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The fraction of relatives in large genetic databases is continuously increasing,

making it more vital to uncover the relationships among samples for further

downstream analysis. Relatedness inference is a fundamental step for genetic

association studies, population genetics, and genealogy. For close relatives, it is

even possible to infer specific relationship types. However, due to the random-

ness of recombination and inheritance, different pairs of relatives, even in dif-

ferent degrees of relatedness, can have similar amounts of identical by descent

(IBD) sharing. This makes relatedness inference difficult and especially causes

ambiguities for inferring relationship types of the same degree. We first present

an analysis that explores the possibility of improving the accuracy of relatedness

inference by adding IBD segment numbers. We investigated the importance of

IBD segment numbers between the pair of relatives via both a theoretical in-

formation theory analysis and a machine learning classification approach. Our

study showed that the IBD segment number adds information for the related-

ness inference in general, but the improvement of accuracy is weakened by the

IBD detection error in practice. Next, we describe CREST, an accurate and fast

method to identify specific relationship types of close relatives using multiway

IBD sharing. More specifically, for a given second degree relative pair, we lever-



aged their mutual relatives to determine their relationship types—grandparent

grandchild (GP), avuncular (AV), and half siblings (HS). CREST achieved high

sensitivities when tested in both simulated and real dataset with sufficient mu-

tual relatives. CREST also identifies the directionality for parent child (PC), AV,

and GP pairs and has the potential to be extended to identify more distant rela-

tives. Lastly, with the aid of IBD segments from relatives, we developed HAPI-

RECAP to reconstruct parental genome from a set of genotyped siblings and

their relatives using a combination of family-based phasing and IBD sharing.

For families with eight or more children, HAPI-RECAP can reconstruct most

of genotypes for two parents, with Comparable error rates to direct genotyp-

ing, using only genotype data from children. For smaller families with four to

seven children, HAPI-RECAP is able to reconstruct large portion of two parents

genome with the IBD segments of relatives as the reference.
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CHAPTER 1

INTRODUCTION

1.1 The Importance of Relatedness and Relationship Infer-

ence

Recently more and more large scale genetic datasets exist because of the ever-

decreasing cost, allowing for novel genetic discoveries and studies. Related to

the recent outburst in genetic study sample sizes, a higher proportion of indi-

viduals in a data set have at least one close relative, making relatives detection

necessary. An example is the UK Biobank7, where approximately 30% of geno-

typed individuals have a third degree (e.g., a first cousin) relative or closer in the

cohorts. Some direct-to-consumer (DTC) genetic testing companies even main-

tain datasets with sample size in the milions and much higher fractions of rela-

tives due to the less random samples23. As a result, both the needs and ability to

identify genetic relatives continues to grow, necessitating the new analysis and

approaches to characterize the enriched relatives in large scale datesets.

Relatedness and relationship inference has broad applications in genetic analy-

ses. It is a fundamental component in studies that directly make use of genetic

relatives, including pedigree reconstruction32,58, pedigree-based linkage analy-

sis for disease and trait mapping62, heritability estimation6,17,71,73, forensic genet-

ics33,35,66, and genetic genealogy36. In addition, to avoid bias in many population

genetic models, relatives must be accounted for or removed. In particular, the

genome-wide association studies (GWAS) traditionally needs to exclude cryp-

tic relatedness to avoid spurious signals or biased effect sizes64, since it assumes

1



that samples are unrelated and the violation can alter the genome-wide distri-

bution per-SNP p-values1. Thus, successful and precise genetic studies hinges

on the abilities to detect and account for relatives.

Recent efforts to account for close relatives in genetic models indicates that the

higher resolution and more accurate identification of relatives is in demand.

Generally, pruning out close relatives to avoid modeling violations65 will dra-

matically reduce sample sizes in large datasets7,56. Instead, with relationship

information among relatives, studies have shown that relatives in different re-

lationship types might vary in their shared environmental effects, even if they

have the same expected kinship, and thus the estimation of their heritabilities

can be inflated71,73. In addition, given accurate relatedness and relationship in-

ference, those relatives enables pedigree reconstruction, which empower associ-

ation and disease mapping and genetic genealogy in DTC genetic testing com-

panies32. However, the current approaches to inferring pedigrees from genetic

data22,37,58 has the limitations due to ambiguities in the relatives’ pedigree rela-

tionships. These potential applications and discoveries have attracted attention

to the question of how to accurately identify relationships in large genetic stud-

ies.

1.1.1 Identical by Descent Segments

Identical by descent (IBD) segments are inherited by two or more individuals

from a common ancestor without recombination. IBD segments between the

pair of relatives give insight into their shared ancestry and the proportion of

genome that is IBD sharing reveals how distantly related they are. For instance,

the parent-child will share one half of their genome since the parent always

2



randomly transmits half of his/her genome to the children. As the generation

increases, the expected proportion of the genome that the common ancestor and

the decedent share IBD will decrease exponentially. Thus, the IBD information

between relatives plays an essential role to infer their relationships.

More specifically, there are three types of IBD status at each locus: IBD0, IBD1,

and IBD2. If a pair of relatives shares two copies at a locus, with each inherited

from the same common ancestor, that locus is denoted as IBD2 sharing. Simi-

larly, if the pair shares one or zero haplotype copy at the locus, the locus is de-

noted as IBD1 or IBD0 correspondingly. Considering the IBD0, IBD1, and IBD2

all together, it is useful to calculate the kinship coefficients (Defined in 1.1.2)

and infer relatedness. In particular, they can be used to distinguish specific rela-

tionship types under certain circumstances. For example, the parent-child pair

is expected to have IBD1 sharing at everywhere in the genome; while the full

siblings are expected to share 1
2

of the genome IBD1, 1
4

of the genome IBD0, and

another 1
4

of the genome IBD2. To look at each IBD status separately, it is easy to

distinguish parent-child and full siblings, even if they have the same expected

kinship coefficients.

1.1.2 The Degree of Relatedness and Relationship Types

The degree of relatedness represents the level of shared genome between rela-

tives, with each degree corresponding to an expected genome-wide proportion

of IBD sharing. The kinship coefficient φ is used to quantify this proportion.

Assume that a pair of individuals, denoted as i and j, has the proportion k
(1)
ij

and k
(2)
ij of their genomes that i and j share IBD1 and IBD2, respectively. Their

kinship coefficient can be calculated as φij =
k
(1)
ij

4
+

k
(2)
ij

2
, meaning the probabil-
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ity that two randomly selected alleles, each from individual i and j, at a locus

are IBD. By definition, the kinship coefficient is the half of the proportion of the

genome that individual i and j share IBD. Technically, the closer a pair of rela-

tives, the lower the degree of relatedness and the greater the kinship coefficient.

For example, the parent-child and full siblings are in first degree and they are

expected to have kinship coefficients of 1
4
. However, the kinship coefficient can

vary even within each degree since the randomness of segregation and recom-

bination, which are determined during meiosis, will influence the amount of

DNA that relatives share.

The estimated kinship coefficient can be used to infer the degree of relatedness.

The KING paper41 recommended the ranges of kinship coefficient values for

each degree: for a given degree n, the range of acceptable kinship coefficient

is [2−n−
3
2 , 2−n−

1
2 ]. Note that the expected kinship coefficient is 2−n−1, which will

exponentially decrease as the degree of relatedness increase. In this way, we can

map estimated kinship coefficient to the degree of relatedness between relatives.

This approach has been widely used to infer relatedness. Notably, there are dif-

ferent relationship types with the same expected kinship coefficient, so they are

classified as the same degree. As shown in Table 1.1, a few common relationship

types, such as grand-parent, avuncular, and half-siblings, in the same degree

also have the same expected proportion of the genome that is IBD0, IBD1, and

IBD2. This indicates that these statistics of IBD are not enough to distinguish

different relationship types within the same degree.
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Degree Relationships IBD0 IBD1 IBD2 φ

1 Parent-child 0 1 0 1
22

Full siblings 1
4

1
2

1
4

1
22

2 Half-sibling 1
2

1
2

0 1
23

Avuncular 1
2

1
2

0 1
23

Grandparent 1
2

1
2

0 1
23

Double-cousins 9
16

3
8

1
16

1
23

3 First cousins 3
4

1
4

0 1
24

Great-grandparent 3
4

1
4

0 1
24

Table 1.1: Different relationship types in each degree of relatedness; expected
proportions of the genome that is IBD0, IBD1, and IBD2; and expected kinship
coefficient φ. This list only include several common relationship types for the
reference.

1.1.3 Difficulties of Relatedness and Relationship Infer-

ence

Although kinship coefficient plays a crucial role for relatedness inference, the

distributions of kinship coefficient for different degrees tend to overlap, espe-

cially as the degree increases. Since the randomness of Mendelian inheritance

and recombination cause the variance of kinship coefficient, as the number of

meiosis increases, the coefficient of variation in kinship coefficient also become

larger. Thus, for higher degree, it is more possible to observe the overlapping in

distributions, and the ranges to map kinship coefficient are typically not enough

to cover the variations. This fact complicates the inference for higher degrees

and limits the abilities of current approaches to accurately infer relatedness be-

yond third degree49.

In the case of relationship inference within the same degree, the first degree rel-
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atives are simple to distinguish—parent-child and full siblings have different

proportion of the genome that is IBD0/IBD1/IBD2 (See Table 1.1). However,

distinguishing relatives only one degree more distant, including grandparent-

grandchild (GP), avuncular (AV), and half-sibling (HS) pairs becomes quite

challenging. The genome-wide IBD statistics won’t be effective enough to make

an inference. Some studies found that the IBD segment number can be used to

distinguish GP and AV23, however, the IBD segment number distribution of HS

still causes heavy overlap. The similarities of IBD segment distribution among

these different relationship types introduce ambiguities.

In addition, the existence of background IBD segments and detection errors

makes it more complicated in practice. Since any two individuals in a finite

population are related, i.e., they must have a common ancestor at some point

in the past. The different population structures might introduce different lev-

els of background relatedness in the samples and therefore, cause the shift of

estimated kinship coefficient distribution. On the other hand, high quality IBD

detection is fundamental and detection errors could also prevent the improve-

ment of relatedness and relationship inference.

1.2 Information Theory and Machine Learning Approaches

Relatedness and relationship inference can be treated as the classification prob-

lem, allowing for approaches using machine learning techniques and informa-

tion theory analysis. Given each degree or each relationship types as a class, the

difficulties of classification lie in that distributions of widely used features, i.e.,

kinship coefficients, proportions of the genome that is IBD0, IBD1, and IBD2,

overlap among different classes. The key is to discover informative features
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that can capture differences of classes.

Although many relatedness inference methods that only utilize kinship coeffi-

cients14,41,49,53, the number of IBD segments also draws attentions of some ap-

proaches, such as ERSA28. However, a recent evaluation49 found that its per-

formance does not always exceed that of other methods that rely solely on

kinship coefficients. To thoroughly investigate whether segment numbers pro-

vide additional information for relatedness inference beyond that provided by

kinship coefficients, feature selection based on information theory brings an

innovative view for evaluating additional features. More specifically, a com-

monly used measure—mutual information (MI)—can quantify the dependency

between various features and the class variable (here, the degree of relatedness),

as well as the dependency among the features themselves. This method has the

advantage of not assuming a linear relationship between the features and can be

calculated for both discrete and continuous variables2. This approach has been

widely used in machine learning and data mining in fields as diverse as bioin-

formatics and pattern recognition26,39,46 and can capture inherent links between

variables from an information theory perspective in a way that classification

cannot.

Machine learning approach for relatedness and relationship inference provide

flexibility in terms of feature sets, models, and even datasets. First, there are

machine learning models that does not make explicit assumptions about feature

distributions, which can be hard to justify or violated easily due to population

structures or IBD detection errors. In addition, features can be discrete or contin-

uous values, and do not require to have no biological meanings. Second, since
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machine learning models learn from training data, this approach can implic-

itly account for background relatedness and detection errors, given enough and

proper training data. Instead, traditional approaches need to post-process data

or adjust models to account for other factors based on specific datasets. Third,

estimated probabilities or likelihoods for each class can also be generated using

the machine learning approach. Afterwards, such as in pedigree reconstruction,

this information is extremely valuable.

1.3 Ancestral Genome Reconstruction

Ancestor reconstruction has been always an interesting yet challenging subject.

A recent study by Jagadeesan et al.31 shows the possibility of accurate recon-

struction and potential downstream analysis. This study reconstructed 38% of

the maternal genome of Hans Jonatan (HJ), a man born in 1784 to an African

mother and a European father. The fact that African gene flow to Iceland is

very rare allows for using local ancestry inference results from 182 of HJ’s geno-

typed descendants to reconstruct HJ’s maternal genome. Analysis of the recon-

structed genome indicated that HJ’s mother was likely from the region spanned

by Benin, Nigeria and Cameroon.

Besides this, other applications exist, including in the area of genome-wide as-

sociation studies (GWAS). For example, Kong et al.38 utilized descendants of

an ungenotyped deceased lung cancer patient to impute his haplotypes. They

recovered 1,001 SNPs in his two phased haplotypes and showed that the im-

puted region harbored variants associated with lung cancer. Such reconstruc-

tions make it possible to involve ungenotyped samples with phenotype infor-

mation in GWAS, which can enable improved power and is especially meaning-
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ful when the case is less attainable like in rare diseases.

These examples offer a hint into the future potential of reconstructing ancestral

genomes. However, the large numbers of genotyped descendants and com-

plete pedigrees required by previous methods are often unavailable in practice.

Moreover, the prior information about the African ancestry is a very special

case, thus that approach has limitations to reconstruct other distant ancestors.

In contrast, it is easier to collect genome segments of more recent ancestors from

a smaller number of descendants. Phenotype information for recent ancestors

may also be more easily attainable.

To reconstruct genome of parents from children is the fundamental step, when

accurate pedigree is not available. Children inherit two chromosome copies,

one from each parent, with both formed via recombination. So only half of the

genomes of each parent is transmitted to each child. When there are multiple

children available, due to independent segregation and randomized recombina-

tion, different child will inherit different regions of genome from both parents.

By expectation, n siblings will inherit a proportion of 1− (1/2)n of both parents’

genomes. As n increases, it is possible to reconstruct a large portion of parental

genomes from a set of genotyped children. The reconstruction of ungenotyped

parents has the potential applications in GWAS, relatedness inference, and other

downstream analysis.

In this thesis, we explore new approaches and methods to utilize IBD infor-

mation to improve relatedness and relationship inference, as well as the possi-

bility to reconstruct ancestral genome from descendants and relatives with the
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aid of IBD. In Chapter 2, we conduct both a mutual information analysis and

a machine learning classification to evaluate the importance of IBD segment

numbers for relatedness inference. In Chapter 3, we present CREST (Classifi-

cation of RElationShip Types), a novel approach to distinguish pedigree rela-

tionships of close relatives via multy-way IBD sharing. Chapter 4 introduces

our method, HAPI-RECAP (REConstruct Ancestral geontyPes), to reconstruct

parental genome from children and their close relatives.
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CHAPTER 2

EVALUATING THE UTILITY OF IDENTITY-BY-DESCENT SEGMENT

NUMBERS FOR RELATEDNESS INFERENCE VIA INFORMATION

THEORY AND CLASSIFICATION

2.1 Abstract

Despite decades of methods development for classifying relatives in genetic

studies, pairwise relatedness methods’ recalls are above 90% only for first

through third degree relatives. The top-performing approaches, which leverage

identity-by-descent (IBD) segments, often use only kinship coefficients, while

others, including ERSA, use the number of segments relatives share. To quantify

the potential for using segment numbers in relatedness inference, we leveraged

information theory measures to analyze exact (i.e., produced by a simulator)

IBD segments from simulated relatives. Over a range of settings, we found that

the mutual information between the relatives’ degree of relatedness and a tuple

of their kinship coefficient and segment number is on average 4.6% larger than

between the degree and the kinship coefficient alone. We further evaluated IBD

segment number utility by building a Bayes classifier to predict first through

sixth degree relationships using different feature sets. When trained and tested

with exact segments, the inclusion of segment numbers improves the recall by

between 0.0028 and 0.030 for second through sixth degree relatives. However,

the recalls improve by less than 0.018 per degree when using inferred segments,

suggesting limitations due to IBD detection accuracy. Lastly, we compared our

Bayes classifier that includes segment numbers with ERSA and IBIS and found

comparable results, with the Bayes classifier and ERSA slightly outperforming
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each other across different degrees. Overall, this study shows that IBD segment

numbers can improve relatedness inference but that errors from current SNP

array-based detection methods yield dampened signals in practice.

