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 Gamma-aminobutyric acid type-A (GABAA) receptors are ligand-

gated chloride channels essential for regulating signal transmission within the 

mammalian central nervous system (CNS).  The chloride currents due to 

these pentameric receptors can be positively modulated (potentiated) by a 

variety of molecules including barbiturates, diazepams, and endogenous 

neurosteroids, some of which are used as therapeutics.  Molecules that 

selectively modulate GABAA receptors of specific subunit compositions are 

scarce but would be valuable tools for elucidating the function of GABAA 

receptor subtypes within the CNS and may aid in developing therapeutics 

with greater target specificity. 

 Described here is the discovery of several dihydropyrimidinone 

(DHPM) small molecules that preferentially potentiate GABA induced 

whole-cell currents from δ subunit-containing GABAA receptors.  Some of 

the DHPMs, such as JM-II-43A, had potentiation efficacies comparable to 

those of non-subtype selective modulators phenobarbital and tracazolate, 

but the DHPMs did not directly induce receptor currents.  JM-II-43A was 

further tested with α1β2δ GABAA receptors using flash-photolysis transient 

kinetic techniques as well as single-channel and multi-channel current 

recording patch-clamp techniques to determine how DHPMs modulate 



 

these receptors.  The results lead to the proposal of a novel mechanism of 

receptor function involving an equilibrium of GABAA receptors between an 

active and inactive state before the presence of agonist.  This equilibrium is 

shifted by potentiating compounds, such as DHPMs, towards the active 

state to increase the total number of receptors that reach an open-channel 

(ion conducting) state.  This hypothesis also explains the characteristic lack 

of desensitization and low peak current amplitudes associated with δ 

subunit-containing receptors. 

 Also discussed is the purification and characterization of several 

photo labile GABA derivatives containing a coumarin-based caging group 

for their quantum yield, rate of photolysis, solubility, thermal stability and 

sensitivity to visible light in the 350- to 450-nm region.  These compounds 

were intended for transient kinetic investigations of the modulation of 

GABAA receptors by DHPMs discussed above.  One of these compounds 

was determined to have a quantum yield of 0.1, however the rate of 

photolysis was not suitable for transient kinetic measurements in the micro- 

to milli-second time region. 
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PREFACE 

 

 Over my graduate career I have had a variety of projects, with this 

dissertation discussing only one of these projects that eventually became 

fruitful.  The other projects that I worked on, while not yielding a cohesive 

story or not working out the way I anticipated, did permit me the 

opportunity to learn many techniques that I might never have otherwise.  

However, I have come to realize that what one truly learns during a 

successful graduate student’s studies are not the techniques and the details of 

projects an individual has pursued, but the process of learning how to learn 

about a topic and ask relevant questions.  While this may sound 

fundamentally simple, it is a step that cannot be taught in a text book or a 

classroom.  These are skills that no one can give through lectures and 

discussion.  Mentors, advisors, and peers can only help an individual obtain 

these skills by demonstrating their use, but in the end it is the act and 

struggle of research that truly teaches a student to become a researcher.  So I 

give to you, the reader, this dissertation; a small research story that is only 

such a small fraction of the experiences and labor that have transformed me 

into a scientist. 
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CHAPTER 1 

 

GENERAL INTRODUCTION 

 

 The mammalian central nervous system is composed of roughly one 

trillion (1012) neurons that are constantly receiving, propagating and 

transmitting signals to other cells through the collective contribution of a 

diverse class of proteins called ion channels.  The transmission and 

regulation of neuronal signaling occurs in part through the use of ion 

channels that are activated by small molecules called neurotransmitters.  The 

neurotransmitter γ-aminobutyric acid (GABA) is the primary inhibitory 

neurotransmitter of the vertebrate central nervous system (CNS) (19, 20).  

This ligand represses signaling in the CNS through activation of two major 

classes of receptors; GABAA receptors, which are ligand-gated ion channels, 

and GABAB receptors, which are heterotrimeric G protein coupled receptors 

(20).  While both receptor types modulate neuronal signaling, this disertation 

focuses on GABAA receptors, a family of ligand-gated ion channels. 

 

1.1   General Overview of Neuronal Signaling and GABAA Receptors in 

the Central Nervous System 

 The neurons of the CNS primarily rely on ion gradients and ion 

permeability across the plasma membrane for signal transmission.  The low 

levels of Na+ and high levels of K+ inside cells, as compared to the 

extracellular environment, create ion gradients established by the P-type 

Na+/K+ ATPase, also known as the Na+/K+ pump.  Gradients established 

by ion pumps, such as the Na+/K+ pump, and selective ion permeability 
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provided by transmembrane ion channels, collectively establish an electric 

potential across the membrane that is essential for neuronal signaling (23).  

The magnitude of this membrane potential ( ME ) is described by the Nernst 

equation (24)  

)/[S]S]RT/zF)ln([(E inoutS =        [1.1] 

for a single ion (S) with charge (z), or by the Goldmann/Hodgkin/Katz 

equation (25, 26) 

))[A]P[C]P/()[A]P[C]P(RT/F)ln((E outAinCinAoutCM ∑+∑∑+∑=   [1.2] 

for multiple monovalent cations (C) and anions (A).  The other parameters 

in these equations are the universal gas constant (R), absolute temperature in 

Kelvin (T), Faraday’s constant (F), and the permeability of a cation ( CP ) or 

anion ( AP ) through the membrane.  In the case of neurons, the membrane 

potential commonly resides at -60 to -80 mV due to the presence of 

constitutively open potassium ‘leak’ channels.  As ion permeability changes 

with the opening or closing of ion channels, the membrane potential 

changes accordingly.  Changes in the membrane potential also activate 

voltage-sensitive ion channels, which further alter the membrane potential.  

The synchronized opening and closing of voltage-sensitive Na+ and K+ 

channels generates and propagates waves of electric potential, called action 

potentials (29).  These action potentials are the fundamental signals of the 

CNS.  The signals rapidly travel the length of a neuron, from its dendrites, 

through the soma and axon, to the axon terminals at conduction velocities 

up to 21.5 m/s for non-myelinated neurons (30).  However, for these signals 

to be transmitted from the axon terminals of one neuron to the dendrites of 

the next, small molecules called neurotransmitters are needed.  Upon 

reaching an axon terminal, an action potential ultimately causes vesicles 
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containing neurotransmitter to fuse with the plasma membrane.  

Neurotransmitter is released into the space between two juxtaposed 

neuronal membranes, called a synapse.  The membrane of the post-synaptic 

dendrite contains ligand-gated ion channels that bind the neurotransmitter 

and rapidly open.  Depending upon the ion selectivity of the ligand-gated 

channel, the neurotransmitter may raise the membrane potential to stimulate 

a new action potential, or lower it to prevent excitation.  

 The pentameric GABAA receptor is an anion-selective, ligand-gated 

ion channel that facilitates the flux of both Cl- and bicarbonate (HCO3
-) into 

the cell, which makes the membrane potential more negative 

(hyperpolarization) and diminishes the ability of voltage-sensitive ion 

channels to open.  Thus, GABAA receptors are considered inhibitory or 

repressive and are critical for regulating neuronal signaling.  Various subtypes 

of these ion channels are present at either neuronal synapses to receive 

inhibitory signals or throughout extrasynaptic areas to mediate regional 

modulation of the CNS by responding to extracellular levels of GABA and 

endogenous neurosteroids.  The importance of GABAA receptors is 

exemplified by the numerous mental diseases that have been linked to the 

malfunction of these receptors, including insomnia, anxiety, autism, 

depression, schizophrenia and epilepsy.  Additionally, endogenous steroids 

and many anesthetics and small molecule drugs, such as benzodiazepines, 

barbiturates, ethanol and gaboxadol, target GABAA receptors, emphasizing 

the importance of understanding the structure and function of these 

receptors. 
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1.2  GABAA Receptor Subunits and Structure 

 The pentameric structure of GABAA receptors is a common attribute 

of all members of the cys-loop receptor super-family, which includes 

nicotinic acetylcholine (nAChRs), glycine (GlyRs) and serotonin (5-HT3) 

receptors (20).  These receptors can be composed of many combinations of 

subunits; in the case of the GABAA receptors, there are 19 different GABAA 

receptor subunits in the human genome (α1-6, β1-3, γ1-3, δ, ε, π, τ, ρ1-3).  

Classes of GABAA receptor subunits (e.g. α, β, etc.) are based on amino-acid 

sequence identity, with subunits within a single class having > 70% identity, 

and 30-40% identity between classes (32, 33).  The combinations of these 

subunits dictate the pharmacology, kinetic mechanism, localization and even 

the cellular function of different GABAA receptors (21, 33-40).  The variety 

of subunits is further expanded by different mRNA splice variants, such as 

the long (γ2L) and short (γ2S) forms of the γ2 subunit (41).  With 19 

different subunits, several with splice variants, the number of theoretical 

permutations is immense. 

 Though many different subtypes of GABAA receptors are 

theoretically possible, not all the possible combinations are found in the 

CNS (42).  Receptors consist of at least two α and two β subunits (20, 43).  

A bias for specific combinations of subunits was demonstrated by using 

immunoaffinity columns of rat brain GABAA receptors (44).  These studies 

specifically highlighted that γ and δ subunits were not found together in a 

receptor complex.  These and many other studies (32, 38, 45-47) have 

attempted to identify endogenous receptor subtypes and their localization in 

the CNS (see review (37)).  Immunocytochemistry studies have localized 13 

different subunits in the rat CNS (48): α1, β1, β2, β3 and γ2 subunits are 
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found throughout the CNS whereas α2, α3, α4, α5, α6, γ1, γ3 and δ subunits 

are localized to specific areas of the brain.  These results also supported 

previous evidence that the α1β2γ2 receptor subtype is the most abundant 

and is expressed ubiquitously in the CNS.  Many other less abundant 

subtypes are localized to specific regions or neurons within the CNS.  For 

example, the α1β2δ subtype is found in hippocampal interneurons (6), 

α1α6βδ and α1α6βγ receptors in cerebellum granule cells (49), and receptors 

containing α3, θ, and ε localize to the dorsal raphe as well as the locus 

coeruleus regions of the brain (46, 50).  While various GABAA receptor 

subtypes may have overlapping roles in the CNS, the unique localizations, 

pharmacology and mechanisms of some subtypes suggest they have 

specialized functions. 

 The current structural understanding of subunit interactions with one 

another and with small molecule ligands is based entirely on techniques 

other than x-ray crystallography, as no full length eukaryotic cys-loop 

receptor has been crystallized.  Primary sequence analysis indicates that all 

cys-loop receptors (nAChRs, GlyRs, 5-HT3 and GABAA receptors) have 

evolved from a single ancestral receptor and, therefore, are thought to have 

similarities in both structure and function (51-53).  To date, the best atomic 

structures of eukaryotic cys-loop receptors are electron microscopy 3-

dimensional reconstructions of nACh receptors from a Torpedo species (54).  

The 4 Å resolution structure of the receptor transmembrane domain has 

revealed several residues critical for gating ion flux.  Additional structural 

information has come from the x-ray crystal structure of the acetylcholine-

binding protein (AChBP) from the mollusk Lymnaea stagnalis (55, 56).  

AChBP is a cytosolic protein reported to have moderate sequence similarity 
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to the extracellular domain of nAChRs and was identified by its ability to 

bind acetylcholine and α-bungarotoxin, a specific inhibitor of muscle type 

and α7 nAChRs (55).  Although the AChBP subunits lack transmembrane 

domains, their crystal structure shows the assembly of its subunits into a 

pentameric structure (56). 

 The structural information about cys-loop receptors has grown 

substantially with three recently reported x-ray structures of pentameric 

ligand-gated ion channels from prokaryotes; the ELIC receptor from Erwinia 

chrysanthemi was reported at 3.3 Å resolution (57), and two structures of the 

GLIC receptor were reported from Gloeobacter violaceus at 3.1 Å and 2.9 Å 

resolutions (58, 59).  What is particularly interesting about these structures is 

that they give examples of full protein complexes that are in apparent open- 

and closed-channel states.  Such structures are likely to be very helpful to 

identify important amino-acid residues and binding domains for all cys-loop 

receptors. 

 In the case of the GABAA receptor, the best structural data has been 

obtained by using the AChBP as a template to overlay the protein sequence 

of the extracellular domain of a GABAA receptor with two α, two β, and one 

γ subunit (60).  This structural modeling prompted the hypothesis that there 

is a preferred absolute arrangement of the subunits within the GABAA 

receptor pentamer.  This model was supported by studies that characterized 

the expression and electrophysiology of α1, β2, and γ2L subunits that were 

artificially linked to one another as dimers or trimers (61).  These ‘tethered’ 

or concatenated subunits force the receptors to assemble into an absolute 

arrangement, which permits examining the effect of subunit position within 

a GABAA receptor complex.  While a preferred arrangement for α1β2γ2L 
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was identified with both concatenated subunits and modeling of subunits 

based on the AChBP structure, it is still not known what absolute subunit 

arrangements exist for other GABAA receptor subtypes (i.e. non-α1β2γ2L 

receptor subtypes).  Indeed, investigations using concatenated subunit 

constructs have shown several alternate arrangements in δ subunit-

containing receptors (10). 

 GABAA receptor structure and function has also been investigated by 

mutagenesis techniques, which identified critical residues within GABAA 

receptors for the anion selectivity of the receptor (62), the binding of GABA 

(63), the binding of modulatory compounds (64-67), and mechanistic steps 

for channel function (68).  Natural mutations within GABAA receptors have 

been instrumental to understanding the structure and function of GABAA 

receptors.  Point mutations in receptor subunits genetically linked to 

diseases, such as epilepsy (3, 69-71), have greatly contributed to 

understanding both the role of GABAA receptors within the CNS and of 

individual residues in receptor function.  These point mutations influence 

GABAA receptor pharmacology (70), mechanism (1, 4), subunit assembly 

(72), cellular trafficking (43) and surface expression (73, 74). 

 The combination of natural point mutations, artificial mutations, 

structural modeling, EM structural data, and analysis of homologous ligand-

gated ion channels has given researchers a general understanding of the 

structural organization of subunits, domains, and residues needed for 

receptor function.  However, the many possible subunits that compose these 

receptors complicate this general picture.  Since receptor subtypes have 

different biophysical and pharmacological properties, the ability to 

extrapolate structural information from one particular subtype to another, or 
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from nAChRs to GABAA receptors, may be limited. 

 

1.3  Disease-linked Mutations of GABAA Receptors 

 GABAA receptors are important components for the regulation of 

neuronal signaling, thus it is little surprise that their malfunction or altered 

function has been implicated in diseases.  Anxiety, autism, depression, 

epilepsy, insomnia and some cases of schizophrenia are all mental disorders 

that have been linked to GABAA receptor function or expression within the 

CNS (reviewed in (75) and (76)).  This section will briefly discuss what is 

currently known for the three best understood mental disorders: anxiety, 

autism and epilepsy.  While GABAA receptors are implicated in other mental 

afflictions, the evidence is indirect or limited. 

 

Anxiety Disorders 

 Anxiety as a neurological disorder has a great socioeconomic impact 

and is highly prevalent with roughly 4.7% of individuals fitting criteria for 

lifetime panic disorders (77, 78).  Because GABAA receptors regulate and 

repress signaling in the CNS, it is thought that anxiety may be due to 

decreased GABAergic signaling (79).  Genetic components of anxiety 

disorders have not been found with any genes, including GABAA receptor 

subunits (80, 81); however, several lines of evidence support a contribution 

of GABAA receptors.  Several benzodiazepines, a class of compounds that 

target and modulate GABAA receptors, are commonly used as anxiolytics 

(anti-anxiety drugs) (77, 82).  Positron emission tomography (PET) studies 

using the benzodiazepine flumazenil to bind GABAA receptors, suggest that 

the brains of patients with anxiety disorders have a decrease in GABAA 
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receptor expression (83, 84).  This apparent reduction of GABAA receptors 

was supported by a study using single photon emission computer 

tomography (SPECT) with iomazenil, an analog of flumazenil (85).  These 

results indicate reduced GABAergic regulation of CNS signaling.  Other 

studies using magnetic resonance spectroscopy (MRS) measurements show a 

considerable (22%) reduction in cortical GABA concentrations in patients 

with anxiety disorders, again suggesting a decrease in GABAergic regulation 

(86).  Mouse models have shown that decreased GABAA receptor expression 

in the CNS leads to increased anxiety.  Mice heterozygous for the γ2 subunit, 

which is important for keeping receptors in the plasma membrane, displayed 

increased anxiety and threat response when examined for their response to 

fear stimuli (87).  Further studies are needed to elucidate and understand the 

connection of GABAA receptors to anxiety disorders.  

 

Autism Spectrum Disorders 

 Autism is largely inherited in a non-Mendelian (idiopathic) manner, 

but there are several indications the function and expression levels of 

GABAA receptors have a role in autism spectrum disorders (88).  While the 

genetic link of GABAA receptors to autism is still debated (89, 90), 

mutations in and around genes for β3, α5, and γ3 subunits, found within the 

q11-13 regions of chromosome 15, have been genetically associated with 

autism (91-94).  It should be noted that the 15q11-13 region is also 

implicated in the Prader Willi/Angelman Syndrome and in autistic 

individuals often having chromosomal duplications of this region (88, 95).  

Non-genetic evidence from binding assays, using radio-labeled muscimol 

and flunitrazepam, indicates a decrease in GABAA receptor expression in 
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brains of autistic individuals, particularly in the anterior cingulate cortex (96).  

Epigenetic dysregulation of the expression levels of GABAA receptor genes 

has also been implicated as a possible cause of autism-spectrum disorders 

(97).  Dramatic changes in the expression levels of various GABAA receptor 

subunits have been observed in knockout mice for the protein uPAR (98), a 

protein implicated in autism (99).  Thus, a growing amount of data supports 

the notion that GABAA receptors, particularly their expression levels, have a 

significant role in autism-spectrum disorders.  

 

Epilepsy 

 Epilepsy was estimated to affect 42 million people worldwide and 2.5 

million Americans in 1993 with an estimated annual cost of $2.5 billion 

(100), making epilepsy a significant societal and economic burden (101).  Of 

all the disorders linked to GABAA receptors, epilepsy is the best established, 

as several mutations leading to susceptibility for epilepsy have been 

identified.  Although these mutations have been correlated with inheritance 

of particular forms of epilepsy in families, mutations in GABAA receptors 

are not common in most epileptic patients, and other unknown susceptibility 

factors must exist (102-106).  Regardless, more than ten mutations found in 

the GABAA receptor subunits correlate with inheritable forms of epilepsy, 

clearly demonstrating that GABAA receptors contribute to this disease. 

 The first genetic evidence implicating GABAA receptors in epilepsy 

was reported in 2001 when two distinct missense mutations coding for either 

a lysine-to-methionine change at residue 289 (K289M) or an arginine-to-

glutamine change at residue 43 (R43Q) were found within a γ2 subunit gene 

of a family displaying traits similar to generalized epilepsy with febrile 
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seizures plus (GEFS+)(69) or childhood absence epilepsy and febrile 

seizures(70), respectively.  The K289M mutation is located in a conserved 

amino-acid loop between the second and third transmembrane domains, a 

region implicated in the gating of the receptor (107) and resulting in 

decreased current amplitudes of mutant receptors (1, 69, 108).  The K289M 

mutation is believed to decrease the receptor mean-open time (the period 

that the receptor stays in an open-channel state) to 10% that of wild type 

(108, 109) and to reduce the channel-opening equilibrium constant by 5-fold 

(1).  The R43Q mutation is located in the extracellular N-terminal domain of 

the γ2 subunit and was reported to abolish the modulatory effects of the 

benzodiazepine diazepam (70).  It was later revealed that lower currents 

from mutant receptors result from decreases in cell-surface expression (108, 

109).  By inserting enhanced yellow fluorescent protein in between the 

fourth and fifth amino-acid of the γ2 subunit, confocal microscope studies 

were able to visualize retention of the γ2(R43Q) subunit in the endoplasmic 

reticulum (ER) (73), likely the result of an inability to assemble into 

functional receptors (72). 

 Since the first report in 2001 many other GABAA receptor mutations 

have been linked to cases of epilepsy and seizures.  The R139G mutation in 

the γ2 subunit of GABAA receptors was associated with febrile seizures in 47 

unrelated patients (110).  Receptors containing the γ2(R139) subunit have an 

increased rate of receptor desensitization and decreased sensitivity to 

diazepam. 

 Another point mutation in the γ2 gene was identified in a family with 

a genetically heritable form of childhood absence epilepsy and febrile 

seizures (111).  This mutation, denoted as γ2(IVS6+2T→G), abolishes 
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mRNA processing at the 5’ splice-site of intron-6.  While never 

experimentally confirmed, it is predicted that the IVS6+2T→G mutation 

will result in the merging of exon 5 and 7 in a process called ‘exon skipping’, 

which would result in a premature stop codon (111). 

 The γ2(Q351X) point mutation found in an Australian GEFS+ family 

codes for a premature termination codon (112) and creates a truncated 

subunit that acts as a dominant-negative by retaining α and β subunits in the 

ER (113).  Furthermore, the generation of both a yellow fluorescent protein 

tagged γ2(Q351X) subunit and a pH sensitive enhanced GFP (pHluorin) 

tagged γ2(Q351X) subunit clearly indicate reduced expression of the mutant 

subunit on the cell plasma membrane (114). 

 Recently, a Chinese family with a record of GEFS+ was found to 

carry a γ2 gene with a W390X truncation mutation, which is located between 

the third and fourth transmembrane helixes of the subunit (115).  It is not 

known whether the γ2(W390X) subunit has any functional activity; it is likely 

retained in the ER and shuttled into the degradation pathway. 

 An A322D mutation found in the α1 subunit within a family with 

autosomal dominant juvenile myoclonic epilepsy (71) was determined to 

have significant retention in the ER and reduced expression in the plasma 

membrane (74, 116).  Any functional receptors containing the α1(A322D) 

subunit were found to have significantly altered mechanisms (117, 118) and 

to undergo more rapid endocytosis and targeting to the lysosome for 

degradation (119). 

 A screen of 98 unrelated patients with idiopathic generalized 

epilepsies (IGE) revealed a frame-shift mutation at residue 326 of the α1 

subunit, creating an early termination codon two positions later 
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(S326fs328X) (120).  The α1(S326fs328X) subunit is truncated three-quarters 

through the third transmembrane helix and likely does not give rise to 

functional receptors.  Accordingly, it was determined that the 

α1(S326fs328X) subunit was retained in the ER and no currents were 

observed when it was expressed with other subunits in HEK293 cells. 

 Three point mutations (P11S, S15F, and G32R) in the β3 subunit 

gene were associated with childhood absence epilepsy in four families from 

Mexico, Honduras and El Salvador (121).  These mutations result in 

decreased currents in transiently expressed receptors, with preliminary 

results indicating that increased glycosylation of β3(P11S, S15F, and G32R) 

mutant receptors may play a role.  While glycosylation does alter the 

mechanism of GABAA receptors (122), it is not entirely clear how hyper-

glycosylation would decrease channel currents. 

 The E177A and R220H point mutations within the δ subunit gene 

were identified in two separate GEFS+ families and lead to reduced currents 

from whole-cell, patch-clamped cells transiently expressing α, β, and mutant 

δ subunits (3).  Further characterization of the δ(E177A)- and δ(R220H)-

containing receptors revealed reduced open-times of the channel and a slight 

reduction in cell surface expression (4). 

