SCHOOL OF OPERATIONS RESEARCH
AND INDUSTRIAL ENGINEERING
COLLEGE OF ENGINEERING
CORNELL UNIVERSITY
ITHACA, NEW YORK 14853

TECHNICAL REPORT NO. 661

June 1985

ON THE COMPUTATIONAL BEHAVIOR OF A POLYNOMIAL-TIME
NETWORK FLOW ALGORITHM*

By

Robert G. Bland
and
David L. Jensen%*

*This work was supported in part under NSF grant #ENG-7910807 and

ECS-8313853 to Cornell University and a Sloan Foundation research
fellowship held by the first author.

**Department of Applied Mathematics and Statistics, SUNY Stony Brook



On the Computational Behavior of a Polynomial-Time

Network Flow Algorithm*

Robert G. Bland
School of OR/IE, Cornell University, Ithaca, New York 14850

David L. Jensen**
Department of Applied Math and Statistics, SUNY, Stony Brook,
New York 11794

Abstract

A variation on the Edmonds-Karp scaling approach to the minimum cost
network flow problem is discussed. This algorithm, which scales costs rather
than right-hand-sides, also runs in polynomial time. Large~scale
computational experiments indicate that the computational behavior of such
scaling algorithms may be much better than had been presumed. Within several
distributions of square, dense, capacitated transportation problems, a cost
scaling code, SCALE, exhibits linear growth in average execution time with
the number of edges, while two network simplex codes, RNET and GNET, exhibit
greater than linear growth. The test problems were generated by a routine,
CAPT, which imposes certain symmetries on the distribution; they have 200-500
vertices and 10,000-62,500 edges. Although RNET is still faster than SCALE
at the upper end of this range of CAPT-generated problems, SCALE is fastest
of the three codes on a set of large (70,000-90,000 edges) dense transshipment
problems that we generated using NETGEN.

Our experiments reveal that the behavior of median and mean execution
times are predictable with surprising accuracy for all of the three CAPT
distributions and all of the three.codes tested. Moreover, for fixed problem
size, individual execution times appear to behave as though they are
approximately lognormally distributed with constant variance. The
experiments also reveal sensitivity of the parameters in the models, and in
the models themselves, to variations in the distribution of problems. This
argues for caution in the interpretation of such computational studies beyond
the realm in which the computations were performed.

Key words and phrases: network flow, scaling, polynomial algorithm,
computation

Running head: Network Flow Algorithm

*This work has been supported in part by NSF grants ENG-7910807 and ECS~
8313853 to Cornell University and a Sloan Foundation research fellowship held
by the first author.

**Department of Applied Mathematics and Statistics, SUNY Stony Brook



Introduction
Minimum cost network flow problems are of great practical importance.

Several different algorithms for these problems have been studied,
implemented, and employed. Most of the algorithms that have received serious
attention, and all of those presently in widespread use, fall into one of two
categories: network simplex algorithms (primal and dual) and out-of-kilter
algorithms (see [R,5,12,18,20,25]). The network simplex method, for which
several sophisticated implementations are widely available, seems to be the
method of choice at present. With it, users are able to solve problems with
many tens of thousands of variables in a fraction of a minute on a fast
mainframe computer.

The standard implementations of the network simplex method and of the
out—-of-kilter method share a negative theoretical property — they are not
polynomial-time algorithms. However, Edmonds and Karp [4] showed in 1972
that by repeated scaling of the right-hand-side data one could employ the out-
of-kilter algorithm iteratively to get an algorithm that runs in polynomial
time. ’

Until very recently there has been almost no interest in employing the
scaling approach of Edmonds and Karp in actual computation. In spite of
favorable asymptotic worst-case performance, it was widely presumed that
algorithms employing data scaling would not be nearly as fast in practice as
the network simplex method.

The negative presumptions concerning data scaling were based on very
scanty evidence. No large-scale tests were conducted. Only very recently
have some researchers begun to reconsider data scaling as a computational
tool for solving network flow problems (see Section 7). In this paper we
examine the computational behavior of a minimum cost flow algorithm based
upon cost scaling and the 6ut—of—kilter method. Our computational
experiments contrast the execution times of a polynomial-time cost scaling
algorithm with two network simplex codes on square, dense, capacitated
transportation problems generated by several different pseudo-random
routines. The network simplex codes examined are GNET1 (Bradley, Brown, and
Graves, see [R]) and RNET2 ( Grigoriadis and Hsu, see [13]). Both were run
with the input parameters set at their default values. We call our cost
scaling out-of-kilter code SCALE. All three are FORTRAN codes, and were run
on an IBM 3081 model D24 under the FORTVS compiler at optimization level 3



and language level 66.

The main experiment provides very persuasive statistical evidence that
within the domains from which the generated problems were drawn, the rate of
growth of average execution time with the number of edges is linear for the
cost scaling code, and faster than linear for both of the network simplex
codes. Even for the largest problems solved in our main experiment (62,500
edges), RNET is consistently faster than SCALE, which is much faster than
GNET. However, both the relative execution times and the relative rates of
growth of average execution times indicate that scaling can be much more
effective than was previously believed, at least for special classes of
"problems. Furthermore, the effect of cost scaling on the out—-of-kilter
routine underlying SCALE was substantial. The out-of-kilter routine without
cost scaling ran about ten times longer than with scaling on each of twelve
test problems with ten significant bits in the cost coefficients.

In addition to the conclusion that data scaling is worthy of further
consideration as a practical computational tool, there are two interesting
sidelights to these experiments. One is the accuracy with which one can
predict the behavior of average execution times, and, surprisingly, of

individual execution times, for all three codes, within the relevant problem

domains. Second, the data reinforce sharply the need to emphasize the
prepositional phrase at the conclusion of the preceding sentence. One cannot
expect to transport predictions based on one domain to another, even if it
appears closely related to the first, and retain their significance. Even if
the form of the prediction function continues to fit, the parameter values in
the function may vary greatly.

In the main experiment we employed three capacitated transportation

problem generators. These CAPT generators are described in the appendix. We

also generated some problems using the widely available generator NETGEN of
Klingman, Napier, and Stutz [19]. By control of certain input parameters we
were able to generate problems from NETGEN on the same underlying space of
graphs, with approximately the same distribution on total flow through the
network. Except for the the presence of an "artificial' spanning tree with
large costs and capacities, the distribution of costs and the range of
capacities are the same as in the CAPT generated problems in the main
experiment. However the generators differ in the distribution of capacities

within those ranges. The "artificial' spanning tree contains between 0.807%



—-3-

and 3.96% of the edges; on average it contains 1.61%. These differences
result in substantially different estimates of the parameter values in the
functions that predict execution time.

For each of the three codes and each of the three CAPT-generated problem
distributions, both median and mean execution times over problems with |V|
vertices and A significant cost bits, can be estimated accurately by a

function of the form

b, b
c|v] W% (0.1)

where ¢ 1is a constant. The leading constant ¢ is slightly larger for mean
execution time than for median execution time, but the exponents are the

same. For RNET and GNET times are insensitive to A, and bz can be fixed
at zero. For SCALE b2 ranges between 0.737 and .793 over the three
distributions. The exponent b1 ranges between 1.976 and 2.078 for SCALE,
between 2.313 and 2.450 for RNET and between 2.713 and 2.743 for GNET. In
these problems |E|, the number of edges, is equal to IV12/4, SO Wwe can
substitute to express (0.1) as a model in which IEl and A are the
independent variables. Then we see from the parameter estimates above that
estimated average execution times for SCALE grow almost exactly linearly with
the number of edges, while the rates of growth for RNET and for GNET are
faster than linear.

For each of SCALE, RNET, and GNET Figure 0.1 presents a plot of observed
execution times versus the number of vertices, and a fitted curve of the
form (0.1). The problem samples here are from distribution #1. See the
appendix for descriptions of the three problem distributions. The plotted
curves are fitted to minimize the sum of the squares of the deviations
between the logarithm of observed execution time and the logarithm of the
evaluation of (0.1). Figures B.1.1 and B.1.2 in Appendix B of the report [1]
present the same information for each of distributions #2 and #3,
respectively; they are very similar in appeafance to the figures presented
here for distribution #1. Since SCALE has two independent variables in the
model, we made separate plots for each of the seven values of
AE $4,5,6,7,8,9,10¢ that arise in the data. (Keep in mind that the model

was fitted to all observations simultaneously with A as a parameter.)



90-

Time (seconds)
U =4 ~
P = & c ¢ <

[
o
A

Time (seconds)
%) =]
o <

>
o
i

W
[
.

20

10 -

RNET

]&144<-JO<<wOOJw~:.u<<Am:.u: o

number of vertices

SCALE

\\\\
SRt
160

- .Wﬁwn«u v g%ﬁ.

number of vertices

80 -

- 4
[=]
A

~
[=]
A

=4
(=]

Time (seconds)
» [ ]
[~ o

w
[=]

N
=]

104

Y

AARAARAET PARMARA 366 AEY? SARARRARST v.u Ido

number of vertices

Figure 0.1 Observed execution times

and fitted curves. Distribution #1.



Time (seconds)

Time (seconds)

co@
80
7?04
680
50 4

40 4

204

10

RNET

a0

80 1

70

60 7

50 4

40

30 1

20

107

A e o u e s A B S UL U A S n e A r Yy

35 T ARAAARS” YARARRRSY 3o
number of nodes

SCALE

Lan e an 2 e At v LA S S e

380 Tabo sdo

number of nodes
A=7

Time (seconds)

80 -
801
704
60
S04
404
301
204

104

v

4‘...MD@<‘...<.MQQ.<...‘<w0@....4.‘»0@.......w&c

number of nodes

Figure 0.2 Predicted median execution time

as a function of ~<_. and a sample of
observed execution times independent of the
prediction. Distribution #1.



B

The plot for SCALE in Figure 0.1 includes only the observations with A = 7.
The plots for the other values of A appear in Figure B.1.3 of [1]. It is
clear from the plots in Figure 0.1 (and B.1 of [1]) that the fit is close in
each case. Figure 0.2 is still more persuasive of the goodness of the models
as predictors of average and median execution times (cf. Figure B.R of [1D.
The curves in these plots indicate predicted median execution times, but the
observed times plotted here are from samples that are independent of the
earlier ones on which the predictions were based.

It is apparent from the Figures that (6.1) is a good model of median
execution time for these problem distributions. More detailed analysis of
residuals from prediction in these samples indicates that for fixed IEl and
A, individual execution times behave as though they are are distributed,
approximately, as the product of the estimate (0.1) of the median with a
lognormal random variable with median equal to one and constant variance.

In the sample of 25 NETGEN problems on the same underlying space of
graphs produced by the CAPT generators, model (0.1) still fits, but we get
drastically different estimates of some of the parameters. SCALE's relative
performance is much better in this NETGEN sample than under the CAPT
generators. It is even better still on fifty nonbipartite fully dense NETGEN
problems with as many as 90,000 edges. Of twenty problems here with more
than 70,000 edges, SCALE was fastest of the three codes on twelve, RNET was
fastest on six, and GNET was fastest on two.

The sensitivity of our results to the problem generator should give
pause to anyone producing empirical or analytical estimates of performance of
an algorithm under some convenient generator or distribution, with the
intention of explaining computational experience with ''real-life'' problems.
¥e may develop better insight and begin to explain, but we must be very
cautious not to extend the significance of these studies beyond their proper
domains.

In the first part of this paper, Sections 1-4, we describe the general
form of the cost scaling algorithm employed in the computational study. It
is the variation on Edmonds-Karp [4] that scales costs rather than right-
hand-sides, and it uses a maximum flow routine as its computational engine.
We show why it is polynomial-bounded in the worst case, and indicate how to
implement it so that the bound is |V]4A, where |V| 1is the number of
vertices. We have learned recently that Hans Rbck [R6] has described the



- -

same variation on the Edmonds-Karp algorithm. The exposition and
implementation here differ from [26]. In Section 5 we discuss the main
experiment, including its basic design and the statistical analysis of the
data. Section 6 concerns our computational tests on NETGEN problems, and
Section 7 outlines several recent results and their relationship to this
work. Section 8 summarizes our conclusions. Sections 5-8 can be read
without reading Sections 1-4.

The form of the CAPT generators employed in our main experiment is
discussed in the appendix. Additional tables and plots in support of the
statistical analysis of Section 5 can be found in the report [1].

