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We consider the Bayesian formulation of a number of learning problems, where we

focus on sequential sampling procedures for allocating simulation effort efficiently.

We derive Bayes-optimal policies for the problem of multiple comparisons with a

known standard, showing that they can be computed efficiently when sampling is lim-

ited by probabilistic termination or sampling costs. We provide a tractable method for

computing upper bounds on the Bayes-optimal value of a ranking and selection problem,

which enables evaluation of optimality gaps for existing ranking and selection proce-

dures. Applying techniques from optimal stopping, multi-armed bandits and Lagrangian

relaxation, we are able to efficiently solve the corresponding dynamic programs.

We develop a new value-of-information-based procedure for the problem of

Bayesian optimization via simulation, which incorporates both correlated prior beliefs

and correlated sampling distributions. We also introduce a sequential Bayesian algo-

rithm for optimization of expensive functions under low-dimensional input uncertain-

ties. These implementations take advantage of machine learning tools that enable ex-

ploring combinatorially large solution spaces, or estimating expectations of simulation

output variables with random inputs.

We present theoretical results characterizing the proposed procedures, compare them

numerically against previously developed or standard benchmarking procedures, and

apply them to applications in emergency services, manufacturing, and health care.
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CHAPTER 1

INTRODUCTION

We consider a discrete and finite set of alternative systems whose performance can

only be evaluated via stochastic simulation. Our goal is to efficiently allocate a lim-

ited simulation budget among the alternatives, to find one whose expected performance

(sometimes under environmental uncertainties) is as large as possible, or to find a sub-

set of them with expected performance exceeding a threshold of known value. These

problems are called “discrete optimization via simulation” (DOvS) and “multiple com-

parisons with a known standard” (MCS) respectively.

We focus on how simulation effort should be allocated among the alternative systems

to best support selection or comparison of alternatives when sampling stops. The most

straightforward approach for allocating sampling effort, and the approach most com-

monly employed by practitioners, is to simulate each system an equal number of times.

This is inefficient, because some alternatives can be immediately established as being

sub-optimal (in DOvS), or as being substantially far from the threshold (in MCS), after

only a few samples, and hence we should focus our later effort on the other alternatives

that need many more samples before an accurate determination can be made.

To design a strategy that samples more efficiently, we employ a Bayesian statistical

approach. The Bayesian framework allows us to formulate the problem of allocating

effort as a problem in sequential decision-making under uncertainty, and to design fully

sequential and adaptive sampling procedures. While Bayesian experimental designs

need careful construction of priors and may require more computation to decide where

to sample, they offer significant advantage in analyzing a limited amount or a dynamic

sequence of data, and in limiting simulation effort. For the MCS problem, we pro-

vide Bayes-optimal sampling procedures by efficiently solving a dynamic program. For
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DOvS, we propose one-step lookahead sampling procedures.

We introduce several key concepts and review the related literature in Section 1.1 -

1.6. In Section 1.7 we describe the organization of this thesis.

1.1 Ranking and Selection

In a ranking and selection (R&S) problem, we wish to select the best among several

competing alternatives. We measure the quality of an alternative by its expected perfor-

mance, and use simulation samples to estimate this expected performance. We typically

make no structural assumptions on the relationships between the values of the alterna-

tives, and the number of alternatives considered is typically small (less than 1000).

Our goal in R&S is to allocate our simulation sampling effort efficiently among the

alternatives, so as to accurately determine which alternative has the largest expected

performance, while at the same time limiting simulation effort.

This problem has been considered by many authors, under four distinct mathemat-

ical formulations. We specifically consider the Bayesian formulation in this thesis,

for which early work dates to Raiffa and Schlaifer (1968), with recent surveys Chick

(2006) and Frazier (2012). The other mathematical formulations of the problem are

the indifference-zone formulation (see the handbook Bechhofer et al. (1968), the mono-

graph Bechhofer et al. (1995), and the survey Kim and Nelson (2006)); the optimal

computing budget allocation, or OCBA (Chen and Lee 2010); and the large-deviations

approach (Glynn and Juneja 2004).

In the Bayesian formulation of the R&S problem, we place a prior distribution on

the unknown true expected performance of each alternative, and our goal is to design
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an algorithm for allocating simulation effort with good average-case performance under

the prior. While some work in this area, such as Raiffa and Schlaifer (1968), Chick and

Inoue (2001b), and Chick and Inoue (2001a), considers two-stage algorithms, much of

the recent work, such as Gupta and Miescke (1996), Chick et al. (2010), Frazier et al.

(2008), Chick and Gans (2009), and Chick and Frazier (2012), has focused on sequen-

tial procedures, whose allocations of sampling effort are potentially more responsive to

previous samples, and thus promise greater efficiency.

Bayes-optimal sequential R&S procedures are characterized by the dynamic pro-

gramming equations, and given sufficient computational power, can be computed by

solving these equations. These equations have been used to compute Bayes-optimal

procedures for problems with one alternative of unknown value and one of known value

(Chick and Gans 2009, Chick and Frazier 2012), and for problems with two alternatives

of unknown value (Frazier et al. 2008). However, for problems with more than a few

alternatives, solving these dynamic programming equations becomes computationally

infeasible, due to the curse of dimensionality (Powell 2007).

1.2 Feasibility Determination

Procedures for variants of the MCS problem have been developed under several frequen-

tist formulations of R&S, where the objective is to select in the presence of a stochastic

constraint, the set of feasible systems, or the best system. They also refer to the problem

as “feasibility determination”.

In the indifference-zone R&S literature, Paulson (1962) and Kim (2005) provide

fully sequential procedures for determining if any of the systems is better than the stan-

dard, and if so, selecting the one with the best mean. Bechhofer and Turnbull (1978),
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Nelson and Goldsman (2001) provide two-stage procedures for the same task. An-

dradóttir et al. (2005) and Andradóttir and Kim (2010) consider the problem of finding

the system with the best expected primary performance measure, subject to a constraint

on the expected value of a secondary performance measure. They present a proce-

dure that determines systems’ feasibility in the presence of a stochastic constraint, and

combines this procedure with a finding-the-best procedure to identify the best feasible

system. Batur and Kim (2010) provides fully sequential procedures for identifying a set

of feasible or near-feasible systems given multiple stochastic constraints. Healey et al.

(2012) extends these procedures to selection of the best feasible system under multiple

constraints while allowing correlated sampling.

Within a large deviations framework, which was introduced for R&S by Glynn and

Juneja (2004), Szechtman and Yücesan (2008) considers MCS, or feasibility determi-

nation. That chapter characterizes the fractional allocation that maximizes the asymp-

totic rate of decay of the expected number of incorrect determinations, and presents a

stochastic approximation algorithm that yields a budget allocation that provably con-

verges to the optimal one. While this is appealing, Glynn and Juneja (2011) argues

that such methods, which calculate optimal allocations assuming large deviations rate

functions are known, and then plug in estimates of the rate functions, may have rates

of convergence that are significantly worse than desired because of the difficulty of es-

timating rate functions. This difficulty can be avoided when sampling distributions are

bounded, but the difficulty remains when sampling distributions are unbounded. Hunter

et al. (2011), on the other hand, considers selecting an optimal system from among a

finite set of competing systems, based on a stochastic objective function and subject to

multiple stochastic constraints. Hunter and Pasupathy (2012) then assumes a bivariate

normal distribution for the objective and (single) constraint performance measures, and

gives explicit and asymptotically exact characterizations.
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1.3 Discrete Optimization via Simulation

In DOvS, we have a discrete set of alternative systems whose performance can each be

evaluated via stochastic simulation, and we wish to allocate a limited simulation budget

among them to find one whose expected performance is as large as possible.

Because of its importance, previous authors have proposed algorithms of several

types to address the DOvS problem, including randomized search (Andradóttir 1998,

2006, Zhou et al. 2008), metaheuristics (Shi and Ólafsson 2000), metamodel-based al-

gorithms (Barton 2009, van Beers and Kleijnen 2008), Bayesian value-of-information

algorithms (Chick 2006, Frazier et al. 2010), local search algorithms (Wang et al. 2013,

Hong and Nelson 2006, Xu et al. 2010), model-based search (Hu et al. 2012, Wang et al.

2010, Luo and Lim 2013), and R&S algorithms (see reviews in Section 1.1). Henderson

and Nelson (2006) and Fu (2002) provide handbook/survey of the field.

Several previous authors have considered Bayesian formulations of optimization via

simulation. The setting most frequently studied is that of R&S, with relatively few

alternatives, an independent prior distribution, and independent sampling (Gupta and

Miescke 1996, Chick and Inoue 2001b, Frazier et al. 2008, Chick and Frazier 2012).

Bayesian optimization via simulation with correlated prior distributions for problems

with many alternatives was considered in a discrete setting (Frazier et al. 2009) and in a

continuous setting (Villemonteix et al. 2009, Huang et al. 2006, Scott et al. 2011). This

work in a continuous setting parallels work on noise-free Bayesian global optimization

(see Section 1.5).
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1.4 VOI Approach and KG Policies

Due to the computational challenge of Bayes-optimal sequential procedures, work in

Bayesian DOvS and R&S has focused in large part on developing sub-optimal proce-

dures. Chapter 3 and 4 of this thesis are based upon the value of information (VOI)

approach, exemplified by Gupta and Miescke (1996), Frazier et al. (2008), Chick and

Gans (2009) and Chick and Frazier (2009), which attempts to manage the trade-off be-

tween the consequences of an immediate decision and the cost of additional sampling.

In this approach, sampling decisions are made to achieve the highest potential for im-

proving the final selection decision.

Sampling algorithms of this type are called knowledge-gradient (KG) algo-

rithms (Frazier 2009), as they assess the expected value of information in a given in-

crement of sampling. Specifically, we begin with a prior distribution on the values of

the sampling means, updating this prior distribution based on sampling information, and

use VOI calculations to decide how to best allocate sampling effort – which alternative,

or collection of alternatives, would be most valuable to sample next. The advantage

of doing so is that making decisions based on the VOI automatically addresses the ex-

ploration (evaluating areas of high uncertainty) versus exploitation (evaluating areas of

high estimated values) tradeoff, and tends to reduce the number of function evaluations

required on average to reach a given solution quality, potentially (but not necessarily) at

the cost of requiring more computation to decide where to sample.

One-step lookahead sampling procedures like KG are also commonly used in

Bayesian global optimization (see Section 1.5), where finding the optimal policy is usu-

ally considered intractable.
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1.5 Optimization of Expensive Functions

In many applications, our goal is to find the global optimum of a computationally expen-

sive continuous function. Bayesian optimization is one of the most efficient methods to

achieve this goal, for which early work dates back to Kushner (1964) (see Santner et al.

(2003), Brochu et al. (2009) for summaries). By taking into account both exploration

and exploitation, it reduces the number of function evaluations required to find a good

solution (Mockus 1994, Jones et al. 1998, Jones 2001, Sasena 2002).

Bayesian (global) optimization is applicable when the objective is a black-box func-

tion with no closed-form expressions, of which one can only obtain (possibly noisy)

observations at sampled values. Bayesian optimization techniques combine a prior be-

lief about the objective function with observed evidence to derive a posterior, which

serves as a response surface, or a surrogate function (Forrester et al. 2008), that can be

searched quickly and extensively to determine where to sample next. These techniques

are particularly useful when samples are expensive or time-consuming, when derivatives

are not accessible, and when the underlying function is non-concave.

While we focus on discrete problems in this thesis, assumptions and methodolo-

gies adopted in coutinuous Bayesian optimization can also be applied, if our discrete

alternatives are embedded in a continuous space.

Within the recent literature on Bayesian optimization, our work is closely related

to Efficient Global Optimization, or EGO (Sasena 2002, Bartz-Beielstein et al. 2005,

Huang et al. 2006, Lizotte et al. 2007, Hutter 2009), which applies Gaussian processes

(see Section 1.6) and the sequential expected improvement approach (Jones et al. 1998,

Ginsbourger et al. 2008) to derivative-free optimization and experimental design. It

differs from KG in that it attempts to maximize the expected improvement in the value
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of the best observed point, while KG looks at the expected improvement in the best

estimated overall value, which might be somewhere we have not measured.

1.6 Gaussian Process Priors

Our Bayesian methods, in their use of multivariate normal prior distributions, makes a

link to Gaussian process (GP) priors (Mockus 1994, Rasmussen and Williams 2006) and

stochastic kriging (Ankenman et al. 2010, Chen et al. 2012, 2013).

GP priors are frequently used in Bayesian global optimization (Kushner 1964,

Mockus 1989, Jones et al. 1998), where people use such priors to model their belief

about an implicit continuous function over Rd that closer arguments are more likely to

correspond to similar values. Previous work has demonstrated that the correlations in a

GP prior are extremely important for reducing the number of samples needed to evalu-

ate an expensive function, because they allow us to learn about areas that have not been

measured from those that have.

When alternatives correspond to points on a grid, as they do in many integer-ordered

problems like resource allocation (e.g., each alternative specifies the number of each of

several employee types to have present), our use of a multivariate normal prior distri-

bution can be implemented by placing a GP prior over the continuum, and then only

considering points on the grid.

1.7 Thesis Organization

We now briefly summarize the contents of each chapter.
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Chapter 2

Chapter 2 considers the problem of efficiently allocating simulation effort to determine

which of several simulated systems have mean performance exceeding a threshold of

known value. Within a Bayesian formulation of this problem, the optimal fully sequen-

tial policy for allocating simulation effort is the solution to a dynamic program. When

sampling is limited by probabilistic termination or sampling costs, we show that this

dynamic program can be solved efficiently, providing a tractable way to compute the

Bayes-optimal policy. The solution uses techniques from optimal stopping and multi-

armed bandits. We then present further theoretical results characterizing this Bayes-

optimal policy, compare it numerically to several approximate policies, and apply it to

applications in emergency services and manufacturing.

A version of Chapter 2 appeared as Xie and Frazier (2013a), which won the 2013

INFORMS Computing Society Student Paper Award, and was a finalist in the 2011

INFORMS Junior Faculty Interest Group Paper Competition.

Chapter 3

Chapter 3 addresses discrete optimization via simulation. We show that allowing for

both a correlated prior distribution on the means (e.g., with discrete kriging models) and

sampling correlation (e.g., with common random numbers, or CRN) can significantly

improve the ability to identify the best alternative. Correlation in the prior belief allow

us to learn about an alternative’s value from samples of similar alternatives. Correla-

tion in sampling, achieved through common random numbers, allow us to reduce the

variance in comparing one alternative to another. These two correlations are brought to-

gether for the first time in a highly-sequential knowledge-gradient sampling algorithm,
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which chooses points to sample using a Bayesian value of information (VOI) criterion.

We provide almost sure convergence guarantees as the number of samples grows without

bound when parameters are known, provide approximations that allow practical imple-

mentation, and demonstrate that CRN leads to improved optimization performance for

VOI-based algorithms in sequential sampling environments with a combinatorial num-

ber of alternatives and costly samples.

A version of Chapter 3 appeared as Frazier et al. (2011). A journal version of Chap-

ter 3 is in review (Xie et al. 2013).

Chapter 4

In many applications of simulation-based optimization, the random output variable

whose expectation is being optimized is a deterministic function of a low-dimensional

random vector. This deterministic function is often expensive to compute, making

simulation-based optimization difficult. Motivated by an application in the design of

bypass grafts for cardiovascular surgery with uncertainty about input parameters, Chap-

ter 4 uses Bayesian methods to design an algorithm that exploits this random vector’s

low-dimensionality to improve performance.

A version of Chapter 4 appeared as Xie et al. (2012).

Chapter 5

Chapter 5 considers the Bayesian formulation of the ranking and selection problem,

with an independent normal prior, independent samples, and a cost per sample. While a
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number of procedures have been developed for this problem in the literature, the gap be-

tween the best existing procedure and the Bayes-optimal one remains unknown, because

computation of the Bayes-optimal procedure using existing methods requires solving a

stochastic dynamic program whose dimension increases with the number of alterna-

tives. In this chapter, we give a tractable method for computing an upper bound on the

value of the Bayes-optimal procedure, which uses a decomposition technique to break

a high-dimensional dynamic program into a number of low-dimensional ones, avoiding

the curse of dimensionality. This allows calculation of the optimality gap for any given

problem setting, giving information about how much additional benefit we may obtain

through further algorithmic development. We apply this technique to several problem

settings, finding some in which the gap is small, and others in which it is large.

A version of Chapter 5 appeared as Xie and Frazier (2013b).

Chapter 6

Chapter 6 concludes the contributions of this thesis.

11



CHAPTER 2

SEQUENTIAL BAYES-OPTIMAL POLICIES FOR MULTIPLE

COMPARISONS WITH A KNOWN STANDARD

We consider multiple comparisons with a (known) standard (MCS), in which simu-

lation is used to determine which alternative systems under consideration have perfor-

mance surpassing that of a standard with known value. MCS problems arise in many

applications. We consider the following two examples in detail:

• Administrators of a city’s emergency medical services would like to know which

of several methods under consideration for positioning ambulances satisfy man-

dated minimums for percentage of emergency calls answered on time.

• A manufacturing firm is unsure about market and operations conditions in the

coming month. Executives would like to know under which conditions their pro-

duction line can maintain a positive net expected revenue. They plan to use a

simulator of their operations to answer this question.

We focus on how simulation effort should be allocated among the alternative systems

to best support comparison of alternatives when sampling stops. We first formulate the

problem in a Bayesian framework. Using methods from multi-armed bandits and opti-

mal stopping (see, e.g., Gittins and Jones (1974) and DeGroot (1970) respectively), we

explicitly characterize and then efficiently compute Bayes-optimal sequential sampling

policies for MCS problems. Such policies provide optimal average case performance,

where the average is taken under a prior distribution that we choose.

The MCS problem is frequently studied as a special case of a larger class of problems

called multiple comparisons with a control (MCC). In MCC problems, the standard

(also called the “control”) against which we compare is itself the mean performance
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of a stochastic system. When this mean is modeled as known, we recover the MCS

problem. This can be appropriate when the standard system has been in use for a long

period of time, providing sufficient data to estimate its mean performance with high

accuracy (Nelson and Goldsman 2001). MCS problems also arise when the standard is

some known performance requirement, rather than the mean of a stochastic system.

Several books and survey papers review the previous literature on MCC: Hochberg

and Tamhane (1987) and Hsu (1996) are general references on multiple comparisons;

Goldsman and Nelson (1994) focuses on multiple comparisons in simulation; and Fu

(1994) reviews multiple comparisons as they relate to simulation optimization. Within

this MCC literature, work on designing sampling procedures focuses on creating simul-

taneous confidence intervals for the differences of the mean of each system with that

of an unknown control: Paulson (1952), Dunnett (1955) create one-stage procedures as-

suming independent normal sampling with common known variance; and Dudewicz and

Ramberg (1972), Dudewicz and Dalal (1983), Bofinger and Lewis (1992), Damerdji and

Nakayama (1996) create two-stage procedures allowing more general sampling distri-

butions. This previous work focuses on difficulties introduced by an unknown control,

while we consider a known standard. Also, these procedures have only one or two

stages, while we focus on fully sequential procedures, whose ability to adapt the sam-

pling scheme to previous samples offers better sampling efficiency.

Procedures for variants of the MCS problem have also been developed in the

indifference-zone ranking and selection (R&S) literature (see Section 1.2). They con-

sider problems in a frequentist context, where the goal is to create a procedure with

a worst-case statistical guarantee on solution quality. In contrast, we work within a

Bayesian context, where the goal is to provide good performance in the average case.

MCS (also called feasibility determination) is also studied in a large deviations frame-
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work (see Section 1.2). In other related work, Picheny et al. (2010) proposes adaptive

experimental designs with kriging metamodels for approximating a continuous function

accurately around a particular level-set. The current work differs from all previous work

by finding optimal fully sequential procedures in a Bayesian formulation of the MCS

problem that explicitly models a limited ability to sample.

The ability shown in this chapter to explicitly and efficiently compute the optimal

sequential policy contrasts the MCS problem with Bayesian R&S (see Section 1.1),

and other problems in Bayesian experimental design and Bayesian optimal learning,

including global optimization (Mockus 1989), dynamic pricing (Araman and Caldenty

2009), inventory control (Ding et al. 2002), and sensor networks (Krause et al. 2008),

where finding the optimal policy is usually considered intractable. In such problems, a

common suboptimal approach is to compute a myopic one-step lookahead policy (Gupta

and Miescke 1996, Chick et al. 2010, Jones et al. 1998, Lizotte et al. 2007). Policies

of this type are also called knowledge-gradient (KG) policies (Frazier 2009). In our

numerical experiments, we derive the KG policy and compare it against the optimal

policy. We find that in some cases the KG policy performs extremely well (see also

Frazier et al. (2008, 2009)), while in other cases it performs poorly. This variability in

performance is similar to results in Frazier and Powell (2010), Ryzhov et al. (2012).

Our framework and the resulting ability to compute the Bayes-optimal policies is

general. First, it allows two different methods for modeling the limited ability to sam-

ple: an explicit cost for each sample (appropriate, e.g., when using on-demand cloud-

computing services, in which fees are proportional to the number of CPU hours con-

sumed), and/or a random ceiling on the number of samples allowed. Second, it allows

a broad class of terminal payoff functions for modeling the consequences of correct

and incorrect comparisons. Third, it provides the ability to model sampling distribu-
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tions within any exponential family, which includes common families of sampling dis-

tributions like normal with known sampling variance, normal with unknown sampling

variance, Bernoulli, and Poisson. We present in detail two such cases, normal with

known variance and Bernoulli, and derive additional theoretical results for these special

settings.

While our results allow computing the Bayes-optimal policies in a broad class of

problem settings, these results have two important limitations. First, they cannot incor-

porate information about a known sampling budget. In this situation, we recommend a

heuristic policy based on the optimal policy for a stochastic budget. Second, they require

that the value of the standard against which systems are compared is known.

We formulate the problem in Section 2.1. In Section 2.2 we present Bayes-optimal

policies for general sampling distributions, considering separately the case of an almost

surely finite horizon with or without sampling costs (Section 2.2.1), and the case of

an infinite horizon with sampling costs (Section 2.2.2). Then, in Sections 2.3 and 2.4,

we specialize to two types of sampling: Bernoulli samples, and normal samples with

known variance. We give theoretical results particular to these more specialized cases,

and provide techniques for computing the optimal policies efficiently. In Section 2.5

we demonstrate the resulting Bayes-optimal algorithms on illustrative problems, and on

two examples in emergency services and manufacturing.

2.1 Problem Formulation

In this section we formulate the general Bayesian MCS problem, which allows both a

random ceiling on the number of samples, and sampling costs. We have k alternative

systems that we can simulate, and samples from each alternative are independent and
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from distributions that do not change over time. For each x = 1,2 . . . ,k, let f (·|ηx) be

the probability density function (pdf) or probability mass function (pmf) for samples

from alternative x, where ηx is an unknown parameter or vector of parameters residing

in a parameter space Ξ. We further assume that the space of possible sampling distribu-

tions { f (·|η) : η ∈ Ξ} form an exponential family. See DeGroot (1970) Chapter 9 for

an in-depth treatment of exponential families. This assumption of an exponential fam-

ily allows most common parametric sampling distributions, including the normal (with

known variance) and Bernoulli distributions considered in detail in Sections 2.3 and 2.4,

as well as normal with unknown variance, Poisson, multinomial, and many others.

We wish to find the set of alternatives whose underlying performance is above a

corresponding threshold or control. The underlying performance of each alternative x

is characterized by the mean of its sampling distribution, θx, which is a known function

of ηx. The corresponding threshold is dx. Hence we want to determine the set B= {x :

θx ≥ dx}.

We take a Bayesian approach, placing a prior probability distribution on each un-

known ηx. This prior distribution represents our subjective beliefs about this sampling

distribution. To facilitate computation, we adopt independent conjugate priors. Specifi-

cally, we suppose the independent prior distributions on η1, . . . ,ηk come from a common

conjugate exponential family D with parameter space Λ. For example, in Section 2.3

where samples are Bernoulli-distributed, the prior is beta-distributed and Λ is the space

of parameters of the beta distribution. Let the corresponding parameters of these prior

distributions be S0,1, . . . ,S0,k, each of which resides in Λ. Denote by S0 the vector com-

posed of S0,x with x ranging from 1 to k.

Time is indexed by n = 1,2, . . . . At each time n we choose an alternative xn ∈

{1, . . . ,k} from which to sample, and observe a corresponding sample yn which has pdf
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or pmf f (· | ηxn). We refer to the decision xn as our “sampling decision”, and our focus

in this chapter is on how to best make these sampling decisions, and a related stopping

decision discussed below.

As our prior is conjugate to our sampling distribution, our samples result in a se-

quence of posterior distributions on η1, . . . ,ηk, each of which resides in the same con-

jugate family parameterized by Λ. We denote the parameters of these posteriors at

time n ≥ 1 by Sn,1, . . . ,Sn,k, and the vector composed of them by Sn. Then for n ≥ 1,

Sn = G(Sn−1,xn,yn), where G(·, ·, ·) is some known and fixed function determined by

the exponential and conjugate families. Moreover, for all x, the posterior remains in-

dependent across x under this update. Define S = Λk, which is the state space of

the stochastic process (Sn)n≥0. We will sometimes refer to a generic element of S as

s = (s1, . . . ,sk), and a generic element of Λ as s. In this chapter we use boldfaced pa-

rameters to refer to multiple alternatives and regular font to refer to a single alternative.

We allow decisions to depend only upon the data available from previous samples.

To make this requirement more formal, we define a filtration (Fn)n≥0, where Fn is the

sigma-algebra generated by x1,y1, . . . ,xn,yn. We require that xn+1 ∈Fn for n ≥ 0. In

addition to the sampling decisions (xn)n≥1, we also choose the total number of samples

we take, denoted by τ . We require τ to be a stopping time of the filtration, i.e., we

require the event {τ = n} to be Fn–measurable for all n≥ 0.

We refer to a collection of rules for making all of the required decisions in a decision-

making problem as a policy. Thus, in this problem a policy π is composed of a sampling

rule for choosing the sequence of sampling decisions (xn)n≥1, and a stopping rule for

choosing τ .

For each n ≥ 0, let En denote the conditional expectation with respect to the infor-
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mation available after n samples, so En[·] =E [· |Fn]. When the expectation depends on

the policy π , we write Eπ for the unconditional expectation, and Eπ
n for the conditional

expectation with respect to Fn.

In the general formulation of the MCS problem that we consider here, we model

the need to sample efficiently in two complementary ways. First, we suppose that each

sample incurs a nonnegative cost. For x = 1, . . . ,k, denote by cx ≥ 0 the sampling cost

for alternative x. Second, we suppose that there is some random time horizon T beyond

which we will be unable to sample, so that we stop sampling at time τ ∧T , where ∧ is

the minimum operator.

Most frequently this horizon T is imposed because the results of the simulation are

needed by the simulation analyst. For analytical convenience, we assume that T is

geometrically distributed, and independent of the sampling process. Let 1−α be the

parameter of this geometric distribution, with 0 < α < 1, so that E [T ] = 1/(1−α).

We also allow T to be a random variable that is infinite with probability 1, in which

case we take α = 1. In either case, we can equivalently model this random time hori-

zon by supposing that external circumstances may require us to stop after each sample

independently with probability 1−α . While our model does not allow a deterministic

horizon T , one can apply the Bayes-optimal procedures we develop in such situations

as heuristics by choosing α so that T = 1/(1−α). We use this method in Section 2.5.1

and 2.5.2.

We assume that sampling is penalized, either through a finite horizon (α < 1), or

a cost per sample (cx > 0 for all x), or both. That is, we disallow the combination of

α = 1 and cx = 0, which prevents the unrealistic situation of sampling from x forever at

no cost.
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Define a terminal payoff function r with the following decomposition:

r (B;θ ,d) = ∑
x/∈B

r0 (x;θx)+ ∑
x∈B

r1 (x;θx) ,

where r0 and r1 are known real-valued functions. This decomposition is necessary for

our analysis, and without it many of our results would not hold.

Adapted to the information filtration (Fn)n≥0, we choose a sequence of sets (Bn)n≥0

to approximate the objective set B. We require that each Bn ⊆ {1,2, . . . ,k} is chosen to

maximize the expected terminal payoff given the available data after n samples. For-

mally, for all n≥ 0,

Bn = argmax
B⊆{1,2,...,k},B∈Fn

En [r (B;θ ,d)]

= argmax
B⊆{1,2,...,k},B∈Fn

{
∑
x/∈B

En [r0(x;θx)]+ ∑
x∈B

En [r1(x;θx)]

}
.