 

1.4  The Mechanism of GABAA Receptors 

 Electrophysiological techniques established by Sakmann and Neher  

(123-125) have allowed many researchers to investigate the mechanism of 

ion channels through analysis of both whole-cell and single-channel current 

measurements.  (These techniques are described in Section 1.7.2.)  These 

techniques permitted researchers to build upon previously proposed 
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mechanisms resulting in a diversity of potential mechanisms for nACh and 

GABAA receptors (15, 27, 28, 31, 126-128).  Several mechanisms are shown 

in Figure 1.1, the upper three proposed from voltage clamp measurements 

and ion flux measurements (12, 15, 22), and the lower three proposed based 

on single channel analysis techniques (27, 28, 31).  However, the underlying 

components of all these mechanisms can be traced back to the mechanisms 

proposed for nAChRs by Del Castillo, Katz and Thesleff based on voltage-

clamp measurements of frog neural muscle endplates (12, 22).  Because all 

cys-loop receptors (GABAA receptors, nAChRs and GlyRs) are likely of the 

same origin (52, 53), many principles of the nAChR mechanism also apply to 

GABAA receptors.  The first mechanism proposed for nAChRs, by Del 

Castillo and Katz, described the nAChR in a ligand-free state ( R ), a ligand-

bound state with the channel closed ( RL ), a ligand-bound state with the 

channel open ( RL ), and a desensitized state with a closed-channel ( DL ) 

(Figure 1.1).  This mechanism was refined by Katz and Thesleff to generate 

two cyclic mechanisms where an active ( R ) and inactive ( D ) form of the 

receptor can both bind a ligand (one of these mechanisms is shown in Figure 

1.1).  These cyclic mechanisms were the foundation on which the Cash and 

Hess mechanism (15) was derived.  Differences in the Cash and Hess 

mechanism include the receptor binding two ligand molecules.  This widely 

accepted modification to the mechanism of cys-loop receptors is based on 

the presence of high (nM) and low (μM) affinity ligand-binding sites 

observed in both purified and cloned nACh and GABAA receptors (52, 129-

131).  The Cash and Hess mechanism also explicitly describes the channel-

opening equilibrium constant (Ф-1), which is defined as the channel-opening 

rate constant ( kopen) divided by the channel-closing rate constant ( kclose) (15).
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Figure 1.1  Shown are only a few of the many mechanisms of action that 
have been proposed for cys-loop receptors, which include GABAA and 
nAChRs receptors.  These mechanisms demonstrate the diversity of how 
voltage-clamp, single-channel, and whole-cell patch-clamp data can be 
interpreted to explain the function of these receptors.  The mechanism 
proposed by Cash & Hess (15) is the mechanism primarily focused on in 
this dissertation because it is a minimalistic mechanism that still describes 
the observed behaviors of ligand-gated channels.  It is based largely on the 
mechanism of Del Castillo (22) and the refinements by Katz & Thesleff 
(12).  Other mechanisms shown have been proposed by Jones & Westbrook 
(27), Macdonald & Twyman (28) and Bianchi et al.(31). 
 These mechanisms have been adapted to use a uniform set of 
symbols.  These include, ligand-free receptor states ( R ), ligand-bound states 
with the channel closed ( RL and 2RL ), ligand-bound states with the channel 
open ( RL , 2RL , etc.), and desensitized states with a closed-channel (various 
‘ D ’ states) (Figure 1.1).  Shown in only some of the mechanisms are rate 
constants (k), dissociation constants for GABA (K) and the channel open 
equilibrium constant (Ф-1).  In fact, all of the arrows are associated with rate 
constants, but these are not shown for aesthetic purposes. 
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 Many mechanisms have been proposed for both GABAA receptors 

and nAChRs (15, 27, 31, 126-128, 132).  The Cash and Hess mechanism 

(Figure 1.1) has been used in the research described in this dissertation, 

because it is a minimalistic model and fits well with observed data for these 

receptors.  The current trace in Figure 1.2A, obtained with a cell expressing 

α1β2γ2L GABAA receptors and voltage-clamped at -60 mV using whole-cell 

patch-clamp recording, clearly displays the individual receptor states that are 

described in the Cash and Hess mechanism.  Note that the membrane 

potential (EM) is clamped at -60 mV across the cell membrane and that the 

currents observed will be negative.  This is due to the relationship between 

electric potential (V), current (I) and conductance  (g), as described by 

Ohm’s law ( g/IV = ), which dictates that as GABAA receptor ion channels 

open or close, the current amplitude will change with the same sign as the 

electric potential.  It is important to realize that the potential (V) is actually 

the difference between the set EM and the electric potential generated by the 

concentrations of Cl- ions on both sides of the membrane (ECL).  Thus 

Ohm’s law can be written as g/I)E(E CLM =− . 

 In the current trace in Figure 1.2A, the receptors start in a non-

conducting state ( R ) in the absence of GABA ( L ), which is observed as the 

baseline current (Roman numeral I).  Upon application of GABA, the 

receptors rapidly bind a first ( RL ) and second ( 2RL ) molecule of GABA.  

The ligand bound, closed-channel state then enters a rapid equilibrium with 

the conducting, open-channel state ( 2RL ).  This is observed in the current 

trace as the rapid increase in current to ~  -4 nA, referred to as the ‘rising’ 

phase of the current trace (Roman numeral II).  The population of receptors 

in the 2RL state also slowly reaches an equilibrium with a non-conducting,
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Figure 1.2  Attributes observed in whole-cell patch-clamp current 
recordings of GABAA receptors related to the mechanism proposed by 
Cash & Hess (16).  A. Whole-cell patch-clamp currents recorded from 
α1β2γ2L (left) and α1β2δ (right) receptor subtypes that were transiently 
expressed in HEK293T cells.  Currents were evoked by application of 1 
mM GABA while the membrane was voltage-clamped at -60 mV.  The 
differences observed between the receptor subtypes include absence of a 
desensitization phase from α1β2δ receptors as well as lower current 
amplitudes as compared to α1β2γ2L receptors.  Different stages of both 
current traces are identified as baseline current (I), the current rising phase 
(II), the desensitization phase (III), and GABA dissociation from the 
receptor upon cessation of application (IV).  Also shown is the current 
corrected for desensitization (V) obtained for the α1β2γ2L receptor subtype
by using equation [1.8].  B. These different phases of the whole-cell current 
traces can be related to the receptor mechanism proposed by Cash & Hess 
(16).  GABAA receptors starting in a closed-channel state ( R ) can rapidly 
bind two molecules of GABA ( L ).  This ligand-bound, but closed-channel, 
state ( 2RL ) then undergoes a conformational change to enter an open-
channel state ( 2RL ).  The population of receptors in this equilibrium 
between the open- and closed-channel states decreases as receptors more 
slowly enter a desensitized closed-channel state that does not readily 
respond to GABA ( 2DL ). 



19 

 

 

 

 

 

 

 

A            

-5000

-4000

-3000

-2000

-1000

0

0 2 4 6 8

C
ur

re
nt

 (p
A

)

-500

-400

-300

-200

-100

0

0 2 4 6 8

C
ur

re
nt

 (p
A

)

Time (s) Time (s)

α1β2γ2L subtype
1 mM GABA

α1β2δ subtype

I

II
III

IV

V

I

II

III

IV

 
B            

 

Cash &
Hess (1980)

 



20 

desensitized state ( 2DL ), which is observed as the exponential decrease in 

current with time (Roman numeral III).  When GABA application is stopped 

and replaced with buffer (Roman numeral IV), GABA quickly dissociates 

from the receptor and the receptors return to the R state. 

 The equilibrium constants and rate constants ultimately dictate how a 

population of receptors is distributed among the conformational states of a 

mechanism.  As such, experiments are conducted and mathematical 

relationships are calculated to determine these kinetic parameters of a 

mechanism.  A few of these important constants include: the ligand 

dissociation constant ( 1K ); the rate of desensitization, which is often 

described by two or more exponential time constants (τ); the channel-

opening equilibrium constant ( 1−Φ ); channel conductance ( channelg ); and the 

term IMRM, which is the product of the maximal current obtained from one 

mole of receptors (IM) multiplied against the molar concentration of 

functional receptors (RM).  These parameters, in combination with a 

mechanism, allow one to describe and make predictions about the behavior 

of receptors, such as the expected current amplitudes for specific agonist 

concentrations.  Additionally, the mechanism of modulation by small 

molecules or point mutations linked to diseases can be determined by 

changes observed in these kinetic parameters.  For instance, it was originally 

thought that inhibitors of the nAChRs, such as cocaine, bind to the open-

channel state of the receptor and directly block ion flux (133).  However it 

was later determined that these inhibitors act by binding to the closed-

channel state of the receptor with a higher affinity (134), and that molecules 

that bind to the open-channel state with a higher affinity can alleviate this 

inhibition (135, 136).  Thus, understanding the kinetic mechanism of 
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receptors is quite useful for explaining how these complexes contribute to 

signaling within the CNS.  

 To determine the values of the kinetic parameters, it is necessary to 

mathematically describe several predictions from the proposed mechanism.  

The Cash and Hess mechanism permits the derivation of two such equations 

(below) for calculating the fraction of receptors in an open-channel state 

( openF ) relative to the concentration of agonist (15).  At the time of GABA 

application, before receptor desensitization ( 0t = ), openF  is described as 

))([L][L])/([L](]R/[]RL[F 2
1

2
M0t20t open K++== == Φ    [1.3] 

where ]R[ M  is the molar concentration of all functional GABAA receptors 

and 1K  is the binding affinity of the receptor for GABA ( onoff1 / kkK = ).  At 

infinite time ( ∞=t ) after application of GABA the open-channel 

concentration is 

)/[L](]R/[]RL[F D2Mt2t open K== ∞=∞=  

   ))2L]([L][)([L]([L]( 2
2

1
2

D2 KKK ++++ ΦΦ  [1.4] 

where D2K is an equilibrium constant between ][RL 2  and ][DL 2  and 2K  is 

the binding affinity of the desensitized receptor for GABA.  Equations [1.3] 

and [1.4] were originally determined by Cash and Hess (15), and their 

derivations can be found in the appendix of this dissertation.  These 

equations are based on several assumptions: i) only an active receptor can 

form an open-channel, ii) although the two GABA binding sites have unique 

affinities for GABA, the binding of both GABA molecules occurs at rates 

much faster than the conformational change that leads to an open-channel 

and faster than the rate of desensitization, thus can be described by two 

equivalent binding affinities ( 1K ), iii) all receptors start in an unbound active 

state.  While the first two assumptions were explicitly stated when the model 
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was originally proposed (15), the third assumption was revealed by work 

described in Chapter 3 of this dissertation.  The Cash and Hess mechanism 

is a general kinetic mechanism, and it is likely the rates of channel opening 

and closing, desensitization, and the binding of GABA to the receptor will 

vary for different receptor subtypes, such as α1β2δ GABAA receptors, which 

lack a desensitization phase (Figure 1.2A). 

 Equations [1.3] and [1.4] can be used to calculate the expected 

currents observed when using single-channel and/or whole-cell patch-clamp 

electrophysiological techniques.  Patch-clamping applies a voltage-clamp 

across a cellular membrane (membrane potential, mE ), permitting the 

visualization of current increases and decreases directly due to channel 

opening and closing.  When using whole-cell patch-clamp measurements, the 

expected current can be calculated by multiplying the fraction of channels in 

the open-channel state ( openF ) by the molar concentration of functional 

receptors on the cell surface ( MR ) and the current obtained from one mole 

of receptors in the open-channel state ( MI ).  This relationship,  

])/[R]RL([RIFRI I M0t2MM0t openMMobs == ==     [1.5] 

was originally described by Hess et al. (137).  The parameter MI  for a 

GABAA receptor can then be estimated for a patch-clamped current 

recording by multiplying EM-ECL (the electric potential, V), against both the 

maximal channel conductance ( channelg ), and Avogadro’s number ( AN ), 

AchannelCLMM N)gE-E(I = .  Substituting this relationship into equation [1.5] 

yields a more complete equation of 

]RL[N)gE-E(])/[R]RL([RI I 2AchannelCLMM0t2MMobs == =   [1.6] 

where the molar concentrations ][R M  are cancelled and the parameters  

needed to calculate MI  have been inserted.  The single channel conductance 
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( channelg ) is a parameter that is specific for the receptor examined and must 

be experimentally obtained, typically by single-channel current 

measurements.  As discussed in Section 1.2 the various subtypes of GABAA 

receptors have different biophysical properties, one of these being channel 

conductance. 

 An additional aspect to consider when mechanistically examining 

ligand-gated ion channels is the desensitization of the receptors with time.  

Desensitization results in an exponential decay of current, clearly observed in 

whole-cell current measurements (Figure 1.2A).  The desensitization of ion 

channels can be described by fitting the decaying whole-cell current (I) with 

the exponential function  

∑ −= nen
τ/tAI(t)         [1.7] 

which can have one or more exponential components, denoted by the 

subscript ‘n ’.  The parameters nA  represents the current amplitude for the 

n th exponential component, t represents time and τn is the time constant for 

the n th exponential component.  A time constant in the context of GABAA 

receptor current can be thought of as the time that it takes for a current 

amplitude of the n th exponential component ( nA ) to decrease to en /A  (or 

~ 36.79% of nA ).  [For example, if a current is obtained that starts at 100 

nA of current and decreases to 0 nA, and this decrease can be fit with a 

function using only a single exponential, then τ would be the time it takes for 

the current to become ~ 36.79 nA.]  Thus, τ parameters are good descriptors 

for desensitization and can be used to examine how this desensitization 

changes under various conditions.  For example, when subunits α1-6 are 

individually expressed with a β and γ subunit, the resulting GABAA receptors 

have different desensitization rates, which are reflected in the different 
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values of τ measured (39). 

 The maximum amount of current evoked with saturating ligand 

concentrations, effectively described by MMRI , is useful for calculating other 

kinetic constants.  This parameter is also useful for estimating the total 

number of receptors present in a single cell (if the channel conductance is 

known for a single channel) and the receptor density on a cell membrane.  

The value of MMRI  must be calculated rather than using peak current 

amplitudes measured with saturating GABA concentrations, due to the rapid 

rate of desensitization for some receptors.  This desensitization may 

significantly reduce the peak current amplitude observed.  The time 

resolution for ligand-gated ion channel measurements is often limited to the 

rate of neurotransmitter application and diffusion.  A fluid mechanics 

principle first discussed by Landau and Lifshitz (138) states that a thin, but 

static, layer of solution will develop on the surface of spherical objects in a 

laminar flow of liquid.  The exchange of solutions on a patch-clamped cell 

will also result in a static layer of buffer, which will act as a diffusion barrier 

for neurotransmitters in a solution flowing around the cell.  Thus, the rate of 

change of ligand concentrations surrounding the receptors is limited to the 

rate of diffusion.  Ultimately, this principle affects the rate of the current 

rising phase and the peak current amplitude, as some ion channels will be 

desensitizing before GABA is bound to others.  To account for this, a 

“current correction” method was developed (137) to estimate what the 

amplitudes of whole-cell current recordings would be if the receptors did not 

undergo desensitization.  This method largely relies on fitting the 

desensitization phase of the receptor current trace with equation [1.7] and 

then using the values of nA and nτ to extrapolate the desensitization phase of 
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the current back to the time that GABA was initially applied to the receptor 

( 0t = ).  The current that would be observed in the absence of receptor 

desensitization ( AI ) is then calculated from  

∑
=

− +=
j

i
n

1
tobstobs

Δt/
A ji

)(I)(I)(eI τ       [1.8] 

the product of an exponential function based on the time constants obtained 

using equation [1.7] with the sum of observed currents ( obsI ) over a time 

interval (Δt) from the beginning to the end of the current trace (i=1 to i=j).  

The resulting corrected current is then plotted; see Figure 1.2A (Roman 

numeral V).  The average of this “corrected current” is used for all further 

data analysis.  Therefore, the MMRI  parameter is obtained from “current 

corrected” measurements of receptors applied with saturating ligand 

concentrations.  Measurements from receptors that do not display receptor 

desensitization, such GABAA receptors containing the δ subunit (Figure 

1.2A), cannot be “current corrected” and their MMRI  value is the observed 

peak current amplitude. 

 

1.5  Agonists, Antagonists and Modulators of GABAA Receptors 

 GABAA receptors are activated, modulated and inhibited by a wide 

array of molecules, from zinc ions and endogenous neurosteroids, to toxins 

and drugs such as barbiturates and benzodiazepines (21, 33, 139, 140) (Table 

1.1).  These molecules cover a wide range of different structures (Figure 1.3), 

and have several, sometimes overlapping, binding sites on the receptor.  An 

inclusive review of all GABAA receptor agonists, inhibitors and modulators 

is beyond the scope of this section, but it is of interest to point out several 

major pharmacological classes of compounds used in GABAA receptor  
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Table 1.1  A variety of different small molecules that act on the GABAA receptor as 
activators (agonists), inhibitors (antagonists), positive modulators (potentiators) and 
negative modulators (inverse agonists).  This list is not inclusive, but does attempt to 
include most of the well known compounds as well as represent a diversity of 
structurally different compounds.  Compounds listed as ‘non-selective’ may bind with a 
higher affinity or have more dramatic effects on specific subtypes, but they do act on 
most GABAA receptor subtypes.   

 
Endogenous Non-selective 

  
Selective 
[subunit specified] 

Agonists GABA 
Alphaxolone 
Ganaxolone 
Taurine 
GABOB 
β-alanine 
Imidazole-4- 
     acetic acid 

Muscimol 
THIP (Gaboxadol)
Isoguvacine 
(+)-TACP 
Zapa 
4-PIOL 
ThioTHIP 

    

Antagonists Cortisone RU5135 
Pitrazepin 
SR95531 
(+)-Hydrastine 
Bicuculline 
Securinine 
(+)-Tubocurarine 
Gabazine 

Benxylpenicillin
Picrotoxinin 
TBPS 
Enoxacin 
Cunaniol 
β-CCE 
Flumaxenil 

Zinc ion [δ >  γ] 

Potentiators 
& Partial 
Agonists 

Cortisol 
Allopregnanolone
     (3α-OH-DHP)
3α-THDOC 

Diazepam 
ZK93423 
Phenobarbital 
Pentobarbital 
Propofol 
Etomidate 
Valerenic acid 

Bretazenil Ethanol [δ] 
Ketamine [α6βxδ] 
TPA-023 [α2,α3] 
L838417 [α2,α3] 
Zolpidem [α1] 
NS11394 [α2,α3] 
Benzamide DS1 / 

DS2 [δ] 
JM-II-43A [δ] 
Monastrol [δ] 

Inverse 
Agonists 

Epipregnanolone Flumazenil  
     (Ro15-1788) 
ZK93426 
DMCM 
Ro19-4603 

CHEB 
FG7142 

α5IA [α5] 
L-655708 [α5] 
α3IA [α3] 
RO4938581 [α5] 
RO154513 [α5] 
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Figure 1.3  Structures of various different agonists, inhibitors, and 
modulators of GABAA receptors.  Several compounds fall into prominent 
categories of compounds known to interact with the GABAA receptor, such 
as benzodiazepines (diazepam and flumazenil), barbiturates (phenobarbital 
and pentobarbital) and neurosteroids (alphaxolone and 5α-THDOC).  While 
several subtype-selective compounds are shown, the examples primarily 
show molecules that modulate receptors containing the δ subunit.  Of all 
subtype-selective modulators, modulators of α subunit-containing receptors 
are most abundant (Table 1.1)(21).  The discovery and modulation of 
GABAA receptors by dihydropyrimidinones (JM-II-43A and monastrol), are 
discussed in more detail in Chapters 2 and 3. 
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investigations and briefly discuss subtype-selective compounds in the field of 

GABAA receptors. 

 

 Benzodiazepines 

 GABAA receptors were first identified as receptors for both GABA 

and benzodiazepines in the CNS (130, 131).  The eventual cloning of the 

GABAA receptor confirmed that these were indeed the same receptor (52).  

As such, benzodiazepines are perhaps the most widely used of all GABAA 

receptor modulators.  Benzodiazepines are positive modulators of GABAA  

receptor currents that allosterically bind to receptor subtypes containing a γ 

subunit. 

 It has been proposed that benzodiazepines modulate GABAA 

receptors by binding to a separate, yet structurally similar site as that of 

GABA to lower the energy barrier to forming an open-channel 

conformation (128).  This differs from the popular view that 

benzodiazepines act by increasing the affinity of the channel for GABA (22, 

141, 142).  The hypothesis for lowering the channel-opening energy barrier is 

quite enticing as it agrees with a large amount of data showing that GABA 

acts as only a partial agonist for some receptor subtypes, such as δ subunit-

containing receptors (6, 8, 143-145).  While the mechanism of action for 

benzodiazepines and other modulators is far from understood, the 

identification of residues that make up the benzodiazepine-binding pocket 

and transduce binding to channel gating supports this mechanism (146).

 While it is thought that most GABAA receptors are sensitive to these 

compounds, a small number of receptor subtypes, such as those containing 

α4, α6 and δ subunits, are benzodiazepine insensitive (20, 147).  This 
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selective modulation of receptor subtypes is believed to limit the 

physiological side effects of these compounds compared to other GABAA 

receptor modulators.  Thus, benzodiazepines, such as the well known 

diazepam (Valium), have been commonly used for medications as 

anticonvulsants, anxiolytics, and sedatives (82).  However, these molecules 

are not free from side effects, and it is known that constant use of 

benzodiazepines causes individuals to develop dependencies (148), a topic of 

ongoing research.  

 

Barbiturates 

 Another class of small molecules that modulate most GABAA 

receptors subtypes are the barbiturates.  These compounds were used as 

anticonvulsants, anxiolytics and sedatives well before the GABAA receptor 

was identified (149).  While barbiturates have many undesirable side effects 

and an inherent toxicity, they are still widely used as therapeutics (150).  

These molecules potentiate currents of GABAA receptors as do 

benzodiazepines (151) but have distinct binding sites.  In fact, barbiturates 

can increase the binding affinity of the receptors for benzodiazepines (152).  

The mechanism of action for barbiturates on α1β2γ2L receptors is 

preferential binding to and stabilization of the open-channel receptor state 

(2, 153).  Barbiturates are also known to act as partial agonists at high 

concentrations, inducing the GABAA channel to open (2, 154-157).   

 

Neurosteroids 

 A variety of endogenous progesterone derivatives and metabolites 

activate and modulate GABAA receptors.  Two commonly used 
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neurosteroids that act as agonists are alphaxolone and ganaxolone.  Two of 

the most commonly studied and used potentiating neurosteroids of the 

GABAA receptors are allopregnanolone (THP) and 5α-THDOC (151, 158).  

THP modulation of some receptor subtypes, particularly δ subunit-

containing receptors, is quite dramatic (6).  Although electrophysiological 

measurements clearly demonstrate that THP and other allopregnanolone 

analogs modulate GABAA receptors, the binding sites and exact mechanism 

of action for these neurosteroids has not been reported.   

 

Subunit-specific Modulators 

 Recently, pharmacological investigations of GABAA receptors, as well 

as most other ion channels, are focusing on the discovery of small molecules 

that specifically modulate receptor subtypes.  More specific compounds will 

permit examining the contribution of specific subsets of GABAA receptors 

to neuronal processes.  The primary drive for such compounds is ultimately 

the discovery of better, more selective pharmaceuticals with less risk of 

detrimental side effects.  Several new subtype-selective compounds have 

been reported including: TPA-023, which is specific for receptors containing 

α2 and α3 subunits (159, 160); NS11394, also selective for receptors 

containing α2 and α3 subunits (161); zolipidem, which preferentially binds to 

receptors containing α1 (162); a class of benzamides that may be selective for 

δ subunit-containing receptors in the presence of low GABA concentrations 

(although only three different receptor subtypes – α1β3γ2S, α4β3γ2S, and 

α4β3δ – were examined) (11); and a novel set of dihydropyrimidinones 

(DHPMs) that selectively modulate δ subunit-containing receptors (see 

Chapter 2) (163).  A more complete list of modulatory compounds as well as 
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subtype-selective compounds can be found in Table 1.1. 

 Most subtype-selective compounds have not been examined on a 

mechanistic level, as many of them were only recently discovered.  However, 

the mechanism of action for these various compounds may be markedly 

different than others reported and may vary depending upon the receptor 

subtypes involved.  Thus the search for subtype-selective compounds is far 

from over.  In addition, understanding how the compounds function, and 

why they function selectively is an area of research that is virtually 

untouched.  The data presented in Chapter 3 of this dissertation is perhaps 

the first investigation of the mechanism for subtype-selective compounds 

and demonstrates a novel mechanism of action. 

 

1.6  Receptors Containing the Delta Subunit 

 A significant portion of chapters 2 and 3 of this dissertation focuses 

on understanding the differences in the mechanism and characteristics of  δ 

subunit-containing receptors compared to other GABAA receptor subtypes.  

Thus, this section is intended to give a background on what is presently 

known regarding this GABAA receptor subunit. 

 The δ subunit was identified in 1989 (45), two years after the first α 

and β subunits were cloned and examined using voltage-clamp current 

recordings from Xenopus laevis oocytes (52).  Delta subunit-containing 

receptors have a distinct extrasynaptic localization on the membranes of 

CNS neurons.  This localization is thought to make receptors containing the 

subunit important for regulating a continuous (or ‘tonic’) chloride 

conductance that changes with fluctuations in extracellular GABA and 

neurosteroid concentrations.  Such tonic currents are likely important for 
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regional CNS modulation and repression. 

 Delta subunits are ubiquitously expressed throughout the CNS, but 

are found in higher densities in the cerebellar granular cells, thalamus, cortex, 

striatum, and dentate gyrus regions of the human (48) and rat (164, 165) 

brain.  Examination of the δ subunit localization also demonstrated that α4 

and α6 subunits tend to colocalize with δ subunits (48).  This was 

recapitulated with a study using mouse models, immunoprecipitation, and 

with ligand binding studies to show that α4 and α6 preferentially associate 

with the δ subunit in the forebrain and cerebellum, respectively (166).  

Immunopurification studies demonstrate that the δ subunit associates with a 

variety of subunits to form receptors, but there is a preference for 

interaction with α1, α3, β2, and β3 subunits, in addition to α4 and α6 (44, 

167).  Several additional reports have suggested that GABAA receptors have 

mutually exclusive incorporation of γ or δ subunits, which agrees with the 

distinct synaptic versus extrasynaptic localization observed for these two 

subunits in neurons of the CNS (168, 169). 