2.2 Introduction

Relatedness inference in genetic data often plays a fundamental role in enabling

more accurate genetic analyses—both in studies that directly leverage relatives

and those that prune them to avoid modeling violations. The need and oppor-

tunity to identify genetic relatives continues to increase as the scale of genetic

datasets increase7,23. One notable example is the UK Biobank wherein roughly

30% of genotyped individuals have a third degree (e.g., first cousin) or closer

relative in the study7. Applications that make use of genetic relatives are numer-

ous and varied and include pedigree reconstruction32,58, pedigree-based linkage

analysis for disease and trait mapping45, heritability estimation71,73, forensic ge-

netics67, and genetic genealogy55—a popular tool among direct-to-consumer ge-

netic testing customers. On the other hand, traditional genome-wide association

study tests and many population genetic models assume that the study samples

are unrelated, and, as such, must exclude inferred relatives to avoid spurious

signals or inaccurate parameter estimates64. All these applications motivate a

thorough analysis of the approaches used for relatedness inference to determine

which of the various features the methods should leverage.

Many relatedness inference methods only utilize kinship coefficients14,41,49,53,

while some such as ERSA leverage the number of identity-by-descent (IBD)

segments between a pair28. To date, the question of whether segment num-

bers provide information for relatedness inference beyond that of kinship coef-
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ficients has not been carefully explored. A recent evaluation of 12 pairwise relat-

edness inference methods using real relatives highlighted three top performing

approaches: ERSA and two IBD detection algorithms (i.e., using kinship coef-

ficients derived from their output)49. Although ERSA models the distribution

of both the number and lengths of IBD segments, that evaluation found that it

does not always outperform other methods that only use kinship coefficients.

One possible reason is that estimated segment numbers from most phase-based

IBD detection methods are inflated due to switch errors that typically break

up segments14,19,53. Alternatively, these results may indicate that IBD segment

numbers and lengths do not better capture relatives’ degrees of relatedness than

kinship coefficients.

To determine whether incorporating the number of IBD segments in a model

with kinship coefficients (or coefficients of relatedness) improves relatedness

inference, we first performed an information theory-based analysis. Feature

selection based on information theory is widely used in machine learning and

data mining in fields as diverse as bioinformatics and pattern recognition26,39,46.

We applied a commonly used measure—mutual information (MI)—to quantify

the dependency between various features and the class variable (here the degree

of relatedness) and also the dependency among the features themselves. An

advantage of this approach is that MI does not make an assumption of linearity

between the features and can be calculated for both discrete and continuous

variables2. In addition, the MI analysis results do not depend on the specific

classifier used downstream and can capture the relationship between variables

from an information theory perspective that is distinct from classification.
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We also conducted a classification-based analysis to determine the importance

of IBD proportions and segment numbers for inferring degrees of relatedness.

For this purpose, we developed a Bayes classifier with mathematical underpin-

nings that parallel those of MI. Bayes classifiers are a form of generative learning

that seek to minimize the probability of misclassification by estimating the prob-

ability of a given data point being from each class13. In this work, we assign a

pair of relatives to the maximum posterior probability degree, in contrast to ap-

proaches that map estimated kinship coefficients to degrees of relatedness using

a priori fixed ranges of kinship41,49,53. The latter ignores the effect of population

structure on IBD signals—including background IBD segments67. These effects

are important to model since they vary by population and can meaningfully

influence relatedness classification. Furthermore, bias in the detection of IBD

segments can shift the distributions of both IBD proportions and segment num-

bers. Such biases may especially impact classification of more distant relatives

as they have smaller ranges of kinship values that correspond to a given degree.

In light of these concerns, we estimate the probability of the features given the

degree (i.e., the likelihood) using training data simulated using genotypes from

the target population. This implicitly accounts for the influence of background

IBD segments as well as any errors in IBD segment detection. Researchers with

access to data from a given population can also apply this strategy by using the

available samples as founders in simulated pedigrees8.

Finally, we benchmarked the performance of our relatedness classifier together

with ERSA and IBIS using simulated genotypes. Overall, we obtained compara-

ble classification results for all the methods, indicating that the Bayes classifier is

reliable and suggesting that our approach can be used in practice given appro-
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priate training data resources. Notably, the Bayes classifier performs similarly

to IBIS (which does not use segment numbers) demonstrating that, in practice,

incorporating segment numbers provides very little improvement in classifica-

tion rates.

All the analyses in this paper leverage IBD segments from simulated data, either

exact segments produced by the simulator or segments inferred from simulated

genetic data. In particular, we investigated (1) MI quantities based on exact seg-

ments, (2) classification rates using exact segments, and (3) classification rates

from inferred segments. In this way, the MI analysis quantifies the theoreti-

cal information gain available by fully exploiting relatedness signals captured

by exact segment numbers. Additionally, the classification analysis using exact

segments reveals how much improvement in relatedness inference is possible

by incorporating IBD segment numbers in the limit of perfect IBD detection. Fi-

nally, comparing the classification results using exact versus inferred segments

enables us to localize the influence of IBD detection errors.

2.3 Results

We analyzed the potential for using coefficients of relatedness r (defined below)

either alone or both r and n, the number of IBD segments a pair of relatives

share, to infer the pair’s degrees of relatedness D. To begin, we quantified the

inherent dependency between the IBD segment features andD by analyzing MI

between the features and D. MI is a quantification of the information obtained

about one random variable through observing another; in this case, we ana-

lyzed the information gained about D through observing the variables r, n, or

(r, n). We compared our analysis of MI quantities with the corresponding Bayes
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classification results based on features r, n, and (r, n); the conclusions we form

about the classification effectiveness of different feature sets are therefore based

on both the MI and classification results.

Throughout, we refer to IBD regions that two individuals share on only one hap-

lotype copy as IBD1, and those the individuals share IBD on both chromosomes

as IBD2.

Mutual information analysis

We used thousands of relative pairs to estimate mutual information I(~F ; D)

between different IBD features ~F and the degree of relatedness D of each pair

(Methods, “Estimating mutual information”). Specifically, we compared MI val-

ues of I(n ; D), I(r ; D), and I((r, n) ; D) calculated using units of bits. Let k(1)ij

and k
(2)
ij denote the proportion of their genomes that individuals i and j share

IBD1 and IBD2, respectively—i.e., the sums of genetic lengths of all IBD1 or

IBD2 segments divided by the total genetic length of the genome analyzed. We

calculate r as twice the kinship coefficient or r =
k
(1)
ij

2
+ k

(2)
ij .49

The first analysis uses exact IBD segments from pairs of individuals that each

have one of 13 genetic relationships (Table 2.1). To reduce the influences of

randomness, we replicated this analysis by performing 80 independent simu-

lations. We also analyzed three different distributions of numbers of pairs per

degreeD: uniform, exponential, or a slow-exponential function where the num-

ber of pairs increases exponentially with degree for both the exponential and

slow-exponential distributions (Figure A.1). The exponential function is po-

tentially a more realistic distribution of relatives than the uniform, while the
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slow-exponential is intermediate between the two.

Degree Relationships

1 Full siblings

2 Half-siblings, Avuncular

3 First cousins, Half avuncular

4 First cousins once removed, Half first cousins

5 Second cousins, Half first cousins once removed

6 Second cousins once removed, Half second cousins

7 Third cousins, Half second cousin once removed

Table 2.1: Simulated relationship types in each degree of relatedness. Half
relatives share only one common ancestor while other types have two common
ancestors.

Figure 2.1(a) shows the average MI of the simulated pairs computed over all

80 runs (Methods, “Simulated data”). For each distribution shape, the MI be-

tween the multivariate feature (r, n) and univariate D is the greatest, followed

by I(r ; D) and I(n ; D). To quantify the relative increase in MI when including

both n and r, we used a normalized MI gain GN(x) ≡ I((r,n) ;D)−I(x ;D)
I((r,n) ;D)

where

x ∈ {r, n}. The normalized MI gain GN(r) (the increase in information gained

from using (r, n) beyond that of only using using r) is 0.030 for the uniform dis-

tribution, 0.040 for the slow-exponential, and 0.068 for the exponential. Greater

MI indicates a stronger dependency between the features and D, and therefore

classifying D based on features with greater MI should yield greater recall. At

GN(r) of 0.068 for the exponential distribution, we expect that incorporating

numbers of perfectly detected segments could meaningfully improve classifica-

tion of degrees of relatedness compared to using r alone, especially for higher

order degree pairs. In turn, the normalized gain over using segment number

alone, GN(n), is 0.15 for the uniform distribution, 0.14 for the slow-exponential,
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Figure 2.1: MI between relative pairs calculated using exact IBD segments.
MI between (a) various IBD feature sets and D and (b) r and n conditioned
on the relatives’ degree of relatedness. All MI quantities are averaged over 80
independent runs, and the values in (b) are calculated using the uniform distri-
bution with 33,000 pairs per degree. Error bars indicate one standard error and
are barely visible in (a) (all of order 10−3).

and 0.13 for the exponential, demonstrating that use of r dramatically improves

classification rates compared to only using n, regardless of the distribution of

D.

Across all three feature sets, the MI is maximal for the uniform D distribution

and decreases as the distribution becomes more exponential. By construction,

the exponential distributions have a higher proportion of high-degree relative

pairs compared to the uniform distribution. Therefore, the IBD features from

higher degree pairs share less information with D than lower degree pairs. This

is consistent with observations from classification analyses that show that the

recall of degree inference decreases as the degree increases49.
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To better understand how r and n relate to each other as well as to D, we cal-

culated MI between these two features using the exact IBD segments and con-

ditioned on the degree of relatedness (Figure 2.1(b)). The amount of shared

information between features r and n monotonically increases with degree of

relatedness, meaning that in higher degree pairs r and n have increased redun-

dancy. Therefore, using both features has less benefit for classification in higher

degrees. Nevertheless, both r and n individually become less informative about

D with increasing degree, so any additional information can be useful.

Bayes classification and statistical tests of exact and inferred IBD

segments

As MI quantities from exact IBD segments suggest the potential for sizeable im-

provements by using (r, n) to determine D, we sought to understand whether

parallel results arise from explicit relatedness classification. To that end, we sim-

ulated another 210,000 pairs of relatives for training, this time producing genetic

data for them using genotypes from UK Biobank unrelated samples as pedigree

founders (Methods, “Simulation”). We detected IBD segments in these samples

with IBIS and used the resulting r and n quantities to train Bayes classifiers. For

comparison, we further trained a separate set of classifiers using the exact IBD

segments from the same simulated pairs (Methods, “Bayesian classification”).

Using Bayes classification allowed us to incorporate our prior knowledge of the

distribution of D to better determine the pairs’ degrees, and also more closely

mirrors the mathematical basis of MI. For both the inferred and exact statistics,

we generated a set of three classifiers, one trained only on the coefficient of re-

latedness r, one on the IBD segment number n, and a third on the vector (r, n).
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Figure 2.2: Recalls of Bayes classifiers for first through sixth degree relatives.
Results are from classifiers trained on (a) exact and (b) inferred segments with
features n, r, or (r, n). The recalls for both (a) and (b) are calculated using the
uniform distribution of 3,000 pairs per degree and averaged over 80 indepen-
dent runs. For each degree, the lower subplot shows the corresponding signifi-
cant (P < 10−4) change in recall between classifiers (r, n) and r (positive values
have greater recall in the (r, n) classifier). Significant increases and decreases
per degree are shown in pink and purple, respectively. Error bars indicate one
standard error.

We tested both the exact and inferred segment classifiers on 80 independent

simulated datasets containing 3,000 simulated relative pairs per degree, again

inferring segments with IBIS. (Genetic data for testing pairs was produced iden-

tically to the training pairs, as noted above.)

Figure 2.2 shows the recalls of these classifiers as a function of degree and also

shows the recall differences between classifiers trained on (r, n) and r. We also

show the proportions and types of misclassifications in the inferred and exact

datasets in Figure A.2 and A.3. Almost all misclassified pairs are inferred as an

adjacent degree of relatedness compared to the truth (i.e., one degree closer or
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more distant). Note that we do not report accuracy results for seventh degree

relatives as these pairs act as an “unrelated” class that provide bounds on sixth

degree relatedness classification.

Overall, recalls for all three classifiers decrease monotonically as a function

of the degree of relatedness. For first and second degree pairs, the classifiers

trained on r and (r, n) both have nearly perfect recall values of over 0.99. For

higher degree pairs from third through sixth degree, the recalls of the r and

(r, n)-trained classifiers fall from over 0.93 (third degree) to below 0.55. This

is consistent with previous observations from real relatives49, and aligns well

with our results based on MI: The features of higher degree pairs share less in-

formation with D, meaning that the IBD signals of higher degree pairs tell the

classifier less about their true D (see misclassification rates in Figure A.2 and

A.3. The classifier trained on n alone performs poorly in all but degree one: For

second degree relatives, the classifier trained on inferred segments has a recall

of only 0.86, and in third through sixth degree relatives its recall is 0.06 to 0.27

units lower than those of the classifier trained on r. The results for the classi-

fier trained on exact segments are qualitatively similar to those of the inferred-

segment classifier.

In general, when using both exact and inferred IBD segments, the classifiers

trained on (r, n) outperform those trained on r for every degree. One excep-

tion is in the inferred IBD segments for sixth degree pairs, where the classifier

trained on r has a recall of 0.54 while the classifier trained on (r, n) has a recall

of 0.53. This decrease in recall is counter-intuitive because the (r, n) classifier is

trained on a strictly larger feature set and so has more information than the r
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classifier. In addition to general stochasticity introduced by segment detection

for these distant relatives, it may be that this decrease is caused by the distri-

butions of segment numbers inferred by IBIS (Figures A.4 and A.5): IBIS does

not detect segments smaller than 7 cM and so the distribution of numbers of de-

tected segments for fifth and sixth degree pairs have lower means and are more

similar to each other.

We ran two-sided independent sample t-tests on the recalls from the (r, n) and

r classifiers trained on the inferred IBD segments. Except for the first degree

relatives, in which all three classifiers have recalls of nearly 1.0, and the second

degree pairs, in which the two classifiers containing r have above 0.99 recall, the

differences in recall between the (r, n) and r classifiers are significant (P < 10−7)

but small in magnitude. These differences range from −0.00756 to 0.0179 in

third through sixth degree pairs. In turn, for the classifiers trained on exact IBD

segments, the (r, n) classifier has significantly greater recall than the r classifier

in third through sixth degree relatives (P < 10−4). The improvement in recall

ranges from 0.0029 to 0.031, suggesting that better IBD segment inference would

meaningfully benefit classification with (r, n) (Figure 2.2).

Comparison with IBIS and ERSA

To put these results in the context of existing methods, we compared our Bayes

classifier with IBIS’s built-in relative classifier and with ERSA, another method

that models relatedness using IBD segment number (as well as with segment

length). This analysis uses for testing another independent set of 3,000 pairs

per degree, again simulated from UK Biobank individuals. Our Bayes classifier

remained trained on the same 210,000 pairs as above.
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In general, all three methods performed comparably. The accuracy of the Bayes

classifier closely tracks that of IBIS, which may be because the Bayes method

takes IBIS segments as input. At the two extremes of relatedness we consid-

ered, all three methods have similar recalls for first degree and sixth degree

relatives with differences smaller than 0.01. The Bayes classifier has nearly iden-

tical recall to IBIS in second and third degree pairs (the differences are bounded

above by 0.004), whereas ERSA’s recalls for these degrees are 0.06 and 0.02 units

smaller, respectively. (An analysis with real relatives also found that ERSA’s

second degree classification rates are reduced compared to other approaches49.)