Our notation and terminology are mostly standard. The symbol Z denotes
the integers. The symbols L J and [ 1 denote the functions that take a
real number B8 to Lﬁj , the greatest integer less than or equal to B, and

rB] , the least integer greater than or equal to B. A directed graph
G = (V,E) with vertex set V and edge set E is assumed to be finite, and
(for convenience of notation) to be loopless and without multiple edges. It
may have oppositely directed edges. Beginning in Section 3 we assume that
our minimum cost flow problems have nonpositive costs; since we make no
assumption on the signs of the upper and lower bounds on the flow variables,
there is no loss of generality here. The reason for this assumption, as
opposed to, say, the commonly used assumption of nonnegative costs, is to
make the maximum flow problem a direct special case. This is extremely
useful in the exposition of our algorithm, since it solves the minimum cost
flow problem as a sequence of maximum flow problems. One further departure
from convention is our association of the terms cycle and path with ordered
pairs (S+,S-) , where st (respectively, S ) is the set of forward
(reverse) edges when the cycle or path, as usually defined, is traversed in
one of the two possible directions.

The problem generators and the codes explicitly deal with networks in
which the original (bipartite) transportation network is augmented by source
and sink vertices, s and t, and edges connecting s to each supply point
and each demand point to t. When we discuss |V| and |E| , they refer to

the numbers of vertices and edges in the original bipartite network only.



1. Maximum Flows

A minimum cost network flow problem is a linear programming problem of

the form

minimize ax
subject to Ax = b (P)
l<x<u

where A _is the vertex-edge incidence matrix of a directed graph

G = (V,E). The column of A corresponding to e = (i,j) € E -is denoted
A(e) and has entries of +1 in the row corresponding to vertex j, the
head of e, -1 in the row corresponding to vertex i, the tail of e, and
zero elsewhere. (Some authors use the negative of this matrix.) The head
and tail of an edge are called its ends. An instance of problem (P) can be
described by a five-tuple (G,a,l,u,b). The vectors a, 1, and u>1 in

ZE are costs, lower bounds, and upper bounds, respectively, and the demand

vector b E ZV is assumed to have the sum of its entries equal to zero, since

this is necessary for the conservation of flow constraints Ax = b to have a

solution. A vector x E RE is called a flow if Ax = b; it is called a
circulation if Ax = 0. A flow x 1is feasible if 1 € x £ u.

The special case of (P) in which b = 0, and for some e* €EE ,
a(e*) = -1 and a(e) = 0 for all e € E\e* will be called the maximum e*-

flow problem. We will occasionally describe a maximum e*-flow problem

instance by a four-tuple (G,1,u,e*). This formulation differs slightly from
the usual formulation, as in [5], in that we are maximizing flow on a bounded
edge e*.

The maximum e*-flow problem is easier to solve than the minimum cost
flow problem (P). Indeed the solution of (P) by the out-of-kilter method
can be viewed as an implicit succession of maximum flow calculations. This
viewpoint becomes explicit in the next section. Another reason for separate
consideration of the maximum flow problem is its relation to the 'Phase I''
problem for (P). One can determine a feasible solution of (P), or show
that none exists, by solving a maximum flow problem in a network only
slightly larger than the original. This transformation is well known; see

the routine TRANS and its discussion in Section 3 for details. A few



o

definitions concerning directed graphs will be helpful in our discussion of
an algorithm for the maximum e*-flow problem.

In the directed graph G = (V,E) 1let Q = (VO’ei’vl’eZ””’ek’vk) be a
non-null alternating sequence of vertices and edges such that A z Vj for
all 0<i<jg<k-1, ey Z ej for all 1 < i< j <k, and the ends of

each e, are v, , and vie Such a sequence is usually called: a cycle (or
circuit) if Vi = Yo and k > 0; or apathif k=0 or k>0 and

A 7z Vi’ for all 0 < i <k - 1. We will use these terms instead to denote
the natural partition of the edge set F = Eel,...,ek§ of Q into forward

edges

F' = §ei EF: e, = (vi_l,vi)g,

and reverse edges

>
i

§ei EF: e, = (vi,vi_l)E.
We will usually denote a cycle by C = (C+,C_) and a path by P = (P+,P~).
The signed incidence vector of a cycle C 1is the vector =z E §~1,0,+1§E
having ¢t = e EE: z(e) = +1} and C = §e € E: z(e) = -1}. For e* € E
a cycle C having e* € C+ is called an e*-cycle.

The cut D(S) of G = (V,E) determined by a nonempty proper subset S
of V 1is the ordered pair (D'(S), D (S)), where

pt(s) = §(i,j) €E: i €5, j € S3

is the set of forward edges of D(S) and

D(S) = $(i,j) EE: i €8, j € §}

is the set of reverse edges of D(S), and S denotes V\S, the complement
of S in V. Note that our designation of forward and reverse edges in D(S)
is the opposite of the implicit designation in [5]; this yields a nice
symmetry in our description of the Augmenting Cycle Theorem for the maximum

flow problem. When referring to an arbitrary cut and no ambiguity is



~10~-

possible we may write D = (D+,D“). For e* EE we say that D is an e*-
cut if e* E D+. Recall that the signed incidence vector y € 3-1,0,1§E of
a cut D(S) has D'(S) = fe € E: y(e) = +13, D (S) = fe € E: y(e) = -1,

and can be obtained by adding those rows of A corresponding to vertices in

S.

Given a maximum e*-flow problem (G,1l,u,e*) and a feasible flow x , it
will be convenient to partition (or color) the edge set E of G into red
(R), yellow (Y), blue (B), and white (W) edges as follows: '

R=1feiUije€E\e: 1(e) = x(e) < u(e)is

Y = fe € E\e : 1(e) < x(e) = u(e)};

B=fe€B\e: 1(e) < x(e) < u(ed; (1.1)
¥ = fe € B\e : 1(e) = x(e) = u(e)i.

Since R UB is the subset of edges with excess capacity and Y U B is the
set of edges with excess flow, we can rephrase the usual definitions of
augmenting cycles and saturated cuts. An e*-cycle C is augmenting with
respect to x if C+ CRUB and o CYUB. An e*-cut D 1is saturated
with respect to x if D+ CRUVW¥ and D CYUW. Ford and Fulkerson
exploited the special relationship between cycles and cuts in their approach
to the maximum flow problem. Their Augmenting Path Theorem becoﬁes the

following Augmenting Cycle Theorem under our formulation of maximum flows.

Theorem 1.2 [5] Given a maximum flow problem (G,1,u,e*) and a feasible
flow x such that x(e*) < u(e*), then either there is an augmenting e*-

cycle or a saturated e*-cut with respect to x, but not both.

In terms of the coloring (1.1), this Augmenting Cycle Theorem says that
if x(e*) < u(e*) then exactly one of the following holds:

there is an e*-cycle C with C+ CRUB and c CYUB (1.3a)
or
there is an e*-cut D with D' CRUW and D C Y U W. (1.3b)

This is true, of course, for any choice of a partition of E as
RUYUBUVW and e* € R U Y; it is just Minty's celebrated Colored Arc



-11..

Lemma [22] with an extra color, yellow, to incorporate the effect of reversing
the orientation of red edges.

The Augmenting Cycle Theorem leads to a finite algorithm to solve the
maximum e*-flow problem. Starting from a feasible flow x (which can be
obtained by solution of a maximum flow problem with an obvious feasible flow
- see Section 3) determine a cycle C as in (1.3a) or a cut D as in
(1.3b). If an augmenting cycle C is discovered, increase flow by some
5> 0 on C+ , decrease flow by & on C, and iterate. If a saturated
cut is discovered, stop. There is a natural way to determine which
alternative holds, and with some insight it leads to nice bounds on the
number of iterations. First we need to introduce some terminology concerning
paths.

Say that path P is an s - i path if s 1is the initial vertex and
i is the final vertex in the corresponding sequence : let the length of P
be |P+| + |P|. Say that the s - i path P is s—i augmenting with
respect to the feasible flow x if P+ CRUB and P CYUB, where the
coloring is as in (1.1). Let e* = (t,s). Given a feasible flow x with
x(e*) < u(e*) , the determination of whether there exists an augmenting e*-
cycle is clearly equivalent to the determination of whether there is an
augmenting s-t path. A natural approach is to begin with VO = §s§ , and
determine recursively the set Vk of vertices 1 such that there is an
augmenting s—i path of length less than or equal to k. This continues until

either

t E vk (1.4a)

or
k = lV[ - 1‘ (104b)

If t ¢ Vlvl—l then the cut D(Vlvl“l) is saturated. (Obviously, if for
some 1 < k< |V] -1 we find Vk = Vk~1, then we can stop since

k+i _ k-1 . ky k-1 .
V] = |V] for all i » -1.) If t € V\V' 7, then an s-t augmenting
path of length k has been traced. Furthermore there are no s-t augmenting
paths with fewer edges, which gives special significance to this

breadth-first-search procedure. Suppose, as usual, the size of each

augmentation & is the maximum permitted by the bounds 1 and u, and all

augmentations are on shortest augmenting s-t paths. Edmonds and Karp [4]



_12._.

showed that the number of augmentations until the algorithm halts with a
saturated e*—cut and a maximum e*-flow must then be fewer than |V||E]|/2.

The search itself takes at most O(E) steps giving a bound of 0(|V||E[2)

on the total running time. Dinits (see [25,chapter 9]) showed how to improve
this to O(]VlzlEl) by performing more quickly a set of augmentations that
saturates the subnetwork consisting of layers VO,Vl,...,Vk of vertices
(where k is the length of a shortest s-t augmenting path) and only edges of

the form

(i,j) 1 evl, jev and x(i,i) < u(i,j)

or

(i,) iev™l jev®  and x(i,j) > 1(i,j)-

This layered network is saturated if the new flow admits no more augmentat ions
of length k. Many further improvements have been based upon faster ways of
saturating the layered network (see [25, chapter 9] and its references, and
also the recent papers [27,28,30]). We employed in our code a version of the
particularly simple method of Malhotra, Kumar, and Maheshwari [R1], which

gives a bound of 0([V|3) on the total running time.

2. The Maximum Flow Problem As a Subproblem of the Minimum Cost Network Flow

Problem
The Augmenting Cycle Theorem for Maximum Flows (1.2), on which the
maximum e*-flow algorithm is based, is generalized by the following well-

known Augmenting Cycle Theorem for Minimum Cost Network Flows.

Theorem 2.1. Let x be a feasible flow in the minimum cost flow problem
(G,a,1,u,b) ,and let R, Y, B, and ¥ partition the edges of G as in (1.1). Then
either
(a) there is a cycle C such that
C has C'CRUB,C CYUB, and (2.22)
z3a(e): e E C+§ - zfa(e): e EC 31 <0

or



-13~

(b) there is a set of vertex weights y E ZV such that:
(a - yA)(e) > 0 implies x(e) 1(e), and (2.2b)
(a - yA)(e) < 0 implies x(e) = u(e),
but not both.

Given (P) and x we will say that a cycle C as in (2.2a) is a negative cost
augmenting cycle.

Suppose that (P) is, in fact, a maximum e*-flow problem. To see the
relationship of (2.1) to (1.2) first note that every negative length cycle
C in a maximum e*-flow problem must have e* € C+ , since e* 1is the only
edge with non-zero cost. Any e*-cycle C satisfying alternative (1.3a) of
Theorem 1.2, also satisfies alternative (a) in Theorem 2.1. On the other
hand, a vector y € ZV satisfying (R.2b) with respect to x having
x(e*) < u(e*) must have (a - yA)(e*) > 0 , implying y(t) > y(s) , where
e* = (t,s). Let wE 30,1§V have w(v) = 1 whenever y(v) > y(t) and
w(v) = 0 whenever y(v) < y(t). Then y(v) - y(v') 1is positive
(respectively, negative) whenever w(v) - w(v') is positive (negative), and
so (R.2b) is also satisfied by w in place of y. Furthermore, wA 1is the
signed incidence vector of a saturated e*-cut and satisfies alternative
(1.3b) of Theorem 1.2.

Recall that Theorem 1.2 is just Minty's Colored Arc Lemma with the
coloring specified by (1.1). The Colored Arc Lemma can be used iteratively
to provide an algorithmic proof of Theorem 2.1. Recall that we have assumed
the data specifying the network are integralﬁ We assume further that an
initial integral feasible flow x and initial integral vertex weights vy
are given. Since x 1is feasible the following sets partition E:

R=3e EE: 1(e) = x(e) < u(e) and (a - yA)(e) = 0%;

]

Y =35e €E: 1(e) < x(e) = u(e) and (a - yA)(e) = 0%; (R.3)
B =3%e €E: 1(e) < x(e) < u(e) and (a - yA)(e) = 03%;
¥ =3e EE: (a-yA)(e) 20 or 1(e) = u(e)s.