 An elaborate electrophysiological characterization of the δ subunit 

was conducted by expression of the subunit with α1, β1 and/or γ2 subunits 

in X. laevis oocytes to examine responses to GABA, zinc, diazepam and 

pentobarbital (170).  Delta subunit-containing receptor currents were 

enhanced by pentobarbital, were especially sensitive to inhibition by zinc 

ions, and did not show any modulation by diazepam.  Subsequent studies 

have further examined the contribution of the delta subunit to zinc 

sensitivity (170, 171), the greater sensitivity to (and efficacy of) potentiation 

by many common GABAA potentiators (34), particularly by tracazolate (145, 

172) and neurosteroids such as 3α, 21-dihydroxy-5α-pregnan-20-one 
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(THDOC) (6, 145).  In addition, studies have shown that δ subunit-

containing receptors have greater sensitivity to agonist concentrations of 

gaboxadol (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol or THIP) (171, 

173, 174) and GABA than all other receptor subtypes (174).  The in vitro 

studies of δ subunit pharmacology appear to be physiologically relevant, as 

observations from hippocampal neurons demonstrate there are tonic 

conducting channels insensitive to benzodiazepines but sensitive to 

neurosteroids (175).  Only a few molecules have been reported to act 

selectively on δ subunit-containing receptor isoforms; these include ketamine 

(5), ethanol (6-8) and two benzamides (11).  Ketamine is a positive allosteric 

modulator as well as a partial agonist of α6β2δ and α6β3δ GABAA receptors 

and an inhibitor of N-methyl-D-aspartic acid (NMDA) receptors (5).  While 

somewhat controversial (9, 10), ethanol is reported to potentiate primarily δ 

subunit-containing receptors at low levels of agonist, concentrations that are 

similar to what may be found extra-synaptically (7, 8, 176).  The two 

reported benzamide compounds, DS1 and DS2, are both allosteric 

modulators of α4β3δ GABAA receptors, and DS1 also acts as a partial 

agonist (11).   

 Receptors containing the δ subunit have several distinct mechanistic 

properties, the most unique being limited or complete lack of desensitization 

(10, 163, 170), clearly shown in Figure 1.2A.  This suggests that receptors 

containing this subunit lack a desensitization phase in their mechanism of 

action, have a completely different mechanism than other receptor subtypes, 

or most likely have altered kinetics using the same mechanistic scheme.  The 

general mechanisms that have been proposed for GABAA receptors are 

discussed in more detail in section 1.4.  Chapter 3 examines both the 
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mechanism of action of small molecules on δ-containing receptors as well as 

observations aiding our understanding of the mechanism of action for δ 

subunit-containing receptors.   

 To examine the impact of the δ subunit in the context of behavior 

and the CNS, a δ-/- knockout mouse was generated (177).  Surprisingly, the 

lack of the δ subunit was not lethal.  These mice did, however, show several 

differences from wild-type mice, including: a decrease in the effects of 

neurosteroids and small molecule ligands (THIP) on animal behavior (173, 

177-179); an overall hyper-excitability of the CNS, thus a greater 

susceptibility to seizures than for wild-type animals (178); an increase in γ2 

subunits and a decrease in α4 subunits in the forebrain (166); and several 

changes in the CNS signaling (180).   

 The distinct membrane localization, pharmacological and biophysical 

features of δ subunit-containing receptors, in addition to phenotypes of the 

δ-/- mouse model, have supported the general hypothesis that these receptors 

are critical for establishing tonic currents.  As such, δ subunit-containing 

receptors are an important aspect of regional regulation of signal 

transmission throughout the CNS. 

  

1.7 Techniques and Tools for Investigating Ligand-gated Ion 

Channels 

 Ever since Del Castillo, Katz and Thesleff determined that small 

molecules induce voltage changes in the neuronal membrane potential (181), 

there has been a constant development of techniques to investigate the rapid 

reactions of ligand-gated ion channels.  While many techniques have been 

developed for the investigation of ion channels in general, this section is 
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focused specifically on those techniques that have advanced the ability to 

investigate ligand-gated ion channels such as the GABAA receptors. 

 

Voltage-Clamp 

 Voltage-clamp measurement techniques were developed by Marmont 

and Cole (182) to maintain the electric potential across the membrane of 

squid axons.  The technique was further developed and applied by Hodgkin 

and Huxley to eventually determine the changes in ion permeability during 

an action potential in squid axons (183).  Voltage-clamp methods are still 

used today, most often with X. laevis oocytes. 

 This technique establishes a constant membrane potential ( ME ) by 

using a total of three electrodes to measure, ground and adjust the current 

flowing across a cellular membrane.  The premise of the voltage-clamp relies 

fundamentally on the relationship described by the modified version of 

Ohm’s law ( g/I)E(E CLM =− ), where ECL is the electric potential established 

by the ion concentration and can be determined using the Nerst equation, I  

is the current and g is a material’s conductance.  If ECL is equal to zero, then 

the equation become the classical Ohm’s law ( g/IV =  or g/IEM = ).  As 

ion channels open across the membrane of a cell, the conductance of the 

membrane increases, and the amount of current injected to maintain the 

experimentally set ME is measured.  The basic concept of how a voltage 

clamp operates is the foundation of all electrophysiological methods. 

 

Patch-clamp Methods 

 The technique of patch-clamping developed by Sakmann and Neher 

(184), while conceptually simple, was a giant technological advance that 
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spurred immense growth in the research of ion channels.  This technique 

was developed to measure changes in the conductance of a membrane as 

single ion channels open and close in combination with the voltage-clamp 

technique.  To accomplish this goal, it was necessary to minimize electrical 

noise by using a fire-polished glass pipette with a ~ 3-5 μm diameter tip 

opening to reduce the area of a membrane from which current was being 

recorded.  The patch-clamp technique was further developed by Neher and 

Sigworth (185) who implemented using a small amount of suction on the 

pipette to generate an electrically tight, GΩ, seal between the membrane and 

pipette tip.  These methods not only permitted the visualization of single ion 

channel currents, but over the years have also made it possible to investigate 

many aspects of ion channels from all cellular organisms.  While many of the 

patch-clamp techniques have been described in detail (123, 124, 184, 186-

189), the general process for both single-channel and whole-cell current 

recording is described here.   

 Single-channel and whole-cell current measurements are performed 

largely in the same manner, thus this description of the technique applies to 

both methods until stated otherwise.  The preparation for these techniques 

requires several reagent and equipment components.  Equipment used for all 

electrophysiological work described can be found in Table 1.2.  The most 

important components are healthy cells (or oocytes, vesicles, spheroplasts, 

etc.) containing the receptor of interest.  Cells used must either be 

transfected with a plasmid encoding cDNAs for exogenous receptor 

expression or they must endogenously express these receptors. 

 An important component of these techniques to consider is the 

composition of intracellular and extracellular buffers.  There are no 
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Table 1.2  Equipment and reagents that are used for the methods of patch-clamp 
current recording, laser-pulse (flash-lamp) photolysis and cell-flow solution 
application. 

  
Patch-Clamp 
Recording 

Laser-pulse (Flash) 
Photolysis Cell Flow 

Equipment  -  Pipette puller (HEKA, PIP5)
 -  Microforge (Narishige, MF-

830) 
 -  Recording electrode 
 -  Reference electrode 
 -  Inverted microscope 
 -  Faraday cage 
 -  Anti-vibration, floating table 

(table or table top) 
 -  Micromanipulators 

(Narishige) 
 -  Computer with appropriate 

sampling/acquisition 
software (Clampex) 

 -  Patch-clamp amplifier 
(Molecular Devices, 
Axopatch 200B) 

 -  Analog-to-digital converter 
(‘digitizer’; Molecular 
Devices, Digidata 1322A) 

 -  Headstage (Molecular 
Devices) 

 -  Pipette holder and electrode 
 -  Oscilloscope (optional) 
 -  Syringe with fine point 

Microfil tip or equivalent 

 -  Laser or flash lamp (rapid 
light pulses) 

 -  Calibrated joulemeter 
 -  Optical fiber (quartz if UV 

light is used) 
 -  Optical lenses for focusing 

light (if needed) 
 -  Micromanipulator for laser 

alignment (if needed) 

 -  Stainless steel U-tube 
 -  Solenoid valve (i.e. Lee 

Control Valve; Lee Co., 
Essex, CT) 

 -  Peristaltic pump 
 -  Peristaltic pump tubing 
 -  Micro manipulator 
 -  Fiberglass U-tube arm with 

clamp 
 -  Stand for manipulator and 

U-tube arm 

Reagents  -  35-mm Cell culture dishes 
 -  Cells expressing the receptor 

of interest 
 -  Extracellular buffer 
 -  Intracellular buffer 
 -  Borosilicate capillary tubes 

(thick wall for single-
channel) 

 -  Sylgard, Sigmacote or 
equivalent (for single-
channel) 

 -  Caged compound for 
pertinent receptor and 
experiment 

 

 -  Solutions for application 
made in extracellular 
buffer 
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standardized buffer compositions for electrophysiology, or even for 

particular receptors (188).  Buffer compositions have several roles; they must 

mimic the osmotic composition and pH of the cytosol or extracellular 

environment, provide the ions needed for studying the receptor of interest 

(e.g. chloride ions in the case of GABAA receptors) and limit the conductance 

of other ion channels present in the cell membrane. 

 

Systems for Solution Application 

 Ligand-gated ion channels of all kinds require a change in the 

concentration of agonist to open, thus to study these channels various 

solution application devices have been used (189-195).  Some studies simply 

use a perfusion system to exchange solutions in the dish containing the 

patch or cell (140, 196).  However, ion channels respond rapidly to ligand, so 

most systems attempt to exchange the solution surrounding the receptors as 

fast as possible.  Several systems using piezo-electric translators coupled with 

theta tubes, pipettes or multi-channel microfluidic systems require either the 

patch-clamped sample or the flow system to move (191, 193, 195).  While 

very fast solution exchange times have been measured with such systems, the 

physical movement inherent with exchanging the solution in these systems is 

not ideal and may lead to inconsistencies as well as damage to the patch.  

Additionally, these systems are not ideal for testing multiple solutions on a 

single cell or patch, because the entire solution within the application system 

must be exchanged before consecutive measurements can be obtained. 

 In order to test different solutions during an experiment without any 

movement of the patch or flow system, an alternative technique can be used 

called cell-flow (18, 189, 197).  Cell-flow is a U-tube application system 
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largely based on the system originally described by Krishtal and Pidoplichko 

(190).  A diagram of the cell-flow U-tube device is shown in Figure 1.4A and 

B.  In brief, the system uses a peristaltic pump to push solution into one end 

of a stainless steel U-tube at a typical rate of ~  1.5 cm/s and draw solution 

from the other end at a greater rate.  This flow rate differential causes 

extracellular buffer in the dish to be drawn through the porthole of the U-

tube, preventing the leakage of solutions.  For solution application to a cell, 

the solution flowing through the U-tube is forced out of the porthole by 

using a solenoid valve controlled by a computer to block the flow of solution 

from the end of the U-tube.  After an application period, the solenoid valve 

is opened and solution from the dish is again drawn into the porthole of the 

U-tube, rapidly removing the recently applied solution.  Solution applications 

are spaced approximately 2 – 2.5 minutes apart, thus allowing receptors to 

recover from desensitization.  

 

Laser-pulse and Flash-photolysis 

 Ligand-gated ion channels rapidly bind an agonist and open in the 

micro- to low millisecond time region, a time frame faster than the tens of 

milliseconds that cell-flow and other solution application techniques take to 

exchange neurotransmitter solutions on a cell surface.  Solution application 

systems limit direct measurement of rapid ion channel kinetics due to the 

fundamental fluid mechanics principle first discussed by Landau and Lifshitz 

(138).  This principle describes how the laminar flow of aqueous solutions 

over a spherical object creates a thin, but static, layer of solution on its 

surface.  Thus, neurotransmitter concentration changes by solution 

application systems are limited to the rate at which neurotransmitter diffuses  
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Figure 1.4  Schematic drawings depicting the arrangement of equipment 
needed for combining patch-clamp, cell-flow and flash/laser-pulse 
photolysis techniques.  A.  Components shown include the stainless steel U-
tube (1), the fiber optic cable (2), a borosilicate recording pipette containing 
intracellular buffer and the recording electrode (3), the pipette holder (4), 
the headstage (5), the suction/vacuum tube (6), the reference electrode (7), 
the microscope (objective) for viewing cells and aligning the U-tube (8), a 
cell culture plate containing cells expressing the receptor of interest (9), a 
three port solenoid valve (10), 4.2 mm inner diameter peristaltic tubing 
drawing solution away from the U-tube (11), and 0.5 mm inner diameter 
peristaltic tubing with solution flowing towards the U-tube (12).  The cell-
flow technique requires all of the same components, omitting only the 
optical fiber.  B. A larger-scale diagram depicting the alignment of 
components needed for the flash/laser-pulse photolysis technique.  While 
the solenoid valve is open, solution is actively being drawn away from the 
U-tube at a higher rate than solution flowing to the U-tube.  The U-tube 
draws extracellular buffer in through the porthole, preventing any leakage or 
diffusion of testing solutions from flowing over the cell.  When the solenoid 
valve closes, solution being pumped to the U-tube is forced out of the U-
tube port hole and over the surface of the cell.  Linear flow rates of 1-5 
cm/s are typically used.  
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through this solution barrier.  However, direct measurements of these rapid 

reactions are needed to fully understand the mechanism of ligand-gated ion 

channels. 

 Biologically inert photolabile derivatives of neurotransmitters, called 

‘caged’ neurotransmitters, permit measurements to be made in the upper 

micro- to low millisecond time region (198) by allowing a rapid increase in 

neurotransmitter concentration upon illumination with a pulse of light of the 

appropriate energy and wavelength.  By equilibrating the receptors on the 

cell surface with the caged neurotransmitter before photolysis, this technique 

avoids complications that arise from methods involving the application of 

neurotransmitter solutions.  Caged neurotransmitters can be photolytically 

cleaved in the microsecond time region (134, 198, 199), making the 

application of neurotransmitter fast enough to directly measure the rate 

constant for opening of the ligand-gated ion channels.  Thus, caged 

compounds are particularly important tools for investigating ligand-gated ion 

channels and other fast biological reactions that are regulated by small 

molecules (198, 200-204). 

 Caged neurotransmitters also offer spatial control of neurotransmitter 

application, as photolytic release is limited to the area illuminated by the 

pulse of light (205, 206).  When caged neurotransmitters are combined with 

two-photon microscopy, a technique permitting the excitation of 

chromophores with high 3-dimensional spatial control (207), 

neurotransmitter can be applied with subcellular spatial resolution (208-210). 

 Many photolabile protecting groups have been developed and their 

chemical and physical properties studied (211), several of which are 

commonly used to study biological systems (206).  These include: 
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2-methoxy-5-nitrophenyl (MNP) esters (212, 213), p-hydroxyphenacyl 

derivatives (214), desyl-based compounds (215), coumarin esters (216, 217) 

and ruthenium complexes (218).  The basic structure of several of these 

caging groups can be found in Figure 1.5. 

 Caged neurotransmitters offer many advantages for temporal and 

spatial resolution for the study of ligand-gated ion channels, but these 

compounds must be carefully evaluated before use.  The utility of a caged 

neurotransmitter for a specific experimental system will be significantly 

impacted by use of different caging groups, the position on the 

neurotransmitter at which a caging group is attached, assay conditions, and 

the photolysis byproducts.  So far, attributes of caged neurotransmitters are 

not predictable and must be determined experimentally.  For example, the 

αCNB-caged GABA is satisfactory for use with α1β2γ2L GABAA receptors 

but it inhibits α1β2δ GABAA receptors under similar concentrations and 

conditions; currents evoked from α1β2δ GABAA receptors by 5 μM GABA 

were inhibited 50% by 50 μM  αCNB-caged GABA  (Kyle Eagen, 

unpublished data). 

 A general, but systematic approach to developing caged 

neurotransmitters entails the determination of a compound’s quantum yield, 

rate of photolysis, and whether the caged compound prior to photolysis and 

byproducts after photolysis are biologically inert to the receptor being 

examined.  The rate of photolysis (i.e. rate of photolytic cleavage) of the 

caged neurotransmitter determines the time resolution for any kinetic 

measurements.  The quantum yield is a measure of the number of molecules 

of neurotransmitter released for each photon of light to which the caged 

neurotransmitter is exposed.  This value will indicate the maximum amount  
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Figure 1.5  A non-inclusive list of the structures of several generic 
photolabile leaving groups used to create caged compounds for biological 
assays.  The most commonly used caging group, or derivative thereof, is the 
2-nitrobenzyl group, followed by both 7-nitroindoline and coumarin 
derivates.  The coumarin and ruthenium complexes are photolabile groups 
commonly used to create visible light sensitive caged compounds.  LG 
denotes the leaving group and R denotes an unspecified functional group. 
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of neurotransmitter that can be released upon photolysis.  Several other 

aspects of a caged neurotransmitter should be examined to make sure it is 

practical for experimentation in a biological system, such as solubility in 

aqueous solutions, stability at physiological pH, thermal stability at ambient 

temperature, and photosensitivity at a wavelength greater than 335 nm (to 

avoid cell damage).  The wavelength used for photolysis must not be one at 

which light is absorbed by the neurotransmitter itself to avoid complications 

in the characterization and use of the caged compound (219). 

 The quantum yield can be measured with several techniques.  One 

entails monitoring spectroscopic changes in the absorption or fluorescence 

spectrum of the compound after photolysis of the caged neurotransmitter 

sample with light pulses of a known energy and length (198).  [The energy of 

a light pulse can be determined using standard actinometry methods (220, 

221), or a calibrated joulemeter.]  If no spectroscopic changes occur between 

the caged neurotransmitter and its photolytic products, an alternative 

method is analytical separation and quantification of the amount of caged 

and un-caged species by techniques such as HPLC (198).  Additionally, it is 

possible to calculate the quantum yield by performing several laser-pulse 

measurements on the appropriate ligand-gated ion channel and comparing 

the current elicited from the photolysis of the cage-compound to a dose 

response curve of free neurotransmitter.  For more details on measuring 

quantum yield see Chapter 4. 

 The rate of photolysis can be approximated from the data obtained in 

a quantum yield determination if the duration of a single light pulse is 

known.  A more physical method of measuring the rate of photolysis is to 

measure the absorbance of a solution of caged compound during laser or 
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flash-lamp photolysis and analyze the rate of decay of any observed transient 

absorption changes that occur during photolysis.  These transient absorption 

changes are due to absorption of light from the formation of a 

photochromic molecular intermediate of the caged neurotransmitter (222, 

223).  The details of this method are described in the literature (198, 222, 

224).  For more details on measuring the photolysis rate, see Chapter 4. 

 Caged neurotransmitters permit rapid and spatially controlled 

concentration increases in neurotransmitter.  The rapid change in 

neurotransmitter concentration upon photolysis of caged neurotransmitters 

makes these molecules powerful tools in transient kinetic investigations of 

neurotransmitter receptors, including GABAA receptors  (1, 2, 225).  

Molecules, such as αCNB-caged GABA (226), were used to determine 

changes that occur in the kinetic mechanism of GABAA receptors due to the 

epilepsy-associated K289M mutation in the γ2L subunit (1).  Elucidation of 

the mechanism of GABAA receptor modulation by phenobarbital and 

inhibition by picrotoxin was also made possible using caged GABA (2, 225).
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CHAPTER 2 

 

DISCOVERY OF DIHYDROPYRIMIDINONE SELECTIVE 

POTENTIATION OF GABA(A) RECEPTOR CURRENTS  

 

Abstract 

 Gamma-aminobutyric acid receptors (GABAA receptors) are ligand-

gated chloride channels that play a central role in signal transmission within 

the mammalian central nervous system.  Compounds that modulate specific 

GABAA receptor subtypes containing the δ subunit are scarce, but would be 

valuable research tools and starting points for potential therapeutic agents.  

Here we report a class of dihydropyrimidinone (DHPM) heterocycles that 

preferentially potentiate peak currents of recombinant GABAA receptor 

subtypes containing the δ subunit expressed in HEK293T cells.  Using the 

three-component Biginelli reaction, thirteen DHPMs with structural features 

similar to those of the barbiturate phenobarbital were synthesized; one 

DHPM (monastrol) is commercially available.  Up to a ~ 3-fold increase in 

the current from recombinant α1β2δ receptors was observed with the 

DHPM compounds JM-II-43A or monastrol when coapplied with saturating 

GABA concentrations, similar to the current potentiation observed with the 

nonselective potentiating compounds phenobarbital and tracazolate.  No 

agonist activity was observed for the DHPMs at the concentrations tested.  

A kinetic model was used in conjunction with dose-dependent 

measurements to calculate apparent dissociation constant values for JM-II-

43A (400 μM) and monastrol (200 μM) at saturating GABA concentrations.  

Recombinant receptors composed of combinations of α1, α4, α5, α6, β2, β3, 
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γ2L, and δ subunits were examined with JM-II-43A to demonstrate the 

preference for potentiation of δ subunit-containing receptors.  Lastly, 

reduced currents from receptors containing the mutated δ(E177A) subunit, 

described by Dibbens et al. (2004) as a heritable susceptibility allele for 

generalized epilepsy with febrile seizures plus, are also potentiated by these 

DHPMs. 

 

Introduction 

 The neurotransmitter γ-aminobutyric acid (GABA) activates a class of 

ligand-gated chloride ion channels known as GABAA receptors that are 

important for regulation of neurotransmission in the central nervous system 

(CNS) (19, 20, 227).  Heteropentameric combinations of nineteen different 

GABAA receptor subunits (α1-6, β1-3, γ1-3, δ, ε, θ, π, and ρ1-3) (34) 

determine the localization, pharmacology, biophysical properties, and cellular 

roles of these receptors (21, 139, 170, 228).  In contrast to GABAA receptor 

subtypes that are localized at synapses and have a phasic role in signal 

transmission, receptors containing the δ subunit are located peri- and/or 

extra-synaptically and are thought to have an important role in regulating 

neurotransmission through tonic inhibition (49, 145, 170).  The importance 

of the δ subunit for neuronal signaling is exemplified in knockout mice 

lacking the δ subunit that are more susceptible to seizures and exhibit 

attenuated responses to neurosteroids compared to normal mice (177, 178).  

In addition, point mutations within several different GABAA receptor 

subunits have been genetically associated with various forms of epilepsy and 

seizures (76), such as point mutations E177A (glutamate to alanine), R220H 

(arginine to histidine), or R220C (arginine to cysteine) in the δ subunit that 
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are genetically linked to general epilepsy with febrile seizures+ and idiopathic 

generalized epilepsy (3, 229).  How these individual mutations within the δ 

subunit affect the function of GABAA receptors is not fully understood, but 

single-channel studies of the α1β2δ receptor indicate that the E177A and 

R220H mutations alter the equilibrium between the open- and closed-

channel states of the receptor toward the closed-channel state (4). 

 Changes in the mechanism of α1β2δ receptors due to the E177A 

mutation may reduce the channel-opening equilibrium constant (Ф-1) of the 

receptor, as was determined (1) to be the case for the epilepsy-linked 

γ2L(K289M) mutant subunit originally described by Baulac et al. in 2001 

(69).  Based on the proposed mechanism of the GABAA receptor (1) (Figure 

2.1A), we hypothesized and determined (2) that phenobarbital, a barbiturate 

anticonvulsant, potentiates GABAA receptors by binding to the open-

channel conformation of the receptor with a higher affinity (Kapp = 0.23 ± 

0.06 mM) than to the closed-channel conformation (Kapp = 1.08 ± 0.32 mM), 

stabilizing the open-channel state and thus increasing the channel-opening 

equilibrium constant. 

 In an effort to find compounds that potentiate current amplitudes of 

GABAA receptors to a greater extent than does phenobarbital, we 

synthesized (163) several dihydropyrimidinones (DHPMs) with structural 

characteristics similar to phenobarbital and tested them on the epilepsy-

linked α1β2γ2L(K289M) and α1β2δ(E177A) receptors as well as their 

corresponding wild-type α1β2γ2L and α1β2δ receptors.  Although DHPMs 

did not potentiate currents of the γ subunit-containing wild-type α1β2γ2L or 

mutated α1β2γ2L(K289M) receptors, they did potentiate (~ 3-fold) the δ 

subunit-containing wild-type α1β2δ and mutated α1β2δ(E177A) receptors.    
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Figure 2.1  A. The mechanism previously proposed for  α1β2γ2L GABAA 
receptors (1, 2), was originally proposed for the nicotinic acetylcholine 
receptor by Katz and Thesleff (12), with the addition of the desensitized 
states (DL and DL2) and the channel-opening equilibrium constant (Ф-1) 
proposed later (15).  The mechanism describes the receptor (R) binding two 
ligand molecules (L) with a dissociation constant K1.  At this stage (RL2) the 
receptor is in the closed-channel state, which can change conformation to 
the open-channel state to allow ion flux across the membrane ( 2RL ) and to 
the subsequent desensitized state (DL2).  DL2 is a transiently inactive, 
closed-channel state of the receptor.  The equilibrium between the closed- 
and open-channel states is described by the channel-opening equilibrium 
constant (Ф-1).  B. This mechanism describes the binding of a potentiating 
compound (P) to α1β2γ2L GABAA receptors as previously reported (2).  The 
mechanism here was simplified by omitting the desensitization states of the 
receptor and combining the two steps of ligand binding.  The potentiating 
compound can bind to either the closed- or open-channel state with the 
relative binding affinities KP and PK , to yield the respective closed- (RL2P) 
and open-channel ( PRL2 ) states of the receptor.  The channel-opening and 
-closing rate constants in the presence of the potentiator are shown as kP

open 
and kP

closed and define the channel-opening equilibrium constant (Фp
-1) in the 

presence of a potentiating compound. 
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Thus, these DHPMs selectively modulate GABAA receptor subtypes. 

