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Abstract

We consider a multi-period, two level product-component configuration where
many of the components are common to several products. The demands for
the products in any period are stochastic and independent. Our objective is to
determine the component quantities that are to be ordered every period that
satisfy a pre-specified service level placed jointly on the products. We consider
three approximations and compare the quality of solutions obtained. Our focus
is on quickly solving medium to large scale problems. Through a large simula-
tion study, we demonstrate the performance and behavior of our algorithms as
well as provide insights into the benefits of commonality for complex product
structures.

Key WorDs: COMMONALITY, INVENTORY, SERVICE CONSTRAINT, APPROX-

IMATIONS.

*IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
tUniversity of Wisconsin, Madison, WI 53706

tCornell University, Ithaca, NY 14850

§Carnegie Mellon University, Pittsburgh, PA 15213



1 Introduction

The management of component inventories in assemble-to-order environments poses
several challenges. The systems we are concerned with are characterized by long
procurement lead times for components which are subsequently used in the assembly
of several different finished end products. The time required for assembly is negligible

compared to the long procurement lead times.

We assume the system operates in the following manner. On a periodic basis,
the procurement of components is decided and orders are placed several months in
advance of their consumption based on forecasts of stochastic demand for end prod-
ucts. These components remain in a component inventory until they are required for
assembly. Firm customer orders arrive two to five days before their due date and
are satisfied in a make-to-order (or assemble-to-order) fashion. It is assumed that no
finished goods inventory is maintained. Once the demand is known, the allocation of
components to assembled end products is made over a two day planning horizon. The
assembly operation has sufficient capacity to fill customer orders, and thus customer
service depends solely on the availability of components. We further assume that
there are no fixed ordering costs or fixed assembly setup costs which affect inventory
and production decisions.

The system described is common in the computer industry and in other lean
manufacturing environments where the product assembly times are short and the
component procurement times are long. For example, in electronic card assembly
and test plants, the time for assembly and test operations is typically one to two
weeks, while the time for procuring high-technology integrated circuits is typically
two to three months. In computer assembly plants, the time for assembly and test is
typically one or two days, while the time for procuring high-technology subassemblies,
such as hard disks, may be longer than one month. In these examples, the majority

of the value of the product is in its componentry, and thus warrants careful planning.



The demand for the end products is stochastic and highly non-stationary due to
the short customer visibility horizons of two to five days. In most cases, these horizons

have been shortened as a result of ongoing Just-In-Time (JIT) efforts.

Due to the costs associated with maintaining inventories and to the risk of obsoles-
cence, it is desirable to keep component inventories as low as possible. As depicted in
Figure 1, components (shown as circles) are combined in different quantities (shown
on arcs) according to a Bill-of-Material (BOM) structure to produce a wide variety of
end products (shown as squares). Typically, there is a high degree of commonality of
components among the end products. The demand for components may be translated
from the end product demand through the BOM structure. Thus, component demand
arrives in sets and coordinated planning is essential to achieve a high level of service
at the end product level. For an end product, all required components must be ready
before assembly begins. Furthermore, because it is difficult to disassemble a product
once it is assembled in practice, we will assume that a component is consumed once

it has been used in the assembly of an end product.
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Figure 1: A Three-Product, Five-Component Example BOM Structure



Current Materials Requirements Planning (MRP) approaches are unsuitable for
controlling operations of this type since these approaches consider only deterministic
end product demand. Ad-hoc procedures to deal with the randomness of demands
have lead to poor plant performance since they are unable to effectively model the
demand correlation among components. Moreover, the nervousness of the MRP sys-
tem may lead to excessive component inventories without the benefit of high service
levels for the end products. Therefore, an alternative planning method for dependent
demand components is necessary which is suitable for very large problems and which
considers both the stochastic nature of demand as well as the commonality of the
components. The objective of this paper is to provide such a method to determine
base stock levels of components in large industrial settings.

The paper is organized as follows. In section 2 we review the relevant literature.
In section 3 we formulate the problem of interest, review available methods for exact
solutions, and make some observations that lead to tractable approximations. In sec-
tion 4 we describe three approximations and demonstrate the feasibility of solutions
obtained from these approximations to the original problem. In section 5 we provide
the solution methods to the approximations. In section 6 some refinements to the so-
lutions are proposed. In section 7 we solve a real-sized problem as well as other large
problems to provide insight into the effectiveness of our approach and into the rela-
tionships between commonality and inventory costs. In section 8 we offer concluding

remarks. The Appendix contains technical details of one of the approximations.

2 Literature Review

Research thus far in this area has dealt with simple product structures, stationary
demands and small numbers of products and components, and is restricted to a single
period (Baker (1985), Collier (1981), Collier (1982), Gerchak and Henig (1986)). Also
see McClain, et al. (1984) and Gerchak and Henig (1989). These papers have provided
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insight into the trade-offs between standardization and price, proofs of the benefits
of coordinated component stocking, and solution methods for special demand distri-
butions and for small sized problems. Baker, Magazine, and Nuttle (1986) consider
a two-product, three-component system whose demands are uniformly distributed.
Each product requires one unique component and one common component. All three
of the components have the same price and one of each is used to make the re-
spective products. The authors show that planning for the common component in
a coordinated manner reduces the overall inventory costs. Gerchak, Magazine, and
Gamble (1988) extended this work further by considering a more general product
structure in which n products have a general joint probability distribution describing
demand. Each product requires one unique component with price p;, and one com-
mon component which is common to all n products. The benefit of commonality was
demonstrated but no algorithm or procedure to determine the component amounts
was derived. The more recent work of Eynan and Rosenblatt (1991) considers two
products whose demands are uniformly distributed, with common components cost-
ing more than the components they replace. They provide conditions when it is cost
effective to replace unique components with more expensive common components.
This work is also restricted to the case where one of each component is required for
assembly. A different approach is taken in Kannan, Mount, and Tayur (1995) where a
randomized algorithm is developed that comes within € of the optimal cost with a high
probability in polynomial time for the general problem: n final end products with m
components where u;; is the number of component 1 used in product j, and the end
product demands have a joint probability distribution that is log-concave. Problems
with up to 10 components can be solved using this methodology. In Swaminathan
and Tayur (1998), a multi-period model with backorder costs rather than service level
constraints is developed and analyzed. The need for theoretical exactness in the solu-

tion in previous papers has precluded developing implementable approximations for



industrial size problems (over 50 end products and over 100 components), which is

the main motivation for our work.

