Selective survival of protective cultures during high-pressure processing by leveraging freeze-drying and encapsulation.

Meghan R. McGillin*, Dana L. deRiancho, Timothy A. DeMarsh, Ella D. Hsu, Samuel D. Alcaine*

Department of Food Science, Cornell University, Ithaca NY 14850

^{*} Correspondence: mrm392@cornell.edu; M.M.; alcaine@cornell.edu; S.A.

SKIM MILK SAMPLE	SPECIES	ACCESSION NO.
IC-SM/4	Bacillus thuringiensis	<u>CP050183</u>
IC-SM/24	Bacillus thuringiensis	<u>CP050183</u>
IC-SM/72	Bacillus subtilis	<u>KR967391</u>
EN-SM/24	Bacillus subtilis	<u>MN512155</u>
EN-SM/72	Bacillus cereus	OK655836

SI Table 1. Environmental contamination PCR identification. Preliminary fermentation trials had utilized pasteurized skim milk as the immersion medium repeatedly showed high levels of contamination by *Bacillus* spore formers generally known to be native to this substrate. Species identification was achieved by polymerase chain reaction amplification of their 16S ribosomal RNA genes, followed by Sanger sequencing; the resulting sequences were then compared to those in the National Center for Biotechnology Information's Nucleotide Collection database using the Basic Local Alignment Search Tool (BLAST).