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1 Introduction

There have been many recent developments on the asymptotic convergence rate
of interior point methods. Assuming non-degeneracy and strict complementarity,
Zhang, Tapia and Dennis [ZTD90] gave conditions on how to choose the centering
parameter and the step size so that an interior point algorithm could achieve
superlinear or quadratic convergence asymptotically. Zhang and Tapia [ZT90]
provided an algorithm that has an O(nt) bound on the number of iterations
and is superlinearly convergent (¢ denotes the order of required improvement in
precision). Under the non-degeneracy assumption, they showed that quadratic
convergence can be achieved.

Very recently, superlinear and quadratic convergence results for O(/nt) iter-
ation algorithms were obtained:

McShane [Mc92] gives a primal-dual potential reduction algorithm that is
superlinearly convergent under the assumption that the iterates converge, and
quadratically convergent under the assumption that the optimum solution is non-
degenerate. Mehrotra [Meh91] and Ye, Giiler, Tapia and Zhang [YGTZ91] prove
that the Mizuno-Todd- Ye predictor-corrector algorithm [MTY90] is quadratically
convergent without assuming non-degeneracy or that the iterates converge.

In this paper, we study the primal-dual interior point algorithms with wide
neighborhoods. Even though the best bound on the number of iterations for these
algorithms is O(nt), practically they are more promising than the algorithms
that use smaller 2-norm neighborhoods. In the following section, we describe a
generic primal-dual interior point algorithm which is due to Mizuno, Todd and
Ye [MTY90] and very similar to the algorithms described by Kojima, Mizuno and
Yoshise [KMY88], and Zhang and Tapia [ZT90]. In section 3, we propose a new
primal-dual potential function for the primal-dual interior point methods with
wide neighborhoods, and show that the new potential function fits in more nicely
with the wide neighborhoods than the Todd-Ye primal-dual potential function
[TY89]. We also show that as long as the iterates lie in a wide neighborhood of
the central path the new potential function could be used to get an O(nt) bound
on the number of iterations. In section 4, we show that a slight modification of
the algorithms suggested in Kojima et al. [KMY88], Mizuno et al. [MTY90],
and Zhang and Tapia [ZT90], while keeping the O(nt) bound on the number
of iterations, asymptotically achieves 1-step Q-quadratic convergence under the
assumption of non-degeneracy of the optimal solution. The difference between
our result and Zhang and Tapia’s is that we calculate only one projection per
iteration. Section 5 includes the study of the degenerate case. We show that when
the affine scaling direction stays small, the centering direction could be larger in
norm. We provide a theorem showing that in this case the neighborhoods of the
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central path do not converge to a point as they converge to the optimal solution
set. This suggests that an algorithm keeping its iterates in a neighborhood of the
central path (as defined in this paper) may not have convergent iterates.

2 Generic Primal-Dual Algorithm with Wide
Neighborhoods

We consider linear programming problems in the following primal (P) and dual
(D) forms:

(P)

min Tz
Az = b
zx 2> 0,
(D)
max bTy
ATy + s = ¢
s 2 0

where A € R™*" b € IR™, and ¢ € IR*. Without loss of generality, we will
assume A has full row rank and that there exist interior solutions for both prob-
lems, i.e.,

Fo:={(z,s)>0:z € F(P),s€ F(D)} #£90,

where F(P) and F(D) denote the set of feasible solutions for the primal and
dual problems respectively. Most of the time we will deal only with s as a dual
feasible solution. So, whenever we say s € F(D), we mean that s > 0 and there
exists a y € IR™ such that ATy + s = c. Given a vector z, X will denote the
diagonal matrix whose entries are the components of z, and e will denote the
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vector of ones. We will denote the components of a vector using subscripts and
the iterate numbers using superscripts. Whenever we ignore superscripts it will
be clear from the context what the iterate number should be. Now, we describe
the central path and its neighborhoods.

