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ABSTRACT 

Mycobacterium tuberculosis, the cause of Tuberculosis (TB), infects one third 
of the world’s population and causes substantial mortality worldwide. In its 
shortest format, treatment of drug sensitive TB requires six months of multidrug 
therapy with a mixture of broad spectrum and mycobacterial specific antibiotics, 
and treatment of multidrug resistant TB is much longer. The widespread use of 
this regimen worldwide makes this one the largest exposures of humans to 
antimicrobials, yet the effects of antimycobacterial agents on intestinal 
microbiome composition and long term stability are unknown. We compared the 
microbiome composition, assessed by both 16S rDNA and metagenomic DNA 
sequencing, of Haitian TB cases during antimycobacterial treatment and 
following cure by 6 months of TB therapy. TB treatment does not perturb overall 
diversity, but nonetheless dramatically depletes multiple immunologically 
significant commensal bacteria. The perturbation by TB therapy lasts at least 
1.5 years after completion of treatment, indicating that the effects of TB 
treatment are long lasting and perhaps permanent. These results demonstrate 
that TB treatment has dramatic and durable effects on the intestinal microbiome 
and highlight unexpected extreme consequences of treatment for the world’s 
most common infection on human ecology.  
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CHAPTER ONE - INTRODUCTION 

Introduction to Tuberculosis disease 

Each year, 3 – 4% of all deaths worldwide from any cause are attributable to 

infection with Mycobacterium tuberculosis (Mtb), the causative agent of 

Tuberculosis (TB) disease, which amounts to almost 5,000 TB-related deaths 

each day (1). This colossal disease burden necessitates a thorough 

understanding of both the pathogenic strategies Mtb uses to cause disease, 

as well as the host susceptibilities Mtb has evolved to exploit. Individuals can 

be uninfected, infected with latent Mtb, have active TB disease, or be cured 

through antibiotic therapy (Figure 1).  

 

Many factors can influence the probability that some individuals transition from 

one of these stages to another, but most defined risk factors compromise 

immune function (2). For example, untreated HIV infection, which depletes 

CD4+ T cells, is associated with elevated risk of TB disease. Overall, immune 

status is also affected by age—the elderly and young infants are at a 

disproportionately high risk of Mtb infection and subsequent TB disease. 

Furthermore, genetic mutations in pathways involved in controlling Mtb 

infection and maintaining latency, like those of IFNg and TNFa, also cause an 

increased risk of active TB disease (3). Despite these examples, known 

immune deficiencies are not sufficient to explain why the incidence of new 

active TB cases hovers over 10 million people each year, with a mortality rate 

between 1.5 – 2 million people (1). Furthermore, it is unknown why some 

individuals in TB endemic countries (where Mtb exposure is common) never 

become Mtb infected, why most latently infected individuals never progress to 
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active TB disease, and what may account for treatment failure, relapse, and 

re-infection. These epidemiological curiosities drive the questions proposed in 

this thesis.  

  



 3 

Figure 1: The stages of Mtb infection and TB disease. Individuals in TB endemic countries are 
exposed to Mtb at home or in the community throughout their lifetimes. Some individuals, 
despite this exposure, remain IGRA– while others develop latent TB disease (LTBI), and are 
IGRA+. Around 5 – 15% of individuals with LTBI will go on to have active TB disease, where 
they are able to infect others around them. Since TB is a curable disease, people can take 
treatment for a minimum of 6 months with four antibiotics (HRZE). Since the turn of the 
century, more than 50 million lives have been saved by antimycobacterial TB therapy.  
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Epidemiology of Tuberculosis 

Mtb has co-evolved with humans for centuries, to the point where the only 

known natural reservoir is in Homo sapiens. Innumerable factors describe why 

some individuals get this disease while others do not, and despite all we know 

about TB, there are some elusive epidemiological questions that remain 

unsolved. First, individuals—even those who are exposed to Mtb throughout 

their lives—can remain uninfected, measured as being negative for the 

IFNg release assay diagnostic test (IGRA–). Second, it is believed that nearly 

one third of the world’s population is latently infected with live Mtb bacteria 

(clinically called LTBI), and are therefore IGRA+. More than 80% of these 

people will never get sick with active TB disease. Third, of the people who do 

get sick with active TB disease, depending on the susceptibility of the Mtb 

strain they are infected with to a standard course of antimycobacterial therapy, 

individuals with active disease can take treatment, thus, TB is a curable 

disease. These stages are depicted in Figure 1. Being cured from TB is 

achieved through a standard course of TB treatment, which consists of four 

antibiotics for two months, followed by two antibiotics for at least an additional 

four months. This makes antimycobacterial therapy for TB disease a full six 

months—one of the longest courses of antibiotic treatment administered to 

humans for any infectious disease.  

 

It is unknown why nearly 20% of individuals in TB endemic countries remain 

IGRA– throughout their lifetimes, despite what is assumed to be persistent 

exposure. It is further unknown why 5 – 15% of individuals with LTBI will 

progress to active TB disease, whereas most people’s immune systems are 

able to keep Mtb at bay for their entire lives. Finally, we do not know why 
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individuals who have had TB and have been cured through antibiotic 

treatment are more than four times more likely to become re-infected with Mtb 

again in their lifetimes.  
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Figure 2 
Mechanism of action and 
chemical structures of 
HRZE drugs and their 
described active products. 
Isoniazid (H) is a prodrug, 
which requires the 
mycobacterial protein KatG 
(Rv1908c) for ligation with 
NAD+, the product of which is 
the active drug that inhibits 
enoyl-acyl carrier protein 
reductase InhA, inhibiting 
fatty acid biosynthesis. 
Pyrazinamide (Z) is activated 
by the mycobacterial enzyme 
PncA to pyrazinoic acid. 
Ethambutol (E) targets 
arabinogalactan biosynthesis, 
and Rifampicin (R) inhibits 
Mycobacterial DNA-
dependent RNA polymerase 
through binding to the β-
subunit of the enzyme.  
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Calculating what epidemiological factors contribute to LTBI and TB disease 

incidence is by no means trivial. The goal is to estimate the percent of total 

incidence of disease in the population due to a given epidemiological factor 

(exposure), and to have the numbers from all contributing factors to add up to 

100%. This is called the population attributable risk percent (PAR%), also 

known as the etiologic factor that describes what percent of the disease would 

be removed if that exposure was removed. For example, 12% of active TB 

disease incidence is attributable to HIV infection, thus if HIV infection was no 

longer a comorbidity with Mtb infection, there would be 12% fewer cases of 

active TB disease worldwide. Although these calculations are rough and 

fraught with assumptions, the question at hand is determining the full suite of 

etiological factors explain LTBI and active TB disease incidence.  

 

Several of these factors link back to the sociological and historical 

understanding of TB. These include malnutrition and air pollution, each of 

which make up around one quarter of risk. Additionally, metabolic syndrome, 

alcohol use, and smoking, all increase risk for active TB disease significantly. 

Nevertheless, is it suspected that these factors are collectively unable to 

explain the full PAR% for why people get active TB, and even fewer factors 

explain why individuals are LTBI. This lack of understanding of the 

epidemiology of TB, in conjunction with the complete lack of understanding as 

to how the microbiome relates to LTBI and active TB disease, is the motivation 

for the study herein.   
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The Human Microbiome 

Microbes and smaller organisms have co-evolved with more complex cellular 

life for the past 500 million years, thus it is not surprising that complex human 

immune systems are adapted to not only recognize and fight off these 

organisms when they are out of check, but to also take advantage of the host 

of biochemical and metabolic functions they possess. For every human cell, 

there is at least one other cell belonging to the microbes that inhabit our 

bodies. These microbes on nearly every exposed surface of the human body 

play an important role throughout the lifecycle of that organism they inhabit—

collectively they are referred to as the microbiota. Most microbes that humans 

are exposed to are non-pathogenic, a relationship called commensalism. 

Many of these microbes actually benefit us, a relationship called mutualism. 

The microbiota help humans to digest food, they biosynthesize small 

molecules like serotonin that regulate our emotions, and teach the immune 

system how to respond to pathogens. The collection of the microorganisms, as 

well as the elaborate biochemical functionality in their genes is referred to as 

the microbiome. These indispensable functions have only been realized 

recently, since the mid 2000s. With the advent of next-generation DNA 

sequencing, culture-independent means to ask which organisms are present, 

and what they are doing, became a reality.  
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Barrier surfaces and the microbiome 

Host-microbe interactions are complex, but one significant feature is that they 

generally involve the interaction of putative pathogens with mucosal barrier 

surfaces. This interaction establishes what sort of biochemical and 

immunological dialogue exists between at the onset of infection or disease, 

thus, understanding the immune status of mucosal surfaces before such an 

event is requisite to understanding these multifaceted host-pathogen 

interactions. Much of the work aimed at understanding these interactions 

involves the study of local microbiome composition at the site of contact.  

