameter settings which are appropriate for

the specific test device on which it is run. While DPSPA can be executed on the

cell phone platform, it is useful to investigate if the parameter settings generated

on the PC can still approximate the D-C convex hull on the cell phone. The

set of encoding parameters computed by DPSPA when run on the PC is applied

to the test videos encoded on the cell phone. Despite differences in the exact

parameter settings chosen, the PC-generated settings perform very close to the

cell phone-generated settings. Figure 7.4 illustrates the D-C curves for the outdoor

test videos at 30 kbps, comparing both collections of parameter settings. In this

case, the testing required for DPSPA, and the resulting convex hull lookup table,

can be generated on the PC and simply ported to the phone without any loss in

performance.
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Table 7.2: CIM-ASL difference (∆ CIM-ASL) and speed gain of DPSPA pa-
rameter setting over the x264 default parameter setting on a HTC
TyTN II cell phone for different pairs of training and test videos.

Bitrate Indoor Outdoor Indoor &

Outdoor

(kbps) ∆ CIM-ASL speed ∆ CIM-ASL speed ∆ CIM-ASL speed

gain gain gain

15 ≈0 43.6% -0.01 49% 0.08 49.7%

30 ≈0 45.7% ≈0 55% 0.09 53.8%

60 ≈0 48% -0.01 62.1% 0.04 54.5%

Average ≈0 45.8% -0.01 55.4% 0.07 52.7%

On the PC, the DPSPA often picks all ROI-MS options, while on the cell phone

(HEX, UMH, DIA) is preferred over (UMH, HEX, DIA) and (UMH, DIA, DIA)

options. This shows that on a cell phone, better intelligibility-complexity trade-off

is obtained by using higher complexity UMH for the hand macroblocks instead of

the face macroblocks. Because the location of the face does not vary significantly

between frames, a fast motion search algorithm (HEX) is sufficient for identifying

the appropriate motion vectors. The signer’s hands movements are much wider

over the frame, and accurate motion vectors are identified using a higher complexity

motion search (UMH).

As parameter settings are generated from highest to lowest complexity by

DPSPA, the subme option (associated with the non-ROI) first decreases from its

highest to lowest option while the ROI-subme is retained at its highest option.

Therefore, DPSPA appropriately reduces encoding complexity by choosing subme

options that favor lower distortion of the ROI over the non-ROI, and lower com-
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plexity in the non-ROI versus the ROI.

The x264 default parameter setting is compared with the DPSPA parameter

setting having comparable CIM-ASL performance for the three bitrates on the cell

phone. Each of the DPSPA parameter settings allow the encoder to operate at or

above 10fps. The DPSPA parameter settings include trellis = 2 at 15 kbps while

using trellis = 1 and trellis = 0 for 30 kbps and 60 kbps. When trellis =

2, the encoder uses trellis quantization for the best R-D performance. At higher

bitrates, when the intelligibility is high, DPSPA selects CABAC without trellis

quantization (trellis = 1) and the less efficient CAVLC entropy coder (trellis

= 0). The x264 default parameter setting uses trellis = 1 at all bitrates. For

ROI-subme and ROI-MS, DPSPA picks integer pixel motion estimation and the use

of all DIA, which are both lower in complexity compared to the default options of

subme = 5 and HEX motion search, respectively.

7.7 Summary

This chapter demonstrated the rate-distortion-complexity performance of the intel-

ligibility optimized encoder. A functional relationship between λ and QP provides

rate-distortion performance (where distortion is measured as CIM-ASL) that sig-

nificantly outperforms a general purpose video coder and a foveated video coder.

The three ROI complexity allocation encoding parameters result in 16% speed im-

provement. Finally, the DPSPA effectively identifies optimal operating points in

the joint rate-distortion-compleixty space.
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CHAPTER 8

APPLYING THE CIM-ASL TO USER PREFERENCES IN THE

QUALITY-INTELLIGIBILITY TRADE-OFF

8.1 Introduction

The coder developed in Chapter 7 provides a fully closed-loop method for optimiz-

ing the CIM-ASL, yielding videos having maximal intelligibility given an encoding

constraint. The intelligibility optimized encoder achieves bitrate reductions by

heavily distorting the background video region, while maximizing the fidelity of

the signer. This is in contrast to the MSE optimized encoder described in Chapter

6, which nominally provides consistent levels of distortion across the entire frame

(aiming to optimize the aesthetic quality of the video), but is unable to produce

intelligible video at low bitrates. A subset of participants in the subjective exper-

iments described in Chapter 3 qualitatively reported distractions due to heavily

distorted backgrounds, even when they considered the videos to be intelligible.

Allowing the user to adjust the level of background distortion addresses this prob-

lem, but lowering the distortion in the background region necessarily increases the

distortion in the signer and can lead to an unintelligible video.

The quality optimized coder provides video that does not suffer from extremely

large background distortions but may not provide sufficiently intelligible video to

the user. The intelligibility optimized coder aims to provide the most intelligible

video, but yields potentially distracting distortions away from the signer. This

trade-off is denoted the quality-intelligibility trade-off. Ideally, the coder must

adapt to both the available resources (e.g., encoding bitrate) and to the user pref-

erences, in order to provide both intelligible video and a high quality of experience
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for the user (i.e., operate at the appropriate point on the quality-intelligibility

trade-off).

This chapter presents computational techniques to suggest optimal operating

points that can increase the aesthetic quality of the video while maintaining the in-

telligibility of the ASL communication. Fluent ASL users evaluate these potential

operating points in a paired comparison experiment. Section 8.2 describes how

the intelligibility optimized encoder is modified to account for user preferences,

providing a parameter that controls the degree to which intelligibility is empha-

sized over quality. This modification creates a method to maximize the CIM-ASL

subject to the user’s desired level of quality. The computational performance of

the modified coder suggests potential operating points in the quality-intelligibility

trade-off, which are discussed in Section 8.3. A paired comparison experiment is

conducted to rank the potential operating points and to identify user preferences

in the quality-intelligibility trade-off. A detailed description of the experimen-

tal methodology is given in Section 8.4. The experimental results, summarized

and discussed in Section 8.5, demonstrate that the optimal operating points vary

with use demographics, supporting the need for a user-specified trade-off between

intelligibility and quality.

8.2 Varying ROI Priority to Achieve a Quality-Intelligibility

Trade-off

The intelligibility optimized and quality optimized encoders represent two encod-

ing extremes, either allocating all the rate only to the signer or distributing the rate

evenly among every macroblock. When optimizing strictly for intelligibility, the
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rate allocated to the background is minimized independent of the resulting distor-

tion, creating severe compression artifacts in the background macroblocks. Quality

optimized video provides similar levels of distortion across the entire frame, elimi-

nating extreme distortions in the background. However, when optimizing strictly

for quality, distortions in the signer can lead to unintelligible video. These two

encoding extremes alone are incapable of accommodating the preferences of ASL

users and maintaining intelligible video.

The user-specified quality-intelligibility encoding trade-off parameter is denoted

αmin and specifies the minimum weight to be applied to all macroblocks in the

frame. Specifically, if the weight αk of any region (including the signer’s face,

hands, torso, or background) is less then αmin, then the weight αk is changed

and set equal to αmin. This provides a mechanism to increase the quality in the

background, while guaranteeing that the background distortion weight is never

higher than the distortion weights for the signer’s face, hands, or torso.