3 Problem Formulation

In the literature, standard discrete time inventory models use backorder costs to
penalize inventory shortages and holding costs to penalize excess inventory. The
focus in that methodology is to prove the optimality of and computation of base stock
policies, or (s, 5) policies in the presence of fixed ordering costs. These policies assume
that any desired amount of inventory can be procured within a predetermined lead
time. However, the situation we are faced with here is a two-stage decision process.

First, one has to select the amounts of components to be delivered well in advance.
Once these quantities have been determined and the orders placed, the amounts that
will be delivered are fixed and dynamic ordering after the occurrence of demands is not
possible. Second, after the demand is realized, an allocation decision is made in which
components are allocated to the assembly of end products. These decisions may be
determined with a linear program subject to the following constraints. The assembly
operation has a service level constraint in which they must meet all backorders from
the previous period plus a pre-specified fraction of the current demand for all products
with a given probability. These probabilities may be stipulated by management. This
type of aggregate service specification is preferred by the managers we interviewed.
Only one probability needs to be specified while the service levels of the different
products can be optionally differentiated through pre-specified fractions.

In this setting, the decisions of primary interest are the amounts of each component
to be ordered in each time period of the planning horizon. The goal is to meet the
service level for the end products at minimum cost. The decision model is re-run in
each time period on a rolling horizon basis. In the development of the model, we will

use the following notation:
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periods in the planning horizon;

procurement lead time for all components;
number of products;

number of components;

index for time periods;

index for products;

index for components;

price of one unit of component i;

price of one unit of product j;

holding cost per unit per period of component ¢;
number of components 7 needed in one unit of product j;

probability of satisfying outstanding backorders and the desired fraction
of the current demand for all products, in period ¢. The service level

target as specified by management;

management-specified fraction of demand of product j in period ¢ that

should be met in period ¢;
cumulative amount of product j satisfying demand through period ¢;

cumulative amount of component ¢ delivered from supplier through

period ¢ (decision variable);
cumulative demand for product j through period ¢ (random variable);
cumulative demand for component ¢ through time ¢ (random variable);

cumulative amount of product j produced through period ¢ (decision

variable);



K a variable taking a value of 1 if the aggregate service objective is met

in period ¢, and taking a value less than one otherwise;

dit cumulative required amount of product j necessary to satisfy the pre-

determined fraction of end product demand, y’¢, through time ¢;

d;s cumulative required amount of component 7 necessary to satisfy the
pre-determined fraction of end product demands, y’*, for all j through

time ¢.

We assume that the end product demand in period ¢, (d’t — d>'=1!), is observed at
the beginning of time period ¢. Thereafter, s’ and ¢; .1, are chosen for all j and all
2, where [ > 1 is the procurement lead time for all components. The case where lead
times are component-specific will not be covered in this paper. The variables must
be non-anticipatory. That is, g;; is a function of d’* for all s < t — L, but not for
s>t— L. Also, s’ is a function of d&’* for s < ¢, but not for s > ¢.

The cumulative demand for component ¢ through time period ¢ is defined as,
dit = Zui]‘dﬁ.
J

Even if the demands for finished products are independent, the component-level
demands (dit, 1 < ¢ < n.) may be highly correlated. Let di* denote the cumulative
total requirement for product 7 through time ¢ to achieve the service level target, X;,

in period t. That is, we define,
dit = git—1 i yjt ) (dﬁ _ dj’t_l), )

Similarly, let d;; denote the cumulative total requirement for component ¢ through

time ¢t to achieve the service level constraint in period ¢. Thus,
Czit = E uijczﬁ. (2)
J
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The target service level, as specified by management, is expressed as,
Pr{s’ > d'' Vj} > X,. (3)

We formulate the component procurement and production problem as follows:

T ne

(P) ming, K {Z > pilqie — i uijsﬁ>} (4)

t=1:1=1

st Pr{gy>dy Vi} > X, Wi (5)
s> (1 — K)s ™ 4 K, - d Vvt (6)
st < d VGV (7)
it Z Z Usj -+ Sﬁ Vi Vi (8)

7=1
Git—1 < Gt Vi Vi (9)
s < STtV (10)
L STy ght]
Ky =min {1, d Tz s Uy, (11)
Z 2oLy wig(dit — shi71)
Gty s > 0 Vi V]Vt (12)

Equation (5) represents the aggregate service level constraint for period ¢ in which
sufficient components are required to satisfy the demand backlog and pre-specified
fractions (y’') of the current period’s demand for all products with probability X;.
The demand fraction for different products (y’*) may be different depending on mar-
keting or other considerations and may vary with time. Equation (6) states that for
each product, if K; = 1, the production of product j in period ¢ should cover the
backlog and the management specified fraction of demand. Equation (7) ensures that
no end products are assembled in a given period that are not sold immediately. Recall
that we assume that in the assembly stage, the capacity is sufficiently large so that
there is no need to assemble in advance for future periods. Equation (8) expresses the
manner in which component availability constrains production. Equations (9) and

(10) state that order quantities and production quantities are non-negative. Equation
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(11) requires K; = 1 if possible, but allows K} to be less than one to make the formu-
lation feasible for any demand realizations and ordering decisions that render K; = 1
infeasible. From equations (7), (8), and (10), both the numerator and denominator
of the ratio in (11) are non-negative. In the evaluation of (11), we will adopt the
convention 0/0 = oo. Under equations (6) and (11), the two versions of the service
constraint, (3) and (5), are equivalent. The decision variables ¢;; and s’ are non-
negative. The objective function is the expected cumulative inventory investment
cost in components over T' periods.