 It is known that GABAA receptors containing the δ subunit are 

pharmacologically distinguishable from other receptor subtypes by their 

higher sensitivity to zinc ion inhibition (170, 171), greater sensitivity to (and 

efficacy of) potentiation by tracazolate (145, 172) and neurosteroids such as 

3α, 21-dihydroxy-5α-pregnan-20-one (THDOC) (6, 145), and a greater 

sensitivity to the agonist gaboxadol (4,5,6,7-tetrahydroisoxazolo[5,4-

c]pyridin-3-ol or THIP) (171, 173, 174).  However, most of these molecules 

also act on other GABAA receptor subtypes.  Barbiturates and many other 

drugs, which have been used for treating epilepsy, depression, anxiety, 

insomnia and other diseases (75, 230-232), also indiscriminately affect 

various GABAA receptor isoforms (34) including, but not limited to, δ 

subunit-containing receptors, and often result in undesirable side effects 

(147, 232, 233).  Ketamine (5), ethanol (7, 8, 234) and two benzamides (11) 

have been previously identified as acting selectively on δ subunit-containing 

receptor isoforms.  Ketamine is a positive allosteric modulator as well as a 

partial agonist of α6β2δ and α6β3δ GABAA receptors and an inhibitor of N-

methyl-D-aspartic acid (NMDA) receptors (5).  While somewhat 

controversial (9, 10), ethanol is reported to primarily potentiate δ subunit-

containing receptors at low agonist concentrations that are similar to 

conditions the receptors may experience extra-synaptically (7, 8, 234).  The 

two reported benzamide compounds are allosteric modulators of α4β3δ 

GABAA receptors, with one of the two benzamide compounds, DS1, also 

acting as a partial agonist (11). 

 The family of dihydropyrimidinones reported here allosterically and 

selectively potentiate currents of several GABAA receptor subtypes, with a 
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preference for potentiating receptors containing the δ subunit.  Various 

combinations of the subunits α1, α4, α5, α6, β2, β3, γ2L and δ were 

transiently expressed in HEK293T cells for a total of twelve subtypes that 

were electrophysiologically tested with the DHPM JM-II-43A (methyl 6-

methyl-2-oxo-4-phenyl-3,4-dihydro-1H-pyrimidine-5-carboxylate).  JM-II-

43A potentiated currents from δ subunit-containing receptors and the α4β2 

receptor subtype but did not change the average peak currents corrected for 

receptor desensitization (18) of the other GABAA receptor subtypes 

examined.  Currents from α1β2δ receptors over the full dose-dependent 

range of GABA concentrations (saturating and sub-saturating) were 

potentiated anywhere from 2.9- to 4-fold by JM-II-43A similar to, or greater 

than, other reported GABAA receptor potentiators such as phenobarbital 

and tracazolate (2, 145, 172).  Thirteen DHPM compounds were generated 

through use of a single-step multi-component reaction (17) and one, 

monastrol, was purchased.  All fourteen compounds were tested on α1β2δ 

receptors, yielding a range of potentiation activities.  No agonist activity was 

observed for any of the DHPMs tested.  Lastly, these DHPMs potentiated 

currents of α1β2δ(E177A) mutated receptors genetically linked to epilepsy to 

a similar extent as those of wild-type α1β2δ receptors. 

 

Methods and Materials 

Reagents, Synthesis and Preparation of Dihydropyrimidinones 

 Monastrol was purchased from Tocris (Ellisville, MO).  Other 

reagents were obtained from Sigma Aldrich, Fisher Scientific, or EM 

Science.  GABA solutions were serially diluted from a frozen stock of 100 

mM GABA stored at -20 oC and made weekly.  DHPMs were synthesized as 



56 

described previously (17).  Monastrol and DHPMs were dissolved in pure 

anhydrous DMSO before being diluted 1:200 with extracellular buffer at 65 
oC for a final concentration of either 4 mM or 2 mM compound in 0.5 % 

DMSO.  The 0.5 % DMSO aided in compound solubility, with no observed 

effect on GABAA receptor currents.  The DHPM solutions were cooled to 

room temperature and serially diluted with extracellular buffer as needed. 

 

Cell Culture and Transient Transfection 

 HEK293T cells were obtained from the American Type Culture 

Collection (ATCC) (Manassas, VA) and cultured in Dulbecco’s Modified 

Eagle’s Medium (DMEM) supplemented with 10 % fetal bovine serum 

(FBS), 100 units/mL penicillin and 0.1 mg/mL streptomycin.  Cells were 

maintained at 37 oC with 5 % CO2.  cDNAs encoding the α1, α4, α5, α6, β2, 

β3 and γ2L subunits of the rat GABAA receptor in mammalian pRK-5 

expression vectors were kindly provided by Professors H. Lüddens 

(Johannes Gutenberg - Universität, Mainz, Germany) and P. H. Seeburg 

(Max-Plank-Institut für medizinische Forschung, Heidelberg, Germany).  

cDNA encoding the δ subunit of the rat GABAA receptor in the pExpress-1 

vector was obtained from ATCC.  The pGreen Lantern plasmid (Life 

Technologies Inc., Gaithersburg, MD) was used as a cell transfection 

marker.  A total of 4 μg of plasmid DNA was transfected, with the plasmid 

ratios being 1:1:0.1 for α:β:pGreen Lantern and 1:1:10:0.1 for both 

α:β:γ2L:pGreen Lantern and α:β:δ:pGreen Lantern.  These ratios were used 

to strongly bias the expression of a subunit of interest (i.e. γ2L or δ) relative 

to the expression levels of α and β subunits to ensure inclusion of the 

modulatory subunit in the active receptors.  For δ subunit-containing 
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receptors this was clearly identifiable by the characteristic lack of, or limited 

degree of, receptor desensitization.  Currents measured from cells presumed 

to be expressing αβδ receptors that showed greater degrees of 

desensitization were very infrequent; but if observed the cell was discarded 

and the data was not used.  PolyFect transfection reagent (Qiagen, Valencia, 

CA) or polyethylenimine (PEI) (Polysciences Inc. Warrington, PA) was used 

for transient transfection of cells.  The Qiagen protocol for transient 

transfection with PolyFect was followed with the exception that the 

DMEM/reagent mixture was replaced after 5-7 hours with fresh DMEM/10 

% FBS.  PEI was used as reported (235) with a PEI:DNA ratio of 4:4 

(μg:μg) and replacement of medium with fresh DMEM/10 % FBS after 4-7 

hours.  When PEI was used the HEK293T cells had greater transfection 

efficiencies and were healthier; no differences in receptor function were 

observed. 

 

Molecular Biology 

 Mutations were introduced to the δ subunit by the QuikChange site-

directed mutagenesis technique (Stratagene, La Jolla, CA) and verified by 

DNA sequencing.  The E177A mutation of the δ subunit was introduced 

through polymerase chain reaction amplification with the primer 5’-GGA 

CAG GCA GGC GTG CAT GCT GGA CCT GGA GAG C-3’ and the 

reverse complement (Integrated DNA Technologies, Coralville, IA). 

 

Whole-cell Current Recordings 

 Cells were bathed in an extracellular buffer composed of 145 mM 

NaCl, 5 mM KCl, 2 mM CaCl2, 1.5 mM MgCl2, and 10 mM HEPES (4-(2-



58 

hydroxyethyl)-1-piperazineethanesulfonic acid) brought to pH 7.4 with 5 N 

NaOH.  Individual cells in a whole-cell patch-clamp configuration, attained 

as described previously (125), were lifted from the dish with a borosilicate 

glass pipette and suction.  Borosilicate glass pipettes were made from 

capillaries with a 1.5 / 1.12 mm outer / inner diameter (World Precision 

Instruments Inc., Sarasota, FL ) and heat-polished on a microforge to yield 

pipettes with open-end resistances of 3.0-5.0 MΩ.  Pipettes were filled with 

an intracellular solution composed of 140 mM CsCl, 10 mM 

tetraethylammonium chloride, 10 mM EGTA (ethylene glycol bis (β-

aminoethyl ether)-N, N, N’, N’ tetraacetic acid), 2 mM MgCl2, and 10 mM 

HEPES brought to pH 7.4 with 5 N CsOH.  All measurements were carried 

out with a constant membrane potential of – 60 mV, at ambient temperature 

(~ 22 oC).  An Axopatch 200B amplifier, Digidata 1322A digitizer and 

Clampex 9.0 software (Molecular Devices, Sunnyvale, CA) were used for 

recording whole-cell currents, as previously described by Hamill et al. (186).  

Data was filtered with the Axopatch 200B internal Bessel filter at 2 kHz with 

a digital sampling frequency of 20 kHz.   

 

Rapid Solution Application 

 Rapid applications of ligands to cells expressing the receptor of 

interest were performed with the cell-flow technique as previously described 

by Udgaonkar et al. (18).  Briefly, a cell in the whole-cell current-recording 

mode in extracellular buffer was suspended from the recording electrode ~ 

200 μm in front of the porthole of a stainless steel U-tube.  Solution was 

actively pumped with a peristaltic pump into one end of the U-tube at a 

typical rate of ~  1.5 cm/s and drawn from the other end of the U-tube with 
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the peristaltic pump at a greater rate.  This causes extracellular buffer in the 

dish to be drawn through the porthole of the U-tube, preventing the leakage 

of solutions in the U-tube on to the cell.  The flow of solution out of the 

porthole is regulated by a solenoid Lee Control Valve (Lee Co., Essex, CT) 

directed by Clampex software.  After an application period, the solution 

from the dish is again drawn into the porthole of the U-tube, rapidly 

removing the recently applied solution.  Solution applications were spaced a 

minimum of 2 – 2.5 minutes apart, permitting receptors time to recover 

from desensitized states before the next measurement.   

 

Current Measurement Analysis and Correction 

 Many neurotransmitter receptors undergo rapid desensitization, which 

can have a significant effect on the observed peak current amplitudes but 

can be corrected for as previously described (18).  The observed peak 

amplitudes of non-δ subunit-containing GABAA receptor currents, in the 

absence or presence of modulators, were corrected for desensitization by 

fitting the desensitization phase of each current trace with a three-

component exponential function.  The time constants obtained from the fit 

were used for (i) comparing how compounds alter the rate of receptor 

desensitization and (ii) estimating the true current amplitudes by accounting 

for receptor desensitization (18, 137) that occurs during the rising phase of 

the receptor current trace (236 ).  Measured currents from GABAA receptors 

containing a δ subunit characteristically display limited (if any) 

desensitization (237) and, therefore, were not corrected.  To normalize 

current amplitudes between cells all receptor currents from a single cell were 

divided by the current amplitude evoked by a control measurement of 
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current induced by saturating 1 mM GABA (IA / IControl).  Dose-dependent 

data were plotted with their relative standard errors and fitted with either 

equation [2.1] or equation [2.2] using non-linear least squares regression 

conducted with Origin V. 3.5 data analysis software (OriginLab Corp., 

Northampton, MA).  All reported values of dissociation constants estimated 

by non-linear least squares fitting are reported with relative standard errors. 

 

Results 

 Most GABAA receptor subtypes are modulated by a variety of small 

molecules, including barbiturates such as phenobarbital and benzodiazepines 

such as diazepam, both of which are anticonvulsants that act by positively 

modulating (potentiating) currents of GABAA receptors (139).  Many 

different molecules have been reported to potentiate GABAA receptors 

(several examples are shown in Figure 2.2A).  With their structural 

resemblance to phenobarbital and pentobarbital, DHPMs JM-II-43A 

(methyl 6-methyl-2-oxo-4-phenyl-3,4-dihydro-1H-pyrimidine-5-carboxylate) 

and monastrol were considered likely to potentiate GABAA receptors (Figure 

2.2A).    

 JM-II-43A and the other derivatives (except for monastrol, which is 

commercially available), shown in Figure 2.2B, were synthesized by Dr. John 

Mabry and Mr. Jason Polisar using a multi-component Biginelli reaction as 

previously described (17).  The DHPMs synthesized were first tested for 

their solubility at a concentration of 1 to 4 mM in aqueous extracellular 

buffer with 0.5 % dimethyl sulfoxide (DMSO); most were soluble at 

concentrations up to 2 mM.  To determine whether the DHPM compounds 

listed (Figure 2.2B) potentiate recombinant GABAA receptors, the cell-flow  
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Figure 2.2  A. Structures of several molecules that potentiate various 
GABAA receptor subtypes.  Of the many compounds known to modulate 
GABAA receptors only ketamine (5), ethanol (6-8) [though ethanol 
modulation seems somewhat complicated (9, 10)] and two benzamide 
compounds (11) have been reported to selectively potentiate δ subunit-
containing receptor subtypes.  The structural similarities of JM-II-43A 
(methyl 6-methyl-2-oxo-4-phenyl-3,4-dihydro-1H-pyrimidine-5-
carboxylate), monastrol and other DHPMs (Figure 2.2B) to pentobarbital 
and phenobarbital, suggests that DHPMs may also potentiate whole-cell 
currents from GABAA receptors.  B. A one-step Biginelli reaction (17) was 
used to synthesize derivatives of JM-II-43A.  Synthesis of DHPMs was 
conducted by Dr. J. Mabry and J. Polisar.  Each compound was tested for 
solubility and efficacy to potentiate α1β2δ GABAA receptor currents at 1 
mM compound and 1 mM GABA.  Solubility of each DHPM was 
determined qualitatively in aqueous extracellular buffer containing 0.5 % 
DMSO, and is described as soluble (Sol), partially soluble (PSol) or not 
soluble (NSol).  The degree of current potentiation (fold potentiation) is 
described as the current induced by 1 mM GABA and 1 mM of the 
compound divided by the current induced by 1 mM GABA alone (I 1 mM cpd. 
/ I 1 mM GABA control).  Activity and solubility were examined by R. Lewis. 
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technique (18) was used to rapidly co-apply 1 mM JM-II-43A and 1 mM 

GABA to various receptor subtypes transiently expressed in HEK293T cells.  

Representative current traces evoked by 1 mM GABA alone or co-applied 

with 1 mM JM-II-43A are shown for α1β2, α1β2γ2L, and α1β2δ receptor 

subtypes (Figure 2.3A).  Currents of specific receptor subtypes, such as 

α1β2δ, were potentiated, whereas slight increases in the rates of 

desensitization were observed with currents of α1β2 and α1β2γ2L receptor 

subtypes (Figure 2.3A).  When co-applied with 1 mM JM-II-43A and 1 mM 

GABA receptor subtypes α1β2δ, α1β3δ, α4β2, α4β2δ, α5β2δ and α6β3δ also 

demonstrated potentiation anywhere from 1.3- to 3.4-fold the current 

evoked by 1 mM GABA alone.  No changes in corrected peak current 

amplitudes were observed for currents of receptor subtypes α1β2, α1β2γ2L, 

α1β3, α4β2, α5β2, α5β3 and α6β3γ2L.  However, it was noted that several of 

these receptor subtypes had small changes in the rates of desensitization.  

For unknown reasons, limited expression of receptor subtypes α5β3δ, α6β2, 

and α6β3 was observed when transiently transfected in HEK293T cells, 

preventing the examination of the effect of JM-II-43A on these receptor 

subtypes.  The observed low expression of the α6β2 receptor subtype agrees 

with a previous report in which Xenopus laevis oocytes were used as an 

expression system (238).  However α6β3 receptors have been successfully 

expressed in X. laevis oocytes (8) and it is not known why expression of these 

receptors is limited in HEK293T cells.  The potentiation mechanism of 

GABAA receptors by JM-II-43A was further investigated with the α1β2δ 

receptor subtype because of the high degree of potentiation and satisfactory 

expression level of the subtype in HEK293T cells.  With the α1β2δ subtype 

the mean current measured in the presence of 1 mM JM-II-43A plus 1 mM 
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Figure 2.3  A. Representative traces showing the effects of 1 mM JM-II-
43A on currents evoked by 1 mM GABA with three different receptor 
isoforms α1β2, α1β2γ2L, and α1β2δ.  The current traces for α1β2 and 
α1β2γ2L receptor subtypes were corrected for receptor desensitization (grey 
line) (18).  Current correction for the receptor subtype α1β2δ is not needed 
because limited to no desensitization is observed.  B. 1 mM GABA with 1 
mM JM-II-43A was applied to various receptor subtypes to test the 
specificity of JM-II-43A current potentiation.  Of the subtypes examined 
here, only the α4β2 receptor subtype and receptors containing the δ subunit 
were potentiated by JM-II-43A.  Error bars display the standard error, 
numbers above each bar represent the number of independent cells 
measured and the asterisk (*) denotes a significant difference (p ≤ 0.01), as 
tested by a one-way ANOVA statistical test. 
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GABA was 2.9-fold larger than in the presence of 1 mM GABA alone 

(Figure 2.4A and 2.4B).  The maximum (3.5-fold) potentiation of current 

occurred with 1.5 mM JM-II-43A.  In the presence of 3 μM GABA currents 

observed for the α1β2δ receptor subtype are only 25 % of the maximal 

current response (EC25), indicating that the receptors are primarily in a 

closed-channel state.  However, upon co-application of 3 μM GABA and 1 

mM JM-II-43A, receptor currents are potentiated up to ~  4-fold compared 

to those evoked by 3 μM GABA alone (Figure 2.4A).  To better describe 

how JM-II-43A affects the receptors, dose-dependent data (Figure 2.4A) 

were fitted with equation [2.1] to obtain values for the apparent dissociation 

constant of JM-II-43A (*Kd (JM-II-43A)). 

 JM-II-43A may potentiate currents of α1β2δ receptors by 

preferentially binding to the open-channel form of the receptor, thus shifting 

the receptor channel-opening equilibrium toward the open-channel state.  

This mechanism would be similar to that described for the potentiation of 

the α1β2γ2L(K289M) receptor by phenobarbital (Figure 2.1) (2, 139).  It 

would require that JM-II-43A binds with higher affinity to the open-channel 

state than to the closed-channel state of the receptor.  Therefore, the 

dissociation constant of JM-II-43A was determined in the presence of 1 mM 

and 3 μM GABA to assess the compound’s binding affinity for the α1β2δ 

receptor in the open- and closed-channel states, respectively (Figure 2.4A).  

Various concentrations of JM-II-43A were co-applied with either 1 mM or 3 

μM GABA, and equation [2.1] (155) was used to evaluate the JM-II-43A 

dissociation constant, Kd. 
1h

MAXooP )[Cpd])/(1)((RI/II −++= dK      [2.1] 

 Equation [2.1], which has been used previously to measure barbiturate
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Figure 2.4  A.  JM-II-43A dose-dependent curves (0.01 to 2 mM) were 
obtained from α1β2δ receptors for the compound alone (gray squares), in 
the presence of 1 mM GABA (saturating concentration, ) and in the 
presence of 3 μM GABA (effective concentration for 25 % of maximal 
current response, EC25, ).  Curves were fitted with equation [2.1] and gave 
an apparent dissociation constant for JM-II-43A (*Kd (JM-II-43A)) of 410 ± 74 
μM at 1 mM GABA and 810 ± 32 μM at 3 μM GABA, with Hill 
coefficients of 2.1 and 2.2 respectively.  The difference between the 
apparent dissociation constants is statistically significant with a p-value less 
than 0.0001 as tested by a Welch’s two way t-test, assuming unequal 
variance, using an α=0.05 and data analysis having 79 degrees of freedom 
(d.f.).  The inset shows two representative current traces evoked by 1 mM 
GABA and 1 mM GABA with 1 mM JM-II-43A.  Current amplitudes are 
normalized to the peak of the 1 mM GABA current response.  B. A 
monastrol dose-dependent curve was obtained with α1β2δ receptors in the 
presence of 1 mM GABA and fitted with equation [2.1] to calculate an 
apparent dissociation constant for monastrol (*Kd (monastrol)) of 190 ± 28 μM.  
Potentiation at concentrations of monastrol above 1 mM decreased, likely 
due to solubility limitations of the compound and/or possible receptor 
inhibition.  The inset shows two representative current traces evoked by 1 
mM GABA and 1 mM GABA with 1 mM monastrol.  Current amplitudes 
are normalized to the peak of the 1 mM GABA current response.  C. 
GABA dose-dependent curves obtained with α1β2δ receptors in the 
absence ( ) or presence ( ) of 1 mM JM-II-43A were fitted with equation 
[2.2] and gave a value for the dissociation constant for GABA (K1) of 9.9 ± 
1.1 μM and 7.0 ± 1.5 μM respectively, values were not statistically different 
(p=0.12, Welch’s two way t-test, α=0.05, d.f.=104). 
 All currents were recorded at ambient temperature (~ 22 oC), – 60 
mV membrane potential and pH 7.4.  Measurements from a single cell are 
normalized by dividing the current amplitude evoked in the presence of an 
experimental compound by a 1 mM GABA control current measurement 
(IA / IControl).  The value of each data point shown in C, E and F is the mean 
of four to fourteen measurements from independent cells and is plotted on 
a logarithmic scale with error bars representing the standard error. 
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interactions with GABAA receptors (2, 155), relates the ratio of measured 

current amplitudes (IP/Io) induced by a constant GABA concentration in the 

presence (IP) or absence (Io) of the compound of interest ([Cpd]), JM-II-43A.  

RMAX is the maximum IP/Io ratio observed when the potentiating compound 

is co-applied with GABA.  The empirical parameter h is equivalent to the 

Hill coefficient.  Because 1 mM JM-II-43A does not saturate α1β2δ 

receptors at either 1 mM or 3 μM GABA, and is not easily soluble at higher 

concentrations, fitting the dose-dependent data in Figure 2.4A afforded only 

the apparent value of its dissociation constant (*Kd (JM-II-43A)) (The *Kd is 

approximately equal to the EC50.).  For the α1β2δ receptor the values of *Kd 

(JM-II-43A) were estimated to be 410 ± 74 μM and 810 ± 32 μM in the presence 

of 1 mM and 3 μM GABA, respectively,  These values are statistically 

different p<0.0001 as tested with a Welch’s two way t-test, assuming unequal 

variance using an α=0.05 and with the data analysis having 79 degrees of 

freedom (d.f.).  (The measured constants for various receptors and 

conditions can be found in Table 2.1.)  Hill coefficients of 2.1 and 2.2 were 

obtained for these two fittings, values similar to 2.2 (239), 1.5 (155), and 1.5-

1.9 (2) previously observed for phenobarbital modulation of GABAA 

receptors. 

 The apparent dissociation constants of these compounds are relatively 

large, so it was of interest to investigate if these compounds rapidly or slowly 

associate with the receptors.  To address this question we designed an 

experiment similar to that described by Wallner et al. (8), in which whole-cell 

currents were recorded upon application of the modulating compound at 

various concentrations while the receptors are continually in the presence of 

2 μM GABA.  A perfusion system was used to exchange the buffer bathing
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Table 2.1:  Apparent dissociation constants obtained for the GABAA 
receptor α1β2δ subtype and the α1β2δ(E177A) variant.   

K1 (GABA) 

K1 (GABA) 
with 1 mM 
JM-II-43A 

Kd (JM-II-43A) 
with  

1 mM GABA 

Kd (JM-II-43A) 

with  
3 μM GABA 

Kd (monastrol) 
with  

1 mM GABA

Receptor 
subunit 
composition 

(μM) (μM) (μM) (μM) (μM) 

α1β2δ 9.9 ± 1.1 7.0 ± 1.5 410 ± 74 810 ± 32 190 ± 28 

α1β2δ(E177A) 5.7 ± 0.26 8.6 ± 2.0 620 ± 120 1140 ± 390 - 
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the cell with buffer containing 2 μM GABA (EC15), followed by increasing 

concentrations of JM-II-43A co-applied with 2 μM GABA using a U-tube.  

Not only does this data (Figure 2.5) clearly display the dose-dependent effect 

of JM-II-43A on the receptor, but the rapid change in the current amplitude 

upon application demonstrates that JM-II-43A is associating and dissociating 

with the receptor on a relatively fast time scale.  In the current trace the 10% 

to 90 % response times for the 1 mM and 2 mM JM-II-43A applications 

were 155 ms and 123 ms, respectively.  

