
1

Scalable Publish-Subscribe in a Managed Framework

Krzysztof Ostrowski

Cornell University

Ken Birman

Cornell University

Abstract

Reliable multicast, publish-subscribe and group communication are highly effective in support of replication and

event notification, and could serve as the enabling technologies for new types of applications that are both interac-

tive and decentralized. To fully realize this vision, we need a high-performance, scalable, and reliable multicast en-

gine as an integral part of the runtime environment. Since the majority of development today is done in managed,

strongly-typed environments such as Java or .NET, integration with such environments is of particular importance.

What factors limit performance and scalability of a reliable multicast engine in a managed environment? What sup-

port from the runtime could improve performance, avoid instabilities, or make such systems easier to build? This

paper sheds light on these questions by analyzing the performance of QuickSilver Scalable Multicast (QSM), a new

multicast protocol and system built entirely in .NET. Memory-related overheads and scheduling-related phenomena

are shown to dominate the behavior of our system. We discuss techniques that helped us alleviate some of these

problems, and point to areas where better support from the runtime would be desirable.

1. Introduction

The work
1
 reported on in this paper represents a step towards a flexible general-purpose development platform

based on a scalable, reliable, high-performance variant of the publish-subscribe paradigm.

In this section, we explain why such platform is necessary, and why it is hard to build with existing publish-

subscribe technologies. We argue that to realize its full potential, such platform has to meet two important require-

ments: (a) deliver high performance, reliability, and scalability in several important dimensions, and (b) deeply inte-

grate with the development environment, programming language and type system. Because most of today’s devel-

opment is done in managed environments, such as Java or .NET, we believe that the second requirement can only be

satisfied by building a platform that is an integral part of a managed environment, or indeed one that is implemented

in a managed language such as .NET. This paper is dedicated to answering some of the questions related to how to

build a high performance, reliable and scalable multicast platform in a managed runtime environment.

1 Our work was supported by grants from AFRL, AFOSR, DARPA, Intel, and NSF. Contacts: krzys@cs.cornell.edu,

ken@cs.cornell.edu. QSM is free, available for download at http://www.cs.cornell.edu/projects/quicksilver/QSM/.

mailto:krzys@cs.cornell.edu
mailto:ken@cs.cornell.edu
http://www.cs.cornell.edu/projects/quicksilver/QSM/

2

Several technologies that are publish-subscribe in flavor exist, and

are known to simplify the construction of distributed systems.

Commercial publish-subscribe, focused on event notification or

message queueing, is a popular middleware technology. It has

been applied by companies such as Amazon.com as a core me-

chanism for component integration in their data centers. Virtually

synchronous group communication, in which groups of processes are the equivalent of publish-subscribe topics, has

been used for building high-performance replicated services in the New York and Swiss Stock Exchange, the French

Air Traffic Control System, and the US Navy AEGIS warship [5]. Other forms of reliable multicast, such as SRM

[6] or RMTP [7], have been successfully used in a variety of high-performance streaming scenarios.

One of the reasons that the paradigm has been popular is because it offers natural support for many applications

that cannot be efficiently implemented using other approaches. For example, it can support services that are simulta-

neously decentralized (no dedicated central server is needed to host the service) and interactive (multiple clients can

concurrently, consistently, and reliably modify the state of the service). These properties are hard to achieve using

other popular distributed programming models, such as client-server and peer-to-peer. Client-server systems are

interactive in a sense defined above and can provide reliability or QoS guarantees, but are centralized and hard to

scale without costly hardware, infrastructure support and large maintenance overheads. Peer-to-peer systems such as

BitTorrent, DHTs or content-distribution networks are decentralized and scale well, they are cheap and easy to dep-

loy, but the flow of data is typically one-way, from the server to clients, latency can be very poor, and the end-to-end

guarantees are weak. The sets of features offered by these paradigms are disjoint, and neither matches the need.

Reliable publish-subscribe services can fill this gap. To see this, think of a publish-subscribe topic as if it

represented a replicated variable. Components accessing the variable subscribe to the topic; the “value” is replicated

among all such components. To support persistence, a service can include one or more replicas that maintain histori-

cal logs or checkpoints, when a new client joins, it uses the history to catch up. The value is updated by disseminat-

ing changes in a reliable, ordered, and consistent way to the set of all subscribers (Figure 1). Publish subscribe can

thus enable a style of programming in which shared variables are used casually and pervasively.

 Publish-subscribe can also be used in other ways. One common configuration treats each topic as an event

stream. This has emerged as a good fit with service-oriented data centers, in which large numbers of small services

components

accessing it act

as subscribers

reference it =

subscribe

replicated variable modeled as a pub-sub topic

release the

reference =

unsubscribe

replicated value

modify value =

publish update

software component

Figure 1. Publish-subscribe services are gene-

ralizations of a replicated, writable variable.

3

process requests collaboratively. A topic could also represent a stock in a

trading system. The technology could even be used in embedded sys-

tems. For example, in an office building, a topic may represent a security

policy governing a set of door scanners. The service “provided” by the

topic here is a decentralized enforcement of the policy it represents, de-

legated to the door scanners by a central database. The policy definition,

parameters, and policy-related data are replicated among the scanners, and any relevant events, e.g. policy updates,

alerts, granting or revoking of access rights etc., generated by either the central database or the scanners, are reliably

published to the topic members, directly by the devices that produced the events.

In each of these scenarios, communication passes directly between the components of the service (without indi-

rection through a helper service). This is important, because it avoids the bottleneck, latency, single point failure

concerns and overheads of indirect communication mediated by centralized services. Direct communication is al-

ready mandatory in large data centers, and will become even more so as the World Wide Web as a whole embraces

dynamic and interactive content. For example, suppose that we move from today’s Web, where users may interact

with web pages, but hardly with each other, towards a dynamic, interactive virtual world composed of millions of

virtual places. Instead of creating web pages users might create virtual rooms, design their interior, post multimedia

content inside and link rooms with virtual corridors. Unlike web pages, these rooms could be interactive: users could

walk between them, talk to each other, and see each other, as in the massively-multiplayer online games such as

Second Life or World of Warcraft. We might think of each room as a service, its interior, content placed in it or us-

er’s positions as the service state, and the user’s actions as the operations performed against the service.

Today, one would probably build such a system using a client-server approach, where all such services are

hosted on a server farm, but this model is hard to scale to millions of users. Peer-to-peer approaches would host each

virtual room on the machine of its creator, but doing so could easily overload that host, for example when someone

with an elaborate avatar enters a room hosted by a slow machine. Modeling each room as a “replicated variable”,

and implementing it as a publish-subscribe service in the manner outlined above, removes bottlenecks and makes

each content generator responsible for its own contribution to the data stream: a natural approach.

Although relatively successful, today’s publish-subscribe technologies are inadequate for the kinds of uses

we’ve suggested (Figure 2). The most popular commercial platforms lack end-to-end reliability, leaving it up to the

scalability

performance reliability

interoperabilityembeddings

streaming

multicast

existing

pub-sub

group communication

Figure 2. Existing publish-subscribe

technologies are insufficient.

4

application to ensure that the replicated state is updated consistently.

Group communication toolkits offer strong flavors of reliability; but suf-

fer from scalability issues and are perceived as hard to use by developers.