For fourth degree relatives, ERSA has a recall 0.01 units higher than the Bayes

classifier, and 0.035 units higher than IBIS. ERSA also outperformed the Bayes

classifier and IBIS on fifth degree pairs by 0.067 and 0.054 units, respectively.

ERSA’s improved performance compared to the other two methods may be be-

cause of its use of ≥ 2.5 cM segments (instead of ≥ 7 cM segments from IBIS).

Consistent with this, simulated fourth and fifth degree relatives have a non-

trivial proportion of 3–7 cM segments (Figure A.6)—suggesting that these un-

detected IBD segments may lead to more erroneous calculations by IBIS and the

Bayes classifier. Another factor benefiting ERSA is its population model that ac-

counts for background relatedness, which may help it in this and other datasets.

Additionally, we used perfectly phased data as input to GERMLINE20, and we

supplied the resulting segment calls to ERSA (Methods, “Simulated data”). No-

tably, ERSA’s higher recalls for fourth and fifth degree pairs are close to the

range of the Bayes classifier’s recalls using exact IBD segments (in fact, ERSA

outperforms the exact Bayes classifier in these degrees by 0.012 and 0.0031, re-

spectively). Finally, considering run time, the Bayes classifier is efficient, taking

on average 1 minute 40 seconds to analyze the test data and 7 seconds to train
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Figure 2.3: Confusion matrix of recalls of ERSA, IBIS, and our Bayes classifier
trained on (r, n).

on the 210,000 training pairs. In contrast, ERSA takes more than 3.5 CPU days

to classify the testing pairs.

2.4 Methods

Mutual information discrete definition and binning ap-

proaches

MI is difficult to calculate for continuously valued variables without a known

distribution and whose distribution must therefore be estimated from finite

data. Furthermore, estimating the MI between one continuous and one discrete

random variable is in general non-trivial and multiple approaches exist for this

estimation, such as nearest-neighbor51 and binning methods. To enable our MI

calculations (such as I(r ; D)), we used a procedure that bins data points of r
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and avoids biased MI estimates in our finite but large sample size. In comput-

ing MI, we treated the binned feature vector ~F (where ~F has the possibility of

being one dimensional when representing r or n) and the degree of relatedness

D as two discrete random variables with realizations f and d ∈ [1, 7], respec-

tively. If we know the probability mass functions (pmfs) of the discrete random

variables X and Y with realizations x and y, we can calculate MI using its defi-

nition as

I(X ; Y ) =
∑
x

∑
y

pX,Y (x, y) log
pX,Y (x, y)

pX(x)pY (y)
, (2.1)

where pX,Y is the joint pmf of X and Y and pX , pY are the marginal pmfs of X

and Y respectively.

Binning a continuous variable in order to use Equation (2.1) introduces the diffi-

culty of picking the right bin size. It has been shown51 that MI is sensitive to bin

size and that its stability with respect to this variable is dependent on the sam-

ple distribution. Our distributions and sample sizes of r yielded a large range

of bin sizes that have stable MI estimates (see the flat regions of each curve in

Figure A.7). Because the fraction GN is normalized by MI, its correct calcula-

tion relies on the unbiasedness of the various MI quantities that form it. At bin

sizes smaller than 150 pairs per bin (ppb), both the means and standard devi-

ations (Figure A.8) of our MI quantities increased rapidly. Given this, in our

calculations of MI, we binned r at 150 ppb, where our binning converts a con-

tinuous value of r to its nearest bin-value in 150 evenly spaced numbers from

[min(~r), max(~r)]. Here and below ~r represents all sampled training and testing

data points r.
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Estimating mutual information

Calculating Equation (2.1) without access to the entire spaces X and Y—i.e.,

estimating MI from sampled data—is contingent on the estimation of marginal

and joint probabilities pX , pY , and pX,Y . We used a simple counting approach to

calculate each probability, assigning p̂F (f) = 1
N

∑N
i 1(bin(Fi) = bin(f)). Here ~F

is the vector of realized data points representing all N sampled values for the

desired feature r, n, or (r, n); bin(x) denotes the function that takes a continuous

realization to its binned value; and 1(X = Y ) is the indicator function. By

binning r to 150 ppb as noted in the previous subsection, we were able to use

this discrete maxium likelihood estimator (MLE) approach for calculating every

desired pmf and obtain stable results in MI.

We performed calculations of MI on the exact IBD segment data restricted to

three distribution shapes: A uniform distribution, a “slow-exponential” dis-

tribution, and an exponential distribution (see Figure A.1). We accounted

for different distributions of D in the calculations of I(~F ; D) by decompos-

ing the joint pmf relating ~F and D as pF (f, d) = pF (f |d)pD(d), and also de-

composing the marginal pmf on ~F (with the law of total probability pF (f) =∑
d′ pF (f |d′)pD(d′)). Equation (2.1) is then expressed as

I(~F ; D) =
∑
f

∑
d

pF (f |d)pD(d) log
pF (f |d)∑

d′ pF (f |d′)pD(d′)
(2.2)

by canceling the pD(d) terms in the numerator and denominator. pF (f |d) is the

pmf of realizations of feature ~F in a given degree, and pD(d) is the distribution

shape (from Figure A.1). This approach removes noise associated with calcu-

lating the pmfs p̂F,D for different distribution shapes, which stems in part from

random factors in finite sample sizes (including smaller numbers of pairs in the
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non-uniform distributions). In particular, because the probabilities of f condi-

tioned on any given degree of relatedness d are identical across each distribution

shape, we estimated pF (~F |d) once only from the uniform distribution data. Note

too that the differences in MI due to the D distribution are entirely accounted

for in the probabilities pD(d), and these are exactly calculable given the equation

for each distribution.

Probability density estimation of features

In the context of the Bayes classifier, we estimated the probability of a feature

realization f conditioned on the training data ~T d in degree d according to the

degree-wise count as

p̂(f |d, ~T ) = 1

NT
d

NT
d∑

i=1

1(bin(T di ) = bin(f)), (2.3)

T di being a particular realization of the training data ~T d with total count NT
d .

However, we only had access to the frequencies of realizations f that occur at

least once in the training data, so Equation (2.3) is only calculable for these val-

ues. The total training data ~T and testing data ~τ are of dimension equal to their

respective number of data points NT or N τ . To generate posteriors p(D|τi) for

realizations in ~τ at values where there are no training data points in bin(τi), we

linearly interpolated the values given by Equation (2.3) within the convex hull

(see Figure A.9) specified by the bounds of the training data. (Strictly speaking,

these posteriors are then incorrect pmfs with mass greater than 1—however, in

practice this is only relevant for a vanishingly small number of points.) We used

the scipy packages interp1d and griddata for the linear interpolations in

one-dimension (when ~F is either r or n) and two-dimensions (when ~F is (r, n)),

respectively.
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In the case that ~F is (r, n), the two-dimensional linear interpolation of p̂(f |~T )

values are only well-defined inside of the two-dimensional convex hulls of the

training data. Therefore, we could not assign posteriors to realizations of the

testing data that lay outside the bounds of the training data. For these data

points (labeled in Figure A.9 as “Unscored under (r, n)”), we assigned proba-

bility values according to the one-dimensional interpolation of p(f |~T d) values

with ~F = r. The one-dimensional interpolations for ~F = r (or ~F = n) only

remained undefined when they occurred outside the interval of training values

[min(~r),max(~r)] (or [min(~n),max(~n)]), in which case they remained unclassified

in our analysis. In the inferred segment data, there was only a maximum of one

point per degree that remained unclassified.

Bayes classification

Our classifiers use the posterior probabilities p(D|~F , ~T ) = p(~F |D,~T )p(D)

p(~F |~T )
for the

single and multivariate features ~F to infer D in the testing data. The priors p(D)

are the known shape of the degree distribution (Figure A.1), and we generated

the probability of our data p(~F |~T ) as the sum across degrees according to the

law of total probability
∑

d p(
~F |d, ~T )p(d). We calculated likelihoods p(~F |D, ~T )

according to the estimator in Equation (2.3). To classify a testing pair τi to a

certain degree, we calculated log p(D|τi) for each degree and classified the pair

as the maximum a posteriori degree:

DP
i = argmax

d′∈D
log p(D = d′|τi), (2.4)

whereDP
i is the predicted degree, andD is the set of possible degrees {1, . . . , 7}.

The recall of a particular classifier for degree d is 1
Nτ
d

∑Nτ
d

i 1(DP
i = d).
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The classifier takes input IBIS segments and calculates the IBD proportion and

segment numbers for all pairs of individuals with at least one detected IBD seg-

ment. It classifies any pair with r < 2−15/2 (a common lower bound for seventh

degree classification41,49) as unrelated, and, for all other pairs, predicts their de-

gree using Equation 2.4.

Simulated data

For the exact IBD segment data, we used Ped-sim8 to simulate 231,000 rela-

tive pairs of 13 relationship types from seven degrees of relatedness (Table 2.1)

(replicated 80 times for the MI analysis and once for the classification-based

analysis) and leveraged the IBD segments this tool prints. Thus these segments

are free of error and we refer to them throughout as exact. We used both sex-

specific genetic maps3 and crossover interference modeling27 for these simula-

tions.

For each degree, we simulated an equal number of pairs from each of two rela-

tionship types. The one exception is first degree relatives where we only consid-

ered full sibling pairs since parent-child pairs always have r = 0.5 and are trivial

to identify. We doubled the number of full sibling pairs (to the total number as-

signed from the distribution shape) so that the first degree relatives included the

full number of pairs. We calculated the IBD proportion by adding the lengths

of all outputted IBD segments and dividing by the total length of the sex aver-

aged genetic map—halving the length of IBD1 segments (see the equation for r

in Results). We calculated the segment number by counting the number of out-

putted IBD segments from either Ped-sim (exact) or IBIS (inferred, as described

next).
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To simulate relatives with genetic data, we used autosomal genotypes from par-

ticipants in the UK Biobank7 as founders in Ped-sim runs. We used the phased

data distributed by the UK Biobank7 and, before simulating, filtered the sam-

ples to include the white British ancestry subjects. To filter out close relatives,

we first performed SNP quality control filtering on the UK Biobank unphased

genotypes (filtering SNPs with minor allele frequency less than 2%, missing

data rate greater than 1%, and retaining only SNPs used for phasing in the

original analysis7). Next we ran IBIS v1.20.8 on the filtered genotypes with

the -maxDist 0.12 option and with IBD2 segment detection enabled. This

provided kinship coefficients that we then input to PRIMUS58, running it with

--no_PR (which corresponds to not reconstructing pedigrees: executing only

IMUS57) and --rel_threshold 0.022 to filter out relatives with a kinship

coefficient greater than 0.022 (i.e., retaining only pairs no more closely related

than fifth degree41). We ran Ped-sim as described above (using sex-specific ge-

netic maps and crossover interference modeling) and otherwise used default

options (including genotyping error and missing data rates of 10−3). Finally,

we used IBIS v1.20.7 (enabling IBD2 detection with -2) to detect IBD segments

between these simulated relatives.

Running ERSA

To get relatedness estimates from ERSA28, we first ran GERMLINE20 v1.5.1 with

-err_het=1 and -err_hom=2 (the options recommended by the ERSA au-

thors) on the simulated Ped-sim haplotypes. That is, we provided ERSA per-

fectly phased data output by the simulator. We then ran ERSA with default

options on the resulting GERMLINE segments.

30



Runtimes

We ran both ERSA and our Bayes classifier on a machine with an AMD EPYC

7702 2.0 GHz processor and 1 TB of RAM. We supplied 16GB to ERSA and 8GB

to our Bayes classifier. Both methods are single threaded.

2.5 Discussion

In this paper, we sought to examine how much incorporating the number of IBD

segments together with the coefficient of relatedness of a relative pair improves

degree of relatedness inference. We thus provided both a theoretical MI analysis

using simulated exact IBD segments and a machine learning-based classification

analysis using exact and inferred segments. The results using exact segments

show that including IBD segment numbers can non-trivially enhance related

inference quality, especially for distant relatives. However, the results using

inferred segments reveal that IBD detection errors—including false negatives

for segments shorter than 7 cM—meaningfully limit this improvement. Indeed,

the performance of our machine learning classifier is almost indistinguishable

from IBIS (Figure 2.3), which does not use segment numbers. With the potential

development of more accurate IBD detection tools in the future—including for

whole genome sequencing data—use of IBD segment numbers in relatedness

inference models may be worth considering.

We introduced a machine learning-based classifier and demonstrated that it has

comparable accuracy to two state-of-the-art methods and is computationally ef-

ficient. Because we fit the classifier to population-specific training data (instead

of using fixed kinship thresholds for each degree49,53), it implicitly accounts for
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background IBD sharing and erroneous IBD signals. This approach differs from

model-based methods such as ERSA in that it makes no assumptions about the

distributions of IBD segment lengths or numbers with respect to relatedness

degrees. Those assumptions can be violated in populations with small effective

size or a historical founder effect28. Our trials of this machine learning method

suggest that even without data for large numbers of (labeled) real relatives, sim-

ulating relatives enables this data-driven approach to relatedness inference. Ad-

ditionally, both the machine learning classifier and the MI analyses can be easily

extended to include other IBD features such as the minimum or maximum IBD

segment length between a pair.

An important factor in attempting to utilize IBD segment numbers is their accu-

rate detection. Switch errors profoundly influence segment number estimates

when using phase-based IBD detectors14,19,44,53. Our use of IBIS segments in

our classifier was motivated by IBIS’s ability to call IBD segments in unphased

data—one of only a few methods to do so14—which is key to avoiding biased

segment number estimates. ERSA takes inferred IBD segments from the phase-

based IBD detector GERMLINE. To exclude the possibility of phasing errors

impacting ERSA’s performance, the phased data we provided GERMLINE was

that generated by the simulator, thus being perfect up to the limit of the haplo-

types input to Ped-sim. In particular, these haplotypes do not contain switch er-

rors in IBD segments between the simulated relatives. It is possible that ERSA’s

superior performance in classifying fifth degree relatives is enhanced by its seg-

ment detection in these data.

In general, our analyses are consistent with prior work showing that relatedness
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inference can achieve high recall for up to third degree relatives. However, two

recent papers have focused on distinguishing relationship types of the same de-

gree, especially three types of second degree relatives47,70. In this setting, IBD

segment numbers can provide useful information, such as for distinguishing

avuncular from grandparent-grandchild pairs23. Still, for degree of relatedness

inference, even when using exact IBD segments, the classification recalls for

distant relatives—i.e., those beyond fourth degree—are limited (Figure 2.2(a)).

This suggests that pairwise IBD information might not be sufficient to reliably

infer distant relatives, regardless of segment quality. Approaches that leverage

multi-way IBD signals to infer more distant relatives can achieve considerably

higher accuracy than those of pairwise methods50,59. Even so, these multi-way

methods are built on pairwise classifiers, so understanding and improving pair-

wise relatedness classification remains an important fundamental problem for

relatedness inference.
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CHAPTER 3

DISTINGUISHING PEDIGREE RELATIONSHIPS VIA MULTI-WAY

IDENTITY BY DESCENT SHARING

3.1 Abstract

The proportion of samples with one or more close relatives in a genetic dataset

increases rapidly with sample size, necessitating relatedness modeling and en-

abling pedigree-based analyses. Despite this, relatives are generally unreported

and current inference methods typically detect only the degree of relatedness

of sample pairs and not pedigree relationships. We developed CREST, an ac-

curate and fast method that identifies the pedigree relationships of close rel-

atives. CREST utilizes identical by descent (IBD) segments shared between

a pair of samples and their mutual relatives, leveraging the fact that sharing

rates among these individuals differ across pedigree configurations. In simu-

lated data, CREST correctly classifies 91.5-100% of grandparent-grandchild (GP)

pairs, 80.0-97.5% of avuncular (AV) pairs, and 75.5-98.5% of half-siblings (HS)

pairs compared to PADRE’s rates of 38.5-76.0% of GP, 60.5-92.0% of AV, 73.0-

95.0% of HS pairs. Turning to the real 20,032 sample Generation Scotland (GS)

dataset, CREST identified seven pedigrees with incorrect relationship types or

maternal/paternal parent sexes, five of which we confirmed as mistakes, and

two with uncertain relationships. After correcting these, CREST correctly deter-

mines relationship types for 93.5% of GP, 97.7% of AV, and 92.2% of HS pairs

that have sufficient mutual relative data; and it completes this analysis in 2.8

hours including IBD detection in eight threads.
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3.2 Introduction

Modern scale genetic datasets contain tens to hundreds of thousands of indi-

viduals, sample sizes within which numerous close relatives exist7,56. Char-

acterizing relatives within such datasets is essential to avoid spurious signals

and to improve power in genetic association studies34,64,74, but standard mod-

els considering only kinship estimates while ignoring the potential for differ-

ent relationship types to vary in their shared environmental effects and there-

fore their heritabilities71,73. Moreover, while population genetic studies typ-

ically filter close relatives to avoid modeling violations65, such an approach

will dramatically reduce sample sizes in large datasets7,56. One way to en-

able analyses of more study samples is to directly model the transmission of

shared haplotypes—i.e., identical by descent (IBD) segments63—using the pedi-

gree structure of each set of relatives, but this requires accurate determination of

those pedigrees. And although several approaches exist for inferring pedigrees

from genetic data22,37,58, ambiguities in the samples’ true pedigree relationships

limit the utility of these methods.