 Monastrol and other DHPMs also potentiated α1β2δ receptors, as 

shown in Figure 2.1B.  Because monastrol had one of the largest 

potentiating efficacies at 1 mM in the presence of 1 mM GABA, a full dose-

dependent response for this compound was measured (Figure 2.4B).  Fitting 

of the dose-dependent curve for monastrol yielded a value for the apparent 

dissociation constant (*Kd (monastrol)) of 190 ± 28 μM, indicating that α1β2δ 

receptors have a statistically higher binding affinity for monastrol than they 

do for JM-II-43A (*Kd (JM-II-43A) = 410 ± 74 μM) (p=0.0056 by a Welch’s two 

way t-test, α=0.05 and d.f.=75).  Potentiation of the α1β2δ receptor currents 

by monastrol declined above 1 mM, which may be due to solubility 

limitations of monastrol and/or inhibitory activity at higher concentrations.  

It is interesting to note that while JM-II-43A had no observed effect on 

receptor desensitization, monastrol dramatically increases the desensitization 

rate of α1β2δ receptors and causes a large rebound current at the end of 

ligand application (inset, Figure 2.4B). 

 No agonist activity on α1β2δ receptors in the absence of GABA was 

observed for any of the DHPMs tested.  However, it is possible that JM-II-

43A and the other DHPMs tested potentiate α1β2δ receptor currents by  
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Figure 2.5  A current trace from α1β2δ recombinant receptors in a single 
cell was used to demonstrate the current response upon application of 2 μM 
GABA and increasing concentrations of JM-II-43A during the 2 μM GABA 
application.  1 mM GABA in the absence of JM-II-43A was applied at the 
beginning and end of the current trace.  This trace displays the dose-
dependent modulation of the receptor by JM-II-43A, the increase in 
amplitude of the current by JM-II-43A, and the rapid association and 
dissociation of the compound with the receptor during a JM-II-43A 
application period.  All currents were recorded at ambient temperature (~ 
22 oC), – 60 mV membrane potential and pH 7.4. 
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changing the receptor affinity for GABA or by acting in cooperation with 

GABA as an agonist or partial agonist.  To test these possibilities, we 

examined the dose-dependence of GABA on receptor currents in the 

presence and absence of JM-II-43A (Figure 2.4C).  If the mechanism for 

α1β2δ receptors is similar to that proposed for the α1β2γ2L receptor (Figure 

2.1A), it is possible to estimate the GABA dissociation constant (K1 (GABA)) by 

fitting the data with equation [2.2] (18). 
12

1
22

MMA ))L(L(LRII −++= KΦ       [2.2] 

This equation describes the expected current amplitude (IA) evoked by a 

known agonist concentration (L).  IM represents the current from one mole 

of receptors in the open-channel state and RM the number of moles of 

receptors on the cell surface.  Experimentally, we used the current amplitude 

at a saturating concentration of the activating ligand (GABA) as the IMRM 

value and the observed current amplitude as IA.  Ф is the channel-closing 

equilibrium constant (the reciprocal of the channel-opening equilibrium 

constant), defined in Figure 2.1A.  Fitting the GABA dose-dependent 

response data from α1β2δ receptors with equation [2.2] gave values for K1 

(GABA) of 9.9 ± 1.1 μM and 7.0 ± 1.5 μM in the absence and presence of 1 

mM JM-II-43A, respectively, which was not statistically different (p=0.12 by 

a Welch’s two way t-test, α=0.05 and d.f.=104).  These K1 values agree well 

with the previously reported dose-dependent curve of the α1β2δ receptor 

subtype (145).  Compounds were also tested, up to concentrations of 4 mM, 

in the absence of GABA and no induced currents were observed.  Data for 

JM-II-43A in the absence of GABA is shown in Figure 2.4A. 

 GABAA receptors containing the δ subunit typically exhibit limited 

desensitization and α1β2δ receptor desensitization was not altered by JM-II-
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43A.  However, JM-II-43A did alter the desensitization phase of current 

recorded from α1β2 (Figure 2.3A), α1β2γ2L (Figure 2.3A), α1β3, α4β2, α5β2, 

α5β3 and α6β3γ2L receptor subtypes.  The rate at which ligand-gated ion 

channels, such as GABAA receptors α1β2 and α1β2γ2L, pass into a 

desensitized state and how modulating compounds change the rate of 

desensitization can be described by time constants (τx).  The values of the 

time constants were obtained from fitting the desensitization phase of each 

current trace with an exponential function (240), shown below: 

C)(A)(A)(AI 3/t
3

2/t
2

1/t
1 +++= τττ eee      [2.3] 

Equation [2.3] describes the desensitization of current traces where t is time, 

Ax represents the relative amplitude of component x and C the current 

remaining at the end of the GABA application period.  In previous studies, 

ligand-gated ion channels currents are typically fitted with a two-component 

exponential function to describe the fast and slow desensitization rates 

observed (137, 240), but in the presence of DHPMs a third component was 

needed for appropriate fitting.  Therefore, all traces analyzed for 

desensitization were fitted with a three-component exponential function so 

that comparisons could be made between the presence and absence of 

modulating compounds.  The values obtained for τx were also used to 

determine desensitization-corrected amplitudes of peak currents, as 

previously described (18).  JM-II-43A changed the desensitization rate of 

both α1β2 and α1β2γ2L receptors but did not affect the desensitization-

corrected current amplitudes (Figure 2.3A, Table 2.2).  In Table 2.2 the 

resulting time constants and relative amplitudes are listed for α1β2 receptors 

(9 independent cells) and α1β2γ2L receptors (12 independent cells) when 1 

mM GABA or 1 mM JM-II-43A with 1 mM GABA was applied to them. 
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 Since JM-II-43A and monastrol potentiated the α1β2δ subtype, these 

compounds were also tested on receptors that contained the single amino-

acid mutation E177A within the δ subunit, a mutation that was determined 

to be a heritable susceptibility allele (3).  GABAA receptors α1β2δ(E177A) 

[as well as α4β2δ(E177A)] are reported to have significantly reduced currents 

(3, 4) due to a decrease in the channel mean-open time of the receptor as 

measured with single-channel recording (4).  The extent of the decrease in 

whole-cell currents for these mutations varied.  The reported amplitudes of 

averaged whole-cell currents from receptors containing the δ(E177A) 

subunit range from ~  12 % (α1β2δ E177A) (3) and ~  33 % (α4β2δ E177A) 

(4) to ~  53 % (α1β2δ E177A) (Figure 2.6A) of that of the maximum wild-

type currents measured at the same concentrations of GABA.  The degree of 

current reduction due to the mutations varied when maximum currents 

recorded from independent cells were measured, because whole-cell currents 

depend on the number of moles of receptors on the cell surface, RM, 

(Equation [2.2]), which depends on transfection efficiencies for each cell.  As 

a result, a large standard error was observed in the averaged maximum 

current amplitudes evoked by 1 mM GABA from 34 cells expressing α1β2δ 

receptors and 19 cells expressing α1β2δ(E177A) receptors (Figure 2.6A), but 

the difference was statistically significant (p<0.003).  The dose-response 

curve of α1β2δ(E177A) receptors for JM-II-43A with saturating 1 mM 

GABA afforded a value of 0.624 ± 0.116 mM for *Kd (JM-II-43A) with a Hill 

coefficient of 1.7 ± 0.3 (Figure 2.6B).  The value of *Kd (JM-II-43A) at low (3 

μM) concentrations of GABA changed to 1.14 ± 0.39 mM with a Hill 

coefficient of 1.5 ± 0.3.  However, these binding affinity constants were not 

statistically different (p=0.21, Welch’s two way t-test, α=0.05 and d.f.=56).  
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Figure 2.6  Mutated α1β2δ(E177A) GABAA receptors, which give lower 
average current responses to GABA than do the wild-type receptor (3, 4), 
were potentiated by JM-II-43A.  A. Mean current amplitudes evoked by 1 
mM GABA from 34 independent cells for wild-type α1β2δ and 19 
independent cells for mutant α1β2δ(E177A) receptors demonstrate a 47% 
reduction in current amplitude and are shown with relative standard errors.  
The difference is statistically significant (p<0.003) using a Welch’s two-
tailed t-test assuming unequal variance and an α = 0.05.  The somewhat 
large standard errors, despite 34 and 19 independent measurements, are 
likely due to large variations in the number of receptors expressed on the 
surface of each cell.  B. Fitting equation [1] to the dose-dependent response 
data from α1β2δ(E177A) receptors in the presence of 0.01 to 2 mM JM-II-
43A and 1 mM GABA ( ), gave a value for the apparent dissociation 
constant for JM-II-43A (*Kd (JM-II-43A) (E177A)) of 0.62 ± 12 mM, with a Hill 
coefficient of 1.7 ± 0.3.  In the presence of 3 μM GABA (EC25) ( ) the 
value for *Kd (JM-II-43A) (E177A) was 1.1 ± 0.39 mM, with a Hill coefficient of 1.5 
± 0.3.  Apparent dissociation constants were not statistically different, with 
p=0.21 by a Welch’s two way t-test (α=0.05 and d.f.=56)  C. Fitting the 
GABA dose-dependent data with equation [2] gave values for the 
dissociation constant (K1) for GABA from α1β2δ(E177A) receptors of 5.68 
± 0.26 μM ( ) and 8.64 ± 1.98 μM ( ) in the absence and presence of JM-
II-43A respectively.  K1 values for mutant receptors were not statistically 
different (p=0.20 by a Welch’s two way t-test, α=0.05 and d.f.=54).  
Independent measurements from 3-6 cells were made for every 
concentration shown in B and C and plotted on a logarithmic scale.  D. 
Comparison of the potentiation due to saturating concentrations of JM-II-
43A, monastrol, phenobarbital or tracazolate coapplied with 1 mM GABA 
shows that DHPMs positively modulate both α1β2δ and α1β2δ(E177A) 
GABAA receptors to a similar or greater extent than do phenobarbital and 
tracazolate.  The means and relative standard errors shown are calculated 
from 12 independent cells for JM-II-43A and 3-9 independent cells for 
monastrol, phenobarbital and tracazolate, normalized to the current 
response evoked by 1 mM GABA.  (Tracazolate measurements were 
conducted by K. Eagen.  All other measurements were made by R. Lewis.)  
All current measurements were made at ambient temperature (~ 22 oC), – 
60 mV membrane potential and pH 7.4. 
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Additionally, no statistical difference was observed in the affinity of 

α1β2δ(E177A) receptors for GABA in the absence (K1 = 5.68 ± 0.26 μM) or 

presence (K1 = 8.64 ± 1.98 μM) of 1 mM JM-II-43A (p=0.20, Welch’s two 

way t-test, α=0.05 and d.f.=54) (Figure 2.6C).  Both 1 mM JM-II-43A and 1 

mM monastrol potentiated currents from receptors containing the mutant 

δ(E177A) subunit, by 3.2-fold and 2.0-fold respectively (Figure 2.6D).  

These values were directly compared to the approximate ~ 3-fold 

potentiation of wild-type α1β2δ GABAA receptors by 1 mM JM-II-43A or 

monastrol in the presence of 1 mM GABA, as well as to potentiation by 1 

mM phenobarbital and 10 μM tracazolate (Figure 2.6D). 

 

Discussion 

 Many neurological pathologies, including schizophrenia, depression, 

anxiety, insomnia and epilepsy, are linked to GABAA receptor dysregulation 

of signal transmission in the mammalian CNS (35).  Understanding how 

GABAA receptors work in the CNS, what molecules modulate these 

receptors, and how various compounds affect their functions is critical 

information to aid in the treatment of diseases, such as epilepsy, which 

affects ~  50 million people world wide (101).  Compounds that target 

subsets or specific GABAA receptor isoforms allow for more detailed and 

precise studies and potentially more specific treatment of GABAA receptor-

related disorders.  However, the repertoire of known compounds that 

preferentially potentiate currents from GABAA receptor isoforms containing 

the δ subunit was limited to ketamine (5), two benzamide molecules (11), 

and ethanol (7, 8).  Here we have established that a family of 

dihydropyrimidinones also has this selective property.  Ketamine, a well 
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characterized allosteric inhibitor of NMDA receptors, was recently reported 

(5) to selectively potentiate currents of recombinant α6β2δ and α6β3δ 

receptors that were expressed in X. laevis oocytes.  The degree of 

potentiation reported for ketamine was largest when it was tested with 

GABA concentrations that evoke 1 % of maximal current (EC1) and 

declined with increasing GABA concentrations.  The two benzamide 

molecules described (11) potentiated currents evoked by low (EC20) GABA 

concentrations when applied to recombinant α4β3δ receptors expressed in 

cells from an L(tk-) cell line.  The effects of the benzamides when co-applied 

with higher concentrations of GABA were not reported.  Potentiation of δ 

subunit-containing receptors by ethanol has been reported at both low and 

high agonist concentrations (7, 8).  However, this observed response seems 

to be a complicated relationship and necessitates further investigation (9, 10). 

 The structural similarity of DHPMs to the barbiturates pentobarbital 

and phenobarbital led us to hypothesize that these molecules may similarly 

potentiate GABAA receptor currents, but the DHPMs presented in our study 

have several novel characteristics.  These compounds contrast to other 

compounds such as ketamine and benzamides, which were reported to 

specifically potentiate one or two receptor subtypes selectively, whereas 

DHPMs are somewhat selective for potentiation of a subgroup of receptors 

containing the δ subunit, with α4β2 receptors being the exception.  In 

addition, the potentiation of GABAA receptor currents by DHPMs occurs 

over the entire effective range of GABA concentrations, without the 

DHPMs alone showing any agonist activity at concentrations up to 4 mM 

(Figure 2.4A).  It is possible that these DHPMs may act as agonists at higher 

concentrations than those tested, however their solubility prevented 
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examination of this possibility.  This finding also contrasts with barbiturates, 

such as pentobarbital and phenobarbital, which modulate most GABAA 

receptor subtypes and display partial agonist activity at high concentrations 

(155, 156).  The observation that DHPMs do not change the affinity of the 

α1β2δ receptor for GABA suggest that DHPMs interact with GABAA 

receptors at an allosteric binding site; however, it is not known if the binding 

site is novel or the same one to which barbiturates bind.  The binding site 

for DHPMs is evidently not specific to the presence of the δ subunit as α4β2 

receptors were potentiated by DHPMs and these compounds increase 

desensitization rates of receptor subtypes lacking the δ subunit.  These 

results, and observations previously reported (144) for the potentiation of 

both α4β3 and α4β3δ receptor subtypes by etomidate, propofol and the 

neurosteroid THDOC, indicate that the delta subunit is not essential for 

binding and potentiation, but likely assists in facilitating potentiation of 

several receptor subtypes.   

 The general mechanism for GABAA receptors presented here (Figure 

2.1) was originally proposed by Katz and Thesleff for the nicotinic 

acetylcholine receptor (12), with the later addition of the desensitized states 

(DL and DL2) and channel-opening equilibrium constant (Ф-1) (15).  This 

mechanism indicates that observed currents will be affected by any changes 

in the channel-opening equilibrium caused by receptor mutations or ligands 

that stabilize either the open-channel or closed-channel receptor state.  

While the measurement of several kinetic constants, such as kopen and kclose 

rate constants, for the specific α1β2δ receptor mechanism must await the 

development of appropriate reagents, results reported here support the 

hypothesis that potentiation of α1β2δ receptors and other receptor subtypes 
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by JM-II-43A may be due to the compound preferentially binding to and 

stabilizing the open-channel state.  JM-II-43A has a higher affinity for the 

wild-type receptor (*Kd (JM-II-43A) = 410 ± 74 μM) at a saturating concentration 

(1 mM) of GABA (receptor predominantly in the open-channel state) than at 

a low (3 μM) concentration of GABA (receptor predominantly in the closed-

channel state) (*Kd (JM-II-43A) = 810 ± 32 μM).  It is also possible that DHPMs 

increase the desensitization rates of α1β2 and α1β2γ2L receptor isoforms 

due to preferential binding to and stabilization of the desensitized receptor 

state.   

 Previous chemical kinetic investigations of the α1β2γ2L(K289M) 

receptor genetically linked to epilepsy (69) used the mechanism proposed in 

Figure 2.1A to explain how the mutation decreases the channel-opening 

equilibrium constant (Ф-1) 5-fold by reducing the channel-opening rate 

constant (kopen) (1).  Moreover, the anticonvulsant phenobarbital was found 

to bind with higher affinity to the open-channel state of the mutated 

α1β2γ2L(K289M) receptor than to the closed-channel state, shifting the 

channel-opening equilibrium of the receptor towards the open-channel state 

(2), reaffirming the receptor mechanism.  As with the α1β2γ2L(K289M) 

isoform, GABAA receptors containing the mutated δ(E177A) subunit 

together with the α1 and β2 subunits have reduced current amplitudes in 

whole-cell current recordings (Figure 2.6A) (3, 4).  The decrease in whole-

cell currents of receptors containing the δ(E177A) subunit is due to a 

decrease in the mean-open time (τopen) of the receptor (the average period of 

time that the receptor occupies the state able to conduct current before 

closing), as measured in single-channel current recordings (4).  The 

approximate 3-fold increase in current of α1β2δ(E177A) receptors when in 
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the presence of 1 mM JM-II-43A is consistent with the compound causing a 

shift of the channel-opening equilibrium towards the open-channel receptor 

state.  While these observations do not establish that JM-II-43A alters the 

channel-opening equilibrium constant of the receptor, they are consistent 

with this hypothesis.  Once appropriate reagents are developed, it will be of 

interest to determine if changes in the channel-opening (kopen) or channel-

closing (kclose) rate constants confirm this hypothesis. 

 In addition to suggesting that DHPMs potentiate GABAA receptors 

by shifting the channel-opening equilibrium to increase receptor currents, 

our data also supports the increasing amount of literature describing GABA 

as a partial agonist for δ subunit-containing GABAA receptors (6, 8, 143-

145).  DHPMs seem to increase the efficacy of GABA to open GABAA 

receptor channels while not changing receptor affinity for GABA.   As 

previously suggested (143), the modulation of GABA efficacy on δ subunit-

containing GABAA receptors may be an important attribute of tonic currents 

used to regulate neuronal excitation.  Taking this one step further, selective 

modulation of GABAA receptor subtypes involved with tonic inhibition may 

yield additional levels of regulation and control.  It is interesting that of the 

receptor subtypes potentiated by DHPMs (α1β2δ, α1β3δ, α4β2, α4β2δ, 

α5β2δ and α6β3δ), the α4- and α6 subunit-containing receptors are 

modulated to a lesser extent than other subtypes, even though α4 and α6 are 

currently thought to be the predominant partnering subunits of the δ 

subunit in the CNS (6).  These results, in addition to the colocalization of 

various GABA subunits with the δ subunit in immunocytochemical 

distributions in the rat brain (48), support the idea that less abundant minor 

receptor subtypes may still be functionally relevant.  In fact, the α1β2δ 
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receptor subtype, while not a predominant subtype in much of the CNS, has 

been reported as a significant subtype in specific hippocampal interneurons 

(6) and was described as a silent receptor unless in the presence of 

modulators such as the neurosteroid THDOC (6).  The increased efficacy of 

GABA on minor receptor subtypes in the presence of DHPMs and other 

potentiating compounds suggests that less abundant endogenous receptor 

subtypes in the nervous system may be selectively modulated to play a 

significant role in regulating tonic conductance of neurons.  

 The potentiation efficacy of JM-II-43A and monastrol on α1β2δ 

receptor currents is comparable to that of phenobarbital and tracazolate 

(Figure 2.6D).  Phenobarbital, which was reported to potentiate α1β2γ2L 

receptors ~  1.5-fold (2), has higher efficacy on α1β2δ receptors, increasing 

maximum currents by 2.5-fold.  Although tracazolate was reported to 

potentiate α1β2δ currents by ~ 23-fold when co-applied with 100 μM 

GABA to X. laevis oocytes (145), it increased by only ~  1.5-fold the whole-

cell currents evoked by 1 mM GABA from α1β2δ receptors expressed in 

HEK293T cells reported here.  At saturating GABA concentrations 10 μM 

tracazolate was reported to potentiate α2β3δ receptors expressed in 

HEK293 cells by approximately 2.7-fold (241) and α1β1δ receptors 

expressed in X. laevis oocytes by 2-fold (172), which both more closely 

resemble the results reported here for α1β2δ receptors.  These reported 

differences in the degree of potentiation by tracazolate support previous 

suggestions that the expression system may affect the degree of potentiation 

observed for GABAA receptor currents (144).  However, the direct 

comparison of potentiation efficacy of JM-II-43A, monastrol, tracazolate 

and phenobarbital with saturating GABA concentrations in HEK293T cells 
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(Figure 2.6D) demonstrates that these molecules all increase the efficacy of 

GABA on α1β2δ receptors to a similar extent. 

 JM-II-43A seems to only increase α1β2δ receptor currents without 

changing the other properties of the observed current.  However, the effects 

of monastrol on α1β2δ receptors are clearly more complex as the application 

of 1 mM monastrol causes not only an increase in the overall current 

amplitude but also the appearance of both a desensitizing phase in the 

current response and a large rebound current at the end of the application 

period (inset, Figure 2.4B).  It is not clear how this compound may be 

causing these features other than to suggest that the compound stabilizes 

both a conducting and a non-conducting state.   

 Monastrol was originally identified as a kinesin inhibitor (242) and 

because of this the activity of monastrol on GABAA receptors may raise 

questions as to the specificity of DHPMs and their future as a potential 

therapeutics.  Monastrol itself is a very specific inhibitor of kinesin Eg5, with 

a subsequent report showing that the single change of its sulfur atom to an 

oxygen atom results in the loss of kinesin inhibition (243).  Various DHPMs 

have biological activity in several other contexts as well, including 

modulation and inhibition of calcium channels (244).  DHPMs that 

modulate calcium channels were discovered in the process of making 

derivatives and compounds structurally related to nifedipine and nifedipine-

like dihydropyridines (245, 246), compounds that are therapeutically used as 

vasodilators, antianginals and antihypertensives.  In this report JM-II-43A 

was primarily examined for modulation of specific GABA receptor subtypes.  

However, we have also tested this DHPM on recombinant GluN1N2A 

NMDA receptors and recombinant α4β2 nicotinic acetylcholine receptors 
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(nAChRs) separately and transiently expressed in HEK293T cells.  It was 

also tested on endogenous muscle-type nACh receptors of the BC3H1 cell 

line.  At 1 mM concentrations of JM-II-43A coapplied with 10 μM 

glycine/100 μM glutamate there was no observed effect of the compound 

on the NMDA receptor currents.  In contrast, both α4β2 and muscle-type 

nAChRs were inhibited ~  90% when 1 mM of JM-II-43A was coapplied 

with 100 μM carbamoylcholine.  These results were not entirely unexpected 

as many barbiturates are known antagonists of nAChRs (247, 248), including 

pentobarbital (one of the barbiturates this class of DHPMs was modeled 

after, Figure 2.2A), which has a reported EC50 of 32 μM using the 

endogenous receptors of BC3H1 cells (248).  With all this in mind, monastrol 

and the other DHPMs presented in this report may not be directly relevant 

for therapeutic use.  However, they do display GABAA receptor subtype 

specificity that will make them good tools for the study of GABAA 

receptors.  Furthermore, modifications of these compounds may yield 

molecules that retain the ability to modulate specific GABAA receptor 

subtypes while making the molecules more selective for GABAA receptors 

than the DHPMs examined here.  Such molecules would undoubtedly be 

desirable developments for therapeutic purposes.  

 Chemical libraries of DHPMs are readily synthesized through a multi-

component Biginelli reaction (17) and afford access to a range of molecules 

having promising biological applications (244, 249).  The accessibility of 

DHPM derivatives and our results showing selectivity for potentiation of 

α1β2δ GABAA receptors, suggest that DHPM derivatives should be useful 

as biological tools and may be helpful for developing future therapeutic 

agents to target GABAA receptor isoforms containing the δ subunit.   
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CHAPTER 3 

 

DETERMINING THE MECHANISM OF DIHYDROPYRIMIDINONE 

POTENTIATION OF δ SUBUNIT-CONTAINING GABAA 

RECEPTORS 

 

Abstract 

 Neuronal signaling within the mammalian central nervous system is 

regulated and repressed primarily by gamma-aminobutyric acid receptor 

(GABAA receptors) ligand-gated chloride channels (19, 20, 227).  

Understanding how small molecules, such as endogenous neurosteroids and 

therapeutic compounds, modulate these receptors on a mechanistic level 

reveals how these receptors function and leads to new approaches for the 

design and discovery of new therapeutic compounds.  Recently, a small 

family of dihydropyrimidinones (DHPMs) were discovered that modulate 

GABAA receptor subtypes containing the δ subunit (163).  The DHPM JM-

II-43A showed a ~ 3-fold increase in GABA-activated whole-cell current 

measurements obtained from recombinant α1β2δ receptors expressed in 

HEK289T cells.  Based on the structural resemblance of DHPMs to 

barbiturates, it was speculated that these compounds modulate α1β2δ 

GABAA receptors in a similar fashion by altering kopen and/or kclose.  