 

Increasing evidence clearly demonstrates that these host-pathogen 

exchanges happen frequently and are immunologically important. For 

example, at the largest site of exposure of the immune system to the outside 

world—the gut—it has been shown that temporary infections can permanently 

alter the memory T cell repertoire (4). At baseline regulatory mechanisms exist 

to promote local immune homeostasis, especially involving the anti-

inflammatory properties of intestinal macrophages and at least four unique 

subsets of intestinal dendritic cells (5). A population of innate CD11b+ CD103+ 

dendritic cells in the lamina proproia (LP) constantly surveil the luminal 

contents of the gut—they have mechanisms to transverse the tight junctions of 

the epithelium, sample antigens (including whole bacteria), and bring them 

back to the LP for processing and presentation to B and T cells. Additionally, 

CD11b+ Notch-2 dependent dendritic cells sense bacterial antigens. One 

outcome of this is TLR5 activation by the bacterial protein flagellin, resulting in 

IL-23 production. IL-23 binds to IL-23R receptors on innate lymphoid cells 

(ILCs), which result in the production of IL-22. Most epithelial cells express the 
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IL-22R receptor, and when activated, Il-22R causes antimicrobial peptide 

RegIIIβ and RegIIIγ  production, mucous generation, and the promotion of 

overall intestinal barrier integrity. Additionally, CD4+ lymphoid tissue inducer 

(LTi) cells are rich sources of IL-22 in the gut (6). The importance of IL-22 in 

the context of intestinal homeostasis is highlighted by the collection of 

literature on the negative outcomes of Citrobacter rodentium infection in IL-22-

/- mice, which models human enteropathogenic Escherichia coli infections (7, 

8). This complex series of interactions are complex, and sometimes 

contradictory, given that in some contexts IL-22 can also promote 

inflammation (9). The cocktail of small molecules, chemokines, and cytokines, 

as well as the baseline host-commensal relationship are all factors to consider 

in host-commensal interactions.  

 

Mucosal interactions with the adaptive arm of the immune system often rely on 

antigen-specific cues from the commensal microbiota. In the skin, 

mechanisms exist for establishing local immune homeostasis in conjunction 

with the microbiota. During early life, microbiota of the skin elicit antigen-

specific T cells, and concomitantly establish tolerance by promoting the 

expansion of a population of activated T regulatory cells (Tregs) (10). If Tregs 

are prevented from entering neonatal skin, tolerance to commensals is 

attenuated. In the gut, bacterial antigens are presented to Notch-2-dependent 

dendritic cells (11) that then produce TGFb. Tregs to inhibit effector 

responses, again promoting immune homeostasis in an antigen-dependent 

fashion (12). Collectively, immune tone is determined both locally and 

systemically through the interaction of the microbiota with the host. This 

immune tone is an increasingly important consideration in several contexts 
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and for a number of reasons, and may contribute to the pathogenesis of 

infectious disease.  

 

The long-term response to a pathogen can be controlled spatially, as a 

function of which barrier surface that pathogen invades and what immune cell 

types respond to this invasion. For example, the dimorphic fungus and skin 

commensal organism Candida albicans can gain the ability to transvers the 

skin barrier surface and elicit an immune response. Skin dendritic cells called 

Langerhans cells use Dectin-1 to sense the yeast form of the organism during 

initial breaching of the skin barrier. These cells migrate to lymph nodes and 

produce IL-6, biasing naïve CD4+ cells to adopt a Th17 phenotype. Upon re-

challenge of C. albicans on the skin, but not systemically, mice who have 

undergone this immune challenge are able to resist infection. A different 

population of CD103+ dermal dendritic cells that reside much deeper within 

the barrier surface use TLR2 to sense the filamentous (hyphae) form of C. 

albicans. Migration of these cells to the lymph nodes and production of IL-12 

biases CD4+ naïve cells to the IFNg producing Th1 phenotype. Upon re-

challenge of C. albicans systemically, but not on the skin, mice who have 

undergone this immune challenge can resist infection. Thus, the same 

immune cell type located in two different locations and expressing two different 

receptors results in two different immune tones that can act either locally or at 

a distance.  

 

The repertoire of immune cells at any barrier site and the receptors that they 

express are a function, in part, of the commensal microbiome. In the previous 

example, production of SCFAs by commensal anaerobic bacteria stimulate 
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colonization resistance and inhibit C. albicans growth. Additionally, SCFAs 

induce host immune response factors HIF-1a, a transcription factor involved in 

innate immunity, and the antimicrobial peptide LL-37 (13). For a pathogen, the 

establishment of a replicative niche depends on access to space, nutritional 

factors, and the ability to compete for these within the larger context of an 

ecological community that is the microbiome and the immune responses 

elicited by the host, primarily shaped by the local and distal microbiome.   
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The Microbiome and Tuberculosis  

As discussed, one emerging biological factor that remains unstudied in the 

context of TB susceptibility and treatment is the intestinal microbiota. The 

organisms comprising the intestinal microbiota account for the largest 

exposure of the immune system to the environment, and in turn, the 

composition and metabolic activities of the intestinal bacterial community 

directly participate in the development and function of peripheral immunity 

(14). 

 

Researchers recently described how SCFAs produced by members of the lung 

microbiota can induce peripheral immune phenotypes, leading to increased TB 

susceptibility in HIV+ individuals on antiretroviral therapy (15). In South Africa, 

where the TB epidemic is one of the most severe in the world, researchers 

recruited individuals in a longitudinal clinical study, and investigated both the 

composition of the lung microbiota, as well as the microbe-derived small 

molecules present in the periphery. Predictors of TB hazard include serum 

IFNg IL-17A, butyrate, and propionate, which related to Treg expansion and 

likely attenuation of a productive pro-inflammatory immune response against 

Mtb upon initial infection or reactivation. 

 

It is unknown how the composition of the gut microbiome affects TB, nor is it 

easy to predict. Even small changes in low abundance bacteria of the 

intestinal microbiota can have large effects on health outcomes. For example, 

the mucin-degrading species Akkermansia muciniphila comprises only 1 – 3% 

of the intestinal microbiota of some people, but its loss is associated with 

obesity, Type 2 diabetes, and inflammation in both mice and humans (16-18). 
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Similarly, babies with depletion of four microbiota constituents are at risk for 

asthma, and transfer of these four bacteria to germ free mice ameliorates Th2-

mediated airway inflammation (19).  

 

Although intestinal microbiome composition can be determined by many 

factors throughout a lifetime, there is an increasingly well-understood stability 

in its composition (20) in the absence of antibiotic perturbation. The human 

intestinal microbiome taxonomic composition is dominated by Firmicutes and 

Bacteroidetes, somewhat lower levels of Actinobacteria and Proteobacteria, 

and often low abundance but important phyla like Verrucomicrobia, 

Fusobacteria, and Euryarchaeota (21). Antibiotics can target any of these 

taxa, and have distinctive microbiome-altering effects both during and post 

treatment. For example, the fluoroquinolone ciprofloxacin has broad effects on 

intestinal microbiota, especially Enterobactericeae (22), and causes a marked 

decrease in taxonomic diversity (23). b-lactam antibiotics also cause 

detectable microbiomic shifts, resulting in altered carbohydrate processing and 

increased sugar metabolism (24). Antibiotic induced perturbations of the 

intestinal microbiome can also result in altered metabolite production by the 

microbiota. The third-generation cephalosporin cefoperazone, when 

administered to mice for 10 days, increased secondary bile acid, glucose, free 

fatty acids, and dipeptide production, while decreasing primary bile acids and 

sugar alcohols in the intestine (25). In people undergoing cancer treatment, 

treatment with metronidazole led to substantial derangement of the microbiota 

through its anti-anaerobic activity; in contrast, treatment with intravenous 

vancomycin had relatively little impact (26). Although the pre-treatment 

ecological state of the microbiome generally recovers after stopping antibiotic 



 15 

treatment, there are noticeable effects that may persist for weeks, months, and 

even years after treatment is stopped (27). Although these are just a few 

examples, the current model is that antibiotic treatment can result in the 

establishment of an alternative state that can have systemic, often deleterious, 

consequences for immunity and disease susceptibility (21, 28).  