Denote by hix(s) (i = 0,1) the expectation of ri (x;θx) when ηx follows a distribution in

family D with parameter s, i.e., ηx ∼D(s), and define hx(s) = max{h0x(s),h1x(s)} for

s ∈ Λ, x = 1, . . . ,k. Simple algebra then yields

Bn = {x : h0x (Sn,x)≤ h1x (Sn,x)} and En [r (Bn;θ ,d)] =
k

∑
x=1

hx (Sn,x) . (2.1)

Our estimate of the set B is Bτ∧T when sampling stops. Our goal is to find a policy

that maximizes the expected total reward, i.e., to solve the problem

sup
π

Eπ

[
r (Bτ∧T ;θ ,d)−

τ∧T

∑
n=1

cxn

]
. (2.2)

2.1.1 Terminal Payoff Functions: Conditions and Examples

While our results apply to general terminal payoff functions, some of our theoretical

results require additional conditions defined below. Payoff Condition 1 states that, for
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each x, {hx (Sn,x)}n≥0 is a sub-martingale, i.e., that the expected terminal payoff (not in-

cluding the cost of sampling) improves as we collect more sample information. Payoff

Condition 2 states that this improvement has an upper bound that may depend upon the

starting posterior, but not on the number of samples taken. These conditions together

provide necessary bounds for the reward functions, the Gittins indices, and the value

functions introduced later in Section 2.2. Payoff Condition 3 states, roughly speaking,

that the improvement in expected terminal payoff from an arbitrarily large amount of

additional sampling vanishes as we sample more and more. Payoff Condition 3 pro-

vides additional results that further facilitate computation of the optimal policy. When a

theoretical result requires one or more of these conditions, we state this explicitly in the

result.

Condition 1. For any x = 1, . . . ,k and s ∈ Λ, hx(s)≤ E [hx (S1,x) | S0,x = s,x1 = x] .

Condition 2. There exist deterministic non-negative functions H1, . . . ,Hk on Λ such that,

for any x, n≥ 0 and s ∈ Λ, E [hx (Sn,x) | S0,x = s,x1 = · · ·= xn = x]−hx(s)≤ Hx (s).

Condition 3. There exist deterministic non-negative functions H̃1, . . . , H̃k on Λ such that,

for any x and s ∈ Λ,

E [hx (S1,x) | S0,x = s,x1 = x]−hx(s)≤ H̃x(s), (2.3)

lim
n→∞

[
sup

s∈PS(x;n)
H̃x(s)

]
= 0, (2.4)

where PS(x;n) :=
{

s ∈ Λ : ∃s′ ∈ Λ s.t. P [Sn,x = s | S0,x = s′,x1 = · · ·= xn = x]> 0
}

.

We will consider the following two terminal payoff functions in detail throughout

the chapter. Let mix for i = 0,1 and x = 1, . . . ,k be non-negative constants.

Example 1: (0-1 Terminal Payoff) r0 (x;θx) = m0x ·1{x/∈B}, r1 (x;θx) = m1x ·1{x∈B}.

When m0x = m1x = 1 for all x, r(B;θ ,d) equals the total number of alternatives correctly

classified by B.
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Example 2: (Linear Terminal Payoff) r0 (x;θx) = m0x (dx−θx) , r1 (x;θx) =

m1x (θx−dx).

We further characterize these example terminal payoff functions in Table 2.1, giving

explicit expressions for hix(s), Bn, and Hx(s) under these payoff functions, and show-

ing that both payoff functions satisfy Payoff Conditions 1 and 2. The table uses the

following additional notation:

px(s) := P{θx ≥ dx | ηx ∼D(s)} , µ(s) := E [θx | ηx ∼D(s)] ,

µnx := En [θx] = µ (Sn,x) , B(x) :=
{

s : px(s)≥
m0x

m0x +m1x

}
,

A0(s) := E
[

m0x(θx−dx)
−+m1x(θx−dx)

+

∣∣∣∣ ηx ∼D(s)
]
,

where (z)+ = max(z,0) and (z)− = max(−z,0) denote the positive part and the negative

part respectively. The proof of the statements in this table can be found in Appendix A.

Table 2.1: Example Terminal Payoff Functions and Their Properties

0-1 Terminal Payoff Linear Terminal Payoff

h0x(s) m0x [1− px(s)] m0x [dx−µ(s)]

h1x(s) m1x · px(s) m1x [µ(s)−dx]

Bn

{
x : px (Sn,x)≥ m0x

m0x+m1x

}
{x : µnx ≥ dx}

Payoff Condition 1 Yes Yes

Payoff Condition 2 Yes Yes

Hx(s) m0x ·1{s/∈B(x)}+m1x ·1{s∈B(x)}−hx(s) A0(s)−hx(s)
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2.2 The Optimal Solution

In this section we present the optimal solution to the Bayesian MCS problem (2.2),

which allows both a geometrically distributed sampling horizon, and sampling costs.

We first present some preliminary results, and then give solutions for a geometrically

distributed horizon in Section 2.2.1, and for an infinite horizon with sampling costs

in Section 2.2.2. The results in this section apply to the general sampling framework

given in Section 2.1, and in later sections we specialize to sampling with Bernoulli

observations (Section 2.3) and normal observations (Section 2.4).

We solve the problem (2.2) using dynamic programming (DP) (Bellman (1954), and

see references Dynkin and Yushkevich (1979), Bertsekas (2005, 2007), Powell (2007)).

In the DP approach, we define a value function V : S 7→ R. For each state s ∈ S, V (s) is

the optimal expected total reward attainable when the initial state is s. That is,

V (s) = sup
π

Eπ

[
r (Bτ∧T ;θ ,d)−

τ∧T

∑
n=1

cxn

∣∣∣∣ S0 = s

]
. (2.5)

An optimal policy is any policy π attaining this supremum.

Before describing these optimal policies in Sections 2.2.1 and 2.2.2, we transform

the value function to a form that supports later theoretical development. Let R0(s) :=

∑
k
x=1 hx(sx). Since R0 is a deterministic function of the initial state, we can subtract it

from the value function, and redefine V as the optimal expected incremental reward over

R0. We then have the following proposition.

Proposition 1.

V (s) = sup
π

Eπ

[
τ

∑
n=1

α
n−1Rxn(Sn−1,xn)

∣∣∣∣ S0 = s

]
, (2.6)

where the reward functions Rx : Λ 7→ R for x = 1, . . . ,k are defined by

Rx(s) = E [hx(S1,x) | S0,x = s,x1 = x]−hx(s)− cx. (2.7)
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It is clear that Rx is bounded below by −cx under Payoff Payoff Condition 1. It is

bounded above by −cx +Hx under Payoff Condition 2, and by −cx + H̃x under Payoff

Condition 3.

In the following subsections we divide our assumption of an almost surely finite

horizon (α < 1) or a cost per sample (cx > 0 for all x) into two distinct cases, and

solve the MCS problem in each case using a distinct technique. The first (Section 2.2.1)

assumes α < 1 (geometric horizon), and the second (Section 2.2.2) assumes α = 1 and

cx > 0 for all x (infinite horizon with sampling costs).

2.2.1 Geometric Horizon

We first consider the MCS problem with T almost surely finite, i.e., with 0 < α < 1.

We make no restrictions on the sampling costs cx, allowing them to be 0 or strictly

positive. In this case, (2.6) is a multi-armed bandit (MAB) problem (see, e.g., Mahajan

and Teneketzis (2008)).

To solve a Bayesian MAB problem, Gittins and Jones (1974) showed that it is suf-

ficient to compute Gittins indices νx(s) for each possible state s, which can be written

here as

νx(s) = max
τ>0

E
[

∑
τ
n=1 αn−1Rx(Sn−1,x)

∑
τ
n=1 αn−1

∣∣∣∣ S0,x = s,x1 = · · ·= xτ = x
]
. (2.8)

The optimal sampling rule, whose decisions we denote (x∗n)n≥1, is then to select at each

time the alternative with a corresponding state that has the largest Gittins index. The

optimal stopping time, which we write as τ∗, is the first time when all the k indices are

non-positive. Formally,

x∗n+1 = argmax
x
{νx(Sn,x)}, ∀n≥ 0; τ

∗ = inf{n : νx(Sn,x)≤ 0,∀x}.

23



When cx = 0 for all x and Payoff Condition 1 holds, the Gittins indices are always

nonnegative by Proposition 2. We may then choose τ∗ to be +∞.

Computation of (2.8) is much easier than solving the full DP because the dimension

of s ∈ Λ is smaller than that of s ∈ S= Λk, and the computational complexity of solving

a DP scales poorly with the dimension of the state space, due to the so-called curse of

dimensionality (Powell 2007).

We introduce the following bounds on the Gittins indices to serve approximate com-

putation of the optimal policy when the state space is infinite (see Section 2.4.1).

Proposition 2. Under Payoff Condition 1, νx ≥−cx. Under Payoff Conditions 1 and 2,

−cx ≤ νx ≤−cx +Hx.

2.2.2 Infinite Horizon With Sampling Costs

We now consider the MCS problem with T = ∞ almost surely and positive sampling

costs, i.e., α = 1 and cx > 0 for all x. With these values for α and cx, (2.6) becomes

V (s) = sup
π

Eπ

[
τ

∑
n=1

Rxn(Sn−1,xn)

∣∣∣∣ S0 = s

]
.

Now fix some x and consider a sub-problem in which only alternative x can be sam-

pled. The optimal expected reward for this single-alternative problem with initial state

s is then

Vx(s) = sup
τx

E

[
τx

∑
n=1

Rx(Sn−1,x)

∣∣∣∣ S0,x = s,x1 = · · ·= xτx = x

]
, (2.9)

where τx is the stopping time. We immediately have the following bounds on Vx.

Proposition 3. Vx ≥ 0. Under Payoff Condition 2, Vx ≤ Hx.
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Standard results from the DP literature (see, e.g., Dynkin and Yushkevich (1979))

show that Vx satisfies Bellman’s recursion,

Vx(s) = max [0,Lx(s,Vx)] , where

Lx(s,Vx) = Rx(s)+E[Vx(S1,x) | S0,x = s,x1 = x].
(2.10)

Here, the value function Vx is not necessarily Borel-measurable, but is universally mea-

surable, and so the expectation of Vx is taken in this more general sense.

This problem is a standard optimal stopping problem (for details see Bertsekas

(2007) Section 3.4) that can be solved by specifying the set of states Cx on which we

should continue sampling (also called the continuation set), which implicitly specifies

the set on which we should stop (the stopping set) as Λ \Cx. They are optimally spec-

ified as Cx = {s ∈ Λ : Vx(s) > 0} and Λ \Cx = {s ∈ Λ : Vx(s) = 0}. Then, an optimal

solution to (2.9) is the stopping time τ∗x given by τ∗x = inf{n≥ 0 : Sn,x /∈ Cx}.

We allow τ∗x to be ∞, in which case the state of alternative x never leaves Cx. Even if

τ∗x is almost surely finite, there may be no deterministic upper bound. For example, in the

Bayesian formulation of the sequential hypothesis testing problem (Wald and Wolfowitz

1948), there is no fixed almost sure upper bound on the number of samples taken by the

Bayes-optimal policy even though sampling has a fixed cost, and considerable research

effort has gone to creating good sub-optimal policies that stop within a fixed amount of

time (Siegmund 1985). In our problem, however, the set of possible states for x after n

samples, i.e., PS(x;n), shrinks under Payoff Condition 3 so that it is contained by Λ\Cx

when n exceeds a deterministic value. This gives a deterministic upper bound on τ∗x , as

demonstrated by the following proposition.

Proposition 4. Under Payoff Condition 3, τ∗x has a deterministic upper bound Nx, where

Nx := min

{
n :

[
sup

s∈PS(x;n′)
H̃x(s)

]
≤ cx, ∀n′ ≥ n

}
. (2.11)
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This bound is also computationally useful because it allows us to restrict the state

space when solving Bellman’s recursion for the optimal policy (see Sections 2.3.2

and 2.4.2).

Given the independence among the alternatives, our original problem can be decom-

posed into k sub-problems. This decomposition is used in the proof of the following

theorem, Theorem 1, which relates the value functions of these sub-problems to the

original problem and gives the optimal policy for the original problem.

Theorem 1. The value function is given by, V (s)=∑
k
x=1Vx(sx). Furthermore, any policy

with sampling decisions (x∗n)n≥1 and stopping time τ∗ satisfying the following conditions

is optimal:

x∗n+1 ∈ {x : Sn,x ∈ Cx}, ∀n≥ 0; τ
∗ = inf{n≥ 0 : Sn,x /∈ Cx,∀x}.

The following proposition shows that if each τ∗x is bounded above, then the optimal

stopping time for the whole problem is also bounded above.

Proposition 5. Suppose that each τ∗x has a deterministic upper bound Nx. Then the

optimal stopping rule τ∗, as characterized in Theorem 1, has a deterministic upper

bound ∑
k
x=1 Nx.

2.3 Specialization to Bernoulli Sampling

In this section we specialize the results of Section 2.2 to the specific case of Bernoulli

samples. We give explicit expressions for quantities described generally in Section 2.2,

and then present additional theoretical results and computational methods. Later, in Sec-

tion 2.4, we pursue the same agenda for another commonly considered type of sampling:

normal samples with known sampling variance.
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We first give explicit expressions for the statistical model, the reward function, and

Bellman’s recursion. Here for each x, the underlying performance parameter θx ∈ (0,1)

is the only component of ηx, and the corresponding threshold is dx ∈ (0,1). At each

time n≥ 1, yn | θ ,xn ∼ Bernoulli(θxn).

We adopt a conjugate Beta(a0x,b0x) prior for each θx with a0x,b0x ≥ 1, under which

θx is independent of θx′ for x 6= x′. Our Bernoulli samples then result in a sequence of

posterior distributions on θx which are again independently beta-distributed with param-

eters Sn,x = (anx,bnx) in parameter space Λ = [1,+∞)× [1,+∞). If we sample x at time

n, then

(anx,bnx) =


(an−1,x +1,bn−1,x) , if yn = 1

(an−1,x,bn−1,x +1) , if yn = 0
.

We take Sn = (an,bn) as the state of the DP, where the state space is S = [1,+∞)k×

[1,+∞)k. The state update function G is given by, for n≥ 1,

(an,bn) = 1{yn=1} · (an−1 + exn,bn−1)+1{yn=0} · (an−1,bn−1 + exn),

where exn denotes a length-k vector with 1 at element xn and 0 elsewhere.

Now for any (a,b) ∈ Λ, D(a,b) = Beta(a,b), µ(a,b) = a/(a+ b) and px(a,b) =

1− Idx(a,b), where the regularized incomplete beta function I·(·, ·) is defined for a,b> 0

and 0≤ d ≤ 1 by

Id(a,b) =
B(d;a,b)
B(a,b)

=

∫ d
0 ta−1(1− t)b−1dt∫ 1
0 ta−1(1− t)b−1dt

.

By Remark 1 in Appendix A and definition (2.7), we also have

Rx(a,b) =−cx−hx (a,b)+
a

a+b
·hx (a+1,b)+

b
a+b

·hx (a,b+1) . (2.12)

When α = 1 and cx > 0 for all x, in each sub-problem with alternative x,

E[Vx(S1,x) | S0,x = (a,b),x1 = x] =
a

a+b
V (a+1,b)+

b
a+b

V (a,b+1),
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by Remark 1 in Appendix A. Thus (2.10) becomes Vx(a,b) =max [0,Lx(a,b,Vx)], where

Lx(a,b,Vx) =−cx−hx (a,b)+
a

a+b
[hx (a+1,b)+Vx(a+1,b)]

+
b

a+b
[hx (a,b+1)+Vx(a,b+1)] .

(2.13)

2.3.1 Geometric Horizon

To compute the optimal policy for a geometric horizon in Section 2.2.1 with respect to

Bernoulli sampling, we use a technique from Varaiya et al. (1985) for off-line computa-

tion of Gittins indices, which assumes a finite state space.

Since the state space is infinite in our problem, we apply this technique in an ap-

proximate sense. For each alternative x with initial state (a0x,b0x), we first truncate

the horizon for its sub-problem to N0 (we use N0 = 50 in our experiments). We then

apply Varaiya et al. (1985) to pre-compute the Gittins indices for a finite set of states:

{(a0x+na,b0x+nb) : na,nb ∈N,na+nb ≤ N0,x = 1 . . . ,k}. When an alternative is sam-

pled more than N0 times, we take the current state as the new (a0x,b0x), and recompute

the indices for a new set of states.

2.3.2 Infinite Horizon with Sampling Costs

For the infinite horizon case with sampling costs, we explicitly compute the optimal

policy for Bernoulli sampling, which is characterized for general sampling distributions

in Section 2.2.2.

By Theorem 1, it suffices to evaluate for each alternative x all possible states in

the sampling process. If Payoff Condition 3 holds, then Vx(a0x + na,b0x + nb) = 0 for

na + nb ≥ Nx by Propositions 3 and 4; and for na + nb = n < Nx, Vx(a0x + na,b0x + nb)
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can be computed recursively from n = Nx−1 to n = 0 using (2.13). If Payoff Condition

3 does not hold, or some Nx are large, a pre-specified N0 can be used instead of Nx to

reduce computation. That is, we approximate Vx(a0x+na,b0x+nb) by 0 for na+nb≥N0

(we use N0 = 1000 in our experiments).

2.3.3 Example Terminal Payoff Functions

We state in Table 2.2 that 0-1 and linear terminal payoff functions satisfy Payoff Con-

dition 3 with Bernoulli sampling, and we give explicit expressions for Nx and H̃x(a,b).

The proof of the statements in the table can be found in Appendix A.

Table 2.2: Example Terminal Payoff Functions with Bernoulli Sampling

0-1 Terminal Payoff Linear Terminal Payoff

Payoff Condition 3 Yes Yes

H̃x(a,b)
m0x+m1x

2
√

2π(a+b)
max{m0x,m1x}+m0x

4(a+b+1)

Nx

(
d (m0x+m1x)

2

8πc2
x
e−2

)+ (
dmax{m0x,m1x}+m0x

4cx
e−3

)+

2.4 Specialization to Normal Sampling

We now consider normally distributed samples with known variance. As done in Sec-

tion 2.3 for Bernoulli samples, we give explicit expressions for the quantities described

generally in Section 2.2, and then present additional theoretical results to compute the

optimal policy.

Here the sampling precision is known for each alternative x and denoted by β ε
x .
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Hence ηx only consists of θx, and dx ∈ (−∞,+∞) for all x. We have yn | θ ,xn ∼

N (θxn,1/β ε
xn
) for all n ≥ 1. We adopt an independent conjugate N (µ0x,1/β0x) prior

for each θx, and our normal samples result in a sequence of normal posterior distri-

butions on θx with parameters Sn,x = (µnx,βnx) in parameter space Λ = (−∞,+∞)×

[0,+∞). We take Sn = (µµµn,βββ n) as the state of the DP, where the state space is

S= (−∞,+∞)k× [0,+∞)k.

Using Bayes rule, we write the state update function G as follows. For all n≥ 0,

µn+1,x =


[βnxµnx +β ε

x yn+1]/βn+1,x if x = xn+1

µnx otherwise
,

βn+1,x =


βnx +β ε

x if x = xn+1

βnx otherwise
.

Frazier et al. (2008) gives a probabilistically equivalent form of this update in terms of

an Fn-adapted sequence of standard normal random variables Z1,Z2, . . . . More specifi-

cally, for all n≥ 1,

(µµµn,βββ n) =
(
µµµn−1 + σ̃xn(βn−1,xn)Znexn,βββ n−1 +β

ε
xn

exn

)
, (2.14)

where σ̃x : (0,∞] 7→ [0,∞) for each x is defined by

σ̃x(γ) =
√
(γ)−1− (γ +β ε

x )
−1 =

√
β ε

x /[γ(γ +β ε
x )].

It follows that for any (µ,β ) ∈ Λ, D(µ,β ) = N (µ,1/β ) and

px(µ,β ) = 1−Φ

(√
β (dx−µ)

)
,

Rx(µ,β ) =−cx +E [hx (µ + σ̃x(β )Z,β +β
ε
x )]−hx (µ,β ) ,

(2.15)

where Φ is the standard normal cdf and Z is a standard normal random variable.
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When α = 1 and cx > 0 for all x, (2.10) becomes

Vx(µ,β ) = max [0,Lx(µ,β ,Vx)] , where

Lx(µ,β ,Vx) = Rx(µ,β )+E[Vx(µ + σ̃x(β )Z,β +β
ε
x )].

(2.16)

2.4.1 Geometric Horizon

Similar to the Bernoulli sampling case in Section 2.3.1, we first truncate the horizon

for each sub-problem to N0. With normal sampling, this is not yet enough to provide a

finite set of states: although β is discrete, µ takes continuous values. We thus need the

following condition on Hx.

Special Condition 1. For any fixed x and β , Hx(µ,β )→ 0 as µ →+∞ or µ →−∞.

Under Payoff Conditions 1, 2 and Special Condition 1, we know from (2.7), Propo-

sitions 2 and 3 that for any fixed β , Rx(µ,β )→−cx, νx(µ,β )→−cx, and Vx(µ,β )→ 0

as µ→+∞ or µ→−∞. We can then truncate and discretize the range of µx as follows.

Let ε,δ > 0 be small (we take ε = δ = 0.01 in our experiments). For each fixed

β ∈ {β0x + nβ ε
x : 0 ≤ n ≤ N0}, we compute an interval

[
µx(β ),µx

(β )
]

(guaranteed

to exist under Special Condition 1) such that for all µ /∈
[
µx(β ),µx

(β )
]
, we have 0 ≤

Hx(µ,β )≤ ε , and hence−cx≤ νx(µ,β )≤−cx+ε by Proposition 2. We then discretize[
µx(β ),µx

(β )
]

into points with interval δ , denoted by
{

µ i
x(β )

}
i.

We now use the technique from Varaiya et al. (1985) to pre-compute the Gittins in-

dices for a finite set of states,
{(

µ i
x(β ),β

)
: β ∈ {β0x +nβ ε

x : 0≤ n≤ N0} ,x = 1, . . . ,k
}

,

with the transition probability matrix approximated by the density ratios using (2.14):

P
[(

µ
i
x(β ),β

)
→
(
µ

j
x (β +β

ε
x ),β +β

ε
x
)]

=

ϕ

(
µ

j
x (β+β ε

x )−µ i
x(β )

σ̃x(β )

)
∑k ϕ

(
µk

x (β+β ε
x )−µ i

x(β )
σ̃x(β )

) ,
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where ϕ is the standard normal pdf. For an arbitrary state (µ,β ) of alternative x, we set

νx(µ,β ) =


−cx if µ /∈

[
µx(β ),µx

(β )
]
,

νx
(
µ i

x(β ),β
)

otherwise, where i = argmin j

{
|µ−µ

j
x (β )|

}
.

As we did in the Bernoulli sampling case, we also track the number of samples taken

from each alternative and recompute the indices when an alternative is sampled more

than N0 times.

2.4.2 Infinite Horizon with Sampling Costs

Computation of the optimal policy in Section 2.2.2 is not trivial for normal sampling.

To implement Bellman’s recursion (2.16) directly, we need to evaluate each single-

alternative value function over the whole continuous domain of µ , which is not pos-

sible. Instead, we truncate and discretize the range of µ to evaluate it approximately.

The following condition is required for applying truncation.

Special Condition 2. For any fixed x and β , we can compute an interval
[
µx(β ),µx

(β )
]

such that µ /∈
[
µx(β ),µx

(β )
]
⇒Vx(µ,β ) = 0.

Under Payoff Condition 3 and Special Condition 2, we can evaluate each Vx as fol-

lows. By Propositions 3 and 4, Vx (µ,β0x +nβ ε
x ) = 0 for all n≥ Nx and µ ∈R. For each

β ∈ {β0x +nβ ε
x : 0≤ n < Nx}, we compute

[
µx(β ),µx

(β )
]

(given in Special Condi-

tion 2) as a boundary of the value of µ within Cx, and discretize it into points
{

µ i
x(β )

}
i

with an interval of δ between them (we set δ = 0.01 in our experiments). Using Re-

mark 2 in Appendix A and (2.16), we know that each Vx
(
µ i

x(β ),β
)

can be computed
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recursively for β ∈ {β0x +nβ ε
x : 0≤ n < Nx}. For any arbitrary state (µ,β ), we set

Vx(µ,β ) =


0 if µ /∈

[
µx(β ),µx

(β )
]
,

Vx
(
µ i

x(β ),β
)

otherwise, where i = argmin j

{
|µ−µ

j
x (β )|

}
.

2.4.3 Example Terminal Payoff Functions

Remark 3 in Appendix A describes the explicit computation of Rx(µ,β ) for (µ,β ) ∈ Λ

under 0-1 and linear terminal payoff. Table 2.3 shows that with normal sampling, these

payoff functions satisfy Payoff Condition 3, Special Conditions 1 and 2. It uses the

following additional notation:

A0 = max{m0x,m1x}
[(√

1+β ε
x /β −1

)
A3 +π

−1
√

β ε
x /β

]
,

A1 = A2
4 +2A4A5, A2 = 2(A4 +A5)/π, A3 = π

−2−A2
4,

where A4 = 1+1/
√

2πe and A5 = cx/max{m0x,m1x}.

The proof of the statements in this table can be found in Appendix A.

Table 2.3: Example Terminal Payoff Functions with Normal Sampling

0-1 Terminal Payoff Linear Terminal Payoff

Payoff Condition 3 Yes Yes

H̃x(µ,β ) A0
m0x+m1x√

2πβ

Nx dA2+
√

A2
2−4A1A3

2A1
e d (m0x+m1x)

2

2πc2
xβ ε

x
e

Special Condition 1 Yes Yes

Special Condition 2 Yes Yes
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2.5 Numerical Results

In this section, we test the performance of the Bayes-optimal policies with a collection of

numerical experiments. We first present illustrative example problems in Section 2.5.1,

and then present applications to ambulance positioning in Section 2.5.2, and the revenue

of a production line in Section 2.5.3.

We introduce the following sampling policies for comparison. In the implementation

of all of these policies, ties in the argmax are broken uniformly at random.

1. Pure Exploration (PE): In this policy, we choose the next alternative to sample

uniformly and independently at random, i.e., xn ∼Uniform(1, . . . ,k) for all n≥ 1.

2. Large Deviations (LD): In this policy, we sample according to the asymptotically

optimal fractional allocations p∗1, . . . , p∗k with the highest exponential rate of de-

cay for the expected number of incorrect determinations. Szechtman and Yücesan

(2008) provides explicit characterizations for Bernoulli and normal sampling. Our

implementation of LD is idealized, as it uses the exact values of p∗, which require

knowing θ . These exact values are unavailable in practice, and so practical algo-

rithms, such as those proposed in Szechtman and Yücesan (2008), use estimates

instead.

3. Andradóttir and Kim (AK): AK is a feasibility check procedure for normally

distributed systems with a single constraint, described in Algorithm F in An-

dradóttir and Kim (2010), and Procedure F I
B in Batur and Kim (2010). It provides

a statistical guarantee on performance with pre-specified tolerance level εAK and

lower bound 1−αAK on the probability of correct decision (PCD). It uses an ini-

tial stage with nAK
0 ≥ 2 samples from each alternative. Our implementation uses

known variance instead of an estimate. Batur and Kim (2010) states that AK is
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robust to non-normality, so we apply it to both Bernoulli and normal sampling.

4. Knowledge Gradient (KG): In this policy, the sampling decision is the one

that would be optimal if only one measurement were to remain, i.e., xn+1 ∈

argmaxx{Rx(Sn,x)} for all n ≥ 0. Such policies have also been called myopic or

one-step-lookahead policies, and are discussed in detail in Frazier (2009). When

sampling costs are strictly positive, KG stops when the one-step expected reward

becomes non-positive. This stopping rule is τ = inf{n≥ 0 : Rx(Sn,x)≤ 0,∀x}. An

analogous stopping rule for ranking and selection was introduced in Frazier and

Powell (2008).

2.5.1 Illustrative Example Problems

We first explore the relative performance of these policies and the Bayes-optimal one on

six different problem settings: geometric horizon with Bernoulli sampling; geometric

horizon with normal sampling; deterministic horizon with Bernoulli sampling; deter-

ministic horizon with normal sampling; infinite horizon with Bernoulli sampling; and

infinite horizon with normal sampling. We adopt the 0-1 terminal payoff function with

m0x = m1x = 1 for all x.

For Bernoulli sampling, we test k = 100 alternatives with each dx picked from Uni-

form [0,1] and each θx randomly generated from prior distribution Beta(1,1). For nor-

mal sampling, we test k = 50 alternatives with dx picked from N (0,100), θx generated

from prior distribution N (0,100), and β ε
x picked from Uniform [0.5,2]. For the ge-

ometric horizon, we set cx = 0 for all x and vary α so that E[T ] = 1
1−α

varies within

[100,1000] in the Bernoulli sampling case, and within [50,500] in the normal sampling

case. The actual values of T are randomly generated according to the corresponding ge-
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ometric distribution. For the deterministic horizon, we apply the Bayes-optimal policy

as a heuristic, by choosing α so that 1
1−α

is equal to the horizon. For the infinite horizon,

we set cx = c for all x and vary c within [0.001,0.01].