Identifying pedigree relationships is simple for first degree relatives41—parent-

child (PC) and full sibling pairs—yet distinguishing relatives only one degree

more distant, including grandparent-grandchild (GP), avuncular (AV), and half-

sibling (HS) pairs remains a challenge. Most methods infer only the degree of

relatedness of a pair using either the number and length of pairwise IBD seg-

ments23,28, or the proportion of their genome a pair shares IBD41,49. However, an

existing method that leverages these pairwise signals provides limited ability to

discriminate among second degree relationships16. Still, IBD segment number

distributions overlap little between GP and AV types23, and segment position
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may be possible to leverage to infer relationship types using only pairwise IBD

segments25. Turning to multi-way IBD approaches, a recent method detects

aunts/uncles of siblings50, but it requires at least two siblings to work and can

only identify their aunts/uncles.

We developed CREST (Classification of RElationShip Types), a novel approach

for inferring pedigree relationships that leverages multi-way IBD sharing.

CREST utilizes multi-way IBD sharing to differentiate relationship types, re-

lying on the fact that a pair of close relatives is expected to share IBD regions

with their mutual relatives at different rates depending on the pair’s relation-

ship. For example, consider a mutual relative that is the parent of the genet-

ically older member of a second degree relative pair. Because each meiosis

leads to the transmission of half a parent’s DNA, a grandchild will, in expec-

tation, inherit 1/4 of the regions shared IBD between the grandparent and the

mutual relative—i.e., the parent of that grandparent. In the case of AV pairs,

since two full siblings have equal IBD sharing with their parent, the child of

one sibling—the niece/nephew of the other—is expected to share 1/2 as many

sites IBD with her/his grandparent as the aunt/uncle does. Lastly, two half-

siblings have equal IBD sharing with their common parent. These same sharing

rates—the genetically younger sample in GP, AV, and HS pairs sharing fractions

of 1/4, 1/2, and 1 compared to the older sample, respectively—arise for many

other types of mutual relatives, enabling the classification of relationship types.

Thus, we derived IBD sharing quantities based on this idea and trained kernel

density estimation models (KDEs) to classify these three types of second degree

relatives in CREST.
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This approach of leveraging IBD sharing with mutual relatives not only deter-

mines the pedigree relationship types of second degree relatives, it also iden-

tifies the directionality of the relationship—that is, which sample is genetically

older (e.g., which is the grandparent or aunt/uncle). In particular, the sample

with higher levels of IBD sharing with mutual relatives is most likely to be from

an earlier generation. (Other pedigree inference methods similarly identify this

information using kinship coefficients37,58.) CREST applies this logic to GP and

AV pairs and to PC relatives to detect which sample is the parent. When avail-

able, age information unambiguously implies the genetically older sample for

direct descendants (PC and GP relationships), but can fail for AV pairs since a

niece/nephew may be (temporally) older than an aunt/uncle.

We used a combination of simulated and real pedigree data to evaluate CREST,

the latter from the Generation Scotland43,54 (GS) cohort. The GS data consist of

20,032 samples recruited as part of families, and include 848 GP, 6,599 AV, and

381 HS pairs. We also compared CREST’s results in simulated data to those

of PADRE59, a composite likelihood method that infers pedigree structures for

two sets of close relatives when members of the sets are also related to each

other. PADRE makes use of the relationship between the two sets to choose the

PRIMUS pedigree that maximizes its composite likelihood and, in the process,

implicitly infers the pedigree relationship of the second degree pairs.

In addition to classifying second degree relatives, the CREST approach may be

extended to infer more distant relationship types. For example, when using

simulated pedigrees that include a pair of third degree relatives and two first

cousins of the genetically older sample, CREST can also distinguish third de-
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gree relatives with high accuracy, thus highlighting the potential for expanding

CREST’s target relationships as datasets further grow in size.

3.3 Methods

CREST takes inferred IBD segments from a set of samples as input and applies a

multi-way IBD sharing analysis to classify pedigree relationships among pairs.

The multi-way IBD segment analysis calculates ratios from the IBD regions that

a target pair of close relatives and their mutual relatives share, as described be-

low. The algorithm then uses KDEs we trained on ratios from simulated relative

sets to infer the pair’s relationship type. CREST is open source and freely avail-

able (Web Resources).

We used IBIS53, an approach that operates on unphased genotype data, to in-

fer both IBD segments and degrees of relatedness. While CREST can use good

quality IBD segments inferred by any method, IBIS produces IBD segments that

are largely free of internal gaps53, with the trade-off that by default it identi-

fies ≥ 7 cM segments. Furthermore, our experimental results indicate that use

of these long segments suffices for discriminating between second degree rela-

tionship types. Still, the use of shorter, gap-free IBD segments has the potential

to increase the quality of CREST’s inference further.

Throughout, we refer to IBD regions that two or more samples share on only

one haplotype copy as IBD1 segments, and those the individuals share IBD on

both chromosomes as IBD2 regions. Correspondingly, IBD0 regions are those

where the given samples do not share an IBD segment.
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Multi-way IBD sharing ratios

CREST utilizes the IBD regions shared between a pair of close relatives x1 and

x2 and one or more of their mutual relatives to distinguish their relationship.

The expected IBD rates we adopt are based on the assumption that each mutual

relative y is related to both x1 and x2 only through the most recent common

ancestor(s) (MRCA(s)) of x1 and x2. CREST further assumes that there is only

one lineage from the MRCA(s) to both x1 and x2, thus excluding cases of close

inbreeding. Under these assumptions, all IBD segments shared between y and

one or both of x1 and x2 must have been transmitted by this/these MRCA(s)

through one lineage. For example, if x1 is the grandparent of x2, we take their

MRCA to be x1 itself, and if y is the half-sibling of x1, y is related to both x1

and x2 only through x1 (via the common parent of x1 and y), so the assumptions

hold. However, if y is the half-sibling of the grandchild x2, y is related to x2

through their common parent, and not only through x1, in conflict with the

assumption. In fact, mutual relatives that are descendants of either x1 or x2

violate the assumption in many cases. To exclude direct descendants of x1 and

x2, we only analyze mutual relatives that are third degree (e.g., a first cousin)

or more distant relatives of both x1 and x2. Because most genetic datasets only

span two or three generations, this strategy should generally prevent analyses

involving descendant mutual relatives.

The intuition behind the approach CREST uses is that x1 and x2 will have differ-

ent relative amounts of IBD sharing with a given mutual relative y depending

on their relationship. We use two ratios to quantify the IBD sharing rates:

Ri =
length(IBD(x1, x2, y))

length(IBD(xi, y))
, i ∈ {1, 2}.

Here IBD(s1, s2, . . . , sn) denotes the set of IBD regions that all samples
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s1, s2, . . . , sn share, i.e., the intersection of the IBD segments each of the
(
n
2

)
pairs

share. The length function sums the genetic length (i.e., Morgan [M] length) of a

set of IBD segments, accounting for the diploid status of each segment. That is,

for a given set of IBD segments I ,

length(I ) =
∑
i∈I


1
2
`(i) if i is IBD1

`(i) if i is IBD2,

where `(i) denotes the (M) genetic length of an IBD segment i, here from a sex

averaged genetic map. The numerators are the same in both ratios and give the

genetic length of IBD regions shared jointly by all three samples. The denomi-

nators are the length of IBD segments shared by x1 and y in R1, and by x2 and y

in R2.

These ratios differ according to the relationship type of the second degree

relatives. Specifically, for a GP pair, if x1 is the grandparent of x2, the

numerator length(IBD(x1, x2, y)) = length(IBD(x2, y)) since x2 will inherit

a subset of the IBD segments x1 shares with y (Figure 3.1A). Additionally,

E[length(IBD(x2, y))] = 1
4
· length(IBD(x1, y)) since x2 is two meioses away

from x1 and each meiosis leads to the transmission of an average of one-half

of the IBD segment length any pair of relatives shares. Thus, E[R1] =
1
4

and

E[R2] = 1. Similarly, each member of a HS pair independently inherits one-

half of the genome of their common parent p̃, so the probability that they both

inherit a given IBD region that p̃ and y share is
(
1
2

)2 (Figure 3.1A). Therefore

the expected numerator is 1
4
· length(IBD(p̃, y)), and the expected denomina-

tor is 1
2
· length(IBD(p̃, y)) for both R1 and R2, so E[R1] = E[R2] =

1
2
. In the

case of an AV pair, the aunt/uncle inherits half the genome of her/his parent

g̃—the grandparent of the niece/nephew—that is related to y. And, as in the
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Figure 3.1: Example IBD sharing between the three types of second degree
relatives and one of their mutual relatives. Samples with filled shapes are
those for which data are available and include the close relative pair x1 and x2
and their mutual relative y. The dashed line connecting an MRCA of x1 and
x2 to y indicates that the pedigree structure between that MRCA and y need
not be known. Sexes here are arbitrary and the pedigree relationship type in-
ference works identically for all sample sexes. Haplotypes for the genotyped
individuals appear below each pedigree plot as blue or grey vertical bars, with
haplotypes for ungenotyped common ancestors of the HS and AV pairs that are
related to y also shown. The blue regions are either one haplotype of an MRCA
of x1 and x2 or IBD segments other individuals share with this haplotype. (Grey
portions of the vertical bars are not IBD with the blue haplotype in the MRCA
and do not enter the analysis.) The black boxes outline the regions shared IBD
between x1 and y, and the red boxes outline the regions x2 and y share IBD.

GP case, the niece/nephew is expected to inherit one-quarter of the genome of

g̃ (Figure 3.1C). Therefore the expected numerator is 1
2
· 1

4
· length(IBD(g̃, y)),

the expected denominator of R1 is 1
2
· length(IBD(g̃, y)), and that of R2 is

1
4
· length(IBD(g̃, y)), resulting in E[R1] =

1
4

and E[R2] =
1
2
.

In practice, the above ratios vary around their expectations. This variability

arises from three sources: errors in IBD segment detection, the variance in IBD
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sharing between the close relative pair (i.e., depending on the outcome of the

small number of meioses that separate them), and the variance in the meioses

that separate y from the MRCA(s) of x1 and x2. This latter variance increases for

greater meiotic distance. More specifically, mutual relatives y with a large mei-

otic separation share on average a comparatively small fraction of their genome

IBD with the MRCA(s) of x1 and x2, and they have a higher coefficient of vari-

ation for this sharing rate than closer relatives24, leading to higher variance in

the ratios. Therefore, the more closely related y is to the MRCA(s) of x1 and x2,

the more precise the ratios will be.

In large samples, data for multiple mutual relatives can be common, and con-

sidering only a single y will typically provide less information than combining

data from multiple samples. In particular, combining IBD regions from multi-

ple mutual relatives will often capture a larger fraction of the IBD regions that

the MRCA(s) of x1 and x2 transmitted to the pair. Our approach to incorpo-

rating multiple mutual relatives into the ratios is to take the union over these

samples of their three- and two-way IBD sharing regions. This effectively re-

constructs the IBD sharing pattern of one or more ungenotyped sample50 that

is more closely related to x1 and x2 than any single y, thereby reducing the vari-

ance of the calculated ratios (Figure 3.2). The ratios are:

Ri =
length(

⋃
yj
IBD(x1, x2, yj))

length(
⋃
yj
IBD(xi, yj))

, i ∈ {1, 2},

where yj ranges over the mutual relatives that are available in the dataset and

satisfy CREST’s assumptions.

Ideally, the union operation in the above would be defined on two possible hap-

lotypes of each xi such that, if different relatives ym and yn share IBD segments to
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a given xi on different haplotypes and in the same region, the segments would

be merged into an IBD2 segment. For example, as shown in Figure B.1, a grand-

parent can share overlapping IBD regions with a maternal relative and a pater-

nal relative on different haplotypes. Merging these into a single IBD1 segment

would yield biased ratios—reducing the grandparent’s IBD sharing length by

1/2 at this location. A challenge in addressing this is that IBIS and some other

IBD detectors do not report which haplotype a segment resides on. Thus we ex-

tended CREST to determine when a set of shared IBD regions belong to the same

or different haplotypes. This procedure utilizes the fact that if either sample xi

has overlapping IBD regions on the same haplotype with any two relatives ym

and yn, these regions should also be IBD between ym and yn. That is, regions

xi shares IBD1 to these relatives should have three-way IBD sharing such that

IBD(xi, ym) ∩ IBD(xi, yn) ⊆ IBD(ym, yn). On the other hand, if ym and yn share

IBD segments to the same region on different haplotypes of xi, the correspond-

ing haplotypes of ym and yn will not, in general, be IBD in that region. Thus,

in regions where ym and yn are IBD0, CREST treats xi as being IBD2 to the set

of mutual relatives (which is equivalent to the IBD (011) concept implemented in

DRUID50). Note that this approach does not detect all instances of IBD2 sharing:

it is possible for ym and yn to be IBD1 to each other on one of their haplotypes

while sharing their other haplotypes to each of xi’s two haplotypes. Therefore,

this method is an approximation that does not consider this latter case since we

lack information to distinguish which haplotypes the samples share.
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Figure 3.2: TheR1 andR2 ratios cluster more tightly when using multiple mu-
tual relatives. Ratios R1 and R2 from 200 simulated pairs of each relationship
type, calculated using (A) one first cousin (1C) of the genetically older sample,
and (B) combining one first cousin and his/her sibling (1C+S). Here we swap
labels if needed so that R1 ≤ R2.

Classifying relationship types using kernel density estimation

models

CREST adopts KDEs to classify the three second degree relationship types us-

ing the ratios R1 and R2 as features. To train and evaluate the KDEs, for each

such relationship type, we first simulated genotype data for a range of pedi-

gree structures that include various mutual relatives, and we derived R1 and

R2 ratios from the IBD segments that IBIS53 detects in the simulated genotypes

(see “Simulations” for details). Because the R1 and R2 values are ordered, and

since we only seek to classify the relationship types (with directionality con-

sidered separately), CREST exchanges the order of the two ratios if needed

such that R1 ≤ R2. This shrinks the space the features range over, increasing

precision. We then trained separate KDEs for each relationship type and used
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five-fold cross validation to select both their optimal bandwidth (from 10−2 to

10−1/2) and kernel function from among the ‘Gaussian’, ‘Linear’, and ‘Exponen-

tial’ forms.

As noted earlier, the closer the mutual relatives are to the target pair, the

less variance the ratios will tend to have, yielding more reliable classifica-

tion. Therefore, to build models that account for this, we incorporate another

feature that is associated with the variance: what we term the genome cover-

age rate, C, of the pair for a given set of mutual relatives. We define this as

C = max
(

1
L
length(

⋃
yj
IBD(x1, yj)),

1
L
length(

⋃
yj
IBD(x2, yj))

)
, where L is the

total (M) genetic length of the genome. Thus, it is the larger of either the IBD

sharing rate between x1 and the mutual relatives or that of x2. This genome

coverage rate is anti-correlated with the variance in the ratios (Figure B.2) since

it is related to how much of the genome of x1 and x2’s MRCA(s) is/are covered

by IBD segments in the mutual relatives.