Motivation for Study 

Little is known about the effects of first-line TB antibiotics on the intestinal 

microbiome. In contrast to commonly used broad spectrum antimicrobials, 

most first-line antibiotics used to treat TB are narrow spectrum agents with 

Mycobacteria-specific targets. A standard course of TB therapy for drug 

sensitive Mtb consists of the administration of four drugs for two months, 

Isoniazid (H), Rifampin (R), Pyrazinamide (Z), Ethambutol (E), and then the 

continuation of HR for an additional four months. Isoniazid is a prodrug, which 

requires the mycobacterial catalase-peroxidase KatG (Rv1908c) for ligation 

with NAD+, the product of which is the active drug that inhibits enoyl-acyl 

carrier protein reductase InhA, thereby inhibiting mycolic acid biosynthesis 

(Figure 1) (29). Similarly, pyrazinamide is only used clinically for Mtb and is 

converted to the active pyrazinoic acid by the bacterial amidase PncA (Figure 

1) (30). Ethambutol is thought to inhibit arabinosyltransferases, and like 

isoniazid, inhibit cell wall biosynthesis. Of the four standard TB antibiotics used 

in “short course” treatment (HRZE), only Rifampin, which inhibits bacterial 

RNA polymerase, is a broad-spectrum antimicrobial that is used for non-

mycobacterial infections. The effects of this prolonged antibiotic regimen on 

the intestinal microbiota are unknown, and almost impossible to predict.  
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In this study, we characterize for the first time the intestinal microbiome of 

residents of Haiti and assess the immediate and long-term effects of TB 

treatment with HRZE antimycobacterial therapy on microbial diversity, 

taxonomic composition, and biochemical capacity. We demonstrate the 

substantial and unique disruptive effects of HRZE therapy on intestinal 

microbiome composition using both 16S and metagenomic DNA sequencing 

and demonstrate that long term gut microbiomic dysbiosis is a consequence of 

TB treatment.   
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CHAPTER 2 – RESULTS 

Clinical characteristics of study groups from the TBRU study 

We recruited four groups of individuals using a cross-sectional research study 

design. To characterize the intestinal microbiomes of individuals from the 

Haitian population, we recruited two groups of control individuals, 50 with no 

Mtb infection, and 25 latently infected by Mtb (LTBI), as defined by a positive 

Interferon Gamma Release Assay (IGRA) test. To determine the effect of 

HRZE antimycobacterial treatment on the intestinal microbiome, we recruited 

19 volunteers currently on treatment with HRZE for drug sensitive 

Tuberculosis. In addition, to determine the duration of the microbiome 

perturbation of HRZE treatment, we recruited 14 previously treated cases who 

were cured of active TB. The clinical characteristics of the groups are given in 

Table 1. To appropriately control for age, we divided our LTBI group into two 

distinct control subgroups, designated LTBI (treatment control) and LTBI 

(cured control), since microbiome composition can vary significantly with age 

(31).  
  



 18 

Table 1: Patient populations analyzed in this study for 16S rDNA sequencing. Data are 
divided into study groups described in the text. The number of participants, participants average 
age, gender distribution, amount of time on HRZE treatment or time since treatment, average 
number of 16S reads and subsequent OTUs, and Shannon diversity index are shown if 
applicable.  
  

Group 
Number 
of 
people 

Average 
Age 
(range) 

% 
female 

Time on 
TB 
treatment 

Time 
since TB 
treatment 

Average 
number 
of 16S 
reads 
per 
patient 
(range) 

Average 
number 
of OTUs 
per 
subject 
(range) 

Shannon 
Diversity 

Healthy 
control  50 33 (19 – 

59) 62 N/A N/A 
35951 
(690 – 
116638) 

230 (19 
– 473) 3.412 

LTBI 
(treatment 
control) 

25 26 (17 – 
32) 52 N/A N/A 

41038 
(4713 – 
118110) 

229 (47 
– 470) 3.341 

LTBI (cured 
control) 17 24 (17 – 

29) 50 N/A N/A 
48329 
(8309 – 
118110) 

247 (119 
– 453) 3.417 

Treatment 19 20 (13 – 
32) 54 

3.2 
months 
(13 – 217 
days) 

N/A 
38489 
(4360 – 
140543) 

150 (57 
– 118) 3.218 

Cured 14 23 (17 – 
27) 36 6 months 

417 days 
(34 – 
1202 
days) 

21731 
(5134 – 
105583) 

237 (142 
– 388) 3.75 

Human 
Microbiome 
Project 
(Americans) 

319 N/A 57 N/A N/A 
15937 
(114 –  
53607) 

58 (17 – 
139) 2.347 
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Characterization of the healthy Haitian intestinal microbiome  

Today, Haiti is the most financially impoverished country in the Western 

Hemisphere, with more than 80% of the population living below the poverty 

line. This cycle of poverty was recently amplified by a massive earthquake in 

2010 that killed 300,000 people and displaced more than 1.5 million people. 

The socioeconomic reality of Haiti contributes to a TB epidemic that affects the 

entire population; the incidence of active TB in Haiti is 194 per 100,000 people 

(1).  

 

Most microbiome studies in humans have been performed on relatively 

affluent populations in North America or Europe, with a relative paucity of 

large-scale studies in developing nations. Given the substantial effect of diet 

and other factors on microbiome composition, and the lack of data about 

microbiome composition in TB endemic countries, we initially characterized 

the healthy Haitian adult microbiome by enrolling 50 Mtb-uninfected, 

apparently healthy, Haitian individuals with no known recent Mtb exposure, 

and collected stool for 16S rDNA and metagenomic DNA sequencing. The 

mean age for volunteers in the healthy group was 33 years old (range 19 – 59 

years), with 62% who were female. To our knowledge, this is the first 

characterization of the intestinal microbiome from Haitians.  

 

Microbiome composition was first characterized through sequencing of the 

V4–V5 variable region of the 16S ribosomal DNA gene. Reads were filtered for 

size and quality and chimeras were removed to yield an average of 35,951 

high-quality reads per patient (Table 1). Reads were clustered into operational 

taxonomic units (OTUs) at 97% identity, and taxonomic identification was 
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made using BLASTn against the refseq_rna database (32). We also analyzed 

both 16S (319 subjects) and metagenomic data (150 subjects) from healthy 

individuals recruited from the American Human Microbiome Project (HMP) (33, 

34). Using metagenomic data, we found a statistically significant different 

mean Shannon diversity index between the HMP and Haitian populations 

(Wilcoxon rank sum test with continuity correction, p=0.0131), indicating that 

the Haitian microbiome is more diverse than the American counterpart (Figure 

3). Non-metric multidimensional scaling (NMDS) principal component analysis 

on Bray Curtis distances clearly separated HMP samples from either Mtb 

uninfected Haitian samples or Haitian LTBI samples (Figure 4A). 
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Figure 3: Shannon diversity index for the Haitian and Human Microbiome Project samples. 
Calculated using metagenomic data and the Vegan package in R (35). Unique species are 
acting as the input for each person. The Haitian vs HMP cohorts have statistically significant 
different Shannon diversity indices (p=0.0127).  
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To obtain species level resolution of the differences between the two 

populations, we performed taxonomic profiling of the metagenomes from the 

150 healthy HMP individuals (see above) and from 43 healthy Haitian 

individuals (No TB: 18 + LTBI: 25) using the Metaphlan pipeline (36). The 

most abundant taxonomic genera in the healthy Haitian group come from 

Prevotella, Faecalibacterium, Ruminococcus, Bacteroides, Oscillibacter, 

Blautia, Bifidobacterium, Agathobacter, Romboutsia, Gemmiger, Coprococcus, 

Holdemanella, Lactobacillus, Eubacterium, Anaerostipes, Sporobacter, 

Clostridium, Catenibacterium, and Akkermansia (Figure 4). The most 

abundant genus is Prevotella, from the Phylum Bacteroidetes. The 

preponderance of Prevotella is similar to prior characterization of microbiome 

composition in other non-Western populations (37, 38).  
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Figure 4: Characterization of the healthy Haitian microbiome in comparison to the Human 
Microbiome Project by 16S and metagenomic DNA sequencing. A. NMDS plot on Bray 
Curtis distances between healthy Haitian (both LTBI (red) and Mtb uninfected (blue) and HMP 
samples (green), based on metagenomic DNA sequencing, highlighting differences between 
the two populations and the lack of difference between LTBI and No TB subjects. B. The 40 
most abundant taxa in both Haitian and HMP samples using metagenomic sequencing. C. 
Unsupervised hierarchical clustering of the 40 most abundant taxa of the 319 intestinal 
microbiome samples from the American Human Microbiome Project determined by 16S rDNA 
sequencing. D. Unsupervised hierarchical clustering the 40 most abundant taxa from 50 Mtb 
uninfected Haitian subjects using 16S rDNA sequencing. 
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Figure 5: Differentially abundant taxa between Haitian and HMP samples. LEfSe was used 
to determine the major differences in taxonomy using Metaphlan taxonomic assignments on 
metagenomic data, and the relative abundance of the most significantly different taxa are 
plotted. Phylum, Class, Genus, and Species level comparisons are plotted between 150 HMP 
metagenomic samples with 42 healthy (No TB + LTBI) Haitian individuals. All biomarkers are 
derived from a Wilcoxon Rank Sum test p < 0.01 and have an linear discriminant analysis effect 
size score > 4.2. The median of the data in the box is indicated by a line, the whiskers show 1.5 
times the value of the interquartile range of the box hinge, and outliers are shown separately as 
dots. 
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Hierarchical clustering of the top 40 most abundant OTUs for each group 

determined by 16S sequencing highlighted the heterogeneity of microbiome 

composition among healthy individuals within a population (Figure 4C and 4D). 