We also define the following subset of W:

W* = $e EE: x(e) = 1(e) and (a - yA)(e) > 0 ; or
u(e)?.

x(e) = u(e) and (a - yA)(e) < 0 ; or 1(e)



...14,..

If W=W-, so RUYUBUVW*=E, then a - yA satisfies alternative (b)
of Theorem (2.1). Otherwise, choose e* € W\W*. Either x(e*) > 1(e*) , or
x(e*) < u(e*) , depending on whether (a - yA)(e*) > 0 or (a - yA)(e*) < O.
Assume the latter. The edge e* enters R U Y UB U W* if either

(u - x)(e*) is decreased to 0 or (a - yA)(e*) is increased to O.
Consider applying the Colored Arc Lemma to (R + e*,Y,B,W\e*) and e*. The
signed incidence vector z of a cycle C satisfying alternative (a) may be
used to update x to x + z . This decreases (u - x)(e*), since

z(e*) = 1. By the definition of the coloring, we may be assured that
RUYUBUTVW*, defined with respect to x + z and y , contains
RUYUBUVW*, defined with respect to x and y. A vector w, with wA
the signed incidence vector of a cutset satisfying alternative (b), may be
used to update y to y - w . This increases (a — yA)(e*) , since

wA(e*) = 1. Here R UY UBUF¥W*, defined with respect to x and y - w ,
contains R U Y UB U W* , defined with respect to x and y. Thus, after
at most (u-x)(e*) + (yA-a)(e*) - 1 épplications of the Colored Arc

Lemma, e* E R U Y U B U W* , which has increased properly. Similarly, in the
case x(e*) > 1(e*), the Colored Arc Lemma may be applied to the 4-tuple

(Y + e*,R,B,W\e*) and e* to obtain a reduction in either (x - 1)(e*)

with z satisfying (a) or (a-yA)(e*) with wA satisfying (b).

This method for determining an optimal pair from an initial coloring
is a specialization of the out-of-kilter method as it applies to a problem
with an initial feasible flow. The out-of-kilter method, in its full
generality, was developed by Minty [22] and Fulkerson [8].

Determining which alternative of the Colored Arc Lemma holds is
equivalent to determining which alternative holds in Theorem 1.2 in the
graph G = (V,R U Y UB). The edge e* will enter R U Y UB UW* after at
most I(a - yA)(e*)! maximum e*-flow subproblems. Repetition of this
process until W* = W leads to an optimal solution of (P), as indicated by
satifaction of alternative (b) of Theorem 2.1. (A similar approach can be
based upon shortest path calculations instead of maximum flows.)

Of particular interest will be the case where W\W* = $e*{ and
(a - yA)(e*) = —-1. Then the incumbent solutions x and y can be updated,
using the solutions z and w resulting from the solution of a single

maximum e*-flow subproblem, to a pair x* =x +z and y* =y - v satisfying



_15_

alternative (b) of Theorem 2.1. This observation will be of central
importance in the development of a scaling algorithm for the minimum cost flow
problem (P) in the next section. Motivated by these observations we
introduce the following definitions. A pair (x € RE,y € Rv) with Ax = Db
will be called almost optimal if |W\W*| = 1; it will be called optimal if
|W\#*| = 0. In accordance with the Colored Arc Lemma, a cycle C 1is
augmenting with respect to a coloring (R,Y,B,¥) if ct CRUB and

c CYUB. Acut D is saturated with respect to (R,Y,B,W) if

D" CRUVY and D CYUW. Apath P is augmenting with respect to
(R,Y,B,¥) if PTCRUB and P  CYUB.

3. The Cost Scaling Algorithm

Given that the maximum e*-flow problem can be solved efficiently, we
wish to develop an efficient algorithm for the solution of the minimum cost
network flow problem (P). For a vector d € ZE, denote by P(d) the
variation on (P) 1in which the original cost vector a 1is replaced by d.
In this notation, the original problem P = P(a). The cost scaling method
generates a sequence of cost functions that converge to a. This sequence,

i,q

has the following properties.

It is easy to find an optimal pair (XO, yo) for P(ao). (3.1)
(x1+1, y1+1) for P(a1+1) can be (3.2)

easily obtained from an optimal pair (x!, yl) for P(al).

An optimal pair

The integer q 1is small with respect to the size of the (3.3)
input of P(a).

We have remarked previously that an optimal flow x* with respect to
the cost function that is identically zero can be obtained by solving a
maximum e*-flow problem in a (relatively small) transformed graph. Moreover
(x*,y*) is an optimal pair, where y* = 0. Thus (3.1) can be accomplished
by setting ao = 0.

A few definitions will simplify the description of a sequence §ai§
with a® = 0 that satisfies (3.2) and (3.3). The replacement of P(d) by
P(d') , denoted by P(d) « P(d') , is called a perturbation. A perturbation



_.16_.

is scalar if d'= ud for some o E Z+; it is simple if for some choice of
e* EE we have d'(e) = d(e) for all e € E\e* and [d'(e*) - d(e*)| = 1.
We will now see how to accomplish (3.2) and (3.3) starting from aO = 0 and
using only a small number (A — 1) of scalar perturbations, each with
o« = 2, and at most |E| simple perturbations between successive scalar
perturbations. The parameter A = 1+|max §log2(|a(e)l): e € E§| 1is the
number of bits in the cost coefficients.

Two easy lemmas relate scalar and simple perturbations to the desired
properties (3.2) and (3.3).

Lemma 3.4 If (x,y) 1is an optimal pair for P(d) and o € R+, then
(x,0y) 1is optimal for P(ad).

Lemma (3.4) is clear since scaling by positive numbers does not alter the

condition (R.2b). So scalar perturbations P(al) « P(a1+1) satisfy (3.2).

Lemma 3.5 If (x,y) 1is an optimal pair for P(d) and P(d) « P(d’) is a
simple perturbation, then (x,y) is either optimal or almost optimal for
P(d'). Thus an optimal pair (x*,y*) for P(d') can be obtained from

(x,y) by solution of (at most) a single maximum flow subproblem.

That a single maximum flow subproblem suffices when (x,y) is not optimal
for P(d') follows immediately from the discussion of almost optimal pairs
in Section 2. Note also that the size of the maximum flow problem is no
larger than the size of P(d). Hence simple perturbations P(ai) - P(ai+1)
also satisfy (3.2). Now we need only show that one can get from ao =0 to
a by a short (in the sense of (3.3)) list of simple perturbations and scalar

perturbations. It will be convenient to assume

a<0 and a # O. (3.6)
Certainly a # 0 is reasonable since otherwise a = aq, If a(e) > 0 for
e = (vl,vz), then we can replace e by its ''opposite” e' = (vz,vl) with

a(e’) = -a(e), u(e’') = -1(e) and 1l(e') = -u(e), so there is no loss of
generality in (3.6).
It will now be convenient to index the edges. Write E = §e1,..¢,e|E|§

and consider each entry a(ej) of a to be a (nonpositive) A-bit binary



._1'7._.

number. Let q = A(1 + |E|) - 1. Define a', 0 < i <q , by

(;(eh)/z“'(3+1)_1 : 1<h<k
aj(l'*'lED"”k(eh) =
2[;(eh)/2h’3 —1 , k+1<hg |E|
for all j =0, ...,(A-1) and k=0, ..., |E|]. Note that ao = 0,
al = a; and for consecutive al and a1+1 either they are equal, or the

replacement of P(a') by P(a1+1) is a simple or scalar perturbation. It

is a scalar perturbation if i+1 is an integer multiple of |E|+1.
Think of each a(e,)

-1 _ B J(1+[ED-1 L
notation, let a ~ = 0. Then a (eh), 0 <j <A, is a j-bit number
obtained by striking off the least significant A - j Dbits of a(eh) . So
oA=3, J(1+[E|)-1

process in reverse, for 1 < p < |E| the vectors

as a A-bit binary number, and for convenience of

represents a to j significant bits. Or, considering the
aj(1+|E|)—1—p are
obtained by overwriting a zero in the least significant place starting from
the |E|—th entry of :«1‘].(1+lE|)-1 and working toward the first. Then the
trailing zero is dropped from each entry of ::1(‘].“1)(HIED_1 . .
The remarks above demonstrate that the sequence of cost functions 3a1§
satisfies (3.1-3.3). This leads to an algorithm that halts with a pair
(x%,7yY  optimal for P(a). The algorithm solves at most A|E| maximum e*-
flow subproblems, each corresponding to a simple perturbation, and performs
(A - 1) scalar perturbations. Note that each of the maximum flow
subproblems that arises in the course of this procedure has at most |E]
edges and |V! vertices, since it is associated with the subgraph
(V,RUYUB) of G. Also the magnitudes of the bounds in these
subproblems are the same as in (P). So, given a polynomial-time maximum
flow routine, e.g. the O(]V|3) algorithm of [21], each of the subproblems
is solved in time that is bounded above by a fixed polynomial function of the
size of the input of (P). Furthermore the number of subproblems is less
than or equal to A|E|, which is also polynomial in the input size. Keep in
mind that the input of (P) includes, among other things, each entry a(e)

of the cost vector a, whose binary representation has length



-1 8-

1+ ] logz(la(e)]) ] (plus a sign bit) if a(e) # 0. So this cost scaling
algorithm for (P) runs in polynomial time.

Of course we will not need as many as A|E| simple perturbations unless
there are no zeros in the binary expansions of the costs a(e). However our
discussion until now was merely intended to show how the scaling approach of
Edmonds and Karp [4] yields a polynomial-time cost scaling algorithm. In the
statement of the minimum cost network flow algorithm MCNF at the end of this
section, the '"degenerate'' simple perturbations that change nothing are
skipped. In the next section we will indicate how to modify the approach
described above for better computational performance. In particular we will
make all of the simple perturbations corresponding to the same position in
the |E| bit-strings simultaneously, and solve the resulting (non-simply)
perturbed problem as a sequence of no more than |V| maximum flow problems.

For those familiar with the interpretation of the out-of-kilter method
in terms of "kilter diagrams" (e.g., see [R0]), cost scaling as above can be
given the following interpretation in which the data are unscaled, but the
"kilter step' changes over time. The approximation of P(a) by
P(aj(1+lEl)-1) corresponds to making the horizontal (here it is blue) part
of the kilter step not a line segment as usual, but a band below the
horizontal axis of height ZA—j. The scalar perturbation corresponds to
shrinking the height of the band. The mechanism of the simple perturbations
corresponds to the shrinking being done one edge at a time.

In our formal description of scaling algorithms for (P) , based on the
remarks above, executable statements are delimited by semicolons, labels are
delimited by colons, and comments are italicized. We will have subroutine
calls, including, of course, some to a maximum flow algorithm, MAXFLOW.
MAXFLOW accepts as inputs the parameters G = (V,E), 1, u, and e* and
returns as outputs an optimal pair x, y. In general the parameters being
passed in a subroutine call will be listed parenthetically with inputs and

outputs separated by a semicolon, as in:

CALL MAXFLOW(G,1l,u,e*;x,y).



-19-

¥e will make use of another routine TRANS, which enables us to solve the
Phase I problem for (P) by a single call of MAXFLOW. TRANS will also be
used later for another purpose. TRANS accepts as input G = (V,E), 1, u, b
from (P), and outputs a transformed network G' = (V',E'), 1', u', b',

e' EE' and a feasible flow x' in the transformed network. For our later
purposes it will be convenient to include among the inputs to TRANS subsets
L, U, X that partition E , and a vector x : E »+ Z. For our present
purpose we will take L =E, U=X=0, and x = 0. TRANS is described in
Figure 3.1. '

PROCEDURE TRANS(G=(V,E),1,u,b,L,U,X,x 3 G'=(V',E"),1",u",b",x",e'):

i) two additional vertices, s’ and s, are added to the
graph so that V' =V U §s,s'$;

ii) x'(e) 1is set to 1(e) for all e €L, x'(e) is set to wu(e)
for all e E U, x'(e) 1is set to x(e) for all e € X;

iii) the discrepancy &(v) in the conservation of flow equations

for each vertex v 1is calculated:

8(v) =b(v) + Z3x'(e): e = (v,v') and e E E¢}
- zix'(e): e = (v',v) and e € E$;

iv) for each vertex v with 8(v) > 0 an edge
(v,s') is added with flow x'(v,s') = -5(v),
while for each vertex v with &(v) < 0
an edge (s,v) is added with flow x'(s,v) = &(v);

v) a distinguished edge e' = (s',s) 1is added with flow
x'(s',s) = 2§s8(v): 8(v) < 0%;

vi) SET b'(v)=b(v) for all v € V; b'(s)=0:b'(s")=0;
SET u'(e)=u(e) and 1'(e)=1(e) for all e € E;
SET u'(e)=0 and 1'(e)=x"'(e’) for all e € E'\E;

END TRANS

Figure 3.1 Transformation subroutine.



