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Abstract

This paper is concerned with various sets of conditions on
sequences of dependent real-valued random variables Zn under which

asymptotic statements about N(t) = inf{n > 1: Z > t} and EN{t) as

n+l
t - = can be proved. The most satisfactory generalizations of the
Basic Renewal Theorem require the assumption that Zﬂ - Zn—1 is non-

negative and E{Zn -7 | Z]”"’Zn—l} is almost surely nonincreasing

n-1
as a function of n. Two important classes of Markovian processes in
Reliability - the proportional-time and proportional-hazard models - are

introduced to illustrate and sharpen the general results.

AMS Subject Classifications: Primary 60K05, 60G42. Secondary 60K10,

60G55.

Key words and phrases: dependent renewal theorems, stochastically

decreasing 1ifetimes, martingale, proportional-hazards model,

proportional-time model.



1. Introduction

One of the most severe limitations of standard Reliability Theory -
as expounded, for example, by Barlow and Proschan (1981) - is its
restriction to the study of independent failure-time random variables.
Consider the case of Renewal Theory, which in the context of Reliability
has led to the characterization of many classes of repair/replacement
policies, and which appears to depend crucially on the assumption of
independence for the times between successive failures. In practical
1ife, it is clear that successive replacements of failed components in
a complicated assembly (say, an aircraft) may have some cumulative
effect tending to shorten future times between replacements. Addition-
ally, one can imagine that shocks to the system from failures of single
components can affect the lifetimes of the remaining components, or
even that the age of important components can be reflected in the operat-
ing characteristics and therefore in the hazard of failure of the system.

The regression models of Cox (1972) in life table analy-
sis gave a simple way for lTifetimes to depend on (possibly time-
dependent) covariate measurements. If we treat current lifetimes of
system components as covariates, then these models imply an interesting
and statistically identifiable dependence between component failure
times. This idea has been used by Slud (1983) to study a class of
multivariate dependent renewal processes in which a component's hazard
of failure depends only on the current component 1ifetimes. Another
approach, which we develop in the present paper, is to model the system's
current failure distribution as depending on cumulative exposure

variables (and possibly on covariates) observable up to the last previous



failure time. Realistic reliability models in the context of succes-
sive failures after repair or replacement should typically take into
account all three types of information: current component ages,
cumulative exposures of the system, and environmental covariates.

Qur main results concern generalization of the Basic Renewal
Theorem to the family of point-processes {Zn}§=1 (of successive failure
times) for which the non-negative waiting-time variables Zn - Zn-1 are

conditionally decreasing in expectation given the past, in the sense

that the sequence E{Zn -7 | 21""’Zn~1} is almost surely non-

n-1
increasing in n. Further assumptions and our general theorems are
stated and proved in Section 2. Section 3 applies and sharpens these

results in the jmportant special proportional-time and proportional-hazard

models for successive lifetimes Z - Z 4. Our concluding Section 4
contains miscellaneous remarks about our methods and results.

In the remainder of the Introduction, we discuss the reliability
context of the processes characterized abstractly in Section 2 and of
the special examples of Section 3. Consider a single device subject to
failure and instantaneous repair (or partial replacement). Let Ti
denote the time from the (i-])th repair to the next (the ith) failure,
% T; the time from original installation to nt failure.

i=1
We imagine for simplicity that there is a nondecreasing sequence of

and Zn =

cumulative-exposure variables wn depending on Zi""’zn—l and possibly
on the values (C(t), 0 <t < Zn-1) of some environmental process, which
may for example describe system Joading, such that the conditional law
of T, given Zjse. ol 4 and {C(t): t < Z.43 depends only on W_. Apart
from early system burn-in, which we ignore, we may reasonably suppose

that the conditional expectation of ?n given wn will always be less



than or egual to that for Tn-l given wn_]. An important comment is that
"time" in reliability applications can be interpreted freely as opera-
tional time (or indeed, as time of operation during which a specified
standard is met. Thus, the processes we describe can also model the
degradation of performance over time.) For example, if the cumulative
exposure W above were to take the simple form W, = igl W(Ti) for a

n

fixed function w(-), then Z_ = W = ) w(T,) forms a Markovian
n n+l 81 i

sequence. In particular, we term a proporticnal-time [respectively

}

proportional-hazard] process any increasing (Markovian) random sequence

{zn}n>0 such that there exist positive deterministic functions qn(-)
[resp;ctive1y, Qn(-)] for which {(Zn+] - Zn)/qn(zn}}n>o is a seguence

of independent r.v.'s [respectively, for which (log PEZn+]—Zn> t}Z],. ..,Zn})
/Qn(Zn) is for each t a constant not depending on n]. 1In other words, these
are processes for which the successive lifetimes Zn+l - Zn [respectively,
their conditional cumulative hazards given Z},...,Zn] depend on ZI"’ "Zn
only through the multiplicative factor qn(Zn) [respectively Qn(Zn)]. Our
strongest asymptotic statements about the largest n for which Zn < t

(for large t) will apply to special cases of these models.