Comparison between Haitian and American data showed that despite being 

the dominant Phyla in both populations, Firmicutes were more abundant in the 

Haitian population (77.9% vs 64.8%), whereas Bacteroidetes were more 

abundant in the American population (21.4% vs 10.8%, Table S1, Figure 4). 

Two additional Phyla were found to have increased abundance in the Haitian 

population, Actinobacteria, the Phylum to which Mtb belongs, and 

Euryarchaeota (Archaeal Kingdom), whereas Proteobacteria and Spirochetes 

did not significantly differ between the two populations. Using LEfSe (39) to 

compare the most differentially abundant species between the two 

populations, we determined that on average Haitians have higher levels of 

Bifidobacterium, Blautia, Catenibacterium, Collinsella, Coprococcus, 

Erysipelotrichaceae, Eubacterium, Faecalibacterium, Lactobacillus, 

Methanobrevibacter, Mitsuokella, Olsenella, Peptostreptococcaceae, 

Prevotella, Rothia, and Streptococcus. By contrast, Americans have higher 

levels of Adlercreutzia, Alistipes, Bacteroides, Burkholderiales, Holdemania, 

Parabacteroides, and Parasutterella (Figure 4). We recognize that 16S data 

obtained from the HMP will differ with respect to DNA extraction, library 

preparation, and DNA sequencing. We downloaded the HMP dataset and 

performed OTU calling using our protocol and nomenclature (i.e., OTU names 

were called from the refseq_rna database), and at this level of comparison, we 

believe these OTUs accurately differ between the two populations.   
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Figure 6: Metacyc pathway abundance comparing the HMP dataset and Haitian healthy 
control people. A. Unsuprivised hiericherical clustering of significantly altered Metacyc 
pathways. B. Relative abundnace of Metacyc pathways, significant by LeFSe (p< 0.01). 
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Figure 7: Metacyc pathway coverage comparing the HMP dataset and Haitian healthy 
control people. A. Unsuprivised hiericherical clustering of significantly altered Metacyc 
pathway coverage. B. Relative abundnace of Metacyc pathway coverage, significant by 
LeFSe (p< 0.01).  
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Figure 8: KEGG pathways comparing the HMP dataset and Haitian healthy control 
people. A. Unsuprivised hiericherical clustering of significantly altered KEGG pathways. B. 
Relative abundnace of KEGG pathways, significant by LeFSe (p< 0.01). 
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Figure 9: Metacyc pathway coverage comparing the HMP dataset and Haitian healthy 
control people. A. Unsuprivised hiericherical clustering of significantly altered Metacyc 
pathway coverage. B. Relative abundnace of Metacyc pathway coverage, significant by 
LeFSe (p< 0.01).  



 30 

To determine whether the observed taxonomic compositional differences 

between Haitians and HMP samples are reflected in distinct functional 

differences (i.e., coding capacity) we mapped the abundances of 

Uniref/Metacyc pathway abundance and coverage, as well as KEGG 

pathways and modules using the HUMAnN2 software pipeline (40). Principal  

component analysis on pathway differences sharply distinguishes the Haitian 

and American groups, regardless of their Mtb infection status (not shown), so 

we further investigated these differences using differential statistics (see 

Methods). Comparison of the HMP and Haitian groups resulted in many 

pathway differences that were either enriched or reduced in each population, 

regardless of which statistical method was used to delineate group functional 

differences (Figures S4 – S7). Additionally, unsupervised hierarchical 

clustering of samples successfully delineates HMP samples from Haitian 

samples (Figures 6 – 9). These pathways broadly encompass multiple aspects 

of bacterial central metabolism and cofactor biosynthesis (see SI text for 

details), further emphasizing the significant differences between Haitian and 

American microbiome composition. Taken together, this analysis suggests that 

the two populations differ not only in terms of microbial composition but also in 

biochemical functionality.  

 

In summary, we present the first taxonomic characterization of the intestinal 

microbiome from the Haitian population. The Haitian microbiome differs 

substantially from that of the United States samples included in the original 

Human Microbiome Project, and our data therefore augments a sparse 

literature on microbiome composition in people from both developing and TB 

endemic countries and regions. The most prominent differences in 
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microbiomic configuration are the abundance of Prevotella, Bifidobacterium, 

and Ruminococcus in the Haitian microbiome. The Haitian intestinal 

microbiome contains a high abundance of Prevotella, known to degrade xylan 

and other starches from dietary fiber, (41) and also observed in high 

abundance in other “non-Western” or African populations (31, 42, 43). 

Additionally, we found overlap in the differences in coding capacity between 

populations from developing and developed countries, which are similar to 

previous findings. One report in particular compares people recruited from the 

USA, native people from the Amazonas of Venezuela, and residents of rural 

Malawian communities (31). In the USA samples, compared to those of the 

people from Venezuela and Malawi, researchers found an increase in sugar 

(glycan) degradation, lipoic acid metabolism, and bile salt degradation. This 

result is strikingly similar to the findings presented here comparing HMP 

samples to healthy Haitians. Additionally, metagenomic studies on the Hadza 

hunter-gathers in Africa shows similarities with the Haitian data as well (42).  

 

Pathway differences between HMP and Haitian microbiomes 

In the HMP samples, several of the pathways that are differentially abundant 

generally relate to metabolism. For example, a variety of metabolic pathways 

including those for lipoic acid, glycan degradation, secondary bile acid 

synthesis, synthesis of LPS, and secondary polyketide synthesis are more 

abundant (Figures 6 – 9). Lipoic acid plays a role in lysine biosynthesis and 

metabolism (also enriched in HMP samples, PWY 2942), which is important 

for the regulation of energy production via the pyruvate dehydrogenase 

complex (44). Sugar biosynthesis and degradation, including that for 

glycosaminoglycan (ko00531) and fructose and mannose (ko00051), 



 32 

rhamnose (DTDPRHAMSYN PWAY and RHAMCAT PWY), and galactose 

(PWY 6317 and PWY66 422) are significantly enriched in HMP samples, a 

finding recapitulated from the original HMP data, and possibly is a result of the 

American diet of the sampled individuals (45). Secondary bile acids, enriched 

in the HMP samples (ko00121), have been studied extensively and have both 

positive and negative health effects, including conferring resistance to 

colonization by C. difficile (46). Finally, secondary polyketide synthesis, 

specifically of antibiotics like streptomycin (ko00521), were more prevalent in 

the HMP samples. Synthesis of these molecules results in competition 

between susceptible and insensitive bacteria in the gut microbiome milieu.  

 

Distinct functional pathways were enriched in the Haitian samples. Two 

pathways in particular, bacterial chemotaxis (ko02030) and flagellar assembly 

(ko02040) both related to mobility of bacteria and have been implicated in 

inflammation (47). Several pathways involved in amino acid biosynthesis 

including alanine (ko00473), valine, leucine, and isoleucine (ko00290), 

cysteine and methionine (ko00270), lysine (ko00300), methionine (HOMOSER 

METSYN PWY), aromatic amino acids (COMPLETE ARO PWY), and taurine 

and hypotaurine (ko00430). Finally, several enzymatic cofactors like S-

adenosyl methionine utilization and recycling (PWY 6151), and chorismate 

biosynthesis (PWY 6163) are overrepresented in the Haitian samples (Figures 

6 – 9).  

 

Taken together, these results indicate that functional pathway differences 

between Haitian and HMP samples are significant, and recapitulate previous 
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findings where populations with non-Western diets and lifestyles were 

compared to those with them (31, 37, 42).  