The amount of computational effort required to solve stochastic programming
problems of this level of complexity — an objective function of the expected value type,
linear constraints, correlated demands d;; in the chance constraint — is prohibitive.
As stated in Wets (1989), the number of points required in a ten dimensional case
to compute the objective function value and the probability constraint accurately
exceeds 10'° points. Even problems with an objective function that is of the type
S, p'q’ can be solved only for a small number of dimensions. Komaromi (1986)
provides a dual method to solve a problem of this type; however, for the case when the
random variables are correlated, only a Monte-Carlo type approximation is possible to
compute the gradients as well as the probabilistic constraint value. The computational
expense is large mainly because the gradient at a point is a an n — 1 dimensional

conditional distribution. Namely, it is,

dF(y1, ...y,
( 1dy ) — F(ylv"'7yi—17yi+17-"7yn|yi)f(yi)-

This conditional probability is not separable due to dependence.

Other methods of chance constrained programming that rely on deterministic
equivalents require the probabilistic constraints to be separable. Only the normal
and multi-variate random variable cases have been successfully solved. See Kolbin
(1977) for an extensive survey of methods and applications. For many successful

applications of this approach to lower dimensional problems, see Prekopa (1973).
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Our setting is such that the demand variables are not necessarily normal or gamma,
and the number of dimensions is at least 50. Thus, we turn to approximations to

solve (P) which are based on the following useful observations.

1. SETTING PRODUCTION VARIABLES: For every given set of monotone ¢;, the
selection of s/! for a given ¢ is a linear programming problem that can be solved

after the demands up to and including period ¢ have been observed.

2. ELIMINATING PRODUCTION VARIABLES: If we approximate the objective func-
tion by a function of a form that is independent of s7*, then the decisions ¢;; can
be made without considering the constraints that contain s’*. Consequently, all

constraints in (P) that involve s/ may be dropped.

3. TIME PERIOD SEPARABILITY: If we relax (9), we have separability by time
period. The objective function may then be approximated by using component-

level demands as,
Ge(qir, 1 <1 <n.)=FE {Zpi(qn‘ - dit)+} : (13)
i=1
These observations lead to the following simpler problem:

(Pt) miHQit Gt(qihl <1< nc) (14)

st Pr{gq > dy Vi} > X, (15)

For each t, (P;) is solved for the component decisions (g, 1 < ¢ < n.). If (9) fails,
then the cumulative component order quantities ¢;; may be adjusted upwards in later
time periods. In all of our heuristics, our strategy will be to use the time period
separability approximation and to frequently eliminate the production variables.
One standard approach to solving stochastic programming problems such as (P)
and (P;) is to approximate the stochastic demand vector (c?it,l < < n) by a

discrete random variable. As we mentioned earlier, Wets (1989) indicates that 10
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vectors would be required in the case of 10 components. Since our objective is to
solve problems having between 50 and 200 components, this approach is impractical

for solving (P;). Our personal experience confirms this conclusion.

On the other hand, any practical solution to (P) or (P;) will require the evalutation
of the left-hand side of the service level constraint (5). Suppose that the stochastic
demand vector (czﬁ,l < j < ny) has a distribution that is uniform within the unit
cube. Then the service constraint (3) would be equivalent to finding the volume of
a polyhedron. The decision version of this problem (is the volume greater than, say,
V) is NP-Hard. See Dyer and Frieze (1988) for details. The best algorithms for this
problem are all Monte-Carlo or pseudo-Monte-Carlo algorithms which can be viewed
as approximating the stochastic demand vector (czﬁ, 1 < j <n,) by a discrete random

variable (see Gritzmann and Klee (1994)).

Consequently, whereas Monte-Carlo type algorithms seem hopeless for the direct
solution of (F;), they seem to be a necessary element of any practical solution to ()
since they represent the best currently available approach to evaluating the service
constraint (3) or (5) accurately. The curse of dimensionality plays a key role here.
Since (F;) is a 50-dimensional optimization problem for a 50 component problem, the
problem of evaluating (3) or (5) for a given set of component order quantities can
be viewed as the problem of evaluating the expectation of a one-dimensional random

variable which takes on values of either 0 or 1.

These observations are crucial in defining the approach that we have taken to the
problem. Our strategy is to develop analytical approaches for computing component
order quantities and to use Monte-Carlo techniques to adapt the order quantities to

satisfy the service constraint.
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4 Approximations to (P)

In this section we discuss heuristics and present three tractable approximations for
solving (P).

After several discussions, managers and forecasters at an IBM facility proposed
the following model as a vehicle for quantifying the variance of the demand for the
finished products. Demand is modeled as a symmetric piecewise-linear distribution,
called a “trapezoidal distribution”, as illustrated in Figure 2. For this distribution,
the value of the mean of the density is three times as large as the value at the extremes.
Managers specify the mean and the range of the demand distribution. In most of the
computations, a Normal approximation with the same mean and variance was used.
Based on discussions with the managers, a Normal approximation to the distribution

would be acceptable.