Streaming multicast systems offer good throughput, but latency is often

high, and such products only provide simple forms of reliability. We

know of no system that simultaneously offers reliability, high perfor-

mance, and scalability in the important dimensions mentioned above.

In [1], [3] we argue
2
 that existing approaches to reliable data dissemination fall into two classes that each scale

poorly, although in different senses: (a) systems that run separate protocol instances per topic, like Isis [5], and (b)

lightweight group approaches [11] such as Spread [8]. The Isis-like systems can’t support large numbers of topics

due to the linear per-topic overhead component. The lightweight-group systems vector all data through a small set of

servers and then filter it prior to delivery; this works well in small scenarios, but can be inefficient in larger systems,

and the indirection through servers introduces a bottleneck and latency. Moreover, raw performance of multicast

systems that send data directly from sender to receivers is a problem. For example, we found ([1], [3]) that JGroups

[10], a widely popular group communication component of JBoss, can’t run at more than a fraction of the bandwidth

of a 100 Mbps network, slows down significantly with 100 nodes, and collapses with 512 groups. Yet all of the ex-

amples given earlier require far greater scalability, and only make sense if the full performance of the hardware can

be exploited. Moreover, existing systems are inadequately customizable. Different topics could represent different

classes of replicated entities and require different reliability, security, QoS, fault-tolerance etc. guarantees (Figure 3).

But even if we had a high-performance, reliable group multicast or publish-subscribe platform that scaled in all

important dimensions, we would need to address a second serious issue: many users find the paradigm poorly inte-

grated with modern platform and development tools, making them hard to understand and deploy. As argued in [4],

existing systems lack a standardized, flexible, general-purpose, easy to use API that decouples the application from

the multicast platform used at the backend. Existing web services publish-subscribe standards are too simplistic and

limited to be usable outside a narrow class of applications ([2]), while group communication systems employ pro-

prietary APIs, e.g. requiring the developer to learn a new and domain-specific vocabulary.

2
 A note to the reviewer: We want to emphasize that no technical paper on QuickSilver has been published to date,

in any venue. The citations are technical reports and short white papers that lack details or evaluation.

“our team”

weblog

a virtual room

file “driver.cpp”door scanners.

our music

compilation

client
node

Figure 3. In large systems, there may

be large numbers of topics. Different

topics might represent different types

of services that would require a truly

large-scale platform to offer a variety

of reliability and security guarantees.

5

Much research has been dedicated into making the multicast more developer-

friendly. One well known approach is the fault-tolerant CORBA [12] standard,

which takes a CORBA service and transparently replicates it. However, transpa-

rency is costly, and the approach can only be used with unthreaded, determinis-

tic applications. To leverage the full potential of publish-subscribe services, we

need the flexibility to match the protocol to the application, and a deployment model better matched to modern plat-

forms and architectures. Our premise is that the key to success will come not from transparency, but rather from a

deep integration of publish-subscribe with the programming language and type system.

Although we are well advanced on implementing a version of QuickSilver (QS/2), which offers this sort of deep

embedding into .NET, the work is still in progress and discussion of the associated issues would be beyond the

scope of this paper. Instead, we’ll just summarize some of the implications. QS/2 is designed to be tightly integrated

with the runtime environment and type system; doing so adds multicast groups to .NET much in the way that typed

objects are supported in .that system. In this approach, topics become first-class language entities, with types that

represent their reliability or security properties, and the operations possible on a topic correspond to its type and are

implemented by type-specific code. Type matching can be enforced at runtime (Figure 4). The platform also auto-

mates the generation of stubs for accessing existing, deployed topics, much as is done today for web services. Such

embeddings of the paradigm into the language and the type system can greatly simplify programming, similarly to

Language Integrated Queries (LINQ) or Windows Communication Foundation (WCF). Furthermore, they bring the

advantages of strong typing into the realm of distributed computing, thus resulting in more robust, predictable, and

better-behaved code. In the spirit of other component architectures, the choice of a protocol or its parameters can be

postponed until runtime, and determined when the topic is created based on the type of the software component re-

questing access to the topic. Communication can be integrated with the eventing architecture, allowing the platform

to interact with the application to retrieve buffered messages, perform message delivery, etc. Developers can specify

types of reliability or security guarantees for their topics using a declarative language provided by the platform, and

can therefore customize the platform, design their own protocols, and share code in the spirit of collaborative devel-

opment. Although we’ve worked in the context of .NET, the system should port elegantly into J2EE or CORBA.

But the full QS/2 system is still under development. The remainder of this paper is dedicated to the questions

of: how the decision to run in a managed runtime environment affects performance and scalability of a high-

application pub-sub topic

endpoints

to connect

app. requirements

and capabilities

topic req.

and cap.

Figure 4. Matching typed topic

and application endpoints.

6

performance, scalable, reliable multicast engine, what are the dominant phenomena and issues that arise, what me-

chanisms can be used to alleviate these problems, and what support from the managed runtime could facilitate build-

ing such systems. We base the discussion on our experiences building and evaluating Quicksilver Scalable Multicast

(QSM). Unlike QS2, QSM offers only a high-performance multicast substrate with an ACK-based reliability prop-

erty similar to [6] or [7], and the Windows embedding doesn’t take full advantage of the type mechanisms available

in the .NET framework. Nonetheless, it scales in several major dimensions, tolerates several different types of per-

turbances; and the extension to the full platform isn’t expected to change these characteristics. Moreover, we have

early users and believe that QSM is a useful and powerful system in its own right. QSM establishes that, with proper

care, a high-performance communications platform can operate within a managed setting. It sustains multicast rates

as high as 9500 message/s for 1000-byte messages on a 200-node cluster of 1.3GHz Pentium III workstations con-

nected with a 100Mbps switched LAN, a value close to the maximum capacity of our hardware. Throughput de-

grades by only a few percent as the system scales to 200 members or to 8000 groups. QSM was written entirely in

.NET, mostly in C#. Only about 2.5% of our code is in C++, and only to provide direct access to Windows I/O com-

pletion ports, which are not adequately supported in C#.

Although most results we report on here are specific to our system and protocol, we believe that our findings are

generally applicable. When we set out to build QSM, we assumed that operation in a managed setting would impose

insurmountable overheads relative to unmanaged code in a language like C++, and that we would simply need to

tolerate these overheads to gain the benefits of closer platform integration. Today, we’ve come to appreciate that

managed environments are not necessarily incompatible with even the most performance-demanding uses. Indeed,

although detailed comparisons with other platforms are outside the scope of the work reported, QSM is faster and

more scalable than any other multicast or publish-subscribe platform with which our group has worked during twen-

ty-five years of interest in the technology. The system may be the fastest, most stable, and most scalable multicast

platform in existence.

For reasons of brevity the discussion of the protocol and architecture included in this paper is limited; addition-

al details, including more discussion of the rationale behind our design choices and a more comprehensive compari-

son with related work can be found in our technical reports [1], [3]. Moreover, as noted, QSM is just a first step, and

should be viewed not as a goal in itself, but as a prototype demonstrating feasibility and as a testbed. Generalizations

and the continuation of this work are described in [2], [4].

7

2. Architecture

In the preceding section, we noted that existing systems that support reliable mul-

ticasting to multiple topics fall roughly into two classes: systems that run separate

protocols per topic and those that treat the entire system as a single broadcast do-

main and filter on receive. Both techniques are intrinsically limited ([1], [3]). In

QSM we employ a hybrid approach. The network is divided into a set of regions.