 

Antimycobacterial treatment alters intestinal microbiota taxonomic 

composition during treatment without affecting overall diversity 

It is currently unknown if and how the standard regimen of antimycobacterial 

HRZE therapy affects the taxonomic composition of the intestinal microbiota, 

as none of these drugs have been studied, alone or in combination, for their 

effects in humans. We used a cross-sectional enrollment design to determine 

if and how the intestinal microbiota changes in response to HRZE therapy in 

people from Haiti. All cases were recruited from the Haitian community, had 

recently been diagnosed with microbiologically-confirmed M. tuberculosis 

infection, and have been on a combination regimen of HRZE antibiotics for at 

least two weeks (Treatment group, Table 1). We compared Mtb uninfected 

and LTBI controls with no known recent or historical Mtb exposure. Using 

either a DESeq or LeFSe analytical pipeline (see Methods), we were unable to 

detect any microbiomic differences between Mtb uninfected and LTBI 

individuals (data not shown), and quantitative Permanova analysis further 

confirm this finding (Table 2, see Methods). Thus, we conclude that LTBI has 

no detectable effect on intestinal microbiome composition.  
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Figure 10: HRZE treatment perturbs the taxonomic structure of the microbiome. A. NMDS 
ordination of HRZE treated subjects (purple) or LTBI controls (blue) based on 16S rDNA 
sequencing B. Family taxonomic distribution of the intestinal microbiota from subjects with LTBI 
and subjects with TB on treatment. C. Heatmap of the top 50 most abundant taxa generated 
with DESeq2 showing unsupervised clustering of TB cases on treatment vs. LTBI controls. Age 
and sex are also shown but were not accounted for the in DESeq model. D. Taxonomic 
abundance profiling comparing treatment vs LTBI participants using LeFSe to determine 
differentially abundant Genera. Box and whisker plots of differentially abundant genera are 
shown based on the DESeq normalized data. Plots show the first and third quartiles of the 
abundance data, the line represents the median, and the whiskers show 1.5 times the value of 
the interquartile range. Outliers are shown as dots.  
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In comparing individuals on HRZE treatment with LTBI controls, we were 

surprised to find that overall microbiomic diversity of volunteers treated for 

active TB with HRZE did not differ from controls, as measured by the Shannon 

diversity index, despite being on therapy for an average of 3.2 months (Figure 

11B, Table 1). This lack of effect on diversity is in stark contrast to the 

dramatic and rapid loss of diversity seen with broadly acting antimicrobials 

(48), and is consistent with the narrower spectrum of antimycobacterial agents 

used for treatment of TB. We additionally compared the Treatment group to 

the Mtb uninfected controls, and found similar differences (data not shown). 

Nevertheless, there was a highly significant loss of specific taxa of bacteria 

with antimycobacterial treatment (i.e., the number of unique OTUs). The 

number of observed OTUs was significantly lower in the treatment group 

compared to the Mtb uninfected (two-samples t-test; p = 0.0074) or LTBI-

treatment (two-samples t-test; p = 0.0122) control groups (Figure 11C). 
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Figure 11: Taxonomic richness and diversity in Haitian cohorts used in this study. A. 
Shannon diversity index measured for all groups used in this study, based on 16S rDNA 
sequencing data. The LTBI (treatment) group indicates subjects who are the age-matched 
controls for the treatment group, and the LTBI (cured) group indicates the age-matched controls 
for the cured group. B. Raw number of observed OTUs clustered at 97% similarity for the clinical 
groups in this study.  
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Despite the lack of an effect on overall diversity, closer examination of specific 

microbiomic changes associated with treatment revealed substantial changes 

in the treated group compared to either the Mtb uninfected control group or 

LTBI controls. Principal  coordinate analysis on differential taxonomic diversity 

calculated either using 16S (Figure 10A, HRZE vs LTBI) or metagenomic DNA 

sequencing (Figure 12A, HRZE vs healthy) clearly demarcates people who are 

on treatment from those who are not, indicating substantial antimycobacterial-

induced perturbations. A quantitative test of what variables account for 

variance between two groups (Permanova) confirms differences between the 

treatment and healthy groups (p=0.023, Table 2, see Methods). We were 

unable to find differences based on sex of the individual (p=0.44, Table 2), 

which we accounted for due to the unbalanced gender distribution of the 

groups, and in all analyses performed, treatment contributed the largest to the 

observed variance (Table 2). Unsupervised hierarchical clustering of the 40 

most abundant OTUs revealed similar distinctions between treated and control 

subjects (Figure 10C), and revealed that treated people clustered into two 

major groups. The predominant cluster in the treated group is represented by 

an overabundance of Prevotella copri and P. denticola (as representative 

organisms), and the other by its depletion (Figure 10C). 
  



 38 

Treatment vs LTBI 
Unifrac F.Model R2 Pr(>F) 

TB status 3.6433 0.07804 0.001 
age 1.0898 0.02334 0.297 
sex 0.9546 0.02045 0.446 

Bray F.Model R2 Pr(>F) 
TB status 1.93533 0.04266 0.019 

age 1.43693 0.03167 0.086 
sex 0.99648 0.02196 0.414 

Jaccard F.Model R2 Pr(>F) 
TB status 1.63854 0.03652 0.007 

age 1.24754 0.0278 0.098 
sex 0.98374 0.02192 0.457 
No TB vs LTBI (30 in each group, Haitian 

community controls) Unifrac F.Model R2 Pr(>F) 
TB status 0.64947 0.00961 0.924 

age 1.29284 0.01913 0.164 
sex 0.63887 0.00945 0.938 

Bray F.Model R2 Pr(>F) 
TB status 0.75282 0.01099 0.823 

age 1.69801 0.02478 0.035 
sex 1.0744 0.01568 0.296 

Jaccard F.Model R2 Pr(>F) 
TB status 0.8399 0.01229 0.837 

age 1.4459 0.02116 0.029 
sex 1.0342 0.01514 0.337 

Cured vs LTBI 
Unifrac F.Model R2 Pr(>F) 

TB status 1.1042 0.03532 0.272 
age 1.1169 0.03572 0.277 
sex 1.0464 0.03347 0.359 

Bray F.Model R2 Pr(>F) 
TB status 1.89019 0.0587 0.009 

age 1.46281 0.04543 0.042 
sex 0.84962 0.02638 0.671 

Jaccard F.Model R2 Pr(>F) 
TB status 1.5714 0.04957 0.007 

age 1.2373 0.03903 0.085 
sex 0.89447 0.02821 0.725 

Table 2: PERMANOVA test results for the treatment vs LTBI and cured vs LTBI comparisons, 
as well as the comparison between No TB and LTBI cohorts as a control, using three different 
distance metrics (Bray Curtis distances, Jaccard distances, and unweighted Unifrac 
distances). This demonstrates what factors (age, sex, TB status) contribute to the observed 
variation between the cohorts. 
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Figure 12: Taxonomic and biochemical microbiomic perturbation induced by HRZE. A. 
NMDS ordination plot on metagenomic taxonomy data demonstrating microbiomic differences 
between healthy individuals and subjects on HRZE treatment. For this comparison, the healthy 
group consists of LTBI and Mtb uninfected subjects. B. Comparative abundance plots between 
healthy Haitian individuals and cases on HRZE treatment showing the most abundant species. 
C. Unsupervised hiericheral clustering of significantly altered taxa from species-level 
metagenomic data. D. Abundance of significantly different KEGG modules between healthy 
volunteers and cases on treatment. 
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To determine which taxa are significantly affected by HRZE therapy, we used 

both the LEfSe and DESeq2 pipelines with 16S rDNA sequencing data (see 

Methods) and observed dramatic changes at the Genus level. Subjects taking 

HRZE have, on average, an enrichment of Erysipelatoclostridium (8.8% in the 

Treatment group vs. 3.4% in LTBI controls), Fusobacterium (0.08% in the 

Treatment group vs. 0.54% in LTBI controls) and Prevotella (7.11% in the 

Treatment group vs. 3.76% in LTBI controls). HRZE treatment resulted in a 

10-fold reduction in Blautia, a more than a 200-fold reduction in Lactobacillus 

and Coprococcus, and a 675-fold decrease in Ruminococcus compared to the 

LTBI group (Figure 10D). In the Phylum Actinobacteria, there was a nearly 20-

fold depletion of Bifidobacterium (Figure 10D).  