Acknowledgements. This work originated from the suggestion of the late

I. N. Shimi to study a renewal process model with stochastically decreas-
ing failure times. In addition, several valuable conversations with
J. Winnicki led to an early version of Lemma 2.5 and to the definition

of the class of proportional-time models.



2. Counting-process asymptotics

Throughout the present section we consider sequences {Zn}n>0 of
integrable r.v.'s, with ZD = 0 and Zn > Zn_} a.s.,which are ada;ted
to an increasing family {Fn} of o-fields on a probability space (a,F,P).
That is, Zn is measurable with respect to Fn, which is regarded as
containing all information about {21.}?:I and all relevant covariates
observable up to time Zn. Whenever Zn + @ 3.S. as n » =, we define

for t > 0
N(t) = min{n > 0: Z .4 > t}, x(t) = IN(t)+1-

We will show here how assumptions on the conditional mean and central
moments of Zn - Zn-? given Fn-Y imply the asymptotic relationships

N(t)+1
~ ~ - | =
(t) -t jZ] BLZy - 24 1 Fyqd = Wiy
(2.1) t -+ o

ET(t) ~t- EwN(t)+1’

By itself, (2.1) does not determine an asymptotic rate of growth for

N(t) or EN(t), although in the suggestive form

t t
t - g g(s)dN(s) ~ E[é g(s)dN(s)], t e

(2.2)

g(s) = E{Z, - Z, y | F_q} whenever N(s) = k-1, k > 1,

it does indeed imply bounds on growth.



Our first set of conditions on {Zn} is

n
E{Z. - Z. | F. .1 =W + o a.s. and for some 0 <& < 1,
£ i-1 | 1 N

"
n=1 }+wn

Proposition 2.1. Assume (A). Then Zn + o &.5. as N » o, and

N(t)+1
{t) ~ izl E{Z, - Zi_1 i Fiq) a.s. as t > o,

where - means the limit of the ratio of two expressions is 1.
Proof. Under assumption (A), we apply Lemma 5.2' and Theorem A of

. _ 148 -
Lodve (1951, p. 286) to fn(x) = X and Xn = (Zn - E{Zn | Fn_}})/(wn+1)

(with £ = 0 a.s.) to conclude (by the Kronecker Lemma, as in Loeve's

n

Theorem A)

N a.s.
(2.3) L (z, - EHI, | F 43y~ DasN>-=

n=n

0
N ) N .

Therefore, as N = =, Z, = n§1(zﬂ - Bz | F 1)+ nz] B4z, - 7,1 | Fo

a.s. N
- HZ] E{Zn - Zn-l | Fn—1}: and ZN + ., For each t > 0, we now have

T(t) <= a.s., and T(t) = Zyryyg implies as t > =, N(t) > = and

T(t) "NN(t)_{:i. I:i



Recall that N{(t)+1 is a {Fn} stopping-time (i.e. the event
[N(t)+1 > k] is Fk~measurab1e), and that Zn > Zn-1 a.s. For each

t > 0 we calculate, whether the expectations are finite or not,

t o

"

jz] E(I[N(t)_ﬂzﬂ}i{zj - 154 | Fj_}})

N(t)+1

E 521 I[N(t)ﬂij]E{zj - I | Fiq} =E qu E(Z; - 75 4 | Fiq0-

]

Thus we have

Lemma 2.2. If (A) holds, then Et(t) = EwN(t)+1’

Remark. In the special case of Chow and Robbins (1963) - who assumed

E{Zn - Zn—? 1 Fn—l} = u, a.s. constant with n-1(u]+...+un) > U,
0 < u <, but not Zn > Zn—T - we have t(t) ~ uN(t) and Ex(t) =
N(t)+1 N(t)+
u(1 + EN(t)) + E Y (u; - u). To show that E Yo (us - w) is
21 J 121 J
J J
much smaller than EN(t) for large t, observe that

N(t)+] . o
E[ | jzl (ﬁj - )] 'I[N(t)+7 , K]] is for sufficiently large K at
most eE(N(t)+1). Therefore, if Et(t) < =, then EN(t) < = and Et(t) ~ nEN(t)
as t ~ =. We generalize the theorem of Chow and Robbins, which states

also that Et(t) ~ =(t) ~t as t - .
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Theorem 2.3. Assume the a.s. increasing sequence {Zn} satisfies
(A) and in addition
(B) for each e > 0 thre exists an integrable random variable HE

such that for n > 1 (with the notation x* = max(x,0)), a.s.
+ +
(Wp-Wp_y-ed) < H (420 )

§ (1+wj)'55{’z. - E{Zj}fg-;}§3+élF

j=1 J J-Y} - ey <R

and as n > =, (Nn-wn_])/max(zn_},ﬁﬁ; > 0.