The central path is given by the set of solutions to the following system of
equalities (for g > 0):

Az = b, =20 (1)
ATy+s = ¢, 520 (2)
Xs = pe 3)

Note that when p = 0, (1)-(3) give necessary and sufficient conditions for op-
timality. Analyses of the central path have been done by several authors (see, for
instance, Sonnevend [S085], Megiddo [Meg88], and Bayer and Lagarias [BL89)).
Our objective is to approximately follow this path to an optimal solution. We de-
fine some neighborhoods of the central path as given by Mizuno et al. [MTY90].
Let 8 € (0,1) be a constant; then a 2-norm neighborhood of the central path can
be defined as

T
No(B) :={(z,3) € Fo : || Xs — pe|la < B for p= %zﬁ}

Henceforth, p always denotes x—:i Kojima et al. [KMY89], Monteiro and Adler
[MA89], and Mizuno et al. [MTY90] designed algorithms that use a 2-norm

neighborhood. Using the co-norm or just one side of the co-norm, wider neigh-
borhoods have been defined and used by Kojima et al. [KMY88|, Zhang and
Tapia [ZT90], and Mizuno et al. [MTY90]. Using the co-norm we have

Neo(B) = {(z,8) € Fo : | Xs — pelleo < B}
and using only one side of the co-norm,
NZ(B) :={(z,s) € Fo: || Xs — pell5, < B}-
Here, for v € IR, ||[v||z := —min{0, min{v;}}. Clearly, for a given B € (0,1),

N3(B) is the smallest and N7 () is the largest of the three neighborhoods defined
here.



Suppose we have an initial interior point solution (z,s) € F,. Then a search

direction (dz,ds) can be generated by solving the following set of equalities (see
Kojima et al. [KMY88]):

Adz = 0 (4)
ATdy +ds = 0 (5)
Sdz + Xds = ype— Xs (6)

which is equivalent to solving

Adr = 0 (7)
ATdy+ds = 0 (8)
dz +ds = (=XY28V2% 4 yuX-125-12)e (9)

where A := AX!/25-1/2_ The equivalence of the above two systems can be easily
checked by substituting dz = X~1/25Y2dz, ds = X'/25-1/2ds. The solution of
(7)-(9) is

dr = —Py(XY?8V? - quX-1/25-1/%)¢
ds = —(I—Pp)(XV2SY? — quX~128-1/%)e

where P; := I — AT(AAT)-1A, the projection matrix into the null space of A.
Now, a generic primal-dual algorithm can be easily described:



Algorithm:
Given (z°,5°) € N with (z°)Ts° < 2, k:=0,

While (stopping criterion is not met) do
(z,s) := (z*, s¥)
compute (dz, ds) from (4)-(6) using v = &
choose step size a € (0,1) such that (z + aidz, s + ards) € N
(zF+1, s51) = (2 + axdz, s + aids)
k:=k+1

end

The stopping criterion could be taken as zTs < 27! to get an O(nt) complexity
bound on the number of iterations. Since we are also interested in the asymptotic
convergence rate of the algorithm, we leave the termination criterion flexible.
Mizuno et al. [MTY90] study the above algorithm with N = Noo(B) and N =
NZ(B). Very similar algorithms were also studied by Kojima et al. [KMY88]
and Zhang and Tapia [ZT90]. The differences occur in how one chooses v, the
centering parameter, and a, the step size. In the next section, we propose a new
potential function to have an alternative way of choosing the step size a.

3 A Primal-Dual Potential Function

In his seminal paper [Ka84], Karmarkar introduced a potential function which
was very useful for proving an upper bound on the number of iterations for his
algorithm. Since then many authors used variants of that potential function to
prove bounds or to get search directions (see for instance Gonzaga [Go90] or Todd
and Ye [TY90]). Under the assumption that the optimal objective function value
is zero, Karmarkar’s potential function for the primal problem is:

¢*(z) := nlog(cfz) — En: log(z;)-

i=1



In dual form it corresponds to:

8P (s) = n log(—8Ty) — 3 log(s;).

i=1

Very interestingly, Powell [Po90] provides an example (in dual form) with in-
finitely many constraints on which Karmarkar’s algorithm fails to converge to the
optimum solution. Powell’s result assumes that the step size is chosen to mini-
mize the potential function for a given search direction. One problem with the
potential function is that when one has infinitely many constraints L5 log(s;)
becomes [ log(s) and the potential function loses its barrier property (i.e. weno
longer have the property that s* — 8F(D) = ¢P(s*) — o0). One way of getting
around this problem is to try log(inf(s)) as the barrier. In the finite case for the
primal problem this corresponds to

¥ (z) 1= (g + 1) log(c"z) — log(min{z;}),

where ¢ 2> 0. 1/)5 is not likely to serve as an effective potential function for 1t is
not scale invariant. However, if we had a good scaling of the problem (for each
iterate), it could work. We get the scaling from the dual problem and propose
the following primal-dual potential function:

a(2,5) = (g + D log(%-2) — log(min{z;;})

where ¢ > 0. We also consider 1, with ¢ = 0, which can be viewed (see below) as a
centering function. We compare 1,(z, s) with the Todd-Ye primal-dual potential
function [TY90]:

$q(2, ) := (¢ + n)log(zTs) — _log(<;s;)
J=1
where ¢ > 0 (see also Tanabe [Ta87]). Again, we also consider ¢, with ¢ = 0
which yields a different centering function.