The manner in which regions are defined may vary. In our prototype, regions are

defined based on the similarity of interest: nodes x and y are in the same region iff

T(x) = T(y), where T(x) is the set of topics that x is subscribed to (Figure 5). Our

future work will explore other possible arrangements: regions can be defined as

containing nodes with approximately similar interest (e.g. x and y can be in the

same region iff T(x) and T(y) have 90% topics in common), constrained to be of

size at least 20, or be defined with respect to administrative domain boundaries.

Also, they might partially overlap. The problem is nontrivial, and is outside the scope of this paper.

Each region is a separate multicast domain with its own IP multicast address and a local recovery protocol. The

set of subscribers to any given topic T spans over a number of regions, say R1 through RK. When sending to topic T,

a sender node multicasts a message to each of the regions separately (Figure 6). Nodes in regions R1 through RK that

did not subscribe to T or that receive duplicates can simply discard the message, without delivering it to the applica-

tion. Note that by assigning separate regions to each topic, or by treating the entire system as a single region, we can

mimic the two classes of existing approaches mentioned earlier. The technique just described thus generalizes both.

We are not the first to make this observation: a similar approach, limited to unreliable multicast, is proposed in [13].

Our approach allows the sending overhead to be amortized between topics. If a node has two messages to send

to a pair of topics T1, T2 that overlap on a region R, then while transmitting to R, the node can batch these messages

together, as in the lightweight group approaches. At the same time, if regions are defined in a manner that takes into

account similarities of interest, batching overheads will be small: a message sent to a region will be, with high prob-

ability, of interest to most region members. Finally, by moving flow and rate control to the regional level, we avoid

the situation where thousands of per-group protocols compete for bandwidth. If regions are disjoint, as they are in

our prototype, our protocol is a generalization of application multicast over TCP, with regions as the “destinations”.

ABC

B

A

AB

AC C

B

BC

A

C

Figure 5. Topics overlap over

regions. Topic A spans over

regions A, AB, AC, and ABC.

Send

to A

A

B

C

A

AB

AC

ABC

B

C

BC

Apps

Group

Senders

Region

Senders

Send

to B

Figure 6. A message targeted

at a topic is transmitted to all

regions that topic spans over.

8

Partitioning into regions is also applied to loss recovery. The key

ideas behind our design, outlined below, are (a) a hierarchical compo-

sition of protocols, and (b) merging of protocols inside regions. To

understand the former note that if X represents a set of nodes that can

be partitioned into subsets, e.g. X = Y1  Y2  …  YK, then the task

of performing recovery in X may be implemented by performing local

loss recovery in every Yi (i.e. ensuring that for any pair of nodes in Yi

if one has a message m, then so eventually does the other), indepen-

dently, and additionally, performing recovery across different Yi (i.e.

ensuring that for each pair of subsets Yi and Yj, if nodes in one of

them have a message, then so eventually do some nodes in the other).

Note that each of these (K+1) subtasks, local recovery in each Yi and

across different Yi, can be thought of, and indeed, even implemented,

as a separate, independently running “sub-protocol”. Loss recovery in

the entire X is achieved by running all those sub-protocols simultaneously (Figure 7, left). Recall that in QSM, each

topic spans across a set of regions. For reasons that shall be explained later, each region is further sub-divided into

partitions, and the partitions contain individual nodes. Recovery is implemented by running (a) a local recovery pro-

tocol among nodes in each partition, (b) a “higher-level” recovery protocol across all partitions in each region, and

(c) a recovery protocol that runs across regions in each topic. Now, the protocol that runs in a given region performs

recovery, simultaneously, for all topics that span over the region (Figure 7, right). The latter can be thought of as

“merging” protocols running for different topics when they overlap on regions. By doing so we amortize overheads

across topics, reduce the number of control packets, and control node “fan-out”.

The scheme just outlined can be implemented in a variety of ways, generalized, and used to implement proto-

cols with stronger reliability properties ([2]). In QSM, we based the implementation on a token ring protocol, due to

its simplicity, and on a simple ACK-based reliability property (in the future, we hope to offer stronger guarantees,

implemented with essentially the same techniques ([2], [4]). At this stage, our primary goal was to demonstrate the

feasibility of the approach and capture the basic phenomena related to scalability, high performance and the conse-

quences of running in a managed environment, rather than the artifacts of enforcing a particular type of reliability.

node
region

inter-region protocol

intra-region

protocol

recover in Y

recover in X

X

Y

Figure 7. Hierarchical recovery in QSM

(left) applied to topics vs. regions (right).

region

leader

partition

leader intra-

partition

token

inter-partition

token

partition

Figure 8. Our hierarchy of token rings.

partition

sender region

data

ACK
NAKs local push / pull

inter-partition push / pull

Figure 9. Recovery inside of and across

partitions, and aggregate ACKs / NAKs.

9

Accordingly, nodes in each partition form a token ring (Figure 8). The token is used by neighboring nodes to

compare the sets of messages they received, and to perform recovery by local push or pull forwarding (Figure 9). It

is also used to calculate aggregate information about the partition, such as which messages have been received by all

of the nodes in the partition. Finally, the token is used to distribute information about messages that have been re-

ceived by any of the nodes, messages unlikely to still be in transit, ready to be cleaned etc. The token is released and

collected by a selected leader node in the partition. Now, the partition leaders run another, “higher-level” token ring

protocol; they compare aggregate partition information for the partitions they represent (collected by the “lower-

level” tokens), and use it to calculate aggregate information about the entire region. The “higher-level” token is re-

leased, and collected, by a region leader, which uses the regional aggregate collected by this token e.g. to control

cleanup in the region, or to generate ACKs for the sender. In our experiments, the region leader releases tokens

about once per second, and accordingly, each region sends an aggregate ACK to every sender about once a second.

Despite the minimal amount of feedback, the system is stable; indeed, reducing the amount of recovery-related bur-

den the senders have to deal with was one of the crucial factors in achieving high performance and good scalability.

There are many ways in which different tokens (intra-partition tokens and inter-partition tokens) might be syn-

chronized with each other; for example, they might not be synchronized at all. In QSM we adopted a simple scheme,

where an intra-partition token is triggered by the arrival of the inter-partition token at the partition leader, and the

inter-partition token is not passed over to the next partition leader till the intra-partition token completes a full round

across the partition. Indeed we might think of there being only a single token in the entire region that “impersonates”

inter-partition or intra-partition tokens as it jumps between or zooms around the individual partitions. As we shall

see in the following section, state aggregation latency is by far the most critical factor that determines performance.

Accordingly, the details of the hierarchical token protocol are an ongoing preoccupation in our effort; we will have

more to say about this in the evaluation section, below.

Finally, to reduce memory overheads, we employ cooperative caching. Rather than cache each message on each

of the receivers in the region for the purposes of local recovery, we designate approximately k nodes in the region as

our caching replicas (an idea first proposed by Zhao [14]). Specifically, we subdivide a region of size r into r/k

partitions, each of size at least k, and we cache each message in a single partition, the responsibility distributed

across the partitions in a round-robin fashion. In the resulting scheme, the overhead of caching of the received mes-

sages by any individual receiver decreases linearly with system size.