(I) THE ORDER BY PRODUCT APPROXIMATION (OBP): In this approach, appro-
priate stock levels, ¢’%, for each product j are computed separately. The product stock
levels are then translated into component stock levels, g;;. This approach ignores the
benefits of risk pooling that arise when a component can be used in several different
products. Using this approach and by relaxing (10), problem (P) may be expressed
as:

T 7mp

minqﬁ {EZ}? sﬁ }
t=1 j=1
st Pr{¢ > &7t Vit > Xi, Wi,

solved separately for each period ¢. This may be rewritten as,

T np
(P —OBP;) ming: {ZZp — &t }

t=1j5=1

st Pr{¢" > d"Vj} > X,, Vi, (16)
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where (a)* = maz(0,a). Since the demands for the final product are assumed to be
independent, the joint probability term in (16) separates into the product of individ-
ual probability terms. Let Fit and fﬁ be the cumulative distribution and density
functions of czﬁ, respectively. Taking logarithms of (18) we obtain,
ilogﬁﬁ(qﬁ) —logX; > 0. (17)
j=1
(P — OBPF,) is a convex program if and only if fﬁ/ﬁﬁ is decreasing. This property
is satisfied for the Normal distribution among others. Let F’! be the cumulative

distribution function of d’*. The Kuhn-Tucker conditions for (P — OBP,) are:

P Py v

th(qjt) At

M(D log P (¢7) —logX;) = 0.

i=1

These equations are easily solved by searching over A;. For a given JX;, the order

quantities are obtained from,

qit = Z uijqjt-
The following theorem implies that if commonality is not exploited, the result is
a feasible solution that has higher inventory costs. This is the general form of the
results obtained by Baker, Magazine, and Nuttle (1986) and Gerchak, Magazine, and
Gamble (1988). The proof is straightforward and is omitted.

Theorem 1 [f (9) and (10) are relaxed, then any solution thal is feasible for (P —
OBP,) is feasible for (P).

(II) THE ORDER BY COMPONENT APPROXIMATION (OBC): In this approxima-
tion, the product structure is suppressed; however, its effects are partially captured
in the probability term and in the objective function. The objective function is ap-

proximated using component-level demands as,
Gi(gin, 1 <0 <o) = E{XZE pi(gie — die) ™} (18)
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For each time period ¢, we formulate the problem,

(P —OBCy) ming, Gi(qi,1 <1< nc) (19)

st Pr{qe > dy Vi} > X;. (20)

Recall that the joint probability term in (5) and its gradient are hard to obtain for
dependent random variables. Thus, we will approximate the probability term by a
product of terms (each term from a different component) which results in a tractable
problem. Fortunately, the solution of this approximation is feasible for (P — OBC}).

This can be shown using the following result with Y; = —dﬁ.

Theorem 2 (Tong (1980)) If random variables Y;, 1 = 1,..., N are associated, then
Pr{Y; > z;,Vi} > TIY, Pr{Y; > z:}.
After taking logarithms, (20) becomes,

ilogﬁﬁ(qﬁ) —logX, > 0, (21)
where Fﬁ is the marginal distribution function of a?ﬁ.

The LHS of (21) is concave if logl}i(qﬁ) is concave, i.e., if ]}i(qﬁ) is log-concave,
where ]}i(qﬁ) =1- Fl(qﬁ) A class of distributions that satisfy this is the PF,
class, the Polya-frequency functions of order two. Example distributions in the PF}
class are the Normal distribution and the Erlang distribution. Thus, the lower bound
approximation to (P — OBCY) is a convex program if we assume log-concave distri-
butions of end product demands, since positive linear combinations of PF, random
variables are in PF; (Keilson and Sumita (1982)).

The Kuhn-Tucker conditions for (P — O BC}) are similar to those in the Order by
Product approximation, as is the solution method.

The Order by Product (OBP) and Order by Component (OBC) strategies can
be thought of as general approaches that are relatively easy to adopt. Both of the

algorithms described above require optimization across families of components or
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products, which may or may not be done properly in practice. Both are based on
conservative approximations so both approaches will systematically use too much

inventory and are likely to exceed the service level target.

(IIT) THE CLARK APPROXIMATION (CL): The third approximation to (P) approx-
imates the probability in (5) and its derivatives with respect to ¢;; without assuming
independence among the component demands. This is done by assuming the demands
are Normally distributed and by using results from Clark (1960). The required com-
putations are messy but efficient, and the details are given in the Appendix. We then
minimize (19) subject to our approximation to (5). This is done by dualizing (5) and
using subgradient optimization to minimize the Lagrangian.

Unfortunately, no analogue to Theorems 1 and 2 exists for the Clark approxima-
tion. However in all of our computational tests, the Clark approximation has been

overly optimistic in its expected service levels for a given stocking decision.

5 Extending the Approximations

We have discussed three tractable approximations to (P), all of which allow us to
compute the component order quantities, ¢g;. The actual service levels attained by
these orders are typically very different from the target service level, X;. Both the
OBP and OBC approximations under-estimate the probability of achieving the service
level target, so the constrained optimization algorithms create an excess of inventory.
The situation is reversed with the CL approximation, which over-estimates expected
service levels and consequently results in inadequate inventory levels.

Our approach is based on seeking opportunities for adjusting inventory levels,
computed either by OBC or CL, while meeting the target service level. The first step
simultaneously scales ¢, for all 7. It is accomplished using either of two methods,

direct scaling or A-scaling. After this reduction, there is a possibility that certain
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component inventory levels are in excess with respect to the inventories of other
components. These component inventories are reduced further while still satisfying
the service requirement. We refer to this second step as slack reduction.

To evaluate the service level in (5) we resort to simulation. We generate a random
sample of N product demand vectors (c?ﬁ,l < j <ny,), and use (2) to compute com-
ponent demand vectors (dﬁ,l <1 < n.). Given a set of component order quantities,
we perform direct scaling by multiplying the solution (¢, 1 < ¢ < n.) by a scalar a.
This « is selected so that ag; > czﬁ Vi for [X;N] of the N demand vectors in the
random sample, where [x] is the ceiling of z. This can be done very efficiently.