Since LD does not have a stopping rule, we only implement it for the geometric

horizon and the deterministic horizon. For AK, we set nAK
0 = 2. If AK has not yet clas-

sified an alternative as in or out of the level set by the end of the horizon, we classify

it according to the optimal level set estimate Bn. For the finite (geometric or determin-

istic) horizon, we optimize AK’s performance over the values of εAK and αAK using

a simple grid search, and report performance with the best values of these parameters.

For the infinite horizon with sampling costs, we found that AK’s expected total reward

was significantly lower than that of the other policies, for both normal and Bernoulli

sampling and across all values of εAK , αAK and c. This is due to AK’s tendency to oc-

casionally stop too late in the presence of sampling costs. To improve its performance

in the infinite horizon setting, we introduce an additional parameter T to the procedure

and prevent AK from starting new sampling stages after a deterministic time T . We then

optimize over the values of εAK,αAK and T and use the best values found. For PE, we

also use a deterministic stopping rule τ = T for the infinite horizon, and optimize over

T to report its performance. We find that the best deterministic value of T for PE and

AK is usually near the Bayes-optimal policy’s expected stopping time.

Figure 2.1 shows that in all six problem settings, the Bayes-optimal policies signif-

icantly outperform PE. Because naive strategies like PE are the ones most commonly

used in practice, we see a substantial potential of performance improvement by using

optimal policies instead.

LD’s poor performance seems surprising, but can be understood as follows. In most

sample paths, LD allocates all its samples to one or two alternatives that have signifi-
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Figure 2.1: Performance of the following policies: Pure Exploration (PE), Large
Deviations (LD), Andradóttir and Kim (AK), Knowledge Gradient
(KG), and the approximate implementation of Bayes-Optimal (OPT)
using necessary truncation and discretization. The maximum length
of the 95% confidence intervals for the values in the plots is 0.24.

cantly smaller |θx− dx| and hence significantly larger p∗x (see Szechtman and Yücesan

(2008)). As a result, the total reward earned by sampling, which is the increment in

the number of correct determinations, is always below 3. Indeed, given a fixed or ex-

pected sample size N, the expected number of samples allocated to any alternative x with

p∗x <
1
N is less than 1. This can be the case for most of the k alternatives, especially when

N/k is small. While LD has optimal asymptotic performance, this does not necessarily

lead to good finite time performance.

We now look at the performance of AK. With normal sampling, it performs signif-

icantly better than PE, but is outperformed uniformly by the Bayes-optimal policy, and

by KG when c is relatively large. The main reason is that AK looks for a feasible set
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with the target tolerance level and PCD, but does not consider that the payoff of a high-

quality determination may not be worth the sampling effort required to achieve it given a

limited budget or positive sampling costs. With Bernoulli sampling, AK performs closer

to PE. While Batur and Kim (2010) demonstrates that batching can be helpful in achiev-

ing approximate normality and satisfying statistical guarantees for difficult Bernoulli

cases, where θx is close to 0 or 1, we implement AK directly without batching because

our focus is on expected total reward, rather than satisfying statistical guarantees.

The performance of KG depends greatly on the problem. It is almost optimal in

the geometric-horizon normal-sampling and the deterministic-horizon normal-sampling

settings, while in the other four settings it is significantly suboptimal. Its worst perfor-

mance comes in the infinite-horizon Bernoulli-sampling setting, where it is even worse

than PE and MV with small values of c.

To understand the behavior of KG, first consider the two problem settings with nor-

mal sampling. KG makes its decisions using the one-step approximation Rx(Sn,x) to

the true value of sampling alternative x. This approximation is the sum of a one-step

value of information (VOI) and the cost of sampling. As observed in Frazier and Powell

(2010), Chick and Frazier (2011), the one-step VOI for normal sampling can signifi-

cantly underestimate the true VOI when more samples will be taken later. This causes

KG stopping rules to stop too soon (Chick and Frazier 2011), hurting their performance

in problems with strictly positive sampling costs. This is likely to be the largest contrib-

utor to KG’s suboptimality in the infinite-horizon normal-sampling problem.

Unlike the stopping decision, this underestimation of the true VOI has little effect on

allocation decisions, because the level of underestimation is relatively constant across

alternatives, and the alternative with the largest one-step VOI tends to also have near-

maximal true VOI (Chick and Frazier 2011, Frazier et al. 2008, 2009). This is the rea-
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son that KG does so well in the geometric-horizon normal-sampling and deterministic-

horizon normal-sampling problem settings, where there are no sampling costs and the

only decisions concern allocation. In this case, KG’s performance is comparable with

that of the Bayes-optimal policy. Although KG actually outperforms our implemen-

tation of the Bayes-optimal policy by a slight margin for large E [T ] in the geometric

horizon and large T in the deterministic horizon, this small gap is an artifact due to nu-

merical inaccuracies introduced by discretizing the state-space when solving the DP that

defines the Bayes-optimal policy, and would vanish with finer discretization. For discus-

sions of discretization error in dynamic programming, see Powell (2007) and Bertsekas

and Tsitsiklis (1996).

In problems with Bernoulli sampling, the discrete nature of the samples often causes

the one-step VOI to be 0. This occurs when a single sample xn,yn is not enough to

alter our decision on whether to place an alternative x in Bn, even when significant

uncertainty about θx remains and more than one sample could alter our decision. In

these situations, KG stops sampling immediately if there are positive sampling costs, or

otherwise allocates its sample randomly (an inefficient strategy) among the alternatives.

For this reason, KG performs poorly in both settings with Bernoulli sampling.

2.5.2 Ambulance Quality of Service Application

To demonstrate the Bayes-optimal policies in a more realistic application setting, we

use it to analyze methods for positioning ambulances in a large city. We use the am-

bulance simulation introduced by Maxwell et al. (2010), which simulates ambulances

responding to emergency calls in a city. The simulation model is very loosely based

on the city of Edmonton, but is sufficiently modified in call arrival rates, etc., that the
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results have no bearing on actual ambulance performance in that city. The city considers

an emergency call to be answered on time if an ambulance arrives within 8 minutes, and

otherwise it considers the call to be missed. We suppose that the city is considering sev-

eral different static allocations of their fleet of 16 ambulances across the 11 bases in the

city, and would like to know for each candidate allocation and each of several different

call arrival rates whether it meets the minimum requirement of 70% of calls answered

on time.

This is an MCS problem. Each alternative x corresponds to an hourly call arrival rate

λx and an ambulance positioning plan. Based on these, each sample from x gives the

number of calls answered on time during a two-week simulation. Since the emergency

calls are generated according to a Poisson process, the expected total number of calls

during two weeks for alternative x is known analytically as Mx = 24×14×λx. Instead

of directly measuring the fraction of calls answered on time in each simulation and

estimating its expectation, we take θx/Mx as the long-term percentage of calls answered

on time (see Henderson (2000)). The set of alternatives meeting or exceeding 70% of

calls answered on time is therefore B= {x : θx/Mx ≥ 0.7}= {x : θx ≥ dx}, where dx =

0.7×Mx. We chose 25 ambulance positioning plans and 25 values for the hourly call

arrival rate from [3,6.6] for our experiment. This provides a collection of 25×25 = 625

alternatives.

The number of calls answered on time in a two-week simulation is approximately

normally distributed. This was confirmed by visual examination of the empirical distri-

bution for several randomly picked alternatives. We also assume a common sampling

precision for all the alternatives. We confirmed that this assumption is reasonable by

calculating and comparing the sampling precisions of several different alternatives cho-

sen at random. To estimate the common sampling precision, we randomly chose 5
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alternatives, sampled 20 times from each of them to estimate their individual sampling

precisions, and used the average of the 5 sampling precisions as the estimate of the com-

mon sampling precision. This estimate was 1.4×10−3. In problems with a high degree

of variation in the sampling variances, one might instead estimate the sampling preci-

sions separately for each alternative, or assume normal samples with unknown mean

and unknown variance, with an inverse-gamma prior on the unknown sampling variance

(DeGroot 1970). In this second case, the optimal policy could be computed by applying

the theoretical results in this chapter to the exponential family of normal distributions

with unknown mean and unknown variance, but computing solutions to these dynamic

programs would require further work.

We use independent normal priors for each θx. We take a single sample from

each alternative, set the prior mean µ0x to this sampled value, and the prior pre-

cision β0x to the common sampling precision. This is equivalent to using a non-

informative prior and starting sampling by taking a single sample from each alterna-

tive. We then follow one of several different sampling policies for a deterministic hori-

zon, where we investigate performance at a few fixed times. For the heuristic Bayes-

optimal policy, we set α = 0.999 (corresponding to a horizon of 1/(1−α) = 1000)

and cx = 0 for all x. We assume a 0-1 terminal payoff function with m0x = m1x = 1

for x, hence our estimate of set B at each time n is Bn = {x : µnx ≥ dx} by Table 1

and (2.15). For AK, we report its best performance over multiple sample paths with

nAK
0 = 2, εAK chosen from {5,10,25,50,100,110,120,130,140,150}, and αAK chosen

from {0.1,0.3,0.5,0.7,0.9,0.99,0.999,0.9999,0.99999,0.999999}. As 1−αAK gives

a lower bound on AK’s probability of correct decision, one would typically choose αAK

closer to 0, e.g., to 0.1 or 0.3. The set over which we optimize includes both these

smaller values, as well as values closer to 1, because we found that increasing αAK

improved AK’s performance.
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Figure 2.2: Performance of the sampling policies in the ambulance quality of
service application: Pure Exploration (PE), Large Deviations (LD),
Andradóttir and Kim (AK), Knowledge Gradient (KG), and Bayes-
Optimal (OPT). In each plot, the black curve is the boundary of B
(the set of alternatives answering at least 70% of the emergency calls
on time); the light region is the estimate of the set B under the cor-
responding policy given the marked number of samples; and the dark
region is the complement of the light region. Hourly call arrival rates
3,3.15,3.3, . . . ,6.6 are distributed along the vertical axis. Ambulance
positioning plans are distributed along the horizontal axis, and are
sorted to make the black line decreasing.

Figure 2.2 compares the Bayes-optimal policy against PE, LD, AK, and KG. The

performance of each policy is measured by the similarity between B and (Bn)n≥0, where

we independently estimated B through exhaustive simulation of each θx. We also sorted

the ambulance positioning plans used to construct the alternatives, in order of decreasing

θx (at a fixed value of the call arrival rate), to make the set B easier to visualize. Each

panel shows a black line, which is the independently obtained high-accuracy estimate
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of the boundary between B and its complement. For each policy and after each of 500,

1000, 2000, and 5000 samples we plot the current estimate Bn as the light region, and

the complement of Bn as the dark region.

Figure 2.2 shows that PE behaves poorly in distinguishing among the alternatives.

Under this policy, after 5000 samples total, approximately 5000/625 = 8 samples have

been taken from each alternative. For those alternatives x with θx close to dx, this number

of samples is much too small to accurately estimate whether x is in B or not. Moreover,

the estimates given by LD barely change as the number of samples increases. The

reason is that it only samples from 2 alternatives out of 625 in the 5000 samples. In

contrast, AK, KG and the Bayes-optimal policy are much more efficient, while the latter

two significantly outperform AK. AK’s best performance occurs at a very large tolerance

level, εAK = 130, and a very small lower bound on the PCD, 1−αAK = 10−4. We believe

this is because the budget we are considering is much smaller than AK would typically

require to provide a meaningful bound on PCD with a large number of alternatives

(k = 625). The excellent performance of KG relative to optimal should not be surprising:

samples are approximately normally distributed and there are no sampling costs, which

is the setting from Section 2.5.1 in which KG was nearly optimal. Had the problem used

Bernoulli sampling or strictly positive sampling costs, then KG likely would not have

performed as well.

As shown in Figure 2.2, after 5000 samples under KG or the Bayes-optimal policy,

we have estimated B with a high degree of accuracy. Indeed, with only 500 samples

from either of these policies, we estimate B with greater accuracy than is possible with

5000 samples under PE or LD. This factor of 10 in sampling effort represents a dramatic

savings of simulation time, and demonstrates the value of using an optimal or near-

optimal sampling policy when performing MCS.
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2.5.3 Revenue of a Production Line Application

We consider a manufacturing firm that can choose, on each day, whether or not to oper-

ate a production line. If it operates the line, it earns a stochastic net revenue that can be

positive or negative. If it chooses not to operate the line, its net revenue is 0.

At the beginning of each day, the firm observes market and operational conditions

X . Each X takes one of k < ∞ values. The firm has a simulator that, given X , can

simulate a net daily revenue Y (X). We suppose that this simulator is cumbersome,

taking a long time to run, and hence the plant manager does not want to run it at the

beginning of each day. Instead, at time 0, the manager would like to use simulation to

estimate θx = E [Y (X) | X = x] for a wide variety of conditions x, and then estimate the

set B= {x : θx ≥ 0} in which it is profitable to operate the production line. The manager

can then make decisions when each X becomes known with a simple look up table based

on this estimate of B.

Suppose that the plant manager recreates the look up table every month. From his-

torical data and forecasts, she has estimated the long-run percentage of time each condi-

tion x occurs as qx. Thus the expected monthly net revenue she earns from an estimate

B of B is a one-sided linear terminal payoff with dx = 0 and mx = 30qx for all x, i.e.,

r(B;θ ,d) = ∑x∈B mxθx.

In performing her simulations, the plant manager has no time limit, but she is using

a third-party computing service such as Amazon EC2 to perform her computation. This

service charges her a monetary cost of cx for each simulation of condition x, which is

determined by the length of time that this simulation requires to run and the unit cost

per CPU hour determined from the computing service’s pricing structure (Amazon.com

2012).
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The simulation of the production line we consider is based on Buchholz and Thumm-

ler (2005) and “Optimization of a Production Line” in SimOpt.org (2011). It has 4

service queues arranged serially, each of which has a fixed finite capacity 5. Parts (cus-

tomer orders) arrive to queue 1 according to a Poisson process with rate λ . Each queue

sends the parts into a corresponding single server with first-come-first-serve discipline,

and the service time is exponentially distributed with rate γ . Parts leaving queue i after

service are immediately transferred to the next queue i+1 (if possible). Whenever the

service queue i+1 is full, the server i is said to be blocked and the part in it cannot leave

even if it is completed, since there is no room in the next queue.

We have k = 500 alternatives in our experiment. Each alternative condition x cor-

responds to a customer arrival rate λx in {5.1,5.2, . . . ,7.5} and a queue service rate γx

in {5.1,5.15, . . . ,6.05}. Denote by Γx the expected number of parts leaving the last

queue (expected number of completed orders) in an 8-hour period under condition x.

We assume that the net revenue per order filled is $50, and operation of the production

line over an 8-hour period has a fixed basic cost of $2800. The expected revenue of the

production line under condition x is then θx = 50Γx− 2800. The level set we wish to

estimate is thus B= {x : Γx ≥ 56} .

The number of parts leaving the last queue in an 8-hour simulation is approximately

normally distributed, which was confirmed by visual examination of the empirical dis-

tribution for several randomly picked alternatives. As in the ambulance quality of ser-

vice application, we assume a common sampling precision for all the alternatives and

estimate it by calculating and averaging over the sampling precisions of several differ-

ent alternatives chosen at random. We also use independent normal priors for each θx,

where we set µ0x to be the value of an initial sample, and set β0x to be the common sam-

pling precision. We then follow one of several different sampling policies, assuming an
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Table 2.4: Performance of the Sampling Policies in the Revenue of a Produc-
tion Line Application

Sampling Policy PE AK KG OPT

expected terminal payoff: E
[
∑x∈Bτ

mxθx
]

2709 2748 2667 2859

expected sampling cost: E [∑τ
n=1 cxn ] 198 195 84 198

expected total reward: E
[
∑x∈Bτ

mxθx−∑
τ
n=1 cxn

]
2511 2553 2583 2661

infinite horizon with qx = 1/500, representing homogeneous long-run percentages for

each condition, mx = 30qx as described above, cx = 0.06, and β ε
x = 1.2×10−3 for all x.

This sampling cost cx of $0.06 per simulation corresponds to a computing service that

charges $0.12 per CPU hour, and a simulation that takes 30 minutes for each replication.

Our estimate of the set B when we stop at time τ is then Bτ = {x : µτx ≥ 0} by Table

1. To examine the expected total reward under each policy, we independently estimate

each θx through exhaustive simulation.

Table 2.4 compares the Bayes-optimal policy against three other policies: PE, AK,

and KG, showing their expected terminal payoff, expected sampling cost, and expected

total reward by averaging over 2000 independent sample paths. The maximum length

of the 95% confidence intervals for the values in the table is 3. Similar to Section 2.5.1,

we report the performance of PE with a best deterministic stopping rule τ = T , and

report the performance of AK with best pre-specified values of εAK,αAK and T . Our

results show that the best deterministic value of T for PE and AK is very close to the

expected stopping time under the Bayes-optimal policy. While PE, AK and KG are

all sub-optimal, KG is the best among the three sub-optimal policies. Though it stops

too soon, its advanced efficiency in allocating samples still results in a relatively high

expected total reward.

46



We also performed an additional experiment to assess the degradation of the Bayes-

optimal policy caused by approximating the sampling precisions as known. We find that

an optimal policy with a high-fidelity estimate of each alternative’s individual sampling

precision obtained through exhaustive simulation has an expected total reward of 2664,

which offers a 0.1% improvement over our previous implementation. We see that in this

particular example, the degradation is very small.

2.6 Conclusions

By applying methods from multi-armed bandits and optimal stopping, we are able

to efficiently solve the dynamic program for the Bayesian MCS problem and find

Bayes-optimal fully sequential sampling and stopping policies. While researchers have

searched for Bayes-optimal policies for other related problems in sequential experimen-

tal design and effort allocation for simulation, tractable computation of the optimal poli-

cies has remained elusive in many problems, and so the results in this chapter place

the MCS problem together with a select group of problems in sequential experimental

design for which the sequential Bayes-optimal policies can be computed efficiently.

The Bayes-optimal policies presented are flexible, allowing limitations on the ability

to sample to be modeled with either a random horizon or sampling costs or both, allow-

ing sampling distributions from any exponential family, and allowing a broad class of

terminal payoff functions. While they do not allow for problems with fixed horizon,

the optimal policy for random horizons can be used heuristically in such situations. We

provide explicit computations for Bernoulli sampling and normal sampling with known

variance. We also provide expressions for the KG policy and show that it works ex-

tremely well for normal sampling with a geometrically distributed horizon and no sam-
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pling costs. Although the KG policy is not Bayes optimal, and results in some perfor-

mance loss, its ease of use may make it attractive to practitioners facing MCS problems

of this type.

In conclusion, the results in this chapter provide new tools for simulation analysts

facing MCS problems. These new tools dramatically improve efficiency over naive

sampling methods, and make it possible to efficiently and accurately solve previously

intractable MCS problems.
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CHAPTER 3

BAYESIAN OPTIMIZATION VIA SIMULATION WITH PAIRWISE

SAMPLING AND CORRELATED PRIOR BELIEFS

We consider discrete optimization via simulation, in which we have a discrete set of

alternative systems whose performance can each be evaluated via stochastic simulation,

and we wish to allocate a limited simulation budget among them to find one whose

expected performance is as large as possible. See Section 1.3 for reviews of literature.

We study this problem in a Bayesian context, where we place a prior probability dis-

tribution on the values of the alternatives, and use value of information (VOI) calcula-

tions within a knowledge-gradient (KG) sampling algorithm to decide which alternative,

or collection of alternatives, would be most useful to sample next. The advantage of do-

ing so is that making decisions based on the VOI automatically addresses the exploration

versus exploitation tradeoff, and tends to reduce the number of function evaluations re-

quired on average to reach a given solution quality, potentially (but not necessarily) at

the cost of requiring more computation to decide where to sample.

The prior probability distribution that we consider is a multivariate normal distribu-

tion, and allows for correlation in our prior belief between two alternatives. This models

a belief that two alternatives with similar characteristics often have similar expected per-

formance, and allows the algorithm that we construct to do well even in problems where

the number of alternatives is much larger than the number of samples that we can take.

We allow common random numbers (CRN), in which multiple alternatives are sim-

ulated using the same stream of random numbers. This induces correlation in the noise,

which can be advantageous for optimization when the correlation is positive, because it

allows more accurate estimation of the differences between alternatives’ values.
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Our analysis differs from this previous literature by allowing the use of CRN. This

has been perceived to be difficult, because sampling with CRN makes it difficult to

compute the VOI, and to maintain a closed-form posterior distribution. We overcome

these difficulties by calculating the VOI for observing the difference in value between

two alternatives, which can be done analytically, and by calculating the posterior with

adaptively updated point estimates of the noise covariance. We show that, in the context

of VOI-based algorithms, using CRN can greatly improve performance.

Sampling with correlated means and CRN in the Bayesian setting using VOI meth-

ods has been considered by Chick and Inoue (2001a), but assumed two-stage sampling

rather than fully sequential sampling, and restricted attention to conjugate prior distribu-

tions for the unknown means. Others have considered sampling with CRN in the optimal

computing budget allocation framework (Fu et al. 2004), in the indifference-zone set-

ting (Clark and Yang 1986, Nelson and Matejcik 1995), and in the multiple comparisons

problem (Yang and Nelson 1991, Nakayama 2000, Kim 2005). The current work differs

from this previous work in its focus on problems with many alternatives, enabled by a

multivariate normal prior distribution with arbitrary covariance.

We present three techniques that reduce the computation required to find a point, or

pair of points, with a large VOI. The first is to use the gradient of the VOI in performing

this search, calculating it over an embedding of our discrete alternatives into a contin-

uous space. This use of the gradient of the VOI differs from the more common use

of gradients of the response surface in optimization. The second is to consider a VOI

with a restricted set of implementation decisions. The third is to use data structures that

avoid enumerating alternatives, instead tracking only those alternatives that have been

sampled, and reconstructing required portions of the posterior distribution as needed.

This is standard in GP regression, but contrasts with previous work on optimization via
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simulation with CRN (Clark and Yang 1986, Nelson and Matejcik 1995, Chick and In-

oue 2001a, Fu et al. 2004). These three techniques were applied in Scott et al. (2011) to

a continuous setting without CRN.

We also provide an almost sure guarantee of convergence to the global optimum,

as the number of samples taken grows without bound, when parameters are known. In

addition to allowing correlated sampling, this theoretical result contrasts with Scott et al.

(2011) in having conditions that are easier to verify. It also contrasts with other work

that focuses on convergence to local optima (Hong and Nelson 2006, Xu et al. 2010,

Wang et al. 2013).

The current chapter extends a report of our preliminary work (Frazier et al. 2011)

in a number of ways. It provides an enhanced version of the algorithm that scales to

much larger problems, a theoretical analysis showing convergence to a global optimum,

a derivation of a maximum likelihood estimation method for estimating covariance pa-

rameters from samples observed with CRN, and additional numerical comparisons with

other algorithms on larger problems.

We begin in Section 3.1 by formally defining our problem and the statistical model

in which we perform inference. Section 3.2 describes a generic sampling algorithm that

forms the basis for specific sampling algorithms defined later in the chapter. Section

3.3 defines the VOI and the corresponding KG factor, and shows how it can be com-

puted in the context of optimization via simulation with correlated sampling. Section

3.4 takes these VOI and KG computations, and uses them to create allocation rules for

the KG sampling algorithm. Section 3.5 states theoretical results on consistency of KG

algorithms, showing that these algorithms can produce consistent estimates of the global

optimum in the limit as the sampling budget grows large, when parameters are known.

Section 3.6 discusses practical implementation issues, regarding prior distributions and
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computation of the KG algorithm’s decisions. Numerical results in Section 3.7 show a

distinct advantage to the ability to sequentially sample with CRN in discrete optimiza-

tion via simulation problems. Appendices prove theoretical results and derive gradient

and statistical estimation results used in the algorithm.

3.1 Sampling Model and Mechanism for Posterior Inference

Consider a collection of k alternatives with stochastic performance. If we sample from

all k alternatives together using CRN, then we observe a normal random vector. Let the

mean vector of this normal distribution be θ = [θ(1), . . . ,θ(k)]T , and let its covariance

matrix be Λ, where T denotes matrix transposition. We wish to find the alternative x

with the largest sampling mean θ(x).

We use a Bayesian formulation, in which we begin with a multivariate normal prior

on θ ,

θ ∼N (µ0,Σ0). (3.1)

The choice of Σ0 allows for conjugate prior distributions for θ (Chick and Inoue 2001a)

or for GP priors (Rasmussen and Williams 2006), which are related to kriging models

(Cressie 1993). A parametric family can be used to specify µ0 and Σ0 in terms of a

function taking the alternatives and few additional parameters as arguments. In practice,

the parameters specifying µ0 and Σ0, as well as the sampling covariance Λ, are unknown,

but we will initially assume they are fully known for simplicity. Then, we will relax this

assumption in Section 3.6.

In this chapter, the ith entry of a length-k vector v (e.g., θ and µ0) is written v(i),

and the (i, j)th entry of a k-by-k matrix M (e.g., Σ0 and Λ) is written M(i, j). Moreover,

for an ordered collection of m alternatives ~x = (x(1),x(2), . . . ,x(m)) with elements x(i) ∈
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{1,2, . . . ,k} for each i, we use v(~x) to denote the length-m sub-vector of v with the

ith entry equal to v
(

x(i)
)

. Let ~x′ with elements in {1,2, . . . ,k} be another vector of

alternatives with m′ entries. We denote by M(~x,~x′) the m-by-m′ sub-matrix of M with

the (i, j)th entry equal to M
(

x(i),x′( j)
)

.

3.1.1 Sampling Model and Distribution of Outputs

At each time n = 1,2, . . . we choose a set of the alternatives to sample, specified as a row

vector~xn with elements in {1,2, . . . ,k}, and sample each of the chosen alternatives once

using CRN. Each alternative may appear at most once in~xn. We then observe a column

vector ~yn, with one entry for each alternative sampled. The conditional distribution of

~yn given~xn, θ is assumed to be Gaussian and independent of previous observations,

~yn | θ ,~xn,(~xm,~ym : m < n) ∼N (θ (~xn) ,Λ(~xn,~xn)) . (3.2)

Although (3.2) is general, in our algorithm below, the sampling decision~xn is either

a singleton xn, with corresponding observation yn, or a pair of alternatives
(

x(1)n ,x(2)n

)
,

with corresponding observations (y(1)n ,y(2)n ). The notation~xn and~yn indicates the general

case, in which one or more alternatives is sampled, while xn and yn always indicates a

single alternative. The sampling distribution of (3.2) for these two cases (singletons and

pairs) are

yn | θ ,xn ∼ N (θ(xn),Λ(xn,xn)) , and

(y(1)n ,y(2)n ) | θ ,
(

x(1)n ,x(2)n

)
∼ N


θ

(
x(1)n

)
θ

(
x(2)n

)
 ,
Λ

(
x(1)n ,x(1)n

)
Λ

(
x(1)n ,x(2)n

)
Λ

(
x(2)n ,x(1)n

)
Λ

(
x(2)n ,x(2)n

)

 .

These sampling distributions are sufficient for calculating posterior distributions
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from observations in the sampling algorithms that we propose, but when computing

the VOI in Section 3.3 below, we will also consider three additional sampling distribu-

tions. First, we will consider the sampling distribution of observing only the difference

between a pair
(

x(1)n ,x(2)n

)
of alternatives,

y(1)n − y(2)n | θ ,
(

x(1)n ,x(2)n

)
∼N

(
θ(x(1)n )−θ(x(2)n ),Λ(x(1)n ,x(1)n )+Λ(x(2)n ,x(2)n )

−2Λ(x(1)n ,x(2)n )
)
.

Second, we will consider the sampling distribution of observing not necessarily one

but βn ≥ 1 vectors of samples from the distribution given by (3.2), each generated using

an independent CRN stream. We do this to compute an average VOI per sample. The

value of βn can be fixed beforehand, or can be chosen adaptively. We generalize ~yn to

refer to the average of these βn observations, so

~yn | θ ,~xn,βn ∼N (θ (~xn) ,Λ(~xn,~xn)/βn) . (3.3)

Third, we will consider the sampling distribution of observing βn ≥ 1 independent

differences between a pair
(

x(1)n ,x(2)n

)
, continuing to let ~yn = (y(1)n ,y(2)n ) denote the av-

erage of these observations,

y(1)n − y(2)n | θ ,
(

x(1)n ,x(2)n

)
,βn ∼N

(
θ(x(1)n )−θ(x(2)n ),β−1

n

[
Λ(x(1)n ,x(1)n )+Λ(x(2)n ,x(2)n )

−2Λ(x(1)n ,x(2)n )
])

.

(3.4)

These last three sampling distributions are used only to compute the VOI. In the sam-

pling algorithms that we propose, we always observe from both alternatives when sam-

pling from a pair, and take only one sample at a time from a singleton or pair even when

we calculate a VOI with βn > 1.
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3.1.2 Posterior Distribution for Unknown Means and its Computa-

tion

With the sampling scheme in (3.2), and the assumption that the sampling covariance ma-

trix Λ is known, we can compute a closed-form expression for the posterior distribution

on θ . We let En and Varn indicate the conditional expectation and variance respectively

with respect to the data ~x1,~y1,~x2,~y2, . . . ,~xn,~yn, where each ~yn is sampled according to

(3.2). Define µn = Enθ and Σn = Varnθ . The posterior distribution on θ is normal (see,

e.g., Gelman et al. 2004, Sec. 14.6),

θ |~x1,~y1,~x2,~y2, . . . ,~xn,~yn ∼ N (µn,Σn) ,

where the posterior mean µn and variance Σn can be computed analytically, either di-

rectly from the prior and the full data, or recursively, updating as each new datapoint

~xn,~yn is added.