However, we report here evidence that suggests an alternate and novel 

mechanism of action.  Single-channel current measurements were employed 

to examine the mean open-channel time of the receptor to estimate the rate 

of channel closing (kclose) and the channel conductance, but no changes in 

these parameters were observed in the presence of JM-II-43A.  The flash-
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photolysis technique was use with photolabile RuBi-caged GABA to 

measure the rate constant of channel opening (kopen) and the rate constant of 

channel closing, but no change in the rate constants in the presence of JM-

II-43A and GABA as compared to GABA alone was indicated.  Instead, 

multi-channel patch clamp experiments strongly suggest that these 

compounds potentiate whole-cell receptor currents by increasing the 

population of GABAA receptors that are sensitive to the presence of GABA.  

In the presence of 1 mM JM-II-43A, large membrane patches containing a 

population of channels show a 2.5 to 5 -fold increase in currents and result 

in an increased frequency of channel stacking.  These studies have led to a 

new general mechanism for GABAA receptors that includes an equilibrium 

between an active and inactive receptor state before agonist binds to the 

receptor.   

 

Introduction  

 The super family of cys-loop ligand-gated ion channel receptors are 

critical for the transmission of signals between neurons within the central 

nervous system (CNS) (19, 20, 53, 250).  These receptors stimulate or 

repress neuronal signaling depending upon the ions they permit to flux 

across the neuronal plasma membrane.  The most well characterized of the 

cys-loop receptor super family are nicotinic acetylcholine receptors 

(nAChRs), which have been studied since the discovery in 1957 that 

acetylcholine can stimulate neuronal and muscle excitation (12, 22).  The 

binding of acetylcholine to nAChRs induces a conformational change in the 

receptor structure that opens a cation-selective channel, facilitating the flux 

of sodium and calcium into a neuron.  This cation flux depolarizes the 
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neuron membrane potential to stimulate an excitatory response known as an 

action potential.  Another family of cys-loop receptors is γ-aminobutyric acid 

GABA type-A (GABAA) receptors, which operate in a similar manner when 

binding the ligand γ-aminobutyric acid (GABA).  However, these receptors 

open a chloride and bicarbonate selective channel, which represses action 

potentials in the neuron by hyperpolarizing the membrane potential.  

GABAA receptors, in particular, are thought to be the primary ion channels 

that regulate and repress signal transmission in the CNS. 

 GABAA receptors, nAChRs, serotonin receptors (5-HT3, cation 

selective) and glycine receptors (GlyRs, anion selective) have originated from 

a distant ancestral ligand-gated ion channel (52, 53).  Thus, these receptors 

have many similarities in their structure and function in spite of their 

different agonists and their opposing effects on neuronal excitation.  Cys-

loop receptors are pentameric and are composed of a variety of different 

subunits, which allow for a large diversity of receptor subtypes.  The 

GABAA receptor specifically can form pentamers composed of 

combinations of 19 subunits in the human genome (α1-6, β1-3, γ1-3, δ, ε, θ, 

π, and ρ1-3) (20, 43).  Even though these receptors are typically composed 

of at least two α and two β subunits, there exist a large number of possible 

receptor subtypes. 

 The various subunits incorporated into a GABAA receptor determine 

the receptor localization, pharmacology, biophysical properties, and cellular 

roles in the CNS (21, 139, 170, 228).  In contrast to GABAA receptor 

subtypes containing γ subunits that are localized at synapses and have a 

phasic role in signal transmission, receptors containing the δ subunit are 

located peri- and/or extra-synaptically and are thought to have an important 
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role in regulating neurotransmission through tonic inhibition (49, 145, 170).  

In addition, GABAARs containing the δ subunit have much shorter mean-

open times, lower whole-cell current amplitudes when expressed in vitro, a 

higher affinity for GABA, a greater response to receptor modulators such as 

THDOC and other progesterone derivatives, and do not desensitize.  It is 

thought that these properties play an important role in neuronal modulation 

by generating extra-synaptic tonic chloride conductances that arise from 

extra-synaptic GABAA receptors responding to low levels of environmental 

GABA.  The mechanism of GABAA receptors containing the δ subunit has 

been investigated and the lack of receptor desensitization observed for these 

receptors is thought to contribute to their function as extrasynaptic tonic 

conducting receptors.  In addition it has been shown that residues in the 

second transmembrane region within the δ subunit are responsible for this 

lack of desensitization and lower observed current (251).  However, it has 

not been revealed mechanistically how this region alters the mechanism to 

result in a lack of desensitization. 

 A significant amount of literature has suggested that GABA acts as 

only a partial agonist of δ subunit-containing GABAA receptors of various 

subtypes (6, 8, 143-145, 163, 176) and that small molecules are likely 

important for the modulation of receptor function in vivo.  However, the 

mechanism for how δ subunit-containing GABAA receptor currents are 

modulated has not been established.     

 Recently we reported the discovery of a family of 

dihydropyrimidinone small molecules that preferentially increase whole-cell 

currents of δ subunit-containing GABAARs recombinantly expressed in 

HEK293T cells.  It was proposed that these small molecules preferentially 
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bind to and stabilize the open-channel state of the receptors to alter the rate 

constants of channel-opening or channel-closing, a mechanism similar to 

modulation by the structurally similar barbiturate phenobarbital.  There are, 

however, several alternative ways that DHPMs may alter the mechanism of 

α1β2δ receptors to potentiate whole-cell currents: by increasing the binding 

affinity of the receptor for GABA, altering the conductance of the ion 

channels, increasing the number of receptors responding to GABA, or 

changing the rate of receptor desensitization.  The last possibility is unlikely, 

as receptors containing the δ subunit characteristically have little or no 

desensitization (145, 170, 175).  Additionally, it was previously determined 

that the affinity of the receptor for GABA ( 1K ) is not altered (163). 

 Here we examine each of three remaining possible mechanisms that 

may explain how DHPMs yield an observed ~ 3-fold increase in whole-cell 

current conductance, using single-channel, multi-channel (large- or macro-

patch) measurements, and flash-photolysis studies.  Surprisingly, these 

studies demonstrate that the mechanism of action for DHPMs is different 

than that of barbiturates.  Our results strongly suggest that DHPMs act by 

increasing the number of receptors that are in an active or ‘ready’ state to 

respond to the presence of GABA, as the number of receptors responding 

to GABA is greater in the presence of JM-II-43A than in the presence of 

saturating GABA concentrations alone.  Not only does this mechanism 

describe the ability of modulators like DHPMs to potentiate whole-cell 

currents, but it also explains why δ subunit-containing receptors have several 

of their characteristic features, such as a lack of desensitization.  In addition, 

this new perspective on the GABAA receptor mechanism may generally 

apply to all GABAA receptor subtypes. 
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Methods and Materials 

Reagents, Synthesis and Preparation of Dihydropyrimidinones 

 JM-II-43A was synthesized as previously described (17) and 

Ruthenium-bipyridine-triphenylphosphine (RuBi) caged GABA was 

purchased from Tocris (Ellisville, MO).  All other reagents were obtained 

from Sigma Aldrich, Fisher Scientific, or EM Sciences.  JM-II-43A was 

dissolved in pure anhydrous DMSO (to aid compound solubility in buffer), 

then diluted 1:200 with extracellular buffer at a temperature of 65 oC to 

make a solution of 2 mM JM-II-43A in 0.5 % DMSO.  A concentration of 

0.5% DMSO had no observed effect on GABAA receptors.  Room 

temperature solutions of 2 mM JM-II-43A were diluted and used as needed.  

Serial dilutions of a frozen (-20 oC) 100 mM GABA stock were used to make 

all GABA solutions. 

 

Cell Culture and Transient Transfection   

 HEK293T cells, obtained from the American Type Culture Collection 

(ATCC) (Manassas, VA), were grown at 37 oC with 5 % CO2 in Dulbecco’s 

Modified Eagle’s Medium (DMEM) containing 10 % fetal bovine serum 

(FBS), 100 units/mL penicillin and 0.1 mg/mL streptomycin.  Professors H. 

Lüddens (Johannes Gutenberg - Universität, Mainz, Germany) and P. H. 

Seeburg (Max-Plank-Institut für medizinische Forschung, Heidelberg, 

Germany) kindly provided the cDNAs encoding the rat GABAA receptor α1, 

β2, and γ2L subunits in the mammalian pRK-5 expression vector.  The rat 

GABAA receptor cDNA for the δ subunit in a pExpress-1 mammalian 

expression vector was obtained from ATCC.  A plasmid containing cDNA 

for pGreen Lantern (Life Technologies Inc., Gaithersburg, MD) was used as 
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a marker for transfected cells.  Cells were transfected with 4 μg total of 

plasmid DNA, with plasmid ratios of 1:1:10:0.1 for α:β:δ:pGreen Lantern 

cDNAs to bias the expression of the δ subunit relative to α and β subunits.  

For whole-cell current recordings, δ subunit-containing receptors were 

clearly identifiable by a characteristic lack of receptor desensitization.  

Polyethylenimine (PEI) (Polysciences Inc. Warrington, PA) was used for 

transient transfection of cells as reported (235) with a PEI:DNA ratio of 4:4 

(μg:μg) with medium being replaced after 4-7 hours with fresh DMEM/10 

% FBS.  Cells were used 24 to 48 hrs. after transfection. 

 

Rapid Solution Application 

 The previously described cell-flow technique(18) was used for the 

rapid application of solutions to membrane patches or cells used in 

electrophysiological measurements. 

 

Electrophysiology Measurements. 

 Whole-cell current recordings were obtained from individual cells in a 

whole-cell configuration lifted from the bottom of a 35 mm cell culture dish 

with a borosilicate glass pipette and suspended in extracellular buffer 

composed of 145 mM NaCl, 5 mM KCl, 2 mM CaCl2, 1.5 mM MgCl2, and 

10 mM HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) at pH 

7.4 attained with 5 N NaOH.  Borosilicate glass capillaries with a 1.5 / 1.12 

mm outer / inner diameter (World Precision Instruments Inc., Sarasota, FL ) 

were pulled with a vertical pipette puller and heat-polished on a microforge 

to make recording pipettes with open-end resistances of 3.0-5.0 MΩ.  

Intracellular solution backfilled into the pipettes was composed of 140 mM 
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CsCl, 10 mM tetraethylammonium chloride, 10 mM EGTA (ethylene glycol 

bis (β-aminoethyl ether)-N, N, N’, N’ tetraacetic acid), 2 mM MgCl2, and 10 

mM HEPES brought to pH 7.4 with 5 N CsOH.  Whole-cell patches were 

voltage clamped at – 60 mV.  An Axopatch 200B amplifier, Digidata 1322A 

digitizer and Clampex 9.0 software (Molecular Devices, Sunnyvale, CA) were 

used for recording whole-cell currents at a sampling frequency of 50 kHz 

with Bessel filtering at 5 kHz as previously described by Hamill et al. (186).  

 Single-channel and multi-channel outside-out patches were obtained 

largely as described above with a few alterations.  The borosilicate glass 

pipettes with open tip resistances of 5-10 MΩ were made from capillaries 

with a 1.5 / 0.84 mm outer / inner diameter.  Single-channel and multi-

channel membrane patches were voltage clamped at -80 mV, sampled at 250 

kHz and Bessel filtered at 10 kHz.  Signals were later digitally low-pass 

filtered at 1.5 kHz.    

 

Flash-photolysis Measurements 

 Current measurements for flash-photolysis were carried out using 

Ruthenium-bipyridine-triphenylphosphine (RuBi) caged GABA, a 

photolabile caged GABA derivative, and cells expressing α1β2δ GABAA 

receptors in a whole-cell patch-clamp configuration, voltage clamped at -60 

mV as previously described (252).  Briefly, solutions of 20 μM RuBi caged 

GABA with or without 1 mM JM-II-43A were applied to a cell using the 

cell-flow technique.  An optical fiber with an internal diameter of 600 μm 

directed a flash of light generated by a Rapp xenon flash lamp (SP-20) (Rapp 

OptoElectronic GmbH, Wedel, Germany) onto the cell in a whole-cell 

configuration.  The flash of light was filtered with a 385-450 nm band-pass 
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filter.  The flash of visible light causes the photolytic cleavage of the RuBi 

caged GABA to rapidly release free GABA neurotransmitter.  Because RuBi 

caged GABA is visible light-sensitive, all experiments were conducted under 

dark room red lights.  A saturating 1 mM GABA solution applied with the 

standard cell-flow method was used as a control for normalization of all 

current amplitudes from cell-flow and flash-photolysis measurements 

obtained with a single cell.  

 

Data Analysis 

 Current amplitudes from various whole-cell patches were normalized 

by dividing all measurements by the current amplitude evoked by a 1 mM 

GABA control measurement (IA / IControl).  A single exponential equation  

∑ −= 1/t
1A)(I τet         [3.1] 

was fit to the current rising-phase of all flash-photolysis measurements using 

non-linear regression, conducted with Origin V. 3.5 data analysis software 

(OriginLab Corp., Northampton, MA).  The observed current rise rate 

constant (kobs ) is equal to 1/τ1.  Because kobs can be described as 
2

1opencloseobs ))([L]/([L] Kkkk ++=       [3.2] 

as previously reported (199), a linear regression is used to fit the values of 

kobs versus ([L]/([L]+K1))2 to obtain values for kopen and kclose.  The values are 

reported with relative standard errors.  The values of [L] were obtained by 

comparing the peak current evoked by photolysis of RuBi caged GABA to a 

dose-dependent curve of GABA applied to α1β2δ GABAA receptors using 

the cell-flow method previously reported (163), in Chapter 2.  The value for 

K1 also comes from the dose-dependent curve of GABA previously reported 

(163), in Chapter 2.  
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 Single-channel events were identified individually with the assistance 

of Clampex 9.0 software (Molecular Devices, Sunnyvale, CA) and used to 

generate histograms of the dwell-times (channel open time) and current 

amplitudes of the events.   Following standard methods (13, 14), the square 

root of the number of events per bin was used to generate a dwell-time 

histogram.  These histograms were fit with a two component, logarithmic 

exponential function (13, 14) using non-linear regression.  The fit required 

two exponential components, one of which fit greater than 85% of the area 

of the histogram.  The value of the tau time constant for this component 

was used for computing kclose, by the relationship (1/τ = kclose).    

 

Results 

 As was previously reported, JM-II-43A and the other DHPMs tested 

potentiate α1β2δ receptor currents up to ~ 3 fold that of currents evoked by 

saturating concentrations (1 mM) of GABA alone (163).  While the 

mechanism of action was not known, dose-dependent measurements were 

made at high (1 mM) and low (3 μM) GABA concentrations to obtain 

apparent dissociation constants for JM-II-43A ( *KJM-II-43A) for the open-

channel state and closed-channel state of the receptor, respectively.  This 

data yielded *KJM-II-43A values of 400 μM for the open-channel state and 800 

μM for the closed-channel state, suggesting that these molecules may act by 

binding to and stabilizing the open-channel state of the receptor.  This 

would result in changes to the rate constants of channel-opening (kopen) and 

channel-closing (kclose), therefore directly affecting the open-channel 

equilibrium constant (Ф-1).  To investigate this possibility, both flash-

photolysis (laser-pulse photolysis) and single-channel current measurements 
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were made and analyzed from α1β2δ GABAA receptors in the absence and 

presence of JM-II-43A. 

 

Flash-photolysis Data Shows JM-II-43A Does Not Change GABAA Receptor Rate 

Constants of Channel Opening and Closing 

 Current measurements of HEK293T cells transiently expressing 

recombinant α1β2δ GABAA receptors were made for current responses 

evoked by 1 mM saturating GABA concentration using whole-cell patch 

clamping and the cell-flow solution application technique.  These 

measurements were used for current normalization between cells.  These 

control measurements were followed by flash-photolysis measurements.  

αCNB caged GABA (226), which has been used previously with α1β2γ2L 

GABAA receptors (1, 2, 225, 253), was found to significantly inhibit α1β2δ 

GABAA receptor subtypes at concentrations needed for flash-photolysis 

(data not shown).  Instead, the visible-light-sensitive RuBi caged GABA was 

utilized for flash-photolysis measurements.  The RuBi caged GABA was 

used at a maximum concentration of 20 μM, as photolysis of RuBi caged 

GABA solutions at higher concentrations resulted in an observed inverse-

agonist modulation (or inhibition) of the receptor current, likely due to 

photolytic byproducts, in agreement with previous reports (218, 254).  The 

amount of free GABA released from the RuBi-GABA was controlled by 

changing the intensity of the pulse of light from the Rapp flash-lamp.  By 

varying the amount of GABA released, different concentrations of GABA 

could be used to observe different current amplitudes and observed rate 

constants (kobs) for the current rising phase.  The peak amplitudes of the 

evoked current were compared to a GABA dose-response curve to estimate 
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the concentration of GABA photolytically released.  Values for kobs were 

obtained by fitting the current rising phase with the standard single 

exponential function, equation [3.1], as shown in Figure 3.1.  The 

concentration of GABA released and the values of kobs were used to 

determine the rate constants of channel opening (kopen) and closing (kclose) by 

plotting kobs versus ([L]/([L]+K1))2 and fitting the data with the linear 

relationship described by equation [3.2], as shown in Figure 3.1C.  The data 

demonstrates no significant change in kopen and kclose.  Values for kopen and 

kclose are 150±5.0 and 16±0.45 in the absence of 1 mM JM-II-43A and 

110±4.6 and 15±0.51 in the presence of 1 mM JM-II-43A.  While the values 

for kopen are statistically different (p<0.001 as evaluated by a Welch’s two way 

t-test assuming unequal variance, using an α=0.05 and with 47 degrees of 

freedom (d.f.) in the analysis), the difference is only a 1.3 fold change in the 

rate of receptor opening, not enough to account for the 3 fold increase in 

current observed in whole-cell measurements.  The values of kclose were 

statistically not different (p=0.10, Welch’s two way t-test, α=0.05, d.f.=47). 

 

Single-channel Data Reveals no Change in Rate Constants of Channel Closing or 

Channel Conductance 

 Patches containing single α1β2δ GABAA receptors were voltage 

clamped at -80 mV and monitored for 30+ minutes while in the presence of 

3 μM GABA with or without 1 mM JM-II-43A, Figure 3.2.  These 

concentrations of GABA were chosen, because a greater degree of current 

potentiation (~ 4.5 fold) was previously observed for channels in the 

presence of low 3 μM GABA with 1 mM JM-II-43A compared to saturating 

1 mM GABA with JM-II-43A (~  3 fold) (163).  Thus, changes in receptor 
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Figure 3.1  Flash-photolysis methods indicate no apparent change in the 
rate constants of opening (kopen) or closing (kclose) for α1β2δ receptors.  
Whole-cell patched HEK293T cells transiently expressing recombinant 
receptors were used for flash-photolysis measurements using solutions 
containing 20 μM RuBi caged GABA with or without 1 mM JM-II-43A.  A.
Shown is the first 100 ms of the rising-phase from a current evoked by the 
photolysis of 20 μM RuBi caged GABA from a whole cell patch (green 
line).  B. Shown here is the first 100 ms of the rising-phase from a current 
evoked by the photolysis of 20 μM RuBi caged GABA in the presence of 
JM-II-43A (red line) using the same flash intensity and from the same whole 
cell patch as in A.  Equation 3.1 was fitted to the rising phase of the current 
trace of all flash-photolysis currents (black lines in A and B) to obtain the 
first-order rate constant (kobs) for the current rising phase.  The observed 
rate constant is defined as 2

1opencloseobs ))([L]/([L] Kkkk ++= , thus by plotting 
kobs against ([L]/([L]+K1))2 the values for kopen and kclose are the slope and y-
intercept,  respectively.  C. The values of kobs are plotted against 
([L]/([L]+K1))2, resulting in kopen values of 150±5.0 s-1 and 110±4.6 s-1 in the 
absence and presence of JM-II-43A, respectively, and kclose values of 
15.6±0.45 s-1 and 14.4±0.51 s-1 in the absence and presence of JM-II-43A, 
respectively.  kopen values were statistically different (p<0.001, Welch’s two 
way t-test, α=0.05, d.f.=47), but the values of kclose were not statistically 
different (p=0.10, Welch’s two way t-test, α=0.05, d.f.=47).  Twenty five 
measurements were obtained for both the presence and absence of 1 mM 
JM-II-43A using 7 independent cells.  Measurements were made at ambient 
temperature (~ 22 oC) with extracellular and intracellular buffers of pH 7.4.  
Currents were sampled at 50 kHz and low-pass filtered at 5 kHz. 
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 Figure 3.2  Single-channel measurements of α1β2δ GABAA receptors 
obtained from two separate single-channel patches show no change in 
channel conductance or mean-open time in the presence of 1 mM JM-II-
43A.  A. A single-channel patch from an HEK293T cell expressing α1β2δ 
GABAA receptors measured in the presence of 3 μM GABA.  B. A single-
channel patch from an HEK293T cell expressing α1β2δ GABAA receptors 
α1β2δ GABAA receptors measured in the presence of 3 μM GABA with 1 
mM JM-II-43A.  The patches were recorded for 30+ minutes.  A total of 
18673 channel-opening events were counted for A and 8965 events for B.  
The regions of the current traces have been selected to show events that 
contain longer than average open-channel dwell times to better display the 
amplitude of current.  Measurements were made from patches pulled from 
HEK293T cells transiently expressing recombinant receptors voltage 
clamped at -80 mV and measured at ambient temperature (~ 22 oC) with 
extracellular and intracellular buffers of pH 7.4.  C. A histogram of the 
dwell-time (the period of time the receptor is in the open-channel state) for 
all events from patches in A (red) and B (blue).  The mean open-time for 
channels was ~ 10-3.4s (~ 0.4 ms), for both patches with no statistical 
difference (p=0.79, Welch’s two way t-test, α=0.05, d.f.=167).  The 
histograms were normalized by their total area, transformed by taking the 
square root of the frequency density, and fit with a two component 
logarithmic probability function (black lines) to obtain values for time 
constants (τ) of the fit, as previously described (13, 14).  A single 
component was able to fit > 85% of the area for both histograms and thus 
the value of tau for that component is used to estimate the value for kclose. 
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kinetics were expected to be greatest at 3 μM GABA.  The channel-opening 

events obtained during the current traces shown were individually measured, 

binned into histograms and analyzed to determine channel conduction states 

and the average amount of time the channel was in an open-channel state 

(the receptor mean-open time).  The regions of the current traces shown 

contain longer than average open-channel events to better demonstrate the 

channel conductances observed.  In the histogram of current amplitudes 

generated from single-channel events, two current amplitudes of ~ 1 and 2 

pA were observed in the presence and absence of 1 mM JM-II-43A, 

translating to channel conductances of ~ 12 and 25 pSiemens, comparable in 

value to those previously reported for similar δ subunit-containing receptor 

subtypes (4, 170).  (These current amplitudes are also observed in the 

multichannel-patches discussed and shown later, in Figure 3.3 and 3.4.).  The 

presence of  JM-II-43A does not change these values, demonstrating that 

this DHPM does not alter channel conductance. 

 The histogram of open-channel dwell-times obtained (Figure 3.2C) 

shows mean-open times of ~ 10-3.4s or (~ 0.4 ms) for receptors in the 

presence or absence of 1 mM JM-II-43A.  Fitting the histogram of open-

channel dwell times with a logarithmic probability function (13, 14) was 

performed to determine time constants for how rapidly these channels close.  

The histograms shown were best fit with two exponential components, one 

component encompassed greater than 85% of the area of each histogram.  

The time constant from this predominant exponential component was used 

to estimate a rate constant for channel closing (kclose) in the presence or 

absence of 1 mM JM-II-43A (kclose GABA =1800 ± 700 s-1 and   

kclose GABA + JM_II_43A =2080 ± 900 s-1) but showed no statistical difference  
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(p=0.79, Welch’s two way t-test, α=0.05, d.f.=167) (Figure 3.2C)  

Additionally, all parameter values can be found in Table 3.1. 

 

Multichannel Measurements Reveal the Activation of More Channels in the Presence of 

JM-II-43A 

 To determine if JM-II-43A increases the number of α1β2δ GABAA 

receptors that respond to GABA, a large patch (or multi-channel patch) 

method was used to examine a small population of α1β2δ receptors.  This 

method is a modified version of single-channel current recording, the only 

difference being the use of slightly larger membrane patches to examine the 

behavior of several channels at a time.  Figure 3.3 shows currents from three 

patches applied with 1 mM GABA in the absence or presence of 1 mM JM-

II-43A using the cell-flow technique.  The current traces from Patch I in the 

presence of 1 mM GABA or 1 mM GABA with 1 mM JM-II-43A from 

Figure 3.3 are also shown with expanded time scales to display single-

channel events in Figure 3.4.  As previously observed with single-channel 

measurements and evident here by the brief spikes in amplitude, the 

channel-opening events are short-lived.  The potentiation of the current by 

JM-II-43A is clearly displayed by the large amount of current observed in the 

current traces.  The current potentiation for each patch was quantified and is 

shown in the bar graphs.  The potentiation was determined from a mean 

current amplitude during GABA or GABA and JM-II-43A application for 

each patch by averaging 1.5 s worth of a current trace from three separate 

measurements under each condition. 