The A-scaling is done as follows. Note that both the OBC approximation and the
CL approximation use Lagrangian relaxation to solve an optimization problem that
has a single constraint. This is done by writing the constraint in the form f(q;,1 <
i < n.) <0, and by forming the Lagrangian by adding A - f(¢i,1 < ¢ < n.) to the
cost. For each non-negative value of A\, the Lagrangian can be minimized, producing
a solution (g, 1 <1 < mn.). The goal is to select A so that A - f(gi,1 <i <n.) =0.
To perform A-scaling, we alter this approach by selecting A so that the corresponding
solution satisfies ¢;; > czﬁ‘v’z', for [X;N]| of the N demand vectors in the random
sample.

After performing either direct scaling or A-scaling, the slack reduction step is per-
formed as follows. Returning from component space (n. dimensions) to product space
(n, dimensions), we let,

Np
D = {(czﬁ,l <g<ny) g > Zuijazﬁ ‘v’i} ,
j=1
be the set of product demand vectors that can be met from component stock. Compo-
nent stock levels computed by the methods described above usually have components
¢ for which {(c?jt,l < g <ny) g = %uijczﬁ} N D = ¢. This implies that ¢;; can
be further reduced without altering 5_(1)1’ the service level. Although this may be

accomplished using linear programming, we adopt the simpler approach of reducing
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gi+ to the quantity,

max {Euijczﬁ : (czﬁ,l <j<ny) € D} :

=1
We recognize that there is an inherent statistical bias in the scaling and slack
reduction techniques that we have described. In our tests, a sample size of N = 2,500

consistently proved to be large enough to make this bias inconsequential.

6 Computational Experiments

In this section, we present our results based on a large simulation study designed to
examine the performance and behavior of the different algorithms in a wide variety

of scenarios. The algorithms that will be examined are abbreviated and listed as:

e OBP is the ORDER BY PRODUCT APPROXIMATION in which component com-

monality is ignored;
e OBC is the ORDER BY COMPONENT APPROXIMATION;

e OBC-X is the ORDER BY COMPONENT APPROXIMATION with A-scaling and

slack reduction;

e OBC-D is the ORDER BY COMPONENT APPROXIMATION with direct scaling

and slack reduction;
o CL is the CLARK APPROXIMATION;
o CL-X is the CLARK APPROXIMATION with A-scaling and slack reduction;
o CL-D is the CLARK APPROXIMATION with direct scaling and slack reduction.

Based on management preference, a “trapezoidal” probability distribution is used

for the simulation of end product demands. For this distribution, the relative height
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of the density at the mean is three times the height at the minimum and maximum
values. We define the radius of this distribution to be the difference between the
maximum and minimum values. An example of this distribution is shown in Figure
2.

This section is divided into four subsections as follows. First, we describe the
experiment factors of interest which will define a particular system scenario. Second,
the experiments are described. Third, the results of the study are presented. Fourth,
insights are presented into the tradeoff between component commonality and product

simplification.

6.1 Factors Under Study

In attempting to understand the performance and behavior of the different algorithms,
we will alter several system attributes. Descriptions of the the factors of interest are

listed below and the specific factor levels under study are shown in Table 1.
e Number of Components is the number of different components in the system:;

e Number of Products is the number of different end products which are de-

manded;

¢ Product-to-Component Ratio measures the ratio of the number of products
to the number of components. While the problem size may vary, a Product-to-
Component Ratio of 60/42 refers to a system with 60 products and 42 compo-
nents for a total of 60 x 42 = 2520 possible arcs. When varying the Product-to-
Component Ratio (Experiment 3), the total number of possible arcs was fixed

at approximately 2500;

e BOM ratio measures the level of component commonality in the system. It is

defined as the average number of different components per end product divided
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by the total number of components. For example, for a system with 100 prod-
ucts and 50 components, a BOM ratio of 8/50 = 0.16 implies that, on average,

an end product is assembled from 8 different components;

¢ Demand Mean is an interval representing the possible mean demand values
for individual end products. All mean demand values for end products were
generated randomly from this interval. For example, an interval of (900, 1100)
implies that the mean demand value for each end product is generated randomly

from a uniform distribution between 900 and 1100;

e Demand Variability is the radius of an interval with center 1000 representing
the trapezoidal demand distribution for all end products, as shown in Figure
2. An interval of (800,1200) implies that the demand distribution radius is 400

and has minimum 800, mean 1000, and maximum 1200 for all end products;

e Target Service Level, X}, is the overall target service level across all products,

as specified by management;

e Product Service Levels, y’!, are the product-specific target service levels.

6.2 Experiments

We first compare the performance of the different algorithms on a base case (Exper-
iment 1) that is representative in size and in structure of a current bill of materials
(BOM) structure in an IBM plant. In all of the experiments, a single time period is
considered and the usage quantity for all components is precisely one unit for all end
products. The factor levels used in each experiment are summarized in Table 2.
Experiment 1 considers a system in which 50 components are used in the assem-
bly of 50 products. The BOM ratio is set to 8/50 =0.16. While the average number of

components used per end product is 8, the actual number of components used for each
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Factor Under Study Levels

Number of Components 25, 50, 75, 100, 125
Number of Products 25, 50, 75, 100, 125
Product-to-Component Ratio 100/25, 60/42, 50/50, 42/60
BOM Ratio 8/50, 12/50, 16/50, 20/50, 24/50
Demand Mean 1000, +100, 4200, +300, +400
Demand Variability 1000, +170, 4340, 500, 670, +840
Target Overall Service X; 82%, 86%., 90%, 94%, 98%
Product Service Level y’t 95% for all j

Table 1: Factor Levels Under Study

end product is generated randomly from a discrete uniform distribution between 1
and 15, so that the average number of components per end product is 8. The product
demand is generated from a trapezoidal distribution. For this experiment, for all end
products, the mean demand is 1000 and the radius of the distribution is 500. Com-
ponent costs are randomly generated from a uniform distribution between $0.00001
and $1,000. The overall target service level, X;, is set at 90% and the product-specific
service levels, y’t are set at 95% for all products.