There are two crucial properties needed from a primal-dual potential function.
First, the potential function should be scale invariant with respect to primal-
dual scaling. Secondly, it should measure the duality gap while keeping the
objective function part (log(z7s) or log -”—Z—i)) and the barrier part (37—, log(z;s;)
or log(min;{x;s;})) well balanced (this intuitively means that if we can decrease
zTs “enough” the potential function should let the iterates move “closer” to
the boundary and if we cannot then it should try to move us away from the

boundary).



Proposition 3.1. a) Let A € IR™*" be a diagonal positive definite matrix. Then
Yo(Az, A71s) = q(, s).
b) If for (z,s) € F, and ¢ > 0, we have {y(z,s) < —qt — qlog(n), then

zTs <27t
Proof: a) is clear. For b) note that

zTs . zTs/n
%o(2, 8) = log(—) — log(min{z;s;}) = log( }) 20. (10)

minj{a:jsj

So, t4(z,s) < —qt — qlog(n) implies qlog(ﬁg-’-) < —gt — qlog(n), from which we
deduce zTs < 27, |

We would like to point out that the wide neighborhoods No(8) and N(B)

can also be written as

No(B) = {(z,8) € Fo: (1 = B < xjs; < (1 + B, Vi),

N2(B) = {(2,5) € Fo - minfags;} = (1= B)u.

Note that in the proof of Proposition 3.1 the way %, balances log(f?) and
log(min;{z;s;}) is closely related to the inequality defining the wide neighbor-
hoods. Indeed, from (10) we have to(z,s) > 0 while it is easy to see that

1

NeolB) € Nio(B) = {(,9) € Fo  u(, ) < log(7—

)}-

So, in a sense 1, seems a more natural potential function to use with these wide
neighborhoods. The related algorithm described by Mizuno et al. [MTY90] uses
the Todd-Ye potential function. As a result, in the corresponding convergence
proof, one has to make a transition between the neighborhood information and
the change in the value of the Todd-Ye potential function. Whereas here such a
step is unnecessary due to the fact that the neighborhood Neo(B) defines a level
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set of the centering function 1o of the new potential function. Lastly, we would
like to note that even though the ratio %":} is a very relaxed measure of the
centrality of (z,s), it has been widely and effectively used in many important
results for interior point methods. It is interesting that simple bounds on this
ratio are all one needs to establish nice results (see for instance [GY91], [Meh91],

and [YGTZ91)).

4 Analysis and Convergence Results

First we show how one can use the new potential function to determine the step
size such that an O(nt) bound on the number of iterations can be achieved. Then
we show how to phase out the centering parameter (as suggested by Zhang et al.
[ZTD89] and Zhang and Tapia [ZT90]) to get quadratic convergence.

Let € (0,1), B € (0,1) be constants. We define the centering parameter in
a way that will keep the O(nt) bound on the number of iterations and will make
it fade away as z7s — 0 to ensure quadratic convergence:

(.’Ek)TSk

} (11)

Tk = min{;)', P

We will eventually let p = Cn?/B where C is a data dependent constant to be
chosen later.

Let (z,s) be the current iterate with (z,s) € N5(8), and let (zt,st) denote
the next iterate. Then for a given step size « € [0,1],

2t = z-aXV2§ 2P (12)
st = s—aX V2SI — Py)v, (13)

where v 1= (X1/281/2 — yuX~1/25-1/2)e. We will denote v, := Pgv. The analysis
given here is very similar to the one given by Mizuno et al. [MTY90]. From
(12)-(13) we obtain

(zH)Tst = 2Ts— ael X125 v, + (v — v,)] + @’v; (v — vp) (14)
= z¥s— a(z¥s — yun) (15)
[1—a(l —7)]zTs. (16)



So, the duality gap decreases by a fraction dependent on ai and 7. We also

have

= zjs; — a/T;55((vp); + (v = vp)j] + &2 (vp) (v — Vp);
= z;8; — az;s; — 1) + o (vp)j(v — vp);

= (1 - a)zjs; + arp+a(v,);(v = vy);.