 

Although 16S rDNA based taxonomic analysis provides useful information 

about the relative abundances of microbiome constituents, and clearly HRZE 

treatment induces a profound alteration in the compositional structure of the 

gut microbiome, this technique cannot directly interrogate the coding capacity 

of the microbiota, as the gene content of taxonomically identical OTUs can 

differ substantially. To ask whether HRZE treatment altered metabolic coding 

capacity of the microbiota, we performed metagenomic sequencing and 

analyzed the coding capacity of HRZE treated subjects vs a control group 

consisting of LTBI and TB uninfected subjects (designated healthy in Figure 

12). Taxonomic analysis by LEfSe revealed similar depletion of 

Ruminococcus, Eubacterium, and other species as was observed with 16S 

profiling, and differentially abundant species by LeFSe clustered well in a 

heatmap analysis (Figure 12C). Using the HUMANn2 software pipeline (40) 

we observed both enrichment and depletion of biochemical pathways within 
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the microbiome of treated volunteers, with the most dramatic changes 

including overabundance of fatty acid oxidation and vitamin biosynthesis and 

depletion of conjugated bile acid biosynthesis with HRZE treatment (Figure 

12D, Figure S10-S12). These results further confirm that HRZE treatment 

broadly perturbs the microbiome, both on the taxonomic and functional levels.  
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Figure 13: Metacyc pathway abundance calculated against the UniRef50 gene database 
comparing healthy (uninfected and LTBI) to treated people. A. Top 20 most abundant 
pathways in the healthy and treated groups. B. Unsuprivised hiericherical clustering of 
significantly altered Metacyc pathways. C. Relative abundnace of Metacyc pathways, 
significant by LeFSe (p< 0.05), between healthy and treatment groups using Metacyc pathway 
coverage.  
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Figure 14: KEGG pathways comparing healthy (uninfected and LTBI) to treated people. 
A. Top 20 most abundant pathways in the healthy and treated groups. B. Unsuprivised 
hiericherical clustering of significantly altered KEGG pathways. C. Relative abundnace of 
KEGG pathways, significant by LeFSe (p< 0.05), between healthy and treatment groups using 
KEGG pathways.  
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Figure 15: KEGG modules comparing healthy (uninfected and LTBI) to treated people. 
A. Top 20 most abundant pathways in the healthy and treated groups. B. Unsuprivised 
hiericherical clustering of significantly altered KEGG modules in patients on HRZE treatmnet. 
C. Relative abundnace of KEGG modules between healthy and treatment groups. 
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TB treatment is associated with a lasting intestinal microbiome 

dysbiosis 

Compelling evidence suggests that alterations in intestinal microbiome 

composition through antibiotic perturbation can result in the development of 

novel ecological states with preliminarily characterized, but poorly defined, 

health outcomes (49). The data presented above clearly indicates that HRZE 

treatment induces a detectable microbiomic perturbation, which could be long 

lasting given the prolonged duration of antibiotic exposure during TB 

treatment. To determine whether the dysbiosis induced by antimycobacterials 

persists after discontinuation of therapy, we recruited a group of cured TB 

cases who had completed 6-month HRZE therapy for active Tuberculosis and 

compared their microbiome composition to age matched LTBI subjects as 

controls. The average time since completion of treatment in the cured group 

was 1.2 years (mean 417 days, range 34-1202 days, Table 1). We found that 

taxonomic alpha diversity in the cured subjects remained at levels comparable 

with those in the LTBI control groups (Figure 11B). Indeed, using a Mann-

Whitney unpaired t-test, there is a slight significant increase in Shannon 

diversity for the cured cases (p=0.0336, Figure 11B). However, the intestinal 

microbiomes of cured TB cases were distinguishable from LTBI controls when 

examined by detrended correspondence principal  component analysis (Figure 

16A), indicating that HRZE therapy has long-lasting effects on microbiome 

composition (Figure 16B).  
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Figure 16: TB treatment induces a lasting alteration in microbiome structure. 
A. DCA ordination plot of cured cases compared to LTBI controls B. Family level taxonomic 
distribution of the intestinal microbiota from subjects with LTBI or who are cured. C. Heatmap 
of the 40 most abundant taxa generated with DESeq2 showing unsupervised clustering of cured 
vs. LTBI subjects. Age and sex are also shown but were not accounted for the in DESeq model. 
The number of days that each patient has been off treatment is also shown. D. Taxonomic 
abundance profiling comparing cured vs LTBI subjects. Taxa are significant from LeFSe (p < 
0.05 and LDA cutoff > 3.0).   
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To quantitatively asses the principal  coordinate analysis result, a Permanova 

test was used to confirm differences between the two populations (p=0.046). 

Again, given the uneven distribution of sex in our cohorts, we performed a 

Permanova test on sex, but are unable to detect differences between the 

populations using this measure (p=0.98). Unsupervised hierarchical clustering 

of the 40 most abundant OTUs revealed that in general cured individuals 

clustered away from LTBI controls (Figure 16C). We identified some degree of 

heterogeneity in cured individual’s microbiomes, since there is not perfect 

clustering, but this in no way rules out the presence of altered taxonomic or 

functional microbiomic states. We asked whether this heterogeneity in the 

cured people was correlated with the duration of time since treatment and 

found that both distantly and recently cured people clustered well together, 

indicating that the persistent dysbiosis observed is not simply a marker for 

time since cure (Figure 16C).  

 

We used LeFSe and DESeq to analyze differences between cured individuals 

and LTBI age matched controls. Cured people were depleted in the 

Bacteroidetes Phylum of Bacteroides, Barnesiella, and Blautia (Figure 17D). 

Using metagenomic DNA sequencing and LeFSe, we found that Enterobacter 

cloacae, Phascolarctobacterium succinatutens, Methanobrevibacter smithii, 

Bilophila, and Parabacteroides are biomarkers of cured individuals. Although 

DCA performed with species level abundances on metagenomic data failed to 

cluster healthy and treated cases (Figure 17A), and community structure was 

grossly similar (Figure 17B), pathway abundance analysis revealed that cured 

cases demonstrated altered coding capacity compared to controls. (Figure 

17D and Figures S13 – S15). As with the previous comparison of healthy 



 48 

individuals to cases on HRZE treatment, the perturbed pathways represent 

diverse microbial functions including sugar biosynthesis, protein secretion, and 

central metabolism. We conclude that TB treatment results in long term, and 

perhaps permanent, taxonomic, metagenomic, and biochemical 

consequences via perturbation of the intestinal microbiome. 
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Figure 17: TB treatment induces a lasting alteration in microbiome structure and 
function. A. DCA ordination plot on metagenomic taxonomy data in healthy (Mtb-uninfected 
and LTBI community controls) and cured individuals. B. Comparative abundance plots between 
healthy Haitian individuals and cured subjects showing the top 40 most abundant species 
between the two groups. C. Unsupervised hierarchical clustering of significantly altered taxa. D. 
Abundance of significantly different KEGG modules between healthy and cured subjects.  
  



 50 

 

 
Figure 18: Metacyc pathway abundance calculated against the UniRef50 gene database 
comparing healthy to cured people. A. Top 20 most abundant pathways in the healthy and 
cured groups. B. Unsuprivised hiericherical clustering of significantly altered Metacyc 
pathways. C. Relative abundnace of Metacyc pathways, significant by LeFSe (p< 0.05), 
between healthy and cured groups.  
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Figure 19: KEGG pathways comparing healthy (uninfected and LTBI) to cured people. 
A. KEGG pathways comparing healthy to cured people. A. Top 20 most abundant KEGG 
pathways in the healthy and cured groups. B. Unsuprivised hiericherical clustering of 
significantly altered KEGG pathways. C. Relative abundnace of KEGG pathways, significant 
by LeFSe (p< 0.1), between healthy and cured groups.  
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Figure 20: KEGG modules comparing healthy (uninfected and LTBI) to cured people. A. 
KEGG modules comparing healthy to cured people. A. Top 20 most abundant KEGG modules 
in the healthy and cured groups. B. Unsuprivised hiericherical clustering of significantly altered 
KEGG modules. C. Relative abundnace of KEGG pathways, significant by LeFSe (p< 0.1), 
between healthy and cured groups.  
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Figure 21: Profile of Actinobacteria in the Haitian microbiome. A. Scaled relative 
abundnace of all OTUs from the phylum Actinobacteria from LTBI, treatment, and cured 
individuals shown on a phylogenetic tree layout. B. DESeq variance stabilized transformed 
relative abundances of Actinobacterial OTUs sampled from the intestinal microbiomes of LTBI, 
treatment, and cured individuals.  
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CHAPTER 3 – DISCUSSION 

We present the first characterization of the short and long term effects of 

standard HRZE TB antibiotic treatment on the intestinal microbiome. 