-20~

The Phase I problem for (P) can be solved, essentially, by solving an e'—
maximum flow problem starting from x' in (G',1',u’,b’,e'), as output by

TRANS. Specifically we solve

maximize x(e")
subject to A'x = b’ (3.7)
1" <« x gu',
where A' is the vertex—edge matrix of G'. Technically (3.7) is not a
maximum flow problem, since b' can be nonzero. But since x' 1is feasible
for (3.7) we can convert (3.7) to the correct form by translation of the flow
variables that are passed to and from MAXFLOW. We CALL MAXFLOW (G',1'-x',u'-
x',e":;x,y). If x(e') + x'(e') < 0, then (P) has no feasible flow, and
if x(e') + x'(e’) = 0, then x + x' restricted to E is a feasible flow
in (P). This is a standard approach to the Phase I problem.
¥We can now state formally a scaling algorithm, MCNF, for problem (P).

Algorithm MCNF(G=(V,E),a,1l,u,b ; x,y):
1. Get an initial feasible solution for (V,E), 1, u, b:
CALL TRANS ((V,E),1,u,b,E,f,0,0;(V',E'),1",u’',b',x",e");
CALL MAXF ((V',E"),1' - x',u’' - x',e';X,¥);
recall (V',E') 1is the transformed graph used to
produce an initial solution.

IF x(e') # -x'(e') THEN STOP;
the restriction Yy of y to V gives the incidence
vector of a cut yVA that blocks any feasible flow.

SET x = x' + x restricted to E;

2. Initialization:

IF a=0 RETURN (x,0);

SET A=1+ max§L10g2(~a(e))j': e € ES;

SET i = A-1; a = 0; a = [(a/2D)];



_21_

3. Perform maximum flow iterations to solve a + a
(Solve §0,-1¢ perturbation problem):
SET U' = U = §e € E: a(e) = —1};
i) Select e* € U to be removed from W:
If U is empty GOTO 4;
SELECT e* € U;
SET U = U\e*;a(e*) = a(e*) -1;
IF x(e*) = u(e*) or (a - yA)(e*) > 0 GOTO 3.1i;
ii) Adjust x and y so that e* leaves W\W*:
SETE'" =RUYUB
where E 1is colored (R,Y,B,¥) with respect to
flow x, bounds 1 and u, cost 2 - yA
and e*;
CALL MAXFLOW ((V,E''),1 - x,u - x,e*;z,w);
SETx=x+2; Yy =y — w;
GOTO 3.1i;
4. Either stop or scale a and y and repeat 3:
SET i =1 - 1;
IF i < 0 RETURN (x,y);

(x,y) 1is an optimal pair.

SET a = 2a;
SET 2 = [(a/21)] - 3
SET y = Ry;
GOTO 3;
END MCNF

Figure 3.2 Cost Scaling Algorithm for Minimum Cost Flows

4. Variations and Implementation

The algorithm MCNF described in Section 3 can be improved, both in its
practical performance and its worst-case bound, by altering the third step.
Step (3) perturbs the current vector 2 of approximate cost coefficients
with A - i -1 bits to a + 5, the approximation with A - i Dbits, one
entry at a time. Increased efficiency results from perturbing the entire

vector at once. Given an optimal pair (x,y) for P(a) and a nonpositive



-2

perturbation vector 5, the procedure PERTURB described in Figure 4.1 can

used to calculate an optimal pair (x',y') for P(a + 2) faster than by

repeating a maximum flow calculation for each edge e having ale) # 0.

PROCEDURE PERTURB (G=(V,E),a,1,u,b,x,y,§ s X',y'):
1. Initialize by setting edges to bounds
so that (R,Y,B,¥) partitions E:
SET U = §e € E: (a - yA)(e) + a(e) < 0 and x(e) < u(e)i;
A is the vertex—edge incidence matrix of (V,E).
SET X = E\U;
CALL TRANS ((V,E),1,u,b,8,U,X,x;(V',E"),1",u',b",x",e");

SET a'(e) = (a + a - yA)(e) for all e EE,
a'(e) = mind |U] + 1,|V|$ - minfa(e): e EE} for e =e’',
a'(e) =0 for all other e EE';
SET y' = 0;
2. Perform maximum flow iterations until x'(e’') = 0:
SETE'"=RUYUB
where E' 1is colored (R,Y,B,¥) with
respect to x',1',u’', and a’' — y'A;

CALL MAXFLOW ((V',E''),1' — x',u' - x',e';Z,W);
SET x' 2x'" +z; SETy' =y' - w;
IF x'(e') Z 0 and (a'-y'A")(e') # 0 GOTO R;
A’ is the vertex-edge incidence matrix of (V',E’').
3. x' restricted to E and y + y' restricted to V are
returned:
SET x' = x' restricted to E;
SET y' = y' restricted to V;
SETy' =y +y';
(x', y') is an optimal pair for P(a + a)
END PERTURB

Figure 4.1 Perturbation Algorithm

It is here that we again make use of the routine TRANS. Initially

be

(x,y) is an optimal pair. After adding the perturbation vector a to the



_23._,

transformed cost vector (a — yA), TRANS is called in step (1). The flow on
each edge e having (a + a2 - yA)(e) < 0 is changed to wu(e). Two new
vertices s and s' and a new edge e' = (s',s) are added, as are edges of
the form (s,i) or (i,s'), i €V, as necessary to create conservation of
flow. Upon return from TRANS, every edge except the new edge e' is in
RUYUB. MAXFLOW is called in step (2) until the flow x'(e’) = 0. At
that time (x',y') is an optimal pair for the transformed problem, and the
restrictions of x' and y' to the original edge set E and vertex set

V , respectively, form an optimal pair for P(a + 3).

The magnitude of a'(e') fixed in step (1) is chosen to be large enough
to cause the flow on e' to be zero in any optimal solution of P(a'), but
small enough to give a small upper bound |V| on the number of times that step
(R) can be iterated. This then limits the number of calls of MAXFLOW. That
a'(e') 1is large enough is a consequence of the following lemma with
(a + 2 - yA) from step (1) in the role of a in the lemma. " This Lemma and
its use here are similar to Corollary 3.3 in in Ford and Fulkerson [5] and

its use there in the treatment of the minimum cost flow problem.

Lemma 4.1 Let (P) be a minimum cost flow problem in G = (V,E) , and let
e’ € E. For any feasible flow x, define K(x) = je € E: a(e) = 0, or
a(e) <0 and x(e) = u(e), or a(e) >0 and x(e) = 1(e)§, and
K(x) = E\K(x). Suppose there exists a feasible flow xo such that

. 0
e’ € K(x') and

la(e)| > (|V|-1) |a(e)| for all e € K(x"). (4.2)

Then for every optimal flow x* we have e' € K(x*); i.e. x*(e') = u(e’)
if ale’) < 0 and x*(e') = 1(e') if a(e') > 0, or, equivalently,
x*(e') = xo(e') if a(e') # 0.

Proof Let XO be a feasible flow as in the hypothesis, and let x* be an

optimal flow violating the conclusion, so either

a(e’) < 0 and x*(e') < u(e’)

or (4.3)
a(e’) >0 and x*(e') > 1(e').



_24_
The nonzero vector (xo - x*) is in the null space of A, the vertex—edge

incidence matrix of G, and (XO - x*)(e') # 0. Hence there is a cycle C

in G containing e' and having

¢t C ie € E: (XO - x*)(e) > 0%
and
¢ Cfe €E: (x0 - x*)(e) < Of.

Now e € C' implies xo(e) > x*(e) » 1(e). So

e € K% nct = a(e) < 0. (4.42)

Similarly e € C  implies xo(e) < x*(e) < u(e); so

e € K(x) nC = ae) > 0. (4.4b)
Now consider ,
a(C) = = a(e) - = a(e) . (4.5)
eec’ eEC”

By (4.4) each term in (4.5) that comes from an e E K(XO) is nonpositive, and
by (4.3) the term that comes from e' is negative, it is -|a(e’)|. Now,
since a cycle has at most ]V] edges, and C has at least one edge, e',

in K(xo), |C n K(x0)| < |V| - 1. Then from (4.2) we see that the
contribution to (4.5) from those e E K(xo) has magnitude

| z a(e) - z a(e)| < |a(e")] .
eec™n K(XO) eEC N K(xo)
Therefore a(C) < 0, which contradicts the optimality of x*, since C 1is

augmenting with respect to x*.H

In the application of Lemma 4.1 to PERTURB note that (a + 2a-ya)(e) >0
implies (a - yA)(e) > O which then implies x(e) = 1(e). Similarly

(a + a2 -yA)(e) < 0 implies either (a - yA)(e) <0 or 0 < (a - yA)(e) <1
and a(e) = -1. So either x(e) = u(e), or |(a + a - yA)(e)| < la(e)].



—25—

This approach improves the bound on the scaling algorithm by reducing
the bound on the number of maximum flow subproblems solved. Lemma 4.1 allows
us to conclude that step (2) of procedure PERTURB is executed at most | V]
times. Since PERTURB will be called at most A times, at most A|V|
maximum flow subproblems are solved from within PERTURB, plus one more in the
initialization. On the other hand, step (3.ii) of algorithm MCNF can be
executed ]Ui{ times during each major iteration. Since |U1] can be as
large as |E|, MCNF may have to solve as many as A|E| + 1 maximum flow
subproblems to solve P(a).

A heuristic reason for expecting better behavior from the use of PERTURB
is provided by the following observation. In setting all the flows on edges
with negative transformed cost in the perturbed problem to their upper
bounds, the total amount of flow assigned to the special edge e’ may be
significantly lower than the total of these upper bounds, due to cancellation
of flow at the vertices. As a result, the total flow adjustment in any major
iteration of the scaling algorithm is expected to be lower when all the edges
are perturbed at the beginning of the iteration, rather than sequentially.

A second modification of the cost scaling algorithm applies the scaling
in base n instead of base 2. We use the algorithm given in Figure 4.2 to
solve the perturbation problem where a takes values in §0,-1,...,1-n}.

The bound on the number of iterations of step (R) of PERTURB required to
attain a flow with x'(e') = 0 then becomes (n - 1)|V].

The last modification of MCNF combines step (1) of MCNF, the
initialization, with the first iteration of step (3). After the combined
iteration, one has either detected that (P) is infeasible, or produced an
optimal solution to the subproblem P(a) in which the magnitude of each a(e)
is equal to the value of the most significant bit in a(e). PERTURB is called
u. This initial flow is likely to be

i

with an initial flow of x'
infeasible. If the flow x returned by PERTURB is not feasible, then by Lemma
(4.1) there is no feasible solution of (P). This happens precisely when
(a'-y'A")(e') = 0 upon exiting from PERTURB in Step 2. This exit condition
can only occur in the initial return from PERTURB. Since all subsequent
calls will pass a feasible flow to PERTURB, Lemma 4.1 guarantees it returns
with x'(e’') = 0 and (a'-yA")(e') < 0.

Figure 4.2 describes MCNF2, the variant of MCNF that incorporates the

three modifications discussed above.



—-28~

Algorithm MCNF2(G=(V,E),a,l,u,b ; x,¥):

1. Initialization:

SET A=1+ maxi[logn(—a(e))J: e € E;
SET i = A-1; a = 0; a = [(a/nD)];
SETx=u y=0

2. Perform maximum flow iterations to solve 2+ a
(Solve $0,-1,-2,...,1 — n§ perturbation problem):
SET x" =2 x; ¥y' 273
CALL PERTURB ((V',E'),3,1',u’,b',x',¥',2;X,¥);
3. Either stop or scale a+a and y and repeat 2:
IF x is not feasible,STOP;

There is no feasible solution.

SET i =1~ 1;
IF i < 0 STOP;
(x,y) 1is an optimal pair
SET 2 = n(a + a);
SET a = [(a/ni)1 - a3
SET y = ny;
GOTO 2;
END MCNF2

Figure 4.2 Modified Cost Scaling Algorithm

In the following sections we report on a computational study of SCALE .,
an implementation of MCNF2. This implementation is flexible enough to allow
scaling in any base. Although the leading constant in the worst—-case bound
for the scaling algorithm is best when the scaling base is two, we found in
preliminary testing that our implementation of the scaling code solved the
tested problems faster when the base was set to four. All of the data
reported here are for base four.