Then Et(t) < =, and as t » =«

2.S.
w(t) -~ t - Ex(t).

Proof. Choose arbitrary ¢ > 0, and fix T,k. Observe that

N* = min(k,N(T)+1) is a stopping time, and a.s.

T+ Iy e+ ingm)) 2 Ine
Then

—f
v

> Elye = Iinemysr a1 Bngmya~Zem 9P

v

E(Wyx-eWymya Ionemyeiakd) -
E(”N(T)+1'“ﬁ(r)‘8wm(r)+1)+ - E{I{N(T}+1gkj'ZN(T)+1'ZN(T)'“N(T)+1+WN(T)?3
> (1-€)EWyy - E[(1+z;(T))H€] - Eé/(1+é)[I[N(T)+}§k](]+NN(T)+1)]

-5
enmy+1 <k Hnemy ) [Zxmy+1 - 2nemy Mnemy+ )

where we have used (B) and Holder's inequality in the last step. But



W }+5]

-
Epn(my ¥ emya) [Z0erys1=Znemy M emya i em |

k
CELL TINm)+19) (10578 2-E(75 | F5p 1 0

which by Fj-T measurability of wj and [N(T)+1>j], and then by (B), is

"

(y ol VW )R Z.-E{ZL | F L} F
LT Tongmyengy 0 TR 25mE | Py Py 1

[

E[H8+3NN*].

. + s +
Since ZN(T) < T by definition, so that (wN(T)+1'NN(T)'EwN(T)+1)

> (]+T)(}+Z;(T))-l(WN(T)+1'NN(T) - eWN(T)+])+, we have

T+ (}+T)E[(]+ZR(T))-1(NN(T)+1'WN(T)-SHN(T)+1)+]

> (1-e)EWy, - (EWN*)5/(1+5)(EH€+€ENN*)1/(1+5).

Letting k » =, we conclude EWN(T)+1 { =, and

T+ (T+T)E[(]+Z;(T))'](HN(T)+]-WN(T)-ENN(T)+})+]

> (ese!/ 8y g - B (B ) ) (7).

Since the integrand on the left-hand side converges (by (B)) dominatedly

to 0, it follows by first taking T » « and then ¢ » 0 that



1im sup TV Ew

T+w

N(T)+H ¢t

On the other hand, <(T) > T implies 1lim inf TTEx(T) » 1. It follows
now from Lemma 2.2 that Et(T) ~ Tas T+ «. Finally, the last part

of (B) together with (2.3) implies as T » =, a.s.

@y rye1=2nry V/max My gyay o Zyery) > O

Therefore (t(T)—T)/max(NN(T)+1,T) >0asT»o, and T -~ NN(T)+1 ~
=(T). O

Remark. The proofs of Proposition 2.1 and Theorem 2.3 show, for {Zn}
satisfying (A) and (B) but with the condition Zn > Zn_1 replaced by
W, > W _;a.s., that T~ NN(T)+1 ~ ¢(T) a.s. as T» =, that

<1, Viminf TTEe(T) > 1

. -1
Tim sup T ENN(T)+}
and

Hr%:aup EIZN(T)H—ZN(T)‘/EHN(T)H > 0.

Since for fixed T, k, and N* = min(k,N(T)+1), it is not hard to show
that E(t(T)-Wy,) = E((T(T)-ZK)I[N(T)_}_})kJ) < E’ZN(TM-ZN(T)(, it
follows that T ~ Ex(T) ~ EHN(T)+1' Thus our results generalize

Theorem 1 of Chow and Robbins (1963), at least in the case where only

finitely many of the constants b, = E{Zn'zn-l’Fn-l} are negative.
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Theorem 2.4. Suppose Zn - Zn—l >0 a.s., Zn > a.5. as n » =, and

E{Zn - Zn-l } Fn-1} is a.s. non-increasing as a function of n. Assume

also that for some fixed 0 < §' < 8 < 1 and constant K1 < », and all

n>1,

-

5 14s
Rk Bz -7

1+8

(2.4) E{]Z, - E{Z, | Froptl | F._ 1}

n-1

Then (A), (B), and (2.1) hold.

Proof. That (2.1) follows from (A) and (B) is the content
of Proposition 2.1, Lemma 2.2, and Theorem 2.3. We show next
that under the present hypotheses, the second part of (A) holds.

In fact, since E{Z - 7 | Fro1? decreases with n, and

n n-1

-1
(2.5) ECZ, - Z,q | Fopd/Mp<n .