+4t
T;3;

So, to guarantee that (z*,st) € N3(B) it suffices to have (for all j)

T;8;5

(1-a)
p

+a7 = Zl(os{v = v 2 [L - all = DI(1 ~B).

We know (z,s) € N5(B), hence f‘ﬁl > (1 = B). So, it suffices to have
2
(1= )1 = B)+ ey = ~l(w)i(v = vp)i] 2 [L—all=7](1~F)

for all j. The above holds if for a; € [0,1) we have

Bkik
| min; {(vp); (v — vp)i '

a <

In order to ensure that a; < 1, we will choose

. Bk 1
o = i o o T

(17)
(18)
(19)

(20)

Note that in (20) the second term in the minimum is included to guarantee
that ax < 1. As long as the minimum is given by the second term we would like
to make sure that (1 — ay) is O(zT's). There are many ways of doing this. Doing
it our way shows a more explicit relation between the centering coefficient and

the step size, and (11) shows that (1 — ) is of the correct order.
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Now we turn to the analysis of the search direction. Clearly, we have

noq
ol = (27s — 2yepn + 422 Y — )2
j=1 TjS;

Since (z,s) € N(B), we have

Y-S
oiwisi T 1- B
This implies
e T
o]z £ (1 =29 + _i__:_B_)I/Z(a; $)/2,

For any v € IR",

[vsllee < llvpllz < flvll2 and [Jv = vplleo < v = vpll2 < [0]l2-

Hence, we have

min{(wp)i(0 = )i} < (1 = 23+ T 2) (0T,

(21)

(22)

Taking the maximum allowable step size satisfying (20) defines Algorithm I. Here
we will assume 75 = ¥ to prove polynomiality, but at the end of this section it
will be clear that once the quadratic convergence is obtained polynomiality does

not get hurt. Now, define

_ By
= o B
(1-27+ 55)

0

By (19) and (20) we have that for all iterations the maximum allowable step size

is at least



So as in [MTY90], if we initially have (z°,5°) € N5(B) such that (z0)Tso < 28,
and if at each iteration we take a step of maximum allowable size, then, by (16),
we get

(@) < 1 Z20 - ) 2

Hence we conclude that in O(nt) iterations we must have (z,s) € N5(8) such
that z7s < 2-t. So, we proved:

Theorem 4.1. If (z°)Ts° < 2¢, then in O(nt) iterations Algorithm I will have
a solution (z,s) € NZ(B) such that zTs < 27

As long as the iterates lie in the neighborhood, we can also choose aj such
that %, is minimized in the given search direction, while remaining in NZ(3).
This way of choosing a step size yields what we will call Algorithm II. We have

Theorem 4.2. Suppose (z°)Ts® < 2!. Then for a large enough chosen g, the
algorithm with line search on the potential function ¥, (i.e. Algorithm II) will
have a solution (z,s) € N3 (B) such that zTs < 2=* in O(nt) iterations.

Proof: We have

bl 15) = by(o,3) = alog( L) tog(TRlT ) 4 og( R
Note that log(™25Z21t) < 0, and that log(SmiL ) ) > log(1 — ), which yields
Ba(a*,5%) — (2, 9) < qlogll — a(1 )]+ log(1=).

Now using the linear approximation for the log, we get:
Bale*,5%) — (2, ) < —ga(l — 7) +log( =)

Since the maximum allowable step size (to stay in the neighborhood) is at least
% for a large enough ¢ (e.g. one can choose ¢ > E.—;(%ﬂ:;ﬁ log(-l—}ﬁ) to guarantee a
constant decrease in the potential function),

Ya(z*,s*) = h(z,8) < -00).
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By Proposition 3.1, O(nt) iterations suffice. a
Remark: The same results also apply to the N, neighborhoods.

Now, we turn to quadratic convergence. Our analysis is similar to the one
given in Ye et al. [YGTZ91]. Here, we consider the search direction in a dif-
ferent scaling and that shortens some of the arguments slightly. Of course, they
analyze only the affine scaling direction (for the “predictor” step) rather than a
combination of the affine scaling and centering directions.