Modifying αmin controls the degree to which the regions of interest (ROIs)

are prioritized over the rest of the frame. A region is considered prioritized if

its corresponding distortion weight is larger than αmin. A prioritized region will

have lower distortion, on average, than the rest of the frame. For example, the

intelligibility optimized encoder corresponds to αmin = 0; the entire ROI (face,

hands, torso) is given priority over the background. When αmin = 0.1 = αT , the

distortions in the background and the torso are weighted equally, and only the

face and hands are prioritized because of their higher distortion weight. As αmin

increases, only the most important macroblocks are prioritized. At the extreme,

when αmin ≥ αF , all of the regions are weighted equally and the encoder behaves

as the quality optimized encoder.
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To illustrate, consider a sample ASL video, recorded in an outdoor setting

with a highly active background and encoded at 55 kbps with different values of

αmin. Five values for αmin are selected to emphasize different operating points and

are evaluated in the paired comparison experiment: αmin = 0 prioritizes the entire

ROI, αmin = 0.02 prioritizes the entire ROI and provides a nominal amount of rate

to the background, αmin = αT = 0.1 prioritizes only the signer’s face and hands,

αmin = αH = 0.5 prioritizes the signer’s face, and αmin = αF = 1.6 prioritizes no

regions and corresponds to the quality optimized encoder. Frames from this video

are presented in Figure 8.1. As αmin increases, the relative priority of the ROI

necessarily decreases and intelligibility decreases, as illustrated in Figures 8.1(b)

through 8.1(f). Decreasing ROI priority is reflected in a decrease in the CIM-ASL,

changing from 3.47 to 3.23. For the subjective intelligibility ratings associated with

these values, refer to Figure 8.2. Conversely, as αmin increases, PSNR increases

from 18.44 dB to 25.73 dB. As this example demonstrates, varying αmin can provide

a user with control over the level of background distortion while still prioritizing

the most important regions of the signer. The following section analyzes PSNR and

CIM-ASL over a range of encoding bitrates and αmin values, in order to suggest

appropriate operating points.

8.3 Characterizing the Quality-Intelligibility Trade-off

Across Multiple Operating Points

This section analyzes the rate-distortion performance for several fixed values of

αmin across varying bitrates and the relationship between PSNR and CIM-ASL

for varying αmin at fixed bitrates. The rate-distortion performance of the intelligi-
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(a) Original video frame (b) Prioritize all of the ROI. αmin =
0, PSNR = 18.44 dB, CIM = 3.47

(c) Prioritize all of the ROI
with nominal background dis-
tortion weight. αmin = 0.02,
PSNR = 21.74 dB, CIM = 3.44

(d) Prioritize only the face and
hands. αmin = 0.1, PSNR =
23.43 dB, CIM = 3.41

(e) Prioritize only the face. αmin =
0.5, PSNR = 25.21 dB, CIM = 3.32

(f) Quality optimized. αmin = 1.6,
PSNR = 25.73 dB, CIM = 3.23

Figure 8.1: Comparison of distortions for different levels of region-of-interest
(ROI) priority each at 55 kbps. The encoding option αmin spec-
ifies the minimum distortion weight to be applied to any region.
As αmin increases, the torso, hands, and face are allocated fewer
additional bits relative to the rest of the frame, causing a decrease
in intelligibility. Figure 8.2 specifies the relationship between the
CIM-ASL and the predicted subjective intelligibility ratings.
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bility optimized encoder and the quality optimized encoder are compared against

multiple values of αmin across bitrates ranging from 20 kbps to 100 kbps. Figure

8.2 compares PSNR and CIM-ASL for two different ASL videos: a video filmed in

a studio with a static background and a video filmed on a busy street with high

background activity. In each case, the intelligibility optimized encoder achieves

significant bitrate reductions at fixed levels of intelligibility over the quality opti-

mized encoder, demonstrated in Figures 8.2(a) and 8.2(b). The bitrate reductions

primarily depend on the level of activity in the background region: 10% to 13%

for the indoor video and 33% to 47% for the outdoor video.

Because the intelligibility optimized encoder allocates almost zero rate to the

background, the PSNR is dominated by the distortions in the background region.

As a result, increasing the bitrate for the intelligibility optimized coder yields a

negligible increase in PSNR, as demonstrated in Figures 8.2(c) and 8.2(d). Because

it is designed to minimize MSE, the quality optimized encoder achieves the highest

PSNR at fixed bitrates, with 4 dB to 10 dB increases in PSNR over the intelligibility

optimized encoder.

In addition to comparing the intelligibility optimized and quality optimized

encoders, Figure 8.2 also illustrates the effect of varying αmin. Setting αmin = 0.02

applies a nominal weight to the background distortion and results in substantial

increases in PSNR with only slight increases in CIM-ASL. Further increasing the

αmin results in increased PSNR at the expense of intelligibility. When αmin = 1.6,

the modified encoder performs nearly identical to the quality optimized encoder,

demonstrating that it effectively behaves as the quality optimized encoder at this

point.

The value of αmin controls the priority given to the ROI coder. When αmin = 0,
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(c) Rate vs PSNR for an indoor ASL video.
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(d) Rate vs PSNR for an outdoor ASL
video.

Figure 8.2: Rate-distortion plots for the quality optimized coder, the intel-
ligibility optimized encoder, and several values of αmin. For (a)
and (b), the left y-axis provides the objective intelligibility dis-
tortion measure, CIM-ASL, and the right y-axis provides the
subjective rating categories corresponding to the objective dis-
tortion values. For (c) and (d), the y-axis provides PSNR. For a
fixed level of intelligibility, rate reductions increase for sequences
with increasing background activity. When αmin = 0.02, PSNR
increases by several dB and CIM-ASL decreases negligibly. When
αmin = 1.6, all the region distortions are weighted equally and
the encoder operates identical to the quality optimized encoder.
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(b) PSNR vs CIM-ASL for an outdoor video having an
active background.

Figure 8.3: PSNR versus CIM-ASL for videos with different levels of back-
ground activity. Each solid line corresponds to a fixed bitrate
and varying αmin. The bitrates vary between 25 kbps and 100
kbps in increments of 5 kbps. Depending on the amount of ac-
tivity in the background, PSNR can be increased by several dB
without a significant decrease in CIM-ASL, when compared to
the intelligibility optimized encoder.
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the encoder is optimizing only for intelligibility. When αmin = 1.6, the encoder

is optimizing only for quality. To explicitly evaluate the trade-off between PSNR

and intelligibility afforded by αmin, the indoor and outdoor videos are encoded at

bitrates ranging from 25 to 100 kbps in increments of 5 kbps. αmin is varied from

0 to 0.1 in increments of 0.01 and from 0.1 to 1.6 in steps of 0.1.

Systematically varying αmin yields the convex combination of the quality op-

timized and intelligibility optimized encoders, as illustrated in Figure 8.3. Each

curve in the figure corresponds to a fixed encoding bitrate and each point in the

curve corresponds to a particular value of αmin. As αmin increases from 0 to 1.6,

the R-D performance of the encoder sweeps the space between the two encoding

extremes. When encoding a video for a fixed target bitrate, the value of αmin

determines the operating point in the trade-off between intelligibility and quality.

The relationship between CIM-ASL and PSNR, as αmin varies, depends on the

amount of activity in the background region. Decreases in CIM-ASL of approxi-

mately 0.2 correspond to a difference of 1 point on a 5 point subjective intelligibility

scale. A decrease in CIM-ASL of less than 0.02, i.e., 10% of 0.2, can be consid-

ered negligible. When compared to the intelligibility optimized encoder, selecting

αmin = 0.5 increases PSNR in the indoor video between 4.5 dB and 11 dB, depend-

ing on the encoding bitrate, with negligible decrease in CIM-ASL, as illustrated

in Figure 8.3(a). For the high background activity video in Figure 8.3(b), only

a nominal value of αmin = 0.02 can be selected before the increase in CIM-ASL

becomes non-negligible. At this point, PSNR is increased between 1.3 dB and 4.7

dB, depending on the encoding bitrate.

The slope of the PSNR versus CIM-ASL curves is steepest when 0.5 < αmin <

1.6. In this region, when compared to the quality optimized encoder, CIM-ASL

100



increases between 0.03 and 0.08 for a corresponding decrease in PSNR of only

between 0.5 dB and 0.6 dB. The signer’s face is relatively small compared to the

rest of the frame and distortions in the signer’s face have the largest impact on

CIM-ASL. Prioritizing the signer’s face decreases distortions in the corresponding

macroblocks and increases intelligibility without creating substantial distortions in

the other regions. In the absence of a specific user preference, the coder should

choose quality-intelligibility operating points in this high slope region. Because,

it is possible to maximize both PSNR and intelligibility for indoor videos by only

prioritizing the signer’s face, the paired comparison experiment described in the

following sections evaluate true user preferences for only outdoor videos.