But (2.4) and (2.5), together with the Fn-T measurability of wn, yield

T+5 ,,,1+6 | 145 T1+s
E[\zn - E{zn | Fn_1}§ /wn 1= E[E{izn - E{zn | Fn_1}§ | Fn_]}/wn 1

146 < K n5 -1-8

(S ¥
< Kyn® ELECZ, - Z, ¢ | Foopd/W,] 1



-10-

Theorem 2.4. Suppose Zn - Zn-l >0a.s., Zn + = 3.5, a8s n » =, and
Mz, - 2,4 | F.q} s a.s. non-increasing as a function of n. Assume

also that for some fixed 0 < ¢' < § < 1 and constant K] < =, and all

ns1,

i

T+¢ & 146
(2.4) E(|Z, - Bz, | Fo 31 0 | Fpqd s Kqn ECHZ -2 | Fp g
Then (A), (B), and (2.1) hold.
Proof. That (2.1) follows from (A) and (B) is the content
of Proposition 2.1, Lemma 2.2, and Theorem 2.3. We show next
that under the present hypotheses, the second part of (A) holds.
In fact since E{Z - Z ;| F,_q} decreases with n, and
-1
(2.5) B{Z, - Z 1| Foq¥/Mp<n .
But (2.4) and (2.5), together with the Fn-] measurability of wn, yield
1+<S 1+6 _ ]+5,
E[} - Bz, | Fo ]}l ]-= E[E{;Zn { Fro \ Fr }}/N

1+5 §'-1-8
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which is summable in n, proving the second part of (A). For (B),
we remark first that (wn~wn_1-ewn)+/(1+zn_]) is a.s. nonincreasing
in n and integrable for n=1 and that (wn-wn_1)/wn + 0 by (2.5).

Next, by (2.4) and (2.5)

146

n
n -5
3%-1 (1) O 2B Py IRy - Ny
§'-5 O
< Kyn jz] EZ;-2, 4 Fjq) - <y
B §'-5
= wn(K'ln -c)

which is negative for all sufficiently large n. This proves (B).

It remains to show W -~ = a.s. Let 0 < o < (8-6")/(1-8) be fixed
arbitrarily, and define a sequence {Zﬁ} inductively by Z% - Zé_] =

min(n“,zn - Zn—l) for n> 1, and Zé = 0. For N> 1and K, a (large)

positive constant, let

N
M, = (I '
N nzl [Zn°zn~1 7 Zn"zn-l]

NI n
n-1 [Z
J:

e
1

.0
P{Zj—Zj__] > 3 Fj-]} < Kz].
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which is summable in n, proving the second part of (A). For (B),

we remark first that (wn-w -awn)+/(1+zn_1) is a.s. nonincreasing

n-1
in n and integrable for n=1 and that (wn-wn_i)/wn + 0 by (2.5).

Next, by (2.4) and (2.5)
n

)
. ~E{Z.F
jz] (VW) OB Z5-ELZ4[F 5 )

148
{ IFJ']} - eNn

K

1A

IFJ“"I} - Ew

1

n
§'-8
n .2] E{Zj-z- n

i= 3-1

§'-¢
wn(KTn -c)

H

which is negative for all sufficiently large n. This proves (B).

It remains to show W - « a.s. Llet 0 < o < {6-6')/(1-8) be fixed
arbitrarily, and define a sequence {Zé} inductively by Zé - Zg_] z
min(na,zn - Zn-l) forn> 1, and Z; = 0. For N> 1 and K, a (large)

positive constant, let

N
My = (Ir5, _
N nzl [Zn"zn—l 7 Zn Zn-ll

- P{Z -7 ,>n* ] F NI n
n “n-1 n-1 v Rl
[jé]P{zj-Zj-T > 3 Fj-]} < Kz].
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Then {MN} is a square-integrable {FN}-martingaIe with variance < KZ’

But P{Z -Z ;> n% | Foq} < P{{Z, - E{Z | F4}] > n%/2 | Fo_q} +

2+8, §'-a(148) 146
ez -z | Foq3p>n21 28 K0 Bz 2 | Faads

and a.s. on the event Dy = [nZ1 E{Zn'zn—T | Froql < ] the terms

E{Zn-Z | Fn-l} must, because they are decreasing, for all sufficiently

n-1

large n be < 2/n. Therefore a.s. on Dy, J P{Z -Z . >n% | F .} < =,
- 1 £ n "n-1 n-1

so that M, converges a.s. as N - o, no matter how large K2 was, and

N

S a
ngl (I[za_za_] $27-7 .1 P{Z-Z 1 >1n" | Foq}) <= It follows

that P{D; n [Zn - Zn—l # Zé'zn—l i.0.]} = 0. Next, we check
o

L 42 n
E{(Z,-2) )7 | Fpqd <2 é tP{Z -7 4 >t | Fy_q}dt <

1+8

2n{1-¢) / tp(z -2, ¢ > t | Fyqddt < 20148)7) 08 ez -z 070 FLp

all-8)+s" 1+8 -
<K RS VALY | Fn—]}’ where K,< is a constant. As

above, we know a.s. on the event D] that for all sufficiently large n,

148, §'4a(1-8)-1-6

THRY-
E(z -z, | Fo_4} < 2/n, so that E{(Z-Z] ) | Fob 27K,

n

which by choice of a is summable in n. Therefore, for sufficiently large
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Then {M } is a square-integrable {FN}—martingaie with variance < K2.

