Derivations of Conditional Distributions in Hierarchical Normal Linear Models

Shayle R. Searle
Biometrics Unit,
Cornell University, Ithaca, NY 14853

DERIVATIONS OF CONDITIONAL DISTRIBUTIONS

IN HIERARCHICAL NORMAL LINEAR MODELS

Shayle R. Searle
Biometrics Unit, Cornell University, Ithaca, N. Y. 14853

BU-1236-M
May, 1994

Abstract

These are notes. They give details of deriving conditional distributions occurring in hierarchical modeling of familiar analysis of variance mixed models. All the results, and most of the derivations, are to be found in Section 4.3b of Variance Components, Searle, Casella and McCulloch (Wiley, 1992). The main distinctions between that section and these notes are the sequencing of the derivations, the details displayed, and the tabular summaries of general results and special cases.

MODELS

The usual mixed model

$$
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{Z u}+\mathbf{e}
$$

$\boldsymbol{\beta}$ is fixed; \mathbf{X} and \mathbf{Z} are known
\mathbf{u} is random: $\mathrm{E}(\mathbf{u})=\mathbf{0} \operatorname{var}(\mathbf{u})=\mathbf{D}$
\mathbf{e} is residual: $\mathrm{E}(\mathbf{e})=\mathbf{0} \operatorname{var}(\mathbf{e})=\mathbf{R}$

$$
\operatorname{cov}\left(\mathbf{u}, \mathbf{e}^{\prime}\right)=\mathbf{0} .
$$

$$
\begin{equation*}
\operatorname{var}(\mathbf{y})=\mathbf{V}=\mathbf{Z D Z}+\mathbf{R} . \tag{1}
\end{equation*}
$$

Hierarchical modeling (Bayes, e.g., p. 328)
In addition to the above:

$$
\begin{align*}
\mathrm{E}(\boldsymbol{\beta}) & =\boldsymbol{\beta}_{0} \quad \operatorname{var}(\boldsymbol{\beta})=\mathbf{B} \quad \operatorname{cov}\left(\boldsymbol{\beta}, \mathbf{y}^{\prime}\right)=\mathbf{B X}^{\prime} . \tag{2}\\
\operatorname{var}(\mathbf{y}) & =\mathbf{W}=\mathbf{X B X}^{\prime}+\mathbf{V}=\mathbf{X B X}^{\prime}+\mathbf{Z D Z}+\mathbf{R} . \tag{3}\\
{[57]_{332}^{*} \quad \text { Define } \quad \boldsymbol{R}^{-1} } & =\mathbf{X B X}^{\prime}+\mathbf{R} \quad \text { and } \quad \mathrm{C}=\mathbf{D}^{-1}+\mathbf{X}^{\prime} \mathbf{\ell Z} . \tag{4}
\end{align*}
$$

[^0]
Normality

$[49]_{331}\left[\begin{array}{c}\beta \\ \mathbf{u} \\ \mathbf{y}\end{array}\right] \sim \mathcal{N}\left\{\left[\begin{array}{c}\boldsymbol{\beta}_{0} \\ \mathbf{u}_{0} \\ \mathbf{X} \boldsymbol{\beta}_{0}+\mathbf{Z} \mathbf{u}_{\mathbf{0}}\end{array}\right], \quad\left[\begin{array}{ccc}\mathbf{B} & \mathbf{0} & \mathbf{B X}^{\prime} \\ \mathbf{0} & \mathbf{D} & \mathbf{D Z} \\ \mathbf{X B} & \mathbf{Z D} & \mathbf{W}\end{array}\right]\right\}$.

Conditional variables, under normality

A general result
$[50]_{332}$

$$
\left[\begin{array}{l}
\mathbf{x}_{1} \tag{6}\\
\mathbf{x}_{2}
\end{array}\right] \sim N\left[\binom{\mathbf{u}_{1}}{\mathbf{u}_{2}}, \quad\left(\begin{array}{ll}
\mathbf{v}_{11} & \mathbf{v}_{12} \\
\mathbf{v}_{21} & \mathbf{v}_{22}
\end{array}\right)\right] .
$$

By applying (7) to (5) we get distributional results for four conditional variables that arise in the hierarchical model.

FOUR CONDITIONAL VARIABLES

The four conditional variables to be considered come in pairs: $\mathbf{u} \mid \boldsymbol{\beta}, \mathbf{y}$ and $\mathbf{u} \mid \mathbf{y}$, and $\beta \mid \mathbf{u}, \mathbf{y}$ and $\boldsymbol{\beta} \mid \mathbf{y}$. General results for the four are derived first, and special cases are then summarized in tables. Initially, the presentation is directed towards establishing results [51] $]_{332}$ through [62] $]_{333}$ of Section 4.3b.

First: $\mathbf{u} \mid \boldsymbol{\beta}, \mathbf{y}$
The appropriate application of (7) to (5) is

$$
\begin{array}{cc}
\mathbf{x}_{1}=\mathbf{u} & \mathbf{x}_{2}^{\prime}=\left[\begin{array}{ll}
\boldsymbol{\beta}^{\prime} & \mathbf{y}^{\prime}
\end{array}\right] \\
\boldsymbol{\mu}_{1}=\boldsymbol{\mu}_{0} & \boldsymbol{\mu}_{2}^{\prime}=\left[\begin{array}{ll}
\boldsymbol{\beta}_{0}^{\prime} & \left(\mathbf{X} \boldsymbol{\beta}_{0}+\mathbf{Z u _ { 0 }}\right)^{\prime}
\end{array}\right] \\
\mathbf{V}_{11}=\mathbf{D} & \mathbf{V}_{12}=\left[\begin{array}{ll}
\mathbf{0} & \mathbf{D Z} \mathbf{Z}^{\prime}
\end{array}\right] \quad \mathbf{V}_{22}=\left[\begin{array}{cc}
\mathbf{B} & \mathbf{B X} \mathbf{X}^{\prime} \\
\mathbf{X B} & \mathbf{W}
\end{array}\right] \tag{9}
\end{array}
$$