8.4 Paired Comparison Experiment for Identifying User

Preferences in the Quality-Intelligibility Trade-off

The quality-intelligibility coder described in Section 8.2 and the choice of αmin con-

trols the trade-off between optimizing for intelligibility and optimizing for quality.

A paired comparison experiment is conducted to determine subjective preferences

in this trade-off. The primary goal is to identify preferred operating points, if they

exist, and to determine under what conditions a user likely to desire a particular

operating points.

8.4.1 Stimuli

Reference sign language stories told by a fluent signer at her natural signing pace

were filmed at an outdoor location on a busy street having a significant amount of

101



background activity. Videos were recorded at a resolution of 1280×720 pixels and

a frame rate of 60 progressive frames per second. For this experiment, the videos

are cropped and downsampled in order to match the expected usage conditions,

namely a mobile device having a display resolution of 320×240 pixels [19]. This

reduced resolution is also required for the simultaneous presentation used in the

paired comparison methodology [42]. The videos are temporally subsampled to

15 frames per second, which is above the nominal frame rate required for ASL

communication [39].

Three reference stories are selected for the experiment and encoded at one of

three bitrates: 20 kbps, 45 kbps, and 80kbps. Each story is encoded at a single

bitrate using five different values of αmin: 0, 0.02, 0.1, 0.5, and 1.6, corresponding

to the five ROI prioritization scenarios illustrated in Figure 8.1. This combination

of bitrates and αmin values are selected to yield videos that would be rated as

difficult to understand (20 kbps), from neutral to easy (45 kbps), and from easy

to very easy (80 kbps), as illustrated in Figure 8.4.

8.4.2 Method

The subjective experiment uses a paired comparison methodology with simultane-

ous presentation, as recommended by ITU-T [42]. Each presentation consists of

a pair of coded ASL videos displayed synchronously and side-by-side on a single

screen. After watching the video pair, the participant is asked to “please select the

video you would prefer to see on a cell phone video call.” The collection of video

pairs consist of videos generated from the same reference story encoded using two

different values of αmin.
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Figure 8.4: PSNR vs CIM-ASL for only the 3 videos and 5 values of αmin

selected for the paired comparison experiment. The left y-axis
provides the CIM-ASL values and the right y-axis provides the
subjective rating categories corresponding to the CIM-ASL val-
ues.

At each bitrate, the 5 test levels of αmin yield 10 pair-wise combinations. The 10

pairs are presented to the participant twice, swapping the left/right display order.

None of the test pairs contain videos at different bitrates, assuming that videos at

higher bitrates will always be preferred over videos at lower bitrates. This results in

20 paired comparisons per bitrate and 60 comparisons per participant. Following 2

practice examples, the 60 pairs are presented in random order. At the completion

of the paired comparisons, participants provide demographic data regarding their

level of experience with ASL, their use of video-based communication tools such as

video relay services and video phones, and their use of text-based communication

tools such as Internet chat and text messaging.

103



8.4.3 Implementation

Because of the difficulties in recruiting participants who are fluent in ASL, two ver-

sions of the experiment were made available: an on-site experiment in a controlled

environment at Cornell University and a web-based experiment, in which ASL

users in any location could participate. Despite the limitations of web-based per-

ceptual experiments, such as uncontrolled display environments, varying display

technologies, and other real-world variability, web-based experiments drastically

increase the observer pool and typically provide results that are consistent with

lab-based experiments [9, 52].

To guarantee synchronous playback of the video pairs, the on-site experiment

was implemented in Matlab, using the Psychophysics Toolbox [11, 44, 59], which

offers extremely precise control over the video playback timing. For the web-

based experiment, an individual video file was created for each pair by decoding

the compressed videos, horizontally concatenating the decoded frames, and re-

encoding the side-by-side video at a sufficiently high bitrate such that no new

compression artifacts were introduced. The video pairs in both the on-site and web-

based experiments were identical, though the web-based version offered a shortened

experiment, wherein participants only viewed each pair once, without evaluating

the left/right swapped pair. Pairs used in the shortened experiment were selected

such that every 2 participants evaluated exactly the same set of pairs as a single

participant in the full-length experiment.
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8.4.4 Data Processing

The paired comparison methodology acquires data to estimate the probability that

stimulus i is preferred over stimulus j. The Bradley-Terry model provides a frame-

work for mapping the pair-wise probability estimates of preference to scale values

for each stimulus [10]. The scale values rank the collection of stimuli, determining

the relative preference of each value of αmin. Because the stimulus pairs in the ex-

periment never contain videos at two different bitrates, scale values are generated

independently at each of the three tested bitrates.

8.5 Results and Discussion

A total of 12 ASL users participated in this experiment: 3 on-site participants

and 9 web-based participants. Of the 9 web-based participants, 4 opted for the

shortened version, yielding a total of 600 comparisons (200 at each bitrate).

Applying the Bradley-Terry model [10], scale values for each tested αmin are

computed at each bitrate. Following the methodology discussed in Ref.38, a χ2
t−1

hypothesis test with t − 1 degrees of freedom (t = 5 levels of αmin) determines

whether the scale values are statistically different from a uniform distribution.

If the null hypothesis holds, all values of αmin are equally preferable. If the null

hypothesis is rejected, at least one αmin is preferred over the others. The computed

scale values, with 95% confidence intervals, are provided in Figure 8.5. Table 8.1

provides the results of the hypothesis tests for uniformity.

At 80 kbps, the scale values demonstrate a preference when αmin ≥ 0.1, as

plotted in Figure 8.5(c). Each of the scale values for αmin ≥ 0.1 have overlapping

105



0 0.02 0.1 0.5 1.6
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Test α
min

 Values

S
ca

le

(a) 20 kbps.
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(b) 45 kbps.
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(c) 80 kbps.

Figure 8.5: Scale values generated from the complete set of paired compari-
son data using the Bradley-Terry model. Error bars indicate the
95% confidence intervals.

Table 8.1: Table of p-values for χ2
4 hypothesis test on the uniformity of the

scale values [38], for different groups of participants. The null hy-
pothesis indicates that the scale values are not statistically differ-
ent from a uniform distribution, i.e., each αmin is equally prefer-
able. Entries in bold indicate that the null is rejected at 95%
confidence (p < 0.05). The “ASL FL” and “ASL SL” groups
correspond to participants for whom ASL is their first language
(FL) or second language (SL). The “Heavy Video Use” and “Light
Video Use” groups are divided according to their level of experi-
ence with video-based communication technologies.

Bitrate Complete Set ASL FL ASL SL
Heavy

Video Use

Light

Video Use

20 kbps 0.370 0.097 0.084 1.7e-4 0.003

45 kbps 0.017 0.261 0.022 0.003 3.9e-4

80 kbps 0 8.9e-14 4.0e-8 0 0.003
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confidence intervals and can be considered equally preferable. At αmin = 0.1,

because of the relatively high encoding bitrate, the quality-intelligibility optimized

coder produces video predicted to be very easy to understand, as seen in Figure

8.4. In this case, the smaller values of αmin = 0 and αmin = 0.02 significantly

reduce the overall quality (PSNR) while providing only negligible improvements

in intelligibility (CIM). This saturation effect implies that when coding an ASL

video, when the bitrate is sufficiently high for producing video considered very

easy to understand, any additional rate must be allocated to maximize a quality

constraint.

At 45 kbps, αmin = 0.1 and αmin = 0.5 are preferred over αmin = 1.6. Referring

to Figure 8.4, these two values of αmin correspond to the points on the PSNR-CIM

curve having the largest slope. These points are preferred because they provide

the largest increase in the CIM for the corresponding decrease in PSNR.

At 20 kbps, the scale values are not statistically different from a uniform dis-

tribution, indicated by the hypothesis test results in Table 8.1. As illustrated

in Figure 8.4, the PSNR-CIM curve at this bitrate is relatively flat; the relative

change in the CIM is small compared to the relative change in PSNR, for vary-

ing αmin. One might expect a preference for the highest quality video, when the

change in CIM is small. However, the lowest quality video (αmin = 0) is still

equally preferable to the highest quality video (αmin = 1.6).