Let (z*,s*) be an optimal solution which is strictly complementary. i.e.
{j:x;>0}ﬂ{j:5;>0}=@
and
{7:z;>010{j:s;>0}= {1,2,...,n}

Note that such a solution always exists for linear programs (see Goldman and
Tucker [GT56]) and since all the iterates lie in the neighborhood N3 (B) the
algorithm will generate a sequence whose limit points are strictly complementary
solutions (see Giiler and Ye [GY91]). Without loss of generality, let A = [B, N
be the corresponding partition of A; i.e., the components of z* corresponding to
the indices of the columns of B, forming the vector =}, are strictly positive, and
z% = 0. Similarly we have s = 0, and s} > 0.

Lemma 4.1. Suppose (z*,s*) is non-degenerate. Then as z7s — 0, there exists
a data dependent constant C such that

(i) |(vp)nll2 < (aTs)1/?
(ii) l|(v — vp)Bll2 < (:sz)U?
(iii) ||(vp)Bllz < C(2Ts)3/?

(iv) [[(v = vp)nll2 < C(2Ts)3/2.

Proof: Suppose Ts < n7/p, so that v = p(zTs/n). Then
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() Hwp)nllz < Il < llvlls < (27)2(1 — 2052 + SE=i) /2.

The first two inequalities are clear, while the last one is given by (21). For
2Ts < 2n(1 — B)/p, we get ||(vp)nll2 < (z7s)!/2. Similarly, we have

(i) (v = vp)Bllz < (v = wp)ll2 < Jlollz < (a7 8)2.

(i) Note that v, is the solution of the following least squares problem:

min {1|lv — vp||3 : Av, = 0}

This implies that given (v,)n, (vp)B is the solution to

min 3]lvs — (vp)5l13

BDB('Up)B = —-NDN('UP)N,

where D := X1/25-1/2 and Dg, Dy give the corresponding partition of D. Note
that (z,s) € N3(8) implies min{z;s;} > (1 — B)p, which implies

max{z;s;} < [(n —1)8 +1]u.

Also note that by our assumption that F, # @, we have the optimal solution
sets of both problems bounded. Since all iterates lie in the neighborhood NZ(B),
using the result of Giiler and Ye [GY91], we have that the limit points of the

sequences generated by Algorithm I (or by Algorithm I1) will be strictly comple-
mentary solutions. Now, (1 — B)u < z;s; < [(n — 1) + 1]p. So, we have

VA= B < 2%} <y/[(n = 1B+ 1. (23)
This implies

V(- B < 37;/28;1/2 < \/[(n —-1)B+ 1],u. (24)

Sj Sj

From (22) we also get
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1 < g2/ < 1

Ae—Ds+1a~ " 7 T Ja-pw

from which we deduce

T; < m}/28;1/2 < ______J:'i___’ 95
Vi —Dp+ 1w S (25)

Now using (24) for j € N, and using (25) for j € B, we conclude that there
exist some data dependent constants Cp and Cyy (see Giiler and Ye [GY91]) such
that for sufficiently large &

(D); € [g5(zs)/%, Cp(aTs)™/7]

and

(Dn); € [&(275)"/?, Cn(aTs) /2.

Clearly, if the solution is non-degenerate then B is invertible and the solution
to the least squares problem is given by

(vp)B = ——DEIB’INDN('U,,)N.

Assuming (zTs) < 2(1 — B)n/p, we get

I(wp)allz < 105 2l B~ Nllzl| Dallall(vp)vll2 < C(a7s)2.

(iv) Let vy := v — vp,. Note that v, is the solution of the following least squares
problem:

min {1||v — v, |13 : v, = ATy for some y € R™};

alternatively, v, = AT§ where § is the solution to min, 3||v — ATyl||?. This implies
that given (v — v,)B, 7 is the solution to
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min %”UN — DNNTy“%

DBy = (v —vp)p (= (v4)B);

then to get (v — vy)n We simply let (v — v,)n := DNNTF.
Clearly, if the solution is non-degenerate then BT is invertible and the solution
to the least squares problem is given by

g = B"TDgl(’U - ’Up)B.

Hence
(v — vp)N = DNNTB“TDgl(v —_ vp)B.