In Experiments 2 through 7, all data other than the factor being varied (see
Table 2) is the same as in Experiment 1. In Experiment 2, we vary the problem
size by altering the number of components and products in the systems. The various
problem sizes are represented as (products x components). In Experiment 3, the
product-to-component ratio is varied. In Experiment 4, the BOM ratio is varied.
In Experiment 5, the end product demand means are varied across end products.
An interval such as (1000, 1000) implies that all end product mean demand are equal
to 1000. An interval such as (900, 1100) implies that end product demand means lie

between 900 and 1100, and are not equal across end products. In Experiment 6,
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Experiment Number

Factor Exp 1 Exp 2 Exp3 Exp4 Exp5 Exp6 ExpT7
Components, n. 50 * * 50 50 50 50
Products, n, 50 * * 50 50 50 50
Number of arcs in BOM 2500 * 2500 2500 2500 2500 2500

Product-to-Component Ratio 50/50 Constant * 50/50 50/50 50/50 50/50

BOM Ratio 8/50
Demand Mean 1000
Demand Min/Max Range +500
Target Overall Service, X, 90%

Target Product Service, y’! 95%

8/50  8/50  *  8/50 8/50  8/50
1000 1000 1000  * 1000 1000
£500  4£500 4500 4500  *  £500
90% 90%  90%  90%  90% *

95% 95%  95% 9% 9%  95%

Table 2: Factor levels used for each experiment. An asterisk indicates which factors

were varied according to the levels shown in Table 1.

Density

Demand
Variability
(Radius)

k J

Mean J Demand

Figure 2: Example of a trapezoidal distribution.
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the coefficient of variation of demand is varied. Note that the coefficient of variation
is not directly changed. Instead, the radius of the trapezoidal distribution is changed,
while fixing the mean. In Experiment 7, the overall target service level, X, is varied
while the product-specific service levels, y’* are fixed.

For all experiments, 10 random instances of the problem were generated. Tables
4 through 10 show the average cost and service level results for each experiment
averaged over the instances. In all of the experiments, the end product demand rates
were adjusted to keep the component demand rates constant. For example, as the
problem size was varied from 50 x 50 to 100 x 100 with a fixed BOM ratio, the number
of products doubled. In order to keep the component demand rates identical across
problem sizes, the product demand rates were adjusted. The cost figure represents
the expected excess inventory cost associated with meeting a single period’s demand,
as computed in (18). That is, the expected excess inventory is the expected amount

by which the component inventory exceeds the component demands.

6.3 Experiment Results

SERVICE. Although a target service level is specified in all algorithms, different
methods under-achieved or over-achieved this target service level. As expected, the
OBC approximation over-achieved the target service level. The service level achieved
by the Clark approximation was consistently lower than the target service level. Recall
that by design, the algorithms based on A-scaling and direct scaling will achieve the
overall target service level. For example, the OBC-X approximation will achieve the
specified service level provided that a large number of iterations are done in the Monte-
Carlo scaling procedures. As shown in Table 3, the computational time taken by all
these methods is very reasonable even for large size problems. Therefore, achieving

the specified service level with a high level of confidence is computationally viable.
CosT. The expected excess inventory is computed analytically assuming that the
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component demands are Normally distributed. The OBC method appears to be a
good and fast initial solution. OBC-A and OBC-D are improvements over OBC and
were generally found to yield close results. CL-D was found to be the most reasonable
subgradient-based optimization method among the set of methods CL, CL-D, and
CL-A. The method based on OBP, which ignores component commonality, resulted
in higher inventory costs and a higher than specified service level due to increased
inventory levels. This is due to the fact that by ignoring commonality, whenever there
is at least one unique component in each end product, the OBP method will result

in higher inventory levels for the same service level.

As expected, the expected excess inventory increases as the variability in end
product demand increases. As the overall target service level increases, the expected
excess Inventory appears to increase at a faster rate. As the level of component

commonality decreases, the expected excess inventory increases.

Overall, the OBC-A method consistently provided the lowest cost answer among
the methods in all of the experiments for a specific level of service. We found the Clark
approximation to be sensitive to starting solutions. We also believe that repeated
invocations of Clark’s approximation on a large number of random variables used in

our subgradient method degrades the solution.

Examples of the computation time required for the approaches to solve the prob-
lems on an Sparc 10 workstation are listed in Table 3. These time estimates are
for single period problems with 2,500 iterations in the Monte-Carlo scaling proce-
dures employed in the OBC-A and CL-D methods. For multi-period problems, the
computation times should be multiplied by the number of time periods, since the
multi-period problem is decomposed into several single period problems. These time
estimates are extremely reasonable considering the fact that we are solving very large

planning problems.
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Excess Inventory Cost per Component

Method | Computation Time (Minutes)
OBC 0.05
OBC-A 0.62
OBC-D 0.48
CL 1.20
CL-\ 11.70
CL-D 2.30
OBP 0.13

Table 3: Computation Times on a Sparc 10 Workstation

OBC-A: Excess Inventory Cost per Component vs.
Avg. Number of Components per Product
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Figure 3: Impact of Factors on Normalized Inventory Cost
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6.4 Experiment Insights

In the component planning problem, the imbedded BOM structure dictates the fol-
lowing tradeoff in the control of the system. At the product level, all components in
their proper quantities are required before beginning the assembly of an end product.
Therefore, for each product, it is desirable to require as few components as possible.
We call this the need for assembly which is measured as the average number of com-
ponents per product. At the component level, as the number of common components
increases, so do the advantages of component risk pooling. Therefore, for each com-
ponent, it is desirable to be used in as many products as possible. We measure this
as the average number of products per component. The central question is how the
tradeoff between need for assembly and component risk pooling is affected by various

factors, and which has a significant impact on cost and service.