 If more channels are responding to GABA, yet no change in kinetic 

parameters is observed, then it is predicted that there must be an increased 
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Table 3.1  Table of all parameters measured with whole-cell and 
single channel patch-clamping as well as flash-photolysis methods.  
Whole-cell data is from Chapter 2. 

K1 Ф -1 kopen kclose g conditions technique
(pA)  (s-1) (s-1) (pSiemens)

whole-cell 7.0 ± 
1.5 

4.3  ± 
0.8 - - - 

single-
channel - - - 1750 ± 

680 
~12 and 

25 α1β2δ 

flash 
photolysis - 9.6 ± 

5.0 
150 ± 

5.0  
16 ± 
0.45 - 

whole-cell 9.9 ± 
1.1 

5.4  ± 
0.6 - - - 

single-
channel - - - 2080 ± 

910  
~12 and 

25 

α1β2δ 
with 

JM-II-43A 
flash 

photolysis - 7.8 ± 
4.6  

110 ± 
4.6 

15 ± 
0.51 - 
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Figure 3.3  JM-II-43A increases the current amplitude of a small 
population of GABAA receptors in a large outside-out membrane patch.  
Shown are current traces evoked from three large outside-out patches 
containing multiple α1β2δ GABAA receptors by application of 1 mM 
GABA or 1 mM GABA with 1 mM JM-II-43A.  The mean current 
amplitude evoked by coapplication of 1 mM GABA with 1 mM JM-II-43A 
from these patches was 2.6- to 5.2-fold those of the currents evoked by 1 
mM GABA on the same membrane patches (bar graphs).  Mean current 
amplitudes shown in the bar graphs were obtained by averaging the current 
amplitude over 1.5 s for three independent current traces under both 
conditions from the same membrane patch.  All mean currents measured in 
the presence of 1 mM JM-II-43A were significantly increased (*) with p-
values <0.001 using Welch’s two way t-test with an α=0.05.  Solutions were 
applied to the patch using the cell-flow technique.  The current traces from 
Patch I in this figure are also shown in Figure 3.4 with an expanded time 
scale to show single-channel events.  Measurements were made from 
patches pulled from HEK293T cells transiently expressing recombinant 
receptors, at ambient temperature (~ 22 oC) with extracellular and 
intracellular buffers of pH 7.4.  Currents were sampled at 250 kHz and 
digitally filtered at 1.5 kHz. 
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Figure 3.4  JM-II-43A increases the number of α1β2δ channels in a 
population of receptors that open at the same time.  A. The current traces 
from Patch I in the presence of 1 mM GABA from Figure 3.2 are shown 
with an expanded time scale to display channel-opening events.  As 
discussed in the text, these channel-opening events are short-lived as 
evident here by the brief spikes in amplitude.  To examine the frequency of 
event stacking, amplitudes of the channel-opening events in three current 
traces from the same conditions were measured and binned to compile the 
histograms shown.  The histogram displays events binned according to 
current amplitudes, showing densities of events roughly every 1 pA 
(arrows).  Events with amplitudes greater than 1 or 2 pA are likely from 
channel ‘current stacking’, i.e. channels opening at the same time.  B. The 
current trace from Patch I in the presence of 1 mM GABA with 1 mM JM-
II-43A is shown with an expanded time scale.  The event amplitudes were 
measured and binned in the same manner as in A from three current 
measurements under the same conditions.  The observed increase in events 
with larger amplitudes in the presence of 1 mM GABA with 1 mM JM-II-
43A, suggest a greater degree of ‘current stacking’.  Measurements were 
made from patches pulled from HEK293T cells transiently expressing 
recombinant receptors at ambient temperature (~ 22 oC) with extracellular 
and intracellular buffers of pH 7.4.  Currents were sampled at 250 kHz and 
digitally filtered at 1.5 kHz. 
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frequency of current stacking (i.e. events where two or more receptors open 

at the same time).  In the expanded current trace from Patch I, this is visible 

as spikes in current of greater amplitude in the presence of JM-II-43A 

compared to GABA alone (Figure 3.4).  To quantify the frequency of 

current stacking observed, all event amplitudes were measured and events 

were binned into an amplitude histogram for traces obtained in the absence 

and presence of JM-II-43A, shown in Figure 3.4.  The histograms display 

current amplitudes incremented roughly every 1 pA (arrows), which agrees 

with the two different current conductances observed in single-channel 

measurements of α1β2δ receptors, as previously discussed (Figure 3.1).  

Amplitudes greater than 1 or 2 pA are likely from channel current stacking.  

The increase in amplitudes observed in the presence of 1 mM GABA and 1 

mM JM-II-43A suggests a greater degree of current stacking. 

 

Discussion 

 Multi-channel patch-clamp recording methods used here demonstrate 

that JM-II-43A increases channel activity and increases the frequency that 

channels open simultaneously.  However, single-channel measurements and 

flash-photolysis methods show that JM-II-43A increases channel activity and 

potentiates GABAA receptor currents without altering the rate constants of 

channel closing, the open-channel equilibrium constant or the channel 

conductance.  It was previously demonstrated that JM-II-43A does not alter 

the receptor affinity for GABA (163).  Together, these results suggest that 

JM-II-43A must potentiate GABAA receptor currents through an alternative 

mechanism.  One explanation that satisfies all observed results thus far is 

that δ subunit-containing GABAA receptors may primarily reside in an 
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inactive state prior to the receptor binding agonist.  The presence of this 

inactive receptor state can account for the large degree of receptor current 

potentiation typical of δ subunit-containing receptors as well as the lack of 

desensitization observed from these receptor subtypes.  Additionally, this 

explains how JM-II-43A and other DHPMs may selectively increase currents 

from receptors containing the δ subunit.  

 Various techniques and methods have been used to investigate the 

mechanism of the super-family of cys-loop ligand-gated ion channels and 

have resulted in an equally diverse number of proposed mechanisms for 

GABAA receptors and other cys-loop receptors (15, 27, 28, 31, 126-128).  

However, underlying all these mechanisms are the fundamental features of 

the receptor binding agonist, undergoing a conformational change to open a 

channel, and desensitization; processes all described in the first cys-loop 

receptor mechanism proposed by Del Castillo and Katz (22).  The Cash and 

Hess mechanism, Figure 3.5A (15), was originally proposed to describe 

nAChRs.  Later this mechanism was shown to apply to α1β2γ2L GABAA 

receptors and was used to investigate picrotoxin inhibition (225), 

neurosteroid and barbiturate modulation (2, 253), as well as changes in the 

receptor function due to the K289M point mutation within the γ2 subunit 

linked to a heritable form of epilepsy (1, 69).  While this mechanism excludes 

some aspects of receptor function, such as the different channel conduction 

states, its simplicity has permitted predictions regarding receptor behavior 

that have fit well with electrophysiological data on α1β2γ2L receptors (1, 2, 

225)and focuses attention on the major features contributing to receptor 

function. 

 The mechanism of GABAA receptors is modulated to increase GABA 
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   Figure 3.5  Proposed mechanisms for the function of GABAA receptors.  
A. The Cash and Hess mechanism (15) has been proposed based on 
research primarily carried out with nAChRs, and then applied to GABAA 
receptors.  The receptors start in a non-conducting state ( R ) in the absence 
of GABA ( L ).  Upon application of GABA, the receptors rapidly bind a 
first ( RL ) and second ( 2RL ) molecule of GABA and enter a rapid 
equilibrium with the open-channel state ( 2RL ).  The receptors in the 2RL  
state slowly enter a non-conducting desensitized state ( 2DL ).  B. This 
mechanism is largely based on the Cash and Hess mechanism with the 
addition of a D state that is free from bound ligand.  The addition of this 
single state eliminates the assumption that the population of receptors starts
in a ‘ready’ state and suggests that the population of receptors can be 
distributed between an inactive (GABA insensitive) state prior to the 
presence of GABA and a state ready to bind GABA and rapidly proceed to 
an open-channel state. 
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evoked currents by a wide array of small molecules, including 

benzodiazepines, barbiturates, endogenous neurosteroids and many other 

compounds (20, 21, 33, 139).  Several hypotheses exist as to how these 

compounds alter the receptor mechanism to potentiate receptor currents.  

Work using the Cash and Hess mechanism suggests that current inhibition 

and potentiation may occur through the preferential binding of compounds 

to the closed-channel state (inhibition) or open-channel state (potentiation) 

of the receptor.  This preferential binding alters the open-channel 

equilibrium constant to increase or decrease the time that the receptor is in 

the open-channel state, thus changing the current amplitudes observed in 

whole-cell current measurements.  However, compounds may also alter the 

receptor mechanism in different ways, such as affecting the receptor affinity 

for GABA, the channel conductance, or receptor desensitization.  Another 

hypothesis, supported by an increasing amount of literature, suggests that 

GABA is a full agonist only on some receptor subtypes and acts as a partial 

agonist on others, such as δ subunit-containing receptors (6, 8, 143-145, 163, 

176).  It has been proposed that this partial agonist activity may be because 

GABA can readily bind to the receptor but requires the aid of additional 

potentiating ligands binding to the receptor to overcome the activation 

energy barrier to form an open-channel state, also referred to as the channel 

gating efficacy (143, 144).  This mechanism in many ways is similar to that 

described by the research mentioned here demonstrating a shift in the open-

channel equilibrium constant in the presence of modulators. 

 The work described here investigates the mechanism of JM-II-43A 

potentiation of currents from δ subunit-containing GABAA receptors, and 

how it does this preferentially for these specific receptor subtypes.  Because 
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JM-II-43A has many structural similarities to the barbiturate phenobarbital, 

it was thought that this molecule may act on the GABAA receptor in a 

similar manner, i.e. altering the open-channel equilibrium constant (163).  

Surprisingly, single-channel current recording (Figure 3.2) and flash-

photolysis (Figure 3.1) methods demonstrated that neither the receptor rate 

constants of opening and closing nor the receptor conductance were altered 

by the presence of JM-II-43A.  As was previously determined, the binding 

affinity of the receptor for GABA was also not changed (163).  Increases in 

observed whole-cell currents cannot be due to changes in receptor 

desensitization, as these receptors show little to no receptor desensitization.  

These results indicate that the increase in current observed with JM-II-43A 

must be due to an increase in the total number of receptors that are entering 

the open-channel state.  This could be attained through the recruitment of 

more receptors to the cell surface or the presence of receptors that do not 

enter an open-channel state even with saturating concentrations of GABA 

present.  Since the current potentiation induced by JM-II-43A occurs within 

tens of milliseconds and is rapidly reversible (163), the trafficking of 

receptors to and from the cell surface is not likely.  Additionally, the 

potentiation by JM-II-43A observed in multi-channel patches removed from 

cells (Figures 3.3 and 3.4) would be impossible if receptor trafficking to the 

plasma membrane was the mechanism of action.  However, the Cash and 

Hess mechanism does not account for receptors that do not respond to 

GABA. 

 The Cash and Hess mechanism makes an assumption that all 

receptors start in the R state, ready to bind GABA and rapidly enter into an 

open-channel state (Figure 3.5A).  Receptors in this mechanism enter an 
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inactive D state (desensitized state) only after GABA is bound.  This 

assumption may not apply to all receptors.  The inclusion of an additional D 

state to the Cash and Hess mechanism, results in a mechanism (Figure 3.5B) 

that eliminates this assumption and permits a population of receptors to 

distribute between the active R and inactive D states before the presence of 

agonist.  Depending upon the equilibrium between the D and R states it 

would be possible for the majority of receptors to start in the inactive D 

state (kDR> kRD).  This mechanism is consistent with the current potentiation 

of receptors by JM-II-43A and the characteristic lack of desensitization 

observed in δ subunit-containing GABAA receptor currents (145, 170, 175). 

 The mechanism proposed explains how receptors containing the δ 

subunit can be preferentially and significantly modulated by JM-II-43A and 

likely other modulatory compounds (6, 8, 145, 174, 255-257).  JM-II-43A 

may act by preferentially binding to and stabilizing the active R state of 

α1β2δ receptors.  If the rate of transition between the R and D states of the 

receptor is faster than the rate of channel opening and closing, then 

preferential binding of JM-II-43A to the R state would not lead to any 

observed changes in the open-channel equilibrium constant (Ф-1) or the 

channel-closing rate constant (kclose).  Additionally, because increasing 

GABA concentrations lead to a greater number of receptors in an R state 

(this state is required for the channel to open), a binding preference of JM-

II-43A for the R state versus the D state, should be visible by an apparent 

increase in binding affinity of the receptor for JM-II-43A in the presence of 

high GABA concentrations.  All these predictions based on the new 

mechanism have been observed: no change in the open-channel equilibrium 

constant (Ф-1) (Figure 3.1) or the channel-closing rate constant (kclose) 
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(Figures 3.1 and 3.2) was measured with flash-photolysis and single-channel 

patch-clamp measurements, and a higher apparent binding affinity of 

recombinant α1β2δ GABAA receptors for JM-II-43A was previously 

observed (163).   

  This mechanism is also consistent with the lack of 

desensitization characteristic of δ subunit-containing receptors (145, 170, 

175).  If receptors in the absence of GABA primarily reside in an inactive D 

state, then these receptors must both bind GABA and become an active R 

state before they can become an open-channel state.  If the equilibrium 

between the R and D states is strongly in favor of the D state (kDR> kRD), 

the presence of GABA will result in only a fraction of receptors reaching an 

open-channel conformation.  Such a mechanism would result in whole-cell 

currents without significant desensitization, as most receptors are already 

inactivated.  Additionally, this would yield lower overall current amplitudes 

relative to the total number of receptors being expressed.  Both of these 

attributes are commonly observed in electrophysiological studies of 

recombinant δ subunit-containing GABAA receptors (10, 21, 145, 170, 175). 

 It must be noted that if receptors start primarily in a D state, whole-

cell currents observed in flash-photolysis methods will not directly measure 

kopen and kclose of the GABAA receptors.  Rather this technique would 

measure a combination of multiple parameters that dictate the fraction of 

receptors in the 2RL  state in the presence of GABA and the rate constants 

of receptor opening and closing.  If the equilibrium between R and D states 

strongly favors the D state, only a small fraction of receptors will rapidly 

enter a conducting state.  Thus, the kclose rate constant obtained with flash-

photolysis would likely be inconsistent with the kclose obtained with single-
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channel current recording methods, as is observed Table 3.1.  Because the 

value obtained for kclose using single-channel measurements is based on 

direct observation of the receptor mean open time, it will be a more accurate 

measure of kclose.  The value obtained for kclose of ~ 2000 s-1 with single-

channel analysis as opposed to 16 s-1 with flash-photolysis (Table 3.1) is 

more consistent with the very short (~ 0.4 ms) open-channel dwell times 

observed for α1β2δ GABAA receptors (Figure 3.2) and relates well to open-

channel dwell times of other δ subunit-containing receptors previously 

reported (4, 126). 

 This new mechanism also suggests that molecules increasing the 

number of receptors in R states will increase the total number of receptors 

that enter into an open-channel state, thus leading to larger observed whole-

cell currents.  Such an increase in the population of open channels should be 

observable as an increase in channel activity without any observed changes 

in the time that the receptor is open.  This increase in channel activity would 

yield a greater frequency of receptors channels randomly opening at the 

same time creating currents of higher amplitudes due to current stacking.  

This is precisely what was observed in the multi-channel patches shown and 

examined in Figures 3.3 and 3.4.  This multi-channel data does not directly 

measure the equilibrium of receptors in R states versus D states, but it does 

clearly demonstrate that more receptors are opening their channels 

simultaneously in the presence of JM-II-43A compared to GABA alone, 

strongly supporting the mechanism proposed here for δ subunit-containing 

GABAA receptors. 

 The preferential selectivity of molecules like JM-II-43A for GABAA 

receptors containing δ subunits may be simply due to the state that the 
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particular receptor subtype resides in at rest.  In other words, depending on 

what state the receptor starts in (R versus D), even if the compound binds 

with equal affinity to both states, the modulation by this compound could 

appear as current potentiation or more rapid current desensitization / 

inhibition.  For example, it was noted in the previous report that JM-II-43A 

and other DHPMs increased the rate of desensitization of receptors that did 

not contain the δ subunit, indicating that DHPMs bind to and modulate 

other receptor subtypes (163).  It may be that these compounds are binding 

to both the R and D states for these other receptors, but because the 

receptors are starting primarily in the R state the modulation appears as 

increasing the receptor desensitization rate. 

 The experimental results presented here suggest that an additional 

state must be considered in the Cash and Hess mechanism.  It is clear that δ 

subunit-containing GABAA receptors have several unique attributes from 

many other GABAA receptor subtypes, such as their lack of desensitization 

(145, 170, 175),  and their ability to be modulated to a larger degree by 

potentiators, such as JM-II-43A (163), neurosteroids (145, 174, 255) and 

other small molecules (6, 8, 256, 257).  The inclusion of the equilibrium 

between an unbound inactive receptor D state with an unbound ‘ready’ R 

state to the Cash and Hess mechanism can explain the observed 

characteristics of δ subunit-containing GABAA receptors.  Although the 

mechanism presented here is largely focused on explaining the function of 

GABAA receptors containing the δ subunit, it is possible that this model has 

implications for other GABAA receptors and cys-loop receptors.   
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CHAPTER 4 

 

CHARACTERIZATION OF VISIBLE-LIGHT-SENSITIVE 

PHOTOLABILE CAGED GABA COMPOUNDS 

  

Introduction 

 Precise spatial and temporal resolution is often difficult to obtain in 

studies of in vivo enzyme kinetics, functions of proteins that are membrane 

bound, subcellular protein responses, cellular functions within tissues and 

other common biological processes.  A problem for investigating such 

experiments is the ability to rapidly change concentrations of ligands or 

substrates involved with these process due to limited control over diffusion 

and mixing of solutions as well as invasive methods to make measurements 

(258).  One method to overcome these impediments is the use of 

biologically inert photolabile compounds.  Upon illumination, these 

molecules undergo photolytic cleavage to produce a biologically active 

molecule or ion and an inert caging group byproduct.  Because light can 

readily pass through cellular membranes, these compounds permit excellent 

temporal (201, 252) and spatial resolution (259) that can be employed for the 

study of biological processes within cells.  These photolabile compounds are 

commonly called caged compounds and have greatly aided investigations in a 

number different fields of research, particularly the neurosciences (260). 

 The first biologically relevant caged compounds were developed by 

Engels and Schlaeger (261) for cyclic adenosine 3’,5’-phosphate (cAMP).  

Caged adenosine 5’triphosphate was later developed and used for biological 

research by Kaplan et al. (200) and McCray and Trentham (262).  Since these 
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initial studies, many photolabile protecting groups have been identified (211), 

several of which have become commonly used for investigating biological 

systems (206).  These protecting groups have been used to make photolabile 

small molecules, Ca2+, phospholipids, steroids, hormones, specific residues 

of peptides and proteins, enzyme substrates and cofactors, 

neurotransmitters, nucleic acids, oligonucleotides such as aptamers and 

siRNAs, and others (reviewed by Mayer and Heckel (206)). 

 The most commonly used caging group for biological studies is the 2-

nitrobenzyl group with various substituents (263, 264).  Several other 

common caging groups that are used in biological assays include coumarin 

esters (216, 217), p-hydroxyphenacyl derivatives (214), 2-methoxy-5-

nitrophenyl (MNP) esters (212, 213), desyl-based compounds(215)and 

ruthenium complexes (218). 

 Numerous caged GABA derivatives have been reported (218, 226, 

254, 265-269), yet caged GABA compounds continue to be developed, 

because no single caged molecule seems to be suitable for all research 

applications.  Many factors contribute to whether a caged molecule is 

appropriate for a system: the caging group, the functional group on the 

neurotransmitter to which it is attached, the photolysis characteristics, and 

the byproducts of photolysis.  Each of these factors must be examined 

before the use of a caged compound, as the effects are so far not predictable.  

For example, the UV sensitive αCNB-caged GABA has been successfully 

used for transient kinetic measurements of the α1β2γ2L receptor subtype (1, 

2, 226); however, it acts as a competitive inhibitor of the α1β2δ receptor 

subtype (K. Eagen, unpublished work, 2007).  Similarly, the visible-

light-sensitive RuBi-caged GABA, which photolyzes rapidly with an 
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excellent quantum yield, has a concentration limitation of 20 μM for some 

GABAA receptor subtypes because at higher concentrations photolysis 

byproducts of the caging group act as inverse agonists (218, 254). 

 Through collaboration with Professor Bruce Ganem and Dr. Lijun 

Fan, a variety of visible-light-sensitive caged GABA molecules were designed 

and then synthesized by Lijun Fan.  The synthesis of these compounds can 

be briefly described as a Passerini 3-component condensation reaction, 

shown in Figure 4.1, of a coumarin aldehyde 1 with BOC-protected GABA 2 

and different molecules containing a cyano-group 3, 4, and 5.  This reaction 

yielded the three compounds 6, 7, and 8, Figure 4.1 (265).  These resulting 

products were confirmed by C13 and H1 NMR as well as infrared 

spectroscopic methods (265).  For further details regarding the synthesis of 

these compounds please refer to Lijun Fan’s dissertation and Fan et al., 

2009(265). 

 Discussed here is the purification and characterization of caged 

compounds 6, 7, and 8.  Characterization included determination of the 

quantum yield, rate of photolysis, thermal stability, and biological activity of 

these compounds.  Also examined was the ability of these compounds to be 

photolyzed in the visible spectrum and for their application to transient 

kinetic techniques for the investigation of GABAA receptor kinetics.  

Techniques used to measure these properties included whole-cell current 

recordings, flash-photolysis, actinometric methods, analytical high pressure 

liquid chromatography (HPLC), transient-absorption, absorption and 

fluorescent techniques, and thin layer chromatography.  The wide array of 

methods employed was due to difficulties in measuring the uncaging of 

compound 6 (Figure 4.1).  It was ultimately determined that 6 would be   
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 Figure 4.1  Synthetic scheme for the synthesis of three different coumarin 
caged GABA derivatives.  Methyl coumarin 1 is converted to the coumarin 
aldehyde 2 through the use of a selenium oxide reaction (a).  The resulting 
aldehyde is combined with three different cyano-compounds and BOC-
protected GABA in a Passerini 3-component condensation reaction (b) to 
generate 3, 4 and 5.  The removal of the BOC protecting group (c) 
generates the coumarin caged GABA molecules 6, 7 and 8.  The synthesis 
of 6, 7 and 8 was designed and carried out by Dr. L. Fan. 
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useful for biological investigations, however the rate of photolytic cleavage is 

too slow for kinetic measurements.  These different approaches and their 

results are briefly presented and discussed. 

 

Methods and Materials 

Reagents, Synthesis and Preparation of Dihydropyrimidinones 

 Reagents were obtained from Sigma Aldrich, Fisher Scientific, or EM 

Science.  GABA solutions were serially diluted from a frozen stock of 100 

mM GABA stored at -20 oC and made weekly.  Caged compounds were 

synthesized as described previously (265).  Solvents used for HPLC analysis 

were HPLC grade. 

 

Solid-phase Extraction for Compound Purification 

 The purification of the caged compounds was carried out under a red 

light (darkroom light) to avoid photolytic cleavage of the compounds.  

Chloroform present from the compound synthesis was removed with a 

rotary evaporator.  The dried compound was then resuspended in double 

distilled H2O (ddH2O) and loaded onto a silica column prewashed with 

ddH2O.  The compound on the column was washed with two column 

volumes worth of ddH2O to remove polar molecules (e.g. free GABA), 

followed by a wash of two volumes of pure acetonitrile to remove non-polar 

byproducts and residual coumarin.  The caged compound was eluted off the 

silica column with three volumes acetonitrile containing 0.5% TFA.  The 

eluent was then rotationally evaporated to concentrate the compound, 

aliquoted into micro-centrifuge tubes and lyophilized for 24 hours in the 

dark at room temperature.  The tubes were stored after lyophilization in an 
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opaque container, in the dark at -80oC.  The individual tubes/aliquots permit 

easy quantification of the mass of compound, avoid potential exposure to 

light, and avoids problems from repeated thawing and refreezing. 