Matrix Result (M1)

$$
\left[\begin{array}{ll}
\mathbf{A} & \mathbf{B} \\
\mathbf{C} & \mathbf{D}
\end{array}\right]^{-1}=\left[\begin{array}{cc}
\mathbf{A}^{-1} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right]+\left[\begin{array}{c}
-\mathbf{A}^{-1} \mathbf{B} \\
\mathbf{I}
\end{array}\right]\left(\mathbf{D}-\mathbf{C A}^{-1} \mathbf{B}\right)^{-1}\left[-\mathbf{C A}^{-1} \quad \mathbf{I}\right]
$$

[See (27), p. 453, plus errata.]
Hence from (9)

$$
\begin{align*}
\mathbf{V}_{22}^{-1} & =\left[\begin{array}{cc}
\mathbf{B}^{-1} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right]+\left[\begin{array}{c}
-\mathbf{B}^{-1} \mathbf{B} \mathbf{X}^{\prime} \\
\mathbf{I}
\end{array}\right]\left(\mathbf{W}-\mathbf{X B B}^{-1} \mathbf{B X}^{\prime}\right)^{-1}\left[\begin{array}{ll}
-\mathbf{X B B}^{-1} & \mathbf{I}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\mathbf{B}^{-1}+\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X} & -\mathbf{X}^{\prime} \mathbf{V}^{-1} \\
-\mathbf{V}^{-1} \mathbf{X} & \mathbf{V}^{-1}
\end{array}\right] . \tag{10}
\end{align*}
$$

Hence from using (9) and (10) in (7)

$$
\begin{align*}
\mathrm{E}(\mathbf{u} \mid \boldsymbol{\beta}, \mathbf{y}) & =\mathbf{u}_{0}+\left[\begin{array}{ll}
-\mathbf{D Z}^{\prime} \mathbf{V}^{-1} \mathbf{X} & \mathrm{DZ}^{\prime} \mathbf{V}^{-1}
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{\beta}-\boldsymbol{\beta}_{0} \\
\mathbf{y}-\mathbf{X} \boldsymbol{\beta}_{0}-\mathbf{Z} \mathbf{u}_{0}
\end{array}\right] \\
& =\mathbf{u}_{0}+\mathrm{DZ}^{\prime} \mathbf{V}^{-1}\left[-\mathbf{X}\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right)+\mathbf{y}-\mathbf{X} \boldsymbol{\beta}_{0}-\mathbf{Z u} \mathbf{u}_{0}\right] \\
& =\mathbf{u}_{0}+\mathbf{D Z ^ { \prime } \mathbf { V } ^ { - 1 } (\mathbf { y } - \mathbf { X } \boldsymbol { \beta } - \mathbf { Z } \mathbf { u } _ { 0 }) .} \text {. } \tag{11}
\end{align*}
$$

Matrix Result (M2)

$$
\begin{align*}
\left(\mathbf{Z}^{\prime} \mathbf{R}^{-1} \mathbf{Z}+\mathbf{D}^{-1}\right) \mathbf{D} \mathbf{Z}^{\prime} & =\mathbf{Z}^{\prime} \mathbf{R}^{-1} \mathbf{Z D} \mathbf{Z}^{\prime}+\mathbf{Z}^{\prime} \\
& =\mathbf{Z}^{\prime} \mathbf{R}^{-1}\left(\mathbf{Z D Z} \mathbf{Z}^{\prime}+\mathbf{R}\right) \\
& =\mathbf{Z}^{\prime} \mathbf{R}^{-1} \mathbf{V} \\
\mathbf{D Z}^{\prime} \mathbf{V}^{-1} \equiv \mathbf{D} \mathbf{Z}^{\prime}\left(\mathbf{Z D Z} \mathbf{Z}^{\prime}+\mathbf{R}\right)^{-1} & =\left(\mathbf{Z}^{\prime} \mathbf{R}^{-1} \mathbf{Z}+\mathbf{D}^{-1}\right)^{-1} \mathbf{Z}^{\prime} \mathbf{R}^{-1} \tag{12}\\
& =\mathbf{A}^{-1} \mathbf{Z}^{\prime} \mathbf{R}^{-1} \text { for } \mathbf{A}=\left(\mathbf{Z}^{\prime} \mathbf{R}^{-1} \mathbf{Z}+\mathbf{D}^{-1} .\right. \tag{13}
\end{align*}
$$

$[39]_{329}$

$$
\mathrm{E}(\mathbf{u} \mid \boldsymbol{\beta}, \mathbf{y})=\mathbf{u}_{0}+\mathrm{DZ}^{\prime} \mathbf{V}^{-1}\left(\mathbf{y}-\mathbf{X} \boldsymbol{\beta}-\mathbf{Z} \mathbf{u}_{0}\right)
$$

$$
=\mathbf{u}_{0}+\left(\mathbf{Z}^{\prime} \mathbf{R}^{-1} \mathbf{Z}+\mathbf{D}^{-1}\right)^{-1} \mathbf{Z}^{\prime} \mathbf{R}^{-1}\left(\mathbf{y}-\mathbf{X} \boldsymbol{\beta}-\mathbf{Z} \mathbf{u}_{0}\right)
$$

$$
=\left(\mathbf{Z}^{\prime} \mathbf{R}^{-1} \mathbf{Z}+\mathbf{D}^{-1}\right)^{-1}\left[\mathbf{Z}^{\prime} \mathbf{R}^{-1}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})+\left(\mathbf{Z}^{\prime} \mathbf{R}^{-1} \mathbf{Z}+\mathbf{D}^{-1}-\mathbf{Z}^{\prime} \mathbf{R}^{-1} \mathbf{Z}\right) \mathbf{u}_{0}\right]
$$

$$
\begin{equation*}
=\left(\mathbf{Z}^{\prime} \mathbf{R}^{-1} \mathbf{Z}+\mathbf{D}^{-1}\right)^{-1}\left[\mathbf{Z}^{\prime} \mathbf{R}^{-1}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})+\mathbf{D}^{-1} \mathbf{u}_{0}\right] \tag{14}
\end{equation*}
$$