But P{Z -Z > n* | F 4} < PLIZ, - BT, | Fooqdl > n%/2 [ Fo b+

22+6K nd

"'(x(}*'é) 1+é t
1 BTy |

1 < F s
[E{Z -2, ¢ | Foq} > n%/2) 2 n-17

and a.s. on the event Dy = [ Z E{Z -7 4 | Fpq} < w] the terms

E{Zn-Zn_] | Fn-l} must, because they are decreasing, for all sufficiently
o
large n be < 2/n. Therefore a.s. on Dy, é PLZ-Z ¢ >0 | Fig) <=

so that MN converges a.s. as N » «, no matter how large K2 was, and

oo

(Iroi_ 70
Z [Zp-Zpy # 2972

o
n=1 |

N -P{Z-Z, >0 Fropl) < = It follows

n-

it

that P{D] n {Zn - Zn_] # ZQ'ZA—T j.0.]} = 0. Next, we check

na

E{(Z' Z‘ ]) | Fooq} < 2 é tP{Z -7, 4

[AY

t | Fo_q}dt <

zna('l"é) é tﬁp{zn_zn-] >t | Fn-.i}dt < 2(1-{»@)"] nﬂ(‘s'-ﬁ) E{(Zn_zn—])l‘*‘ﬁ ! Fn_]}

all-8)+s" 148, _ i
<Ky Bz, 4 | Fo_1)» where K< = s a constant. As

above, we know a.s. on the event D] that for all sufficiently large n,

P71 2 148 5'*&(}-5)-}-5
E(z, -z, | Fo_q} < 2/n, so that E(Z,-2) )7 | Foq} <277 7Kyn s

which by choice of o is summable in n. Therefore, for sufficiently Targe
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constant K5, on D] the a.s. convergent square-integrable martingale

N
102, - FonT o o
[2 BT [ Pl s Ks ]
n

N
is equal to } ((ZA-Z'_]) - E{Zr"—Zr"_1 } Fn—l})’ Since ZA-ZQ_] < Zn"zn-1
n=1

a.s., and since we have a.s. on D] for all sufficiently large n that

I_I = -
Zn Zn_] Zn Zn-1’ we conclude

PO} = POy n [Z3-Z) 4 7 Zp-Tp i.0.1% n [nZ] (2:-2) 1) < =}

IA

P{Dy n [sup Z < ]} = 0 by hypothesis.
n

This proves the first part of (A). 0

Remark. An examination of the proof of Theorem 2.4 reveals that the
same result follows if the constant K, in (2.4) is replaced by a random

variable A with expectatdon < K;, for which also E[A]/(6'6 )E{Z][FO}] < Ky-

We state next (without proof) a simple general condition guarantee-

ing that Zn +> o a.S.

Lemma 2.5. Assume for all 0 < T < « there exist sequences ¢ = gn(T)

oo
nZT endy = @ and a.s. on

n 1 Fn~1}

and 8, = 5n(T) with 0 < 826 < 1 such that

the event [ max Z, < T], P{Z_-Z 1> €
1<j<n - non-

A

Sn. Then a.s.

-»> o -> oo
Zn as n .



13

constant KS’ on D} the a.s. convergent square-integrable martingale

N
102 - By | FanT o o
[ BUZL) | Fiad s Ks]

N
is equal to } ((ZA~Z$_]) - B{Z-7, 4 | Fn-]})' Since Z'-7 0 1 < Z.-Z, 4
n=1

a.s., and since we have a.s. on D] for all sufficiently large n that

Zé-Zé_] = Zn'zn-l’ we conclude
PO} = PADy o [Z)-2p 4 # 277 4 i.0.1 n [n:f1 (z:-2) ) < =}
< P{D] n [Sﬁp Zn < =]} = 0 by hypothesis.
This proves the first part of (A). | 0

Remark. An examination of the proof of Theorem 2.4 reveals that the
same result follows if the constant K, in (2.4) is replaced by a random

variable A with expectation < K., for which also E[A]/(S'é )E{Z]{FG}] < K].