 

Actinometry 

 Actinometric methods were used to measure the energy of light 

emitted from both a Rapp xenon flash lamp (SP-20) (Rapp OptoElectronic 

GmbH, Wedel, Germany) and a Compex 102 excimer laser (Lambda 

Physik), as well as to calibrate a Molectron joule meter.  After calibration, the 

joule meter was primarily used for measurement of energy from light 

sources.  The method used is described by Hatchard and Parker (221) with 

the modifications suggested by Murov (220).  Potassium ferrous oxalate 

(K3Fe(C2O4)3) was made in the dark, under a red light, by adding 16 mL of 

2.5 M FeCl3 to 40 mL of a continuously stirred, hot solution of 3.3 M 

K2C2O4.  After mixing for 10 minutes, the resulting solution was chilled on 

ice to ~ 0oC without stirring to cause the K3Fe(C2O4)3 crystallize.  The 

mother liquor was removed and the crystals were dissolved into 20 mL of 

80oC ddH2O and recrystallized twice more.  The final crystals were sucked 

dry on a filter and then dried in a 45oC oven in the dark for 24 hrs.  1 mL of 

a 12 mM solution of the fresh K3Fe(C2O4)3 was pipetted into a cuvette and 

placed in front of a fiber optic cable used to transmit pulses of laser light.  

The solution was then irradiated with a variable number of pulses of light 

from the laser.  The solution was then mixed with 2 mL of a 0.2% solution 

of triply recrystalized 1,10-phenanthroline solution and 1 mL of a buffer 

solution of 1 M sodium acetate and 1.8 M H2SO4 in a 10 mL volumetric 

flask.  Water was immediately added up to the 10 mL mark, the solution 
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mixed, and then incubated at room temperature for 15-20 minutes before 

absorbance measurement at 510 nm.  The energy emitted was calculated as 

described by Murov (220).   

 

Transient Absorption Measurements 

 Transient absorption measurements are methods which entail 

monitoring the formation and decay of a photochromic transition state upon 

excitation by a high energy light pulse.  These methods have been described 

in detail (223, 270).  The absorbance of a low energy beam of light by a 

caged compound solution is monitored while being photolytically excited by 

pulses of high energy light perpendicular to the monitoring beam.  The 

monitoring light beam was filtered light of 450+ nm to avoid excitation of 

the caged compound.  The absorption was detected using a monochromater 

and a photomultiplier tube.  The signal of the photomultiplier tube was 

monitored with an oscilloscope measuring at a frequency of 2 MHz.  The 

high energy light pulses were generated by a Compex 102 Lambda Physik 

laser source, and the energy of the light pulses was measured using both 

actinometry and a calibrated joule meter.  The cuvette holding the 

compound had a 1 cm path-length in both directions.    

 

High Pressure Liquid Chromatography (HPLC) 

 Standard HPLC methods were used to separate compounds after 

varying degrees of photolysis using a Waters 600E pump and system 

controller with a Waters Nova-Pak C18 column (3.9 x 150 mm), an ISCO 

FL-2 fluorescence detector, and a LDC/Milton Roy absorption detector.  

The three liquid phases individually used were acetonitrile containing 0.1% 
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trifluoroacetic acid (TFA), 45% acetonitrile/ 55% water containing 0.1% 

TFA, and pure ddH2O. 

 The photolysis of 6 was carried out in a cuvette with a photolyzable 

window volume of 250 μL.  Triplicate solutions of 80 μM of 6 and 10 μM of 

methyl coumarin 1 (used as an internal control) were photolyzed using a 

Rapp xenon flash lamp with 0, 1, 2, 4, 6, 10, 25, 50, 100, 150 and 200 pulses 

of light.  A calibrated joule meter was used to measure the energy of light 

absorbed by the samples of 6.  Samples were loaded onto a Waters 717plus, 

temperature controlled HPLC auto-sampler and triplicate injections of 5 μL 

per sample were run under the isocratic conditions stated above.  Sample 

temperature during photolysis and in the HPLC auto sampler was kept at ~ 

4oC.     

 

Thin Layer Chromatography 

 Caged compounds were evaluated for purity and integrity using thin 

layer chromatography.  The mobile phase used was a solution of 3:1:1 of n-

butanol, acetic acid and water.  The plates used were silica gel matrix plates.  

GABA and caged GABA compounds were detected using a 0.4% ninhydrin 

solution in mobile phase and heat treatment.  Caged GABA and free 

coumarin caging group could be detected with UV light. 

  

Rapid Solution Application 

 Rapid applications of ligands to HEK293T cells expressing the 

receptor of interest were performed with the cell-flow technique as 

previously described by Udgaonkar et al. (18), also see Chapters 1 and 2. 
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Electrophysiology Measurements 

 Whole-cell current recordings were obtained from individual cells in a 

whole-cell configuration lifted from the bottom of a 35 mm cell culture dish 

with a borosilicate glass pipette and suspended in extracellular buffer 

composed of 145 mM NaCl, 5 mM KCl, 2 mM CaCl2, 1.5 mM MgCl2, and 

10 mM HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) at pH 

7.4 attained with 5 N NaOH.  Borosilicate glass capillaries with a 1.5 / 1.12 

mm outer / inner diameter (World Precision Instruments Inc., Sarasota, FL ) 

were pulled with a vertical pipette puller and heat-polished on a microforge 

to make recording pipettes with open-end resistances of 3.0-5.0 MΩ.  

Intracellular solution backfilled into the pipettes was composed of 140 mM 

CsCl, 10 mM tetraethylammonium chloride, 10 mM EGTA (ethylene glycol 

bis (β-aminoethyl ether)-N, N, N’, N’ tetraacetic acid), 2 mM MgCl2, and 10 

mM HEPES brought to pH 7.4 with 5 N CsOH.  Whole-cell patches were 

voltage clamped at – 60 mV.  An Axopatch 200B amplifier, Digidata 1322A 

digitizer and Clampex 9.0 software (Molecular Devices, Sunnyvale, CA) were 

used for recording whole-cell currents at a sampling frequency of 50 kHz 

with Bessel filtering at 5 kHz as previously described by Hamill et al. (186).  

 

Flash-photolysis Measurements 

 Current measurements for flash-photolysis were carried out using the 

visible-light-sensitive compounds 6, 7, and 8 (Figure 4.1) with cells 

expressing α1β2δ GABAA receptors in a whole-cell patch-clamp 

configuration that were voltage clamped at -60 mV, as previously described 

(252).  Solutions of 100 μM of the three coumarin caged GABA molecules 

were applied to a cell using the cell-flow technique.  An optical fiber with an 
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internal diameter of 600 μm directed a flash of light generated by a Rapp 

xenon flash lamp (SP-20) (Rapp OptoElectronic GmbH, Wedel, Germany) 

onto the cell in a whole-cell configuration.  The flash of light was filtered 

with a 385-450 nm band-pass filter.  All experiments were conducted under 

dark room red lights.  A saturating 1 mM GABA solution applied with the 

standard cell-flow method, was used as a control for normalization of all 

current amplitudes from cell-flow and flash-photolysis measurements 

obtained with a single cell.  

 

Results and Discussion 

 The compounds 6, 7, and 8 (Figure 4.1) synthesized by Lijun Fan 

were purified using a method similar to solid-state extraction (see methods 

for details).  This purification process was important for two reasons: i) to 

remove residual GABA that may be in the sample, and ii) to remove excess 

TFA that may be in the sample.  While it is evident that free GABA is not 

desirable, the removal of TFA is also critical as GABAA receptors and many 

other ion channels are pH sensitive (271).  We found that solutions of 

unpurified material tended to both evoke current and cause inhibition of the 

receptor (data not shown).  Both of these attributes were not observed with 

the purified caged GABA molecules. 

 The purity and thermal stability of these compounds was most 

accurately evaluated using the cell-flow and whole-cell patch-clamp 

techniques with cells transiently expressing recombinant α1β2δ GABAA 

receptors.  This is because GABAA receptors respond to concentrations of 

GABA well below the detection limit of most other detection methods that 

are available.  The current trace shown in Figure 4.2A demonstrates that no  
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Figure 4.2  Electrophysiological measurements of coumarin caged GABA 6
conducted with recombinant α1β2δ GABAA receptors expressed in 
HEK293T cells demonstrate that 6 is biologically inert before photolysis.  
A.  A solution of 100 μM of 6 was applied using the cell-flow method to a 
cell containing α1β2δ GABAA receptors and was then photolyzed at time = 
0 with a flash of 385-450 nm light from a Rapp xenon flash-lamp.  Before 
illumination there is no current evoked, indicating that 6 does not act as a 
receptor agonist.  Upon illumination there is an increase in current observed 
indicating photolysis of 6 to release free GABA.  B.  The large amount of 
overlap between the application of 10 μM GABA (Trace 1), and co-
application of 10 μM GABA with 100 μM of 6 (Trace 2) demonstrates that 
6 does not act as an inhibitor of the receptor.  All currents were recorded at 
ambient temperature (~ 22 oC), – 60 mV membrane potential and in 
extracellular buffer pH 7.4. 



 

133 

 

A           

-500

-400

-300

-200

-100

0

-100 0 100 200
Time (ms)

C
ur

re
nt

 (p
A

)

Caged-GABA Application

hv  Pulse

 
B           

-600

-500

-400

-300

-200

-100

0

100

0 250 500 750 1000 1250 1500

Time (ms)

C
ur

re
nt

 (p
A

)

Solution Application

Trace 1

Trace 2



 

134 

current is evoked by compound 6 until photolysis is initiated with a pulse of 

light, which causes an increase in current over several hundred milliseconds.  

This indicated that the compound was both photolabile and does not 

activate the receptor until photolysis.  In contrast, photolysis of a solution of 

100 μM of 7 only evoked a few pA of current, indicating that this compound 

is not significantly photolabile (data not shown). 

 Thermal stability was also monitored by using the cell-flow and 

whole-cell patch-clamp techniques to measure any currents evoked by caged 

GABA derivatives without photolysis after incubating at room temperature 

or on ice.  Solutions of 6 kept on ice were stable for 5-6 hours or more, 

whereas solutions of 6 at room temperature for 2+ hours caused currents to 

appear upon application showing that 6 is not thermally stable in aqueous 

solution at room temperature..  It should be noted that compound 6 is 

thermally stable enough for flash photolysis measurements using whole-cell 

current measurements and the cell-flow application system as solutions can 

easily be kept on ice and will warm to room temperature before being 

applied to the cell.  This same approach was used to test the thermal stability 

of compound 8 and it was determined that 8 seemed to gradually uncage 

(hydrolytically cleave) over 1-2 hours while in aqueous solution, even when 

kept on ice. 

 To test whether these compounds inhibit the receptor and are 

biologically inert prior to photolysis, 100 μM of compound 6 was co-applied 

with various concentrations of free GABA.  No change in the current 

amplitude evoked by GABA was observed (Figure 4.2B) indicating that 6 

does not inhibit the receptor. 

 Once it was established that 6 is pure, stable for measurements and 



 

135 

biologically inert, an effort to determine the quantum yield was initiated.  

Because no absorption changes were observed after 6 was exposed to two 

hours of high intensity light, Figure 4.3, techniques for quantifying the 

quantum yield using spectral changes after photolysis (198, 219, 272) could 

not be used.  Thus, molecular separation using HPLC methods with 

detection by fluorescence and absorption was attempted.  Isocratic pumping 

of a 45% to 55% acetonitrile and water liquid phase with 0.1% TFA was 

found to yield well-separated peaks of the caged compound 6 from several 

presumably coumarin-caging group byproducts and methyl coumarin 1, 

which was used as an internal standard.  However, increasing numbers of 

pulses of light from the Rapp flash lamp to solutions of compound 6 did not 

result in any visible change in the detected compound peak amplitudes or 

peak areas under these conditions, even after maximizing the sample volume 

exposed to light, increasing compound concentrations loaded onto the 

HPLC, and decreasing loading volumes (Figure 4.4A).  Only after hour-long 

exposure times to a halogen light source were amplitude changes in the 

molecular peak heights visible (Figure 4.4B).  The same situation was 

observed when the caged compound solutions subjected to flashes of light 

or long-term light exposure were run using TLC methods.  Caged 

compounds, free GABA and coumarin caging groups could all be detected 

on TLC, however the detection limit of free GABA was limited to ~ 0.5 

nmoles and release of GABA from photolysis is expected to be much lower 

than this.  The caged compound ran with slightly different retention factors 

(Rf) with values around 0.52, free GABA had an Rf value of 0.23 and free 

coumarin caging-groups had Rf values of 0.92+.  However, changes in the 

ratios of these compounds could not be observed until subjected to long 
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Figure 4.3  Three different absorption scans of 1 mL of 100 μM 
compound 6 before illumination (Scan 1), after 250 pulses of light (~ 0.1 mJ 
each) from the Rapp flash lamp (Scan 2), and after leaving a sample on ice 
and under an intense halogen lamp for 2 hours (Scan 3).  No differences 
were observed.  Solutions of 6 were made in extracellular buffer pH 7.4 at 
ambient temperature (~ 22 oC).  
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 Figure 4.4  HPLC separation of 6 from coumarin caging group byproducts 
and an internal standard of methyl coumarin 1 did not demonstrate any 
changes in peak amplitude after variable extent of photolysis.  A.  Triplicate 
samples of 80 μM of 6 were photolyzed with a Rapp flash lamp.   Three 5 
μL injections of each sample were separated on a HPLC C18 column at a 
flow rate of 0.2 mL/min and detected by fluorescence.  Samples contained 
10 μM of 1 as an internal standard.  All triplicate of triplicate sample traces 
are shown.  B.  A fresh solution of 10 μM of 6 and 10 μM of 1 was divided 
into two tubes: one kept on ice in the dark (thin trace), the other kept on ice 
under a halogen bulb for 2 hours (thick trace).  5 μL from each tube were 
separated on a HPLC C18 column at a flow rate of 0.4 mL/min and 
detected by fluorescence.   C.  No changes in peak amplitudes or area could 
be observed for caged GABA 6 ( ), or the coumarin cage byproducts ( ).  
The peak area of methyl coumarin 1 ( ) was used to normalize the areas of 
all peaks to account for variation in volumes injected.  Error bars 
representing standard error of the triplicate measurements of triplicate 
samples are shown.  Solutions of 6 were made in extracellular buffer pH 7.4 
at a temperature of 4oC. 
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light exposure times. 

 Ultimately the quantum yield of 0.1 ± 0.04 molecules photolyzed per 

photon absorbed was estimated based off flash-photolysis data using 

recombinant α1β2δ GABAA receptors expressed in HEK293T cells.  The 

estimate is based on the apparent concentration of GABA released upon 

photolysis of compound 6 with a single flash from the Rapp flash-lamp, the 

number of photons that are absorbed by the caged compound and the 

period of time that the compound is exposed to light.  The apparent 

concentration of GABA released was estimated based on a GABA dose-

response curve of free GABA with α1β2δ GABAA receptors, as shown and 

described in Figure 4.5.  Actinometric and absorption data was used to 

determine the molar absorption of photons for compound 6.  For details on 

this and the calculation of quantum yields see Murov, 1993 (220).  

The rate of photolysis was ultimately not possible to measure.  

Transient absorption measurements have been previously used as described 

in the methods section to determine the rate of photolysis, but compound 6 

did not display any observable transient absorption above 450 nm.  The 

reason only wavelengths above 450 nm were considered is because 

compound 6 absorbs light at these wavelengths prior to photolysis and light 

absorption likely translates into photo excitation and photolytic cleavage.  

Since no transient absorption was visible, and other methods used to 

calculate the rate of photolysis rely on spectroscopic changes in the final 

products or HPLC analysis, this value could not be determined. 

However, when compound 6 was tested on α1β2γ2L receptors using 

flash-photolysis, a significantly lower open-channel equilibrium constant was 

obtained than the value previously reported (1).  This suggests that the rate- 
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 Figure 4.5  Comparison of the current response evoked by photolyzed 
caged GABA to a dose-response curve of free GABA to estimate a 
quantum yield.  Shown is a dose-response curve of currents evoked by 
application of GABA (●) to recombinant α1β2δ GABAA receptors 
expressed in HEK293T cells obtained using the cell-flow and whole-cell 
patch-clamp techniques.  A quantum yield of 0.1 ± 0.04 molecules 
photolyzed per photon was determined for compound 6 (■) based on the 
concentration of GABA released upon photolysis as detected by α1β2δ 
GABAA receptor response.  Currents from recombinant α1β2δ GABAA 
receptors were measured as solutions of 100 μM caged GABA 6 were 
photolyzed by single flashes of 350-450 nm of light (~ 0.1 mJ / flash) in 
flash-photolysis experiments.  The concentration of GABA released from 
the photolytic cleavage of 6 was estimated by averaging the peak current 
amplitudes of three measurements on 4 separate cells (12 measurements 
total).  This concentration was estimated at 5.3 ± 1.0  μM GABA and was 
used to estimate a molar fraction of caged GABA that underwent photolysis 
(0.053 ± 0.01) during a single flash (0.11 ms).  This fraction was then 
divided by the molar absorption of photons per second by compound 6 
(0.52 ± 0.02 photons/mole s, which was estimated by actinometry and 
absorption measurements) to give the quantum yield.  All currents were 
recorded at ambient temperature (~ 22 oC), – 60 mV membrane potential 
and in extracellular buffer pH 7.4.  Error bars represent the standard error. 
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limiting step of the flash-photolysis measurements was the photolytic 

cleavage of the caged compound. 

Thus the visible-light-sensitive caged GABA, compound 6, generated 

and examined here is useful for biological assays requiring spatial resolution 

and can tolerate a temporal resolution in the upper millisecond range.  The 

quantum yield of 0.1 corresponds to a modest amount of release that has 

been reported for other caged compounds (198, 219, 252).  This compound 

does have some limitation, such as its stability at room temperature and 

higher temperatures.  Initially, we were hopeful that the biological 

measurements needed for Chapters 2 and 3 of this dissertation could be 

achieved with these new compounds, but for better temporal resolution 

another caged GABA (RuBi caged GABA) was utilized.  Additionally these 

compounds exemplify the numerous difficulties that can arise during the 

development of caged compounds and emphasize the importance of 

characterizing caged compounds before application to biological studies. 
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APPENDIX 

 

A.1  Equations and Derivations 

 This section is included to aid the reader by grouping all equations 

used in this dissertation in one location.  A few of these equations are  

derived so that the reader can better understand how the equation relates to 

the system it describes. 

 

Equation [1.1]  

 )/[S]S]RT/zF)ln([(E inoutS =  

This equation is known as the Nernst equation after the individual who first 

related the electric potential generated by a difference in ion concentration 

(24).  ES is the energy potential in units of volts generated by the 

concentration difference of the ion S, R is the universal gas constant, T is the 

temperature in Kelvin, z is the charge of the ion being investigated, F is 

Faraday’s constant. 

 

Equation [1.2] 

 ))[A]P[C]P/()[A]P[C]P(RT/F)ln((E outAinCinAoutCM ∑+∑∑+∑=  

This equation is known as the Goldmann/Hodgkin/Katz equation after the 

individuals that contributed to adapting the Nernst equation [1.1] to 

determine the electric potential that exists across the membrane of a cell 

(membrane potential, EM) when multiple cations (C) and anions (A) with 

different permeabilities (PC or PA) and concentration difference are present 

(25, 26).  This equation is limited to the investigation of monovalent anions 

and cations, but can be expanded to include ions of other valences (273, 
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274).  The form of this equation shown here does not specify the anions 

involved, but Na+, K+ and Cl- are commonly considered to yield the 

equation 

)/][ClP][KP][NaP(RT/F)ln((E in
-

CloutKoutNaM -++= ++
++   

   ))][ClP][KP][Na(P out
-

ClinKinNa -++ ++
++   [1.2B]  

 

Equation [1.3] 

))([L][L])/([L](]R/[]RL[F 2
1

2
M0t20t open K++== == Φ  

This equation is used to estimate the fraction of receptors that are in the 

open-channel state 2RL  at time=0, or immediately after GABA (the 

receptor ligand, L) becomes present.  The equation is derived from the Cash 

and Hess mechanism (15) as shown below.  Parameters include ]R[ M , which 

is the molar concentration of all functional GABAA receptors, and 1K , 

which is the binding affinity of the receptor for GABA ( onoff1 /kkK = ).  

Derivation of [1.3] comes from the concentrations predicted from the Cash 

and Hess mechanism as follows: 

 12[R][L]/[RL] K=        [1.3A] 

Note that [R][L] is multiplied by 2 because these receptors contain two 

binding sites. 

 2
1

2
12 /[R][L][RL][L]/2][RL KK ==      [1.3B] 

 2
1

2
22 /[R][L]]/[RL]RL[ KΦΦ ==      [1.3C] 

These relationships can then be inserted into the following description of the 

fraction of receptors in the open-channel state: 

 ]RL[][RL[RL]]/([R]RL[]]/[RRL[ F 222M2open +++==   [1.3D] 

 )//([R][L]F 2
1

2
open KΦ=  

  ))/([R][L])/([R][L])(2[R][L]/(([R] 2
1

22
1

2
1 KKK Φ+++   [1.3E] 
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 )[L]L][]2[L/([L]F 22
1

2
1

2
open +++= ΦΦΦ KK    [1.3F] 

 )L][L])[(/([L]F 22
1

2
open ++= KΦ      [1.3] 

Both equation [1.3] and [1.4] are based on several assumptions: i) only an 

active receptor can form an open-channel, ii) although the two GABA 

binding sites have unique affinities for GABA, the binding of both GABA 

molecules occurs at rates much faster than the conformational change that 

leads to an open-channel and faster than the rate of desensitization, thus can 

be described by two equivalent binding affinities ( 1K ), iii) all receptors start 

in an active receptor state in the absence of GABA.  The third assumption 

was revealed by work described in Chapter 3 of this dissertation. 

 

Equation [1.4] 

 )/[L](]R/[]RL[F D2Mt2t open K== ∞=∞=  

   ))2L]([L][)([L]([L]( 2
2

1
2

D2 KKK ++++ ΦΦ  

This equation is based on the Cash and Hess mechanism (15) to estimate the 

fraction of receptors that are in the open-channel state 2RL  at infinite time 

( ∞=t ), in other words once the Cash and Hess mechanism has reached an 

equilibrium.  The derivation of this equation is quite similar as for [1.3], but 

has an added layer of complexity due to the desensitized states.  Many of the 

parameters and the assumptions made for this equation are the same as in 

equation [1.3].  Additional parameters include D2K ,which is an equilibrium 

constant between 2RL  and 2DL  states and 2K  is the binding affinity of the 

desensitized receptor for GABA.  An additional assumption is that receptor 

desensitization is primarily dictated by a single desensitization equilibrium 

constant, D2K .  
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Equation [1.5] 

 ])/[R]RL([RIFRI I M0t2MM0t openMMobs == ==  

This relationship simply describes that the observed current (Iobs) is a result 

of the product of the fraction of receptors in the open-channel state and the 

amount of current observed if all the functional receptors present were in 

the open-channel state (IMRM). 

  

Equation [1.6] 

 ]RL[NgE])/[R]RL([RI I 2AchannelmM0t2MMobs == =   

This equation is derived from equation [1.5] by simply substituting IMRM 

with the channel conductance ( channelg ) and Avogadro’s number (NA).  

Channel conductance is a parameter that is specific for the receptor 

examined and must be experimentally determined. 

 

Equation [1.7] 

 ∑ −= net n
τ/tA)(I  

This equation is a simple exponential function that is used in this dissertation 

to relate observed current amplitudes (I) to time for specific regions in a 

current trace.  It is used for determining the rate of current decline in the 

desensitization phase of whole-cell current measurements.  It is also used to 

determine the rate of current rise during the rising phase of flash-photolysis 

measurements.  The number of components used is decided based on the 

resulting fit using non-linear regression.  

 

Equation [1.8] 

∑
=

− +=
j

i

n

1
tobstobs

Δt/
A ji

)(I)(I)(eI τ  
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This equation is used to correct current traces for desensitization, i.e. a plot 

of a current trace from a ligand-gated receptor if the receptor did not 

undergo desensitization.  Essentially this function multiplies an exponential 

function by the sum of current amplitudes from the start time (i=1) and each 

time point to be corrected (t=j).  This equation uses the time constants that 

describe the rate of desensitization observed in a current trace obtained by 

using equation [1.7] for the exponential function shown here.  

 

Equation [2.1] 
1h

MAXooP )[Cpd])/(1)((RI/II −++= dK   

Equation [2.1], which has been used previously to measure barbiturate 

interactions with GABAA receptors (2, 155), relates the ratio of measured 

current amplitudes (IP/Io) induced by a constant GABA concentration in the 

presence (IP) or absence (Io) of the compound of interest ([Cpd]), JM-II-43A.  

RMAX is the maximum IP/Io ratio observed when the potentiating compound 

is co-applied with GABA.  The empirical parameter h is equivalent to the 

Hill coefficient. 

 

Equation [2.2] 

See equation [1.3] 

 

Equation [2.3] 

See equation [1.7] 

 

Equation [3.1] 

 See equation [1.7] 
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Equation [3.2] 
2

1opencloseobs ))([L]/([L] Kkkk ++=  

This equation is used to describe the relationship between the observed 

rising phase of current when receptors are activated simultaneously by the 

release of GABA from a photolabile neurotransmitter derivative.  This 

equation is derived from the sum of a zero order reaction of the closing of 

the receptor combined with a square of the first order transition of the 2RL  

state to the open-channel 2RL state. 
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