$\left.{ }_{[55}\right]_{332}$

$$
\begin{equation*}
=\mathbf{u}_{0}+\mathbf{A}^{-1} \mathbf{Z}^{\prime} \mathbf{R}^{-1}\left(\mathbf{y}-\mathbf{X} \boldsymbol{\beta}-\mathbf{Z} \mathbf{u}_{0}\right) \quad \text { for } \quad \mathbf{A}=\mathbf{Z}^{\prime} \mathbf{R}^{-1} \mathbf{Z}+\mathbf{D}^{-1} \tag{15}
\end{equation*}
$$

$$
-u_{0}+A \operatorname{AR}\left(y-\Lambda \rho-\Delta u_{0}\right) \text { 101 } R-\Delta K \Delta+D
$$

$$
=\mathbf{A}^{-1}\left[\mathbf{Z}^{\prime} \mathbf{R}^{-1}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})+\mathbf{D}^{-1} \mathbf{u}_{0}\right] .
$$

Also, from (7)

$$
\begin{equation*}
\operatorname{var}(\mathbf{u} \mid \boldsymbol{\beta}, \mathbf{y})=\mathbf{D}-\mathbf{D Z}^{\prime} \mathbf{V}^{-1} \mathbf{Z} \mathbf{D}^{\prime} . \tag{16}
\end{equation*}
$$

Matrix Result

$$
\begin{align*}
\mathbf{D}-\mathbf{D} \mathbf{Z}^{\prime} \mathbf{V}^{-1} \mathbf{Z} \mathbf{D} & =\mathbf{D}-\left(\mathbf{Z}^{\prime} \mathbf{R}^{-1} \mathbf{Z}+\mathbf{D}^{-1}\right)^{-1} \mathbf{Z}^{\prime} \mathbf{R}^{-1} \mathbf{Z} \mathbf{D} \tag{M3}\\
& =\left[\mathbf{I}-\left(\mathbf{Z}^{\prime} \mathbf{R}^{-1} \mathbf{Z}+\mathbf{D}^{-1}\right)^{-1}\left(\mathbf{Z}^{\prime} \mathbf{R}^{-1} \mathbf{Z}+\mathbf{D}^{-1}-\mathbf{D}^{-1}\right)\right] \mathbf{D} \\
& =\left(\mathbf{Z}^{\prime} \mathbf{R}^{-1} \mathbf{Z}+\mathbf{D}^{-1}\right)^{-1}=\mathbf{A}^{-1} \text { from (13) }
\end{align*}
$$

Hence from (16)

$$
\begin{equation*}
\operatorname{var}(\mathbf{u} \mid \boldsymbol{\beta}, \mathbf{y})=\left(\mathbf{Z}^{\prime} \mathbf{R}^{-1} \mathbf{Z}+\mathbf{D}^{-1}=\mathbf{A}^{-1}\right. \tag{55}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\mathbf{u} \mid \boldsymbol{\beta}, \mathbf{y} \sim \mathcal{N}\left[\mathbf{u}_{0}+\mathbf{A}^{-1} \mathbf{Z}^{\prime} \mathbf{R}^{-1}\left(\mathbf{y}-\mathbf{X} \boldsymbol{\beta}-\mathbf{Z} \mathbf{u}_{0}\right), \quad \mathbf{A}^{-1}\right] . \tag{17}
\end{equation*}
$$

Second: $\mathbf{u | y}$

For (7): $\quad \mu_{1}=\mathbf{u}_{0}, \quad \mu_{2}=\mathbf{X} \boldsymbol{\beta}_{0}+\mathbf{Z} \mathbf{u}_{0}, \quad \mathbf{V}_{11}=\mathbf{D}, \quad \mathbf{V}_{12}=\mathbf{D Z}{ }^{\prime}$

$$
\begin{align*}
& \mathbf{V}_{22}=\mathbf{W}=\mathbf{X B} X^{\prime}+\mathbf{Z D} Z^{\prime}+\mathbf{R}, \quad \mathbf{V}_{12} \mathbf{V}_{22}^{-1}=\mathbf{D} Z^{\prime} \mathbf{W}^{-1} \\
& \mathbf{u} \mid \mathbf{y} \sim \mathcal{N}\left[\mathbf{u}_{0}+\mathbf{D} Z^{\prime} \mathbf{W}^{-1}\left(\mathbf{y}-\mathbf{X} \beta-\mathbf{Z} u_{0}\right), \quad \mathbf{D}-\mathbf{D Z}^{\prime} \mathbf{W}^{-1} \mathbf{Z D}\right] \tag{19}
\end{align*}
$$

Matrix Result

In general, as in [28b], p. 453

$$
\begin{equation*}
\left(\mathrm{D}+\mathrm{CA}^{-1} \mathbf{B}\right)^{-1}=\mathrm{D}^{-1}-\mathrm{D}^{-1} \mathbf{C}\left(\mathbf{A}+\mathrm{BD}^{-1} \mathbf{C}\right)^{-1} \mathbf{B D}^{-1} \tag{20}
\end{equation*}
$$