To incorporate genome coverage into our models, we built KDEs stratified byC,

one for each of several bins. When C < 0.2, the bins span intervals of size 0.025,

and we use only one bin for C ≥ 0.2 because the variances of R1 and R2 appear

more constant above this threshold (Figure B.2). CREST does not attempt to

classify pairs with a C < 0.025 since distinguishing relationships is difficult

with such a low signal. For a given genome coverage bin, we trained KDEs

using five-fold cross validation as noted above for each bin separately.

To classify a pair’s relationship type, CREST calculates the posterior prob-

ability of each type. It outputs these probabilities, calculated as Pr(T |
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R1, R2, C) = Pr(R1, R2 | T,C)·Pr(T )/(
∑

T ′ Pr(R1, R2 | T ′, C) · Pr(T ′)), where T ∈

{GP,AV,HS} is the type, and Pr(T ) is the prior probability of the given type,

which defaults to 1
3

for all T , but can be specified by the user. Pr(R1, R2|T,C) is

the likelihood of R1 and R2 for a given relationship T from the KDE applicable

to the given genome coverage value C. As CREST reports all these probabil-

ities, users can choose to use the maximum a posteriori relationship type or

to incorporate the probabilities into downstream analyses. In Results, we use

the maximum a posteriori type unless otherwise specified. When C < 0.025

(including when no mutual relatives are available) or R1 = R2 = 0 (i.e.,

length(
⋃
yj
IBD(x1, x2, yj)) = 0, so there is no detected multi-way IBD sharing

to the mutual relatives), CREST does not infer the relationship but outputs the

prior probabilities.

Inferring the directionality of the relationship

CREST leverages the ratios R1 and R2 to determine the directionality of the re-

lationships. More specifically, CREST identifies which sample is the grandpar-

ent, aunt/uncle, and parent in GP, AV, and PC pairs, respectively, by compar-

ing these ratios. In principle, the genetically older sample in the pair should

inherit more DNA from the MRCA(s) than the younger sample. Thus, the

union of pairwise IBD sharing over mutual relatives for the genetically older

sample is expected to be greater than that of the younger sample. This pair-

wise IBD sharing quantity is in the denominator of the ratios, so CREST uses

D = log2
R2

R1
= log2

length(
⋃
yj

IBD(x1,yj))

length(
⋃
yj

IBD(x2,yj))
to determine the directionality. For in-

stance, if x1 is genetically older, then D is more likely to be positive. We trained

KDE models with D values from simulated GP, AV, and PC pairs and CREST

uses these to calculate the probability of the relationship directionality.
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Simulations

To train and test CREST’s relationship type inference, we used Ped-sim8 to sim-

ulate a range of pedigree structures that include one GP, AV, or HS pair and one

or more of their mutual relatives (Figure B.3). In all cases we used sex-specific

genetic maps3 and crossover interference9 modeling in these simulations, and

a collection of European descent samples12 as the input phased data. (The lat-

ter were previously phased using Beagle4, and filtered so that no pair is more

closely related than fifth degree50.)

The simulated data we used for training include mutual relatives that vary from

first cousins to second cousins of the genetically older sample in the second de-

gree pair. We simulated enough samples to obtain 1,000 pedigrees within each

KDE genome coverage bin. As the coverage rate varies for a given pedigree

structure, we simulated 1,000 pedigrees for each relationship type and pedigree

structure class in five batches of 200 pedigrees each. We then mapped these

to the corresponding genome coverage bin based on the IBD segments IBIS in-

ferred, and we randomly downsampled to obtain 1,000 pedigrees per bin. The

pedigrees include nine different combinations of mutual relatives that have the

following relationships to the genetically older sample: one first cousin; one

first cousin and his/her sibling; two first cousins that also are first cousins

to each other (i.e., non-sibling first cousins); three first cousins that are first

cousins to each other; one first cousin and his/her niece/nephew; one first

cousin once removed and his/her sibling; one first cousin once removed and

his/her niece/nephew; one second cousin; one second cousin and his/her sib-

ling. Thus, we include third degree relatives (first cousins) and as far as sev-

enth degree relatives (second cousins twice removed of a grandchild) for train-
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ing.

To compare CREST with PADRE59, we also simulated seven different pedigree

structures that include the second degree pair and mutual relatives consisting

of (again with respect to genetically older sample): one first cousin and his/her

sibling (1C+S); one first cousin and his/her child (1C+C); one first cousin and

his/her niece/nephew (1C+N); one first cousin once removed and his/her sib-

ling (1C1R+S); one first cousin once removed and his/her child (1C1R+C); one

first cousin once removed and his/her niece/nephew (1C1R+N); and one sec-

ond cousin and his/her sibling (2C+S). We tested both methods using 200

replicate pedigrees of each structure for all three types of second degree rela-

tives.

We further evaluated CREST’s inference sensitivity and specificity across

genome coverage bins. For this analysis, we simulated 200 copies for each rela-

tionship type of the same nine pedigree structures we used for training (above).

We then mapped these to genome coverage bins and randomly downsampled to

obtain 200 copies per bin. To generate calibration curves, we performed another

five batches of simulations of the same nine pedigree structures and analyzed

1,000 pairs for each bin following random downsampling.

Parameters used to run each method

To collect IBD segments for the relationship type of CREST, we first ran IBIS

v1.19.1 with default parameters on the simulated data. Since PADRE requires

results from ERSA28 and PRIMUS58 as inputs, we ran them separately on the

simulated data. To run PRIMUS (v1.9.0), we first used the --no_IMUS and
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--no_PR options, which corresponds to only running PLINK10 (v1.90b2k) to

calculate relatedness estimates. We then filtered the output file from PLINK

to only include pairs from the same pedigree. Next we ran PRIMUS on this

file to reconstruct pedigrees, allowing it to search for up to second degree rela-

tives using the --degree_rel_cutoff 2 option (all simulation pedigrees it

applies to include only first and second degree relatives). Meanwhile, ERSA

needs inferred IBD segments from GERMLINE20 as input, while GERMLINE

works on phased data, so we ran Eagle40 v2.4 to phase the simulated unphased

genotypes.

Each of the Ped-sim simulation runs for the PADRE comparison generated data

for 200 pedigrees for all three relationship types, and each pedigree includes

data from four samples, for a total of 2,400 samples output by one Ped-sim run.

After running Eagle on these 2,400 samples separately for all seven of the pedi-

gree structure types used to compare CREST and PADRE, we ran GERMLINE

v1.5.1 with the options -err_het 2 -err_hom 1 -min_m 1 -bits 64 as

specified in the ERSA paper. Then we ran ERSA v2.1 with default settings on

the GERMLINE output for each dataset.

After all these steps, we ran PADRE v1.0. We found that PADRE initially

crashed in some tests, with the source of the crashes being some of the pedi-

grees PRIMUS inferred, so we removed the pedigrees that cause the crashes

from consideration by PADRE (as in another PADRE analysis50). This avoids

calling these tests as PADRE failures, thereby improving its performance.

In a separate test, to exclude the possible effects of phasing quality on PADRE’s
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results, we simulated replicates of the same pedigree structures and used the

true haplotypes produced by the Ped-sim --keep_phase option, keeping the

subsequent analysis steps the same as described above.

Runtimes on the simulated data are from the same server configuration as in

the real data tests (below).

Real data processing

To test CREST’s relationship type inference on the GS dataset, we ran IBIS

v1.20 using -maxDist 0.116131 and otherwise with default parameters. The

-maxDist option sets the maximum genetic distance between SNPs and can re-

duce false positive segment calls53. Following this, we used CREST to analyze

the second degree relatives that IBIS inferred and excluded potential double

cousins or other pairs that potentially violate CREST’s assumptions by requir-

ing the IBD2 sharing fraction between these pairs to be less than 0.02 (a default

CREST option). We also restricted CREST’s analysis to mutual relatives that are

third to sixth degree relatives of both members of the target pairs since IBIS has

been validated on relatives up to sixth degree53. (Note that we used all mutual

relatives for the analyses of simulated data.)

Some GS samples are part of multiple target pairs—for example, one grandpar-

ent can have several grandchildren resulting in several GP pairs—and we aver-

aged the classification results across those pairs for each relationship type. The

reason for this is that each sample shares the same IBD segments with his/her

relatives regardless of which pair CREST analyzes it in, so the ratios of pairs

with overlapping members are correlated. Thus we averaged the sensitivity
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and specificity of all pairs that have the same genetically older sample in GP

and AV pairs, and also averaged the results for HS pairs with the same common

parent (Figure B.4). For instance, for a grandparent with four grandchildren,

each pair contributes a count of 1/4 towards the sensitivity and specificity met-

rics. We calculated the averages within relationship types, so a given sample

can be both a grandchild and a half-sibling, with results from the two types

considered independently.

The runtimes we report are from servers with four Xeon E5 4620 2.20 GHz pro-

cessors, and we ran IBIS with eight threads on the real data. (CREST is not

multithreaded.)

3.4 Results

To evaluate CREST’s ability to distinguish among second degree relationship

types, we first compared its performance with that of PADRE using simulated

pedigrees. We also used simulated data to characterize CREST’s performance

across variable genome coverage rates; its ability to infer directionality for PC,

AV, and GP pairs; and its potential to classify third degree relationship types.

To validate CREST in real samples, we ran it on the GS dataset and compared

its inferred second degree relationship types with those of the reported relation-

ships.

52



Classifying second degree relationship types using CREST and

PADRE

We tested CREST and PADRE using simulated data from seven different types

of pedigrees. These pedigrees include the target second degree pair and two

of their mutual relatives, and we define them by the relationship of the mutual

relatives to the genetically older target sample: 1C+S, 1C+C, 1C+N, 1C1R+S,

1C1R+C, 1C1R+N, and 2C+S (Methods). PADRE was designed to infer de-

grees of relatedness but can be used to classify relationship types of close rel-

atives when given data from their more distant relatives50. In fact, its accuracies

for inferring second degree relationship types are higher than those previously

reported from RELPAIR16, a close relationship type classifier (below). More

specifically, PADRE assigns the degrees of relatedness that maximize the com-

posite likelihood between two sets of close relatives, this likelihood being the

product of (a) the PRIMUS-inferred pedigree likelihoods59 for each close relative

set and (b) the pairwise relatedness likelihoods28 between members of different

sets. We read off the second degree relationship type of the target pair from

the corresponding maximum composite likelihood PRIMUS pedigree. PRUMIS

pedigrees must contain at least two closely related samples to work, and PADRE

analyzes a pair of related PRIMUS pedigrees. Thus, all the simulated pedigrees

we used to compare PADRE and CREST include the target second degree pair

and two mutual relatives that are first or second degree relatives of each other.

However, we note that CREST works even with only one mutual relative of the

target pair.

We ran both CREST and PADRE on 200 replicates of each of the pedigree struc-

tures. As noted in Methods, PADRE crashed for some tests, and we applied
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Figure 3.3: Performance of CREST and PADRE for second degree relationship
type classification. (A) The sensitivity and (B) specificity of CREST and PADRE
for inferring GP, AV, and HS relationship types in simulated data, along with
the average of these rates across the three relationships. The x-axis indicates the
mutual relative types included in the analysis (abbreviations in Methods), with
each target relationship type and mutual relative combination including data
from 200 target pairs.

a previously used fix50 that enabled it to analyze most of these cases, but it

continued to crash for 2.10% of the pedigree structures. In turn, for 0.830% of

pedigrees, CREST did not infer a type due to: IBIS not inferring the target pair

as second degree relatives, C < 0.025, or R1 = R2 = 0 (Methods). To account for

the effects of these pairs, we show classification results both with and without

the unclassified pairs.

Figure 3.3 plots the sensitivity and specificity from all 200 pedigrees for the

seven types of pedigree structures. (If a tool did not classify a target pair, we

scored it as having a sensitivity of 0 and a specificity of 0.) CREST’s over-

all sensitivity (Figure 3.3A) ranges from 0.915-1.00 for GP, 0.800-0.975 in AV,

and 0.755-0.985 in HS pairs across the seven types of mutual relatives. In con-

trast, PADRE’s overall sensitivity is 0.385-0.760 for GP, 0.605-0.920 in AV, and
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0.730-0.950 in HS pairs. This corresponds to an increase in sensitivity of 0.110-

0.250 in CREST across all mutual relative types, averaged over the three target

relationships (Figure 3.3A). Turning to specificity (Figure 3.3B), CREST’s per-

formance rates are 0.978-0.995 in GP, 0.885-0.993 in AV, and 0.903-0.988 in HS,

while PADRE’s rates are 0.943-0.965 in GP, 0.589-0.855 in AV, and 0.790-0.978

in HS. Averaged over the three relationship types, CREST’s specificity is 0.060-

0.130 higher (Figure 3.3B). When only considering the subset of pairs that both

PADRE and CREST classify (97.1% of pairs), PADRE’s average sensitivity and

specificity over all relationship and pedigree types increase, respectively, by

0.016 and 0.019 (Figure B.5). CREST’s comparative performance remains sim-

ilar, as its sensitivity and specificity are 0.101-0.250 and 0.051-0.125 higher on

average, respectively.

To determine whether phasing quality adversely impacts PADRE’s results, we

compared CREST and PADRE on another 200 replicates of the same pedigree

structures but used perfectly phased haplotypes output by the simulator. This

step should not affect CREST’s performance since IBIS ignores phase informa-

tion. Use of these optimal haplotypes improves PADRE’s sensitivity by 0.039 on

average, and most especially improves its sensitivity for GP pairs, by a range of

0.105-0.330 (Figures B.6, B.7). Nevertheless, CREST’s average sensitivity is still

0.107-0.203 higher in these data, and its specificity is 0.059-0.116 greater, aver-

aged over the three relationship types.

In general, for the types of mutual relatives we tested, both CREST and PADRE

perform well at classifying HS pairs, while CREST has higher sensitivity for

AV and GP pairs. PADRE’s high performance in HS pairs may be because the
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mutual relatives are equally close to the target samples for this relationship type.

Alternatively, previous work indicated that PADRE may be biased against GP

relationship classification and in favor of HS50. Along these lines, the confusion

matrices show that PADRE misclassified more GP pairs as AV when given more

distant mutual relatives (Figures B.8, B.9). In turn, CREST tends to mix HS and

AV classifications, and is better at identifying GP pairs.

Considering the runtime of these analyses, the IBD detector IBIS ran on the

2,400 samples simulated for each of the seven types of mutual relative classes

in an average of 11.2 CPU minutes (single threaded), and CREST completed

its classification in another 1.75 minutes on average. On the other hand, the

pre-processing steps for running PADRE require that the samples be phased,

have IBD detected (with GERMLINE), and be analyzed using both PRIMUS and

ERSA. Phasing using Eagle and ERSA together take more than two CPU days

to finish processing data from one of the mutual relative type simulations.

The performance of CREST under variable genome coverage

rates

As discussed in Methods and depicted in Figure 3.3, classification using close

mutual relatives has better performance than using more distant relatives. To

ensure that CREST’s KDE distributions more accurately represent the true re-

lationship probabilities for a given target pair and their mutual relatives, we

trained stratified KDEs based on the genome coverage rate C of a set of mutual

relatives (Methods).
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Figures 3.4A and 3.4B show the sensitivity and specificity of CREST in simulated

data across the same bins of genome coverage rates on which we trained sepa-

rate KDEs. As expected, the sensitivity and specificity both increase as the cov-

erage grows. For coverage rates between 0.125-0.15, or roughly that expected

when using one first cousin, CREST’s sensitivity and specificity are both 1.00

for GP, 0.983 and 0.957 for AV, and 0.913 and 0.992 in HS pairs, respectively.

Even when C is in the lowest bin of 0.025-0.05, CREST still achieves sensitivi-

ties and specificities, respectively, of 0.928 and 0.985 for GP, 0.819 and 0.789 in

AV, and 0.650 and 0.924 in HS pairs. Notably, the inference of GP pairs gener-

ally has quite high sensitivity and specificity regardless of the genome coverage

rate. This is likely because, if xi is the grandchild, in theory Ri = 1, with no

variance from the meioses that separate xi from the grandparent, but only due

to false positive and/or false negative IBD segments.