We state next (without proof) a simple general condition guarantee-
ing that Zn »> o a.S.
Lemma 2.5. Assume for all 0 < T < = there exist sequences ¢ = gn(T)

» and a.s. on

n

oo

il

and 8 = & (T) with 0 < 8 e < 1 such that €nén

n=1
the event I max Zj < T1, P{Z,-Z,>c¢ F

} < Spe Then a.s.
1<j<n

n | n-1

I - + o,
n as n L



14

It is natural to suppose that if E{Zn—Z | Fn-l} converges to O

n-1
as n - w and if there is some control over the conditional variance of
1.1, given F_ 4, then t{t)-t might be proven small for large t.

The following theorem gives a setting within which Zn - E{Zn { Fn—l}
is a.s. summable and uniformly integrable for n > 1, so that if in

addition E{Zn—z } Fn—1} were assumed to converge to 0 a.s.

n-1
[respectively, in the mean], then Zn'zn-1 > 0as n->oand t(t)-t >0

as t -~ » a.s. [in the mean].

> 0 a.s. and that there exists a

Theorem 2.6. Suppose that Z -7 ;>

Lebesgue-integrable decreasing but strictly positive function o(+)
on [0,») such that for some constant K < «, a.s.
(1) KeE{Z-Z 1 | Foqd 2 6(Z4)
(2.6)
. 2
(i1) E{(Zn - E{Zn l Fn_]}) | Fn—]}

n-1

620z, 1)

IA

Then as n » «, Zn + o and 7}

A (z, - E{Z, | Fool) < = a.s.

Proof. We show first that Z - ~ a.s. Let MN = (ZN - NR)I{ZN < T
where T < » is an arbitrarily large positive constant. By (2.6)(i), a.s.
N

W, 1 = T E{Z.-1, | F. 1
N [ZN < T] 31 j "3~ j-1 [Zj—]’

Vv

1 (T)/K.
2y < 112 Iz < 11V

By (2.6)(i1), we find for arbitrary v > 0, P{|My| > YN} < EMG/(YN)° <

v

N N
(2L Y (2, - ez, | P 002 < G T 6Pz ) < N (o))
j=1 J J J 3=1 J
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By the Borel-Cantelli Lemma, a.s. for all sufficiently large N = nz,

Myl < YN, so that T > 1[2N <1 “NI[ZN <7 W > N I[ZN < T] Y)

implies P(sup Zn < T) = 0. Since T < = was arbitrary and Zn increases
n>1

with n, Zn + o 2,5. a5 N -+ o,

oo

Now fix any constant c > 0 and define sequence {si}j=0 by:
W
= - = © i oo ] *
sp = 0s S354175; c¢(sj). Then syt eas o for if 5548
then Sip1 1 s* + ¢ Tim ¢(sj) > s*, which is a contradiction. The

00

properties of ¢(+) now imply

320 $(s547)(5549755) < é ¢(x)dx < .
Therefore, by definition of S541755° .ZG ¢(sj+1)¢(sj) < o, It follows,
using (2.6)(i),(i1), that !
N(s 54041 )2 NS 4741 2z ;)
E{(z -E{Z | F F .1 < ¢ (2
n=N(§j)+2 n n | n-1 x n-1" - n=N(§j)+2 n-1
N(sj+1)
Solsp)l T 6l )+ alsg)]
J
(s )L N(ij+}) ’ (54701
< ¢(s.)LK BE{Z -Z F_q1 + ols;
i n=Nij)+2 SUSI S A

1A

¢(Sj)[K<Sj+1'sj) + Cf)(sj_ﬂ)]'
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8

Summing over j = 0,1,..., we have o1l <

; 2
i E{z, - Bz, | F NI F

o~}

2

jzo ¢(Sj)[K(Sj+1’Sj) + ¢(Sj+})3 < . Therefore the {F }-adapted martin-

gale {zn-w }

n ns0 is square-integrable and converges a.s., implying

8

# I~

(z, - E{Z, | F}) <= a.s. 0

n=1

It is easy to check that when E{Zn'zn—l | Fn-1} is non-increasing in
n, the hypotheses of Theorem 2.6 imply those of Theorem 2.4. Of course,
the restrictive assumption (2.6) strongly suggests the important special

class of proportional-time processes we consider in the next section.

3. Proportional-time and proportional-hazard models

In this section, we first discuss for some special processes the
applicability of the previous theorems, and then sharpen the conclu-
sions (2.1) to resemble more closely the asymptotics in Renewal Theory
for N(t) and EN(t). Recall from the Introduction that an increasing

random sequence {Zn}n>0 follows a proportional-time model if there

exists a sequence {Vn}n>1 of independent random variables and a sequence
{a (+)},

Zn'zn-1

0 of deterministic non-negative Borel functions such that

mnm v

v (z ) a.s.; and that {Zn} follows a proportional-

n%n-1
hazard model if there exists a sequence {Qn(-)}n>0 of positive Borel

n-1

. . ~__ £
functions for which P{Z -Z_; >t | Zys...5lp 4} = exp(-Qn_](Zn_})Ath))
a.s. where AO(-) is a fixed cumulative hazard function. It is clear

that { Zn} satisfying either of these models is nonstationary Markovian.
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We say that such {Zn} is repsectively homogeneous proportional-time
[respectively, proportional-hazard] if all qn(') = q(+) [al Qn(-) =
Q(-)] and {v }is i.i.d.