10

Responsibility for announcing the overall system configuration rests

with a Global Membership Service (GMS), which processes subscribe

and unsubscribe requests, detects node failures, and uses the latter to

generate a sequence of membership views for each topic, much like a

conventional GMS in a group communication system. Additionally, our

GMS determines and continuously updates region boundaries, maintains

sequences of region views for each region, and a mapping from group

views to region views (Figure 10). The relevant parts of this structure

and any changes to it are communicated in a reliable manner to the af-

fected nodes, which rely on this information as a common knowledge,

and use it e.g. to create and update the structure of token rings, elect

leaders etc. In our prototype, the GMS is implemented by a single node.

In future versions, the GMS will be hierarchical and fault-tolerant (along

the lines of the Moshe scalable GMS [15]).

3. Implementation

Although modern languages like Java and C# encourage the use of threads, in QSM preemptive scheduling is dis-

ruptive, and adds unnecessary overhead: all tasks in the system are short, predictable and terminating [3]. Conse-

quently, we implemented
3
 QSM in a purely single-threaded, event-driven manner (Figure 11). We use a Windows

I/O completion port, henceforth referred to as an “I/O queue”, to collect all asynchronous I/O completion events,

including notifications of any received messages, completed transmissions, and errors, for all sockets. A single “core

thread” synchronously polls the I/O queue either in a blocking, or in a non-blocking manner, to retrieve I/O events.

The core thread also maintains an “alarm queue”, implemented as a splay tree, for timer-based events, and a “request

queue”, implemented as a lock-free queue with CAS-style operations, for requests from the (possibly multithreaded)

application. The core thread polls all queues in a round-robin fashion and processes the events sequentially. For effi-

ciency, events of the same type are processed in batches, up to the limit determined by a quantum (typically 50ms

for I/O, 5ms for alarms, and no limits for the application requests). When an I/O event representing a received pack-

3
 An initial implementation was multi-threaded, but we soon realized that this was a mistake.

A

A1

RQP

Q1 Q2P1 R1

A2 B2B1

Bgroups group

views

regions

region

views
nodes

Figure 10. Tracking subscriptions and

region membership by GMS in QSM.

application

thread

operating

system

kernel

socket

core

thread

alarm

queue

request

queue

I/O

queue

QSM

Figure 11. QSM uses a single-threaded

architecture, with a “core” thread that

controls three queues: for I/O requests,

timer-based events, and requests from

the possibly multithreaded application.

11

et is retrieved for a given socket, the socket may be synchronously polled and

drained of packets to minimize the probability of loss. If there are no events

to process, the core thread waits in a blocking system call.

This time-sharing policy is further refined by assigning priorities to dif-

ferent types of I/O events, and processing I/O similarly to the way Windows

treats interrupts, by first retrieving all events from the I/O queue and draining

sockets, pre-processing them only as much as is necessary to determine their

type, placing events in priority queues, and only then processing them in the

order of decreasing priorities (Figure 12). By prioritizing the processing of

incoming I/O over sending-related events we reduce packet loss, and by pri-

oritizing control packets over data we make the system more stable [3], for it

helps to reduce control traffic latency, a factor critical for good performance.

The last aspect of the architecture relevant to this discussion is the “pull”

architecture of our protocol stack. Much as the priority-based processing of

I/O events allows us to reduce the control latency on the receiver side, a

“pull” protocol stack reduces latency on the sender side by postponing the

creation of messages until the time when transmission is actually about to

take place. Control messages created “just-in-time” for transmission are more

“fresh”; they contain more up-to-date information based on recent state of the

sending node, which makes the system more stable ([3]). Additionally, the “pull” architecture allows us to almost

eliminate buffering and reduce memory overheads, which, as we shall demonstrate, strongly affect performance.

In QSM, each element of the protocol stack acts as a feed that has data to send, or a sink that can send it (Figure

13), and most elements act as both (Figure 14). When a feed wants to send a message, rather than creating it and

handing it down to the sink, as it is normally done in the “push” scenario, the feed only registers the intent to send a

message with the sink. The message can be created at this time and buffered in the feed, but the creation of the mes-

sage may also be postponed, as it is usually done in QSM, until the time when the sink polls the feed for messages to

transmit. The sink determines when to send based on its control policy, such as rate, concurrency, or windows size

limitation, and, unless the sink represents a physical socket, also based on the ability of the downstream sink to send.

pre-process

I/O events

handle

I/O events

according

to priorities

process

timer

events

process

requests

incoming

control

outgoing

control

incoming

data

outgoing

data

disk I/O

other

Figure 12. Our time-sharing and

priority I/O processing policy.

feed sink

register

to send

get messages

policy limit sending rate

limit concurrency

limit window size

Figure 13. In our “pull” protocol

stack a "feed" registers the intent

to send with a “sink” that may be

controlled by a policy limiting the

send rate, concurrency etc. When

the sink is “ready” to send, it calls

the registered feeds for messages.

app

sock

f/s
app

f/s
app

f/s

elements of the protocol stack

socket

Figure 14. Elements of the proto-

col stack act as both feeds and as

sinks, thus forming trees of such

compoments, rooted at sockets.

12

When the socket at the root of the tree is ready for transmission,

messages will be recursively pulled from the tree of protocol stack

components, in a round-robin fashion. Feeds that no longer have

data to send are automatically unregistered.

4. Evaluation

Evaluation of QSM could pursue many directions: costs of the do-

main crossing between the application and QSM, protocol design

and scalability, and interactions between protocol properties and the

managed framework. In this section, we focus on the latter.

All results reported here come from experiments on a 200-node

cluster of Pentium III 1.3GHz blades with 512MB memory, con-

nected into a single broadcast domain using a switched 100Mbps

network. Nodes run Windows Server 2003 with the .NET Frame-

work, v2.0. Our benchmark is an ordinary .NET GUI application,

linked to the QSM library, running in the same process. Unless oth-

erwise specified, we send 1000-byte arrays, without preallocating

them, at the maximum possible rate, and without batching. The fig-

ures include 95% confidence intervals, but they are often very small.

4.1. Memory Overheads on the Sender

On Figure 15 we show throughput in messages/s in experiments

with 1 or 2 senders multicasting to a varying number of receivers, all

of which subscribed to a single topic. With 1 sender, we let it trans-

mit at an unlimited rate. This is possible because at very high rates

the sender requires more CPU than the receivers and its CPU is not

fast enough to saturate the network (Figure 16). With 2 senders, we

report the highest combined send rate that the system could sustain.

Why does performance decrease with the number of receivers? First, let’s focus on a 1-sender scenario. Figure

16 shows that whereas receivers are not CPU-bound, and loss rates in this experiment (not shown here) are very

Figure 15. Throughput as a function of the

number of nodes (1 topic, 1KB messages).

Figure 16. Processor utilization as a func-

tion of the multicast rate (100 receivers).

Figure 17. The percentages of the profiler

samples taken from QSM and CLR DLLs.

Figure 18. Memory allocation and garbage

collection overheads on the sender node.

13

small, the sender is saturated, and hence is the bottleneck. Running

this test again in a profiler reveals that the percentage of time spent

in QSM code is decreasing, whereas more and more time is spent in

mscorwks.dll, the CLR (Figure 17). More detailed analysis (Figure

18) shows that the main culprit behind the increase of overhead is a

growing cost of memory allocation (GCHeap::Alloc) and garbage

collection (gc_heap_garbage_collect). The former grows by 10%

and the latter by 15%, as compared to 5% decrease of throughput.