Antibiotics are recognized to perturb the composition of the intestinal 

microbiome, and their use has been associated with potentially deleterious 

consequences (21). This perturbation is best documented for broad spectrum 

antibacterial agents which are active against swaths of bacterial microbiome 

constituents. As such, broad spectrum antimicrobials like the fluoroquinolone 

ciprofloxacin (27) may cause rapid loss of overall diversity and disruption of 

the microbiome’s ability to resist pathogenic colonization, which can 

predispose to disease such as Enterococcus domination and C. difficile 

infection (50). However, treatment of TB employs antimicrobial agents with 

narrower spectrums of activity. Although Rifampin is used for non-

mycobacterial infections, Isoniazid, Pyrazinamide, and Ethambutol are only 

prescribed for TB and are activated by and/or target mycobacterial proteins 

not widely distributed throughout the bacterial Kingdom. Thus, we think it is 

important to understand the potential consequences of HRZE treatment on 

microbiome composition and function in the short and the long term. Since the 

turn on the millennium, 49 million people have been treated with this or similar 

regimens, comprising almost 10 billion doses each drug, making TB treatment 

the most widely administered antibiotic regimen in the world.  

 

Our data indicates that the narrow spectrum of the TB treatment regimen is 

reflected in the preserved overall diversity in HRZE treated cases. However, 

this relatively gross measure of perturbation fails to capture the profound 

effects of HRZE on specific components of the microbiome. Most dramatic is 
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the depletion of multiple species of Ruminococcus, Eubacterium, 

Lactobacillus, and Bacteroides along with a simultaneous increase of 

Erysipeloclostridium and Prevotella. The consequences of this HRZE-induced 

taxonomic perturbation are unknown at present, but several of these bacteria 

have been associated with immune-inducing phenotypes relevant to TB 

immunity. Bacterioides (depleted in treated and cured subjects) 

polysaccharide can modulate host inflammatory responses in mice (51). 

Ruminococcus and Coprococcus are two of the most dramatically depleted 

phyla in HRZE treated patients, and these organisms modulate peripheral 

cytokine production, including IL-1, and IFNg (52). Similarly, Bifidobacterium, 

which we find depleted in HRZE treated cases, can induce a Th17 immune 

response in mice (53). Taken together, these findings suggest that the HRZE-

induced perturbation of the microbiome may have significant effects on 

peripheral immune tone. These potential effects on immunity, coupled with the 

well-documented variability in treatment response to TB, may suggest that 

variability in microbiotic perturbation and peripheral immunity could affect the 

efficacy of TB treatment. The data presented here will now allow for testing of 

this hypothesis using prospectively collected cohorts of TB cases beginning 

treatment, with the aim to correlate their microbiomic disruption with 

microbiologic and immunologic markers of treatment success.  

 

Our findings are also corroborated by a recent study that examined the effect 

of TB treatment in mice (54). During HRZ treatment in mice, a decrease in 

species richness is observed, similar to the significant decrease in the number 

of OTUs during HRZE treatment in humans. In mice, RIF is the major driver of 

taxonomic alteration in the intestinal microbiome, but interestingly, 
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combination therapy gives rise to alterations not found for monotherapy of any 

single antibiotic. Additionally, in both mice and humans there is a significant 

decrease in the number of Clostridia during treatment, including the genera 

Bacteroides, Blautia, Clostridium, and Roseburia.  

 

The other prominent finding from our study is the long-lasting duration of the 

microbiotic disruption induced by HRZE. Our cured group had completed 

treatment on average 1.2 years earlier, yet their microbiomes were still 

detectably different from age matched control subjects. This finding suggests 

that the duration of 6 months of HRZE therapy has long lasting effects on the 

community structure of the microbiome. Furthermore, based on data from 

Namasivayam et al., in both mice and humans there is a persistent 

microbiomic dysbiosis after the completion of HRZ(E) treatment (54). Although 

alpha diversity recovers, taxonomic profiling in mice and humans, and 

functional pathway profiling in humans, suggests that 6-month administration 

of HRZ(E) treatment causes persistent changes. Our study raises the 

possibility that TB therapy permanently changes the ecology of the human 

microbiome.  

 

As is the case for the acute perturbation by HRZE, the consequences of these 

durable changes in cured cases will require further study. It is possible that the 

persistent microbiomic perturbation could predispose to enteric pathogens due 

to loss of colonization resistance. It is also possible that cured individuals 

could be more susceptible to systemic infection due to effects of microbiotic 

alteration and disruption on peripheral immunity. Multiple epidemiological 

studies have indicated that people cured of TB are at higher risk of a second 
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case of TB due to reinfection (55, 56). Although multiple environmental and 

genetic factors likely contribute to this risk, including HIV infection, the findings 

in this study raise the possibility that the persistent microbiomic disruption that 

accompanies curative TB treatment could contribute to post-treatment 

susceptibility to reinfection, perhaps not just with Mtb, but also with other 

diseases associated with an altered immune state.  

 

In summary, we have shown that TB treatment with HRZE in humans perturbs 

the intestinal microbiome in distinct and long lasting ways. Specific genera of 

bacteria are depleted during treatment and functional profiling demonstrates 

altered functional pathway composition. These changes, in terms of both 

taxonomic and metagenomic function, are protracted for more than one year 

after the completion of therapy for TB disease, and are possibly permanent.  
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CHAPTER 4 – METHODS 

DNA extraction from stool 

Stool specimens were collected and stored for less than 24 hours at 4 °C, 

aliquoted (~2 mL each), frozen at -80 °C, and shipped to MSKCC. About 500 

mg of stool from frozen samples was suspended in 500 μl of extraction buffer 

(200 mM Tris-HCl, pH=8.0; 200 mM NaCl; 20 mM EDTA), 210 μl of 20% SDS, 

500 μl of phenol/chloroform/isoamyl alcohol (25:24:1), and 500 μl of 0.1-mm-

diameter zirconia/silica beads (BioSpec Products). Samples were lysed via 

mechanical disruption with a bead beater (BioSpec Products) for two minutes, 

followed by two extractions with phenol/chloroform/isoamyl alcohol (25:24:1). 

DNA was precipitated with ethanol and sodium acetate at -80 °C for 1 hour, 

re-suspended in 200 μl of nuclease-free water, and further purified with the 

QIAamp DNA Mini Kit (Qiagen) according to the manufacturer’s protocols, 

including Protein removal by Proteinase K treatment. DNA was eluted in 200 μl 

of nuclease-free water and sorted at -20 °C.  

 

16S rDNA sequencing  

Primers used to amplify rDNA were: 563F (59-nnnnnnnn-NNNNNNNNNNNN-

AYTGGGYDTAAAGN G-39) and 926R (59-nnnnnnnn-NNNNNNNNNNNN-

CCGTCAATTYHTTTR AGT-39). Each reaction contained 50 ng of purified 

DNA, 0.2 mM dNTPs, 1.5 μM MgCl2, 1.25 U Platinum TaqDNA polymerase, 

2.5 μl of 10 × PCR buffer and 0.2 μM of each primer. A unique 12-base Golay 

barcode (Ns) preceded the primers for sample identification after pooling 

amplicons. One to eight additional nucleotides were added before the barcode 

to offset the sequencing of the primers. Cycling conditions were the following: 

94 °C for 3 min, followed by 27 cycles of 94 °C for 50 s, 51 °C for 30 s and 
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72 °C for 1 min, where the final elongation step was performed at 72 °C for 

5 min. Replicate PCRs were combined and were subsequently purified using 

the Qiaquick PCR Purification Kit (Qiagen) and Qiagen MinElute PCR 

Purification Kit. PCR products were quantified and pooled at equimolar 

amounts before Illumina barcodes and adaptors were ligated on using the 

Illumina TruSeq Sample Preparation procedure. The completed library was 

sequenced on an Ilumina Miseq platform per the Illumina recommended 

protocol.  

 

Bioinformatics Analysis 

For 16S MiSeq sequencing, paired-end reads were joined, demultiplexed, 

filtered for quality using maximum expected error (Emax=1), and dereplicated. 

Sequences were grouped into operational taxonomic units (OTUs) of 97% 

distance-based similarity using UPARSE (57). Potentially chimeric sequences 

were removed using both de novo and reference-based methods (where the 

Gold database was used for the latter) (58). Taxonomic assignments were 

made using BLASTN (59) against the NCBI refseq_rna database with custom 

scripts (32). Our approach allows for the identification of the top 30 taxa 

associated with a particular OTU, thus the taxonomic nomenclature that we 

use for 16S is versatile (data not shown). A biological observation matrix 

(biom) (60) file, a taxonomy file, reference sequence file, and tree file were 

constructed using QIIME commands. These files were imported into R (61) 

and merged with a metadata file into a single Phyloseq object (62). Phyloseq 

was used for all downstream analysis of 16S taxonomic data, and plots were 

made with the ggplot2 package (63). 
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Shotgun Metagenomic Sequencing 

Between 150 and 200 ng of DNA isolated from stool (vide supra) was sheared 

acoustically. Hiseq sequencing libraries were prepared using the KAPA Hyper 

Prep Kit (Roche). PCR amplification of the libraries was carried out for 6 

cycles. Samples were run on a Hiseq 4000 in a 125bp/125bp paired end run, 

using the TruSeq SBS Kit v3 (Illumina). There were an average number of 

read pairs per sample of around 11 million.  