Hence

$$
\begin{align*}
\mathbf{V}_{12} \mathbf{V}_{22}^{-1} & =\mathbf{D} Z^{\prime} \mathbf{W}^{-1}=\mathbf{D} \mathbf{Z}^{\prime}\left(\mathbf{X B} \mathbf{X}^{\prime}+\mathbf{Z D} \mathbf{Z}^{\prime}+\mathbf{R}\right)^{-1} \tag{21}\\
& =\mathbf{D} \mathbf{Z}^{\prime}\left(\boldsymbol{\ell}^{-1}+\mathbf{Z D} \mathbf{Z}^{\prime}\right)^{-1}, \quad \text { from }(4) \\
& =\left(\mathbf{Z}^{\prime} \boldsymbol{\ell} \mathbf{Z}+\mathbf{D}^{-1}\right)^{-1} \mathbf{Z}^{\prime} \boldsymbol{\ell}, \quad \text { replacing } \mathbf{R} \text { in }(12) \text { by } \boldsymbol{\ell}^{-1} . \tag{22}\\
& =\mathbf{C}^{-1} \mathbf{Z}^{\prime} \boldsymbol{\ell}, \text { using } \mathbf{C} \text { from (4) } . \tag{23}
\end{align*}
$$

Also in (19)

$$
\mathbf{W}^{-1}=\left(\mathbf{V}+\mathbf{X B X} \mathbf{X}^{\prime}\right)^{-1}=\mathbf{V}^{-1}-\mathbf{V}^{-1} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X}+\mathbf{B}^{-1}\right)^{-1} \mathbf{X}^{\prime} \mathbf{V}^{-1}
$$

so that

$$
\begin{equation*}
\mathrm{E}(\mathbf{u} \mid \mathbf{y})=\mathbf{u}_{0}+\mathrm{D} \mathbf{Z}^{\prime}\left[\mathbf{V}^{-1}-\mathbf{V}^{-1} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X}+\mathbf{B}^{-1}\right)^{-1} \mathbf{X}^{\prime} \mathbf{V}^{-1}\right]\left(\mathbf{y}-\mathbf{X} \boldsymbol{\beta}_{0}-\mathbf{Z} \mathbf{u}_{0}\right) \tag{24}
\end{equation*}
$$

$$
\begin{align*}
\mathbf{D}-\mathbf{D Z}^{\prime} \mathbf{W}^{-1} \mathbf{Z D} & =\mathbf{D}-\left(\mathbf{Z}^{\prime} \boldsymbol{\ell}+\mathbf{D}^{-1}\right)^{-1} \mathbf{Z}^{\prime} \ell Z \mathbf{D}, \quad \text { from } 22 \\
& =\mathbf{D}-\left(\mathbf{Z}^{\prime} \ell \mathbf{Z}+\mathbf{D}^{-1}\right)^{-1}\left(\mathbf{Z}^{\prime} \ell Z+\mathbf{D}^{-1}-\mathbf{D}^{-1}\right) \mathbf{D} \\
& =\left(\mathbf{Z}^{\prime} \ell \mathbf{Z}+\mathbf{D}^{-1}\right)^{-1}=\mathrm{e}^{-1} . \tag{25}
\end{align*}
$$

Hence in (19), using (23) and (25),

$$
\begin{equation*}
\mathbf{u} \mid \mathbf{y} \sim \mathcal{N}\left[\mathbf{u}_{0}+\mathrm{C}^{-1} \mathbf{Z}^{\prime} \boldsymbol{\ell}\left(\mathbf{y}-\mathbf{X} \boldsymbol{\beta}_{0}-\mathbf{Z} \mathbf{u}_{0}\right), \quad \mathrm{e}^{-1}\right] . \tag{26}
\end{equation*}
$$

But

$$
u_{0}-C^{-1} Z^{\prime} \ell Z u_{0}=e^{-1}\left(C-Z^{\prime} \ell Z\right) u_{0}=C^{-1} D^{-1} u_{0}
$$

so that
[below 57] ${ }_{332}$

$$
\begin{equation*}
\mathbf{u} \mid \mathbf{y} \sim \mathcal{N}\left\{\mathrm{e}^{-1}\left[\mathbf{Z}^{\prime} \boldsymbol{\ell}\left(\mathbf{y}-\mathbf{X} \boldsymbol{\beta}_{0}\right)+\mathbf{D}^{-1} \mathbf{u}_{0}\right], \quad \mathbf{e}^{-1}\right\} \tag{27}
\end{equation*}
$$

Third: $\mathbf{u} \mid \boldsymbol{\beta}, \mathbf{y}$

Take the results for $\mathbf{u} \mid \boldsymbol{\beta}, \mathbf{y}$ and have

$$
\left.\begin{array}{l}
\mathbf{u}_{\mathbf{u}}^{\mathbf{\mathbf { u } _ { 0 }}} \underset{\mathbf{Z}}{\mathbf{D}} \mathbf{V}=\mathbf{Z D Z}+\mathbf{R}
\end{array}\right\} \quad \text { interchanged with }\left\{\begin{array}{c}
\boldsymbol{\beta} \\
\boldsymbol{\beta}_{\mathbf{0}} \\
\mathbf{X} \\
\mathbf{B} \\
\boldsymbol{\ell}^{-\mathbf{1}}=\mathbf{X B X}^{\prime}+\mathbf{R}
\end{array} .\right.
$$