Assuming (z%s) < 2(1 — B)n/p, we get

(v = v)llz < IDwIlINT BT |2l D5 lall(v = vp)Blle < C(as)*/%

Remark: Note that in the proof the non-degeneracy assumption implies the
existence of the constants Cg and Cy, but we tried to avoid using the assumption
at that point to keep the dependence of the proof on non-degeneracy assumption
minimal (see section 5).

Now, showing the quadratic convergence of the algorithm is straight forward. In
Algorihtm I we choose

Btk 1 }
| min; {(v,)j(v —vp)i}|" T4+ %"

oy, = min{

Then by equation (16) we have

(eE)TsEHD = [1— ag(1 = ))(H)Ts* (26)
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Note that by definition of v, if (zF)T sk < j} then ~; = p@nﬁ‘f—.
Also, if (zF)Ts* < %—l-%ém we have

| min{(v,);(v —vp)i}| < max{||(vy)ll2l|(v — vp)Bll2; | (vp) Izl (v — vp) iz}

< C(zTs)2
The first inequality is trivial, while the second follows from Lemma 4.1. Now

we let p = Cn?/B. Then the step size is

BYkik 1 } = 1
vp)j(v —vp)i T+ pue” 14 ppk

oy = min{—
| min {|(
So, using (26) we get

1
RH+\T (41 < 1 PREY KNT
T S _— T S

_ 2p R\ T gk)2
B n(1+Pﬂk)[( rel
S %f—)[(xk)Tsk]z

— g_c_ﬁ[(mk)TSk]Z.

B

We proved:

Theorem 4.3. Given (z°,5°) € NZ(B) such that (z°)Ts® < 2!, Algorithm I
converges in O(nt) iterations and assuming that (z*,s*) is non-degenerate, it
asymptotically achieves 1-step Q-quadratic convergence.
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4.1 Implementation

Even though we proved asymptotic quadratic convergence, it is still unclear how
one chooses C (and hence p) for a given instance of the problem. This clearly
is related to the question of when one can see the quadratic convergence. If one
is dealing with the integer LP model, i.e. all the data is integer and the size of
the problem is L, then looking at the proof of Lemma 4.1. one can find a very
rough over estimate of C' a priori. Nevertheless, C would probably be 20(L) This
is not a desirable answer. In this subsection we adjust C dynamically in a way
that will preserve the polynomial time bound and eventually yield the quadratic
convergence of the duality gap. We set

min{ (vF-1):(vF-1 — vF-1);
C(k) := max{C(k — 1)’1 {(vp~1)i( v )J}l}’

[(zF-1)TsF-1]2

where C(0) := 87/n(z°)Ts°. So, px = C(k)n?/B. We also change the definition
of 1 slightly:
o= {Pk@%ﬁ, if i ELE < s
¥, otherwise.

For simplicity we will assume 7 < 1/4 and we will set y_; := . Note that the
step size at the k** iteration, ay, is a function of 4 which depends on p; (and
hence C(k)).

First we show that this way of updating v and pi preserves the polynomial
time bound on the number of iterations. At iteration k, if 4x = 7 then we know
that the duality gap decreases by at least a desired fraction. We will show that if
Vi = pkff%ﬁi then at iteration k — 1 we decrease the duality gap by a constant
fraction, which is much more than what one needs for an O(nt) bound on the
number of iterations. Since v; = pki-"—k-:L’—k-, we must have pk-(-‘ﬁnﬁi < 4Yg-1. Using
the definition of p; we get

(:ck)Tsk '7k_1ﬁllk-l
DTS min{ (o) (v — 0§ )

(27)

Now, there can be two cases: either ax_; = 1—_*;::1- or aj_q is equal to the right
hand side of (27). In the first case (using (16)), we have

(@)s" o 1= 2%
(zk-1))T s(k-1) 1491 L4y
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Since yk-1 < 7 < 1/4, we have

(z%)T sk
(zG—D)T (=D <1/2.

In the second case (27) implies

(:Ek)T.Sk
(m(k-l))Ts(k-l)

< ki

Using equation (16) we have

1 —ap_1(1 — Y1) < -1,

from which we get ax_1 > 3——. So,

(z*)T s <1 1l — g1 1
(ztk=1)T (k1) 2— M1 2= Yot

< 4/7.