 

Shotgun metagenomics pair-ends reads for corresponding to stool samples 

from 150 individuals (64), were downloaded from the Human Microbiome 

Project Portal at http://www.hmpdacc.org/HMASM/.  

 

For the analysis of shotgun metagenomic reads (i.e. those generated in-

house, characterizing the Haitian group as well as those obtained from the 

HMP portal), sequences were first trimmed and removed of host 

contamination using Trimmomatic (65) and Bowtie2 (66). Host-

decontaminated reads were then profiled for microbial species abundances 

using Metaphlan2 (67), and for abundance of Uniref gene and KEGG 

orthologues, and functional pathways (Metacyc pathways, KEGG pathways, 

and KEGG modules) using the software pipeline HUMAnN2 (40) and in-house 

written scripts (available upon request). Normalized taxonomic, gene, and 

pathway abundances were then used for downstream statistical analysis in R. 

All intestinal microbiome samples were sequenced using 16S rDNA 

sequencing, however, only a subset of controls were sequenced using 

metagenomics. Due to sample size limitations, for the metagenomic DNA 

sequencing comparisons, we combined both uninfected and LTBI individuals 



 61 

into a healthy control group which was used as the comparator for 

metagenomic analyses.  

 

Statistical Analysis  

The ability to detect differentially abundant OTUs between groups of people is 

critical for comparison between groups, and various methods exist and have 

been validated for this sort of analysis. For 16S rDNA sequencing, we 

employed the tools available within the Phyloseq package to manipulate the 

data and metadata for downstream analysis. Raw counts with taxonomy and 

metadata were piped into the DESeq2 package for differential abundance 

analysis using the negative binomial distribution assumption with zero inflation 

(68). This method assumes that for many OTUs, the variance in abundance 

(i.e., read count) between samples or groups exceeds the mean read count 

(often zero). When this is true, the DESeq method can be used to transform 

the data so that between sample or between group differences may be 

compared more accurately. Homoscedastic abundance data was used to 

generate heatmaps in Figures 3C and 3D, by applying a variance stabilizing 

transformation from fitted dispersion-means to transform the count data. We 

additionally employed the microbiome-friendly linear discriminant analysis, 

effect size (LEfSe) tool (39) to detect statistically significant differences 

between clinical groups. This technique first employs the non-parametric 

Kruskal-Wallis (KW) sum-rank test between different groups of people (i.e., 

HMP, healthy [comprised of Mtb uninfected and LTBI], on HRZE treatment, or 

cured), followed by linear discriminant analysis to estimate the size of the 

effect (i.e., the degree of significant differential abundance between a 

particular OTU, taxa, gene, or pathway between groups). We attempted to 
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employ both the DESeq2 and LEfSe methods, and try to emphasize where 

there is overlap. All figures in the paper that are related to 16S sequence 

analysis are plotted using the normalized and transformed abundances from 

the DESeq2 package. For the statistical analysis of the results from shotgun 

metagenomics reads, data were imported into R and converted to Phyloseq 

objects with custom scripts. Custom code implementing non-parametric tests 

(Wilcoxon-signed rank) with FDR correction (Benjamini & Hochberg method) 

as well as LEfSe (39) were used to test for differential abundances for taxa, 

and functional pathways. For the Haitian-HMP LEfSe comparison significance 

for the Kruskall-Wallis test (no subclasses) was assessed at the p-value 

threshold of 0.01. For the LTBI-Treatment and LTBI-Cured comparisons p-

value threshold was kept at 0.05 for both the initial Kruskall-Wallis test and the 

subsequent sex-matched subclasses Wilcoxon-signed rank tests. Shannon 

diversity for the Haitian-HMP comparison was calculated using the Vegan 

package in R based on species number and abundance (35). We additionally 

employed the Permanova and Betadisper tests using the adonis function in 

the Vegan package in R. Adonis partitions a distance matrix of OTU count 

data and runs an analysis of variance between groups of samples. Betadisper 

further supports this conclusion by determining if the variance between the two 

groups is similarly distributed. All box-and-whisker plots were generated with 

the ggplot2 (63) function geom_boxplot, which shows the first and third 

quartiles of the dataset and the median of the data in the box, the whiskers 

show 1.5 times the value of the interquartile range of the box hinge, and 

outliers are shown as dots. All other plots were made using Prism 7.  
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PncA Coding Capacity Analysis 

To investigate mechanistically how HRZE therapy may be altering the 

microbiome, we reasoned that coding capacity for the gene that is known to 

activate pyrazinamide, PncA, may indicate the degree of perturbation one’s 

microbiome would experience upon HRZE exposure. To search for PncA 

orthologs, we used the Ortholuge Database 

(http://www.pathogenomics.sfu.ca/ortholugedb/), an online resource that is 

able to provide a list of orthologous genes for a given input sequence for both 

Bacteria and Archaea (18). The advantage of using a database like this is that 

it utilizes reciprocal BLAST, which ensures that all of the genes in the output 

are true orthologs of the input gene. Reciprocal BLAST first uses standard 

BLASTp to obtain protein homologs, and then takes the top hit of the BLASTp 

output and re-performs BLAST against the reference genome. Only if the top 

hit of this second step is the input sequence does the program consider the 

two sequences orthologous—a standard generally accepted by biologists (19, 

20). The Ortholuge Database output is a list of protein-coding gene sequences 

of all true orthologs of PncA. We then obtained the nucleotide sequences 

using the NIH command line E-Utilities and E-Direct programs 

(http://www.ncbi.nlm.nih.gov/books/NBK179288/), designed for high-

throughput queries (21). Using a custom BASH script to automatically take the 

ortholog output from the reciprocal BLAST as input into the esearch and efetch 

commands in EDirect, we obtained a fasta file of all protein coding true 

orthologs of PncA.  

 

Next, we used shortBRED to find a unique set of PncA markers to which 

metagenomic reads could be mapped. This software relies on k-mer based 
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identification of protein families from the input PncA sequence. We used 

shortbred_identify.py to cluster the PncA orthologs from all Bacteria and 

Archaea into families and identify k-mers, then used shortbred_quantiy.py to 

map metagenomic reads from the Haitian metagenomic samples to the PncA 

k-mer database.  

 

The output was quantified using Prism 7 and is shown in Figure 22. We were 

unable to detect any statistically significant difference in the coding capacity of 

the microbiomes of relevant cohorts in our study. We thus conclude that 

perturbations induced by pyrazinamide may not be caused directly by the 

canonical active metabolite, pyrazinoic acid (Figure 1).  
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Figure 22: PncA coding capacity for each person calculated from metagenomic data and 
using the ShortBRED program (69). There is no statistically significant difference between any 
cohort’s ability to code for PncA.  
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Patient Recruitment and Protection of Human Subjects  

Subjects were enrolled through the Tri-Intuitional Tuberculosis Research Unit 

(TBRU) in conjunction with the GHESKIO Centers, in Port-au-Prince, Haiti, 

where all participants provided written, informed consent. All TBRU protocols 

and consent forms for samples collected at GHESKIO were approved by 

Institutional Review Boards at the GHESKIO and Weill Cornell Medicine (see 

Study Approval). A dedicated clinical field team at the GHESKIO Centers in 

Port-au-Prince, Haiti recruited research volunteers as part of the NIH U19-

funded Tuberculosis Research Unit (AI111143). Patient Mtb-infection status is 

determined using IFNg release assay (IGRA) status, and active TB disease is 

determined using standard clinical assessments. All cases with active 

pulmonary TB receive periodic follow-up appointments while on treatment, and 

anyone with known contact with an active TB patient receives a six-month 

follow-up and is re-screened for IGRA status. All patient samples were de-

identified on site using a barcode system, before they were shipped to NYC for 

analysis. Human DNA was decontaminated from metagenomic shotgun 

sequencing data before analysis and publication, consistent with the removal 

of all biometric identifiers according the Health Insurance Portability and 

Accountability Act (70). All clinical metadata was collected on site and 

managed through the REDCap data management system (71).  

 

Study Approval 

All volunteers provided written informed consent to participate in this study. All 

protocols and consent forms have been approved by the GHESKIO and Weill 

Cornell Medicine institutional review boards. 
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