When the number of alternatives k is large, it is computationally infeasible to store

all of µn and Σn, because Σn is a k-by-k matrix. Therefore, we use a method commonly

used in GP regression, which calculates the posterior distribution on the sampled alter-

natives and any desired additional alternatives, without requiring a k-by-k matrix. We

briefly describe this method here, giving some notation to be used later, and focusing on

singletons and pairs.

Let Xn denote the cumulative row vector of alternatives sampled from time 1 to time

n, i.e., the concatenation of~x1,~x2, . . . ,~xn into a row. Alternatives appear more than once

if they are sampled more than once. For example, if~x1 = x1 and~x2 =
(

x(1)2 ,x(2)2

)
, then

X1 = (x1) and X2 =
(

x1,x
(1)
2 ,x(2)2

)
. In addition, if x1 = x(1)2 = x then X2 =

(
x,x,x(2)2

)
.

In Section 3.3 we will compute the VOI for an arbitrary (singleton or pair) sampling
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decision ~x at time n+ 1. Let the vector Xn,~x denote the row concatenation of Xn and

~x. To compute the VOI, we require the posterior distribution on θ
(
Xn,~x

)
, which is

multivariate normal with mean µn
(
Xn,~x

)
and covariance Σn

(
Xn,~x,Xn,~x

)
. We introduce

the following expressions for computing these quantities. Let Yn be the cumulative

column vector of sampling observations up to time n, i.e., the columnar concatenation of

~y1,~y2, . . . ,~yn, so each entry of Yn is the observation from the corresponding entry in Xn.

Let Γn be the block diagonal matrix with n blocks: Λ(~x1,~x1),Λ(~x2,~x2), . . . ,Λ(~xn,~xn).

We then define three quantities, the measurement residual Ỹn, the residual covariance

Sn, and the optimal Kalman gain Kn(~x), by

Ỹn = Yn−µ0 (Xn) , Sn = Σ0 (Xn,Xn)+Γn, Kn(~x) = Σ0
(
Xn,~x,Xn,~x

)
L [Sn]

−1 .

(3.5)

Here, the matrix L is defined by concatenating an |Xn|-by-|Xn| identify matrix with

an |Xn|-by-|~xn| matrix of zeros, so L = [I|Xn|,
~0]T if ~x = x, and L = [I|Xn|,

~0,~0]T if ~x =(
x(1),x(2)

)
. Here and elsewhere, | · | denotes the length of a vector. We will assume in

Section 3.5 that Σ0 and Λ are positive definite. That assumption implies that Σ0 (Xn,Xn)

is positive semidefinite and that Γn is positive definite, so that Sn is positive definite and

that its inverse [Sn]
−1 exists.

The posterior mean and covariance matrix of θ
(
Xn,~x

)
at time n are then given re-

spectively by

µn
(
Xn,~x

)
= µ0

(
Xn,~x

)
+Kn(~x)Ỹn, (3.6)

Σn
(
Xn,~x,Xn,~x

)
=
(

I|Xn,~x|−Kn(~x)LT
)

Σ0
(
Xn,~x,Xn,~x

)
. (3.7)

In implementing (3.5), one should not invert Sn directly, as doing so when n is large

is numerically unstable. Instead, one can perform a Cholesky decomposition, and then
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solve a numerical system, as is described in Sec. 2.2 of Rasmussen and Williams (2006).

This is more stable, and faster. For further discussion of implementation issues in GP

regression, see Rasmussen and Williams (2006).

3.2 Generic Sampling Algorithm

We now formalize our proposed DOvS algorithm. The notation in Section 3.1 allows us

to formalize it in a way that is amenable to handling a very large number of alternatives:

statistics are tracked only for alternatives that have been sampled or are being considered

for sampling in the next stage.

The algorithm samples in a sequential manner. This requires the specification of

an allocation rule, which maps Xn,Yn to a set of alternatives to sample next, and a

stopping rule, which decides whether or not to stop sampling. The allocation rules we

use are based on VOI principles described in Section 3.3 and are presented in Section

3.4. The default stopping rule we use in this chapter is to stop after a pre-specified

number of samples is observed.

The generic algorithm below is written to be able to handle either a known or an un-

known sampling covariance matrix Λ. When it is unknown, as is typical in applications,

the sampling covariance parameters are estimated. In this case, we also maintain esti-

mates of the parameters µ0 and Σ0 defining the prior distribution in an empirical Bayes

fashion, as described below.

1. Initialize: Select an allocation rule and a stopping rule. If the sampling covari-

ance Λ and the mean vector µ0 and the covariance matrix Σ0 for the unknown

sampling means θ are known, then specify these parameters, initialize n = 0 to
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be the number of stages of sampling done so far, and initialize X0 and Y0 to be

empty vectors. If Λ, µ0 and Σ0 are not all known, then describe the functional

forms of Λ, µ0 and Σ0 in terms of a collection of parameters (see Section 3.6.1),

and take an initial stage of samples to estimate those parameters, setting n, Xn

and Yn accordingly (see Section 3.6.2).

2. Update parameters (Empirical Bayes): If the parameters determining Λ are

unknown and their estimates are to be updated, then use the maximum likelihood

estimator described in Section 3.6.2 to estimate them using all data (collected in

Xn and Yn).

3. Check allocation and stopping rule: If the stopping rule says to stop sampling,

go to Step 5. Otherwise, use the allocation rule to choose a set of alternatives,

~xn+1, to sample next.

4. Sample: Sample~yn+1 using CRN according to (3.2) with the chosen~xn+1. Con-

catenate ~yn+1 with Yn to get Yn+1, and ~xn+1 with Xn to get Xn+1. Increment n

and go back to Step 2.

5. Selection rule: Select as the best the alternative in Xn with the largest posterior

mean. The can be found by computing µn(Xn) according to (3.6) with Xn,~x =

Xn, and then taking the largest component of this vector.

3.3 Value of Information

In this section we derive analytic expressions for computing the VOI, resulting from

sampling singletons, or sampling the difference between pairs of alternatives. These

VOI calculations are then used to derive our allocation rules in Section 3.4 for use in the

algorithm of Section 3.2.
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VOI is a concept which encompasses the expected value of sample information

(EVSI) and the expected value of perfect information (EVPI) (Raiffa and Schlaifer

1968). Information is valued according to the expected improvement it produces in some

decision to be made later. In this chapter, the decision to be made later is which alterna-

tive to select as the best and to implement in reality. We call this decision the “implemen-

tation decision.” The value of an implementation decision x is θ(x) and has expectation

µn+1(x) under the posterior at time n+ 1. Thus, the expected value of the best imple-

mentation decision that can be made at time n+1 is maxx∈{1,2,...,k} µn+1(x) = max µn+1.

The increment in this value in going from time n to time n+ 1 is max µn+1−max µn

and depends on yn+1. Here, the VOI is the expected value of this increment, under the

posterior at time n, under the hypothetical that an alternative is to be selected after a

single stage of sampling.

In this framework, the VOI for a set of β samples collected by observing~yn+1 with

a general sampling decision~x at time n+1 according to (3.2) can be written

Vn(~x,β ) = En [max µn+1 |~xn+1 =~x,βn+1 = β ]−max µn. (3.8)

If the implementation decision is restricted to a set An(~x) that may depend upon on

Xn,Yn and~x, then the VOI is

Vn (~x,An(~x),β ) = En [max [µn+1 (An(~x))] |~xn+1 =~x,βn+1 = β ]−max [µn (An(~x))] .

(3.9)

When An(~x) = {1,2, . . . ,k}, then Vn(~x,An(~x),β ) = Vn(~x,β ). This VOI also satisfies

a monotonicity property: if A ⊆ B then Vn(~x,A,β ) ≤ Vn(~x,B,β ). This monotonicity

property implies that Vn(~x,An(~x),β ) is actually a lower bound on Vn(~x,β ).

There is no restriction on the implementation decision in practice, but we use

Vn(~x,An(~x),β ) as an approximation to Vn(~x,β ) because it can be computed more
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quickly, especially when |An(~x)| is small. Methods for choosing An(~x) are discussed

in Section 3.6.3.

3.3.1 Predictive Distribution for Posterior Means to be Observed

The VOI in (3.8) or (3.9) depends on the predictive distribution for µn+1(A) that re-

sults from a particular decision to sample ~xn+1 for βn+1 times, for any given set

A. We consider two specific types of sampling decisions ~xn+1: observing singletons

~xn+1 = (xn+1) as in (3.3); and observing the difference between a pair of alternatives

~xn+1 =
(

x(1)n+1,x
(2)
n+1

)
as in (3.4). Observing either the singleton yn or the difference

y(1)n − y(2)n admits an analytic expression for Vn(~x,A,β ) below. Observing both y(1)n and

y(2)n together does not: we use the VOI of sampling their difference as a lower bound on

the VOI of observing both values. This lower bound proves to be useful in numerical

experiments.

For both singletons and differences between pairs, the predictive distribution is

µn+1(A) |Xn,Yn,~xn+1,βn+1 ∼ N
(

µn(A), σ̃n (~xn+1,A,βn+1) σ̃n (~xn+1,A,βn+1)
T
)
,

(3.10)

where σ̃n (~xn+1,A,βn+1) is a |A|×1 vector defined respectively in the two cases as

σ̃n(x,A,β ) =
Σn(A,x)√

β−1Λ(x,x)+Σn(x,x)
,

σ̃n

((
x(1),x(2)

)
,A,β

)
=

Σn

(
A,x(1)

)
−Σn

(
A,x(2)

)
√

β−1P+Qn
,

(3.11)

which follows directly from Frazier et al. (2011, Sec. 2.2). Here, Σn(A,x) is a column

vector containing the entries from Σn in column x with rows in A, and P and Qn are
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defined by

P = Λ

(
x(1),x(1)

)
+Λ

(
x(2),x(2)

)
−2Λ

(
x(1),x(2)

)
,

Qn = Σn

(
x(1),x(1)

)
+Σn

(
x(2),x(2)

)
−2Σn

(
x(1),x(2)

)
.

(3.12)

This expression will be used in Section 3.3.2 to compute the VOI in (3.9) explicitly.

3.3.2 Evaluation of the Value of Information

We now provide explicit expressions for the VOI in (3.9) under observations of sin-

gletons and of differences between pairs. From (3.10), we know that when Xn, Yn,

~xn+1 and βn+1 are given, µn+1(A) is equal in distribution to µn(A)+ σ̃n(~xn+1,A,βn+1)Z,

where Z is a standard normal random variable. Using this observation in (3.9) shows

that

Vn (~x,An(~x),β ) = En [max [µn (An(~x))+ σ̃n (~x,An(~x),β )Z]]−max [µn (An(~x))] . (3.13)

To compute (3.13), we consider three cases: when An(~x) has one, two, or more than

two elements. This third case is the most common in the allocation rules developed in

Section 3.4.

When An(~x) has exactly one element, one can show using the tower property of

conditional expectation that Vn (~x,An(~x),β ) = 0. In other words, if only one alternative

can ever be selected, information has no value.

When An(~x) has exactly two elements, computation of Vn (~x,An(~x),β ) is similar to

related computations for the VOI in a pairwise comparison (Frazier et al. 2008, Jones

et al. 1998, Chick and Inoue 2001a). Namely, let ∆ be the absolute value of the difference

of µn(x) between the two different x ∈ An(~x), and let s be the absolute value of the

61



difference of the two components of σ̃n (~x,An(~x),β ). Then

Vn (~x,An(~x),β ) = s f (−∆/s),

where f (−z) = ϕ(z)−zΦ(−z), and ϕ and Φ are the density and cumulative distribution

functions, respectively, of a standard normal random variable.

When An(~x) contains more than two elements, computation of Vn (~x,An(~x),β ) is

more involved, but still can be performed analytically. Recalling (3.13), we see that we

can write

Vn (~x,An(~x),β ) = h(µn (An(~x)) , σ̃n (~x,An(~x),β )) , (3.14)

where h(a,b) =E [maxi a(i)+b(i)Z]−maxi a(i) for two vectors a and b of equal length.

Frazier et al. (2008) gives an exact algorithm for computing h and Frazier (2013) pro-

vides a Matlab implementation. More details are given below in Section 3.6.3.

In situations where some entries in the sampling covariance Λ are negative, inde-

pendent sampling for the pairs of alternatives corresponding to these entries is preferred

over correlated sampling. More generally, the VOI increases as the sampling correlation

increases. This is shown by the following lemma, and is used in our sampling algorithm

to improve performance.

Lemma 1. Suppose ~x =
(

x(1),x(2)
)

. Let µn, Σn, Λ

(
x(1),x(1)

)
, Λ

(
x(2),x(2)

)
be fixed.

Then for any A and β , Vn (~x,A,β ) is an increasing function of the sampling correlation

between x(1) and x(2),

ρ

(
x(1),x(2)

)
=

Λ

(
x(1),x(2)

)
Λ
(
x(1),x(1)

)
Λ
(
x(2),x(2)

) .
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3.3.3 Knowledge Gradient Factors

The knowledge-gradient (KG) factor is a metric that measures the VOI per sample,

when a given alternative~x is sampled β times before an implementation decision. Qual-

itatively, it is a rate of information per sample. The allocation rules in Section 3.4 will

make use of the KG factor when making a sampling decision at each stage of sampling.

The KG factor uses the predictive distribution in (3.10) and the computational cost c(~x)

of sampling at~x, measured by the computation time required.

Thus, the KGβ factor at time n for observing the value at a given singleton x ∈

{1,2, . . . ,k} is

ν
KGβ

n (x) = Vn (x,An(x),βn)
/
[βnc(x)], (3.15)

where βn and An(·) may be chosen in an implementation-specific way (see Section

3.6.3). Similarly, the KGβ factor at time n for observing the difference in value be-

tween a pair of alternatives
(

x(1),x(2)
)

is

ν
KGβ

n

(
x(1),x(2)

)
= Vn

((
x(1),x(2)

)
,An

(
x(1),x(2)

)
,βn

)/[
βnc
((

x(1),x(2)
))]

.

(3.16)

If the computation time for a sample does not depend on~x, then c(~x) = c|~x|, where

c is a positive constant cost per sample, and |~x| is the length of~x. We adopt this model

in numerical tests below.

3.4 Allocation Rules

This section discusses allocation rules, which use previous sampling information to de-

cide how to take the next sample or samples, and which appear in Step 3 of the generic
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sampling algorithm in Section 3.2. The allocation rules discussed all search over a set

of possible sampling decisions to find the one with the largest KGβ factor, but differ in

the way in which this search is performed.

Let Ξ = {1,2, . . . ,k}∪
{(

x(1),x(2)
)
∈ {1,2, . . . ,k}2 : x(1) 6= x(2)

}
denote the set of

all singletons and pairs. For each allocation rule below, we let Ξn ⊆ Ξ denote a possibly

smaller set, and at each iteration n, the allocation rule selects the sampling decision that

maximizes the KGβ factor from Section 3.3.3 over this set,

~xn = argmax
~x∈Ξn

ν
KGβ

n (~x). (3.17)

Certain ways of choosing the Ξn will be shown to improve the computation time of the

algorithm while retaining theoretical convergence guarantees (in Section 3.5) and good

empirical performance (in Section 3.7).

When calculating the KGβ factor ν
KGβ

n (~x), we replace strictly negative entries in the

sampling covariance matrix Λ by 0, because Lemma 1 shows that this generates a larger

VOI and corresponding KGβ factor. Then, if a pair of alternatives whose sampling

covariance was replaced by 0 is selected for simulation by our allocation rule, we use

independent sampling rather than CRN to simulate these alternatives. Otherwise, we

use CRN when sampling pairs.

The expression (3.17) depends upon the choice for Ξn, and implicitly on the choice

of βn and An(~x) used to calculate ν
KGβ

n (~x). Thus, different allocation rules are specified

by different methods for choosing Ξn, βn, and An(~x). We define a class of allocation

rules, called KG2
β

allocation rules, to be any that includes at least one singleton and

one pair of alternatives in Ξn, and includes both x(1) and x(2) in An(~x), if~x =
(

x(1),x(2)
)

,

for each n. Within this larger class, we now define two more specific types of KG2
β

allocation rules, which place additional conditions on Ξn.
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An idealized KG2
β

allocation rule (proposed in Frazier et al. 2011) is one in which

Ξn = Ξ for each n. Thus, an idealized KG2
β

allocation rule looks over all the singleton

and pairwise-difference KGβ factors and finds the largest one. A specific instance of an

idealized KG2
β

allocation rule would require specifying a choice for βn and An(~x).

When k is large, the exhaustive maximization performed by an idealized KG2
β

rule

is too computationally intensive. Frazier et al. (2011) proposed an alternative to this

exhaustive maximization, which checks only singletons and a subset of pairs of alterna-

tives, but even that approach is too computationally intensive when k� 103 and is not

easily amenable to theoretical analysis.

To allow for better performance in large problems in a way that also supports the-

oretical analysis, we propose here a new class of KG2
β

allocation rules, called acceler-

ated KG2
β

allocation rules, which can be used when the alternatives are embedded in an

integer lattice, or some other space that supports local search. An accelerated KG2
β

al-

location rule is one that chooses at least one singleton from {1,2, . . . ,k} and at least one

pair from
{(

x(1),x(2)
)
∈ {1,2, . . . ,k}2 : x(1) 6= x(2)

}
, adding these to Ξn. Then, starting

at each chosen singleton or pair~x, it applies a function f̃ , which we call a “local search

function”, to produce a point f̃ (~x), and adds this point to Ξn as well. The singleton or

pair in Ξn with the best KG factor is then selected for evaluation, according to (3.17).

The function f̃ can be defined in an implementation specific way, but would usually be

designed to find a local optimum of the KG factor in the neighborhood of the passed

input sampling decision.

Thus, an accelerated KG2
β

allocation rule is specified by a rule for choosing the start-

ing singletons and pairs, and for βn, An(~x), and f̃ . One choice for f̃ , implemented using

a gradient-based local search appropriate for alternatives corresponding to an integer

lattice, is provided in Section 3.6.3. Another choice, the identity map, f̃ (~x) =~x, results
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in a form of random search.

The class of KGβ allocation rules is defined analogously to the class of KG2
β

allocation rules, except that only singletons (not pairs) may be sampled. That is,

Ξn ⊆ {1,2, . . . ,k} in (3.17) for KGβ allocation rules. The notions of idealized and ac-

celerated KGβ allocation rules are defined as for the KG2
β

allocation rules above, except

that pairs are not included in the search. When Ξn = {1, . . . ,k}, An(~x) = {1, . . . ,k}, and

βn = 1, we recover the allocation rule proposed in Frazier et al. (2009).

3.5 Convergence Properties

This section shows that the generic sampling algorithm from Section 3.2, when used

with known Λ, µ0, and Σ0, and with a KG2
β

allocation rule from Section 3.4 satisfying

mild conditions, samples every alternative infinitely often, so that we learn the value of

every alternative, and are able to find a global maximum x∗ ∈ argmaxx θ(x) almost surely

in the limit as the number of samples grows without bound. Frazier et al. (2009) proved

these consistency results for the idealized KGβ algorithm with An(~x) = {1, . . . ,k} and

βn = 1, and so the results here can be viewed as a generalization to KG2
β

and to algo-

rithms that do not require exhaustive optimization over all alternatives. The presence

of sampling correlations, however, require substantially different proof techniques from

those used in Frazier et al. (2009).

These results depend on two assumptions and a condition, which are stated precisely

below. The first assumption states that we require the parameters governing Λ, µ0,

and Σ0 to be known and fixed. The second assumption states that there is genuine

uncertainty about each alternative’s performance. The condition restricts the choice

of KG2
β

allocation rule, and is satisfied by the idealized KG2
β

and accelerated KG2
β
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allocation rules from Section 3.4 as long as every~x ∈ Ξ is chosen as a starting point for

the local search infinitely often, with probability one.

Assumption 1. µ0, Σ0 and Λ are known.

Assumption 2. Σ0 and Λ are positive definite.

Condition 4. Each~x ∈ Ξ is included in Ξn infinitely often, with probability 1.

We now state our main result: that we become certain of the vector of true means

θ eventually, as the conditional variance Σn(x,x) of θ(x) converges to 0, and the condi-

tional mean µn(x) converges to θ(x), for each x; and that the implementation decision

that would be chosen if sampling stopped at time n, argmaxx µn(x), is eventually glob-

ally optimal. The proof may be found in Appendix B.1.

Theorem 1. If Assumptions 1 and 2 hold, and if sampling occurs according to a KG2
β

allocation rule satisfying Condition 4, then: limn→∞ Σn(x,x) = 0 almost surely for each

x; limn→∞ µn(x) = θ(x) almost surely and in L2 for each x; and limn→∞ argmaxx µn(x) =

argmaxx θ(x) almost surely.

3.6 Implementation Features and Practicalities

This section discusses practical implementation choices arising in the generic algorithm

in Section 3.2 and allocation rules in Section 3.4. This includes the specification of the

functional form of the prior distribution and structure of the initial stage of sampling in

Step 1, the empirical Bayes estimator used to assess µ0, Σ0 and Λ in Step 2, the choice

of An(~x) and βn used in KG2
β

allocation rules, and derivations of the gradients of the

VOI and KG factors used by accelerated KG2
β

allocation rules. The convergence results
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in Section 3.5 do not depend on how these implementation issues are addressed, as long

as Assumptions 1, 2 and Condition 4 are valid.

Several of the implementation choices discussed assume that the k alternatives may

be represented as elements in a lattice in Zd . For example, in a manufacturing problem,

there may be d decision variables, each of which represents the number of resources

(machines, employees with given skill sets, etc.) that combine to define a specific al-

ternative manufacturing system design. That is, for any alternative x, we can specify its

grid coordinates {ζi(x)}d
i=1.

3.6.1 Functional Form of the Prior Distribution and Sampling Co-

variance (Step 1 of Generic Sampling Algorithm)

Step 1 of the generic sampling algorithm requires specification of the functional form of

the sampling covariance and prior distribution for the unknown means, either fully, or

more frequently in terms of parameters to be estimated later in Step 2. We discuss this

choice here.

The functional form of the sampling covariance Λ is considered first. While several

different forms are possible, we assume compound sphericity for simplicity. The com-

pound sphericity assumption means that Λ can be specified with exactly two parameters:

a common sampling variance σ2
ε on the diagonals and a common sampling correlation

across any pair of alternatives, ρ . All off-diagonal elements of Λ are the same. While

the compound sphericity assumption is strong, it has been used by others to model the

effect of CRN (Schruben and Margolin 1978, Tew and Wilson 1992), including in the

context of CRN with kriging (Chen et al. 2012).
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We now discuss the functional form of the prior distribution for the unknown means.

When the alternatives may be embedded in a lattice, there may be a belief that the per-

formance of two alternatives that are ‘near’ each other in this lattice are more likely to be

similar than the performance of two alternatives that are ‘distant’ from each other. This

motivates the notion that the prior distribution may be a multivariate normal distribution

under which the covariance between the values of any two alternatives is a decreasing

function of their distance from each other on the lattice. This is analogous to covariance

functions used in GP priors over continuous functions. Inspired by this link to GP priors,

we adopt the commonly used Gaussian kernel.

Σ0
(
x,x′
)
= σ

2
0 exp

{
−

d

∑
i=1

αi
[
ζi(x)−ζi(x′)

]2}
. (3.18)

Here σ2
0 is the homogeneous prior variance of the unknown means and ~α = {αi}d

1 is a

vector of scaling parameters. We also let η be a parameter for the mean in this model

and let~1 be a vector of k ones, so that (3.18) and µ0 = η~1 define the prior distribution

in (3.1).

Specification of the prior distribution parameters µ0,Σ0 can therefore be accom-

plished by specifying σ2
0 , ~α , and η . Kernels other than that in (4.11) would be handled

similarly.

3.6.2 Initial Stage of Sampling (Step 1 of Generic Sampling Al-

gorithm) and Empirical Bayes Parameter Update (Step 2 of

Generic Sampling Algorithm)

Here we discuss the initial stage of sampling performed in Step 1, and the periodic em-

pirical Bayes updates performed in Step 2 of the generic sampling algorithm. These
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steps are used when Λ, µ0 or Σ0 or some parameters of their functional forms are un-

known, and require some estimation.

If an initial stage of sampling is required, we randomly select a set ~x01 of N1 alter-

natives, sample once from each of them using CRN, sort them in descending order, and

then take another sample from each of the first N2 alternatives, denoted by the vector~x02,

using CRN (N2 < N1). We initialize the number of stages sampled so far to be n = 2

(one for each use of CRN), X2 to be the row concatenation of~x01 and~x02, and Y∈ to be

the outputs at those alternatives.

Once this initialization stage of samples is complete, and also periodically thereafter

according to a fixed schedule, we estimate the parameters determining µ0, Σ0, and Λ in

Step 2 of the generic sampling algorithm using a maximum likelihood estimator (MLE).

Appendix B.2 derives a MLE assuming that µ0, Σ0, and Λ take the functional form spec-

ified in Section 3.6.1, which has parameters σ2
0 , ~α , η , σ2

ε and ρ . This use of maximum

likelihood estimation to estimate parameters within a Bayesian model is known as an

empirical Bayes approach, and is common in GP regression. Relaxing the compound

sphericity assumption or using a different GP prior in our proposed algorithm simply

involves providing an alternative MLE for Λ, µ0 and Σ0.

We let N3 denote the set of times at which the MLE will be performed, so N3 contains

N1 +N2. If computation time for the allocation rule is unimportant (e.g., because the

simulations themselves are very time-consuming), one may perform the MLE before

each new stage of sampling, in which case N3 = {N1+N2,N1+N2+1,N1+N2+2, . . .}.

In other situations, because computation of the MLE may be time-consuming, it may

be beneficial to avoid recomputing the MLE at every stage. In our implementation, we

update the MLE more frequently at first when additional samples tend to have more

impact on parameter estimates, and then less frequently as more samples are acquired.
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If the parameters are known, we may skip these updates by setting N3 = /0.

3.6.3 Local Search Function and Other Implementation Choices in

KG Allocation Rules (Step 3 of Generic Sampling Algorithm)

This section discusses implementation-specific choices for An(~x) and βn in idealized

and accelerated KGβ and KG2
β

allocation rules. Additionally, for accelerated allocation

rules, it discusses the choice of Ξn and the local search function f̃ .

Except where otherwise noted in our numerical experiments, we set βn = 1 and

we chose An(~x) to be the alternatives in ~x and the best other sampled alternative given

the observations available. So, for singletons ~x = (x), we set An(x) = {x,x∗}, where

x∗ = argmaxx′∈Xn\{x} µn(x′). For pairs, ~x = (x(1),x(2)), we set An (~x) =
{

x(1),x(2),x∗
}

,

where x∗ = argmaxx′∈Xn\{x(1),x(2)} µn(x′).

We now describe the choice of Ξn used within accelerated KG2
β

and KGβ allocation

rules in our numerical experiments. Denote the best and second best alternative (in terms

of posterior mean) after n samples as

xn,b = argmax
x∈Xn

µn(x), xn,s = argmax
x∈Xn\{xn,b}

µn(x).

In accelerated KGβ allocation rules, eligible sampling decisions Ξn were xn,b, xn,s, a ran-

domly chosen singleton, and the values of f̃ applied to those three sampling decisions.

In accelerated KG2
β

allocation rules, eligible sampling decisions Ξn were xn,b, a random

singleton,
(
xn,b,xn,s

)
, a random pair of alternatives, and the values of f̃ applied to those

five sampling decisions.

In first stages of sampling, Xn may have too few elements for x∗, xn,b or xn,s to be

defined. In such a case, a random sampling decision is used instead.
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We now describe the local search function f̃ used within accelerated KG2
β

and KGβ

allocation rules. This local search function assumes that the alternatives correspond

to points on a grid embedded in a continuous space, as discussed in the beginning of

Section 3.6, and also assumes that the prior is of the form specified in Section 3.6.1.

This structure allows us to determine the gradient of the KG factors, and to use the

gradient to locally optimize the KG factor in a neighborhood of~x, where~x is interpreted

as varying continuously. We round that local optimum to the nearest feasible grid point

to obtain f̃ (~x).

We first derive the gradient of the VOI, as it is required to determine the gradient

of the KG factor. Specifically, we assess the gradient of Vn (x,An(x),β ) in Rd and of

Vn

(
(x(1),x(2)),An

(
x(1),x(2)

)
,β
)

in R2d , where An(~x) is as described above.