An efficient implementation of the algorithm MCNFR requires an efficient
subroutine MAXFLOW to solve the subproblems generated by the subroutine
PERTURB. Of the known maximum flow algorithms one of the simplest to



._27_

implement is due to Malhotra, Kumar, and Maheshwari [21]. Although this MKM
algorithm is the most efficient known for dense graphs, there are others that
are asymptotically more efficient in the worst case on sparse graphs. These
algorithms, however, require more sophisticated data structures for
implementation. For problems with a small number of vertices, the algorithm
of [21] is practically more efficient. Our tests focus on fully dense square
transportation problems, and so it is natural to employ the algorithm of
[R1]. Note that a fully dense transportation problem with, say, 200 sources
and 200 sinks will have 40,000 edges. The initial maximum flow subproblems
will be dense. As SCALE iterates, the later subproblems will become rather
sparse, and it would be useful to be able to take advantage of the sparsity.
But the number of vertices is not large enough to cover the overhead of more
complicated data structures.

The specific implementation of the MKM algorithm employed here differs
in two respects from [21]. First, the selection of a vertex v* of minimum
potential is refined to select v* to lexicographically minimize
(potential (v), layer number (v)). This allows for a simpler procedure to
remove saturated vertices. Second, incidence lists rather than linked lists
are used to maintain the appropriate partition of the edges at each vertex
v into blocks consisting of those edges: (1) between v and the next layer;
(2) between v and the preceding layer; (3) incident with v but absent from
the present layered network. For our special use of the MKM algorithm as a
subroutine in MCNF2 it is also necessary to partition the last block into
edges that are present in the current maximum flow subproblem (blue) and
these that are not (white). The use of incidence lists permits some savings
in storage with no additional computational expense.
, The other codes used in these tests are GNET, developed by Bradley,

Brown, and Graves [2], and RNET, developed by Grigoriadis and Hsu [13]. Both

are primal simplex codes that use list structures for efficient maintenance
of the basis and its inverse. They differ primarily in the method of pivot
selection. GNET uses a Big M method, along with a candidate queue and a
vertex scan to obtain edges for basis entry. RNET uses a pseudo-random
pricing strategy along with a gradual penalty method for costing artificial
edges. .

The simplex codes are both extreme point codes. As a result, the data

structures used to store the current solution have length IVI. The basis



~28-

tree is represented using either three or four vertex length arrays. The
capacities and costs are stored in an |E|-1length array. GNET sorts the
edges so that one |V|- length array and one |E|-length array can be used to
store the endpoints. The time for this sort is not included in our GNET
execution times. RNET uses two lEl~1ength arrays for the same purpose to
avoid the initial sort.

SCALE requires one ]E]—length array for the capacities, one for the
costs, and one for the current flow. In addition, SCALE requires two 2|Ei~
length arrays for maintenance of the layered network. In the current
implementation, two more |E|-length arrays are used to store the endpoints of
a given arc. All other storage for SCALE is either |V|-length arrays, of
which there are twenty, or constant storage. Thus, SCALE requires nine edge-
length arrays, while GNET requires only three, and RNET requires four. The
factor of two to three times the storage requirements could be a serious
impediment to using this implementation of MCNFR for problems with many
edges. But, for the time being we will be concerned only with computational

speed.

5. The Computational Experiment

The broad purpose with which we began this work was: to understand
better the computational behavior of network flow algorithms, including those
based on both the simplex method and the out-of-kilter method with data
scaling, and specifically, to contrast their behavior in order to test the
widely held presumption that data scaling does not yield computationally
effective algorithms. For specific implementations of these methods and
within specific classes of problems, we planned to collect data from Monte
Carlo experiments. The data would then be used for comparisons of execution
times of the different codes on problems with similar characteristics, and in
an attempt to model execution times as a function of problem characteristics.

The code SCALE, based on the cost scaling algorithm MCNFR of the
previous section, and two network simplex codes GNET (Bradley, Brown, and
Graves [2]) and RNET (Grigoriadis and Hsu [13]), were employed. We used two
different network simplex codes in the experiments because earlier work

indicates clearly the sensitivity of performance of the simplex method to



-2 Q-

such factors as pivot selection strategy.

We restricted the generated problems to capacitated transportation
problems that are square (equal numbers of sources and sinks). This
property, and the form of the CAPT generators that we devised, were chosen to
impose symmetry on the problem distributions. Indeed each of the three
generators is essentially characterized by a symmetry condition (see the
appendix for details on the CAPT generators). We also restricted the samples
to completely dense (bipartite) networks. This is consistent with the
symmetry desired, and was imposed, instead of some mechanism to create, say,
a sparse symmetry, because of the character of the issue under examination,
and the specific implementation of MCNFR2 employed. This implementation,
SCALE, seems much better suited to dense networks than sparse ones.
Preliminary tests bore this out. Since the conventional wisdom has been that
scaling algorithms would fare very poorly in actual computation, one wants to
test this particular implementation in a ''non-hostile' domain. Keep in mind
the necessity of restricting the eventual conclusions to the domain from
which the problems were drawn. Test problems can be meaningful only so long
as one does not attempt to impute fine interpretations of the algorithm's
performance to settings different from the one in which the problems arose.
That SCALE is likely to fare poorly on sparse problems is apparent from its
performance on NETGEN problems. Table B.1 in Appendix B of [1] gives
execution times of the three codes on 35 benchmark NETGEN problems [19].

(The benchmark times were produced to facilitate comparison of our work with
work performed in other machine environments.) The times on the benchmark
NETGEN problems, which are all sparse, contrast strikingly with the times on
the dense NETGEN problems that we generated, and report on in Section 6;
SCALE does very badly on all of the benchmark problems. A different
implementation might be better suited to sparsity.

The main experiment was designed to have four phases: (1) preliminary
testing; (R) collection of large sets of observations from three different
distributions; (3) modeling and validation; and (4) evaluation of the
predictive power of the models. Immediately below are brief remarks about
the four phases. These are followed by detailed comments on the statistical
analysis conducted in phases (3) and (4). See Draper and Smith [3] for
reference material on the regression analysis.

In the first phase of the experiment we gathered preliminary data to



-30—-

assist in the determination of appropriate ranges on the input parameters to
the three CAPT generators. Each generator together with a specification of
the intervals from which the five generator parameters are selected
(uniformly), determines a problem distribution (see the appendix). Of the
five generator parameters, the two to which the observed execution times were
clearly sensitive were: the number of vertices, |V|, which determines the
number of edges, |E| = |V|2/4; and the number of bits in the costs, A. We
fixed the intervals from which these parameters would be selected uniformly
in the second phase of the experiment to |V| € [100,500] n RZ and

A € [4,10] N Z. This results in the costs on the |E| € [10000,62500] edges
being selected uniformly from the interval [0,2A - 1]. The expected total
flow from sources to sinks in the test problems is approximately SD]E[ in
distributions #1 and #2, and 25|E| in distribution #3. The preliminary data
also provides an inkling of qualitative changes in algorithmic behavior
outside of the chosen ranges for which considerable data was eventually
compiled and studied. Some additional details on this preliminary phase can
be found in the appendix following the description of the generators.

In the second phase of the experiment large sets of data were
collected. One hundred problems were generated from each of the three
distributions specified in the first phase. Every problem was solved to
optimality by all three codes. Total execution times and generator parameter
values were recorded in nine data sets, one for each combination of the three
distributions and three codes. The analysis conducted in the third phase of
the experiment is based on these data sets. We also created additional data
sets with the seeds (for reproducibility), and such additional information as
execution times for each iteration of SCALE, and number of saturated edges at
termination, for later, more detailed, analysis.

In the third phase of the experiment execution times were modeled as
functions of the generator parameters. Regressions yielded estimates of the
model parameters. Log-linear models of execution times as functions of |V|
(or, equivalently, |E]) and, for SCALE only, A, were selected. The set
of one hundred observations and the fitted curve for each of the nine data
sets were given in Figure 0.1 (and B.1 of [1]). The significance, fit, and
precision of each of the nine regression functions were evaluated‘using
standard techniques. The results were favorable in each case. The

assumptions on error that underlie the statistical methods were supported by



-31-

examination of residuals. Confidence intervals were calculated for the
estimated parameters, for predicted median execution times and for individual
execution times.

In the fourth phase of the experiment we collected nine additional sets
of data independent of those on which the regressions were performed in the
third phase. These were used to test the predictive power of the nine
models. For each of the nine combinations of a code and distribution, the
curve of predicted median execution time as a function of |V| (and A for
SCALE), and the new set of one hundred observations was displayed in Figure
0.2 (and B.2 of [1]). The quality of the predictions is striking in each

case.

Modeling and Validation
To develop models of the execution times of SCALE, GNET, and RNET as

functions of the generator parameters, various regressions were performed for
each of the nine data sets from the second phase of the experiment. In each
case a log-linear form seemed to be the best of several forms examined. A
complete set of thirty-two log-linear regressions, one for every subset of
the five generator parameters, was then run for each of the nine data sets.

Analysis of the regressions led to the conclusion that

T=¢ e5°|V|31A32 (5.1)
is an appropriate model of the random variable T, observed execution time.
Here e 1is the base of the natural logarithm, and, as usual, |V| is the
number of vertices, and A is the number of bits in the cost coefficients.
The dependent random variable T and the nonnegative random variable ¢
should be regarded to be functions T(|V|,A) and &(|V|,A), respectively,
of the independent variables |[V| and A. Later we will address the issue
of whether the random variables &£(|V|,A) are independent and identically
distributed. These random variables represent inherent variability in
observed execution time for problems with fixed IVI and A. Estimates 'bO,
bys Bp
regression for each combination of code and problem distribution. 1In the

respectively, of the parameters 50, Bl, 82, were determined by the

cases of GNET and RNET 82 was taken to be zero and only BO and 51 were

estimated, so (5.1) reduced to



T= e |V] . (5.2)

Although the estimate b2 of 52 was nonzero when included in the
regression, the relative amount of error explained by it, as measured by its
t-value, was insufficient to justify its inclusion in the models for GNET and
RNET.

Parts of the statistical analysis are founded upon the assumption:

the random variables &'(|V|,A) = log (|V],N)
are independent and identically distributed (5.32)

. . 2
with mean zero and (unknown) variance o .
In other places we appeal to an even stronger condition:

the random variables &'(|V|,A) = log (|V],A)
are independent and normally distributed (5.3b)

. . 2
with mean zero and (unknown) variance ¢~ .

The assumption (5.3b) implies that the error & 1is a lognormal random
variable. We will make clear where either of these assumptions is involved,
and we will examine their validity.

By logarithmic transformations of (5.1) and (5.2) the dependent variable
in the regressions becomes Y = log T and the independent variables become
log(|V]|) and log(n). We then fitted the linear models

Y = By t By log(|V]) + By log(p) + & (5.4)
for SCALE and
Y = BO+ Bllog(fVD + &' (5.5)
for GNET and RNET.
In this discussion of the regressions, and henceforth, the term

"parameter' will refer to a parameter in the model, as opposed to a generator

parameter.

Table B.2 in Appendix B of [1] summarizes the information produced from



-33-

the regressions in which the selected models (5.4) and (5.5) were fitted to
the data. Table 5.1 below abstracts from Table B.2 of [1] the estimated
value b, of each 5, in (5.4) or (5.5), for the nine data sets.

Table 5.1

Parameter Estimates

b b b
0 1 2
Distribution #1
SCALE ~-10.495 1.976 0.793
RNET -11.648 2.313
GNET -12.632  R.743
Distribution #2
SCALE -~10.864 2.061 0.749
RNET -12.343 2.439
GNET -12.5886 2.737
Distribution #3
SCALE ~-10.982 2.078 0.737
RNET -12.384 2.450
GNET -12.599 2.713
So, for example, we see that b0= -10.495, b1 = 1.976, and b2 = 0.793 for

SCALE and distribution #i. Thus the fitted model estimates the mean of the
logarithm of SCALE execution times on problems from distribution #1 by the

function
-10.495 + 1.976 log([vl) + 0.793 log(n).
This corresponds to an estimate of median execution time by the function

T - 8_10'495[V|1'976A0'793.

med (5-6)



—-34~-

Tests of Fit
Once a regression is run, one wants to determine whether it has fitted

the data well. Data points with the same values of the independent variables

are grouped and the group means are calculated. Let Y denote the vector
obtained from the observation vector Y by replacing each entry by its group
mean, and let Y denote the estimation vector obtained from the original
linear regression. If a new regression were run on ¥, the resulting
estimates of the parameters and, therefore, the estimation vector ?, would
be the same as in the regression on Y. Consequently, error of the form

Y - ¥ cannot be accounted for as a function of the independent variables,
whereas error of the form Y - ¥ can be. Since the vectors Y - Y and
¥-9Y are orthogonal and their sum is the vector Y - ¥ of residuals, the
sum of the squared lengths of Y - ¥ and Y- Y is the sum of the squares
of the residuals. The model fits the data well if the length of ¥-1 is
small relative to the length of Y - ?, so that a relatively large part of
the residual sum of squares can be explained as pure error from Y - Y, as

opposed to lack-of-fit error from ¥ - Y. Under the additional assumption

that the errors &' are normally distributed with constant variance, the
squared lengths of Y - ¥ and Y- Y are independent chi-squared random
variables, and the ratio of their squared lengths normalized by the
appropriate degrees of freedom has an F-distribution. This F-statistic is
used to test the hypothesis that Y is a linear function of the independent
variables. The hypothesis is rejected at a specified level of confidence,
(1 - «), if the ratio exceeds the (1 - «) percentile of the appropriate

F distribution.