Making these interchanges in (11), (14) and (15) gives
$[59]_{333}$

$$
\begin{align*}
\mathrm{E}(\boldsymbol{\beta} \mid \mathbf{u}, \mathbf{y}) & =\boldsymbol{\beta}_{0}+\mathbf{B X}^{\prime}\left(\mathbf{X B X} \mathbf{X}^{\prime}+\mathbf{R}\right)^{-1}\left(\mathbf{y}-\mathbf{X} \boldsymbol{\beta}_{0}-\mathbf{Z u}\right) \tag{28}\\
& =\boldsymbol{\beta}_{0}+\left(\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{X}+\mathbf{B}^{-1}\right)^{-1} \mathbf{X}^{\prime} \mathbf{R}^{-1}\left(\mathbf{y}-\mathbf{X} \boldsymbol{\beta}_{0}-\mathbf{Z u}\right) \tag{29}\\
& =\boldsymbol{\beta}_{0}+\boldsymbol{\mathcal { A }}^{-1} \mathbf{X}^{\prime} \mathbf{R}^{-1}\left(\mathbf{y}-\mathbf{X} \boldsymbol{\beta}_{0}-\mathbf{Z u}\right), \quad \text { for } \boldsymbol{\mathcal { C }}=\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{X}+\mathbf{B}^{-1} \tag{30}\\
& =\boldsymbol{\beta}_{0}+\boldsymbol{\mathcal { A }}^{-1} \mathbf{X}^{\prime} \mathbf{R}^{-1}(\mathbf{y}-\mathbf{Z u})-\boldsymbol{\mathcal { A }}^{-1} \mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{X}+\boldsymbol{\beta}_{0} \\
& =\boldsymbol{\beta}_{0}+\boldsymbol{\mathcal { A }}^{-1} \mathbf{X}^{\prime} \mathbf{R}^{-1}(\mathbf{y}-\mathbf{Z u})-\boldsymbol{\mathcal { A }}^{-1}\left(\boldsymbol{\mathcal { A }}-\mathbf{B}^{-1}\right) \boldsymbol{\beta}_{0} \\
{[\text { below } 59]_{333} } & =\boldsymbol{\mathcal { l }}^{-1}\left[\mathbf{X}^{\prime} \mathbf{R}^{-1}(\mathbf{y}-\mathbf{Z u})+\mathbf{B}^{-1} \boldsymbol{\beta}_{0}\right] . \tag{31}
\end{align*}
$$

And also from (17)

$$
\begin{equation*}
\operatorname{var}(\beta \mid \mathbf{u}, \mathbf{y})=\left(\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{X}+\mathbf{B}^{-1}\right)^{-1} \boldsymbol{\mathcal { M }}^{-1} \tag{32}
\end{equation*}
$$

Hence
$[60]_{333}$

$$
\begin{equation*}
\beta \mid \mathbf{u}, \mathbf{y} \sim \mathcal{N}\left\{\mathcal{A}^{-1}\left[\mathbf{X}^{\prime} \mathbf{R}^{-1}(\mathbf{y}-\mathbf{Z u})+\mathbf{B}^{-1} \beta_{0}\right], \quad \mathcal{A}^{-1}\right\} . \tag{33}
\end{equation*}
$$

Fourth: $\beta \mid y$

Make the same interchanges in results for $\mathbf{u} \mid \mathbf{y}$ as were used to derive results for $\boldsymbol{\beta} \mid \mathbf{u}, \mathbf{y}$ from those for $\mathbf{u} \mid \boldsymbol{\beta}, \mathbf{y}$.
(19) becomes
$[52]_{332} \quad \beta \mid \mathbf{y} \sim \mathcal{N}\left[\boldsymbol{\beta}_{0}+\mathbf{B X}^{\prime} \mathbf{W}^{-1}\left(\mathbf{y}-\mathbf{X} \boldsymbol{\beta}_{0}-\mathbf{Z} \mathbf{u}_{0}\right), \quad \mathbf{B}-\mathbf{B X}^{\prime} \mathbf{W}^{-1} \mathbf{X B}\right]$.
(26) gives this as
$[41]_{329}$

$$
\begin{equation*}
\beta \mid \mathbf{y} \sim \mathcal{N}\left[\boldsymbol{\beta}_{0}+\mathbf{C}^{-1} \mathbf{X}^{\prime} \mathbf{V}^{-1}\left(\mathbf{y}-\mathbf{X} \boldsymbol{\beta}_{0}-\mathbf{Z} \mathbf{u}_{0}\right), \quad \mathbf{C}^{-1}\right] \tag{35}
\end{equation*}
$$

and so (27) is

$$
\begin{align*}
\boldsymbol{\beta} \mid \mathbf{y} & \sim \mathcal{N}\left\{\mathbf{C}^{-1}\left[\mathbf{X}^{\prime} \mathbf{V}^{-1}\left(\mathbf{y}-\mathbf{Z} \mathbf{u}_{0}\right)+\mathbf{B}^{-1} \boldsymbol{\beta}_{0}\right], \quad \mathbf{C}^{-1}\right\} \\
& \sim \mathcal{N}\left\{\left(\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X}+\mathbf{B}^{-1}\right)^{-1}\left[\mathbf{X}^{\prime} \mathbf{V}^{-1}\left(\mathbf{y}-\mathbf{Z} \mathbf{u}_{0}\right)+\mathbf{B}^{-1} \boldsymbol{\beta}_{0}\right], \quad\left(\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X}+\mathbf{B}^{-1}\right)^{-1}\right\} \tag{36}
\end{align*}
$$

TABLE 1.
Normal distributions of conditional variables in the linear model $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{Z u}+\mathbf{e}$.