A uniform distribution of scale values can be attributed to one of two statistical

models. In the first model, each individual observer has no preference and is

arbitrarily selecting one of the two videos in a pair. This case implies that every

value of αmin yields the same perceptual response and no value is preferred over

another. In this case, the selection of an operating point in the quality-intelligibility
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(b) 45 kbps.
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(c) 80 kbps.

Figure 8.6: Scale values generated from paired comparison data of groups of
participants who use both video relay services and video phone
technology (denoted “heavy video use”) and those who do not
(denoted “light video use”). Scale values are generated accord-
ing to the Bradley-Terry model. Error bars indicate the 95%
confidence intervals.

trade-off is arbitrary, since all points are truly equal. In the second model, a single

observer (or group of observers) demonstrates a preference for a particular αmin,

while a sampling of the entire population of observers exhibits no preference. In

this case, each value of αmin is preferred by a specific individual (or group) and

that preference varies across individuals (or groups), supporting the need for a

user-specified operating point in the quality-intelligibility trade-off.

An analysis of the scale values for different groups of participants provides

evidence for the second model. In particular, groups divided according to their

use of video-based communication technologies have opposite (and non-uniform)

preference rankings. Because the collection of data is sufficiently small, the relevant

groups have been identified manually, though one could use a recursive procedure

for identifying groups having homogeneous preferences [75]. The 7 participants

who reported using video relay services and video phone technology are denoted

the “heavy video use” group. The remaining 5 participants are denoted the “light

video use” group, because some individuals in this group use Internet chat services,
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Table 8.2: Table of p-values for χ2
4 hypothesis test on differences between

groups [38]. The null hypothesis indicates that the scale values
from each group are statistically equivalent. Entries in bold indi-
cate that the null is rejected at 95% confidence (p < 0.05), i.e.,
the groups are statistically different from each other. The “ASL
FL” vs “ASL SL” column compares groups that correspond to
participants for whom ASL is their first language (FL) or second
language (SL). The “Heavy Video Use” vs “Light Video Use” col-
umn compares groups that are divided according to their level of
experience with video-based communication technologies.

Bitrate ASL FL vs ASL SL Heavy Video Use vs Light Video Use

20 kbps 0.019 7.1e-7

45 kbps 0.321 5.4e-5

80 kbps 0.186 2.9e-7

such as Skype, which offer video communication as a secondary feature. At every

bitrate, the scale values for each of the two groups are statistically different from

uniform, as shown in Table 8.1. Furthermore, using the methods in Ref. 38, a χ2
4

hypothesis test identifies a significant difference between these two groups at every

bitrate, i.e., these two groups have statistically different preferences. The results

of this hypothesis test, with p-values, are provided in Table 8.2.

At each tested bitrate, the “light video use” group has a significantly higher

preference for αmin = 0 than the “heavy video use” group. Furthermore, at 25

kbps and 50 kbps, the “light video use” group prefers αmin = 0 over αmin = 1.6,

as shown in Figure 8.6. Conversely, the “heavy video use” group demonstrates a

preference for αmin = 1.6, where videos are coded for quality. This preference is

most evident at 80 kbps, where the values of αmin ≥ 0.1 are preferred unanimously

over αmin = 0 and αmin = 0.02, causing the large difference in scale values in
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(a) 20 kbps.
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(b) 45 kbps.
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(c) 80 kbps.

Figure 8.7: Scale values generated from paired comparison data of partici-
pants whose first language is ASL or whose first language is not
ASL. Scale values are generated from paired comparison data ac-
cording to the Bradley-Terry model. Error bars indicate the 95%
confidence intervals.

Figure 8.6(c).

Variations in the preferences of the “heavy video use” and “light video use”

groups may be attributable to differences in their prior experience of digital video.

Video-based communication technologies typically use a quality criteria when cod-

ing video (e.g., they maximize PSNR). In this case, the coding distortions are

generally distributed evenly across space. The strictly intelligibility optimized

coder (αmin = 0) produces video in which the signer and the background have

significantly different distortion levels. This disparity in the spatial distribution of

distortion substantially differs from a quality optimized coder, and, consequently,

differs from the prior experiences of the “heavy video use” group, resulting in a

preference for the coded ASL video that is more consistent with their expectations.

An alternative grouping of ASL users divides the collection based on the level

of experience with ASL. The first group consists of those whose first or primary

language is ASL, which commonly includes deaf persons or hearing children of

deaf adults. The second group consists of those who have learned ASL as a second
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language. The differences between these groups are only significant at 20 kbps

and not to the same degree of confidence as the differences for the “video use”

groups. The p-values are summarized in Table 8.2. Furthermore, the scale values

for each of these groups are consistent with those computed from the complete data

set, as illustrated in Figure 8.7. Other partitions of the participants yield similar

conclusions; a user’s experience with video-based communication serves as the most

meaningful predictor of the preferred operating point in the quality-intelligibility

trade-off.

8.6 Summary

This chapter presented a modification of the intelligibility optimized coder that

provides an optional user-controlled trade-off between optimizing intelligibility, as

computed by CIM-ASL, and optimizing quality, as computed by PSNR. Even in

videos having highly active backgrounds, PSNR can be increased by at least 4dB

without sacrificing intelligibility. The modified coder suggests potential operation

points that are studied in a a paired comparison experiment, conducted to evaluate

specific user preferences for coded ASL video. High activity outdoor videos at

3 bitrates were coded using 5 test levels for αmin. At 80 kbps, users preferred

videos coded according to the quality criteria, because the intelligibility of these

videos was sufficiently high. At the lower tested bitrates of 45 kbps and 20 kbps,

the preferences varied with user demographics. Participants having significant

experience using video-based communication technologies preferred video coded

according to the quality criteria while those with little experience preferred video

coded according to the intelligibility criteria. The existence of these two classes of

individuals confirms the need for a user-centric encoding option, because the most
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desirable quality-intelligibility operating points vary across individuals and across

bitrates.
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CHAPTER 9

CONCLUSION

As network bandwidths continue to increase, digital video technology is becoming

commonplace. Streaming video services make digital video content available on

personal computers and, more recently, mobile devices. Video conferencing tech-

nologies provide more personal communication in both corporate environments and

in the home. The increasing availability and use of digital video poses two fun-

damental research questions. First, how can we most efficiently compress digital

video for transport over a variety of networks having different resource constraints?

Second, what are the proper computational criteria for evaluating the quality of

the compressed digital video being viewed by the end user? The answer to both

of these questions varies significantly across applications. Compression algorithms

designed for digital cinema may not be appropriate for video conferencing appli-

cations. The definition of quality varies heavily depending on the expectations of

the end user.

This dissertation has addressed each of these questions in the context of a real-

time videoconferencing system for American Sign Language (ASL) video, which

operates on mobile devices in a cellular network. As a communication tool, com-

pressed ASL video must be evaluated according to the intelligibility of the conver-

sation, not according to conventional definitions of video quality. A computational

model of the intelligibility of ASL video was developed and shown to be accurate

with respect to true intelligibility ratings as provided by human subjects. The com-

putational model was applied in the development of video compression techniques

that are optimized for ASL video, yielding a fully closed-loop encoding system for

ASL video.
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Guided by linguistic principles and human perception of ASL, the full-reference

computational model of intelligibility for ASL (CIM-ASL) provides a suitable cri-

teria for evaluating compressed ASL video. The CIM-ASL measures distortions

only in regions relevant for ASL communication, using spatial and temporal pool-

ing mechanisms that vary the contribution of distortions according to their relative

impact on the intelligibility of the compressed video. The model is trained and

evaluated using ground truth experimental data, collected in three separate percep-

tual studies. The CIM-ASL provides accurate estimates of subjective intelligibility

and demonstrates statistically significant improvements over computational models

traditionally used to estimate video quality.