The bulk of the overhead is the allocation of byte arrays to send in

the application (“JIT_NewArr1”, inclusive, Figure 19). Roughly 12-

14% of time is spent exclusively on copying memory in the CLR

(“memcopy”), even though we used our own scatter-gather seriali-

zation scheme that efficiently uses scatter-gather I/O.

The increase in the memory allocation overhead and the activity

of the garbage collector are caused by the increasing memory usage.

This is caused by the increase of the average number of multicasts

pending completion (Figure 20). For each of these multicasts, a copy

of the message data is kept by the sender for the purpose of loss

recovery. The reader might notice that memory consumption grows

nearly 3 times faster than the number of messages pending acknowledgement multiplied by 1000-bytes (the size of

the message data). Indeed, if we freeze the sender process in the debugger and inspect the contents of the managed

heap, we find that the number of objects in memory is more than twice the number of multicasts pending acknowl-

edgement. Although some of these have already been acknowledged, they are not immediately garbage collected,

thus resulting in increased memory consumption.

The growing amount of unacknowledged data is caused by the increase of the average time to acknowledge a

message (Figure 21). This grows because of the increasing time to circulate a token around the region for the pur-

poses of state aggregation (“roundtrip time”). The time to acknowledge is only slightly higher than the expected 0.5s

to wait until the next token round, plus the roundtrip time. In larger experiments, the roundtrip time dominates.

Figure 19. Time spent allocating the byte

arrays in the application (inclusive), and

time spent copying memory (exclusive).

Figure 20. Memory used on sender and the

number of multicast requests in progress.

Figure 21. Token roundtrip time and an

average time to acknowledge a message.

14

These experiments show that the latency of state aggregation

can be a critical factor determining performance. We just revealed a

mechanism that directly links this latency to throughput, via in-

creased memory consumption and the resulting increase in allocation

and garbage collection overheads. An increase in latency by 500ms,

resulting in a 10MB increase in memory consumption, can inflate

these overheads by 10-15%, and degrade the throughput by 5%. One

way to alleviate the problem we've identified could be to reduce the

latency of state aggregation, so that it grows sub-linearly. In our sys-

tem, this might be achieved by using a deeper hierarchy of rings, and

by letting tokens in each of these rings circulate independently from

each other. This way, we could limit each level of the hierarchy, and

hence the size of each ring, to be of size at most K (a fixed value), at

the cost of using a more complex structure with logKN levels of pro-

tocols, and the state aggregation latency would grow logarithmically.

Is reducing state aggregation latency the only solution? We eva-

luated two alternative approaches, but found that neither can substi-

tute for lowering the latency of the recovery state aggregation.

In the first approach, we vary the intensity of aggregation by va-

rying the rate at which tokens are released (Figure 22). Increasing it helps only up to a point. Beyond 1.25 tokens/s,

more than one aggregation is in progress at a time and the work performed by tokens starts to be redundant. Fur-

thermore, token processing itself and the ACKs it triggers represent overhead. Changing the default 1 token/s to 5

tokens/s decreases the number of unacknowledged data by 30%, but it increases throughput by less than 1%.

In the second approach, we increase the amount of state aggregated by the token and the amount of feedback

provided to the sender. By default, each aggregate ACK contains a single value MaxContiguous, representing the

maximum number such that messages with this and all lower numbers are stable in the region. To increase the

amount of feedback, we permit ACK to contain up to k numeric ranges, (a1, b1), (a2, b2), …, (ak, bk). The way this is

to be interpreted by the sender is that messages with numbers from a1 to b1, from a2 to b2, and so on, up to messages

Figure 23. More aggressive cleanup with

O(n) feedback in the token and in ACKs.

Figure 24. More work with O(n) feedback,

and lower rates despite saving on memory.

Figure 22. Varying token circulation rate.

15

from ak to bk, can be cleaned up. Varying the value of k varies the

intensity of cleanup by varying the ability of the system to “skip

over” gaps in the sequence of stable messages. In the experiment

shown on Figure 23 and Figure 24, we set k to the number of parti-

tions, thus increasing it proportionally to the region size. Unfortu-

nately, while the amount of acknowledged data is reduced by 30%, it

still grows, and the throughput in this scenario is actually lower than

in the default scenario, because the overall process is now more

complex and consumes more CPU. Furthermore, the system now

tends to behave in an unstable manner (notice the large variances in

Figure 25), because our flow control scheme, based on limiting the

amount of unacknowledged data, fails. While the sender can cleanup

any portion of the message sequence, receivers have to deliver in the

FIFO order, and the amount of data they cache is larger, and this

reduces their ability to accept incoming traffic.

4.2. Memory Overheads on the Receiver

The reader may doubt that memory overhead on receivers is an

issue, considering that their CPUs are half-idle (Figure 16). Can in-

crease in memory consumption affect a half-idle node? To find out,

we performed an experiment with 1 sender multicasting to 192 receivers, in which we vary the number of caching

replicas per message (replication factor). Increasing this value results in a linear increase of memory usage on re-

ceivers. If memory overheads were not a significant issue on half-idle CPUs, we would expect performance to re-

main unchanged. Instead, we see a dramatic, super-linear increase of the token roundtrip time (Figure 26), a slow

increase of the number of messages pending ACK on the sender, and a sharp decrease in throughput (Figure 27).

The mechanism behind what we have observed is as follows. The increased activity of the garbage collector and

allocation overheads slow the system down and processing of the incoming packets and tokens takes more time.

Although the effect is not significant when considered in isolation on a single node, it adds up: the token must visit

all nodes to aggregate the recovery state. If we configure each node in a 192-node region to cache even 50% of the

Figure 26. Varying the number of caching

replicas per message in a 192-node region.

Figure 27. As the number of caching rep-

licas increases, the throughput decreases.

Figure 25. Instability with O(n) feedback.

16

packets, as opposed to the default 5 replicas per packet, the token

roundtrip time increases 3-fold. This delays state aggregation, in-

creases pending messages and reduces throughput (Figure 27). With

the highest replication factors, the sender’s flow control policy kicks

in, and the system goes into an oscillating state, similar to that on

Figure 25, but milder. If each receiver caches all messages, the sys-

tem can no longer run without rate control.

4.3. Overheads in a Perturbed System

The reader might wonder whether our results would be different

if the system experienced high loss rates or was otherwise perturbed.

To find out, we perform an experiment in which one of the receiver

nodes is “flaky”, it experiences a periodic, programmed perturba-

tion. In the “sleep” scenario, every 5s the node spins for 0.5s. Be-

cause QSM is single-threaded, this essentially stops the flow of time.

This simulates the effect of disruptive, very busy applications. In the

“loss” scenario, every 1s the node drops all incoming packets for

10ms, thus simulating 1% of bursty packet. In practice, the observed

loss rate is higher, around 2-5%, because recovery traffic interferes

with regular multicast, thus causing extra losses.

In both scenarios, CPU utilization at the receivers in the 50-60%

range and doesn’t grow with system size, but throughput decreases

(Figure 28). In case of sleep, the decrease starts at about 80 nodes

and proceeds steadily thereafter. It doesn’t appear to be correlated to

the amount of loss, which oscillates at the level of 2-3% (Figure 29).