The results above consider only the highest posterior probability relationship as

the type that CREST infers, but this probability is informative about CREST’s

confidence and can be used in applications of the method. Figure B.10 de-

picts calibration curves for each relationship type in each genome coverage bin.

In general, CREST gives reasonably well-calibrated probabilities across bins,

though there are some biases evident for HS and AV pairs for lower coverage

values. GP probabilities are well calibrated regardless of the coverage, while the

probabilities for AV and HS are well-calibrated for coverage rates larger than

0.125. For lower coverage rates, the probabilities are still informative, especially

for values near 0 or 1.
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Figure 3.4: CREST performance on simulated relatives. (A) The sensitivity and
(B) specificity within genome coverage rate (C) bins for GP, AV, and HS pairs,
and the average across these three types.

Detecting the directionality of relationships

To test CREST’s ability to detect the directionality of relationships, we used the

same simulated pedigree structures as in the above genome coverage analysis,

but instead of analyzing HS pairs, we took their common parent and one of the

half-siblings to serve as PC pairs. We applied the KDE classifier to infer which

sample is the grandparent, aunt/uncle, or parent in 200 pairs for each genome

coverage bin. As shown in Figure B.11, averaged over all pairs with C > 0.025,

or roughly using one fifth degree or more closely related mutual relative, CREST

achieved sensitivity of 1.00 in determining the directionality of GP pairs, 0.99 for

AV, and 1.00 for PC pairs. Moreover, the probabilities from this test are nearly

perfectly calibrated (Figure B.12).

CREST has the potential to infer third degree relationship

types

In principle, the CREST approach need not be limited to second degree rela-

tionships, as a similar logic applies to more distant relatives. To analyze the
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potential for CREST to distinguish third degree relatives, we tested its ability to

classify four third degree relationship types: great-grandparent (GGP), grand-

avuncular (GAV), half-avuncular (HAV), and first cousin (1C). Assuming that

x1 is the genetically older sample, for a GGP pair, E[R1] =
1
8

and E[R2] = 1; for

a GAV pair, E[R1] =
1
8

and E[R2] =
1
2
; for a HAV pair, E[R1] =

1
4

and E[R2] =
1
2
;

and for a 1C pair, E[R1] = E[R2] =
1
4
.

To train and test this extension of CREST, we simulated 1,000 pedigrees for each

of the third degree relative types, with each pedigree including two first cousins

of the genetically older sample as mutual relatives. After calculating R1 and R2,

we trained KDEs using 800 pairs and five-fold cross validation for each type.

We then tested on the remaining 200 pairs, and found that the inference accu-

racy is high, with sensitivities of 0.990 for GGP, 0.940 for GAV, 0.925 for HAV,

0.975 for 1C pairs (Figure B.13). Furthermore, the classification probabilities are

well calibrated (Figure B.14). Thus, CREST has potential utility to distinguish

relationship types even for third degree pairs given sufficient mutual relative

data.

Validation in Generation Scotland data

In order to test our model in real data, we used CREST to classify second de-

gree relationships in the GS samples, which are enriched in close relatives and

include reported pedigree structures. Analyzing these data required 2.8 hours

to run IBIS using eight threads, 2.7 CPU minutes to infer relationship types. We

considered those pairs that IBIS detects as second degree relatives and who have

at least one sufficiently related mutual relative for performing relationship type

inference (Methods).
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When analyzing CREST’s performance for inferring relationship types, we

found a few relative pairs it confidently infers as having a conflicting type, so

we inspected the pairs using sample ages and IBD sharing to other relatives.

For two pairs, CREST shows strong evidence that they are AV instead of HS

and GP as reported (inferred probability of 1.00 with C = 0.162 and C = 0.121,

respectively). For the pair labeled as GP, we found that the (ungenotyped) inter-

mediate parent is listed as five years younger than his labeled father, indicating

that this pair cannot be GP and supportive of the AV type. The other pair was

labeled as paternal HS, but, denoting the individuals as A and B, we found that

individual A has IBD sharing with B’s maternal relatives (A is a fourth degree

relative of B’s maternal first cousin), and, in turn, B does not share IBD seg-

ments with A’s maternal aunt. This indicates that they cannot be either paternal

or maternal HS. In addition, B is 24 years older than A, supporting CREST’s

prediction of an AV relationship. A third case concerns a set of labeled maternal

HS pairs, where we found that purported paternal first cousins of some of these

samples are in fact their niece and nephew. We confirmed this by calculating an

IBD (011) rate of 129 cM; this is a signal DRUID uses to detect aunts and uncles

of two or more siblings, with a threshold of 50 cM reliably discriminating aunts

and uncles50. However, after correcting this part of the pedigree, we noticed

other inconsistent degrees of relatedness among the relatives, and the true rela-

tionship of the labeled HS pairs is difficult to determine. We therefore excluded

this entire pedigree (which contains only 1 reported HS pair after averaging)

from our analysis. After relabeling the HS and GP pairs as AV and removing

the noted pedigree, the relationship type analysis includes 233 GP, 2,616 AV, and

344 HS pairs.
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Figure 3.5: CREST performance on the Generation Scotland data. (A) The
sensitivity and (B) specificity of relationship type classification for GP, AV, and
HS pairs, and the average across these three types in the GS dataset. These plots
use a genome coverage rate (C) bin size of 0.05 because several bins have a small
number of HS and GP pairs with a bin size of 0.025 (minimum of 7 for HS and
7 for GP using 0.025 vs. 14 and 16 here).

Figures 3.5A and 3.5B plot CREST’s relationship type inference sensitivity and

specificity in the GS data across different genome coverage rates C. As ex-

pected, both the sensitivity and specificity tend to increase with C. Overall, for

C > 0.125, CREST’s sensitivity is relatively high at 0.935 for GP, 0.977 for AV, and

0.922 for HS pairs. Similarly, the specificity is high in this coverage range, with

values of 0.999 for GP, 0.937 for AV, and 0.979 for HS pairs. However, relative to

the next lower coverage bin, the sensitivity of GP pairs drops when C > 0.175,

and that of HS pairs drops for the C > 0.225 bin. For the GP pairs, these last

two bins include only 1.5 and 2 misclassified pairs (after averaging), and for

HS pairs, the last bin has 1.75 misclassified pairs. These misclassifications are

due to CREST using mutual relatives that either: (a) include another grandchild

of the grandparent that IBIS infers as a third degree relative of the grandpar-

ent, or (b) violate CREST’s MRCA assumptions but only occur with three or

more generations of sample collection (e.g., a great-grandchild or descendants

of a HS member’s full sibling). We note that GS’s recruitment provides more

of the latter category of relatives than is typical for population-based studies7,
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so fewer assumption violations may occur in population samples. Still, extend-

ing CREST to detect mutual relatives that violate its MRCA assumptions is the

subject of future work.

3.5 Discussion

Pedigrees have wide ranging utility throughout genetics, with the modeling of

transmitted haplotypes among relatives and/or the use of their IBD sharing

fractions being central to both linkage analysis and recent heritability estima-

tion procedures71,73. Family data are also needed to identify de novo recombina-

tions3,9,21 and mutations48,52, and to enable family-based phasing and imputa-

tion, the gold-standard means of addressing these problems5.

Given these applications, several methods exist for pedigree reconstruction and

for confirming or disproving reported pedigree relationships16,22,37,58,59,61. How-

ever, differentiating among the relationships that map to a given degree of relat-

edness has remained challenging. Pairwise relatedness measures, the standard

signal for detecting relatives until recently49, have limited information to enable

the classification of relationship types16.

We developed CREST, an approach that infers both pedigree relationships and

directionality. CREST assumes that mutual relatives connect to both members

of a target pair only through one or more MRCA(s) of the target pair. To en-

force this assumption, which is most readily violated by descendants of the

MRCA(s), CREST does not analyze first and second degree relatives of the target

pair. However, such close relatives carry IBD segments that span a large frac-
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tion of a target sample’s genome—i.e., they have high coverage rates—and so

have the potential to be very informative for relationship type inference. On the

other hand, in the GS dataset, some relatives that violate the MRCA assumption

are more distantly related than first or second degree, and CREST’s use of these

samples lowered its performance in the high coverage rate bins (Figures 3.5A

and 3.5B). We view the proper utilization of such samples as a subject of interest

for future work.

At present, CREST does not require age information even though the difference

in age of the target pair is also informative for distinguishing among relation-

ship types. However, the age difference distribution in the GS data reveals large

overlapping ranges between HS and AV pairs, and between AV and GP pairs

(Figure B.15). Still, straightforward extensions of CREST may benefit from use

of ages when they are available.

Here we applied CREST to simulated and real relatives using IBD segments de-

tected with IBIS. In both forms of data, so long as the mutual relatives do not

violate CREST’s assumptions, the method appears relatively insensitive to er-

rors in the IBD segments. Nevertheless, the quality of IBIS and other IBD detec-

tors depend on several factors, including SNP density. Therefore, users must be

careful to ensure that the detected IBD segment quality does not adversely im-

pact CREST. One way to accomplish this is to simulate relatives with properties

such as marker density and population membership similar to the target sam-

ples and tune the IBD detector’s parameters accordingly to ensure that CREST’s

performance matches the user’s goals.
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While this paper was under review, PONDEROSA70—a method for pedigree

reconstruction and second degree relationship type inference in endogamous

populations—was released. PONDERSA uses highly reliable phased IBD seg-

ments to make inference, leveraging both segment numbers and whether the

segments reside on only one haplotype in order to distinguish among types.

These signals are distinct from those that CREST uses, and PONDEROSA is

therefore complementary to CREST. Indeed, depending on haplotype phase

quality and the availability of mutual relatives, one approach may shed light

on a pairs’ type when the other method falls short.

As direct-to-consumer genetic testing companies provide customers with esti-

mated relationships among samples, CREST has several uses. Most apparently,

it can enable these companies to report specific relationship types, including

which parent an individual is related through for some relationships. Addi-

tionally, while the mutual relatives of a target pair inform the pedigree struc-

ture between the pair, providing this pedigree structure to the method DRUID

can enable more exact detection of the distance between those close relatives

and their more distant mutual relatives50. Thus, an iterative procedure is pos-

sible, with mutual relatives of unknown relationship to a set of close relatives

enabling the detection of the latter pairs’ relationship types, and the resulting

pedigrees enabling more precise characterization of their distance to the mutual

relatives.

Lastly, a key factor influencing CREST’s performance is the genome coverage

rate of the available mutual relatives. In general, more closely related pairs will

have a higher genome coverage. Consequently, with ever increasing sample
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sizes—and therefore datasets with greater numbers of relatives, including close

relatives—CREST’s inference of relationship types will have greater reliability

going forward.
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CHAPTER 4

RECONSTRUCTING THE GENOTYPES OF PARENTS FROM SIBLINGS

AND OTHER RELATIVES

4.1 Abstract

The opportunity exists to reconstruct partial genomes of the ancestors of geno-

typed individuals by identifying identical by descent (IBD) segments shared

among genotyped relatives, noting that these segments must have been trans-

mitted through ungenotyped ancestral individuals. Inferring genotype data for

these ancestors has the potential to empower genome-wide association studies

(GWAS) by adding ungenotyped samples, improve relationship inference, and

allow phenotypic estimates in ancestors, among other applications. We propose

a novel approach to infer the genotypes of ancestors using a combination of

family-based phasing and IBD sharing. Specifically, we develop HAPI-RECAP

to infer genotypes of parents from a set of genotyped children and their rel-

atives using an extension of the original HAPI method. This extension first

enables HAPI to jointly phase multiple genotyped siblings even without data

from parents. By combining this phase information with inferred IBD among

the siblings and one or more genotyped relatives, we are able to further resolve

ambiguous phase and assign the haplotype segments to the two parents. Val-

idated with San Antonio Mexican American Family Studies (SAMAFS) data,

HAPI-RECAP reconstructed 80.3% to 100.0% of genotypes for one missing par-

ent, when the other parent and three or more children are available; 67.8% to

72.6% of genotypes for two parents, using genotypes of four to seven siblings

and their relatives; above 94.0% for two parents in families with eight or more
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children. The error rates of reconstructed genotypes are near or below 10−3,

which are comparable to genotyping error rates.

4.2 Introduction

The genomes of individuals can be considered as a mosaic of segments inher-

ited from different ancestors. Regions of shared mosaic patterns among two

or more relatives—so called identical by descent (IBD) segments—provide ge-

netic information for ancestors that must have transmitted these segments. The

process of locating these IBD segments and identifying which ancestor the seg-

ments descend from would enable inference of partial genomes of ungenotyped

ancestors. Such an approach has the potential to not only resolve the geographic

origins of those ancestors’ genetic segments31, but also to improve relatedness

inference32,50, and increase power in genome-wide association studies (GWAS)

by adding data from ungenotyped individuals30,38,72. This is especially mean-

ingful when the case is less attainable like in rare diseases. In addition, re-

constructed parents genome can be used to study direct and indirect genetic

effects72. With high quality reconstructed ancestral genomes, it is also possible

to infer some traits of ancestors.

Reconstructing ancestral genomes has drawn increasing attention given the

wide applications, however, previous methods usually require the complete

and accurate pedigree or population information11,18,60. Recently Jagadeesan

et al.31 reported the reconstruction of 38% of the maternal genome of Hans

Jonatan, a man born in 1784, relying on data from 182 of his genotyped de-

scendants and a deep genealogically-derived pedigree from Iceland. This ex-

ample demonstrates the potential for inferring the regional origins of ancestors
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by reconstructing their genetic segments. However, this is a special case since

African DNA was not common in Iceland in the 18th century and this work was

empowered by the reliable identification of African segments. Moreover, such

large numbers of genotyped descendants and complete pedigrees required by

previous methods are often unavailable in practice.

In comparison to methods that focus on the reconstruction of a single distant

ancestors of many individuals, it is possible to reconstruct considerably larger

fractions of the genomes of more recent ancestors, even with data from a smaller

number of individuals. Health information may also be more easily attainable

for recent ancestors, making them good candidates for downstream analyses

that rely on reconstructed genomes. For example, Kong et al.38 imputed two

phased haplotypes composed of 1,001 SNPs in an ungenotyped deceased lung

cancer patient and showed that the imputed region harbored variants associ-

ated with lung cancer. Thus, imputation of ancestral genotypes in GWAS has

been done previously, and use of ungenotyped samples with phenotype data

holds great promise. Moreover, large genetic datasets contain a significant num-

ber of close relatives and provide a good opportunity to retrieve genetic infor-

mation of their ancestors. Notably, parent-child pairs and full siblings are com-

mon relationships that can be identified very accurately even without pedigree

information. While each child inherits only half of the genomes of each parent,

independent segregation and recombination are randomized such that n sib-

lings will inherit on average a proportion of 1 − 1
2n

of both parents’ genomes.

Thus, the opportunity exists to reconstruct partial genomes of parents from a

set of genotyped children.
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We developed a novel approach to reconstruct the genotypes of parents using

a combination of family-based phasing of a set of siblings and IBD sharing to

other close relatives. The problem of inferring the genome of a parent includes

two main components: first, phasing a set of siblings using a family-based phas-

ing approach. This step provides rough haplotype data for the parents, up to

ambiguities in parental assignment of genotypes. This is mainly caused by mul-

tiple possibilities of phasing given children’ genotypes. The second component

is to assign inferred haplotype segments to correct parents by leveraging IBD

information between genotyped siblings and relatives of one or more parents.