The CIM-ASL was incorporated into an H.264/AVC compliant video coding

framework, yielding a closed-loop encoding system optimized explicitly for ASL

intelligibility. This intelligibility optimized coder significantly increases compres-

sion efficiency, yielding bitrate reductions between 10% and 42% without reducing

intelligibility, when compared to a general purpose H.264/AVC encoder. Further-

more, the structure of ASL, consisting of multiple regions carrying varying amount

of information, facilitates reduced complexity encoding modes that allocate com-

putational resources according to the regions in the video deemed important by

the CIM-ASL. These region-based computation allocation techniques yield a 16%

improvement in the overall encoding speed, with a negligible effect on intelligibility.

The purpose of the intelligibility optimized encoder is to generate video that

is suitable for real-time ASL communication. Ultimately, the preferences of ASL

users determine the success of the intelligibility optimized coder. In order to ac-

commodate user preferences, a new encoding methodology was developed, which

provides a user-centric mechanism for varying between the intelligibility optimized
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coder and a general purpose video coder. This user-centric encoder was evaluated

in a perceptual experiment, which demonstrated that the user preferences vary de-

pending on the demographics of the participants and that a significant proportion

of users prefer the intelligibility optimized coder. This study also revealed that the

strongest predictor of a user’s preference is her prior experience with video-based

communication; heavy video users demonstrate a slight preference for the general

purpose video coder.

Future Directions

While this dissertation has primarily been in the context of ASL video, the method-

ology is applicable and extensible to any video content. Specifically, this work

demonstrated that intelligibility can be measured by computing errors in the re-

gions containing linguistically important information places. One of the funda-

mental results was the flexibility in choosing exactly how the error is computed.

For example, the face, hands, and torso of the signer are known to be important,

but computing any one of three error measures in these regions (MSE, SSIM, or

NICE) yielded an accurate estimation of intelligibility. To state this colloquially,

“it’s not what you measure, it’s where you measure it.” For more general video

content, it may be possible to identify regions of visual attention (or bands of spa-

tial frequency) that carry the most important information and apply simple error

measures in these important regions.

By identifying the existence of distinct demographic groups with opposite pref-

erences, this work argues for a novel, user-centric methodology in video processing.

Regardless of the specific context, the future of digital video compression and qual-

ity assessment lies in the development of algorithms that appropriately consider
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the end user. Computational models of video quality must consider the context of

the application, i.e., why does the user want to watch this video and what types

of degradations are they willing (or not willing) to tolerate. Even within the same

application, different users will have different expectations of quality, based on

their own experiences and perception. Understanding this difference is crucial in

the design of advanced compression techniques. Moving forward, it will no longer

be sufficient to provide a one-size-fits-all encoding algorithm. As my research has

demonstrated, the criteria for which the video is compressed must be suitable to

the application. Furthermore, the expectations of the end users will heavily bias

their perception of video quality. Taking a user-centric approach to video encoding

requires one to identify variations across users and to determine how those vari-

ations can be efficiently accommodated by the encoding algorithm. Providing a

user with the right video, suitable for their personal preferences, will ultimately

lead to a high quality-of-experience for everyone.
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APPENDIX A

REAL-TIME FACE AND HAND DETECTION ON A MOBILE

DEVICE

A.1 Introduction

The increase in processing power on modern mobile devices allows for the im-

plementation of more advanced image and video processing algorithms, such as

real-time videoconferencing. Rapidly increasing cellular network bandwidth also

facilitates the transmission of video across the cellular networks. Two-way video

communication in this setting requires real-time processing on a cellular device.

While cellular devices are more powerful than in the past, they still offer little com-

putational power when compared to modern desktop computers. Slow processors

constrain the complexity of the algorithms that can be implemented in real-time

on a mobile device. Furthermore, the bandwidths available on a cellular network

are significantly smaller than those available on a wired network. Consequently,

advanced compression techniques are required to generate video sequences that are

useful to the end users.

In traditional videoconferencing, enhancing the quality of the face regions is

an effective method of improving the overall perceptual quality of the video [14,

29, 49]. Videoconferencing systems can also be applied to the specific task of

transmitting American Sign Language (ASL) video. Such systems allow members

of the Deaf community to communicate in their native language. Within this

context, the information itself is contained in the signer’s facial expressions and

hand gestures. Encoding the face and hands with higher fidelity is essential to

preserving the information in the sign language conversation [4, 24]. In both of
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these cases, identifying and encoding only the important portions of the video can

result in a significant bit rate savings.

Many algorithms have been proposed to identify faces in images or to identify

and track hands in a video sequence (see [91], [56] for surveys). Unfortunately, a

large number of these algorithms are not appropriate for low-complexity devices.

This work aims to present and analyze low complexity face and hand detection

algorithms that can be implemented on a mobile phone. In this work, three face

detection techniques are implemented on a mobile device and evaluated in terms of

accuracy and speed. Section A.2 describes the algorithms that are implemented on

the mobile device while Section A.3 compares the detection accuracy and speed of

each of the algorithms. The shape-based detection algorithm achieves the fastest

detection times of 165 msec, but fails to accurately detect the face in all cases.

Local binary patterns and the Viola-Jones algorithm are both capable of accurately

detection the face, but are significantly slower. In Section A.4, the results of the

detection algorithms are combined with an H.264/AVC video encoder in order to

encode relevant portions of the video (e.g. the face and hands) with higher fidelity.

A.2 Detection Algorithms

In both videoconferencing and ASL video telephony, encoding only the relevant

portions of the sequence at a high quality can yield significant gains in compression.

This improved compression is essential for meeting the bandwidth constraints of

cellular networks, but requires additional computational complexity for identifying

those relevant regions. In this section, the face and hands of an individual are

identified through the use of skin segmentation and face detection algorithms.
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Based on the detected locations of the face and hands, the 16x16 macroblocks in

the video are labeled as either face, hand, or background.

A.2.1 Color and shape based face detection

Face detection can be performed using shape and color information extracted from

the image [14]. Skin pixels have a color distribution that is distinct from non-

skin pixels [61]. Skin detection is performed in the YUV color space. Because

the H.264/AVC encoder also operates within this color space, no color conversion

is required to perform the skin detection. The chrominance values (U and V) of

skin pixels are modeled as a bivariate Gaussian distribution. The mean µ and

covariance matrix Σ of the distribution are generated from a sample set of skin

pixels. Skin-color segmentation is implemented by thresholding the Mahalanobis

distance, D2
M(x), between a given pixel’s chrominance values x and the skin pixel

distribution.

D2
M(x) = (x− µ)TΣ−1(x− µ) < α (A.1)

The skin segmentation can be improved by incorporating a user-adaptive skin

model. During a video call, the skin color statistics are updated to more accurately

model those of the current user. Figure A.1 illustrates the improvement in the skin

detection by performing this update. In this case, the skin pixels were manually

selected and added to the model. In future work, this process can be automated.

This update can be done while the call is being connected, by asking the user to

hold her hand in a specific location. It can also be done automatically, by first

applying face detection then extracting skin pixels, as in [32].

Provided that the skin segmentation is very accurate, a shape-based approach

119



(a) Original frame (b) Skin detection without user
adaptation

(c) Skin detection with user
adaptation

Figure A.1: Comparison of skin detection algorithm with and without user
adaptation.

can be used to differentiate between the users face and hands. Given a binary skin

map, a connected component analysis is used to identify the size and location of

each cluster of skin pixels. Clusters of skin pixels smaller than a fixed threshold

are discarded as noise. The remaining skin components are filtered with the mor-

phological erode operator. This shape-based approach erodes the binary skin map

using a vertically-oriented elliptical structuring element. Because the human head

can be roughly modeled as an ellipse, the face is identified as the largest connected

component remaining after the erosion [91].

In the presence of noisy backgrounds or poor lighting conditions, the skin de-

tection can yield a non-trivial amount of false alarms, especially if the background

contains skin-colored objects. Because of this, the morphological shape-based face
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detection fails and feature based techniques are required to identify the face region.

Two feature-based detection algorithms are considered: local binary patterns and

the Viola-Jones algorithm.

A.2.2 Local binary patterns

The first approach generates features based on local binary patterns (LBP) of

luminance pixels [37]. The LBP is calculated from a neighborhood of L pixels

surrounding each pixel by thresholding each neighbor based on the center pixel’s

value and mapping this to a binary number. For example, using a 3x3 neighbor-

hood (L = 8), a pixel whose neighbors are all greater than itself will have a LBP

of 11111111. As a consequence of this binary representation, there are only 28, or

256, possible binary patterns for an individual pixel.