The following Proposition simply re-states Theorem 2.4 and Lemma

2.5 in the present context.

Proposition 3.1. Suppose that {Zn} is proportional-time with (Evn+l)qn(t) <
(EV )a _1(s) forn > 1 and s < t, inf{(EV . )q (t): n>0,0<t < T} >0

for each T < =, and for some 0 < §' < 6 < 1 and K} < o,

1+ _ Kon

g 1468
EV, " <Ko (BV)TT, n<l.

Then as t » «,

N(t)
-1§ .
t 1 (Evn+1)qn(zn) + 1 a.s. and in the mean.

If {Zn} were instead homogeneous proportional-time with q(+) strictly

1+68

positive non-increasing and with EZ] < o, then the same conclusion holds.

In the proportional hazards model, conditional moments of Zn—Zn_1
are difficult to estimate, so that some auxiliary hypothesis is needed

to imply a condition like (2.4).

Proposition 3.2. If {Zn} is proportional-hazard satisfying

(a) Q,(t) >Q (s) forn>1,s<t,

(b) for some y > 0, C] < o, Qn(t) < C]tY for alln>0,t>0,
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We say that such {Zn} is repsectively homogeneous proportional-time
[respectively, proportional-hazard] if all qn(-) =z q{+) [all Qn(-) =
Q(+)] and {V } is i.i.d.

The following Proposition simply re-states Theorem 2.4 and Lemma

2.5 in the present context.

Proposition 3.1. Suppose that {Zn} is proportional-time with (Evn+1)qn(t) <
(EV )a,_q(s) forn > 1 and s < t, inf{(EV ,y)q,(t): n>0,0<tc< T} >0

for each T < =, and for some 0 < §' <& <1 and K; <,

1+

1+8
n - 3

n<l1.

6 1
EV K]n (Evn)

Then as t » «,

R N(t)
t ZO (Evn+1)qn(zn) +~ 1 a.s. and in the mean.

n:

If {Zn} were instead homogeneous proportional-time with q(+) strictly

146

positive non-increasing and with EZ] < o, then the same conclusion holds.

In the proportional hazards model, conditional moments of Zn'zn—T
are difficult to estimate, so that some auxiliary hypothesis is needed

to imply a condition like (2.4).

Proposition 3.2. If {Zn} is proportional-hazard satisfying

(a) Q,(t) >0Q_4(s) forn>1,s<t,

(b) for some vy > 0, C.I < o, Qn(t) < C]tY for alln >0, t>0,



18

(c) for some fixed 0 < a < B with y(g-a) < 1/4, fixed 0 < ¢ < 1

and positive finite constants CZ, C3,
CxP < A°](x) <Cx* for0<x<ce
20 =70 - 73 e

and (d) éw [A{)](X/QO(O))]2 exp(-x)dx < =,

then as t » «

Nt =

t i exp[—Qn(Zn)Ag(t)]dt ~ 1 a.s. and in the mean.
0

2
n=0

Proof. (a) implies for each t > O, P{Zn-Zn_1 >t | Z]”"’Zn~1} is
. e i .

decreasing in n, so that E{Z -7 _, } Z]""’zn—l} is decreasing.

(b) implies Z = a.s. by Lemma 2.5. (d) says E(Z%) < «, and {(c)

implies (with F, = G(Z],...,ZR))
E((Z - EZ | F. 02 | F WENZ-Z | Fo )
n n n-17 n-1 n “n-1 n-1

C4Qn-1(zn—1)2(8-a} * CSQn—T(Zn-l)z8 exP('gTQn-l(zn-]))

A

tA

2y(8-a) .
Colnin for finite constants C,, Cg, Ce-

Now {Zn/n}n>1 is an a.s. bounded and uniformly integrable sequence

(by comparigon with the ordinary Strong Law, since P{Zn"zn-l >t | Fn—]}
< P{Z1 > t} a.s. and EZ] < »). Therefore Jensen's inequality implies,
i we set &' = 2y(a-8)<1/2, that E(z /n)® and E(zn/n)é'/("és} are < 1.
By Theorem 2.4 and the Remark following it (with ¢ = 1), our Proposition

is proved.
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In particular, if AO(X) - ¢x* as x ~ 0, fora > 0, C > 0, then (c)
holds and a weaker moment assumption than (d) would suffice for the
result.

There is a further purpose to studying the homogeneous proportional-
time model, namely that one can there improve (2.1) to provide asymptotic

rates of growth for N(t) and EN(t).