For the first component, we use an extension of HAPI, a method for inferring

minimum recombinant haplotypes in nuclear families69. When genotype data

for one or both parents is missing, the new version of HAPI enables joint phas-

ing of siblings and infers haplotype segments of the missing parents using only

the children’s genotype data. This joint phasing has low error and, when given

data for 8 or more siblings, often provides chromosome-scale haplotypes for the

parents. For more moderate numbers of siblings, the phasing results in a num-

ber of multi-megabase long segments where which parent they belong to needs

to be resolved. To resolve the parental origin and further reconstruct genotypes

for the second part, we leverage IBD segments shared between the children and

other relatives. The basis of this inference is that, if we assume that a relative

is related only to children through one parent, the IBD shared between children

and their relative should only come from that one parent. Thus, we treat the

IBD regions as a reference to distinguish which parent the genome segments

descend from. When an IBD region occurs, we can infer not only the haplo-

types of the parent those segments were transmitted by but those that belong

to other parent in the region spanned by the IBD segment as well. Taken all
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steps together, we developed the new tool, HAPI-RECAP (REConstruct Ances-

tral genotyPes), to reconstruct genotypes of parents.

To test our approach, we applied this method on data from the San Antonio

Mexican American Family Studies (SAMAFS)15,29,42. We restricted our tests to

the families with both parents available as we would need real data to compare

with. The validation includes three scenarios: using one parent and three or

more children in 116 families; using four to seven children and their relatives

in 64 families; using eight or more children in ten families. We reconstructed

genotypes of missing parent(s) in each scenario and compared with the real

data to evaluate how much genotypes HAPI-RECAP can accurately reconstruct

(See Results). Varied by different scenarios, HAPI-RECAP is able to reconstruct

large portion of parental genotypes with similar error rates to direct genotyping.

As large-scale datasets lead to the recruitment of family data, our work holds

promise to enable high quality reconstruction of parent genotypes, opening the

door to further analyses using inferred genotypes from individuals not directly

collected.

4.3 Results

To evaluate the reconstruction quality, we compared the reconstructed geno-

types with the real sequence data for each site and investigated two main mea-

surements: the reconstructed coverage and the error rate. The reconstructed

coverage is defined as N2+0.5∗N1

N0
∗ 100%, here N1 and N2 are the number of in-

ferred sites only on one copy and on both copies respectively. N0 is the total

number of sites for real sequence data that passed quality checks. The error

rate quantifies the chance that one inferred site is incorrect and is defined as
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2∗N2d+N1d

2∗N2+N1
. N1d and N2d are the number of inferred sites that differ from real

sequence on only one copy and on both copies, respectively. Note that it is

possible to have two copies inferred but only one copy is identical to the real

sequence.

Reconstructing genotypes for the missing parent with only one

parent available

We analyzed 116 families with both parents from SAMAFS by reconstructing

each parent’s genotypes, assuming that one parent is missing, in each family.

The number of genotyped children in these families varies from 3 to 12, with

the average of 4.57. The reconstructed coverage, i.e., the number of the sites

that are reconstructed divided by the total number or sites, for all 232 parents

varies from 80.3% to 100%. As shown in Fig 4.1, with as few as three children

in 42 families, HAPI-RECAP reconstructed 87.5% of one perent’s genotypes on

average, with the range from 80.3% to 91.7%. When there are more children

available, the amount of reconstructed genotypes also increase. With eight or

more children, HAPI-RECAP is able to reconstruct at least 98.8% of one parent’s

genotypes. When comparing reconstructed genotypes with the real data, the er-

ror rates is below 10−3 on average, with 36,338 differed among over 114 million

SNPs.

Reconstructing genotypes for both parents in large families

In the case that both parents are unavailable, we first tested HAPI-RECAP in

ten families with eight or more children. As shown in Table 4.1, HAPI-RECAP

is able to reconstruct 94.2% of both parents’ genotypes on average, with the
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Figure 4.1: The Coverage of reconstructed genotypes when one parent is
available Each bar is the average reconstructed coverage over the families with
one parent plus three children, four to seven children, and eight or more chil-
dren, respectively. The error bar is the standard deviation.

range from 94.0% to 95.2%, using only genotypes data of children. The error

rate for the reconstruction is below 10−3, which is comparable to the genotyping

error rate. For the largest family in the SAMAFS dataset with 12 children, HAPI-

RECAP reconstructed 95.2% of the two parents’ phased haplotype with the er-

ror rate of 1.1× 10−4 (Fig 4.2). Note that HAPI-RECAP does not infer the site

where parents are both homozygosity, since all children would have the same

genotypes at those sites and provide almost no information of parents. Con-

sidering the proportion of homozygosity sites, HAPI-RECAP can reconstruct

almost parents’ entire genome when the number of children is large.
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Number of siblings 8 9 10 11 12

Coverage 94.0% 94.0% 94.3% 94.4% 95.2%

Error Rate (10−3) 1.0 1.0 0.26 0.18 0.11

Table 4.1: Average Coverage and error rates of reconstructed parental geno-
types in large families.
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Figure 4.2: Reconstructed haplotypes of one
parent in the 12 children family The blue seg-
ments represent reconstructed two copies in 22
chromosomes. The regions where only one
copy is reconstructed are in light blue.

Reconstructing genotypes for both parents in small families

For families with four to seven children, HAPI-RECAP leverages the IBD seg-

ments between children and their relatives to resolve ambiguities. The IBD seg-

ments are collected from a group of inferred relatives, which are related to chil-

dren only through one parent (see Methods). This analysis includes 27 four chil-

dren families, 23 five children families, 9 six children families, and 5 seven chil-

dren families, with detected second to sixth degree relatives of these children.

We cluster these relatives to ensure that we use IBD segments from relatives

only related to the children through one parent (see Methods). As shown in Fig

4.3, as expected, the increase of the number of available children help with the

reconstruction. HAPI-RECAP reconstructed 67.8% to 72.6% of the genotypes for

the parent which is related to the group of relatives, on average over different

families with the same number of children, and 65.4% to 71.3% of the genotypes

for the parent that is unrelated. We notice that there is a small disparity between

related parent and unrelated parent, with higher reconstructed coverage for the

parent that is related to the group relatives. That is related to the regions where
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only one haplotype is inferred and could be considered belonging to the parent

that is related to the group of relatives, if the IBD regions are consistent. The

error rates of reconstructed genotypes for both parents range from 10−4 to 10−3

per site.

Note that the ability of HAPI-RECAP to reconstruct genotypes also depends on

the availability of IBD segements. We thus evaluate how the amount of IBD

segments will influence the reconstructed regions with four children families.

To increase the number of four children families, we down-sampled the number

children in five to seven families, resulting in 69 families (See Methods). As

shown in Fig C.2, the IBD coverage, the total genetic length of IBD segments

divided by the total length of genome, is highly associated with reconstructed

coverage. While the error rates of reconstructed regions are still low and do not

change much as the IBD coverage decreases.

When using IBD segments as the reference to reconstruct parental genotypes,

we calculated the ratio of difference between similarities of haplotypes from

two parents compared to IBD regions (See Methods). This ratio is also related

to the reconstructed genotypes quality and can used as a threshold to achieve

lower error rates. We showed the reconstructed genotypes coverage and error

rates as the change of this ratio in Fig C.3. As the ratio increases, it is more

strict when reconstructing genotypes, corresponding to lower coverage and er-

ror rates.
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Figure 4.3: The Coverage of reconstructed genotypes for two parents Average
reconstructed coverage for both parent that is related the relatives and the other
unrelated parent, when there are four, five, and six or seven children in the
families. The error bar is the standard deviation.

4.4 Methods

Data processing

We used SNP array data from the the SAMAFS15,29,42, followed by the quality

control filters carried out in the previous studies68. This process includes map-

ping the SNP array probe sequences to GRCh37 and more detailed steps. After

these procedures, we also filtered out SNPs with more than 2% missingness,

and samples with greater than 10% missing sites. Since the MZ twins share the

same genotypes, we also remove six individuals to keep only one in each MZ

twins. 2479 individuals at 521,184 SNPs remains in the dataset.
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To get the IBD information of relatives, we ran IBIS53 on all individuals to infer

both IBD segments and relatedness. Yet HAPI-RECAP can accept high-quality

IBD segments derived from any method. We ran IBIS v1.20 using default pa-

rameters and -maxDist 0.116131 additionally. This -maxDist parameter

determines the maximum genetic distance between SNPs, which can help to

prevent false positive segment calls.53.

In this analysis, we only consider families with three or more children and both

parents available for the validation purpose. For the families with four to seven

children, we selected relatives of siblings in each family that are inferred as sec-

ond to sixth degree from IBIS. In the case where the relative lists are different

for children in the same family, we considered the intersection of these relatives.

To better evaluate smaller families, we created more four children families by

down sampling the five to seven children families. For five and six children

families, we randomly dropped one or two children to get four children fam-

ilies. For seven children families, we first split the children into two groups

randomly: one has three and the other has four children. Then we randomly

select one child from the four children group, combining with three children

group to form a new four children families. This allows us to create two four

children families for each seven children families, with only one children over-

lapping.

Joint phasing of siblings

We used an extension of HAPI69 to jointly phase siblings and reconstruct the

haplotype segments of missing parents. HAPI uses heavily optimized hidden

Markov Model for phasing nuclear families and can infer minimum recombi-
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nant phase in polynomial time. The extension of HAPI is more robust to geno-

typing errors and allows for missing data in the parents, and can jointly phases

siblings and infer parents’ haplotypes even without data from parents. It takes

plink format data and outputs phased haplotype of siblings and reconstructed

parental genotypes. In this analysis, we ran HAPI v1.92 under two scenarios:

only one parent and three or more children are available; four or more chil-

dren with no parent data. We used the --no_err_max 1 option to restrict that

maximum number of recombinations attributable to a single marker before it is

called an error to be 1. It only takes 20 minutes for HAPI to analyze all of 116

families.

Resolving ambiguities with the relatives’ IBD segments as ref-

erence

When there is one parent along with children available, the extension of HAPI is

able to reconstruct the other parent’s genotypes. In large families with eight or

more children, the extension of HAPI can successfully generate chromosome-

scale haplotypes for missing parents. In smaller families, however, the exten-

sion of HAPI would output a number of reconstructed segments, and which

parent these segments belong to is unclear. We propose to use the IBD regions

between children and one parent’s relatives as reference to resolve the parental

origin of these segments. Assume we also have one grandparent available, the

grandparent must transmit some portion of his/her genome to children only

through one parent, when there is no inbreeding between two parents. Thus,

the IBD regions between this grandparent and children must be three-way IBD

sharing with this parent as well. By comparing the relative’s genotype with re-

78



constructed segments in these IBD regions, we can distinguish which segments

belong to the parent that is related to the relative. This also implies that the

other reconstructed segments in the same regions would belong to the parent

that is unrelated to the relative. In practice, the grandparents are not always

available, however, this idea can apply to any relatives as long as they are re-

lated to children only through one parent. Note that most second to sixth degree

relatives, except double cousins, etc., would have IBD sharing residing only on

one haplotype. As a result, the relative and one of the children would only have

one haplotype that are identical. One problem is that IBIS and several other

IBD detectors do not detect which haplotype these segments belong to. To be

able to use relatives’ genotypes as the reference, we only consider homozygous

sites in relatives. In this way, we do not need to phase relatives and distinguish

the haplotype that is IBD, and high density homozygous sites can still provide

enough information to distinguish two parents.

Once the parental origins of the reconstructed segments have been determined,

we can connect these segments to reconstruct chromosome-scale genotypes of

parents. Technically, one parent should have the identical genotype with the

relative in the IBD region, however, there are genotyping errors and since we

only use homozygous sites of relatives, both parents can share similar geno-

types to the relatives to some extent. To control the reconstruction quality, we

introduce a measurement to quantify the similarity of genotypes from two par-

ents to the IBD regions. For each segment that overlaps with IBD regions, we

count the different sites between genotypes of each segment with those of rela-

tives in the overlapping regions. In particular, we define a ratio of difference as:

r = |D(P1,IBD)−D(P2,IBD)|
N(IBD)

, here, D(x, y) is the number of different sites between
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genotypes of x and y, N(IBD) is the total number of sites in the overlapping

IBD regions. This ratio quantifies the relative difference of two parents com-

pared to the IBD regions. The larger this ratio, the more similar that one parent

is to relatives than the other. Thus, it is more confident to distinguish the parent

that is related to relatives and the parent that is not. If this ratio is too small, the

homozygous sites in IBD regions probably does not provide enough informa-

tion to distinguish two parents and it can lead to misclassification. To use this

ratio as a threshold, we can only rebuild the regions where there are enough dif-

ferences so that we have lower error rates. As a result, there will be a trade off

between the coverage and error rates of reconstructed genotypes. In the mean-

while, there are segments where reconstructed genotypes are similar enough

between two parents, regardless of the IBD regions. In this case, the parental

origins have little influence on the reconstruction results, therefore, we retrieve

these regions with the ratio of reconstructed genotypes differences between two

parents below 10−3 to increase the coverage.

Collecting IBD segments from relatives

Since we need the genotypes of relatives as the reference to resolve the origin

of reconstructed segments, it is important that we only use relatives that related

to the same parent. For each relative from second to sixth degree to children in

the same family, the IBD regions between this relative and each child will come

from the same parent, assuming the two parents are not related to each other

and the relative isn’t related to both. Therefore, we first collect the union of IBD

regions between one relative and all children and consider this union of the IBD

regions as the IBD sharing between this relative and this family. However, when

there are multiple inferred relatives, these relatives can related to children from
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either parent and it is incorrect to attribute the IBD regions to the same parent.

A straight forward solution is to only use the closest relative to the family, since

this would give us the largest length of IBD regions. To get more IBD regions

than of the closest relative, we instead chose to cluster these relatives according

to the IBD sharing among them. When there is no inbreeding for two parents,

i.e., no IBD sharing between two parents, and no common relatives of the fa-

ther and the mother, the relatives on different sides usually do not share IBD

segments with each other (See Fig C.1). We detected the IBD segments among

relatives of each family and clustered those relatives which share IBD segments

with each other into the same group. That is, if two relatives are also related to

each other, we assumed they are both related to the children through the same

parent.

More specifically, we implemented a modified depth first search (DFS) algo-

rithm by considering the relatives as the nodes in a graph. If two relatives share

IBD segments, we add an edge to connec them in the graph. DFS then can be

used to find the connected components where any two relatives are connected to

each other by paths. This may result in more than two components, since some

groups can come from the same side, but the relatives in each group should be

related to the same parent. However, common relatives of both parents will

exist in theory because two parents will coalesce to the common ancestor even-

tually. These common relatives will connected groups on two sides of parents

and cause confusion. In practice, the common relatives usually appear only as

distant relatives, so we add a few steps to reduce the possibility: (1) when we

connect relatives, we only allow for up to second degree relationship. That is,

two relatives will be connected with a path if they are second degree or closer
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relatives. This limitation will reduce the probability of too distant relatives con-

necting all relatives into one group. This is a parameter that can be changed and

depends on the sparsity of relatives in the datasets; (2) for each clustered group,

if there are multiple relatives, we take the union of IBD regions between each rel-

ative and the family. During this process, we further check whether overlapping

shared IBD regions belong to the same or different haplotypes in a similar to a

previous study47. As stated in that paper, if two relatives come from two sides

of parents, and they share overlapping IBD regions with children, the overlap-

ping part should happen in two haplotypes. Otherwise, when two relatives are

on the same side, the overlapping regions should be a three-way sharing among

two relatives and the child. Thus, we exclude the relatives that do not have a

three-way sharing of overlapping IBD regions with other relatives. With these

steps, we reduce the cases where multiple relatives come from different sides of

parents and increase the IBD regions that can be used as reference. Note that it

is possible that some relatives might pass our check and introduce uncertainty

when they are different sides but share IBD segments on their the other haplo-

types. For example, they could be half-siblings of each parents, but they share

another common parent. However, the cases are not very common and we did

not find this scenario in our dataset.

Validation of reconstructed parental genotypes

To evaluate HAPI-RECAP, we compared the reconstructed genotypes of parents

with the real data in terms of the coverage and error rates. When there is one

parent available or there are four to seven children, we count the sites where

genotypes are inferred incorrectly and the sites that are not inferred. For large

families with eight or more children, we keep the longest consecutive region
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with no ambiguities about parental origins for each chromosome, and the re-

gions with the ratio of reconstructed genotypes differences between two parents

below 10−3 as well. Then we compared reconstructed haplotypes with directly

collected genotypes for the parents.