In order to perform the face detection, a set of LBPs are mapped to an appro-

priate feature as follows. Given a candidate window, the classification feature is

the distribution of all of the local binary patterns in that window, e.g. the 256 bin

histogram of possible binary patterns. The classifier is trained on a set of 19x19

face images taken from the FERET database [60]. The average of all the face his-

tograms is used in the classification task. Face detection is performed by searching

candidate 19x19 windows in the input image. For each window, the histogram

of LBP values is computed and compared against the average face histogram us-

ing the Chi square distance, as in Equation A.2. HC and HT correspond to the

candidate and trained histograms, respectively.

χ2(HC , HT ) =
256∑

i=1

(HCi −HT i)
2

HCi +HT i

(A.2)

If χ2(HC , HT ) < β, the candidate window is identified as a face. In order to identify
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faces at multiple scales, the classification algorithm is run on downsampled versions

of the original image. Overlapping face regions are identified as a single face with

a bounding box corresponding to the average of the overlapping regions.

Since each pixel in a window is compared to each of its neighbors, the LBP

classifier requires O(WWWHL) operations, where WW and WH are the width and

height of the window and L is the number of neighbors. To search the entire

image, the total number of operations is O(NWWWHL), where N is the number

of candidate windows and is a function of the image size and number of image

scales included in the search.

One of the main computational benefits of the LBP-based classifier is that the

features themselves can be computed using only fixed-point operations. This is

especially important on a mobile device in which floating-point operations must be

emulated, which can be prohibitively slow. The most computationally costly part

of the LBP-based classifier is the image scaling, since a pyramid of downsampled

images must be generated for each scale that is to be searched.

A.2.3 Viola-Jones classifier cascade

The Viola-Jones face detection algorithm [83] can also be applied to identify the

face region. This detection algorithm uses a series of classifier stages. At each

stage, simple Haar-like rectangular features are computed in the candidate window.

If the window is classified as a face, it continues to the next stage. Each stage is

increasingly complex in terms of the number of features, in order to eliminate more

non-face windows. Only a candidate window containing a face passes through all

the stages in the classifier.
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This paper uses the OpenCV implementation of the Viola-Jones algorithm [1],

which has been ported for use on the mobile device. The OpenCV package provides

a classifier cascade which has been trained for frontal face views. The Viola-

Jones classifier has several computational benefits. First, the classifier cascade is

organized such that simple classifiers using only a few features can quickly eliminate

non-face windows. Second, the use of the integral image representation and simple

rectangular features enables the algorithm to detect faces at a range of sizes without

rescaling the entire image. The features themselves are scaled to search over larger

windows in the image, without having to downsample the original image.

For an individual window, the Viola-Jones classifier requires O(FSF ) opera-

tions, where F is the number of features being computed and SF is the size of the

feature (i.e., the number of pixels contained within the rectangular feature). By

design, the value of F can vary tremendously. For windows containing a face, the

candidate window passes through each stage of the classifier and, in the classifier

used here, 2135 features in total are computed. However, a majority of the candi-

date windows are rejected by the first stage of the classifier, which computes only 3

features. To search the entire image, the total number of operations is O(NFSF ),

where N is the number of candidate windows and is a function of the image size

and number of image scales included in the search.

The major drawback for implementation on a mobile device is the number

of floating point operations. There are 21 classifier stages with between 3 and

200 features per stage. At each stage, the features are computed and compared

against a floating point threshold, which results in a very large number of floating

point operations, especially for windows which pass through multiple classification

stages.
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A.2.4 Hand Detection

While simply identifying the face region may be sufficient for generic videocon-

ferencing, further processing must be done for American Sign Language (ASL)

video. In ASL, information is conveyed through both facial expressions and hand

gestures. In order to optimally encode ASL videos, the hands must also be identi-

fied. Following both skin segmentation and face detection, the signer’s hands are

identified as the large skin clusters not corresponding to the signer’s face.

A.3 Accuracy and Computational Results

The algorithms described in Section A.2 are implemented on an HTC Apache Pock-

etPC with an Intel PXA270 processor running at 416 MHz, with 64 MB RAM, and

a 240x320 LCD display. The device runs the Windows Mobile operating system.

Three test videos of American Sign Language are used for the evaluation. Two

of the videos were recorded using professional video equipment and downsampled

to QCIF resolution (176x144) at 10 frames per second. One of these videos was

recorded indoor in a studio, the other was recorded outdoors. The third video was

captured using the camera on the PocketPC while being held by the signer. It was

downsampled from QVGA to a resolution of 160x120 at 15 frames per second.

One of the primary factors controlling the speed of the feature based face

detection algorithms are the number of image scales included in the search space.

A large number of scales ensures that faces of any size will be found, but each scale

adds a significant amount of computation time. The number of scales is limited by

controlling the scaling factor and the minimum/maximum expected face size in the
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image. In this implementation, the scaling factor was set to 1.25, the maximum

face size was set to 60% of the image width, and the minimum face size was set

to 15% of the image width. Also, at each image scale, the search is performed for

every other pixel.

The fastest face detection method is the shape-based approach, which runs at

an average of 165 msec per frame. This method is very successful when the skin

detection is very accurate. For the indoor scene, the average face detection rate

was 93%. However, if the skin detection yields a non-trivial amount of false alarms,

the shape-based approach completely breaks down, as is the case in the outdoor

scene, as illustrated in Figures A.2(a) and A.2(d).

The LBP-based classifier achieves an average detection rate of 91%, but has a

very large number of false positives, as illustrated in Figures A.2(b) and A.2(e).

Out of 477 frames, the LBP classifier yielded 162 false alarms. The LBP classifier

was also the slowest of the three methods, running at an average of 1841 msec per

frame. Finally, the Viola-Jones classifier achieves an average detection rate of 90%

with only 27 false alarms and runs at 1508 msec per frame.

Of the three face detection techniques, the Viola-Jones classifier achieves the

optimal trade-off between positive detections and false alarms. However, in its

default implementation, it runs at fewer than 1 frame per second. The search

speed can be improved by decreasing the number of image scales (i.e., increasing

the scaling factor) or limiting the search space at each scale. The search space

can be reduced by only evaluating candidate windows if they contain skin pixels.

It can also be reduced by limiting the search to windows which were within one

macroblock of a face block in the previous frame. Table A.1 demonstrates the

speed improvements for each of these cases. At best, the Viola-Jones algorithm
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(a) Shape-based (b) Local Binary Pattern (c) Viola-Jones

(d) Shape-based (e) Local Binary Pattern (f) Viola-Jones

Figure A.2: Typical face detection results of the three detection algorithms.
Green blocks indicate the macroblock contains part of the face.
The shape-based approach works very well on the indoor se-
quence but fails when the skin detector yields inaccurate results,
as in the cherry blossoms in the background. The LBP classifier
achieves high detection rates but also has many false positives.
The Viola-Jones classifier accurately detects the face with the
fewest false positives.

runs at approximately 2.8 frames per second.

A.4 Encoding Platform

The frame segmentation maps are used by an H.264/AVC video encoding algorithm

to achieve increased compression while maintaining the quality in the region-of-

interest. In order to capture and encode video sequences in real-time, the x264
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Table A.1: Improvements in speed of the Viola-Jones classifier by increasing
the image scaling factor and by reducing the search space. The
results are presented for the indoor video at QCIF resolution and
are consistent for the other videos.