In case of controlled loss, throughput remains fairly constant, until it

falls sharply beyond 160 nodes. Here again, performance does not appear to be directly correlated to the observed

packet loss. Finally, throughput is uncorrelated to memory used on neither the perturbed receiver (Figure 30), nor

other receivers (not shown here). Indeed, at scales of up to 80 nodes, memory usage actually decreases thanks to our

Figure 28. Throughput in the experiments

with a perturbed node (1 sender, 1 topic).

Figure 29. Average packet loss observed at

the perturbed node.

Figure 30. Memory usage at the perturbed

node (at unperturbed nodes it is similar).

Figure 31. Number of messages pending

ACK in experiments with perturbances.

17

cooperative caching policy. The shape of the performance curve

does, however, correlate quite well to the number of unacknow-

ledged requests (Figure 31).

We conclude that the drop in performance in these scenarios

can’t be explained by correlating it to CPU activity, memory, or loss

rates at the receivers, and that it does appear correlated to slower

cleanup and the resulting memory-related overheads at the sender.

The effect is much stronger than in the undisturbed experiments;

the number of messages pending ACK starts at a higher level, and

grows 6-8 times faster. This is due to the fact that the token roundtrip

time is about 2 times longer, and if a failure occurs, it requires typi-

cally 2 token rounds on average to get repaired, plus another round

to perform cleanup (Figure 32, Figure 33). These effects, combined

together, account for the faster increase in acknowledgement latency.

It is worth noting that the doubled token roundtrip time, as com-

pared to unperturbed experiments, can’t be accounted for by the in-

crease in memory overhead or CPU activity on the receivers, as was

the case in experiments where we varied the replication factor. The

problem can be traced to a priority inversion. Because of repeated

losses, the system maintains a high volume of forwarding traffic.

The forwarded messages tend to get ahead of the token, both on the

send path, where in the sinks, we use a simple round-robin policy of

multiplexing between data feeds, and on the receive path, where

forwarded packets are treated as control traffic, and while they’re

prioritized over data, they are treated as equally important as tokens.

They also increase the overall volume of I/O that the nodes process. As a result, tokens are processed with higher

latency. Although it would be hard to precisely measure these delays to prove this, measuring the time alarms are

delayed gives us a good insight into the magnitude of the problem. Recall that our time-sharing policy assigns

Figure 32. Token roundtrip time and the

time to recover in the "sleep" scenario.

Figure 33. Token roundtrip time and the

time to recover in the "loss" scenario.

Figure 34. Histogram of maximum alarm

delays in 1s intervals, on the receivers.

Figure 35. Histogram of maximum alarm

delays in 1s intervals, on the sender.

18

quanta to different types of events. High volumes of I/O, such as

caused by the increased forwarding traffic, will cause QSM to use a

larger fraction of its I/O quantum to process I/O events, at the cost of

bigger delays in processing timer events. This effect is magnified

each time QSM is preempted by other processes or by its own gar-

bage collector; such delays are typically shorter than the I/O quan-

tum, yet longer than the alarm quantum, thus causing the alarm, but

not the I/O quanta, to expire.

The maximum alarm firing delays taken from samples in 1s in-

tervals are indeed much larger in the perturbed experiments, both on

the sender and on the receiver side (Figure 34, Figure 35). Large de-

lays are also more frequent (not shown). The maximum delay meas-

ured on receivers in the perturbed runs is 130-140ms, as compared in

12-14ms in the unperturbed experiments. On the sender, the value

grows from 700ms to 1.3s. In all scenarios, the problem could be alleviated by making our priority scheduling more

fine-grained, e.g. varying priorities for control packets, or by assigning priorities to feeds in the sending stack.

4.4. Overheads in a Lightly-Loaded System

So far the evaluation focused on scenarios where the system is highly loaded, with unlimited multicast rates and

perturbances. In all cases, we have linked memory-related overheads or scheduling delays to degraded performance.

Turning the question around: how does the system behave when lightly loaded? Do similar phenomena occur?

To answer this, we now vary the multicast rate. Figure 16 showed the load on receiver to grow roughly linearly,

as indeed we expected given the linearly increasing load, negligible loss rates and the nearly flat curve of memory

consumption (Figure 37), the latter thanks to our cooperative caching policy. Load on the sender, however, grows

super-linearly, because the linear growth of traffic, combined with our fixed rate of state aggregation, results in the

increase of the amount of unacknowledged data (Figure 37), resulting in the increase of memory usage. The latter

results in higher overheads: for example, the time spent in the garbage collector grows from 50% for the lower to

60% for the highest rates (not shown here). Combined with the already linearly growing CPU usage due to the in-

creasing volume of traffic, these overheads cause the super-linear growth of CPU overhead shown on Figure 16. The

Figure 37. Linearly growing memory use

on sender and the nearly flat usage on the

receiver as a function of the sending rate.

Figure 36. Number of unacknowledged

messages and average token roundtrip

time as a function of the sending rate.

19

growth of the number of unacknowledged requests and the resulting

overheads appears to be super-linear as well at highest rates, due to

the sharply rising token roundtrip time. The issue here is that the

amount of I/O to be processed increases, much like in some of the

earlier scenarios, tokens tend to be delayed by the growing amount of

multicast traffic. We confirm the latter by looking at the end-to-end

latency (Figure 38). Generally, we expect the latency to decrease as

the sending rate increases because the system works more smoothly,

avoiding context switching overheads and the extra latencies caused

by the small amount of buffering in our protocols stack. However,

after the rate exceeds 6000 packets/s, with larger packets the latency

starts increasing again, due to the longer pipeline at the receive side

and other phenomena mentioned above. The same is not true for

small packets (Figure 38), for then the load on the system is much smaller. Finally, the above observations are con-

sistent with the sharp rise of the average delay for timer events (Figure 39). As the rate changes from 7000 to 8000,

the latter on the receiver increases from 1.5ms to 3ms, and on the sender, from 7ms to 45ms.

4.5. Memory Footprint of the Protocol Stack

In the last set of experiments, we focus on scalability with the number of topics. A single sender multicasts to a

varying number of topics in a round-robin fashion. All nodes subscribe to all topics, a contrived scenario that lets us

focus purely on the effect of having multiple topics. Indeed, in our scenario, varying the number of topics affects

only the sender. All topics map to a single region, and since the sender indexes messages destined to a region across

topics, to form a single sequence ([1], [3]), the recovery protocol is oblivious to the number of topics. On the other

hand, the sender must maintain a number per-topic protocol stack elements. This only affects the memory footprint,

so any changes to throughput or protocol behavior must be directly or indirectly linked to memory usage.

We do not expect the token roundtrip time or the amount of messages pending ACK to vary with the number of

topics, and until about 3500 topics they don’t (Figure 40). However, in this range memory consumption on the send-

er grows (Figure 41), and so does the time spent in CLR (Figure 42), hurting throughput (Figure 43). Inspection of

the managed heap in a debugger shows that the growth in memory usage in this range is caused not by messages, but

Figure 39. Alarm firing delays on sender

and receiver as a function of sending rate.

Figure 38. The send-to-receive latency for

varying rate, with various message sizes.

20

by the per-topic elements of the protocol stack. Each maintains a

queues, dictionaries, strings, small structures for profiling etc. With

thousands of topics, these add up to tens of megabytes.

We further confirm our intuition by turning on additional tracing

in the per-topic components. This tracing is lightweight and has little

effect on CPU, but it increases memory footprint with data structures

that are actively updated once a second, which burdens the GC. In-

deed, this decreases throughput (Figure 43, “heavyweight”).