The original data sets contain enough observations with repeated values
of |V| to conduct meaningful lack-of-fit tests for GNET and RNET. The
model (5.4) for SCALE has two independent variables, 1log(|V|) and log
(A), and there were very few repeats of the pair of values. Hence it was
necessary to generate three new data sets for SCALE with repeated values of
the pair (|V|,A). The problems were generated as in the second phase of the
experiment, but with five repetitions of each of the twenty-one combinat ions
of |V| € $100, 300, 500 and A € §4,5,6,7,8,9,108. The lack-of-fit tests
on these data sets for SCALE do not result in rejection of the hypothesis
that Y = 1og(T) is linear in log(|V|) and log( A ) at the 90% level of

confidence for any of the three distributions. Similarly, using the original



-35-—

data sets for GNET we are unable to reject the linearity hypotheses. For
RNET, the hypothesis can be rejected with 90% confidence for the data set
from distribution #1, but not for either of the other two. We generated a
new data set for RNET from distribution #1 with ten repetitions each of

|V] € $100,200,300,400,5003 , and ran a new regression and a new goodness—of-
fit test. The estimated parameter values are within two standard deviations
of the estimates from the original for RNET, and the F-value of .8393 with 3
and 45 degrees of freedom is well below the critical level at 90%

confidence. Table B.3 in Appendix B of [1] contains the results of the
goodness—of—-fit tests.

Since none of the nine models exhibited significant lack-of-fit, we are
sufficiently well-satisfied with the adequacy of the models to examine their
significance and precision. The plots in Figure 0.1 convey, better than any
single statistic, the significance and precision of the models. However, we
will report below on conventional measures.

Under the assumption (5.3b) that the errors &' are independent
identically distributed normal random variables, an F-test can be used to
measure the significance of the regression. Technically, one tests the
hypothesis that all parameters 51, i > 0, are zero. The hypothesis is
rejected with 100(1 - «)% confidence if the F-value, mean square due to
regression, (E(?i - ?)2) divided by mean square about regression,

(2(.Yi - ?i)z/v) , is larger than the 100(1 - ®)% point of the F(1,v)
distribution. Here Y is the mean observation and v is the number of
degrees of freedom, |V|-2 for the RNET and GNET data sets, or |V|-3 for the
SCALE data sets. The calculated F-values appear in Table B.2 of Appendix B
of [1]. They are all in the range 1924-19069, while the critical F value
at 90% confidence is less than ten. Thus all nine regressions are found to
be significant.

The correlation coefficient R, -1 < R < 1, between the prediction
vector ¥ and the observation vector Y is one conventional measure of
precision in regression analysis. R 1is the cosine of the angle between
(Y - Y-1 v ), the vector of differences of the observed values from their
mean, Y, and (¥ - Y¥-1 v ), the vector of differences of predicted values
from their mean, which is also Y. R2 can be regarded to be the fraction of
observed variation about the mean Y that is explained by the regression.

All nine R2 values are greater than .976.



-36—

Given that the errors &' are independent and identically distributed
random variables, 32, the mean square error about regression, is an
unbiased estimator, based on v degrees of freedom, of the variance of &';

82 =z (Yi - ?i)z/v. One can then estimate the standard deviation of B,
from s and the observed values of the independent variables. Under the
additional assumption (5.3b) that the &' are normal, the resulting standard
error si of bi can be used to construct confidence intervals for ﬁi
since bi has a t-distribution. With 100(1 - «)% confidence Bi is in
the interval bi tosy t(v,1 - ®/2). The 90% confidence intervals for all of

the estimated parameters are given in Table 5.2 below.

Table 5.2

Confidence Intervals for the Parameters By in (5.4) and (5.5)

B B B
0 1 2
Distribution #1
SCALE
(-10.694 , -10.296) (1.946 , 2.006) (0.748 , 0.838)
RNET
(-12.139 , -11.157) (2.227 , 2.399)
GNET
(-12.913 , -12.351) (2.693 , 2.793)
Distribution #2
SCALE
(-11.100 , -10.628) (2.021 , 2.101) (0.694 , 0.804)
RNET
(-12.834 , -11.852) (2.353 , R.525)
GNET
(-12.774 , -12.398) (2.704 , 2.770)
Distribution #3
SCALE
(-11.164 , -10.680) (2.041 , 2.115) (0.681 , 0.793)
RNET
(-12.907 , -11.861) (2.357 , 2.543)
GNET :
(-12.894 , -12.304) (2.660 , 2.766)

The narrow ranges of the confidence intervals are indicators of good
precision. Note in particular that zero is not in the interval for 82 in any

of the models for SCALE. This supports the inclusion of A in those models.



-37—

In the preliminary regressions for GNET and RNET, which included A as an
independent variable, as well as |V|, zero was in the 90% confidence

intervals for 32. This is why A was dropped from those models.

Examination of Residuals

Let us now address the assumptions (5.3) on the term &' in the models
(5.4) and (5.5). The stronger of the two assumptions, (5.3b), is that for
each combination of a code and a problem distribution, the random variables
£'(|V], A) are independent normals with mean zero and constant, but unknown,
variance, cz. If (5.3b) were correct, then we could write &' in place of
e'(|V], A) , and &£'/o would be standard normal. Then we could estimate o
by s, computed in the regressions. Assumption (5.3b) implies further that
the studentized residuals, (Y - Y)/s, are t-distributed with 97 or 98
degrees of freedom, 97 for the SCALE samples and 98 for the RNET and GNET
samples. The t-distribution with 97 or 98 degrees of freedom is almost
exactly standard normal. So, for each of the nine samples, the 100
studentized residuals should be consistent with a standard normal
distribution, as should the aggregation of all 900 studentized residuals.
Figure 5.1 supports this. Part (a) of Figure 5.1 is a plot of the 900
studentized residuals plotted against |V|, part (b) is a histogram, and
part (c) is a normal probability plot. (One GNET observation from
distribution number one has its studentized residual less than -10, and does
not show up in the plots; all of the other residuals appear.)

A pnormal probability plot for a sample Zi’ caes Zn is a plot of the

pairs
(Zy5y- F G - 1/2)/m),

where Zi(l) < Zi(z) € s £ Zi(n) and F is the standard normal cumulative
distribution function. If the sample is drawn from the standard normal
distribution, the plot should be close to a straight line with slope one and
intercept zero.

Figures (5.1a) and (5.1b) appear to be consistent with (5.3b), and
Figure (5.1c) is rather convincing. At the resolution in this probability
plot there is no deviation from the 450 line in the interval from -2 to +1
standard deviations, and the only substantial deviations are well into the

tails.



38

(c)

(a)
=
W|
\Nl
. .
% * LA
11 . -‘ T
el T
1. R e s
3 * ¥ b b,
L
P o .
" *
IP'. ‘\‘I M - L]
-2 - ..
'Wi(
- A -
&0 250
(b)

. ,.\-.
v.\vn
t\.
:
»
. H
v
- S
yoooe e s
e oew o« Tav
e gt e
Ve e,
T 5 L) "
L A A
L L
LA
[ Ao 'R v
[EPTEE B TR 3
R H
-- * ‘ ¢
* "
[ ° v
f
f
.
L ©
v --\.n
\..w
, -3 =
.u\.
.\..
vv\..
abo sbo

Figure 5.1 Plots of aggregated
studentized residuals.

(a) Residuals versus number of vertices

(b)
(c)

Histogram of residuals.
Probability plot: inverse normal

versus ordered residuals.



-30-

Figures B.3, B.4, and B.5 in Appendix B of [1] present separate
probability plots from the nine samples. The resemblance to standard normal
behavior here is not as striking as with the aggregated data, but again the
resemblance is reasonably good, except in the tails. For comparison we
generated nine sets of 100 approximately standard normal variates by
normalizing sums of forty-eight uniform [0,1] variates. Figure B.6 of [1]
presents the probability plots for these samples; they are difficult to
distinguish from the plots from our nine samples, except in the tails.

The examination of residuals leads to the conclusion that the normality
assumption (5.3b) is approximately correct, except in the tails. If the
a’(lV[, A) were exactly standard normal then we could calculate confidence
intervals on individual execution times. In the next subsection we will see
that the comparison of the new observations from the fourth phase of the
experiment with the confidence intervals based on (5.3b) further supports the
conclusion that (5.3b) is approximately correct.

Symmetry about zero of &' permits us to estimate the median execution

time Tme by

d

v 1a? (5.72)

-3

_ Ol
med

for SCALE, and
(5.7b)

for GNET and RNET.

The fitted curves in Figure 0.1 are from these estimates of Tmed’ Under the

stronger normality assumption on &' one can estimate mean execution time

Tme an by

¥

Tmean =€ Tmed. (5.8)



—-40—

For our nine samples, (5.8) never deviates from (5.7) by more than 1 or 2

percent for SCALE and GNET, nor by more than 6 or 7 percent for RNET.

Prediction

In order to examine the usefulness for prediction of the models of
execution time, we ran new sets of one hundred problems for each of the three
generators. Figures 0.2 (and B.2 of [1]) give the plots for the three codes
of execution time in seconds versus the number of vertices, |V]. The
plotted curve represents predicted median execution time based on the
parameter estimates from the regression on the earlier data set. The dots
indicate the observations from the new independent sample of one hundred
problems. For SCALE we have partitioned the observations according to the
value of A E §4,5,6,7,8,9,103 and plotted each separately. In each case the

predictions of Tme are very good.

Based on the ngrmality assumption (5.3b), we can construct confidence
intervals for individual execution times. We examined the relationship of
the observations plotted in Figures 0.2 (and B.2 of [1]) to the 95%
confidence intervals. Note that the observations here are independent of the
observations on which the calculation of the confidence intervals is based.
In each of the nine cases at least 91 out of 100 observations are within the
calculated 95% confidence intervals. In total, 860 of 900 observations,
95.6%, fall within the intervals. Figure 5.2 depicts the same kind of
information as Figure 0.2, except here the plotted observations are those
generated for lack-of-fit tests of RNET and SCALE, and the upper 97.5th and
lower 2.5th percentiles are also plotted. These plots are especially
interesting because of the replication of the independent variables, and,
again, because they are independent of the observations from which the
predictions were calculated. The normality assumption (5.3b) on &' in
(5.4) and (5.5) implies that the standard deviation of T should be
proportional to Tmed’ In this respect, as well as the proportion of
observations in the 95% confidence intervals, Figure 5.2 appears to be
consistent with assumption (5.3b).

Assumption (5.3b) implies that for a fixed code the inherent
variability in execution times for problems of fixed size is lognormal. In

further work we expect to generate more data for the purpose of examining



_.4_1-

RNET Distribution #1 SCALE  Distribution #3 A = 4

20
1
15
104
rqu\
; 1&1..1%353 PARET AP SRS T ARSI TP T AR 1
o
SCALE Distribution #3 A = 5
A=¢6
30
79 ]
254
20 4
204
15 054
104 10
3 S5 4
SNEET TRET TIRET TIAPT. Y INET 1 E PARPT.SARDT PARET T S0 _oc 150 380 250 300 350 406 430 S0

Figure 5.2 95% confidence intervals for individual execution times and observations from th
e

lack~of-fit tests.



- =

as -

40
354
3 .
364 '
25
20
15
16
wl
oo 160 1 5366 350 300 330 400 430 500
A=29 A= 10
U
45
35 .
404
304
35
25
10
20
25
15
20
10 15
37 104
. T gy e S 1
o0 18071307 380 280 380 340 4ab0  a%a sdo 5
so 160 150 200 250 3d0 350 4bo ada Sdo

] Figure 5.2 (continued)



_..4,3..
with greater care the accuracy of the lognormal approximation. It would
also be interesting to learn whether this type of behavior is exhibited in

other mathematical programming settings.