Image Scale Search Restriction Positive Detections False Positives Average Detection Time

Scale 1.25 No Restriction 87% 0 1257 msec

Scale 1.5 No Restriction 92% 0 806 msec

Scale 2.0 No Restriction 99% 0 423 msec

Scale 1.25 Face in Previous Frame 87% 0 1115 msec

Scale 1.5 Face in Previous Frame 92% 0 671 msec

Scale 2.0 Face in Previous Frame 99% 0 353 msec

Scale 1.25 Skin in Window 94% 0 975 msec

Scale 1.5 Skin in Window 95% 0 636 msec

Scale 2.0 Skin in Window 98% 0 389 msec
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video encoder was ported to the mobile phone. x264 is an open-source implemen-

tation of H.264 which has been shown to be 50 times faster than the JM reference

software with little reduction in performance [51]. As demonstrated in previous

work, appropriately applying face and hand segmentation maps to sign language

videos results in rate reductions as large as 60%, without sacrificing the over-

all intelligibility of the video [25]. The mobile phone can encode such videos by

executing the face and hand detection algorithms prior to invoking the encoder.

Figure A.3 presents a frame encoded with this region-of-interest adjustment, us-

ing the shape-based detection. The quantization parameter of the face and hand

macroblocks is reduced (i.e., the quality is increased) at the expense of the rest of

the frame.

A.5 Summary

This chapter analyzes low complexity methods for identifying face and hand re-

gions in a mobile video telephony setting. Shape-based processing is the most

computationally efficient method for identifying the face and hands, but cannot

adequately identify these regions in the presence of skin-colored backgrounds. In

these noisy environments, feature-based face detection techniques are applied to

the segmentation task. The Viola-Jones algorithm achieves 90% detection rates

with almost no false positives. The feature-based techniques are further optimized

by restricting the search space based on the location of skin pixels in the cur-

rent frame or the face in previous frames. The detection algorithms provide an

H.264/AVC encoder with a macroblock-level map of the face and hands, allowing

for the use of region-of-interest encoding techniques.
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(a) Original frame (b) Face and hand labels

(c) ROI encoded frame

Figure A.3: Illustration of varying region-of-interest quality. Note that the
face and hands of the signer are maintained while the background
is heavily distorted.

129



APPENDIX B

COMPARING FULL-REFERENCE QUALITY ESTIMATORS

USING HEURISTIC RATE-DISTORTION OPTIMIZATION

B.1 Abstract

This chapter presents work that was performed with Paul Rademacher, an M.Eng

student. While not directly related to the topic of this dissertation, it is included

as an example application of several fundamentals tools used throughout the dis-

sertation (e.g., rate-distortion optimization, genetic algorithms, and quality assess-

ment).

Image quality estimators strive to accurately estimate the subjective quality of

degraded images. This work proposes a methodology for performing rate-distortion

(R-D) optimization using an arbitrary quality estimator. The proposed methodol-

ogy uses a genetic algorithm to select a set of R-D optimal quantization step sizes

in a JPEG-2000 encoding framework. Optimal step sizes can be found for any

quality estimator that can provide a score given a compressed image. A compari-

son of image sets that are R-D optimal for a collection of quality estimators serves

as a novel method for evaluating the performance of image quality estimators.

B.2 Introduction

Image quality estimators (QEs) strive to accurately estimate the subjective qual-

ity of a degraded image. In particular, a full-reference QE takes a reference and

degraded image and produces a score that is expected to be consistent with the hu-
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man rated quality of the degraded image. Because full-reference QEs have access to

the reference image, they can be applied to algorithm optimization, such as devel-

oping image compression techniques that optimize more perceptually meaningful

distortion models [40].

This paper presents a method for incorporating an arbitrary QE into a rate-

distortion (R-D) optimization procedure. Applying a QE in this way yields images

for which rate is distributed according to the implicit criteria set by the particular

QE, e.g., bits are spent on what the QE deems important for quality. This method-

ology is particularly useful for QEs that are non-convex and not easily applied in

traditional R-D optimization algorithms. The R-D optimization yields the images

that lie on the R-D convex hull for a specific QE, i.e., each image has the highest

possible QE score for a given rate constraint.

Image QEs are typically evaluated according to their statistical accuracy in es-

timating human quality ratings of degraded images [70]. In this work, comparisons

between the sets of convex hull images for a collection of QEs allows for a system-

atic evaluation of the accuracy of a QE, without requiring expensive subjective

testing. Based on the principles described in [23], the proposed R-D optimization

procedure is applied to identify discrepencies among a collection of different QEs.

Any discrepencies among the collection of QEs implies that one of the QEs in

disagreement will be inaccurate with respect to true subjective quality.

Inaccuracies are defined for image pairs in terms of misclassification errors such

as false ties (QE rates images with equal quality, humans rate images with differ-

ent quality), false differences (QE rates images with different quality, humans rate

images equally), and false ordering (QE rates image A better than B, humans rate

image B better than A) [12]. The proposed R-D optimization generates collec-
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Figure B.1: A comparison of the R-D convex hull for 5 images using JasPer
and the GA optimized for MSE. The nearly identical perfor-
mance demonstrates that the GA properly converges to R-D
optimal operating points.

tions of convex hull images for which there is significant disagreement between

QEs, resulting in easily identifiable misclassification errors. Following a descrip-

tion of the heuristic R-D optimization in Section B.3, a collection of QEs are

evaluated for inaccuracies. Section B.4 discusses a method for identifying false

ties or false differences, by comparing images having a fixed QE score, while sec-

tion B.5 demonstrates a method for identifying false ranks and false differences by

comparing images at fixed bitrates.

B.3 Rate-Distortion optimization using a genetic algo-

rithm

Operational R-D optimization can be formed as a Lagrangian minimization proce-

dure, where the optimization selects a set of encoding parameters, ~p, that satisfy

the following,

min
~p

D(~p) + λR(~p), (B.1)
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(b) VIF, computed on every set
of convex hull images, versus
rate.
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(c) NICE, computed on every
set of convex hull images, versus
rate.

Figure B.2: Illustrations of the performance of the GA R-D optimization
procedure. Novel points on the convex hull can be efficiently
computed, shown in (a). In (b) and (c), the best performing set
of images corresponds to the one that is optimized by the GA
using the QE being computed.

where D(~p) and R(~p) are the computed distortion and rate for an image encoded

with parameter ~p. A target bitrate can be achieved by selecting the Lagrangian

parameter, λ, such that R(~p) ≤ Rtarget. The set of admissible parameters are

defined by the encoding process. In the case of JPEG-2000, the encoder of choice

for this work, ~p is typically the collection of truncation points for embedded bit-

stream coding techniques [78].

The goal of this work is to incorporate arbitrary distortion measures (or equiv-

alently, QEs) into the R-D optimization framework. The embedded coding tech-

nique in JPEG-2000 (EBCOT) assumes an additive distortion measure, i.e., the
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total image distortion can be computed as the sum of distortions in individual

code blocks, a constraint that is violated by many recent, perceptually motivated

quality estimators.

As an alternative to EBCOT, JPEG-2000 allows for optimization via the quan-

tization of wavelet transform coefficients. In this case, ~p corresponds to a vector

of quantization stepsizes, one for each subband in the wavelet decomposition. The

goal of this work is to incorporate an arbitrary QE into the minimization in Eq.

(B.1). This assumption-free minimization requires a search over the space of pos-

sible parameters to identify operational points on the R-D convex hull.

The genetic algorithm (GA) is a heuristic, iterative optimization technique that

efficiently searches a large space of parameter values [33]. At each iteration, the

GA generates a population P of size M , where each member of the population is a

particular realization of encoding parameters, i.e., P (m) = ~pm and specifies quan-

tization step sizes for each subband. Each population member has an associated

cost, defined here as C(m) = D( ~pm)+λR( ~pm), with λ fixed prior to beginning the

search. Successive iterations in the GA merge population members with low cost,

inject random variations into population members, and propagate the population

members with the lowest cost, evolving toward the best population member in the

search space. In this implementation, the population size is 100 and the maximum

number of iterations is 500. The primary benefit of using the GA in this applica-

tion is the flexibility in the choice of distortion measure D( ~pm). For each ~pm in

the population, a compressed image is generated by applying the quantization step

sizes defined by ~pm. The distortion associated with ~pm can be computed according

to any model that generates a score given a compressed image (and optionally the

corresponding reference image), including any full-reference or no-reference QE.
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For a specified distortion measure, reference image, and λ, the GA identifies

R-D optimal quantization step sizes. While the GA is very effective in its search,

there is no optimality guarantee in the optimization. Despite this limitation, the

GA optimization using MSE generates operational R-D points that lie on the

R-D convex hull generated using JasPer [3] and the EBCOT algorithm, which

has become a standard technique for operational MSE-based R-D optimization.