$$
\begin{array}{ll}
\mathbf{W}=\mathbf{X B X}^{\prime}+\mathbf{Z D Z}+\mathbf{R} & \mathbf{V}=\mathbf{Z D Z}^{\prime}+\mathbf{R} \\
\mathbf{A}=\mathbf{Z}^{\prime} \mathbf{R}^{-1} \mathbf{Z}+\mathbf{D}^{-1} & \mathbf{C}=\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X}+\mathbf{B}^{-1}=\mathbf{X B X}^{\prime}+\mathbf{R} \\
\boldsymbol{\mathcal { M }}=\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{X}+\mathbf{B}^{-1} & \mathbf{C}=\mathbf{Z}^{\prime} \boldsymbol{\ell Z}+\mathbf{D}^{-1} \\
{\left[\begin{array}{l}
\boldsymbol{\beta} \\
\mathbf{u} \\
\mathbf{y}
\end{array}\right] \sim \mathcal{N}\left[\left[\begin{array}{c}
\boldsymbol{\beta}_{0} \\
\mathbf{u}_{0} \\
\mathbf{X} \boldsymbol{\beta}_{0}+\mathbf{Z} \mathbf{u}_{0}
\end{array}\right],\right.} & \left.\left[\begin{array}{ccc}
\mathbf{B} & \mathbf{0} & \mathbf{B X}^{\prime} \\
\mathbf{0} & \mathbf{D} & \mathbf{D Z} \\
\mathbf{X B} & \mathbf{Z D} & \left(\mathbf{X B X}^{\prime}+\mathbf{Z D Z}+\mathbf{R}\right)
\end{array}\right]\right]
\end{array}
$$

Conditional Variable	Normal Distribution			
	Mean		Variance	
$\mathbf{u} \mid \boldsymbol{\beta}, \mathbf{y}$	Equ.			Equ.
	(11)	$\mathbf{u}_{0}+\mathrm{DZ}^{\prime} \mathbf{V}^{-1}\left(\mathbf{y}-\mathbf{X} \boldsymbol{\beta}-\mathbf{Z} \mathbf{u}_{0}\right)$	$\mathbf{D}-\mathbf{D Z}^{\prime} \mathbf{V}^{-1} \mathbf{Z D}$	(10)
	(15), [55]	$=\mathbf{u}_{0}+\mathbf{A}^{-1} \mathbf{Z}^{\prime} \mathbf{R}^{-1}\left(\mathbf{y}-\mathbf{X} \boldsymbol{\beta}-\mathbf{Z u} \mathbf{u}_{0}\right)$	$=\left(\mathbf{Z}^{\prime} \mathbf{R}^{-1} \mathbf{Z}+\mathbf{D}^{-1}\right)^{-1}$	(17)
	(14)	$=\left(\mathbf{Z}^{\prime} \mathbf{R}^{-1} \mathbf{Z}+\mathbf{D}^{-1}\right)^{-1}\left[\mathbf{Z}^{\prime} \mathbf{R}^{-1}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})+\mathbf{D}^{-1} \mathbf{u}_{0}\right]$	$=\mathrm{A}^{-1}$	(25), [55]
$\mathbf{u} \mid \mathbf{y}$	(19)	$\mathbf{u}_{0}+\mathrm{DZ}^{\prime} \mathbf{W}^{-1}\left(\mathbf{y}-\mathbf{X} \beta_{0}-\mathbf{Z} \mathbf{u}_{0}\right)$	D - $\mathbf{D Z}^{\prime} \mathbf{W}^{-1} \mathbf{Z D}$	(19)
	(24)	$\begin{array}{r} =\mathbf{u}_{0}+\mathbf{D Z} \mathbf{Z}^{\prime}\left[\mathbf{V}^{-1}-\mathbf{V}^{-1} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X}+\mathbf{B}^{-1}\right)^{-1} \mathbf{X}^{\prime} \mathbf{V}^{-1}\right] \\ \times\left(\mathbf{y}-\mathbf{X} \boldsymbol{\beta}_{0}-\mathbf{Z u}_{0}\right) \end{array}$		
	(26)	$=\mathbf{u}_{0}+\mathbf{C}^{-1} \mathbf{Z}^{\prime} \boldsymbol{\ell}\left(\mathbf{y}-\mathbf{X} \boldsymbol{\beta}_{0}-\mathbf{Z u} \mathbf{u}_{0}\right)$	$=\mathrm{C}^{-1}$	(26), [47]
	(27), [below 57]	$=\mathrm{C}^{-1}\left[\mathbf{Z}^{\prime} \boldsymbol{\ell}\left(\mathbf{y}-\mathbf{X} \boldsymbol{\beta}_{0}\right)+\mathrm{D}^{-1} \mathbf{u}_{0}\right]$	$=\left[\mathbf{Z}^{\prime}\left(\mathbf{X B X}^{\prime}+\mathbf{R}\right)^{-1} \mathbf{Z}+\right.$	
$\beta \mid \mathbf{u}, \mathbf{y}$	(28)	$\beta_{0}+\mathrm{BX}^{\prime}\left(\mathrm{XBX}^{\prime}+\mathbf{R}\right)^{-1}\left(\mathbf{y}-\mathbf{X} \boldsymbol{\beta}_{0}-\mathbf{Z u}\right)$	B - $\mathrm{BX}^{\prime} \ell \mathbf{~} \mathbf{X B}$	
	(29)	$=\boldsymbol{\beta}_{0}+\left(\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{X}+\mathbf{B}^{-1}\right)^{-1} \mathbf{X}^{\prime} \mathbf{R}\left(\mathbf{y}-\mathbf{X} \boldsymbol{\beta}_{0}-\mathbf{Z u}\right)$	$=\mathbf{B}-\mathbf{B X}^{\prime}\left(\mathbf{X B X}^{\prime}+\mathrm{R}\right.$	
	(30), [60]	$=\left(\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{X}+\mathbf{B}^{-1}\right)^{-1}\left[\mathbf{X}^{\prime} \mathbf{R}^{-1}(\mathbf{y}-\mathbf{Z u})+\mathbf{B}^{-1} \boldsymbol{\beta}_{0}\right]$	$=\left(\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{X}+\mathbf{B}^{-1}\right)^{-1}$	[60]
$\beta \mid \mathbf{y}$	(34), [52]	$\beta_{0}+\mathbf{B X}^{\prime} \mathbf{W}^{-1}\left(\mathbf{y}-\mathbf{X} \boldsymbol{\beta}_{0}-\mathbf{Z} \mathbf{u}_{0}\right)$	$\mathbf{B}-\mathbf{B X}^{\prime} \mathbf{W}^{-1} \mathbf{X B}$	(34), [52]
	(35)	$=\boldsymbol{\beta}_{0}+\mathbf{C}^{-1} \mathbf{X}^{\prime} \mathbf{V}^{-1}\left(\mathbf{y}-\mathbf{X} \boldsymbol{\beta}_{0}-\mathbf{Z u} \mathbf{u}_{0}\right)$	$=\mathrm{C}^{-1}$	(35), [41]
	(36), [53]	$=\mathbf{C}^{-1}\left[\mathbf{X}^{\prime} \mathbf{V}^{-1}\left(\mathbf{y}-\mathbf{Z u} \mathbf{u}_{0}\right)+\mathbf{B}^{-1} \boldsymbol{\beta}_{0}\right]$	$=\left(\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X}+\mathbf{B}^{-1}\right)^{-1}$	(36), [53]
		$=\left(\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X}+\mathbf{B}^{-1}\right)^{-1}\left[\mathbf{X}^{\prime} \mathbf{V}^{-1}\left(\mathbf{y}-\mathbf{Z} \mathbf{u}_{0}\right)+\mathbf{B}^{-1} \boldsymbol{\beta}_{0}\right]$		