In Experiments 2 and 4, varying the factor of interest creates opposing forces
on the system cost. As the problem size increases from 25 x 25 to 125 x 125, the
average number of components per product increases from 4 to 20 in order to keep
the BOM ratio constant. The increased number of components per product requires
additional component stock and hence increases the expected cost. On the other hand,
at the component level, as the problem size increases, the number of products per
component increases from 4 to 20 (since the number of products equals the number
of components) in order to keep the BOM ratio constant. Although this creates an
opportunity for risk pooling, the benefits are slight and are insufficient to offset the
additional cost associated with the need for assembly. As a result, the system cost

rises. Similarly in Experiment 4, varying the BOM ratio causes the same effect.

In Experiment 3, varying the product-to-component ratio while fixing the BOM
ratio and the number of arcs in the BOM structure benefits both the need for assembly
and component risk pooling. At the product level, as the number of components

decreases, so does the average number of components per product. Thus, the expected
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excess cost decreases. At the component level, as the number of components decreases,
the number of products increases to maintain the same number of arcs. Consequently,
the average number of products per component increases and the benefits of risk
pooling further lower the expected cost.

In order to make the costs comparable, we normalize the costs in terms of cost
per component. These normalized costs are plotted in Figure 3.

Based on these observations, the cost impact from the need for assembly is sub-
stantially greater than the benefits of risk pooling. Alternatively, having fewer com-
ponents per product seems to have more impact on cost than having more products

per component, for a given level of service.

7 Conclusion

The assembly of components into products is prevalent across a wide spectrum of
industries, such as in computer manufacturing and in automobile assembly. Fur-
thermore, component commonality is a growing trend as design for manufacture and
assembly philosophies are combined with product variety proliferation.

In this research, we have provided very effective methods for solving medium to
large scale component procurement planning problems both in terms of quality of
solution and in terms of the computational time required. We have demonstrated
that an approach ignoring commonality is vastly inferior to the other methods devel-
oped. The quantitative effects of degree of commonality, target service level, and the
degree of variability of demand on inventory levels are amply demonstrated in this
work through the methods and computational experiments presented. Not only can
these methods be used to make procurement decisions and obtain trade-offs between
inventory and service, these methods may also be effectively used in evaluating the
expected impact of component commonality on inventory investments during early

product design stages as well as of ongoing re-engineering efforts. Further research is
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needed in procurement planning problems in multi-stage production systems where
procurement lead times are distinct and random, and where end product demands

are correlated among themselves as well as across time periods.
Appendix

In this section, we provide the computational details required by the Clark ap-
proximation. Specifically, we describe the details for the approximation of the service
level constraint (5) and the gradient of the approximate service level with respect
to ¢, 1 = 1,...,n.. This computation is done in two passes - a forward pass and a
backward pass.

In the forward pass of the computation, let ¥; = d; — ¢;, 1 = 1,...,n.. We will

define and compute,

Flar,. ) = 1— Pr{¥i <0 vz}:Pr{vm > o}.

=1
Note that the Y;’s are correlated. To compute the maximum of these n. correlated
random variables, we let Z; = Y; V Y;. Let py and o7 be the first two moments
of Zy, respectively. Also, let oy, for m = 3,...,n. be the correlation between 7,
and Y3,...,Y,.. We then assume that (Z,Y5,...,Y,, ) has a multivariate normal

distribution with the above parameters. We then find the first two moments of

Zy = 71 VY3, and the correlation between 7Z; and Y, & > 4. This procedure is

2

4.1, are obtained.

repeated until the first two moments of 7,1, namely y,,_1 and o
The intermediate steps yield y; and o2 fori = 2,...,n.—2. F(q1,...,q,.) = @(;”"7:1)

provides the service level approximation obtained for this set of (g1,...,¢n.). To

complete the forward pass, the following formulas are used (see Clark (1960)):

N2 2 2 o
(') = o+ i — 205 141,

i (/M—l - /~Lz’+1)

(8% _=
a’L

pi = pic®(a’) + pipa ®(—a’) + a'g(a’),

Y
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02'2 + F‘? = (02'2—1 + N?—1)q)(ai) + (02'24-1 + N?+1)q)(_ai)
+(piz1 + pigr)d(a’),
Cim = Ji_LmCI)(ai) —I—JHLm(I)(ai), for m=1+2,14+3,...,n

)

During the backward pass, the gradients are computed with respect to ¢; using
®(a'), ®(—a'), ¢(a') and its derivative ¢(a’) for i = 1,...,n.—1, which are computed

and stored in the forward pass.

( “Hn.—1

), we have,
One—1

Since F(qi,..., qn.) = @

@F _ —qb ( ,unc—1> ( 1 ) ’ and,
a,unc—l One.—1 On.—1
oF —Hn.-1 Hne.—1
- ¢ el )
00,1 On—1 ol 4

This is the base step for the backward pass. Starting from ¢ = n, — 1, for each 1 <

or and and and compute the corresponding

—1, we assume that we know
8 80, it

quantities for ¢ — 1, using the equatlons above. Although many partial derivatives
need to be computed, because of the specific construction of the forward pass, stage
1 depends on the previous stage only through p;_1, 02|, pis1, J,?H, and 0;_1,41. The

procedure finally yields 2 7 = % and aF for 1 =1,...,n.
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Method | Expected Excess Inventory Cost | Service Levels Achieved
($ in millions) (% of demand)

OBC 25.7 98.1%
OBC-A 20.7 90.0%
OBC-D 22.3 90.0%
CL 19.0 76.8%
CL-\ 21.0 90.0%
CL-D 21.0 90.0%
OBP 45.7 98.4%

Table 4: Simulation results for Experiment 1: The Base Case. Note that for the A

and direct scaling methods, the service level of 90% is achieved.
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Costs Incurred ($ in millions) Problem Size (Products x Components)