We abuse notation slightly by writing the gradient of Vn (x,An(x),β ) in Rd in terms

of derivatives with respect to the d coordinates of x rather than with respect to the

ζi(x), in order to simplify notation. Similarly, for pairs ~x, we write the gradient of

Vn (~x,An (~x) ,β ) in R2d by referring directly to the alternatives ~x rather than indirectly

through the function ζi that embeds them in the grid.

First consider the case of the singleton ~x = x. Recall that Vn (x,An(x),β ) =

s f (−∆/s), where ∆ = |µn(x)− µn(x∗)|,s = |σ̃n(x,x,β )− σ̃n(x,x∗,β )|, and f (z) =

ϕ(z)+ zΦ(z). Direct calculation then reveals that

∇x [Vn (x,An(x),β )] =−Φ(−∆/s) · sign [µn(x)−µn(x∗)] ·∇x[µn(x)−µn(x∗)]+ϕ(∆/s)

· sign [σ̃n(x,x,β )− σ̃n(x,x∗,β )] ·∇x [σ̃n(x,x,β )− σ̃n (x,x∗,β )] .
(3.19)

Detailed derivations of ∇x [µn (x′)] and ∇x [σ̃n (x,x′,β )] for arbitrary x′ are given in Ap-

pendix B.3.

Second, consider the case of the pair ~x =
(

x(1),x(2)
)

. Letting a = µn(An(~x)) and
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b = σ̃(~x,An(~x),β ) we have from Section 3.3.2 that

Vn (~x,An(~x),β ) = h(a,b).

To support taking the derivative of this quantity, we now recall Algorithms 1 and

2 from Frazier et al. (2009) for computing h(a,b) = E[maxi a(i)+ b(i)Z]−maxi a(i).

We first reorder the components of a and b so that the b(i) are in non-decreasing order

and ties in b are broken so that a(i) ≤ a(i+ 1) if b(i) = b(i+ 1). Then, we remove all

those entries i for which a(i)+ b(i)z < max j 6=i a( j)+ b( j)z for all values of z (this is

accomplished by Algorithm 1 in Frazier et al. (2009)). This gives new vectors a′ and b′

with |a′|= |b′| ≤ |a|= |b|. Set γ(i) = a′(i+1)−a′(i)
b′(i+1)−b′(i) for i = 1,2, . . . , |a′|−1. Then

Vn (~x,An(~x),β ) = h(a,b) =
|a′|−1

∑
i=1

[
b′(i+1)−b′(i)

]
f (−|γ(i)|)

if |a′|> 1 and the sum is taken to be 0 if |a′| = 1. Computation then reveals that

∇~x [Vn (~x,An(~x),β )] =
|a′|−1

∑
i=1

ϕ (γ(i))∇~x[b
′(i+1)−b′(i)]

−Φ(−|γ(i)|)sign[a′(i+1)−a′(i)]∇~x[a
′(i+1)−a′(i)].

(3.20)

For each i, a′(i) and b′(i) are equal to a( j) and b( j) for j given by the reordering

procedure above, and a( j) and b( j) are the jth components of a = µn(An(~x)) and b =

σ̃(~x,An(~x),β ) respectively. Thus, ∇~x[a′(i)] and ∇~x[b′(i)] are equal to ∇~x [µn (x′)] and

∇~x [σ̃n (~x,x′,β )], where x′ is the jth element in An(~x). Derivations of these quantities are

given in Appendix B.3.

We now consider the gradient of the KGβ factors in Rd . Recalling (3.15) and (3.16),

we have

∇~x

[
ν

KGβ

n (~x)
]
= (∇~x [Vn (~x,An(~x),β )] · c(~x)−Vn (~x,An(~x),β ) ·∇~x [c(~x)])/

(
β [c(~x)]2

)
(3.21)
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for~x = x or
(

x(1),x(2)
)

. In the case of homogeneous sampling costs for each alternative

(c(~x) = c|~x|), we have ∇~x [c(~x)] = 0. Hence (3.21) is determined by preceding results as

∇~x

[
ν

KGβ

n (~x)
]
= ∇~x [Vn (~x,An(~x),β )]

/
(βc(~x)) .

3.7 Numerical Results

Beyond asymptotic convergence to the optimal solution, we are interested in the rate in

which solutions improve for even small numbers of samples. We measure this perfor-

mance by the expected opportunity cost (the difference between the true best and the

estimated best xn,b, as defined in Section 3.6.3, at each time n), E
[
maxx θx−θxn,b

]
.

In this section we present numerical results to explore the behavior of the proposed

algorithm, allocations rules, and implementation choices from Section 3.6 in order to an-

swer the following questions. Does pairwise sampling with CRN provide an efficiency

benefit, even if approximations are made to simplify computations? How much bene-

fit can the KG and KG2 allocation rules give, on problems with combinatorially large

numbers of solutions, as compared to other benchmark algorithms such as a random

search which is enhanced with a Gaussian process metamodel (which we call RSGP

and describe below) and Industrial Strength COMPASS (Xu et al. 2010).

Except as noted below, the KG and KG2 allocation rules used the Gaussian pro-

cess prior for unknown means, compound sphericity assumption for samples, MLE and

empirical Bayes estimation, and other parameters as described in Section 3.6. When

µ0, Σ0 and Λ were not known, the parameters for the initial stage of sampling were

N1 = 10d,d ≤ N2 ≤ 2d, where d is the dimension of the problem, and we let N3 contain

N1 +N2 and stage numbers that allowed the period between updates to increase from
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30 to 60 as sampling continued. In cases where sampling was done without CRN, we

performed maximum likelihood estimation with ρ fixed to 0.

3.7.1 How do the approximations interact?

This section assesses the relative importance of several features and approximations

described above: the allocation rule, approximations due to accelerated allocations and

parameter estimation, and deviations from the assumed sampling correlation structure

under CRN. Specifically, we assess the 12 = 2× 3× 2 combinations that result from

combining each level of the following three factors:

Allocation: KGβ allocation rule (no CRN); or KG2
β

allocation rule (CRN allowed).

Approximation: Idealized allocation rule with known parameters; accelerated alloca-

tion rule with known parameters; or accelerated allocation with unknown param-

eters (σ2
0 ,~α,η ,σ2

ε ,ρ) fit as in Section 3.6.2.

Sampling with CRN: Samples satisfy compound sphericity (with ρ(i, j) = 0.25 for

i 6= j); or decreasing correlations (with ρ(i, j) = exp
[
−(i− j)2/50

]
for i 6= j)

even though compound sphericity may be (incorrectly) assumed by the parameter

fitting.

We do so for randomly generated problem instances with a small (100) number of

alternatives. We generate 500 problem instances. In each problem, the 100 alternatives

had means distributed as a N (µ0,Σ0) with µ0 =~0 and Σ0(i, j)= 100exp
[
−(i− j)2/50

]
for i, j = 1,2, . . . ,100. We assumed a homogeneous sampling variance σ2

ε = 50. We set

β = 1 and so refer to KG1 and KG2
1.
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Figure 3.1: Performance of selected algorithms in the grid test problem with com-
pound sphericity (top plot) and decreasing correlations (bottom plot).

Figure 3.1 shows the expected opportunity cost of a potentially incorrect selection,

on a logarithmic scale, as a function of the total number of samples. The maximum size

of the 95% confidence intervals is 0.28 at sample size 100, 0.09 at sample size 300, and

0.05 at sample size 500.

Not surprisingly, idealized KG allocation rules performed better than their acceler-

ated counterparts (the idealized does an exhaustive, not local, search to maximize the
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KG factor). The degree of sub-optimality was not particularly great in any setting where

parameters were known. A greater degree of sub-optimality was seen when parameter

estimation was used. The deterioration due to parameter estimation was not significant

for the KG1 allocation, even when sphericity did not apply and parameters were (in-

correctly) estimated with the sphericity assumption (right panel, top three lines). The

degradation in performance due to parameter estimation with the KG2
1 allocation was not

too significant when sphericity was correctly assumed (left panel, bottom three curves).

All else fixed, a KG2 allocation with CRN improved upon the performance of its

corresponding KG allocation with independent sampling. Thus, the ability of sampling

pairs with CRN offered an important benefit beyond sampling only one alternative in-

dependently at a time (both panels).

Moreover, we observed that the accelerated KG2
1 allocation rule, even when param-

eter estimation was used, performed better than the idealized KG1 allocation, which had

the advantage of ‘knowing’ the true sampling correlation and of doing an exhaustive

search over KG factors. Thus, the benefit of CRN outweighed the penalties associated

with sub-optimality in the accelerated KG2
1 allocation rule with unknown parameters,

once 200 samples were observed to get stable parameter estimates (even when spheric-

ity was incorrectly assumed by the MLE, right panel).

In experiments not shown here for reasons of space, we found other interesting ob-

servations. One, when we set ρ(i, j) = 0.5 rather than ρ(i, j) = 0.25 for all i 6= j, the

expected opportunity costs decreased. This is consistent with the benefit offered by

sampling pairs being increasing in a (common) sampling correlation ρ . Two, we exper-

imented with the number of randomly selected singletons and pairs that were included

in Ξn for the accelerated allocations. Increasing that number to 2 or 3 provided a prac-

tical improvement in performance in the approximate KG and KG2 allocations, but the
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benefit of adding random points beyond 4 or 5 had little marginal increase. Three,

experiments with several values of βn for KG2
β

allocation rules did not reveal a large

difference in performance due to the choice of βn.

3.7.2 Comparison with RSGP on a Rosenbrock Problem with 106

Alternatives

This section explores the performance of the procedures when there are a very large

number of alternatives. The problem considered is a discretized version of a 6-

dimensional Rosenbrock function with 106 alternatives. Each alternative x corresponds

to a point in the grid with coordinates ζ (x) = {ζi(x)}6
i=1 ∈ [−0.8,−0.5, . . . ,1.9]6 and

has value

θ(x) =−
5

∑
i=1

[
100

[
ζi(x)2−ζi+1(x)

]2
+[ζi(x)−1]2

]
.

The computation required for idealized KG allocation rules is not practical when

there are such a large number of alternatives. This section assesses differences in per-

formance between the accelerated KG1 and accelerated KG2
1 allocation rules, as well as

a benchmark algorithm that we introduce, called RSGP. The RSGP samples uniformly at

random and uses the Gaussian Process model and parameter estimation tools in Section

3.6 to estimate the performance for each alternative by its posterior mean when selecting

the best alternative.

The sampling noise satisfies the compound sphericity assumption, with σ2
ε = 125

and ρ(i, j) = 0.4 for all i 6= j. These values were assumed unknown in this test, and the

empirical Bayes approach described in Section 3.6.2 was used to estimate the GP prior

and sampling covariance.
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Figure 3.2: Expected opportunity cost for a benchmark algorithm, (Random
Search with Gaussian Processes, RSGP), accelerated KG1 (KG1) and
accelerated KG2

1 (KG2
1) allocation rules as a function of the total num-

ber of samples (on discrete Rosenbrock function).

Figure 3.2 shows the opportunity cost, averaged over 200 sample paths, of the ac-

celerated KG1 and accelerated KG2
1 allocation rules, and the benchmark RSGP. Both

KG allocation rules dramatically outperformed RSGP. This is because the KG factors

steered sampling to areas that more efficiently identified local extrema. The KG1 and

KG2
1 performed similarly through about 500 samples, but KG2

1 provided better solutions

thereafter. Exploring sample paths indicates that this was because both KG1 and KG2
1

initially identified regions of good local extrema, which occurred at about the same rate.

Then, when good local extrema were found, the use of CRN helped KG2
1 find better

solutions more quickly, as compared to KG1, near such local extrema.

3.7.3 Comparison with ISC on the Assemble to Order Problem

We now compare the accelerated KG1 and KG2
1 allocation rules with a well-known

algorithm, Industrial Strength COMPASS (ISC, developed by Xu et al. 2010). We do so
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Figure 3.3: Performance of the accelerated KG2
1 and accelerated KG1 allocation

rules, and Industrial Strength COMPASS (ISC) for the assemble-to-
order (ATO) problem.

for the Assemble to Order (ATO) problem described in Hong et al. (2012 Accessed July

2013), which is a variation on the problem studied by Hong and Nelson (2006), and has

a combinatorially large number (218) of alternatives.

In the ATO problem, orders for 5 different products arrive according to independent

Poisson processes with constant arrival rates. Products are made up of a collection of

items of 8 different types. Items are either key items or non-key items. If any of the key

items are out of stock then the product order is lost. If all key items are in stock, then the

order is assembled from all key items and the available non-key items. Each item sold

brings a profit, and each item in inventory incurs a holding cost per unit time. There is

an inventory capacity 20 for each item. Items are produced one at a time on dedicated

machines. The production time for each item is normally distributed, truncated at 0. The

system operates under a continuous-review base stock policy under which each item k

has a target base stock bk, and each demand for an item triggers a replenishment order

for that item. Each simulation replication starts from a fully stocked system with no
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orders in production, has a warm-up period of 20 time units, then captures statistics for

the next 50 time units of operation. The goal is to maximize the expected total profit per

unit time by selecting the target inventory level vector b = (b1,b2, . . . ,b8). See Hong

et al. (2012 Accessed July 2013) for more details and code.

We calculate each algorithm’s performance by collecting the true expected total

profit (estimated in a post-processing step through exhaustive simulation) of the algo-

rithm’s current solution, as a function of the sample size. We then average this value

over 100 independent sample paths for each algorithm. We fix the starting solution of

KG1 and KG2
1 to the inventory capacity, and randomize the initial solution of ISC over

the feasible set {b : 0 ≤ bk ≤ 20,bk ∈ Z}. Thus, KG1 and KG2
1 were forced to start

searching with a worse initial alternative to sample than did ISC, on average.

Figure 3.3 shows the average performance of the three algorithms. This average

performance jumped when algorithms finished their initialization phases (Step 1 of the

KG algorithms), which occurred at 250 samples for ISC and 95 samples for the two

KG algorithms. The height of the x at the right edge of the plot (at x = 1000) gives the

value (141, estimated through exhaustive simulation) of the best solution found by all

sample paths across all three algorithms. This best solution was discovered by a KG

algorithm. The true optimal solution is unknown. The accelerated KG2
1 allocation rule

outperformed the accelerated KG1 allocation rule, which in turn outperformed ISC for

this problem, in terms of achieving a higher quality solution with fewer samples. It is

also important to consider the total amount of computation time required to reach a given

solution quality. ISC required an average of 27 minutes of computation time to com-

plete, taking 1084 samples on average. Its average profit upon completion was 115.53.

To reach this same level of solution quality achieved by ISC, KG1 took 279 samples on

average and required 9 minutes of computation time, while KG2
1 took 203 samples on
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average and required 5.5 minutes of computation time. The two KG algorithms required

fewer samples and less computation time than did ISC, with KG2
1 delivering additional

efficiency above and beyond that delivered by KG1.

While the KG algorithms outperformed ISC in terms of total computation time to

reach a given level of solution quality on the ATO problems, algorithms like KGβ and

KG2
β

that rely on kriging or Gaussian-process regression may consume substantial com-

putational resources in deciding where to sample, which may make them less suitable

for problems in which simulation can be performed very quickly. When simulation sam-

ples come from a complex, long-running simulator, this is relatively unimportant, and

algorithms like KG2
β

that find good solutions in few samples also work well in terms of

overall computation time.

Figure 3.4 shows the time taken in a single sample path of the KG2
β

algorithm. It

shows that the CPU time per sampling decision increased over time, with a baseline

level of computation due to gradient-based optimization of the KG factor, and spikes at

regular intervals due to the empirical Bayes update of parameters. These spikes, which

are so prominent in the right-hand panel of Figure 3.4, would also be present in any

algorithm using kriging with adaptively updated parameter estimates. The increase with

sample size in both the time to perform gradient-based optimization of the KG factor,

and to perform empirical Bayes updates, was due to the increasing size of the matrices

being manipulated for maximum likelihood estimation and for kriging-based prediction.

These points suggest potential future research directions: how to balance frequency

of parameter updates to improve performance with the cost of computing them; how

to speed up and improve parameter estimation; adaptation or development of localized

submodels for kriging approximation to reduce the number of samples included in local

gradient search to optimize KG factors; how much time to spend on the local search
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Figure 3.4: CPU time spent in a sample path of KG2
1, as a function of the sample

size, on the ATO problem.

(balancing some improvement versus perfect improvement in these steps). Related to

this last point, we did derive and test second-order methods (not shown) to find local

optimizers of the KG factors but found they did not give CPU cost per iteration benefits

relative to Matlab’s fminsearch and simple gradient search on some test problem.

In summary, our algorithms demonstrate superior efficiency compared to others in

problems with large solution spaces and when samples are moderately to very compu-

tationally expensive.

3.8 Conclusions

We contributed to the area of discrete optimization via simulation, where the value of

the best alternative is to be estimated by simulation, by developing a fully sequential al-

gorithm based on new value of information tools. Those tools are able to take advantage

of both correlated prior beliefs and correlated sampling distributions. We gave easy-to-
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verify conditions under which almost sure convergence to the optimal solution can be

guaranteed. The implementation presented here takes advantage of machine learning

tools that enable exploring combinatorially large solution spaces, with run times that are

a low order polynomial in the number of samples observed (which is much better than

a low order polynomial in the size of the solution space). We also derived ‘accelerated’

versions of the algorithms that use local search when alternatives can be embedded in a

continuous space. That acceleration takes advantage of gradient information about the

Bayesian value of information, rather than the more common technique of using gradient

information about the response surface, to improve practical performance. Numerical

results show that there is a distinct benefit for being able to use both correlated prior

beliefs and correlated sampling in simulation optimization using the Bayesian value of

information framework.
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CHAPTER 4

OPTIMIZATION OF COMPUTATIONALLY EXPENSIVE SIMULATIONS

WITH GAUSSIAN PROCESSES AND PARAMETER UNCERTAINTY:

APPLICATION TO CARDIOVASCULAR SURGERY

Motivated by an application in cardiovascular surgery with parameter uncertainty,

we develop a new method for optimization of an objective function whose value is the

average of the output of a computationally expensive simulator, where the input is varied

across some low-dimensional space. We use Bayesian methods, in which inference

based on a Gaussian process prior learns the behavior of the computationally expensive

simulator across the input space, and tracks our uncertainty about values at unevaluated

points. We then use value of information calculations to decide at which inputs it would

be most valuable to evaluate the simulator next.

The application that we consider is the design of idealized bypass graft models un-

der uncertain shape design variables, model geometry and boundary conditions, and

unsteady flow, using a simulation of blood-flow in the graft. Our goal is to compute the

optimal graft attachment angles that minimize the area of low wall-shear stress (WSS).

Previously, non-Bayesian methods (surrogate management framework SMF) (Booker

et al. 1999, Marsden et al. 2008) were coupled to cardiovascular simulations to perform

robust shape optimization (Marsden et al. 2004, Sankaran and Marsden 2010, 2011).

To account for uncertainties, a stochastic collocation method (Sankaran and Marsden

2011) was coupled with SMF (Sankaran et al. 2010). This method converges to a

mesh local optima for Lipschitz continuous functions. We have previously demonstrated

in Sankaran and Marsden (2010) that accounting for implementation and measurement

uncertainties affects the optimal graft attachment angle.
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In this work, we investigate the expected performance of the design variables under

low-dimensional uncertainties. In defining our objective, we consider not only the areas

of low WSS, which is an output of our simulation, but also the uncertainties associated

with implementation, inflow velocity and stenosis radius. The random output variable

is thus a deterministic function of a low-dimensional random vector. Evaluation of this

deterministic function is expensive, and its derivative information is unavailable. Our

goal is to optimize the expectation of this output variable (or its variant) by allocating

simulation effort efficiently across different values of the random vector.

These types of problems arise in many applications of simulation optimization. e.g.,

the robust optimization of the design of biomechanical devices (Chang et al. 1999, Sant-

ner et al. 2001), where they incorporate environmental variables such as multiple load-

ing conditions, and employ an empirical best linear unbiased prediction of the structural

response.

In its attempt to evaluate the expectation (integral) of an implicit function, this work

is closely related to the Bayesian Quadrature (O’Hagan 1991) or the Bayesian Monte

Carlo method (Rasmussen and Ghahramani 2003), which models the integrand using

Gaussian process (GP) (Rasmussen and Williams 2006), and then performs inference

about the integral by taking advantage of the analytical convenience of the GP models.

To design a strategy that samples efficiently, we employ a Bayesian approach, in

which we begin with a GP prior distribution on the response function, updating this prior

distribution based on sampling information, evaluate the expectation of the response

function under uncertain model inputs and unsteady flow, and use “value of information”

computations to decide how to best allocate sampling effort.
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4.1 Problem Formulation

In this section we formulate the Bayesian shape optimization problem of an idealized

bypass graft model with unsteady flow. This problem is studied in Sankaran and Mars-

den (2010), which uses the stochastic collocation technique to incorporate and study the

effects of input uncertainties, and applies a derivative-free SMF optimization method to

perform robust shape design.

In this problem, the design variables are the target anastomosis angles x1 and x2 given

to the surgeon. Given these target values, the actual angles of a bypass graft constructed

in a surgery are not x1 and x2, but instead θ1 = x1 +δ1 and θ2 = x2 +δ2, where δ1 and

δ2 are the implementation errors introduced during surgery. As shown in Figure 4.1, we

denote by r and v the stenosis radius and the inflow velocity respectively. We then write

x = (x1,x2), δ = (δ1,δ2), θ = x+δ and ω = (r,v).

Figure 4.1: Schematic of the bypass graft surgery with the two attachment angles,
inlet velocity and stenosis radius shown.

We assume that the area of low WSS is fully determined by the actual anastomosis

angles θ , the stenosis radius r, and the inflow velocity v. Given θ and ω = (r,v), we de-

note by f (θ ,ω) the corresponding area of low WSS. We can use simulation to evaluate

f (θ ,ω) exactly. However, each evaluation is time-consuming, requiring several hours

of parallel computation, limiting how many times we may perform this evaluation.

To optionally include risk aversion into our objective function, we define a utility
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function U by

U(θ ,ω) =− f (θ ,ω) or U(θ ,ω) = e−α· f (θ ,ω),

where α > 0 is a parameter that models aversion to risk, with larger values of α cor-

responding to more aversion to risk. The second definition can be used to control the

standard deviation (sensitivity) of f due to input uncertainties.

For analytical convenience, we suppose that our probability distributions over ω and

δ are independent and normal (ω may be truncated at 0). Denote by p(δ ,ω) their joint

pdf, which is assumed known.

Our overarching goal is to find the target anastomosis angles x that maximize the

expected value of U(·, ·), i.e., we want to solve

max
x

g(x) , (4.1)

where

g(x) :=
∫ ∫

U (x+δ ,ω) p(δ ,ω)dδ dω (4.2)

is the expected utility that results from using target values x.

4.2 Statistical Inference and Value of Information Analysis

To support the solution to the optimization problem, we use Bayesian statistics to pro-

vide an estimate of U (θ ,ω) across all points (θ ,ω), based on those points at which U

has actually been evaluated. This statistical framework also provides uncertainties asso-

ciated with these estimates. This is useful because evaluating U is time-consuming, and

so we cannot simply evaluate it at each point of interest. Applying Bayesian Quadrature

techniques, these estimates of U , and their associated uncertainties, then imply estimates
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and uncertainties of g(x) across the domain of x. In this section, we first describe the

statistical framework in which this estimation takes place. We then describe a value

of information analysis based upon this statistical framework, in which we quantify the

value of evaluating U at a given set of previously unevaluated values. This quantification

of the value of information will then be used later in Section 4.3 to create an algorithm

for solving (4.1).

We work in a Bayesian framework, in which we place a Gaussian process (GP)

prior distribution over the function U . For an overview of GP priors see Rasmussen and

Williams (2006).

U(·, ·)∼ GP(µ0(·, ·),Σ0(·, ·, ·, ·)) ,

where

µ0 : (θ ,ω) 7→ R,

Σ0 :
(
θ ,ω,θ ′,ω ′

)
7→ R,

and Σ0 is a positive semi-definite function. A typical choice of Σ0 is the square expo-

nential covariance function (see Section 4.4.1). At each time n = 1,2, . . . , our algorithm

will evaluate some point (θn,ωn), and observe the resulting objective, yn = U (θn,ωn).

Define Dn = {θ1:n,ω1:n,y1:n} to contain all of this data. The posterior distribution of U

at time n is then

U(·, ·) | Dn ∼ GP(µn(·, ·),Σn(·, ·, ·, ·)) ,

where µn and Σn can be computed using standard results from Bayesian linear regression

(see, e.g., Rasmussen and Williams (2006) or Gelman et al. (2004)). Section 4.4.2 gives

explicit expressions for µn and Σn.

Denote by En and Covn the expectation and covariance conditioned on Dn, respec-

tively. That is, En and Covn are the expectation and covariance under the posterior
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distribution at time n. We then relate the posterior distribution on U to the posterior

distribution on the function g via Bayesian Quadrature. First, the posterior mean of the

function g at an arbitrary point x can be calculated by interchanging integration over the

values of g(x) with the integration defining g(x) in (4.2) via Fubini’s theorem to obtain,

En [g(x)] =
∫ ∫

µn (x+δ ,ω) p(δ ,ω)dδ dω, (4.3)

A similar computation provides the covariance between g(x) and g(x′) at two arbitrary

points x and x′ in the following expression.

Covn
[
g(x) ,g

(
x′
)]

=
∫ ∫ ∫ ∫

Σn
(
x+δ ,ω,x′+δ

′,ω ′
)

p(δ,ω) p
(
δ
′,ω ′
)

dδ dω dδ
′dω
′.

(4.4)

Note that taking x = x′ gives an expression for the variance.

We will frequently refer to the posterior mean of g(x), and so for brevity we intro-

duce the notation

an (x) = En[g(x)], (4.5)

which is defined in terms of µn(·, ·) by (4.3). Section 4.4.3 gives an explicit expression

for an(x). Then, if we were to stop after n evaluations of the simulator and choose the

solution to (4.1) with the best estimated value, we would choose

x∗n = argmax
x

En [g(x)] = argmax
x

an (x) .

In a formal sense, this solution is Bayes-optimal when we are neutral with respect to the

risk introduced by our uncertainty about the simulation’s output.

We now conduct an analysis to determine the expected solution quality that will

result from a single additional evaluation of the simulator. The improvement in solution

quality is then the value of the information provided by this additional evaluation.

Consider a given time n, and a given candidate point (θ ,ω) to evaluate at time

n+ 1. The expected quality of the best solution we can obtain after we observe the
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sample yn+1 =U (θ ,ω) that results from this evaluation is maxx an+1 (x). This quantity

is unknown at time n, as it depends on the outcome yn+1. If we calculate its expected

value at time n, and take the difference between this expected solution quality and the

solution quality maxx an (x) that we have at time n, then we obtain the value of the

information achieved from measuring (θ ,ω) at time n+1,

Vn (θ ,ω) = En

[
max

x
an+1(x)

∣∣θn+1=θ ,ωn+1=ω

]
−max

x
an(x).

The algorithm we present in Section 4.3 seeks to evaluate the simulator at the point

maximizing the value of information. That is, we want to evaluate at time n+1

(θn+1,ωn+1) = argmax
θ ,ω

Vn (θ ,ω) . (4.6)

We now show how to compute Vn(θ ,ω). To perform this computation, we must

first determine the distribution of an+1 (x) conditioned on Dn and (θn+1,ωn+1) for an

arbitrary x. The following lemma describes this distribution.

Lemma 2. Define

bn (x,θn+1,ωn+1) =

[∫∫∫∫ [
Σn
(
x+δ ,ω,x+δ

′,ω ′
)
−Σn+1

(
x+δ ,ω,x+δ

′,ω ′
)]

·p(δ ,ω) p
(
δ
′,ω ′

)
dδ dω dδ

′ dω
′]1/2

. (4.7)

Then

an+1 (x) | Dn,θn+1,ωn+1 ∼N
(
an (x) ,b2

n (x,θn+1,ωn+1)
)
. (4.8)

Section 4.4.3 gives an explicit expression for bn (x,θn+1,ωn+1). Denote by X the

set of design variables x under consideration. We assume that X is discrete and finite.

Define the following two vectors

~an = {an (x) : x ∈X } ,

~bn (θ ,ω) = {bn(x,θn+1,ωn+1) |θn+1=θ ,ωn+1=ω : x ∈X} . (4.9)
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Then

Vn (θ ,ω) = h
(
~an,~bn (θ ,ω)

)
, (4.10)

where

h
(
~a,~b
)

:= E
[

max
i

ai +biZ
]
−max

i
ai,

and Z is a standard normal variable. An algorithm for computing h is given in Fra-

zier et al. (2008). The derivative of Vn (θ ,ω) with respect to θ and ω , denoted by

∇θVn (θ ,ω) and ∇ωVn (θ ,ω), is also available, and is described in Section 4.4.4. We

can then solve (4.6) using multi-start gradient ascent.

4.3 Algorithm

We now summarize the algorithm that implements this value of information approach.

1. Evaluate U at a number of randomly chosen (θ ,ω). Fit a GP prior (see Sec-

tion 4.4.1) to U based on these evaluations, using maximum likelihood estimation.