Sweeping over a range of λ values allows the GA to generate a R-D convex hull

that is optimized for MSE, as illustrated in Figure B.1 for 5 different reference

images. Figure B.1 also includes the R-D convex hull generated using JasPer.

Furthermore, provided that the set of λ values is sufficiently dense, novel points on

the R-D convex hull can be computed using a bisection search on the quantization

stepsizes associated with the nearest available points on the convex hull, illustrated

in Figure B.2(a).

Given this framework for generating a set of R-D optimal quantization step

sizes for an arbitrary distortion measure, the following QEs are evaluated: PSNR,

SSIM [86], VSNR [15], VIF [71], NICE [65]. These QEs have publicly available im-

plementations, facilitating their use in this application. The GA R-D optimization

provides a collection of convex hull images that are optimal according to varying

criteria, as illustrated by Figure B.2. By setting a fixed target value (QE or bi-

trate), comparisons can be made between the sets of convex hull images, identifying

inaccuracies in the QEs being studied.
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B.4 Comparing images for fixed QE scores

For a selected QE under test and desired target QE score, the image having the

target QE score is extracted from each set of convex hull images. By design,

the QE under test considers each image in this fixed-QE set to be perceptually

identical (i.e., each has identical QE scores). Applying the remaining QEs to the

fixed-QE set yields one of two results. In the first case, the remaining quality

estimators are inconsistent with the QE under test and score the fixed-QE set

as having varying perceptual quality. In the second case, the remaining quality

estimators also exhibit fixed scores consistent with the QE under test. In the event

of inconsistencies, if the images are perceptually different, there will be false ties

in the fixed QE under test. If the images are perceptually equivalent, there will be

false differences in the conflicting QE.

As an illustrative example, the monarch images having VSNR = 20 are ex-

tracted from each of the 6 sets. According to VSNR, each of these 6 images has

the same perceptual quality. The set of QEs is applied to the fixed-VSNR im-

ages, yielding the scores provided in Table B.1. Also reported in Table B.1 is the

coefficient of variation, computed as cv = σ
µ
× 100, which allows for the effective

comparison of the variations in the quality scores when the means of the scores are

significantly different. Both PSNR and SSIM have small coefficients of variation,

indicating that these quality estimators are in agreement with VSNR. However,

both VIF (cv = 21.9% and NICE (cv = 30.8%) exhibit widely varying scores on

the fixed-VSNR images. In this case, either VSNR, PSNR, and SSIM are creating

a false tie or VIF and NICE are creating a false difference.

To determine the presence of a false difference or a false tie in the set of fixed-

VSNR images without access to subjective quality ratings, the conflicting QE
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Opt. Computed QE - Fixed-VSNR
Via PSNR SSIM VSNR VIF NICE

NICE 29.7 1 0.921 1 20.0 1 0.442 1 0.123 1

VIF 28.4 2 0.885 2 20.0 2 0.306 2 0.450 3

JasPer 28.3 3 0.869 5 20.0 3 0.260 5 0.451 4

MSE 28.3 4 0.871 4 20.0 4 0.262 4 0.441 2

SSIM 28.2 5 0.877 3 19.8 6 0.274 3 0.464 6

VSNR 28.1 6 0.869 6 19.8 5 0.257 6 0.458 5

cv 2.2% 2.1 1.7% 21.9% 30.8%

Table B.1: Scores for each tested QE on images constrained to have fixed QE
score of VSNR = 20 for the monarch image. Each row represents
a different set of convex hull images optimized via the GA. JasPer
is the convex hull sets for this image coder. The final row provides
the coefficient of variation, which is a normalized measure of the
variation in the scores. The superscript numerals correspond to
the rankings, as defined by the QE in the column heading.

(VIF) is selected as a proxy for true subjective quality. If the images are percep-

tually different, as suggested by VIF, then VSNR must be considered inaccurate

in this case. The two images with the largest ∆VIF, each having VSNR = 20.0,

correspond to the MSE-optimized image (VIF = 0.262) and the NICE-optimized

image (VIF = 0.442). This image pair, provided in Figure B.3, clearly demon-

strates a perceptual difference between the images; VIF correctly ranks this image

pair while VSNR exhibits a false tie. In particular, note the amount of blurring in

the high frequency regions of the flower petals and lines on the butterfly in Figure

B.3(a). The image in Figure B.3(b) maintains the fidelity of the high frequency

regions. The VSNR score is heavily impacted by the quantization of middle to low

frequency subbands, which appears as slight contrast changes on the flat regions

of the butterfly wings.
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(a) Monarch from MSE optimized convex hull. VSNR =
20.0, VIF=0.262

(b) Monarch from NICE optimized convex hull. VSNR
= 20.0, VIF=0.442

Figure B.3: An image pair having a fixed VSNR score and maximally dif-
ferent VIF scores. VIF more accurately reflects the perceived
quality of this image pair.
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B.5 Comparing images at fixed bitrates

At a fixed bitrate, each quality estimator ranks the image from its own convex

hull as having the highest quality. Comparing images across the convex hull sets

for a fixed target bitrate yields a collection of fixed-rate images on which all the

QEs disagree about the relative quality of the images. For example, Table B.1

provides the QE scores for the cat2 image at 0.6 bpp. As expected, the QE scores

are best when computed on the fixed-rate image from the set for which the QE

was optimized. The image that is rated by humans as having the highest quality

determines which QE that is most accurate, since that QE properly identifies the

highest quality image. If the images are deemed perceptually equivalent, then

each of the QEs exhibit false differences, the severity of which depends on the

variations in the QE scores over the fixed-rate image collection. Determining the

true subjective rankings requires a perceptual image quality experiment, a task

which is left for future work. However, one illustrative examples is provided in

Figure B.4, where the image pair corresponds to the VIF-optimized and NICE-

optimized images, each at 0.6 bpp. Perceptual differences between this pair of

images are very difficult to identify, suggesting that, in this case, VIF and NICE

exhibit false differences.

B.6 Conclusion and Future Work

This work presented a method for identifying rate-distortion optimal quantization

step sizes given an arbitrary distortion criterion. Several image quality estimators

(QEs) were applied in this framework. By comparing image pairs that have a fixed

target QE value or fixed bitrate, inaccuracies in QEs, such as false ties in VSNR and
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Optimized Computed QE
Via PSNR SSIM VSNR VIF NICE

JasPer 34.2 1 0.928 3 29.0 2 0.593 4 0.226 3

MSE 34.1 2 0.928 4 28.9 3 0.587 5 0.215 2

VSNR 33.8 3 0.929 2 29.0 1 0.598 3 0.248 4

SSIM 33.6 4 0.929 1 28.7 4 0.600 2 0.251 5

VIF 33.2 5 0.926 5 28.3 5 0.616 1 0.273 6

NICE 28.9 6 0.906 6 21.6 6 0.478 6 0.193 1

cv 5.7% 0.9% 9.8% 8.2% 20.1%

Table B.2: Scores for each tested QE constrained to have fixed bitrates of
0.6 bpp for the cat image. Each row represents a different set of
convex hull images optimized via the GA. JasPer is the convex
hull sets for the image coder. The final row provides the coefficient
of variation, which is a normalized measure of the variation in the
scores. The superscript numerals correspond to the rankings, as
defined by the QE in the column heading.

(a) Cat2 VIF optimized: VIF = 0.616,
NICE=0.273

(b) Cat2 NICE optimized: VIF = 0.478,
NICE=0.193

Figure B.4: An image pair that elicits a false difference in both VIF and
NICE. Note that NICE is a distortion measure (larger values
indicate lower utility). Consequently, NICE and VIF yield op-
posite (and false) rankings for these image pairs.
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false differences in VIF and NICE, were identified. The proposed methodology will

be extended to a wider variety of image quality estimators and coders, including

JPEG. Furthermore, subjective image quality experiments will be performed using

image pairs generating from this optimization.
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