6. Fully Dense NETGEN Problems
In addition to the set of benchmark NETGEN problems noted earlier,

seventy-five fully dense NETGEN problems were run. Three different sets of
data containing twenty-five problems each were collected. The problems in
the first of the three data sets are fully dense capacitated transportation
problems. These problems are similar to those generated by CAPT in terms of
the number of vertices, total flow through the network, and edge cost and
capacities. The second data set has parameters drawn from the same ranges,
but now the generated network can contain transshipment vertices. Each of
these problems has between 75 and 350 vertices. The third data set, like the
second, has transshipment vertices. The problems in this data set, however,

are all large problems having between 350 and 425 vertices.

Table 6.1

Estimates of parameters in models (5.4) and (5.5)
for three sets of NETGEN problems

b b b
0 1 2
Set #1
SCALE -10.459 R.176 0.483
RNET -14.116 R.935
GNET -13.444 2.912
Set #2
SCALE -11.125 2.418 0.224
RNET -15.602 3.279
GNET -13.670 2.979
Set #3
SCALE -19.941 3.648 0.965
RNET ~19.428 3.865
GNET -15.970 3.370

The models were not significant for Set #3.



_4,4,_

We ran regressions to fit the earlier models to this data. The
resulting parameter estimates are indicated in Table 6.1, and summaries of
the regressions are given in Table B.4 in Appendix B of [1]. Since these
samples are smaller than those from the CAPT generators, we can expect that
the regressions will not fit as well, and, that the parameter estimates will
be less accurate, even if the fit is satisfactory. Indeed we found that for
the third of these new NETGEN data sets the fit was too poor to make
meaningful use of the model. For each of the other two new NETGEN data sets
the fit and the precision, though not as good as for the larger CAPT data
sets, were sufficiently good to use the resulting models of median execution
time. In particular it is interesting to make some comparisons with the CAPT
distributions.

Consider the first of the NETGEN data sets. Like the CAPT generated
problems discussed earlier, these are dense capacitated transportation
problems with an equal number of sources and sinks, between one hundred and
five hundred vertices, and like distributions #1 and #2, approximately fifty
units of flow per edge, on average. The costs are determined as in the CAPT
generators, except high costs (and high capacities) are assigned to all the
edges in a single spanning tree. The selection of capacities here differs
from CAPT, but the range from which they are drawn is the same, except on the
edges of the special spanning tree. The special spanning tree constitutes
between 0.80% and 3.96% of the edges, 1.61% on average. Although this
distribution of problems resembles distributions #1-3 closely, the
computational behavior of the algorithms changes noticeably. - First observe
that here the estimate b2 = (0.48 for SCALE is much smaller than for any of
the three CAPT distributions, where the minimum was 0.737. The estimate here
of b1 = 2.94 for RNET is much larger than previously, where the maximum was
2.450. These differences are well beyond a few standard errors. Most
striking is that for the NETGEN problems in this set with more than 400
vertices, SCALE was faster than RNET. The crossover point in the estimates
of median execution time in Figure 6.1 for A =4 is at approximately 275
vertices (18,900 edges), where the predicted median times for both RNET and
SCALE are approximately 11 seconds, and for A = 10 at approximately 487
vertices (59,300 edges), where the predicted times are approximately 59
seconds.

In the second and third new sets of twenty-five NETGEN problems, the



-4 5

underlying graph is nonbipartite, though still dense. For the second set
b2 is even smaller for SCALE than for the bipartite problems; b1 is
noticeably larger for SCALE and for RNET. As noted earlier the fit of the
regression on the third set was not adequate.

Table 6.2 below gives the average execution times of the three codes on
the three sets of twenty-five dense NETGEN problems. It appears from these
data that SCALE's very poor performance relative to GNET and RNET on the
benchmark NETGEN problems is attributable, in part, to the sparsity of those

problems.

Table 6.2

Average execution times (seconds) on dense NETGEN problems

RNET GNET SCALE
Set 1 23.985 39.830 24.491
Set ? 13.445 ’ 16.268 13.624
Set 3 44.608 63.070 41.333

Each set has 25 fully dense capacitated problems. Set 1 consists of
transportation problems. Set 2 consists of nonbipartite problems with
2,500 - 60,000 edges, and Set 3 consists of nonbipartite problems with
60,000 - 90,000 edges.

7. Relationship to Other Recent Results
Very recently several reports [9,10,11,14,15,16,23,24,26,29] on the use

of data scaling in network algorithms have appeared. Several of these lend

credence to our conclusion that scaling is potentially useful in computation.

Edmonds and Karp [4] raised the issue of whether there is an algorithm
for minimum cost flows for which the number of arithmetic operations is
bounded above by a polynomial function of |V| and |E|, independent of the
logarithms of costs, capacities,and demands. Some people refer to an
algorithm with this property as ''strongly polynomial' or ''genuinely
polynomial,’” although one must be careful not to attach significance to those
terms at the level of Turing machine computation. éva Tardos [29] has

recently given the first strongly polynomial algorithm for the minimum cost



—46~

network flow problem. Her algorithm uses cost scaling to create a sequence
of problems EP(ai)i, each of which is solved by an out-of-kilter routine.
Tardos manages to remove any dependence of running-time on log(]a(g)]) by a
very clever, and beautifully elementary, scheme for choosing the al. After
each iteration, i.e. solution of one P(ai), certain variables are fixed in
value by invoking a result like Lemma 4.1; these variables are deleted to
reduce the original problem P to PR. The objective function that

approximates a in the next iteration is obtained by first projecting into

the circuit spage (the null space of the vertex—edge matrix) of the reduced
graph, then scaling the projection (if it has entries of large magnitude) so
that the largest magnitude of any entry is now approximately ]VHE[l/2 , and
then rounding up to integers. The projection and scaling have the combined
effect of insuring that one, or more, variables can be fixed and deleted
after each iteration. Since scaling keeps the magnitudes of the costs on the
order of ]V]lEll/Z , the out-of-kilter method, as implemented in SCALE, for
example, will require no more than O(IV[4 10g(|V]|E[1/2)) computations.

The total number of iterations can be at most |El, so the total running
time is no worse than O(|E|[V|* log(|V]|E|Y?)).

In actual computation this worst-case analysis does not look
encouraging. In a large ''real-world' problem.one might expect that A would
be very small compared to |E| 10g(|V[|E[1/2), which would make direct
application of SCALE, or a similar algorithm, preferable from the point-of-
view of worst-case analysis. (Indeed for big 'real-world' problems A might

1/2)

direct application of the out-of-kilter method is already polynomial-time.)

be expected to be small compared with log(|V||E]| . Under this restriction
Galil and Tardos[11] have now given a variation on Tardos's original approach
[29] that yields substantial improvement in the worst-case bound. It
exploits ideas of Fujishige [7], which avoid the projections of [29], and
scales right-hand-sides, rather than costs, as in Edmonds—Karp [4].
Consequently, the computation involves repeated solution of shortest path
problems (with nonnegative edge lengths). The running time is
O(IV[zlog(]V|)(S(|E|,|V|))), where S(|E|,|V]) denotes the running time of the
subroutine used for the single source shortest path subproblems. If the
Fredman-Tarjan [6] algorithm is used as the subroutine, then the overall bound
on the running time is 0(|V|210g(lv|)(|E]+]V|log(lVl)). This is better than

the bound on SCALE, or any other implementation of MCNF2 using a known



..4,'7_

maximum flow subroutine, for all ranges of density of the graph, so long as
0(A) is larger than 0(log(|V]|)). On problem domains such as those
investigated in the main experiment here, the bound for SCALE is O(|V[4A) and
the bound for the Galil-Tardos algorithm is 0([V|4log(|V[)); furthermore, A
and log(|V]|) have approximately the same (small) range of values. We have
seen that SCALE's observed running times within these distributions are much
faster than the worst-case bound predicts, they are close to the square root
of the bound. It would be interesting to see how the Galil-Tardos algorithm
performs on these, and other, problems.

A reference in Tardos [29] brought to our attention a 1980 paper by Hans
Rbck [R6]. Rbck also exposits the variation on the Edmonds—-Karp scaling
algorithm that scales costs rather than right-hand-sides, and his suggested
implementation also has an O([V|4A) bound on running time. The direct
approach of doing what we have called the simple perturbations one-at-a-time
gives a bound of O(|E||V|3A). Within each of the A iterations RBck
aggregates these simple edge perturbations into blocks of edges with a common
tail. He then perturbs the entire block at once and solves the perturbed
problem by a maximum flow computation. This gives a bound on the work per
iteration of the same order as for our approach. However, for the reasons
given at the end of Section 4, it appears to be computationally attractive to
aggregate all of the simple perturbations at each iteration. Indeed, very
early in the development of SCALE, we tried on several problems the same
aggregation that RUck describes. On those problems it was slower than
aggregating everything.

Subsequent to Tardos's discovery of the first strongly polynomial
minimum cost flow algorithm, Jim Orlin [24] gave others, using right-hand—
side scaling. An especially interesting feature of Orlin’s approach is that
it produces strongly polynomial algorithms that are specializations of the
dual network simplex method. A little earlier he had given a dual network
simplex algorithm that was polynomial, but not strongly [23].

Ikura and Nemhauser [16] have reported on computational experiments with
a polynomial (not strongly) algorithm for the transportation problem. Their
algorithm, originally presented in [15], uses right-hand-side scaling, and
solves the subproblems by a dual-simplex method. They report substantial
savings in execution time from the use of scaling within their algorithm.

They also compare execution times of their algorithm and NETFLO, a primal



—-48~

network simplex code developed by Kennington and Helgason (see [18]), on 60
transportation problems with 5000-24000 edges. The test problems were
generated by NETGEN. Ikura and Nemhauser report that their dual algorithm is
competitive with NETFLO on small problems but 30-60% slower on large ones.

Hung and Murphy [14] have conducted computational tests on uncapacitated
transportation problems of an implementation of the Edmonds-Karp (right-hand-
side) scaling algorithm. They report that it ran two to eight times slower
than GNET.

The broadest investigation yet of data scaling for network algorithms
(not only for network flows) is in the paper [9] by Harold Gabow. Gabow
examines a variety of problems, including maximum flow and minimum cost flow
with all capacities equal to one. He shows that when N, the largest
magnitude in the data, is of the same order as |V|, then data scaling
enables one to improve on the asymptotic worst-case behavior of the best

“known algorithms for: the assignment problem; single—source shortest paths in
networks with no negative length directed cycle; and minimum cost flow with
unit capacities. In [10] Gabow reported on computational comparisons of his
scaling algorithm for the assignment problem and the Hungarian (primal-dual)
algorithm. The observed behavior was consistent with the improvement in the
worst—-case bound achieved by scaling.

Gabow's suggestion of using capacity scaling to solve maximum flow
problems is a most intriguing one. He presents a simple algorithm with a
bound O(C|V||E| log(|V|)). This approach would be most natural within the
subroutine MAXFLOW of our minimum cost network flow algorithm. The use of
scaling at that more fundamental level of the computation has a natural
esthetic appeal. Moreover, his approach might be able to take advantage of
the sparsity of the maximum flow subproblems that arise in the later
iterations of our algorithm, without imposing data structures with too much

overhead for a problem with small |V]|, but large |E]|.

8. Conclusions

The principal conclusion of this study is that scaling algorithms are
worthy of further consideration as computational tools for the solution of
network flow problems. The presumption that scaling-based algorithms would
be non-competitive, even within restricted classes of flow problems, was ill-

founded.



—49~

To be sure, we have not shown that SCALE is computationally faster than
RNET on any broad class of problems. (Although this appears to be the case
for the class of large dense NETGEN problems discussed in Section 6.)
Moreover, SCALE's memory requirements could be problematic. However, its
relative performance so far surpasses expectations, that it seems to argue
for further study of other scaling-based algorithms.

There are two additional conclusions that emerged from this study - one
concerning the predictability of computational behavior within the problem
distributions studied, and another concerning unpredictability across problem
distributions. Although these are secondary to the original purpose of the
study, they may have broader implications for computational mathematical
programming than the main conclusion concerning the potential efficacy of
data scaling.