Method 25 x 25 50 x 50" 75 x 75 100 x 100 125 x 125
OBC 11.7 25.7 40.4 58.1 73.5
OBC-A 9.5 20.7 32.6 474 60.2
OBC-D 9.9 22.3 36.3 52.8 67.6
CL 7.9 19.0 30.5 44.0 55.3
CL-A 9.5 21.0 37.1 49.3 61.0
CL-D 9.7 21.0 33.2 48.4 61.2
OBP 22.4 45.7 68.4 96.3 119.7
Service Levels Achieved Problem Size (Products x Components)

Method 25 x 25 50 x 50" 75 x 75 100 x 100 125 x 125
OBC 98.1% 98.1%  98.2% 98.3% 98.2%
CL 76.7% 76.8%  74.5% 73.7% 71.5%
OBP 98.7% 98.4%  97.9% 98.9% 99.0%

Table 5: Simulation results for Experiment 2: Varying Problem Sizes. An asterisk

indicates the results of Experiment 1, the base case.
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Costs Incurred ($ in millions) Product-to-Component Ratio

Method 100/25 60/42 50/50* 42/60
OBC 1.7 212 257 323
OBC-\ 94 169 207 255
OBC-D 9.9 183 223 278
CL 79 153 19.0  23.3
CL-A 94 190  21.0 295
CL-D 9.7 173  21.0  26.3
OBP 224 386  45.7  54.9

Service Levels Achieved (% of demand)  Product-to-Component Ratio

Method 100/25 60/42 50/50* 42/60
OBC 97.7% 98.3% 98.1% 98.6%
CL 76.3% 77.4% 76.8% 72.9%
OBP 98.7% 98.3% 98.4% 98.8%

Table 6: Simulation results for Experiment 3: Different Product-to-Component Ra-
tios, with a constant 2500 possible arcs. An asterisk indicates the results of Experi-

ment 1, the base case.
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Costs Incurred ($ in millions) BOM Ratio

Method 8/50* 12/50 16/50 20/50 24/50
OBC 25.7 30.1 33.7 36.3 38.3
OBC-A 20.7 23.4 25.3 26.4 27.2
OBC-D 22.3 25.4 26.4 27.6 28.2
CL 19.0 19.9 19.8 19.2 18.2
CL-A 21.0 24.1 27.5 29.0 30.1
CL-D 21.0 24.4 27.1 29.1 30.4
OBP 45.7 66.5 87.5 108.0 128.5
Service Levels Achieved BOM Ratio

Method 8/50* 12/50 16/50 20/50 24/50
OBC 98.1% 98.4% 98.3% 98.2% 98.5%
CL 76.8% 70.3% 62.2% 55.9% 50.7%
OBP 98.4% 99.1% 99.9% 99.9% 99.9%

Table 7: Simulation results for Experiment 4: Different BOM Ratios. An asterisk

indicates the results of Experiment 1, the base case.
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Costs Incurred Mean Demand (Min, Max)
($ in millions)

Method (1000, 1000)* (900, 1100) (800, 1200) (700, 1300) (600, 1400)

OBC 25.7 25.8 25.9 25.9 26.0
OBC-) 20.7 20.7 20.8 20.9 20.9
OBC-D 22.3 22.4 22.4 22.5 22.6

CL 19.0 19.1 19.1 19.1 19.1

CL-\ 21.0 21.1 21.8 21.6 22.9

CL-D 21.0 21.1 21.2 21.2 21.3

OBP 45.7 45.8 45.8 45.9 46.0

Service Levels Mean Demand (Min, Max)
Achieved

Method (1000, 1000)* (900, 1100) (800, 1200) (700, 1300) (600, 1400)

OBC 98.1% 98.1% 98.1% 98.1% 98.1%
CL 76.8% 76.8% 76.9% 76.2% 76.2%
OBP 98.4% 98.4% 98.4% 98.4% 98.5%

Table 8: Simulation results for Experiment 5: Differences in Mean Demand. An

asterisk indicates the results of Experiment 1, the base case.
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Costs Incurred ($ in millions)  Demand Distribution (Min, Mean, Max)
(830, (660, (500, (330, (160,
1000, 1000, 1000, 1000, 1000,

Method 1170)  1340) 1500)* 1670)  1840)

OBC 53 158 257 363  46.9

OBC-) 3.9 124 207 295 383
OBC-D 44 135 223 317 41.0

CL 44 123 19.0 255 319

CL-\ 4.2 129  21.0 311 420

CL-D 3.9 125  21.0 304  40.0

OBP 1.9 293 457 631  80.6

Service Levels Achieved Demand Distribution (Min, Mean, Max)

(830, (660, (500, (330, (160,
1000, 1000, 1000, 1000, 1000,

Method 1170)  1340) 1500)* 1670)  1840)
OBC 98.3% 98.1% 98.1% 98.1% 98.1%
CL 89.3% 84.2% 76.8% 69.0% 62.5%
OBP 98.3% 98.4% 98.4% 98.4% 98.4%

Table 9: Simulation results for Experiment 6: Impact of Demand Variability. An

asterisk indicates the results of Experiment 1, the base case.
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Costs Incurred ($ in millions) Target Service Level, X,

Method 82% 8% 90%*  94%  98%
OBC 23.6 24.5 25.7 274 30.7
OBC-A 19.0 19.9 20.7 222 25.3
OBC-D 19.9 21.1 22.3 24.9 29.5
CL 18.3 18.6 19.0 19.2 19.5
CL-A 194 20.7  21.0 22.6 29.5
CL-D 19.3 20.2 21.0 23.0 26.7
OBP 45.7 457 457 457 457
Service Levels Achieved Target Service Level, X,

Method 82% 8% 90%*  94%  98%
OBC 95.6% 96.9% 98.1% 99.1% 99.8%
CL 72.0% 73.6% 76.8% T71% 78.9%
OBP 98.4% 98.4% 98.4% 98.4% 98.4%

Table 10: Simulation results for Experiment 7: Different Service Levels Targets, X;.

An asterisk indicates the results of Experiment 1, the base case.
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