Theorem 3.3. Suppose {Zn} is homogeneous proportional-time with positive

1+8

non-increasing g{+), EZ; " < = for some 0 < 6 < 1, and for 0 < ¢ < 1

~

(3.1) 1im sup  sup max{{g%%§l'~ 1, !~(CX - 1} < w(l-c)

X > o cx<tex q(t)

(1/q(s))ds and y(+) is nondecreasing and right-continuous

~ t
where q(t) = |
0

at 0 with ¢(0) = 0. Then a.s. as t » =

(3.2)  N(t) ~ EN(t) ~ q(t)/

where p = EV1.

i

Proof. Fix arbitrarily small € > 0 and any tO > 0, and define tj

n

(1+e)3t0 for j > 1. Let g(s) q(ZN(S)) for s > 0, and 0 for s < O,
so that the random function g(s) is non-increasing with g(s) > q{s).
Since Proposition 3.1 applies, we know a.s. as j » o
N(;jﬂ) ) ftj+1 ey
t., . ~ wa(Z.) = u g(s)dN(s
I 550 J )
t.
J
ti- w [ g(s)dN(s).
0
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i+

Therefore t. .-t. = et, ~ u [ g(s)dN(s), which implies
MR J t.
J
I = 1 1 = . .
P&N(tj+]) N(tj) i.0.} = 0. However, on the event [N(t}) # N(tj_})]
almost surely q(tj_])(N(tj+1) - N(tj)) > { g(s)dN(s) >
J

(tj+])(N(tj+T) - N(tj)). Qur assumptions imply {q(tj_])/q(tj+]) - 1]

< 2@(1—(1+e)'2)for sufficiently large j. Thus a.s. for sufficiently
-1 tj+1
large j, N(tj+}) - N(tj) and v [ (1/q(s))ds differ at most
£
by a factor (1+2y(2¢)), and the same is true asymptotically for
-1~ . . .

N(tj+}) and u Q(tj+1)’ Since N(*) is a.s. nondecreasing, and by
assumption |q(t, +])/q(t )-1] < 2¢(e) for sufficiently large j, we

conclude N(t) ~ v~ q(t). Almost the same argument shows EN(t) ~ u° q(t),

t. t.
. J+ j+
since E { g(s)dN(s) > E[q(tj+1) { dN(s)] = q(tj+])E(N(tj+1)-N(tj)),
J J by
but we need a separate estimate to bound E J g(s)dN(s) above.
t.
t J

j+1
Indeed, E (s)dN(s) = % [{ g(s)dn(s)I
gj ° [for some n, t, y < Z 7% t,

J-=1

z > tj]] < Q(tj_])E(N(tj+]) - (tj)) + kz} q(tk-l)E[(N(t3+]) - N(Z,))

1 ]. The Markov property
[for some n, tj < Zn < t3.+1 and q(tk)vn> tj"tk]

for {Zn} implies N(tj+l) - N(Zn) and V_ are conditionally independent
given Z . Moreover, a.s. on the event [Z > tj], E{N(tj+1)—N(Zn)!Zn}

tiy

< E(N(tj+])-N(tj)). Therefore, E{. g(s)dN(s) < q(tj_1)£(m(tj+])-n(tj))
3zl ’

+ E(N(tjﬂ)-N(tj))'kZ1 alt,_q)P(Vy > (ty-t)/a(ty) <
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3-1 248 ~ 1+8 -1-8
e )N Aty )+ T altye)™ Byt

< E(N(t )—N(tj))q(tj_])(l+e) for sufficiently large j. Proceeding

3+
as for N(t), we conclude a.s. EN(t) - p’]i(t) as t » . O

4. Discussion

The theme of this paper is that a renewal-type theorem for dependent
waiting-times {zn'zn-l}n>1 divides naturally into two parts. The first is
(2.1), which one can exp;ct to prove for extremely general types of
dependence as we have done in Theorems 2.3 and 2.4 and Lemma 2.5. The
second, essentially (3.1), should hold only for very special types of
processes {Zn}. Theorem 3.3, which is our result of this kind, applies
only to "homogeneous proportional-time" Markov processes for which
(Zn-Zn_1)/q(Zn_l) is an i.i.d. sequence, where g(+) is non-increasing
and satisfies a condition like regular variation.

With the aid of theorems of the type of 2.3, 2.4, or 3.3, one may
hope to base repair/replacement policies on more complicated and
realistic statistical models for the conditional distributions of life-
times Zn—Zn_] given the past than have previously been Tooked at. Such
models are beginning to penetrate Reliability Theory. What this paper
shows is that maintenance policies within such models can and should
be compared on the basis of the rate of growth of conditional expected

life given the past (i.e. of W defined in (A) of Section 2).
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