2. At each time n≥ 0:

(a) If the stopping rule is met, go to Step 4; else go to Step 2b.

(b) Update ~an,~bn(·, ·), Vn(·, ·) and ∇Vn(·, ·) according to (4.9), (4.10) and Sec-

tion 4.4.3, 4.4.4.

(c) Maximize Vn(·, ·) using multi-start gradient ascent. Let (θn+1,ωn+1) be the

maximizer, and evaluate U (θn+1,ωn+1).

3. Increase n and return to Step 2.

4. Report x∗n = argmaxan(x) as our final solution.
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4.4 Detailed Computations

In this section, we provide explicit expressions for the quantities introduced in the previ-

ous sections. We first describe the GP model in Section 4.4.1, and then compute µn(·, ·),

Σn(·, ·, ·, ·) in Section 4.4.2, an(·), bn (·,θn+1,ωn+1) in Section 4.4.3, and ∇Vn(·, ·) in

Section 4.4.4.

4.4.1 Gaussian Process Priors

In a GP prior, the covariance between U (θ ,ω) and U (θ ′,ω ′) for some

θ =


θ (1)

...

θ (d1)

 , ω =


ω(1)

...

ω(d2)

 , θ
′ =


θ ′(1)

...

θ ′(d1)

 , ω
′ =


ω ′(1)

...

ω ′(d2)


(d1 = d2 = 2), i.e, Σ0 (θ ,ω,θ ′,ω ′), is a decreasing function of the distance between

(θ ,ω) and (θ ′,ω ′). In this work, we use the following square exponential covariance

function:

Σ0
(
θ ,ω,θ ′,ω ′

)
= σ

2
0 · exp

(
−

d1

∑
k=1

α
(k)
1

[
θ
(k)−θ

′(k)
]2
−

d2

∑
k=1

α
(k)
2

[
ω
(k)−ω

′(k)
]2)

, (4.11)

where σ2
0 is the common prior variance, and α

(1)
1 , . . . ,α

(d1)
1 ,α

(1)
2 , . . . ,α

(d2)
2 are the length

scales. Values of these parameters are usually obtained using maximum likelihood esti-

mation from the observations of U . This and other commonly used covariance functions,

e.g., the Matern covariance function, are carefully discussed in Rasmussen and Williams

(2006) Section 4.

The mean of a GP prior is usually a linear regression function. Typical choices for

µ0(·, ·) include
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1. zero order polynomial (constant): µ0 (θ ,ω)≡ ξ ,

2. first order polynomial (linear):

µ0 (θ ,ω) =
d1

∑
k=1

ξ
(k)
1 θ

(k)+
d2

∑
k=1

ξ
(k)
2 ω

(k),

3. second order polynomial (quadratic), etc.,

where ξ ,ξ
(1)
1 ,. . .,ξ

(d1)
1 ,ξ

(1)
2 ,. . .,ξ

(d2)
2 are the coefficients of the polynomials (“basis func-

tions”). We use the generalized least squares estimates of these coefficients in practice

(see Huang et al. (2006) or Rasmussen and Williams (2006) Section 2, 5).

To validate the GP model for our bypass graft surgery application, we apply leave-

one-out cross-validation of the model with different covariance functions and regression

functions using 137 observations from the cardiovascular simulation. As an example,

Figure 4.2 shows the validation results of a GP prior with covariance (4.11) and a con-

stant mean. We see that this model fits the data sufficiently well except for a very small

number of outliers.

4.4.2 µn(·, ·) and Σn(·, ·, ·, ·)

We briefly describe the GP posterior distribution of U in this subsection. Define

Ỹ =


y1−µ0(θ1,ω1)

...

yn−µ0(θn,ωn)

, Tn=


Σ0(θ1,ω1,θ1,ω1) · · ·Σ0(θ1,ω1,θn,ωn)

... . . . ...

Σ0(θn,ωn,θ1,ω1) · · ·Σ0(θn,ωn,θn,ωn)

, (4.12)

and

tn (·, ·) =
[

Σ0 (·, ·,θ1,ω1) · · · Σ0 (·, ·,θn,ωn)

]
T−1

n . (4.13)
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Figure 4.2: Leave-one-out cross-validation of the Gaussian process prior with co-
variance (4.11) and a constant mean, using 137 observations from the
cardiovascular simulation. Each dot compares the actual value of an
observation against its predicted value from the other observations.
Each error bar is the 95%-confidence interval of the corresponding
prediction.

Then for arbitrary θ ,ω and θ ′,ω ′, by the Kalman filter equations (see, e.g., Gelman

et al. (2004) Section 14.6), we have

µn (θ ,ω) = µ0 (θ ,ω)+ tn (θ ,ω)Ỹ , (4.14)

Σn
(
θ,ω,θ ′,ω ′

)
= Σ0

(
θ,ω,θ ′,ω ′

)
− tn(θ,ω)


Σ0(θ

′,ω ′,θ1,ω1)

...

Σ0(θ
′,ω ′,θn,ωn)

 . (4.15)

4.4.3 an(·) and bn (·,θn+1,ωn+1)

Based on Section 4.4.1 and 4.4.2, we now explicitly compute an(·) and

bn (·,θn+1,ωn+1), which can then support the calculation of the value of informa-

tion (4.10).
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Suppose that

δ
(k)∼N

(
µ
(k)
1 ,1/β

(k)
1

)
, k = 1, . . . ,d1,

ω
(k)∼N

(
µ
(k)
2 ,1/β

(k)
2

)
, ω

(k)≥ 0, k = 1, . . . ,d2,

and that δ (1), . . . ,δ (d1),ω(1), . . . ,ω(d2) are mutually independent.

Define

S0 (x) =
∫ ∫

µ0 (x+δ ,ω) p(δ ,ω)dδ dω, (4.16)

and for i = 1, · · · ,n+1,

Si (x) =
∫ ∫

Σ0 (x+δ ,ω,θi,ωi) p(δ ,ω)dδ dω. (4.17)

Then by (4.5), (4.3) and (4.12)-(4.17), we have

an (x) = S0 (x)+
∫ ∫

tn (x+δ ,ω)Ỹ p(δ ,ω)dδ dω

= S0 (x)+
[

S1 (x) · · · Sn (x)

]
T−1

n Ỹ . (4.18)

By (4.15) and the Sherman-Morrison-Woodbury formula (see, e.g., Golub and Van

Loan (1996)), we can write

Σn
(
θ ,ω,θ ′,ω ′

)
−Σn+1

(
θ ,ω,θ ′,ω ′

)
=

Σn (θ ,ω,θn+1,ωn+1)Σn (θ
′,ω ′,θn+1,ωn+1)

Σn (θn+1,ωn+1,θn+1,ωn+1)
.

Plug this and (4.12)-(4.17) into (4.7), then we have

bn (x,θn+1,ωn+1) =

∫∫
Σn(x+δ ,ω,θn+1,ωn+1) p(δ,ω)dδdω√

Σn (θn+1,ωn+1,θn+1,ωn+1)

=

Sn+1 (x)−
[

S1 (x) · · · Sn (x)

]
T−1

n α√
Σ0(θn+1,ωn+1,θn+1,ωn+1)−αT T−1

n α

, (4.19)

where

α =


Σ0 (θ1,ω1,θn+1,ωn+1)

...

Σ0 (θn,ωn,θn+1,ωn+1)
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and T denotes matrix transposition.

Given a GP prior with covariance (4.11) and a constant mean ξ , we now give an

explicit expression for Si(x) (i = 0,1, . . . ,n+1) . By plugging in (4.11) and p(δ ,ω), we

have

Si (x) = σ
2
0 ·

d1

∏
k=1


√

β
(k)
1

2π
·A(k)i

 · d2

∏
k=1


√

β
(k)
2

2π
·B(k)i


for i = 1, . . . ,n+1, and S0 (x) = ξ , where

A(k)i =
∫

∞

−∞

exp

(
−α

(k)
1

[
x(k)+δ

(k)−θ
(k)
i

]2
−

β
(k)
1
2

[
δ
(k)−µ

(k)
1

]2)
dδ

(k),

B(k)i =
∫

∞

0
exp

(
−α

(k)
2

[
ω
(k)−ω

(k)
i

]2
−

β
(k)
2
2

[
ω
(k)−µ

(k)
2

]2)
dω

(k).

Simple algebra then yields

A(k)i =

√
π

α
(k)
1 + 1

2β
(k)
1

· exp

−α
(k)
1 [x(k)−θ

(k)
i ]2−

β
(k)
1 [µ

(k)
1 ]2

2
+

[
β
(k)
1 µ

(k)
1+2α

(k)
1 [x(k)−θ

(k)
i ]
]2

4α
(k)
1 +2β

(k)
1


and

B(k)i =

Φ

(
β
(k)
2 µ

(k)
2 +2α

(k)
2 ω

(k)
i√

2α
(k)
2 +β

(k)
2

)
√

π−1
[
α
(k)
2 + 1

2β
(k)
2

] · exp

[
−α

(k)
2 [ω

(k)
i ]2− 1

2
β
(k)
2 [µ

(k)
2 ]2 +

[β
(k)
2 µ

(k)
2 +2α

(k)
2 ω

(k)
i ]2

4α
(k)
2 +2β

(k)
2

]
,

where Φ is the standard normal CDF.

4.4.4 ∇Vn(·, ·)

We briefly describe the algorithm in Frazier et al. (2008) for computing h here to provide

notation and context that supports the computation of ∇θVn (θ ,ω) and ∇ωVn (θ ,ω). A

MATLAB implementation of this algorithm in given in Frazier (2013).
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First, h
(
~a,~b
)

does not change if we reorder the components of the inputs. Thus,

without loss of generality, we assume that the bi are in non-decreasing order and ties

in b are broken so that ai ≤ ai+1 if bi = bi+1. Then, we remove all those entries i

for which ai + biz < max j 6=i ai + biz for all values of z. An algorithm for doing this is

given in Algorithm 1 in Frazier et al. (2009). This gives new vectors ~a′ and ~b′ with

|~a′|= |~b′| ≤ |~a|= |~b|, where | · | denotes the length of a vector. Then,

h
(
~a,~b
)
=
|~a′|−1

∑
i=1

(
b′i+1−b′i

)
f (−|ci|) , (4.20)

where

f (−z) := ϕ(z)− zΦ(−z),

ci :=−
a′i+1−a′i
b′i+1−b′i

for i = 1, . . . , |~a′|−1, (4.21)

and ϕ and Φ are the standard normal PDF and CDF.

Now let ~a′ and ~b′ be the reordering of ~an and ~bn (θ ,ω) respectively in the ac-

ceptance set of Algorithm 1 in Frazier et al. (2009). Then if |~a′| = 1, Vn (θ ,ω) =

h
(
~an,~bn (θ ,ω)

)
= 0, and ∇Vn (θ ,ω) =~0. Otherwise,

∇Vn (θ ,ω) =−∇h
(
~an,~bn (θ ,ω)

)
=
|~a′|−1

∑
i=1

(
b′i+1−b′i

)
Φ(−|ci|)∇|ci|−

(
∇b′i+1−∇b′i

)
f (−|ci|) (4.22)

=
|~a′|−1

∑
i=1

(
∇b′i+1−∇b′i

)
[−|ci|Φ(−|ci|)− f (−|ci|)] (4.23)

=
|~a′|−1

∑
i=1

(
∇b′i−∇b′i+1

)
ϕ (|ci|) ,

where (4.22) follows from (4.20) and ∇ f = Φ; (4.23) follows since ∇a′i = 0 for all i, and

by the definition in (4.21),

∇ |ci|=
−
∣∣a′i+1−a′i

∣∣(∇b′i+1−∇b′i
)(

b′i+1−b′i
)2 .
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It then suffices to compute ∇b′i for all i, or equivalently, ∇θn+1bn (x,θn+1,ωn+1) and

∇ωn+1bn (x,θn+1,ωn+1) for all x. Now let ∇ denote the gradient w.r.t. θn+1 or ωn+1.

By (4.19), it is clear that

∇bn (x,θn+1,ωn+1) = γ1

∇Sn+1 (x)−∇
(
α

T)T−1
n


S1 (x)

...

Sn (x)




− 1
2

γ
3
1 γ2
[
∇Σ0 (θn+1,ωn+1,θn+1,ωn+1)−2∇

(
α

T)T−1
n α

]
,

(4.24)

where

γ1 =
[
Σ0 (θn+1,ωn+1,θn+1,ωn+1)−α

T T−1
n α

]−1/2
,

γ2 = Sn+1 (x)−
[

S1 (x) · · · Sn (x)

]
T−1

n α,

∇
(
α

T)=[∇Σ0(θ1,ω1,θn+1,ωn+1) · · ·∇Σ0(θn,ωn,θn+1,ωn+1)

]
.

With a GP prior (4.11), we can write (4.24) explicitly by plugging in

∇θn+1Σ0 (θi,ωi,θn+1,ωn+1) =


~0, i=n+1,

2α1 (θi−θn+1)Σ0 (θi,ωi,θn+1,ωn+1) , i=1,. . . ,n,

∇ωn+1Σ0 (θi,ωi,θn+1,ωn+1) =


~0, i=n+1,

2α2 (ωi−ωn+1)Σ0 (θi,ωi,θn+1,ωn+1) , i=1,. . . ,n,

and

∇
θ
(k)
n+1

Sn+1(x) = 2α
(k)
1 Sn+1(x)

[
x(k)−θ

(k)
n+1−ν1

]
,

∇
ω
(k)
n+1

Sn+1(x) = 2α
(k)
2 Sn+1(x)

ϕ(ν2)/Φ(ν2)+ν2√
2α

(k)
2 +β

(k)
2

−ω
(k)
n+1

,
where

ν1 =
β
(k)
1 µ

(k)
1 +2α

(k)
1

(
x(k)−θ

(k)
n+1

)
2α

(k)
1 +β

(k)
1

, ν2 =
β
(k)
2 µ

(k)
2 +2α

(k)
2 ω

(k)
n+1√

2α
(k)
2 +β

(k)
2

.
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4.5 Numerical Results

We now explore the performance of the sampling algorithm proposed in Section 4.3.

4.5.1 A Two-Dimensional Test Problem

We first consider a simplified test problem, where the design variable x and the envi-

ronmental variable ω are both one-dimensional, and there is no implementation error

(θ ≡ x). We assume ω ∼N (1,1/9) and the utility is

U (θ ,ω) =−100(ω−θ
2)2− (1−θ)2. (4.25)

In this example, the underlying objective function g has a closed form: g(x) = (1−x)2+

100
[
(1− x2)2 +1/9

]
.

We plot, in the first row of Figure 4.3, U and g, where the color in the left contour

darkens as the value of U decreases, and the gray dot in the right plot gives the true

maximizer of g, i.e., the underlying best solution.

We compare our VOI-based design against the uniform design, in which each

(θn,ωn) is selected independently and uniformly at random. Both algorithms use

Bayesian Quadrature to evaluate g, where each sample path of these algorithms we fit

a GP prior distribution with covariance (4.11) and a constant mean to U after 10 initial

random evaluations, and re-fit it after each additional evaluation.

To illustrate this statistical model, we plot our posterior beliefs on U and g at a

sequence of times in a random sample path of the proposed algorithm in Figure 4.3(rows

2 to 5). The black dot in each plot on the left is the sampling decision, and the black dot

in each plot on the right is the corresponding implementation decision (the estimated
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best solution). In this sample path, as the posterior means converge to the underlying

mean, our estimated best solution converges to the true best solution.

We measure the performance of the two designs by their expected opportunity cost

E [maxx g(x)−g(x∗n)] at each time n, using the analytical expression for g. As shown

in Figure 4.4, the proposed algorithm significantly outperforms random search, which

demonstrates the advantage of VOI-based sampling methods over conventional sam-

pling methods when performing simulation optimization with input uncertainties.

4.5.2 A Four-Dimensional Test Problem

We now consider a four-dimensional test problem where

θ1 ∼N (x1,1/9), θ2 ∼N (x2,1/36),

v∼N (0,1/9), r ∼N (2,4/9),

U (θ1,θ2,v,r) =
[
θ

2
1 +(θ1− v)2] · [θ 2

2 +(θ2− r)2] ,
and g can be written in closed form (omitted here).

In addition to the Bayesian designs considered for the two-dimensional test prob-

lem, we also compare with a (non-Bayesian) SMF method from Sankaran and Marsden

(2010). This method also uses kriging (i.e., a GP) to infer U , but instead of using the

posterior on g implied by the posterior on U , it uses stochastic collocation Sankaran

and Marsden (2011), which samples in batches (the batch size is 9 in this example) to

estimate g in each stage.

Figure 4.5 shows the relative performance of the three designs in this test prob-

lem. While our Bayesian Quadrature VOI-based design significantly outperforms the

other two, both Bayesian Quadrature algorithms demonstrate better performance than
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Figure 4.3: Sample path of the proposed algorithm on a two-dimensional test
problem. The first row plots U (left) and g (right). The other rows plot
the posterior mean of U , i.e., µn, on the left, and the posterior mean of
g, i.e., an, on the right, at times n = 5,10,25 respectively.

102



Figure 4.4: Performance of the algorithms in the two-dimensional test problem.

SMF with stochastic collocation. Moreover, after 100 function evaluations, our design

provides higher average solution quality than is possible with 500 function evaluations

using SMF.

While batching significantly increases the number of function evaluations SMF re-

quires to reach a good solution, SMF with stochastic collocation has the following dis-

tinct merits:

1. SMF is a consistent method, in the sense that as sampling effort grows to infin-

ity, its estimated solution converges to the true solution. Our algorithm is not

consistent, at least on continuous design spaces, because we discretize the design

space to perform VOI-based calculations, and our estimated solution can be no

better than the best point in the discretized space. In future work we will explore

refining this discretization over time to provide a consistent method.

2. The batches of simulations required by stochastic collocation can be performed in

parallel. Our algorithm, on the other hand, is fully sequential.
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Figure 4.5: Performance of the algorithms in the four-dimensional test problem.

4.5.3 Shape Design of Idealized Bypass Grafts

We also tested the proposed algorithm on the bypass graft shape design problem in-

troduced in Section 4.1, where we used the “anastomosis over a stenosis” simulation

performed by Sankaran and Marsden (2010), and assumed the following probability
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Figure 4.6: 3D plot of the simulation output function (area of low WSS) given
v = 1 and r = 0.425, with red dots showing the projected sampling
decisions (evaluated graft attachment angles) in a sample path of the
proposed algorithm on the graft design problem.

densities for the simulation inputs,

θ1 ∼N (x1,25), θ2 ∼N (x2,25),

v∼N (1,0.04), r ∼N (0.425,0.000625).

As an initial implementation, we adopted a coarse grid mesh size (about 950,000

elements) in the simulations. We plot in Figure 4.6 and Figure 4.7 results we observed

from one sample path. In future work, we will use the desired fine mesh size instead,

and compare the performance of our algorithm against SMF.
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Figure 4.7: Contour plot of the response surface, i.e., posterior estimate of the
expected area of low WSS, at time n = 118, in a sample path of the
proposed algorithm on the graft design problem. The red dot gives the
estimated optimal graft attachment angles; the blue dots represent the
projected sampling decisions (evaluated angles) in the sample path.

4.6 Conclusions

In this work, we employ a Bayesian approach to optimize computationally expensive

simulations under input uncertainties. The simulation output variable, whose expecta-

tion is being optimized, is a deterministic function of a low-dimensional random vector.

By placing a Gaussian process prior on this deterministic function, we are able to use

Bayesian Quadrature to estimate it and its expectation, and apply value of information
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computations to allocate simulation effort efficiently.

As demonstrated in the numerical experiments, the proposed algorithm significantly

reduces the number of expensive function evaluations required to find a good solution,

as compared with other commonly used sampling procedures.

This work is motivated by the shape design of idealized bypass graft models under

implementation uncertainty and unsteady flow. Yet the proposed method is appropriate

for many other applications of simulation-based optimization where we want to investi-

gate the expected performance of design variables under parameter uncertainties.
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CHAPTER 5

UPPER BOUNDS ON THE BAYES-OPTIMAL PROCEDURE FOR RANKING

& SELECTION WITH INDEPENDENT NORMAL PRIORS

We consider the Bayesian ranking and selection (R&S) problem (see Section 1.1).

For R&S problems with more than a few alternatives, Bayes-optimal sequential pro-

cedures become computationally infeasible, due to the curse of dimensionality (Powell

2007). Thus, work in Bayesian R&S has focused in large part on developing sub-optimal

procedures. These procedures are evaluated sometimes through theoretical investiga-

tions, but also by empirical comparison with previously developed procedures in simu-

lation experiments. One can view the performance of each newly proposed procedure as

a lower bound on the value of a Bayes-optimal procedure, and as more procedures are

proposed, we may hope these lower bounds will get closer to this Bayes-optimal value.

In this chapter, we focus on a complimentary approach: computing upper bounds

on the value of a Bayes-optimal procedure. We focus on one version of the sequential

Bayesian R&S problem, independent normal samples with known variance with an in-

finite horizon and a cost per sample, which was previously considered in Frazier and

Powell (2008) and Chick and Frazier (2012). For this problem, we use a Lagrangian re-

laxation technique to obtain a computable upper bound on the value of a Bayes-optimal

procedure. Our computational procedures build on recent work for the problem of se-

quential Bayesian multiple comparisons with a known standard, for which the Bayes-

optimal procedure can be computed efficiently (Xie and Frazier 2013a).

This allows computing an optimality gap, which is the distance between this upper

bound and the expected performance of the best existing procedure (which may depend

on the specific problem parameters used). This may be used to inform judgments of

the value of continued algorithmic development. If this gap is small for a given set
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of problem parameters, it tells us that future procedures can improve only by a small

margin over the current state-of-the-art. If this gap is large, this may be because existing

procedures are far from optimal or because the upper bound is loose, or both. Being able

to compute gaps as a function of problem’s parameters will allow future researchers to

focus development of improved procedures and upper bounds on regions of the problem

parameter space where the gap is large.

The mathematical approach that we follow can be viewed as a Lagrangian relaxation

of a stochastic dynamic program, which was used in Whittle (1980) to study restless

bandit problems, and is also treated in Gittins et al. (2011). Our focus on obtaining

upper bounds for sequential decision-making problems is also similar in spirit to recent

work on information relaxations in Brown et al. (2010), Brown and Smith (2011), Haugh

and Kogan (2004), and Rogers (2002).

We begin in Section 5.1 by formulating the problem. We then describe our upper

bound in Sections 5.2 and how to compute it in Section 5.3. In Section 5.4 we describe

some special cases in which the bound is tight. In Section 5.5 we apply this bound to a

variety of problems. In Section 5.6 we offer concluding remarks.

5.1 The Bayesian Ranking & Selection Problem

We would like to select the best among k alternative systems. We assume that samples

from alternative x are normally distributed, with mean θx and variance λx, and indepen-

dence across time and across alternatives. The means θx are unknown, while the sam-

pling variances λx are assumed known. We let θ = (θ1, . . . ,θk). We place a Bayesian

prior distribution upon the unknown sampling means,

θx ∼N
(
µ0,x,σ

2
0,x
)
, x = 1, . . . ,k,
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with independence across alternatives. Our goal is to find the alternative with the largest

mean θx, i.e., to find x∗ ∈ argmaxx θx, and our main challenge in Bayesian R&S is to

allocate simulation effort efficiently, so as to best support making this determination.

We assume no fixed computational budget, and instead assume that each sample of

alternative x carries a cost cx > 0 that may vary across alternatives. This assumption may

be inappropriate when simulations are performed on hardware owned by the simulation

analyst, and is instead intended to model the cost structure of on-demand computation

purchased through existing cloud computing services, in which the user pays a cost per

hour of CPU time consumed.

We index time by n = 1,2, . . ., and perform our simulations sequentially. At each

time n, based on the samples observed so far, we either choose to stop sampling (see

below), or we choose an alternative xn to sample, paying a cost cxn , and observing a

sampled value yn, yn|xn,θ ∼N (θxn,λxn). The posterior distribution that results from a

sequence of observations obtained in this way is

θx | x1,y1, . . . ,xn,yn ∼N
(
µn,x,σ

2
n,x
)
, x = 1, . . . ,k, n = 1,2, . . . ,

where µn,x and σ2
n,x can be computed recursively from µn−1,x, σ2

n−1,x, xn, and yn (see,

e.g., DeGroot (1970) or equation 2 in Frazier (2012)). We define x∗n ∈ argmaxx µn,x.

At time n, if we choose to stop sampling, then we select an alternative as the best

based on the previously collected samples, and receive a reward equal to the true value

of that alternative. We call x̂∗ the selected alternative, so that the reward received from

this selection is θx̂∗ . We call τ the total number of samples taken. We assume that

x̂∗ = x∗τ , and one can show formally that this choice is the best possible, as measured by

expected reward under the prior (see, e.g., Frazier et al. (2008)).

A procedure, or policy, for Bayesian R&S is then comprised of a sampling rule, for
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choosing each xn based on the previous samples (xm,ym : m< n), and a stopping rule, for

choosing at each time n based on this same information whether to continue sampling or

not, and thus implicitly for choosing the number of samples taken τ . (The selection rule

is assumed to be x̂∗ = x∗τ , as stated above.) We refer to such a policy with the notation

π .

In Bayesian R&S, we measure the quality of a policy π by the expected net reward

under the prior distribution, Eπ
[
θx̂∗−∑

τ
n=1 cxn

]
. where the expectation is taken both

over randomness due to the stochasticity of the samples, and to the uncertainty about θ ,

and is written using the notation Eπ when it depends upon the policy π . This reward

includes both the reward due to selection, θx̂∗ , and the sampling costs, ∑
τ
n=1 cxn . We use

the notation Eπ
n to indicate the conditional expectation, with respect to the information

available at time n, (xm,ym : m≤ n).

This formulation of the sequential Bayesian R&S problem with independent nor-

mal samples, known sampling variance, independent normal prior, infinite horizon, and

sampling costs, follows that of Frazier and Powell (2008), Chick and Frazier (2012),

and is quite similar to the model in Chick and Gans (2009), which assumes a discount

factor, and to the model in Frazier et al. (2008), which assumes a finite horizon and no

discounting.

With this formulation, the expected value of a Bayes-optimal sampling policy is then

r := sup
π

Eπ

[
θx∗τ −

τ

∑
n=1

cxn

]
, (5.1)

which depends implicitly on the number of alternatives k, and, the vectors composed of

the prior mean µ0,x, prior variance σ2
0,x, sampling variance λx, and sampling cost cx of

each alternative x = 1, . . . ,k.

This value r, understood as the solution to a stochastic dynamic programming prob-
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lem, is characterized by the dynamic programming equations, e.g., as described in Chick

and Frazier (2012), but actually computing r using existing methods is intractable ex-

cept when k is very small. This intractability is caused (1) by the fact that the state space

of the dynamic program is the set of all possible values of the vector of posterior means

(µnx : x = 1, . . . ,k) and the vector of posterior variances (σ2
nx : x = 1, . . . ,k), which has

2k dimensions; and (2) by the fact that computation required to solve a dynamic pro-

gram scales badly with the dimensionality of its state space — a phenomenon which is

referred to as the curse of dimensionality (see, e.g., Powell (2007)). Our contribution in

this chapter is to provide a tractable method for computing an upper bound on r.

One simple upper bound is immediately apparent from (5.1). Sampling costs are

positive, cx > 0, so we have ∑
τ
n=1 cxn ≥ 0. Also, θx∗τ ≤maxx θx. Thus,

r ≤ E
[
max

x
θx

]
:= UBs

where the expectation does not depend on π , and so we use the notation E rather than

Eπ . UBs can be computed via numerical integration or Monte Carlo. This upper bound

was used as a benchmark in Chick and Frazier (2012).

In the following sections, we will provide a tighter and more sophisticated upper

bound than UBs.

5.2 Upper Bound on the Bayes-Optimal Value: Step 1 (Decomposi-

tion)

In this section, we provide an upper bound on (5.1) in terms of a stochastic dynamic

program with a special structure that admits solution through decomposition, avoiding
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the curse of dimensionality. Later, in Section 5.3, we show how to exploit this structure

to allow efficient computation.

We first derive the dynamic program upper bound using a direct approach in Sec-

tion 5.2.1, giving the bound below in equation (5.5). We then show an alternative deriva-

tion using a Lagrangian relaxation in Section 5.2.2, which is more complicated, but

relates the upper bound to previous literature, and may also suggest generalizations.

5.2.1 Direct Approach

First, it is convenient to rewrite r as

r := sup
π

Eπ

[
θx∗τ −

τ

∑
n=1

cxn

]
= sup

π

Eπ

[
max

x
µτ,x−

τ

∑
n=1

cxn

]
, (5.2)

where the second equation holds since

Eπ
θx∗τ = Eπ

[
Eπ

τ θx∗τ

]
= Eπ

[
µτ,x∗τ

]
= Eπ

[
max

x
µτ,x

]
by the tower property of conditional expectation.

We now state the following lemma, which bounds the reward received from the

selection decision, and whose proof involves simple algebraic manipulations.