We showed that when we try to phase out the centering component, the previous
iteration provides a very good reduction in the duality gap, hence the bound
is preserved. Therefore, as long as |min{(vp);(v — vp);}| is the right order of
the corresponding duality gap for a sequence of iterations, we will have a good
estimate of the constant C. By Lemma 4.1, the sequence C(k) is bounded above
by a data dependent constant. Since the sequence is monotone non-decreasing,
it converges. This shows that ay — 1, however, to get quadratic convergence one
still has to prove that C(k —1)/C(k) goes to 1 at least as fast as 1 — O((z*)Ts*).
We will use a cheap trick to avoid such analysis. After every r iterations we
check if C(k) = C(k —r). If the equality holds we do nothing; otherwise (if
C(k) > C(k—r)), we let C(k) := 2xC(k) (note that this doubling does not affect
the polynomial bound). Since we know that without the doubling of the C'(k)s
they converge to some number that is not greater than some data dependent
constant C, we have that with the occasional doubling of the estimates of C' the
sequence C(k) must eventually become constant. Therefore, there exists a large
enough K such that for k > K we have a; = 17— and quadratic convergence
follows as in the arguments of Theorem 4.3.
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5 Degeneracy

In case of degeneracy, having a centering component in the search direction may
cause some trouble (note that Mehrotra [Meh91] and Ye et al. [YGTZ91] take
the affine scaling direction (without any centering) as the search direction in the
predictor step of Mizuno-Todd-Ye algorithm). Here, we will follow the proof of
Lemma 4.1 without the non-degeneracy assumption and point out the difficulties
arising from having a centering component. As we stated before the arguments
given in Lemma 4.1 are similar to the arguments of Ye et al. [YGTZ91], but
we deal with the solutions of the equations (7)-(9) rather than the solutions of
(4)-(6). We will make our arguments in the primal space only, but the arguments
for the dual space are essentially symmetric. We will start with an observation
made by Ye et al. [YGTZ91] about the iterates s. They note that since sz = 0
for all optimal s* € F(D), we must have cg € R(BT) (range of BT). But then
for any feasible s, we have sp = cg — BTy which implies sp € R(BT). Hence
there exists § € IR™ such that DgBT§ = (X/25'/%¢)p.

So, if the search direction is the affine scaling direction; i.e., v := (X 1/281/2¢)
then we consider the folowing least squares problem

(LS) min F|lvs — (v)sll2

BDg(v,)B = —NDn(vp)N.
Karush-Kuhn-Tucker conditions for (LS) are given by
DpBTy +vp — (vp)B =0,
BDg(v,)B = —NDn(vp)N.

Since there exists a § such that vg = DpBT§, the necessary and sufficient con-
ditions are equivalent to the following conditions:

DBBT:l] + (vp)B = 0,
BDB(UP)B = -—NDN('UP)N.

But these conditions are necessary and sufficient for the following least squares
problem:
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(LS") min g]|(vp)sll3
BDB(’U,,)B = —-NDN(UP)N.

Now, suppose we are trying to find a feasible solution to the system of linear
equalities Br = —NDy(v,)n. Since we know that the system is feasible, it is
clear that there exists a solution 7 and a data dependent constant C' such that
I7llz € CliDn|l2ll(vp)nll2- Then we let w := Dg'F. It is clear that w is a feasible
solution to (LS’) and that

llwllz < DB lzliFll2 < ClIDE [l2l Dx Izl (vp)w l2-

Using the same arguments as in Lemma 4.1 we have |lw|[; < C(zTs)%2. Since
w is a feasible solution to (LS’), the optimal solution of (LS’) (and hence (LS))
must have the same property; i.e., ||(vy)8ll2 < C(z7s)%/2.

Unfortunately, the same argument does not apply to the centering component,
because it is clear that (X~1/28-1/2¢)p is not (in general) in the row space of
BDg. Since in the presence of degeneracy B does not necessarily have full column
rank, in the same least squares problem (LS), one has to worry about the vectors
which are close the the centering direction and are in the null space of BDp. Since
the centering direction does not lie in the row space of BDp, the component of
the centering direction that lies in the null space of BDp becomes important
in the analysis. If the norm of this component is large (it possibly could be as
large as the norm of the centering direction), the analysis given here does not
work. Even in this case we still have ||(vp)5]| < O((275)%/?) (because the norm
of the centering component is O((zTs)%/?)) but now the constant (hidden by
“big Oh”) is a multiple of p which does not allow us to pick p independently to
ensure a large enough step size. From this argument we just gave, it seems that
the centering component might make the norm of the projection larger (hence
destroy the quadratic convergence property of the algorithm).