It is worth noting that the memory usage values reported here

are averages. Throughout the experiment, memory usage oscillates,

and the peak values are typically 50-100% higher. With only 512MB

total memory, already a 100MB average (and 200MB peak) memory

footprint of the test process alone can be significant. With 8192 top-

ics, peak footprint approaches 360MB, and the system is almost ap-

proaching the threshold beyond which it would start swapping.

However, even with 3500-4000 topics we notice signs of instability.

Token roundtrip times start to grow, thus delaying message cleanup

(Figure 40) and increasing memory overhead (Figure 41). Although

the process is fairly unpredictable (we see spikes and anomalies), we

can easily recognize a super-linear trend starting at around 6000 top-

ics. At around this point, we also start to see occasional bursts of

packet losses (not shown), up to thousands of packets long, and noti-

ceably, but not precisely correlated at different receivers. This trig-

gers bursts of forwarding that aggravate the issue.

All these effects are ultimately rooted in the fact that the sender

node is more loaded and less responsive. A detailed analysis of the

captured network traffic shows that the multicast stream in all cases looks basically identical, and hence we cannot

attribute token latency or losses to the increased volume of traffic, throughput spikes or longer bursts of data. With

Figure 40. Number of messages pending

ACK and token roundtrip time as a func-

tion of the number of topics.

Figure 41. Memory usage grows with the

number of topics. Beyond a certain thre-

shold, the system is increasingly unstable.

Figure 42. Time spent in the CLR code.

Figure 43. Throughput decreases with the

number of topics (1 sender, 110 receivers,

all topics have the same subscribers).

21

more topics, the sender spends more time transmitting at lower rates,

but doesn’t produce any faster data bursts than those we observe with

smaller numbers of topics (Figure 44). Receiver performance indica-

tors such as delays in firing timer event or CPU utilization don’t

show any noticeable trend.

The distribution of token roundtrip times for different numbers

of topics shows that the increase of the token roundtrip time is

caused almost entirely by only 50% of the tokens that are delayed the

most (Figure 45), which points to disruptive events as the culprit,

rather than a predictable increase of the token processing overhead.

Tokens are commonly delayed on the sender. With many thousands

of topics, the average time to travel by one hop from sender to re-

ceiver or receiver to sender can grow to nearly 50-90ms, as com-

pared to an average 2ms per hop from receiver to receiver (not

shown). Also, the overloaded sender occasionally releases the tokens

with a delay, thus introducing irregularity. For 10% of the most-

delayed tokens, the value of the delay grows with the number of top-

ics (Figure 46). At the very least, this decreases the efficiency of the

process since tokens do partially redundant work. In extreme cases,

we observe tokens disappearing. The latter is caused by a mechanism we have built into our system to avoid token

convoys (such convoys carry out-of-date aggregates that trigger long bursts of redundant forwarding, destabilizing

the system [3]). Finally, if a burst of losses occur, tokens may also be delayed at the receivers, as discussed earlier in

the paper, although losses seem to occur rarely and they don’t appear to be a major factor affecting performance. In

a typical 10-minute run we observe a few bursts of losses. They cause spikes in the number of messages pending

ACK, but rarely to such a level as to trigger the flow control mechanism.

5. Discussion

In the preceding section we identified some of the factors that affect performance and scalability of QSM. There are

a number of forces at play, some of them mutually reinforcing, thus leading to a feedback loop that has a potential to

Figure 44. Cumulative distribution of the

multicast rates for 1K and 8K topics.

Figure 45. Token roundtrip times for 4K

and 7K topics (cumulative distribution).

Figure 46. Intervals between the subse-

quent tokens (cumulative distribution).

22

inflate disruptive events caused by losses or

busy applications to the level where they hurt

performance (Figure 47). All these phenomena

are ultimately tied to delays and latencies,

which act as the common link through which

the vicious cycle can sustains itself. The big-

gest sources of latency, at least in large confi-

gurations, are the protocol, and what we refer

to as “scheduling delays”. The latter represent

the overall, cumulative time “penalty” im-

posed on important tasks such as processing a

token. These delays may come from a variety

of sources, some of which are discussed below. As demonstrated in our experiments, even small delays may be ef-

fectively “inflated” by the protocol, thus resulting in high latencies for critical tasks. As our experiments show, even

seemingly low-priority tasks, such as collecting acknowledgements, may be critical and require low latency because

of the high memory-related overheads in managed environments. The key to achieving high performance and very

good scalability, at the most general level, thus lies in a combination of the following approaches.

1. Reduce “Scheduling Delays”. This can be achieved by a variety of techniques discussed in this section.

2. Reduce the “Inflating” Effect. This effect occurs, for example, if any part of the protocol involves a compo-

nent growing linearly with system size, as is was the case in QSM for the inter-partition token ring, thus causing

latencies to add up. The issue may be alleviated by using a deeper hierarchy (e.g. more levels of token rings).

3. Reduce “Hidden” Latencies. An example of a hidden latency is one resulting from making the protocol unne-

cessarily synchronous, as it is the case in QSM, where inter-partition tokens are synchronized with the intra-

partition tokens. The benefits of such synchronization are negligible, and the cost is the unnecessary waiting and

a higher aggregation latency overall. In systems like ours, the more concurrency in the protocol, the better.

Below is a summary of techniques used in QSM or suggested by our experiments that can reduce scheduling delays.

1. Avoid Multi-Threading. The majority of tasks in QSM are short, predictable, and terminating, and preemption

represents pure overhead. Preemption also requires synchronization, which leads to contention, and causes trivi-

starvation

latency

buffering

caching

stale

info

memory

overheads

GC

disruptive

useless

work

“random”

scheduling

preemption

synchronization

“bursty”

behavior

scheduling

delays

loss

repair

packet loss

Figure 47. A variety of “forces” controlling the behavior of the

system form a self-reinforcing “vicious cycle” that has the po-

tential to inflate any temporary perturbances to the level where

they hurt performance. All these “forces” are ultimately tied to

memory overheads and various sorts of delays and latencies.

23

al tasks to take on the order of milliseconds. We mentioned that an early version of QSM was multithreaded;

single-threading dramatically improved performance (and eliminated concurrency bugs).

2. Prioritize Processing. Priority inversions such as those caused when a high volume of data delays tokens, for-

warding or timer-based events, hurt performance and make the system unstable. In a high-performance system,

transient problems are inevitable. The problem can be overcome by replacing “random” scheduling decisions

(such as processing events in the order they show up) with our own priority-based, time-shared event processing

policy. This made our system capable of stabilizing itself. As our experiments suggest, further benefits could be

gained by making priorities more fine-grained, and by applying them on the send path too.

3. Keep Components Lightweight. All of our experiments point to memory overheads as one of the major rea-

sons for degraded performance and scalability, with fluctuations as small as 10MB translating to 5% throughput

penalty. While the effect may not be as significant in case of slowly-changing data structures, it is evident in our

system with objects allocated and data structures updated thousands of times per second. As we have demon-

strated, in a scalable system the memory footprint of the elements of the protocol stack should be kept low.