Lemma 3. For any d ∈ R,

max
x

µτ,x ≤ d +
k

∑
x=1

(µτ,x−d)+ . (5.3)

This inequality holds with equality if and only if µτ,x∗∗τ ≤ d ≤ µτ,x∗τ , where x∗∗τ =

argmaxx 6=x∗τ µτ,x.

Proof. The right-hand side of (5.3) can be rewritten as

d + ∑
x : µτ,x≥d

(µτ,x−d) .
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Consider two cases. If maxx µτ,x ≥ d, then this quantity is greater than or equal to

d +maxx µτ,x−d, which is equal to the left-hand side of (5.3). If not, so maxx µτ,x < d,

then the right-hand side of (5.3) is equal to d, which is greater than the left-hand side

of (5.3) by our supposition. In both cases, the right-hand side of (5.3) is greater than or

equal to the left-hand side.

Furthermore, ∑
k
x=1 (µτ,x−d)+ = maxx µτ,x − d if and only if µτ,x∗∗τ ≤ d ≤ µτ,x∗τ ,

hence the result follows.

It follows from (5.2) and Lemma 3 that, for any d ∈ R,

r ≤ d + sup
π

Eπ

[
k

∑
x=1

(µτ,x−d)+−
τ

∑
n=1

cxn

]
:= R(d), (5.4)

where we have defined the quantity R(d).

We will see in Section 5.3 that R(d) can be computed efficiently. Moreover, since

the bound (5.4) holds for any d ∈ R, it follows that

r ≤ inf
d

R(d) = inf
d

{
d + sup

π

Eπ

[
k

∑
x=1

(µτ,x−d)+−
τ

∑
n=1

cxn

]}
:= UB∗. (5.5)

We will see in Section 5.3 that, in addition to being able to compute R(d) efficiently for

any d, we can also take the infimum efficiently over d to calculate UB∗. The bound UB∗

is the main focus of this chapter.

5.2.2 Lagrangian Approach

Suppose that we enlarge the set of decisions made by each policy π to include an ad-

ditional variable ax ∈ [0,1] for each alternative x, whose value is determined at time

τ when sampling stops. Let Π0 be the set of such policies satisfying the constraint
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∑
k
x=1 ax = 1 almost surely. That is, Π0 =

{
π : ∑

k
x=1 ax = 1

}
. It follows immediately that

r = sup
π∈Π0

Eπ

[
k

∑
x=1

ax µτ,x−
τ

∑
n=1

cxn

]
. (5.6)

We now apply a Lagrangian relaxation to (5.6). Let Π1 be the set of policies that

relaxes the constraint on ax to hold only in expectation, and not almost surely, so Π1 ={
π : Eπ

[
∑

k
x=1 ax

]
= 1
}

. It follows that Π0 ⊆ Π1. Thus, since, taking a supremum over

a larger set provides an upper bound, we know that for any d ∈ R,

r ≤ sup
π∈Π1

Eπ

[
k

∑
x=1

ax µτ,x−
τ

∑
n=1

cxn

]

= sup
π∈Π1

{
Eπ

[
k

∑
x=1

ax µτ,x−
τ

∑
n=1

cxn

]
−d

[
Eπ

(
k

∑
x=1

ax

)
−1

]}

= d + sup
π∈Π1

Eπ

[
k

∑
x=1

ax (µτ,x−d)−
τ

∑
n=1

cxn

]
= d + sup

π∈Π1
Eπ

[
k

∑
x=1

(µτ,x−d)+−
τ

∑
n=1

cxn

]

= d + sup
π∈Π

Eπ

[
k

∑
x=1

(µτ,x−d)+−
τ

∑
n=1

cxn

]

In the first equality, we have used Eπ [∑k
x=1 ax] = 1 for all π ∈ Π1. In the second

equality, we have used the linearity of expectation and the fact that d does not depend

on π to rearrange terms. In the third equality, we have used that the optimal choice of

ax in this supremum is to choose ax = 1 when µτ,x− d is positive, and ax = 0 when it

is negative. In the fourth and last equality, we have switched Π1 to Π because the value

whose supremum being taken does not depend on ax, making it sufficient to consider

π ∈Π.

We have derived the same upper bound UB∗ in (5.5), where d has played the role

of a Lagrange multiplier on the constraint Eπ [∑k
x=1 ax] = 1, using a technique similar to

that used in Whittle (1980), Gittins et al. (2011).
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5.3 Upper Bound on the Bayes-Optimal Value: Step 2 (Computa-

tion)

In this section we give a tractable method for computing the upper bound UB∗ on the

expected value of the Bayes-optimal policy. This method has two components. First, we

show that R(d) can be computed efficiently for any given d, using a method developed

in Xie and Frazier (2013a). Second, we show that d 7→ R(d) is convex in d, allow-

ing efficient computation of UB∗ with a standard method for minimization of a one-

dimensional convex function that uses only function values, such as Fibonacci search or

golden section search (Kiefer 1953).

5.3.1 Computation of R(d)

As written in (5.4), computation of R(d) requires solving a dynamic program whose

state space includes every possible value of the 2k-dimensional vector (µnx,σ
2
nx : x =

1, . . . ,k), for which memory requirements and computation time scale exponentially in

k, making computation intractable except when k is very small.

The essential idea behind this technique is to use the fact that alternatives are inde-

pendent of each other, and costs are additive, to rewrite R(d) as the sum of the values

of k different sub-problems, each of which is much easier to solve than the original

problem,

R(d) =
k

∑
x=1

Rx(d), (5.7)

where Rx(d) is

Rx(d) = d/k+ sup
π∈Πx

Eπ

[
(µτ,x−d)+−

τ

∑
n=1

cx

]
,

116



and Πx is the set of policies with xn = x for all x, i.e., that only measure alternative

x. Calculating Rx(d) requires solving a dynamic program whose state space is only

two-dimensional, as it contains only µn,x and σ2
n,x for a single x. Solving such a low-

dimensional dynamic program is tractable, and the computation to solve k 2-dimensional

dynamic programs scales only linearly in k.

Figure 5.1 shows Rx as a function of d, with k taking values 1,2,3 and 100, and the

other parameters fixed to µ0x = 0, σ2
0,x = 1, λx = 10, cx = e−3. The figure suggests that

Rx is convex in d, foreshadowing the result on convexity of R (though not Rx) to come

in Section 5.3.2.

Figure 5.1: Rx(d) as a function of d, when µ0x = 0, σ2
0,x = 1, λx = 10, cx = e−3,

for different values of k. From left to right, k = 1,2,3,100. R(d) =
∑

k
x=1 Rx(d), and our upper bound on the value of a Bayes-optimal pro-

cedure is UB∗ = infd R(d).

The decomposition (5.7) was previously reported, and justified formally, in Xie and

Frazier (2013a), which considered the related problem of multiple-comparisons with a

known standard (MCS). The quantity R(d)−d is actually the value of a Bayes-optimal

procedure for a variant of this MCS problem, which Xie and Frazier (2013a) refers to as

the variant for normal sampling, linear terminal payoff, and infinite horizon.

Here, we briefly describe this variant of the MCS problem. It arises when we sample

exactly as in Section 5.1, paying a cost for each sample as before, but when sampling

stops, our goal is not to find the alternative with the best true mean θx, but is instead
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to find the set of alternatives whose true means are above a threshold d, {x : θx ≥ d}.

At time τ , in this problem, the decision-maker chooses a set of alternatives, and earns

a reward of θx−d for every alternative selected, and a reward of 0 for every alternative

not selected. The Bayes-optimal way to make this selection decision is to choose to

include an alternative x iff 0≤ Eτ [θx−d] = µτ,x−d, making the optimal set of alterna-

tives to include Bτ := {x : µτ,x− d ≥ 0}. When the selection decision is made in this

way, the resulting expected reward is Eπ
[
∑x∈Bτ

(θx−d)
]
= Eπ

[
Eτ

[
∑x∈Bτ

(θx−d)
]]

=

Eπ
[
∑x∈Bτ

(µτ,x−d)
]
=Eπ

[
∑

k
x=1 (µτ,x−d)+

]
, by the tower property of conditional ex-

pectation. Including the sampling costs, the value of a Bayes-optimal policy for this

variant of the MCS problem is supπ∈ΠEπ
[
∑

k
x=1 (µτ,x−d)+−∑

τ
n=1 cxn

]
, which is ex-

actly R(d)−d.

It is also useful for development in Section 5.4 to define Vx(d) = Rx(d)− d/k−

(µ0,x− d)+. We have subtracted from Rx(d) the term d/k, as well as the value (µ0,x−

d)+ that we would receive in expectation in the MCS problem if we were forced to

stop immediately and estimate whether θx is above d or below d. Thus, Vx(d) can be

seen as the optimal incremental reward that can be obtained through sampling, in an

MCS problem with a single alternative. Xie and Frazier (2013a), in its discussion of

MCS with linear terminal payoff, normal sampling and infinite horizon, shows that Vx is

non-negative, symmetric, maximized at d = µ0,x, with bounded support. The methods

described in Xie and Frazier (2013a) actually compute Vx(d), from which Rx(d) can be

determined via

Rx(d) = d/k+(µ0,x−d)++Vx(d).
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5.3.2 Convexity of R(d)

We now show that R is convex, allowing efficient computation of UB∗ = infd R(d) with

Fibonacci search or golden section search.

Proposition 1. R is a convex function.

Proof. Let Π denote the complete set of policies. Since point-wise supremum preserves

convexity, it suffices to show that g : R×Π 7→ R, defined by

g(d,π) = Eπ

[
k

∑
x=1

(µτ,x−d)+−
τ

∑
n=1

cxn

]
,

is convex in d for any given π . Now for a given π ,

g(d,π) =
∫

h(d, ~ω) pπ (~ω) d~ω,

where

~ω =
(
τ,x1, . . . ,xτ ,µτ,1, . . . ,µτ,k

)
, h(d, ~ω) =

k

∑
x=1

(µτ,x−d)+−
τ

∑
n=1

cxn,

and pπ (~ω) is the probability distribution of ~ω given the specified priors and the sam-

pling policy π . Since h is convex in d for any given ~ω , its integral (infinite sum) g is

also convex in d.

5.4 Special Cases in which the Upper Bound is Tight

In general, the upper bound UB∗ is not tight. However, the following theorems present

two special cases in which the upper bound UB∗ is tight, i.e., in which it is equal to the

optimal expected value r.

Theorem 2. If k = 1, then UBs = UB∗ = r.

119



Proof. First note that UBs = E [θx] = µ0,x, and that the optimal policy is to stop without

taking any samples at τ = 0, with r = E [θx] = µ0,x.

R(d) = d +(µ0,x−d)++Vx(d) =


d +Vx(d), if d ≥ µ0,x

µ0,x +Vx(d), otherwise
.

Since Vx is symmetric and maximized at d = µ0,x, we know

UB∗ = inf
d

R(d) = R(−∞) = µ0,x +Vx(−∞) = µ0,x.

Theorem 3. If k = 2 and σ2
0,1 = 0, then UB∗ = r.

Proof. Since alternative 1 has known value µ0,1, the optimal sampling policy only sam-

ples from alternative 2, and µn,1 = µ0,1 for all n. It follows from (5.2) that

r = sup
π

Eπ

[
max

{
µ0,1,µτ,2

}
−

τ

∑
n=1

cxn

]
= µ0,1 + sup

π

Eπ

[
(µτ,2−µ0,1)

+−
τ

∑
n=1

cxn

]
.

By (5.5), we know

r ≤ UB∗ ≤ µ0,1 + sup
π

Eπ

[
(µτ,2−µ0,1)

+−
τ

∑
n=1

cxn

]
= r.

5.5 Numerical Results

In this section we apply the technique in Section 5.3 for computing the proposed upper

bound UB∗ on several test problems, to bound the optimality gaps of existing R&S

procedures.
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Figure 5.2: Upper bounds UB∗ and UBs and lower bound LB on the value of a
Bayes-optimal procedure for R&S problems with µ0x = 0, σ2

0,x = 1,
λx = 10, and cx = c for all x. UBs is a simple upper bound computed
by supposing that the best alternative is revealed without sampling,
and UB∗ is computed using the methods described in this chapter. LB
is the expected value of the best existing procedure for the given prob-
lem parameters, among a collection of procedures tested, as computed
using Monte Carlo simulation. The left plot fixes k = 3 and varies c
from e−4 to e−2. The right plot fixes c = e−3 and varies k.

In our numerical experiments, we implement a number of benchmarking policies,

each of which is the combination of a sampling rule among KG1 (Frazier and Powell

2008), KG∗ (Frazier and Powell 2010), ESPb (Chick and Frazier 2012), and a stop-

ping rule among EOCc,k (Chick and Frazier 2012), KG∗ (Frazier and Powell 2010),

ESPb (Chick and Frazier 2012). The best expected value of these policies serve as a

lower bound on the expected value of the Bayes-optimal policy. We denote this lower

bound by LB.

First, in Figure 5.2, we consider a collection of problems with homogeneous priors

µ0x = 0, σ2
0,x = 1, on the unknown means, homogeneous sampling variances λx = 10,

and homogeneous sampling costs, cx = c for all x. We first fix k = 3 and vary log(c)

(where log indicates the natural logarithm) within [−4,−2], and then fix log(c) = −3

and vary k within [2,15]. Figure 5.2 shows the resulting upper bounds UBs, UB∗, and
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the lower bound LB, on the Bayes-optimal value.

Figure 5.2 shows that the proposed upper bound UB∗ improves dramatically over the

naive upper bound UBs. Moreover, the optimality gap provided by UB∗ vanishes as c

increases, and stabilizes as k increases. We hypothesize that the optimality gap vanishes

as c increases because, when c is large, both the Bayes-optimal R&S procedure, and

the Bayes-optimal MCS procedure used to compute UB∗, stop sampling immediately,

without taking any samples. When both procedures stop immediately, then µτ,x = µ0,x,

and the bound is tight.

Figure 5.3: Upper bounds UB∗ and UBs and lower bound LB on the value of
the Bayes-optimal procedure for R&S problems with heterogeneous
priors. We set σ2

0,x = 1, λx = 10, cx = e−3 for all x, k = 3, µ0,1 =
µ0,2 = 0, and µ0,3 = δ , and plot bounds as a function of δ .

Second, in Figure 5.3, we consider problems with non-homogeneous priors on the

unknown means. We set σ2
0,x = 1, λx = 10, cx = e−3 for all x, fix k = 3, µ0,1 = µ0,2 = 0,

and vary µ0,3 = δ between [0,0.5]. UB∗ gives a significantly tighter bound than does

UBs, and the gap vanishes for sufficiently large δ . We hypothesize that the optimality

gap vanishes for large δ because a large difference between the best and second-best

prior allows a well-chosen value of d to be between the best and second-best values of

µτ,x with a probability close to 1, and when this occurs the bound in Lemma 3 is tight.
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5.6 Conclusions

We have provided a computationally tractable method for computing upper bounds on

the value of a Bayes-optimal procedure for the Bayesian R&S problem with independent

normal samples, an independent normal prior, and an infinite horizon with a cost per

sample. These upper bounds can be used to judge how far from optimality existing

procedures are, for a given set of problem parameters, and can be used to judge where

future algorithmic development can be directed.
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CHAPTER 6

CONCLUSIONS

In this thesis we have considered a number of sequential learning problems, including

multiple comparisons with a standard in Chapter 2, discrete optimization via simulation

in Chapter 3, optimization of expensive simulations under parameter uncertainties in

Chapter 4, and ranking and selection in Chapter 5.

We make two types of decisions when solving these problems:

1. implementation decisions upon sampling, e.g., which alternative should we select

as the best, or which subset of alternatives should we report as being feasible;

2. sequential sampling decisions for allocating simulation effort, e.g., which alterna-

tive(s) should we sample at each point in time, and when should we stop sampling.

By formulating these problems within a Bayesian statistical framework, the Bayes-

optimal (average-case optimal) implementation decisions become immediately avail-

able. Our main challenge lies in making adaptive sampling decisions, for which the

Bayes-optimal solution requires solving stochastic dynamic programs and suffers the

curse of dimensionality.

Using results from multi-armed bandits, in which a simple index policy is optimal,

and decomposition techniques that break high-dimensional dynamic programs into low-

dimensional ones, we provide tractable methods for computing the Bayes-optimal sam-

pling procedures for MCS (in Chapter 2), and for computing an upper bound on the

value of the Bayes-optimal procedure for R&S (in Chapter 5).

For DOvS problems in Chapter 3 and 4 where the Bayes-optimal sampling policies

are computationally intractable, we provide suboptimal procedures that take advantage
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of correlations among the values of alternatives (e.g., with Gaussian processes), sam-

pling correlations (e.g., with CRN), and value of information calculations (managing

the exploration versus exploitation tradeoff). These procedures improve over existing

methods by significantly reducing the number of function evaluations required on av-

erage to reach a given solution quality, and are most appropriate for use when working

with medium to long-running stochastic simulations, for which the savings on function

evaluations outweighs the extra computation time in the algorithm itself.
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APPENDIX A

APPENDIX OF CHAPTER 2

A.1 Proof of Table 2.1.

A.1.1 0-1 Terminal Payoff

h0x(s) = E [r0(x;θx) | ηx ∼D(s)] = m0x ·P{x /∈ B | ηx ∼D(s)}= m0x [1− px(s)]. Sim-

ilarly h1x(s) = m1x px(s). Bn follows directly from definition (2.1).

Payoff Condition 1 holds because function g defined by g(t) 7→max{m0x(1− t),m1x}

is a convex function and that E0 [px1 (S1,x1)] = E0
[
E1
[
1{x1∈B}

]]
= E0

[
1{x1∈B}

]
=

px1 (S0,x1). Hence by Jensen’s inequality, we have hx1(S0,x1) = g(px1 (S0,x1)) =

g(E0 [px1 (S1,x1)])≤ E0 [g(px1 (S1,x1))] = E0 [hx1 (S1,x1)].

Since for any x and s ∈ Λ,

hx(s) = max{h0x(s),h1x(s)}= h0x(s) ·1{s/∈B(x)}+h1x(s) ·1{s∈B(x)}

≤ m0x ·1{s/∈B(x)}+m1x ·1{s∈B(x)},

hence for any n,

E [hx(Sn,x) | S0,x = s,x1 = · · ·= xn = x]−hx(s)≤m0x ·1{s/∈B(x)}+m1x ·1{s∈B(x)}−hx(s).

Thus Payoff Condition 2 holds with Hx specified in the table.
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A.1.2 Linear Terminal Payoff

h0x(s)=E [r0(x;θx) | ηx ∼D(s)] =m0x [dx−µx(s)]. Similarly h1x(s)=m1x [µx(s)−dx].

Bn follows directly from definition (2.1). Hence

hx(s) = m0x [µ(s)−dx]
−+m1x [µ(s)−dx]

+ .

Payoff Condition 1 holds because E0 [µ1x1] = E0 [E1 (θx1)] = E0 [θx1] = µ0x1 . Hence

by Jensen’s inequality (EX)+ ≤ E(X+) and (EX)− ≤ E(X−), we have

hx1(S0,x1) = m0x (µ0,x1−dx)
−+m1x (µ0,x1−dx)

+

≤ E0
[
m0x (µ1,x1−dx)

−+m1x (µ1,x1−dx)
+]= E0 [hx1 (S1,x1)] .

Now for any n and x, by Jensen’s inequality,

hx (Sn,x) = m0x (µnx−dx)
−+m1x (µnx−dx)

+ ≤ En
[
m0x (θx−dx)

−+m1x (θx−dx)
+] .

Hence

E [hx (Sn,x) | S0,x = s,x1 = · · ·= xn = x]

≤ E
{
En
[
m0x (θx−dx)

−+m1x (θx−dx)
+] ∣∣∣∣ S0,x = s,x1 = · · ·= xn = x

}
= E

[
m0x (θx−dx)

−+m1x (θx−dx)
+

∣∣∣∣ ηx ∼D(s)
]
.

Thus Payoff Condition 2 holds with Hx specified in the table.

A.2 Proof of Proposition 1.

Proof. By the tower property of conditional expectation,

Eπ [r (Bτ∧T ;θ ,d)] = Eπ [Eπ
τ∧T [r (Bτ∧T ;θ ,d)]] = Eπ

[
k

∑
x=1

hx (Sτ∧T,x)

]
.
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We can therefore write (2.5) as follows,

V (s) = sup
π

Eπ

[
k

∑
x=1

hx (Sτ∧T,x)−
τ∧T

∑
n=1

cxn

∣∣∣∣ S0 = s

]
.

We restructure this into a sequence of single period rewards. For a fixed policy π

and hence a stopping rule τ , since T is geometrically distributed with parameter 1−α

and independent of the sampling filtration,

Eπ

[
k

∑
x=1

hx (Sτ∧T,x)−
τ∧T

∑
n=1

cxn

]

= Eπ

[
τ

∑
t=1

[
(1−α)α t−1

(
k

∑
x=1

hx (St,x)−
t

∑
n=1

cxn

)]
+α

τ

(
k

∑
x=1

hx (Sτ,x)−
τ

∑
n=1

cxn

)]

= Eπ

[
k

∑
x=1

[
τ

∑
t=1

[(1−α)α t−1hx (St,x)]+α
τhx (Sτ,x)

]
−

τ

∑
t=1

[
(1−α)α t−1

t

∑
n=1

cxn

]

−α
τ

τ

∑
n=1

cxn

]

= Eπ

[
k

∑
x=1

[
hx (S0,x)+

τ

∑
t=1

α
t−1 [hx (St,x)−hx (St−1,x)]

]
− (1−α)

τ

∑
n=1

[
cxn

τ

∑
t=n

α
t−1
]

−α
τ

τ

∑
n=1

cxn

]

= Eπ

[
k

∑
x=1

hx (S0,x)+
τ

∑
t=1

α
t−1 [hxt (St,xt )−hxt (St−1,xt )]−

τ

∑
t=1

α
t−1cxt

]

= Eπ

[
k

∑
x=1

hx (S0,x)+
τ

∑
t=1

α
t−1 [−cxt +hxt (St,xt )−hxt (St−1,xt )]

]
.

The second to last equation follows from simple computation and the fact that at each

time n = 1,2, . . . ,τ , for all non-selected alternatives x 6= xn, we have Sn,x = Sn−1,x.

Define for all n≥ 1

Rn =−cxn +hxn (Sn,xn)−hxn (Sn−1,xn) . (A.1)

We then have

V (s) = R0(s)+ sup
π

Eπ

[
τ

∑
n=1

α
n−1Rn

∣∣∣∣ S0 = s

]
. (A.2)
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We see from (A.2) that a problem with stopping rule τ that provides a fixed initial reward

R0(s) and a discounted single period reward αn−1Rn at each time n≥ 1 is equivalent to

the original problem. Since R0 does not affect the optimal policy, we may subtract

it from the value function and instead think of V as the optimal expected incremental

reward over R0. This provides the equivalent problem,

V (s) = sup
π

Eπ

[
τ

∑
n=1

α
n−1Rn

∣∣∣∣ S0 = s

]
, (A.3)

where we have redefined V to correspond to this equivalent problem in a slight abuse of

notation. A policy π that attains the supremum in (A.3) also attains the supremum in

(A.2) and (2.5).

For later work, it is convenient to make one additional transformation in which we

replace the random variables Rn in (A.3) with deterministic reward functions of the

alternatives’ states. From (A.3) and the tower property, we know

V (s) = sup
π

Eπ

[
τ

∑
n=1

α
n−1Eπ [Rn|Sn−1]

∣∣∣∣ S0 = s

]
.

Now Rx(s) = E [R1 | S0,x = s,x1 = x] by (2.7). Hence

Eπ [Rn|Sn−1] = Rxn(Sn−1,xn), (A.4)

and then (2.6) follows.

A.3 Proof of Proposition 2.

Proof. Under Payoff Condition 1, νx ≥−cx follows directly from Rx ≥−cx.
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Now under both conditions, we take the following expectations with respect to the

sub-problem with a single alternative x. It then follows from (A.1) and (A.4) that

Rx(Sn,x) = E [Rn+1|Sn] . (A.5)

Since Rx + cx ≥ 0 and 0 < α < 1, we write

νx(s)+ cx = max
τ>0

E
[

∑
τ
n=1 αn−1[Rx(Sn−1,x)+ cx]

∑
τ
n=1 αn−1

∣∣∣∣S0,x = s
]

≤max
τ>0

E

[
τ

∑
n=1

[Rx(Sn−1,x)+ cx]

∣∣∣∣ S0,x = s

]
=E

[
∞

∑
n=0

[Rx(Sn,x)+ cx]

∣∣∣∣ S0,x = s

]

=
∞

∑
n=0

E
[
Rx(Sn,x)+ cx

∣∣ S0,x = s
]

=
∞

∑
n=1

E
[
Rn + cx

∣∣ S0,x = s
]

=
∞

∑
n=1

E
[
hx(Sn,x)−hx(Sn−1,x)

∣∣ S0,x = s
]

=
∞

∑
n=1

{
E
[
hx(Sn,x)

∣∣ S0,x = s
]
−E

[
hx(Sn−1,x)

∣∣ S0,x = s
]}

= lim
n→∞

E
[
hx(Sn,x)

∣∣ S0,x = s
]
−hx(s)≤ Hx(s),

Here, the third line uses the Monotone Convergence Theorem; the fourth line uses (A.5)

and the tower property; and the fifth line uses (A.1). The limit in the last equal-

ity exists since {hx(Sn,x)}n≥0 is a sub-martingale by Payoff Condition 1 and hence{
E
[
hx(Sn,x)

∣∣ S0,x = s
]}

n is an increasing sequence; and the last inequality follows from

Payoff Condition 2.

A.4 Proof of Proposition 3.

Proof. We receive a zero reward if we take τx = 0. Thus Vx ≥ 0. By (2.7), we can

write (2.9) as Vx(s) = supτx

{
−cxτx +E [hx(Sτx,x) | S0,x = s,x1 = · · ·= xτx = x]−hx (s)

}
.
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Since τx ≥ 0, we know that Vx(s)≤ Hx(s) under Payoff Condition 2.

A.5 Proof of Proposition 4.

Proof. Since cx > 0, we know that Nx exists under Payoff Condition 3. Applying Payoff

Condition 3 to (2.7) gives Rx ≤ −cx + H̃x. Hence for all n ≥ Nx and s ∈ PS(x;n),

Rx (s)≤ 0. Now in the sub-problem with single alternative x and initial state S0,x = s ∈

PS (x;Nx), we know that St,x ∈ PS (x;Nx + t) for all t ≥ 0, and hence Rx(St,x)≤ 0 for all

t ≥ 0. It follows that

Vx(s) = sup
τx

E

[
τx−1

∑
t=0

Rx(St,x)

∣∣∣∣ S0,x = s

]
= 0, ∀s ∈ PS (x;Nx)

Thus τ∗x ≤ Nx.

A.6 Proof of Theorem 1.

Proof. For any arbitrary policy π with stopping time τ , we denote the number of times

we sample from each alternative x by mx. Then τ = ∑
k
x=1 mx. Denote the collection of

times when we sample from x, {1≤ n≤ τ : xn = x}, by {nx
i }1≤i≤mx .

Since the reward for each period only depends on the alternative being sampled

during that period, and the states of all the other alternatives remain frozen, we know

that the order of the sequence of sampling decisions does not affect the expected total

reward. Hence the original problem can be naturally decomposed into k sub-problems
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as follows.

Eπ

[
τ

∑
n=1

Rxn(Sn−1,xn)

∣∣∣∣ S0 = s

]
=

k

∑
x=1

{
Eπ

[
mx

∑
i=1

Rx(Snx
i−1,x)

∣∣∣∣ S0,x = sx

]}

=
k

∑
x=1

{
Eπ

[
mx

∑
n=1

Rx(Sn−1,x)

∣∣∣∣ S0,x = sx,x1 = · · ·= xmx = x

]}
≤

k

∑
x=1

Vx(sx),

(A.6)

where the last inequality follows from (2.9). Thus

V (s) = sup
π

Eπ

[
τ

∑
n=1

Rxn(Sn−1,xn)

∣∣∣∣ S0 = s

]
≤

k

∑
x=1

Vx(sx).

On the other hand, if we adopt a policy satisfying xn+1 ∈ {x : Sn,x ∈Cx} for all n≥ 0

and τ = inf{n≥ 0 : Sn,x /∈ Cx,∀x}, then for each x, mx is exactly the number of samples

from alternative x needed for the state of x to leave Cx for the first time. Hence in each

decomposed sub-problem with single alternative x, mx is an optimal solution equivalent

to τ∗x . As a result,

Eπ

[
mx

∑
n=1

Rx(Sn−1,x)

∣∣∣∣ S0,x = sx,x1 = · · ·= xmx = x

]
=Vx(sx),

the inequality in (A.6) becomes equality, and V (s) = ∑
k
x=1Vx(sx). This also shows that

any policy satisfying the conditions is optimal.

A.7 Proof of Proposition 5.