TABLE 2a
Special Case: Table 1 with $\mathbf{u}_{0}=\mathbf{0}$.

Variable	Equation	Mean	Variance
$\mathbf{u} \mid \boldsymbol{\beta}, \mathbf{y}$	[40]	$\mathrm{DZ}^{\prime} \mathbf{V}^{-1}(\mathbf{y}-\mathrm{X} \boldsymbol{\beta})$	D - $\mathrm{DZ}^{\prime} \mathbf{V}^{-1} \mathbf{Z D}$
	[39], [56]	$=\mathbf{A}^{-1} \mathbf{Z}^{\prime} \mathbf{R}^{-1}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})$	$=\mathrm{A}^{-1}$
		$=\left(Z^{\prime} \mathbf{R}^{-1} \mathbf{Z}+\mathrm{D}^{-1}\right)^{-1} \mathbf{Z}^{\prime} \mathbf{R}^{-1}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})$	$=\left(\mathrm{Z}^{\prime} \mathrm{R}^{-1} \mathbf{Z}+\mathrm{D}^{-1}\right)^{-1}$
$\mathbf{u} \mid \mathbf{y}$		$\mathrm{DZ}^{\prime} \mathrm{W}^{-1}\left(\mathbf{y}-\mathrm{X} \beta_{0}\right)$	D - $\mathrm{D}^{\prime} \mathbf{W}^{\mathbf{- 1}} \mathbf{Z D}$
		$=D Z^{\prime}\left[\mathbf{V}^{-1}-\mathbf{V}^{-1} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X}+\mathbf{B}^{-1}\right)^{-1} \mathbf{X}^{\prime} \mathbf{V}^{-1}\left(\mathbf{y}-\mathbf{X} \boldsymbol{\beta}_{0}\right)\right]$	
	[46], [58]	$=\mathrm{C}^{-1} \mathrm{Z}^{\prime} \boldsymbol{\ell}\left(\mathbf{y}-\mathrm{X} \boldsymbol{\beta}_{0}\right)$	$=\left[\mathbf{Z}^{\prime}\left(\mathbf{X B X}^{\prime}+\mathbf{R}\right)^{-1} \mathbf{Z}+\mathbf{D}^{-1}\right]^{-1}$
$\beta \mid \mathbf{u}, \mathbf{y}$		$\beta_{0}+\mathbf{B X}{ }^{\prime}(\mathbf{X B X}+\mathrm{R})^{-1}\left(\mathbf{y}-\mathbf{X} \boldsymbol{\beta}_{0}-\mathbf{Z u}\right)$	$\mathbf{B}-\mathbf{B X}^{\prime}(\mathbf{X B X}+\mathbf{R})^{-1} \mathbf{X B}$
	$\begin{gathered} {[46],[59]} \\ {[60]} \end{gathered}$	$=\left(\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{X}+\mathbf{B}^{-1}\right)^{-1}\left[\mathbf{X}^{\prime} \mathbf{R}^{-1}(\mathbf{y}-\mathbf{Z u})+\mathbf{B}^{-1} \boldsymbol{\beta}_{0}\right]$	$=\left(\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{X}+\mathrm{B}^{-1}\right)^{-1}$
		$=\mathcal{A}^{-1}\left[\mathbf{X}^{\prime} \mathbf{R}^{-\mathbf{1}}(\mathbf{y}-\mathbf{Z u})+\mathrm{B}^{-\mathbf{1}} \boldsymbol{\beta}_{0}\right]$	$=\boldsymbol{A}^{-1}$
$\beta \mid \mathbf{y}$		$\beta_{0}+\mathrm{BX}^{\prime} \mathrm{W}^{-1}\left(\mathbf{y}-\mathrm{X} \beta_{0}\right)$	$\mathbf{B}-\mathbf{B X}^{\prime} \mathbf{W}^{-1} \mathbf{X B}$
	[39], [54]	$=C^{-1}\left(\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{y}+\mathrm{B}^{-1} \boldsymbol{\beta}_{0}\right)$	
	[40]	$=\left(\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X}+\mathbf{B}^{-1}\right)^{-1}\left(\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{y}+\mathbf{B}^{-1} \boldsymbol{\beta}_{0}\right)$	$=\left(\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X}+\mathbf{B}^{-1}\right)^{-1}$