4.5 Discussion

HAPI-RECAP is a fast, effective method to reconstruct parental genotypes from

a set of siblings and relatives. Different than previous approaches, it does not

need pedigree or population information, and takes in unphased genotype data.

In large scale genetic datasets, such as UK biobank, the complete and accurate

pedigrees are usually not available, while the proportion of relatives, including

both siblings and close or distant relatives, would make it possible to apply this

approach. The direct to consumer (DTC) genetic testing companies, such as

23andMe, also have enriched relatives in the datasets and would be interested

in potential applications of reconstructed ancestors. Recently, researchers show

increasing interests to involve the information of relatives in genetic studies,

such as GWAS. Some studies use statistical frameworks to estimate dosage of

parents from children or other relatives30,38. Our approach provides the accurate

and informative reconstruction for ungenotyped samples, with the promise for

similar applications.

Our validation in the SAMAFS dataset shows that HAPI-RECAP is able to effec-

tively reconstruct a large portion of parental genome, given informative geno-

typed children and relatives. It can detect Mendelian errors and other forms of

errors, however, the quality control checks on genotypes of the children and rel-

atives are necessary for reliable results. The core model of HAPI relies on each
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site to infer recombination and inheritance vectors, thus, if the genotype data is

not in good quality, such as, too much genotyping errors or missing data in the

family, it might lead to low quality reconstructions. On the other hand, HAPI-

RECAP is quite robust to the detection of IBD regions. It is challenging to infer

highly accurate start and end positions for IBD regions or shorter segments14,53,

but HAPI-RECAP is not very sensitive to IBD detection quality.

We notice that there are a few common cases that HAPI-RECAP has trouble

with. First, HAPI-RECAP skips the sites where all children are heterozygous. In

this case, genotypes of children can not provide any information about whether

parental genotypes is homozygous or heterozygous. For example, if all children

are A/C at one site, the genotypes of two parents can be A/A and C/C, A/C

and A/C, or other possible cases. Second, it is possible that some regions of

parental genome does not get inherited by any child at all, especially in small

families. For one parent, the probability that one haplptype does not transit to

any child is 1
2n

, n is the number of children. If there is only one child, then half

of the genome will not be inherited by the child for each parent. In this case,

HAPI-RECAP can not infer the missing parental genome from children. This is

also a reason that HAPI-RECAP performs better with more children. One possi-

ble approach to solve these issues is to involve the population information and

impute these sites and regions, but this will require reliable reference panels.

We view this as a subject of interest for future work.

In this paper, we present how to reconstruct parental genotypes from children,

and this approach has the potential to apply to a large scale of relatives. If

reconstructed parents have enough siblings available, it is possible to further
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infer grandparents and go up more generations in an iterative way. Another

idea is to involve other relatives directly, such as half-siblings, if they can be

inferred correctly. Reconstructing DNA from the shared parent of half-siblings

is quite possible, and would be made even more effective if data for the non-

shared parent of one or more of those half-siblings is available. Using other

types of relatives solely or combined would provide alternative information or

even more accurate reconstruction.
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CHAPTER 5

SUMMARY AND CONCLUDING REMARKS

The number of relatives in genetic datasets increase dramatically as the sample

sizes exploded in recent years, bringing in intensive possibilities and opportu-

nities for new discoveries. On the one hand, relatives and pedigree information

enable valuable genetic analyses and applications, such as linkage analysis, dis-

ease and association mapping, population genetics, genealogy, and even foren-

sic genetics. The enrichment of relatives in large genetic datasets, including UK

biobank, make it meaningful to analyze these relatives directly other than re-

moving them. Genetic testing companies such as 23andMe and AncestryDNA

have been always analyzing relatives for genealogy findings. The importance

and availability of relatives necessitate the development of efficient and accu-

rate methods. On the other hand, the various relatives in the datasets allow

for new approaches and methods to utilize the information, not limiting to the

traditional approaches that only focus on pair-wise information. Using informa-

tion among multiple relatives can improve the accuracy and enable new stud-

ies.

In this thesis, we explored the new approaches to characterize relatives in large

datasets, utilizing IBD sharing information. In Chapter 2, we considered the

possibility to add a new feature, the IBD segment numbers, to improve relat-

edness inference. To evaluate whether the IBD segment number could enhance

relatedness inference, we conducted both a information theory based feature

importance analysis and a classification analysis using a Bayes classifier. The

theoretical view of information theory analysis suggests that IBD segment num-
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bers added information to relatedness inference, however, the detection errors

make the classification improvement limited in practice. This study augmented

the understandings of the dependency among the IBD segment number, kin-

ship coefficient, and relatedness inference; it also showed and encouraged the

new attempts to apply information theory and machine learning to similar ques-

tions. In Chapter 3, we presented a novel approach—CREST—to identify pedi-

gree relationships of close relatives. CREST differs from other approach in that

it utilizes the multi-way IBD sharing among relative pairs and their mutual rela-

tives. We thus came up with new features and built stratified models to classify

relationship types in a machine learning approach. CREST achieved the state of

the art performance and outperformed PADRE in simulation data, and obtained

over 92.0% sensitivities for classifying second degree relative types when tested

with sufficient mutual relatives in the GS dataset. We also showed that CREST

can identify the genetic older samples in PC, GP, and AV pairs with over 95.0%

sensitivities with the aid of mutual relatives. The performance of CREST sup-

ports the possibility to use mutual relatives in the datasets for high resolution

inference. In Chapter 4, we proposed a new method, HAPI-RECAP, to recon-

struct missing parental genotypes from genotyped siblings and relatives. For

this challenging problem, HAPI-RECAP jointly phased siblings to infer parental

genotypes, and used IBD regions between relatives and children as the reference

when the number of children is not large enough. We validated HAPI-RECAP

in SAMAFS data under three scenarios: when there are three or more children

and one parent; when there are four to seven children and their relatives; when

there are eight or more children. The results show that HAPI-RECAP is able

to reconstruct the large portion of parental genome under these three scenarios

with the error rates comparable to the genotyping errors. This analysis gives
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the promise to even infer unavailable genotypes by retrieving information from

current samples and relatives.

All these studies consider how to better utilize the information among relatives

to solve problems with practical applications, and show the possibilities to ap-

ply machine learning and other computational approaches. For the future work,

it is possible to continue applying the frameworks or methods to similar ques-

tions, such as evaluating other meaning features, extending to infer more dis-

tant relationships, or reconstructing multi generational ancestors. On the other

hand, the results of these analyses have meaningful down stream applications.

CREST not only provides the classification results, but also generates the prob-

ability for each class, which can be used to reconstruct pedigree and further

connect relatives in the datasets. In addition, when there are more relatives

available in the datasets, these methods can benefit from more information and

provide even more accurate results.
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APPENDIX A

SUPPLEMENTARY FOR CHAPTER 2
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Figure A.1: Probability mass functions of different distribution shapes for
D as a function of degree of relatedness d, where uniform=1/7, slow-
exponential=(1000/15541) × 2(d−1)/3, and exponential=(160/20320) × 2d−1. To-
tal pair counts for the testing data are 21,000 for uniform, 15,541 for slow-
exponential, and 20,320 for the exponential.

90



0.00
0.25
0.50
0.75
1.00

D=
1 1.

0
1.

0
1.

0

0.00
0.25
0.50
0.75
1.00

D=
2

0.
00

01
8

5.
4e

-0
5

4.
6e

-0
5

0.00
0.25
0.50
0.75
1.00

D=
3

0.00
0.25
0.50
0.75
1.00

D=
4

0.00
0.25
0.50
0.75
1.00

D=
5

D=1
0.00
0.25
0.50
0.75
1.00

D=
6

5e
-0

5
1.

7e
-0

5
2.

5e
-0

5

0.
7

0.
99

0.
99

0.
3

0.
00

71
0.

00
69

0.
00

08
7

D=2

0.
05

5
0.

00
36

0.
00

36

0.
76 0.

94
0.

94

0.
18

0.
05

8
0.

05
5

0.
00

21
2.

5e
-0

5
6.

2e
-0

5

D=3

5.
8e

-0
5

0.
11

0.
04

5
0.

04
1

0.
7 0.

82
0.

84

0.
18

0.
13

0.
12

D=4

0.
00

89
0.

00
18

0.
00

15

0.
00

03
3

3.
8e

-0
5

4.
2e

-0
6

0.
16

0.
13

0.
12

0.
56 0.

68 0.
71

D=5

0.
25

0.
18

0.
16

n
r
(r, n)

0.
00

35
0.

00
19

0.
00

1

0.
15 0.
22

0.
22

D=6

0.
54

0.
53 0.
56

Actual Degree

Pr
ed

ict
ed

 D
eg

re
e

Figure A.2: Confusion matrix (with respect to degree of relatedness) of Bayes
classifiers trained on exact segments with features n, r and (r, n) from the uni-
form distribution. Most misclassifications occur in diagonal-adjacent cells (off-
by-one-degree misclassifications).
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Figure A.3: Confusion matrix (with respect to degree of relatedness) of Bayes
classifiers trained on inferred segments with features n, r and (r, n) from the
uniform distribution. Most misclassifications occur in diagonal-adjacent cells
(off-by-one-degree misclassifications).
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Figure A.4: Distributions of exact and inferred segment numbers in fifth degree
pairs.
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Figure A.5: Distributions of exact and inferred segment numbers in sixth degree
pairs.
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calculated over 33,000 pairs from each degree.
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Figure A.7: MI of different feature sets as a function of bin size (pairs per bin),
averaged over 80 independent simulations of exact segments from each of the
distribution shapes. Slowexp corresponds to the slow-exponential distribution.
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bin size (pairs per bin), averaged over 80 independent simulations of exact seg-
ments from each of the distribution shapes. Slowexp corresponds to the slow-
exponential distribution.
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Figure A.9: Heat maps depicting posteriors p̂(D|f, ~T ) for inferred IBD segments
for several values of D. Generated using the griddata two-dimensional inter-
polation on p̂(f |D) calculated from training data. Overlaid are corresponding
testing data points colored by their classification. Here, the IBD segment num-
ber n has been normalized to unity. Probabilities and points from higher degrees
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Figure B.1: Example IBD sharing between a GP pair and their mutual rela-
tives on both the maternal and paternal sides of the grandparent. The mutual
relatives y1 and y2 are related to the GP pair x1 and x2 through the grandparent’s
mother and father, respectively. The blue or purple regions represent either one
haplotype of x1 or IBD segments other individuals share with those haplotypes.
The black box outlines the regions CREST deems as being IBD2 between x1 and
the mutual relatives.
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Figure B.2: The variance of ratios R1 and R2 decrease as the genome coverage
rate increases. (A) R1 and (B) R2 values across bins of genome coverage rates.
The dots show the mean value in each bin, and the shaded regions span one
standard deviation from the mean. Results are from simulated data, with IBD
segments detected in genotype data, for all three types.
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Second degree pair Mutual relatives

Figure B.3: The structure of the simulated pedigrees used to evaluate CREST’s
relationship type classification. The left side shows an example target second
degree pair, which is either a GP, AV, or HS pair. The right side depicts example
mutual relatives, which include one or more individuals that are related to the
second degree pair and to each other (Methods). Genotyped samples are shown
as filled shapes. The dashed line connects the second degree pair and the mutual
relatives to their unknown MRCA.
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1

2

3 4 5 6 7

Figure B.4: Example pedigree with individuals contained in multiple second
degree pairs. Sample 1 and each of samples 5, 6, and 7 are three GP pairs, while
sample 2 and samples 6 and 7 are two AV pairs. The real data results average
the sensitivity and specificity among all samples with the same genetically older
sample for these types, so the three GP pairs would each contribute a count of 1

3

to the GP metrics, and the two AV pairs would contribute 1
2

to the AV metrics. In
turn, sample 5 and samples 3 and 4 form two HS pairs with the same common
parent, and the real data results similarly include average scores for such pairs,
in this case weighting each by 1

2
. Note that sample 5 is a member of both a GP

and HS pair, and the results consider each type separately, incorporating the
average metrics for all pairs within each type.
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Figure B.5: Performance of CREST and PADRE for second degree relation-
ship type classification of pairs both tools classify. (A) The sensitivity and
(B) specificity of CREST and PADRE for inferring GP, AV, and HS relationship
types, along with the average of these rates across the three relationships. The
x-axis indicates the mutual relatives types included in the analysis, with each
target relationship type and mutual relative combination including data only
for those pairs (out of 200 per data point) that both PADRE and CREST classify.
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Figure B.6: Performance of CREST and PADRE for second degree relation-
ship type classification where PADRE used perfect haplotypes. (A) The sensi-
tivity and (B) specificity of CREST and PADRE for inferring GP, AV, and HS re-
lationship types, along with the average of these rates across the three relation-
ships. The x-axis indicates the mutual relatives types included in the analysis,
with each target relationship type and mutual relative combination including
data from simulated phased haplotypes of 200 pairs.
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Figure B.7: Performance of CREST and PADRE for second degree relation-
ship type classification of pairs both tools classify and where PADRE used
perfect haplotypes. (A) The sensitivity and (B) specificity of CREST and PADRE
for inferring GP, AV, and HS relationship types, along with the average of these
rates across the three relationships. The x-axis indicates the mutual relatives
types included in the analysis, with each target relationship type and mutual
relative combination including data only for those pairs (out of 200 per data
point) that both PADRE and CREST classify.
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Figure B.8: The confusion matrices from the CREST and PADRE classifica-
tion results. Analyses of CREST and PADRE include 200 pairs of GP, AV, and
HS over different pedigree structures. Labels on the left indicate the mutual
relatives in the pedigree structures. The row of each matrix gives the true re-
lationship type and the column is the predicted relationship type. Since a few
pairs failed classification by CREST or PADRE (Results), the sums of each row
are not always 200.
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Figure B.9: The confusion matrices from the CREST and PADRE classifica-
tion results where PADRE used perfect haplotypes. Analyses of CREST and
PADRE include 200 pairs of GP, AV, and HS over different pedigree structures.
Labels on the left indicate the mutual relatives in the pedigree structures. The
row of each matrix gives the true relationship type and the column is the pre-
dicted relationship type. Since a few pairs failed classification by CREST or
PADRE (Results), the sums of each row are not always 200.
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Figure B.10: The calibration curves for classifying second degree relatives
over different coverage rates. In each plot, the analysis includes 1,000 pairs
of each type. The x-axis shows the per-bin mean predicted probability and the
y-axis indicates the proportion of pairs that are of the given type in the corre-
sponding bin. We used five bins where possible, but reduced the number of
bins if needed to ensure that each bin includes at least 50 pairs.In all cases, bins
are uniformly spaced.
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Figure B.11: CREST accurately infers the directionality of GP, AV, and PC
pairs. Plot shows the sensitivity across bins of genome coverage rates for 200
pairs in each bin.
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Figure B.12: The calibration curves for inferring the relationship direction-
ality of GP, AV, and PC pairs. The x-axis shows the per-bin mean predicted
probability and the y-axis indicates the proportion of pairs that are of the given
direction in the corresponding bin.The analysis includes 300 pairs of each direc-
tion. Plot includes three uniformly spaced bins.
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Figure B.14: The calibration curves for classifying third degree relatives. The
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bins.
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Figure B.15: The distribution of age differences of second degree relatives in
GS dataset. Histograms of the absolute value of age differences of all GP, AV,
and HS pairs in the GS dataset.
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Figure C.1: Example IBD sharing between siblings and their relatives on both
the maternal and paternal sides. The regions in different colors represent either
haplotype of siblings or IBD segments other individuals share with those hap-
lotypes. The black box outlines the regions that are also IBD segments between
two relatives. Relatives on the same side may or may not share IBD segments
with each other.
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Figure C.2: The reconstructed coverage varies as the proportion of IBD re-
gions change. The average reconstructed genotypes coverage and standard de-
viation over 50 samplings for given the proportion of IBD regions.
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Figure C.3: The coverage and error rates of reconstructed genotypes under
different ratios. (A) The coverage and (B) error rates of reconstructed genotypes
for two parents with four children and their relatives under different ratios of
difference between haplotypes and IBD regions. The blue line or dot represents
the results of parent that is related to the relatives; The red line or dot represents
the results of the other parent that is unrelated to the relatives.
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