One might hope that degeneracy could keep the neighborhoods “larger” (in
some sense) in some subspace so that the centering would not hurt the quadratic
convergence property. This is one motivation for the Theorem 5.1 we will present.
Another motivation is the fact that the recent quadratic convergence results of
Mehrotra [Meh91] and Ye et al. [YGTZ91] do not rely on the assumption that
the iterates are converging. So, one natural question is: “In case of degeneracy
is it possible to have non-convergent iterates ?” Along these lines Roos [Ro92]
and Todd [To92] provided examples in which the neighborhoods of the central
path stay large as the central path converges to the analytic center of the optimal
face. Theorem 5.1 provides a characterization of this behavior and proves that

in case of degeneracy the neighborhoods N3(8), Noo(8), and N5 () do not con-
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verge to a point (the center of the optimal face) and stay “large” as the iterates
approach the optimal face. So, for an algorithm to keep its iterates in one of
these neighborhoods does not suffice to have convergent iterates.

We introduce some notation first. For each u > 0 let (z.(u),s:(u)) denote
the solution of (1)-(3), i.e., (zc(&),sc(¢)) is the central primal-dual solution cor-
responding to duality gap nu. Let {d',d?,...,d"} be an orthonormal basis for
the null space of B. For each i € {1,2,...,7},

(8, = 2:0) £ () € NolB.)

where
Ne(B,p) := {z € F(P): 3s,(z,s) € NZ(8) and z7s=np}.

z* will denote the analytic center of the optimal face in the primal problem. Now,
we can state the theorem.

0
{1,2,...,r}. Then there exist ji and € € (0,1) such that p < | implies n;(8, 1) =
(1= e

Theorem 5.1. Let nf := max{n; : z3 £ ( ¢ ) € F(P)} >0 forallz €

Proof: Since z.(pt) — z*, by the continuity of the central path, there exists and
€1 € (0,1) such that

4]

)+ § ) € PP or < v and < (1=

As we mentioned at the beginning of this section, for all s € F(D) we have
sp € R(BT). Therefore,

\1T
[mc(u) + ( C(l) )} s =xz.(p)Ts,Vs € F(D).
i.e. zTs is constant for all feasible s as long as we move z in the null space of B.
Note that by definition we have (z.(z));(s.(#)); = p,¥j. So, if

. B
TS N (e (0)a);

}, Vie{1,2,...,r} (28)
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then we get

(ze(1))B);((3:(1))B)i + mdi((se(1))B); = (1 — B)p

It follows from the fact that z.(u) — z* that there exist a fi; and a data depen-
dent constant Cp such that if g < fi then

((ze(1))B); € [g5:CB), V5.

So, if u < fiz then

((se(#))B); € lgz#: Cul.

Therefore, the RHS of (28) is bounded away from zero by a data dependent
constant (depending on the size of the optimal face). So, if p < min{f, iz} then

ni(B8, 1) 2 min{ e, (1 — )} =

Remark: Theorem 5.1 is also applicable to N, and N neighborhoods. The
proof for the M neighborhoods is essentially the same. The proof for the A3
neighborhoods follows from the fact that the theorem holds for N, neighbor-
hoods.

6 Conclusion

We introduced a new primal-dual potential function that fits in nicely with wide
neighborhoods. The new potential function has some combinatorial flavor be-
cause of its barrier part. This might make it easier to get a candidate active
set for determining the optimal solution. We also studied the asymptotic behav-
jor of the primal-dual interior point algorithms in wide neighborhoods (proving
quadratic convergence under the assumption of non-degeneracy) and showed how
the centering component might make the norm of the search direction larger than
desired in case of degeneracy. We showed that an algorithm keeping its iterates in
a neighborhood of the central path does not necessarily have convergent iterates
(in case of degeneracy).

In the light of Theorem 5.1, it is conceivable that perhaps the neighborhoods
stay large in the nullspace of BDp (as the iterates approach the optimal set)
so that one does not have worry so much about the norm of the component of
the search directions that is in the null space of BDp to make sure that the
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next iterate also lies in the same neighborhood. Possibly the analysis could then
be restricted to the range of DgBT and hence, in the degenerate case, even
though the centering component is large in norm it may not hurt the quadratic
convergence property.

Acknowledgment: The author wishes to thank Mike Todd for very valu-
able discussions and for suggestions to improve the presentation of this paper.
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