TABLE 2b
Special case: Table 1 with $\mathbf{u}_{0}=\mathbf{0}, \mathbf{B}^{-1} \rightarrow \mathbf{0}$
Table 2a with $\mathbf{B}^{-1} \rightarrow \mathbf{0}$

Variable	Equation	Mean	Variance
$\mathbf{u} \mid \boldsymbol{\beta}, \mathbf{y}$		Same as Table 2a	
$\mathbf{u} \mid \mathbf{y}$	$[62]$	$\mathbf{D Z}^{\prime} \mathbf{V}^{-1}(\mathbf{y}-\mathbf{X} \hat{\boldsymbol{\beta}})=\operatorname{BLUP}(\mathbf{u})$	$\mathbf{D}-\mathbf{D Z} \mathbf{Z}^{\prime} \mathbf{V}^{-1} \mathbf{Z D}$
$\boldsymbol{\beta} \mid \mathbf{u}, \mathbf{y}$		Same as Table 2a	
$\boldsymbol{\beta} \mid \mathbf{y}$	$[43]$	$\left(\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X}\right)^{-} \mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{y}=\operatorname{BLUE}(\boldsymbol{\beta})$	$\mathbf{D}-\mathbf{D Z} \mathbf{V}^{-1} \mathbf{Z D}$

TABLE 2c
Special case: Table 1 with $\mathbf{u}_{0}=\mathbf{0}$ and $\mathbf{B}^{-1} \rightarrow \mathbf{0}$
Table 2a with $\mathbf{R}=\sigma_{e}^{2} \mathbf{I}^{*}$

Variable	Mean	Variance
$\mathbf{u} \mid \boldsymbol{\beta}, \mathbf{y}$	$\left(\mathbf{Z}^{\prime} \mathbf{Z}+\sigma_{e}^{2} \mathbf{D}^{-1}\right)^{-1} \mathbf{Z}^{\prime}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})$	$\left(\mathbf{Z}^{\prime} \mathbf{Z} / \sigma_{e}^{2}+\mathbf{D}^{-1}\right)^{-1}$
$\mathbf{u} \mid \mathbf{y}$	$\left[\mathbf{Z}^{\prime}\left(\mathbf{X B X} \mathbf{X}^{\prime}+\sigma_{e}^{2} \mathbf{I}\right)^{-1} \mathbf{Z}+\mathbf{D}^{-1}\right]^{-1}\left(\mathbf{X B X} \mathbf{X}^{\prime}+\sigma_{e}^{2} \mathbf{I}\right)^{-1}\left(\mathbf{y}-\mathbf{X} \boldsymbol{\beta}_{0}\right)$	$\left[\mathbf{Z}^{\prime}\left(\mathbf{X B X} \mathbf{X}^{\prime}+\sigma_{e}^{2} \mathbf{I}\right)^{-1} \mathbf{Z}+\mathbf{D}^{-1}\right]^{-1}$
$\boldsymbol{\beta} \mid \mathbf{u}, \mathbf{y}$	$\left(\mathbf{X}^{\prime} \mathbf{X}+\sigma_{e}^{2} \mathbf{B}^{-1}\right)^{-1}\left[\mathbf{X}^{\prime}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})+\sigma_{e}^{2} \mathbf{B}^{-1} \boldsymbol{\beta}_{0}\right]$	$\left(\mathbf{X} \mathbf{X} / \sigma_{e}^{2}+\mathbf{B}^{-1}\right)^{-1}$
$\boldsymbol{\beta} \mid \mathbf{y}$	$\left(\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X}+\mathbf{B}^{-1}\right)^{-1}\left(\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{y}+\mathbf{B}^{-1} \boldsymbol{\beta}_{0}\right)$	$\left(\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X}+\mathbf{B}^{-1}\right)^{-1}$

TABLE 2d
Special case: Table 1 with $\mathbf{u}_{0}=\mathbf{0}, \mathbf{R}=\sigma_{e}^{2} \mathbf{I}$, and $\mathbf{B}^{-1} \rightarrow \mathbf{0}$
Table 2a with $\mathbf{R}=\sigma_{e}^{2} \mathbf{I}$ and $\mathbf{B}^{-1} \rightarrow \mathbf{0}$
Table 2 b with $\mathrm{R}=\sigma_{e}^{2} \mathrm{I}^{*}$
Table 2c with $\mathbf{B}^{-1} \rightarrow \mathbf{0}$

Variable	Mean	Variance
$\mathbf{u} \mid \boldsymbol{\beta}, \mathbf{y}$	Same as Table 2c	$\left(\mathbf{Z}^{\prime} \mathbf{Z} / \sigma_{e}^{2}+\mathbf{D}^{-1}\right)^{-1}$
$\mathbf{u} \mid \mathbf{y}$	Same as Table 2c	
$\boldsymbol{\beta} \mid \mathbf{u}, \mathbf{y}$	$\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-} \mathbf{X}^{\prime}(\mathbf{y}-\mathbf{Z u})$	$\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-} \sigma_{e}^{2}$
$\boldsymbol{\beta} \mid \mathbf{y}[43]$	Same as Table 2b	\mathbf{C}^{-1}

${ }^{*}$ Searle et al. (1992) does not show details for $\mathbf{R}=\sigma_{e}^{2} \mathbf{I}$.

[^0]: * Equation numbers from Section 9.3b of Searle et al. (1982) are shown here on the left-hand margin, in square brackets, e.g., $[57]_{332}$ is equation (57) on page 332.