~50-

APPENDIX

Problem Generators

Two pseudo-random minimum cost network flow problem generators were used
in conducting the tests reported on here. One generator, NETGEN [19], has
been used widely to benchmark codes. This generator has several parameters
which determine the structure of the problems generated. The user specifies
the following. '

- the number of supply, demand, transshipment supply, transshipment
demand, and pure transshipment vertices in the problem. These numbers

can be determined from the input parameters srcs, sink, tsrcs, tsnk and

nodes.
- the number of edges (approximately) in the generated graph. This
number is input as the value of the parameter arcs.
- the amount of flow to be sent from supply to demand vertices. This
number is input as the value of the parameter supply.
- a range on the upper bounds. These numbers are input as values of the
parameters max and min.
- a percentage on the number of edges having the maximum upper bound.
This number is input as the value of the parameter pcap.
NETGEN then generates a feasible problem by, essentially, creating a tree that
will be a feasible basis. The edges in this ''skeleton' tree are capacitated
in such a way that the specified amount of flow may be sent from the supplies
to the demands using only edges in the tree. (Note that this implies that
there are feasible solutions to these problems in which a small percentage of
the edges in the graph are at their upper bounds.) A user-specified
percentage of the tree edges, pcst, are set to the highest cost - presumably
so that the initial tree can be made to resemble an artificial basis. The
second phase of the procedure adds edges so that the total number of edges is
approximately that specified in the input parameter arcs.

In addition to NETGEN, a capacitated transportation problem generator
called CAPT was used to generate problems. Like NETGEN, CAPT first generates
a preliminary flow, which will be feasible in the problem being generated.
Unlike NETGEN, this preliminary solution is not basic; it is likely to be an

interior point of the generated network flow polyhedron. Three different



-51—

methods are used to generate this feasible flow, each is based on a symmetry
condition. In order to discuss the methods used we introduce the following
notation.

Let S and D denote the set of supply and demand vertices in the
generated graph, G = (V,E) , so that V=S UDU §s,s'§ and E =
$(v,v'): VES , v' ED} U §(s,v): vES}Ui(v',s"): v'E D? U $(s',s)$.
Edges of the form (v,v') will be called transportation edges, edges of the
form (s,v) will be called supply edges; edges of the form (v',s') will be
called demand edges.

One way to generate a preliminary feasible flow is to choose a point
uniformly in the unit simplex having a coordinate for each transportation
edge. The coordinates of the point then give the proportion of the total
flow which is to be allocated to this edge in the preliminary feasible flow.
The sum of the preliminary flow values corresponding to the transportation
edges incident with a particular supply vertex gives the value of the
preliminary flow on the corresponding supply edge. The preliminary flows on
demand edges are computed in a similar manner. Problem distributions based

on this approach will be called edge symmetric. Distribution #1 in the main

experiment is edge symmetric.

Once the preliminary flow is fixed, the capacitated transportation
problem is determined by perturbing the values of the preliminary flow to
obtain upper bounds for the supply and transportation edges, and lower bounds
for the demand edges. The method used here is to add or subtract an amount
of flow.chosen uniformly from a user-specified interval. This is referred to
as an additive perturbation. The generator also has the capability to use
instead a multiplicative perturbation on the supply and demand edges.
Multiplicative perturbations were only used in the first preliminary phase of
this experiment.

Problem generation is controlled by several parameters.' The numbers of

sources and sinks are specified and will be referred to as NSRC and NSNK,

respectively. In the experiments reported on here, NSRC and NSNK have been
set equal. The average total amount of flow through each source in the

preliminary flow is chosen uniformly from 1 to FLOW. Another input

parameter, INT, is used to specify the upper bound on the magnitude of the

additive perturbations to the preliminary flow. The fraction of INT which

serves as an upper bound on the perturbation of transportation edges is given



-5 -

by FRAC. Individual perturbations are chosen uniformly from O to the upper
bound. Finally, costs are chosen uniformly from the integers between 0 and
ZBIT—l. The parameter A in the models of execution time is shorthand for

BIT. Table A.1 gives the parameter ranges used in distribution #1.

Table A.1

CAPT Parameter Ranges for Distribution #1

PARAMETER RANGE

NSRC = NSNK [50,250]

FLOW 100-[1,NSRC]

INT [1,FLO¥]-0.05

FRAC [1,100]/(100-NSRC-0.05)
BIT [4,10]

[p,q] denotes an integer chosen uniformly between p and gq.

As a consequence of these choices, the expected flow through the network is
just over 49 |E|. The expected excesses of total supply over total demand,
and total capacity over total demand, are a little more than 2.5%, and 14%,
respectively. This can be expected to result in rather tightly constrained
problems from CAPT, while NETGEN tends to produce very loosely constrained
problems.

Our preliminary tests indicated that RNET might be adversely sensitive
to loosening constraints in CAPT generated problems, particularly through
increase of the CAPT parameter FRAC. This phenomenon might be related to
RNET's worse performance on the dense NETGEN problems than on the CAPT
problems.

The selection of an appropriate range of values for BIT (= A ) was given
careful consideration. Computational experiments concerning network flows
often choose costs uniformly on the integers between 0 and 100, which
corresponds, approximately, to A = 7. By selecting A wuniformly in
[4,10] n Z, we have A =7 on average, but we also get to put SCALE through
its paces in problems with A as high as ten and expected average cost in
excess of 500, and we get to evaluate how SCALE execution times vary with
A. One can easily imagine interesting problems where some of the edge costs
exceed 210. From a practical standpoint it is not really max log(la(e)l)
that determines A, it is the number of significant bits in the vector a,

since a could be rescaled if the number of significant bits were less than



-53—

max log(|a(e)|). One can still imagine interesting and practically important
problems with more than ten significant bits, perhaps problems with |E|
extremely large and with large ranges of values on the capacities. However,
since we are focusing on a restricted problem distribution anyway,
A E [4,10] seemed reasonable.

Distributions #2 and #3 are generated in a manner similar to
distribution #1, with a different mechanism for constructing the preliminary
interior solution. One method is to first select the flow on a particular
supply edge uniformly from some prespecified range. This flow is then
distributed among the demand vertices by choosing a point uniformly in the
unit simplex having a coordinate for each demand vertex. The proportion of
the supply going to each sink is then given by the value of the corresponding
coordinate. The flow on a demand edge is the sum of the flows on the
transportation edges incident with the corresponding demand vertex. Unlike
the first method, the flows generated by this procedure are not symmetric
with respect to supplies and demands. That is, the joint distribution of the
flows on the supply edges is different from the joint distribution of the
flows on the demand edges. Problem distributions based on this approach will
be called the supply symmetric. Distribution #3 in the main experiment is
supply symmetric. The parameter ranges used are as in Table A.1, except that
the preliminary flow on each supply edge is selected uniformly in the range
50-[1, NSRC].

A related method symmetrizes the flows by first using the supply
symmetric scheme, then using the analogous demand symmetric scheme. The
preliminary flow is the sum of these two flows. Problem distributions based

on this approach will be called vertex symmetric. Distribution #2 in the

main experiment is vertex symmetric.

Acknowledgment
We would like to thank Bob Bechhofer, Tom Santner, and Lionel Weiss for

their valuable advice concerning the statistical analysis, and David Heath
for the use of his program GRAPH for the IBM PC.

This work was first reported as part of the second author's Ph.D.
dissertation [17].



..54_.
Footnotes

1 GNET, copyright 1975, G.H. Bradley, G.G. Brown, and G.W. Graves, see [2].
It should be noted that the GNET code was designed to exploit special
structure. Its particular construction of candidate queues within the
pricing step is well-suited to transportation problems with few sources, but
not to transportation problems with a large number of sources. It is likely
that the running times for GNET on the test problems in our main experiment
could be improved somewhat by a simple alteration of the pricing routine.
However it is unlikely that such a simple alteration would curb the observed
rate of growth of execution times with problem size.

? RNET, version no. 3.61, copyright 1977, M.D. Grigoriadis and T. Hsu, see

(13D).



55—
REFERENCES

1. R.G. Bland and D.L. Jensen, '"A report on the computational behavior of a
polynomial-time network flow algorithm', Cornell Univ. School of OR/IE
Tech. Report No. 661 (1985).

2. G.H. Bradley, G.G. Brown and G.W. Graves, 'Design and implementation of
large scale primal transshipment algorithms', Management Science 24,1
(1977) 1-28.

3. N.R. Draper and H. Smith, Applied regression analysis, second edition,
(Wiley, New York, 1981).

4. J. Edmonds and R.M. Karp, '""Theoretical improvements in algorithmic
efficiency for network flow problems', J. ACM 19,2 (197%) R48-264.

5. L.R. Ford, Jr. and D.R. Fulkerson, Flows in networks (Princeton
University Press, Princeton, N.J. 1962).

6. M.L. Fredman and R.E. Tarjan, 'Fibonacci heaps and their uses'',in Proc.
25th Symposium on the Foundations of Computer Science (1984) 338-346.

7. S. Fujishige, "An O(m310g n) capacity-rounding algorithm for the minimum-
cost circulation problem: a dual framework for the Tardos algorithm",
Report no. 253, University of Tsukuba, Japan (1983).

8. D.R. Fulkerson, ""An out-of-kilter algorithm for minimal cost flow
problems', J. SIAM 9,1 (1961) 18-27.

9. H.N. Gabow, ''Scaling algorithms for network problems', J. Computer and
Systems Science 31,2 (1985) 148-168.

10. H.N. Gabow, '"On the theoretic and practical efficiency of scaling
algorithms for network problems', presented at the Fall 1984 ORSA/TIMS
meeting, Dallas.

11. 7Z. Galil and E. Tardos, '"An O(nzlog n(m+nlog n)) minimum cost flow
algorithm'', MSRI report no. 04518-86 (1986).

12. F. Glover, D. Karney, and D. Klingman, "Implementation and computational
comparisons of primal, dual and primal-dual computer codes for minimum
cost network flow problems', Networks 4 (1974) 191-212.

13. M.D. Grigoriadis and T. Hsu, "RNET - The Rutgers minimum-cost network
flow subroutines', SIGMAP Bulletin of the ACM 26 (1979) 17-18; see also
M.D. Grigoriadis, '""An efficient implementation of the network simplex
method', Math. Programming Study 26, eds: G. Gallo and C. Sandi (1986)
83-111.

14. M.S. Hung and C. Murphy, ''Implementation of Edmonds and Karp's scaling
algorithm', presented at the Spring 1984 ORSA/TIMS meeting, San
Francisco.



15.

16.

17.

18.

19.

<0.

_1.

RR.

R3.

4.

R5.

R6.

R7.

°8.

29.

30.

-56-

Y. Ikura and G.L. Nemhauser, "A polynomial-time dual simplex algorithm for
the transportation problem'’, SORIE Technical Report No. 602, Cornell
University (1983).

Y. Ikura and G.L. Nemhauser, ''Computational experience with a polynomial-
time dual simplex algorithm for the transportation problem', SORIE
Technical Report No. 653, Cornell University (1985).

D.L. Jensen, '"Coloring and duality: combinatorial augmentation methods'',
Dissertation, Cornell University (Ithaca, New York 1985).

J.L. Kennington and R.V. Helgason, Algorithms for network programming
(Wiley and Sons, New York, 1980).

D. Klingman, A. Napier, and J. Stutz, ""NETGEN: a program for generating
large-scale assignment, transportation, and minimum cost network flow
problems', Management Science 20,5 (1974) 814-821.

E.L. Lawler, Combinatorial optimization: networks and matroids, (Holt-—
Rinehart-Winston, New York 1976).

V.M. Malhotra, M. Kumar, and S.N. Maheshwari, '"An 0([V3]) algorithm for
finding maximum flows in networks'', Information Processing Letters, 7,6
(1978) R277-278.

G.J. Minty, ""Monotone networks'', Proc. Roy. Soc. London, Ser. A 257(1960)
194-212.

J.B. Orlin, "On the simplex algorithm for networks and generalized
networks'', to appear in Mathematical Programming.

J.B. Orlin, '"'Genuinely polynomial simplex and non-simplex algorithms for
the minimum cost flow problem'', Sloan Working Paper No. 1615-84, M.I.T.
(1984).

C.H. Papadimitriou and K. Stieglitz, Combinatorial optimization:
algorithms and complexity (Prentice-Hall, Englewood Cliffs, New Jersey,
1982).

H. Rbck, '""Scaling techniques for minimal cost network flows', in: V.
Page, ed., Discrete structures and algorithms (Carl Hansen, Munich,
1980).

D. Sleator, "An O0(n m log n) algorithm for maximum network flow',
Dissertation., Tech. Report STAN-CS-80-831, Stanford University (1980).

D. Sleator and R.E. Tarjan, '""A data structure for dynamic trees', J.
Computer and System Sciences.

E. Tardos, '""A strongly polynomial minimum cost circulation algorithm'", to
appear in Combinatorica.

R.E. Tarjan, '""A simple version of Karzanov's blocking flow algorithm',
0.R. Letters 2,6 (1984) 265-268.



	TR000661_part1.pdf
	TR000661_part2.pdf