4. Avoid Buffering. Even a few thousand unacknowledged messages can affect performance by increasing memo-

ry overheads. Buffering messages in a protocol stack can easily aggravate the problem by orders of magnitude,

especially in a scalable system that may need to maintain thousands of protocol stack elements, such as

representing individual topics, each potentially with its own message buffer. In these cases, the damaging effect

on performance far outweighs the benefits of buffering. Our “pull” protocol stack architecture reduced buffering

in QSM to minimum, and enabled a smooth flow control between QSM and the OS.

5. Limit Caching. Caching, such as for the purpose of loss recovery, can be as disruptive as buffering, for the

exact same reasons. Our system actually can’t run at the highest rate if every receiver is caching every message.

In practice, caching on more than a few nodes is counter-productive. Cooperative caching allowed us to make

memory use on receivers basically a non-issue; indeed, our system works faster with 80 nodes than with just 20.

6. Act on Fresh State. Priority processing, and creating messages “just-in-time” for transmission in our “pull”

protocol stack, both reduce the end-to-end latency for control packets, thus maximizing the “freshness” of the

information the recipient acts upon. This is of critical importance particularly to the control traffic, where acting

upon stale forwarding request or NAKs in earlier versions of QSM led to long bursts of redundant forwarding.

24

7. Design With Delays In Mind. One source of delays in our experiments arises from disruptive activity of other

threads, such as the garbage collector, the application using QSM, or OS services running in background. De-

lays on the order of 10ms are common even in unperturbed runs, on an otherwise idle system with no applica-

tions besides QSM. These delays make it hard to e.g. efficiently implement accurate rate control without intro-

ducing significant “burstiness” because they affect any processing based on timeouts. In QSM, we implemented

rate control as an adaptive mechanism that “overcompensates” for the delays inherent in the system ([1], [3]).

8. Anticipate Convoys. Convoy phenomena, such as when message cleanup is delayed by long burst of I/O or

when a chain of tokens triggers a burst of forwarding, lead to starvation, priority inversion, and redundant work.

In QSM, we had to resort to a number of mechanisms that explicitly prevent these from happening, such as

quanta for I/O and timer events, terminating some of the tokens if they pile up etc.

9. Beware Of Hidden Starvation. Sustaining high performance sometimes depends on the application promptly

handling events such as the successful completion of multicast, handling of errors etc. When such critical inte-

ractions are delayed, e.g. due to high volume of I/O, priority inversions may occur, where resources held by the

application (e.g. memory) are not reclaimed, resulting in a degraded performance. Seemingly low-priority inte-

ractions with the application can thus sometimes turn out to be on the critical path.

We conclude the discussion by shifting focus from the overheads of QSM to some of the overheads that the system

would incur if implemented as an unmanaged library. First, we speculate that this would result in buffering, for oth-

erwise, the system would need to marshal calls from unmanaged to managed code through COM wrappers to pull

data just in time for transmission, which leads to unacceptable overhead. Buffering, in turn, would lead to problems

much like those discussed earlier. Secondly, we believe that message cleanup latency would be larger, in part be-

cause of having to marshal calls across COM domain boundaries, and in part because it would necessarily have to be

done in a different thread than the thread running in context of the unmanaged engine, and thus it would involve the

extra delay of rescheduling. These delays, in turn, would cause messages in the application to lag behind, and in-

crease garbage collection overhead in the managed application process; potentially even more disruptive because it

would involves a context switch to a different process. Also, it would prevent efficient use of scatter-gather I/O by

requiring the transmitted data to be marshaled across domains, thus introducing the huge overhead of the extra

memory copy on the critical path and increasing memory usage. Finally, efficient debugging, profiling, and excep-

tion handling are harder in unmanaged systems, and building a large system such as QSM in C++ would be a chal-

25

lenge. Moreover, it is much harder to ensure secure execution of dynamically loaded code, such as a “protocol driv-

er” dynamically downloaded from the network ([2]), or provided by the application.

6. Conclusions

The premise of our work is that publish-subscribe and multicast can only achieve their promise if deeply integrated

with managed environments. Doing so posed challenges to us as protocol and system designers, which were the

primary focus of our paper. A central insight is that in managed settings, maintaining as small a memory footprint as

possible is a key to high performance. With effort, QSM is able to achieve remarkable scalability and stability even

at very high loads. We believe the techniques used would also be applicable in other systems and settings.

7. Acknowledgements

We are grateful to Mahesh Balakrishnan, Ranveer Chandra, Danny Dolev, Maya Haridasan, Tudor Marian, Greg

Morrisett, Robbert van Renesse, Einar Vollset, and Hakim Weatherspoon for the feedback they provided.

8. References

[1] K. Ostrowski, K. Birman, A. Phanishayee. The Power of Indirection: Achieving Multicast Scalability by Mapping Groups to

Regional Underlays. Cornell University Tech. Report, November 2005, http://www.cs.cornell.edu/~krzys/QSM-2005.pdf

[2] K. Ostrowski, K. Birman. Extensible Web Services Architecture for Notification in Large-Scale Systems. In Proceedings of

the IEEE International Conference on Web Services (ICWS 2006), Chicago, IL, September 2006, pp. 383-392.

[3] K. Ostrowski, K.Birman, A. Phanishayee. QuickSilver Scalable Multicast. Cornell University Technical Report, April 2006,

http://www.cs.cornell.edu/~krzys/QSM-2006.pdf

[4] K. Ostrowski, K. Birman, D. Dolev. Properties Framework and Typed Endpoints for Scalable Group Communication. Cor-

nell University Technical Report, July 2006, http://www.cs.cornell.edu/~krzys/PropertiesFx.pdf

[5] K. Birman. A review of experiences with reliable multicast. Software Practice and Experience, 1999.

[6] S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L. Zhang. A reliable multicast framework for light-weight sessions and

application level framing. IEEE/ACM Transactions on Networking, 1997.

[7] J. C. Lin and S. Paul. RMTP: A Reliable Multicast Transport Protocol. INFOCOM, 1996.

[8] Y. Amir, C. Danilov, M. Miskin-Amir, J. Schultz, J. Stanton. The Spread Toolkit: Architecture and Performance. 2004.

[9] QuickSilver distribution and the list of publications: http://www.cs.cornell.edu/projects/quicksilver/QSM/

[10] B. Ban. Design and Implementation of a Reliable Group Communication Toolkit for Java. (1998).

[11] B. Glade, K. Birman, R. Cooper, and R. van Renesse. Light-Weight Process Groups in the ISIS System (1993).

[12] S. Maffeis, D. Schmidt. Constructing Reliable Distributed Communication Systems with CORBA. IEEE Communications

Magazine feature topic issue on Distributed Object Computing, Vol. 14, No. 2, February 1997.

[13] Y. Tock, N. Naaman, A. Harpaz, and G. Gershinsky. Hierarchical Clustering of Message Flows in a Multicast Data Disse-

mination System. PDCS, 2005.

[14] Z. Xiao. Efficient Error Recovery for Reliable Multicast. Ph.D. Dissertation, Cornell University, January 2001.

[15] I. Keidar, J. Sussman, K. Marzullo, and D. Dolev. Moshe: A group membership service for WANs. ACM Transactions on

Computer Systems, Vol. 20, No. 3, August 2002, p. 191-238.

http://www.cs.cornell.edu/~krzys/QSM-2005.pdf
http://www.cs.cornell.edu/~krzys/QSM-2006.pdf
http://www.cs.cornell.edu/~krzys/PropertiesFx.pdf
http://www.cs.cornell.edu/projects/quicksilver/QSM/