Proof. We apply ideas similar to those in the proof of Theorem 1. First, τ∗ = ∑
k
x=1 mx.

Under the optimal policy, since mx is the number of samples from alternative x needed

for the state of x to leave Cx for the first time, its distribution is the same as the distri-

bution of τx in the decomposed sub-problem with single alternative x. It follows that

mx ≤ Nx, for each x. Thus τ∗ ≤ ∑
k
x=1 Nx.
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A.8 Remark 1.

Consider the distribution of S1 given S0 = (a,b) and x1 = x. Since P0{y1 = 1} =

E0[y1] = E0 [E0 [y1 | θ ]] = E0 [θx1] = µ0x1 , we immediately have the following expres-

sions:

P{S1=(a+ ex,b) | S0=(a,b),x1=x}= P{y1=1 | S0=(a,b),x1=x}= ax/(ax +bx),

P{S1=(a,b+ ex) | S0=(a,b),x1=x}= P{y1=0 | S0=(a,b),x1=x}= bx/(ax +bx).

A.9 Proof of Table 2.2.

A.9.1 Preparatory Material

Use Stirling’s approximation, for large a and b,

B(a,b)∼
√

2π
aa− 1

2 bb− 1
2

(a+b)a+b− 1
2
.

More generally, we have the following lemma.

Lemma 4. For a,b≥ 1,

B(a,b)≥
√

2π
aa− 1

2 bb− 1
2

(a+b)a+b− 1
2
.

Proof. By Stirling’s asymptotic series (see, e.g., Abramowitz and Stegun (1964) and

Sloane (2007)), we write

Γ(z) = e−zzz− 1
2
√

2πeλz, with
1

12z+1
< λz <

1
12z

.

Hence

B(a,b) =
Γ(a)Γ(b)
Γ(a+b)

=
√

2π exp{λa +λb−λa+b}
aa− 1

2 bb− 1
2

(a+b)a+b− 1
2
.
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The result then follows since for a,b≥ 1,

λa +λb−λa+b >
1

12a+1
+

1
12b+1

− 1
12(a+b)

=
(12a+ 1

2)
2 +(12b+ 1

2)
2 +144ab− 3

2
12(a+b)(12a+1)(12b+1)

> 0.

Lemma 5. For a,b≥ 1 and dx ∈ (0,1),

da
x (1−dx)

b

B(a,b)
≤ 1

2

√
a+b
2π

.

Proof. Denote t = a+b and µ = a
a+b . Then by Lemma 4,

da
x (1−dx)

b

B(a,b)
≤ dµt

x (1−dx)
(1−µ)ttt− 1

2

√
2π(µt)µt− 1

2 [(1−µ)t](1−µ)t− 1
2
=

√
µ(1−µ)t

2π

[(
dx

µ

)µ(1−dx

1−µ

)1−µ
]t

.

Define function g(·) on (0,1) by

g(u) =
(

dx

u

)u(1−dx

1−u

)1−u

.

Then since d
du [logg(u)] = log dx(1−u)

u(1−dx)
, it is easy to see that g(·) is unimodal on (0,1) with

peak at u = dx. Finally, since µ ∈ (0,1), we know
√

µ(1−µ)≤ 1
2 , and hence

da
x (1−dx)

b

B(a,b)
≤ 1

2

√
t

2π
[g(µ)]t ≤ 1

2

√
t

2π
[g(dx)]

t =
1
2

√
t

2π
=

1
2

√
a+b
2π

.

A.9.2 0-1 Terminal Payoff

We first state the following property of the regularized incomplete beta function Id(·, ·),

Id(a+1,b) = Id(a,b)−
da(1−d)b

aB(a,b)
; Id(a,b+1) = Id(a,b)+

da(1−d)b

bB(a,b)
.

Hence by Remark 1, if

Idx(a,b)≥
m1x

m0x +m1x
+

da
x (1−dx)

b

aB(a,b)
,

134



then
E [hx (S1,x) | S0,x = (a,b),x1 = x]−hx(a,b)

=
a

a+b
hx(a+1,b)+

b
a+b

hx(a,b+1)−hx(a,b)

= m0x

[
a

a+b
Idx(a+1,b)+

b
a+b

Idx(a,b+1)− Idx(a,b)
]

= m0x

[
− a

a+b
· d

a
x (1−dx)

b

aB(a,b)
+

b
a+b

· d
a
x (1−dx)

b

bB(a,b)

]
= 0.

Similarly, if

Idx(a,b)≤
m1x

m0x +m1x
− da

x (1−dx)
b

bB(a,b)
,

we have E [hx (S1,x) | S0,x = (a,b),x1 = x]−hx(a,b) = 0.

Now, if
m1x

m0x +m1x
≤ Idx(a,b)<

m1x

m0x +m1x
+

da
x (1−dx)

b

aB(a,b)
,

then
E [hx (S1,x) | S0,x = (a,b),x1 = x]−hx(a,b)

=
a

a+b
m1x[1− Idx(a+1,b)]+m0x

[
b

a+b
Idx(a,b+1)− Idx(a,b)

]
=

a
a+b

[m1x− (m0x +m1x)Idx(a,b)]+
m0x +m1x

a+b
· d

a
x (1−dx)

b

B(a,b)

≤ m0x +m1x

a+b
· d

a
x (1−dx)

b

B(a,b)
.

Similarly, if
m1x

m0x +m1x
− da

x (1−dx)
b

bB(a,b)
< Idx(a,b)≤

m1x

m0x +m1x
,

we still have

E [hx (S1,x) | S0,x = (a,b),x1 = x]−hx(a,b)≤
m0x +m1x

a+b
· d

a
x (1−dx)

b

B(a,b)
. (A.7)

Thus (A.7) holds for all (a,b) ∈ Λ = [1,+∞)× [1,+∞). Now applying Lemma 5,

we know

E [hx (S1,x) | S0,x = (a,b),x1 = x]−hx(a,b)≤
m0x +m1x

2
√

2π(a+b)
:= H̃x(a,b).
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Since in the sub-problem with single alternative x, anx +bnx = a0x +b0x +n, and hence

PS(x;n) = {(a,b) ∈ Λ : a+b≥ 2+n}. It follows that

lim
n→∞

[
sup

(a,b)∈PS(x;n)
H̃x(a,b)

]
= lim

n→∞

[
m0x +m1x

2
√

2π(2+n)

]
= 0.

Thus Payoff Condition 3 holds and

Nx = min

{
n≥ 0 :

m0x +m1x

2
√

2π(2+n)
≤ cx

}
=

(
d(m0x +m1x)

2

8πc2
x

e−2
)+

.

A.9.3 Linear Terminal Payoff

First suppose a≥ b, then a
a+b ≥

a+1
a+b+1 . Since for all x,y ∈R,x+−y+ ≤ |x−y|, we have

E [hx (S1,x) | S0,x = (a,b),x1 = x]−hx(a,b)

=
a

a+b
hx(a+1,b)+

b
a+b

hx(a,b+1)−hx(a,b)

=
a

a+b

[
m0x

(
dx−

a+1
a+b+1

)+

+m1x

(
a+1

a+b+1
−dx

)+
]

+
b

a+b

[
m0x

(
dx−

a
a+b+1

)+

+m1x

(
a

a+b+1
−dx

)+
]

−

[
m0x

(
dx−

a
a+b

)+

+m1x

(
a

a+b
−dx

)+
]

=
a ·m0x

a+b

[(
dx−

a+1
a+b+1

)+

−
(

dx−
a

a+b

)+
]

+
a ·m1x

a+b

[(
a+1

a+b+1
−dx

)+

−
(

a
a+b

−dx

)+
]

+
b ·m0x

a+b
m0x

[(
dx−

a
a+b+1

)+

−
(

dx−
a

a+b

)+
]

+
b ·m1x

a+b

[(
a

a+b+1
−dx

)+

−
(

a
a+b

−dx

)+
]

≤ a ·m0x

a+b

∣∣∣∣ a+1
a+b+1

− a
a+b

∣∣∣∣+0+
b ·m0x

a+b

∣∣∣∣ a
a+b+1

− a
a+b

∣∣∣∣+0

=
2ab ·m0x

(a+b)2(a+b+1)
.
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Similarly if a < b, then

E [hx (S1,x) | S0,x = (a,b),x1 = x]−hx(a,b)≤
ab(m0x +m1x)

(a+b)2(a+b+1)
.

In both cases, we have

E [hx (S1,x) | S0,x = (a,b),x1 = x]−hx(a,b)

≤ ab [max{m0x,m1x}+m0x]

(a+b)2(a+b+1)
≤ max{m0x,m1x}+m0x

4(a+b+1)
:= H̃x(a,b).

Since PS(x;n) = {(a,b) ∈ Λ : a+b≥ 2+n}, we have

lim
n→∞

[
sup

(a,b)∈PS(x;n)
H̃x(a,b)

]
= lim

n→∞

[
max{m0x,m1x}+m0x

4(3+n)

]
= 0.

Thus Payoff Condition 3 holds and

Nx = min
{

n≥ 0 :
max{m0x,m1x}+m0x

4(3+n)
≤ cx

}
=

(
dmax{m0x,m1x}+m0x

4cx
e−3

)+

.

A.10 Remark 2.

From here we let Φ and ϕ denote the standard normal cdf and pdf respectively. Define

the following events for a standard normal random variable Z:

Ai =
{

µ + σ̃x(β )Z ∈
[
µ

i
x(β +β

ε
x )−δ/2,µ i

x(β +β
ε
x )+δ/2

]}
for all i,

A =
{

µ + σ̃x(β )Z /∈
[
µ

x
(β +β

ε
x ),µx(β +β

ε
x )
]}

.
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Then

E [Vx (µ + σ̃x(β )Z,β +β
ε
x )]

≈ ∑
i

{
E
[
Vx (µ + σ̃x(β )Z,β +β

ε
x ) | Ai] ·P(Ai)

}
+E [Vx (µ + σ̃x(β )Z,β +β

ε
x ) | A] ·P(A)

≈ ∑
i

{
Vx
(
µ

i
x(β +β

ε
x ),β +β

ε
x
)
·P(Ai)

}
+0 ·P(A)

= ∑
i

{
Vx
(
µ

i
x(β +β

ε
x ),β +β

ε
x
)

·
[

Φ

(
µ i

x(β +β ε
x )+δ/2−µ

σ̃x(β )

)
−Φ

(
µ i

x(β +β ε
x )+δ/2−µ

σ̃x(β )

)]}
.

A.11 Remark 3.

We only need to give explicit expressions for E [hx (µ + σ̃x(β )Z,β +β ε
x )].

A.11.1 0-1 Terminal Payoff

Let ρ = dx−µ and ξ = σ̃−1
x (β )

[
ρ−Φ−1

(
m1x

m0x+m1x

)
/
√

β +β ε
x

]
, then

E [hx (µ + σ̃x(β )Z,β +β
ε
x )]

= E
[
max

{
m0x ·Φ

(√
β +β ε

x (dx−µ− σ̃x(β )Z)
)
,

m1x

[
1−Φ

(√
β +β ε

x (dx−µ− σ̃x(β )Z)
)]}]

= m0x

∫
ξ

−∞

Φ

(√
β +β ε

x (ρ− σ̃x(β )z)
)

ϕ(z)dz

+m1x

∫ +∞

ξ

[
1−Φ

(√
β +β ε

x (ρ− σ̃x(β )z)
)]

ϕ(z)dz

= m0x ·X +m1x ·Y,

where X and Y are defined to be the first and second integral respectively in the second

line. Let Z1 and Z2 be two independent standard normal random variables. Then

X = P
[
Z1 ≤

√
β +β ε

x (ρ− σ̃x(β )Z2) ,Z2 ≤ ξ

]
= P [(Z2,Z3)≤ (ξ ,0)] ,
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where Z3 := Z1 −
√

β +β ε
x (ρ− σ̃x(β )Z2) ∼ N

(
−ρ
√

β +β ε
x ,1+β ε

x /β

)
and

Cov(Z2,Z3) =
√

β ε
x /β . It follows that X can be evaluated from the cdf of a bivariate

normal distribution. A similar argument can be applied to Y .

A.11.2 Linear Terminal Payoff

Rx(µ,β )+ cx = E [hx (µ + σ̃x(β )Z,β +β
ε
x )]−hx (µ,β )

= m0x
{
E
[
(dx−µ− σ̃x(β )Z)

+]− (dx−µ)+
}

+m1x
{
E
[
(µ + σ̃x(β )Z−dx)

+]− (µ−dx)
+
}

= m0x ·∆
(
dx−µ, σ̃−2

x (β )
)
+m1x ·∆

(
µ−dx, σ̃

−2
x (β )

)
,

(A.8)

which can be computed using Lemma 7.
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A.12 Proof of Table 2.3

A.12.1 Preparatory Material

Lemma 6. Let u0 := Φ−1
(

m1x
m0x+m1x

)
. Define functions gx(·), mx(·), sx(·), tx(·), s(·) at

(−∞,+∞) and g(·) at (−∞,+∞)2 by

gx(u) = max{m0xΦ(u),m1x [1−Φ(u)]} ,

mx(u) = m0x1{u≥u0}+m1x1{u<u0},

sx(u) =


supv

[
m1xΦ(−v)−m0xΦ(u)

u−v

]
if u≥ u0,

supv

[
m0xΦ(v)−m1xΦ(−u)

v−u

]
if u < u0,

tx(u) =


m0x supv≥u

[
Φ(v)−Φ(u)

v−u

]
if u≥ u0,

m1x supv≤u

[
Φ(v)−Φ(u)

v−u

]
if u < u0,

s(u) = max{sx(u), tx(u)} ,

g(u,v) = gx(u)+ |v−u|s(u).

Then for all u and v,

1. 0≤ s(u)≤max{m0x,m1x}/
√

2π ,

2. |u|s(u)≤max{m0x,m1x}(1+1/
√

2πe),

3. gx(v)≤ g(u,v).

Proof. • If u≥ u0, then gx(u) =m0xΦ(u) and mx(u) =m0x. Also, if m0xΦ(u)≥m1x,

then sx(u) = 0; otherwise there exists a maximum v∗ < u satisfying the first order

condition, i.e.,

sx(u) =
m1xΦ(−v∗)−m0xΦ(u)

u− v∗
= m1xϕ(v∗). (A.9)
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If u≥ 0, then tx(u) = m0xϕ(u); otherwise there exists some v∗∗ > u such that

tx(u) = m0x
Φ(v∗∗)−Φ(u)

v∗∗−u
= m0xϕ(v∗∗). (A.10)

• Similarly if u< u0, then gx(u)=m1xΦ(−u) and mx(u)=m1x. If m1xΦ(−u)≥m0x,

then sx(u) = 0; otherwise there exists some v∗ > u such that

sx(u) =
m0xΦ(v∗)−m1xΦ(−u)

v∗−u
= m0xϕ(v∗).

If u≤ 0, then tx(u) = m1xϕ(u); otherwise there exists v∗∗ < u such that

tx(u) = m1x
Φ(v∗∗)−Φ(u)

v∗∗−u
= m1xϕ(v∗∗).

It follows that s(u) ≤ max{m0x,m1x}ϕ(0) = max{m0x,m1x}/
√

2π . Hence the first

inequality holds.

For the second inequality, we notice that function u 7→ |u|ϕ(u) is maximized at

u=±1 with maximum value ϕ(1) = 1/
√

2πe. Assume u≥ u0. We first show |u|sx(u)≤

max{m0x,m1x}(1+1/
√

2πe). This result holds immediately when m0xΦ(u)> m1x, i.e.,

sx(u) = 0. Otherwise by (A.9),

|u|sx(u)≤ m1xΦ(−v∗)−m0xΦ(u)+m1x|v∗|ϕ(v∗)

≤ m1x(1+1/
√

2πe)≤max{m0x,m1x}(1+1/
√

2πe).

We then show |u|tx(u) ≤ max{m0x,m1x}(1+ 1/
√

2πe). This result holds immediately

when u≥ 0. Otherwise by (A.10),

|u|tx(u) = m0xΦ(v∗∗)−m0xΦ(u)+m0x|v∗∗|ϕ(v∗∗)

≤ m0x(1+1/
√

2πe)≤max{m0x,m1x}(1+1/
√

2πe).

The case when u < u0 is similar.

We now show the last inequality. WLOG, suppose m0x ≤ m1x. Then u0 ≥ 0.
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For u≥ u0, we have g(u,v) = m0xΦ(u)+ |v−u|max{sx(u),m0xϕ(u)}.

1. For v≥ u, by the Mean Value Theorem, Φ(v) = Φ(u)+(v−u) ·ϕ(w), where w ∈

(u,v) and ϕ(w) < ϕ(u). Hence gx(v) = m0xΦ(v) < m0x [Φ(u)+ |v−u|ϕ(u)] ≤

g(u,v).

2. For u0 ≤ v < u, gx(v) = m0xΦ(v)< m0xΦ(u)< g(u,v).

3. For v < u0, gx(v) = m1xΦ(−v) = m0xΦ(u) + (u − v)
[

m1xΦ(−v)−m0xΦ(u)
u−v

]
≤

m0xΦ(u)+ |v−u|sx(u)≤ g(u,v).

For 0 < u < u0 (if u0 > 0), g(u,v) = m1xΦ(−u)+ |v−u|max{sx(u), tx(u)}.

1. For v ≤ u, gx(v) = m1xΦ(−v) = m1x

[
Φ(−u)+(u− v)

[
Φ(−v)−Φ(−u)

u−v

]]
≤

m1xΦ(−u)+ |v−u|tx(u)≤ g(u,v).

2. For u < v≤ u0, gx(v) = m1xΦ(−v)< m1xΦ(−u) = gx(u)≤ g(u,v).

3. For v > u0, gx(v) = m0xΦ(v) = m1xΦ(−u) + (v − u)
[

m0xΦ(v)−m1xΦ(−u)
v−u

]
≤

m1xΦ(−u)+ |v−u|sx(u)≤ g(u,v).

For u≤ 0, we can show gx(·)≤ g(u, ·) similar to the case when u≥ u0.

Lemma 7. Define ∆ : (−∞,+∞)× (0,+∞]→ [0,+∞) by

∆(µ,β ) :=
[
E
(
X+
)
− (EX)+|X ∼N (µ,1/β )

]
.

Then

∆(µ,β ) =


µΦ

(
µ
√

β

)
+
√

β
−1

ϕ

(
µ
√

β

)
, if µ ≤ 0;

µ

[
Φ

(
µ
√

β

)
−1
]
+
√

β
−1

ϕ

(
µ
√

β

)
. if µ > 0.

For any fixed β > 0, ∆(·,β ) has the following properties:
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• it is strictly increasing on (−∞,0] and strictly decreasing on [0,+∞);

• it reaches its maximum at µ = 0, with maximum value 1/
√

2πβ ;

• it converges to 0 as µ →+∞ and µ →−∞.

Proof. For any fixed β > 0 and µ ∈R, suppose X ∼N (µ,1/β ), then by Clark (1961),

E
(
X+
)
= µΦ

(
µ
√

β

)
+
√

β
−1

ϕ

(
µ
√

β

)
(A.11)

where Φ and ϕ are the standard normal cdf and pdf respectively. Since Φ′(x) = ϕ(x),

ϕ ′(x) =−xϕ(x), it follows that

[E
(
X+
)
]′µ = Φ

(
µ
√

β

)
> 0,

which indicates that E(X+) is a strictly increasing function of µ . Similarly,

E
(
X−
)
= E

(
X+
)
−µ = µ

[
Φ

(
µ
√

β

)
−1
]
+
√

β
−1

ϕ

(
µ
√

β

)
, (A.12)

[E
(
X−
)
]′µ = Φ

(
µ
√

β

)
−1 < 0,

hence E (X−) is a strictly decreasing function of µ .

Now consider the objective function

∆(µ,β ) = E
(
X+
)
−
[
E
(
X+
)
−E

(
X−
)]+

=


E(X+) = E(X−) , if µ = 0;

E(X+) , if E(X+)< E(X−), i.e., µ < 0;

E(X−) , if E(X+)> E(X−), i.e., µ > 0.

It follows that ∆(·,β ) is strictly increasing on (−∞,0], strictly decreasing on [0,+∞),

and maximized at µ = 0, where

∆(0,β ) =
[
E
(
X+
)
|X ∼N (0,1/β )

]
= 1/

√
β ·
[
E
(
X+
)
|X ∼N (0,1)

]
= 1/

√
2πβ .
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Finally, since for a standard normal r.v. Z ∈ L1, we have 0 = limx→+∞ xP(Z >

x) = limx→−∞ xP(Z ≤ x) = limx→+∞ x(1−Φ(x)) = limx→−∞ xΦ(x). Thus by (A.11)

and (A.12),

lim
µ→−∞

∆(µ,β ) = lim
µ→−∞

[
E
(
X+
)
|X ∼N (µ,1/β )

]
=
√

β
−1
[

lim
x→−∞

xΦ(x)+ϕ(−∞)

]
= 0;

lim
µ→+∞

∆(µ,β ) = lim
µ→+∞

[
E
(
X−
)
|X ∼N (µ,1/β )

]
=
√

β
−1
[

lim
x→+∞

x(Φ(x)−1)+ϕ(+∞)

]
= 0.

A.12.2 0-1 Terminal Payoff

Payoff Condition 3

Denote ρ = dx−µ . Applying Lemma 6, we have

E [hx (µ + σ̃x(β )Z,β +β
ε
x )]−hx(µ,β )

= E
[
gx

(√
β +β ε

x (ρ− σ̃x(β )Z)
)]
−gx

(√
βρ

)
≤ E

[
g
(√

βρ,
√

β +β ε
x (ρ− σ̃x(β )Z)

)]
−gx

(√
βρ

)
= E

[∣∣ (√β +β ε
x −

√
β

)
ρ−

√
β +β ε

x · σ̃x(β )Z
∣∣] · s(√βρ

)
≤
[(√

1+β ε
x /β −1

)√
β |ρ|+

√
β ε

x /β ·E|Z|
]
· s
(√

βρ

)
=
(√

1+β ε
x /β −1

)
·
√

β |ρ|s
(√

βρ

)
+
√

β ε
x /β ·E|Z|s

(√
βρ

)
≤max{m0x,m1x}

[(√
1+β ε

x /β −1
)(

1+1/
√

2πe
)
+π

−1
√

β ε
x /β

]
= H̃x(µ,β ).
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Now

lim
n→∞

[
sup

(µ,β )∈PS(x;n)
H̃x(µ,β )

]

= max{m0x,m1x} lim
n→∞

[(√
1+1/n−1

)(
1+1/

√
2πe
)
+1/

(√
nπ
)]

= 0,

where PS(x;n) = {(µ,β ) ∈ Λ : β ≥ n ·β ε
x }. Thus Payoff Condition 3 holds. Notice

that the expression inside the brackets is a continuous, strictly decreasing function of n.

Simple algebra then yields

Nx = min
{

n : max{m0x,m1x}
[(√

1+1/n−1
)(

1+1/
√

2πe
)
+1/

(√
nπ
)]
≤ cx

}
= d

A2 +
√

A2
2−4A1A3

2A1
e.

Special Condition 1

We write

Hx(µ,β ) = m0x ·1{px(µ,β )≤
m0x

m0x+m1x

}+m1x ·1{px(µ,β )≥
m0x

m0x+m1x

}
−max{m0x [1− px(µ,β )] ,m1x · px(µ,β )} .

(A.13)

For any fixed β , px(µ,β ) = 1−Φ

(√
β (dx−µ)

)
converges to 1 as µ → +∞, and

converges to 0 as µ → −∞. In both cases, we have Hx(µ,β )→ 0 and thus Special

Condition 1 holds.

Special Condition 2

Fix β > 0. Let u0 := Φ−1
[

m1x
m0x+m1x

]
. Then

px(µ,β )≤
m0x

m0x +m1x
⇐⇒

√
β (dx−µ)≥ u0.

145



Case I cx < 2max{m0x,m1x}.

We know that for any α ∈ (0,1), Iα = [−zα ,zα ] := [−Φ−1(1−α/2),Φ−1(1−α/2)]

is the 100(1−α)% confidence interval for the standard normal distribution. By Propo-

sition 3 and (A.13),

E [Vx (µ + σ̃x(β )Z,β +β
ε
x )]≤ E [Hx (µ + σ̃x(β )Z,β +β

ε
x )]

= (1−α)E [Hx (µ + σ̃x(β )Z,β +β
ε
x ) | Z ∈ Iα ]+αE [Hx (µ + σ̃x(β )Z,β +β

ε
x ) | Z ∈ Ic

α ]

≤ (1−α)E [Hx (µ + σ̃x(β )Z,β +β
ε
x ) | Z ∈ Iα ]+α ·max{m0x,m1x}.

(A.14)

Pick α = cx/ [2max{m0x,m1x}].

When µ ≤ dx− σ̃x(β )zα−u0/
√

β +β ε
x , we have

√
β +β ε

x (dx−µ− σ̃x(β )Z)≥ u0

for all Z ∈ Iα , hence

E [Hx (µ + σ̃x(β )Z,β +β
ε
x ) | Z ∈ Iα ]

= m0xE
[
1−Φ

(√
β +β ε

x (dx−µ− σ̃x(β )Z)
)
| Z ∈ Iα

]
≤ m0x

[
1−Φ

(√
β +β ε

x (dx−µ− σ̃x(β )zα)
)]

,

which goes to 0 as µ →−∞.

Moreover, Special Condition 1 indicates that Rx(µ,β )→−cx as µ →−∞.

(2.16) and (A.14) then yields

limsup
µ→+∞

Lx(µ,β ,Vx)≤ lim
µ→+∞

Rx(µ,β )+ limsup
µ→+∞

E [Vx(µ + σ̃x(β )Z,β +β
ε
x )]

≤−cx + cx/2 < 0.

We can therefore find some µ
x
(β ) ≤ dx− σ̃x(β )zα − u0/

√
β +β ε

x such that for all

µ ≤ µ
x
(β ), Lx(µ,β ,Vx)< 0 and hence Vx(µ,β ) = 0.
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Similarly, we can find some µx(β ) ≥ dx + σ̃x(β )zα such that Vx(µ,β ) = 0 for all

µ ≥ µ
x
(β ).

Case II cx ≥ 2max{m0x,m1x}. Then

E [V (µ + σ̃x(β )Z,β +β
ε
x )]≤ E [Hx (µ + σ̃x(β )Z,β +β

ε
x )]≤max{m0x,m1x} ≤ cx/2.

It follows that

limsup
µ→+∞

Lx(µ,β ,Vx)≤−cx/2 < 0.

Hence we can also find µx(β ) and µ
x
(β ) satisfying Special Condition 2.

A.12.3 Linear Terminal payoff

Special Condition 1

Applying Lemma 7,

Hx(µ,β ) = E
[

m0x(dx−θx)
++m1x(θx−dx)

+

∣∣∣∣ θx ∼N (µ,1/β )

]
−
[
m0x(dx−µ)++m1x(µ−dx)

+
]

= m0x ·∆(dx−µ,β )+m1x ·∆(µ−dx,β ) .

(A.15)

Hence for any fixed β > 0, Hx(µ,β )→ 0 as µ →+∞ and µ →−∞.

Payoff Condition 3

Notice that

Hx(·,β )≤ (m0x +m1x)/
√

2πβ = H̃x(·,β ), (A.16)

hence the first inequality in Payoff Condition 3 holds. Now in the sub-problem with

single alternative x, βnx = β0x + n · β ε
x , hence PS(x;n) = {(µ,β ) ∈ Λ : β ≥ n ·β ε

x }. It
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follows that

lim
n→∞

[
sup

(µ,β )∈PS(x;n)
H̃x(µ,β )

]
= lim

n→∞

[
m0x +m1x√

2πnβ ε
x

]
= 0.

Thus the second equation in Payoff Condition 3 holds and

Nx = min

{
n≥ 0 :

m0x +m1x√
2πnβ ε

x
≤ cx

}
= d(m0x +m1x)

2

2πc2
xβ ε

x
e. (A.17)

Special Condition 2

Fix β > 0. Let ρ = µ−dx.

Case I cx
√

β +β ε
x /(m0x +m1x)< 1.

We know that for any α ∈ (0,1), Iα = [−zα ,zα ] := [−Φ−1(1−α/2),Φ−1(1−α/2)]

is the 100(1−α)% confidence interval for the standard normal distribution. By Propo-

sition 3 and (A.15), (A.16),

E [Vx (µ + σ̃x(β )Z,β +β
ε
x )]≤ E [Hx (µ + σ̃x(β )Z,β +β

ε
x )]

= (1−α)E [Hx (µ + σ̃x(β )Z,β +β
ε
x ) | Z ∈ Iα ]+αE [Hx (µ + σ̃x(β )Z,β +β

ε
x ) | Z ∈ Ic

α ]

≤ (1−α)E [Hx (µ + σ̃x(β )Z,β +β
ε
x ) | Z ∈ Iα ]+αH̃x (·,β +β

ε
x )

= (1−α)E [m0x∆(−ρ− σ̃x(β )Z,β +β
ε
x )+m1x∆(ρ + σ̃x(β )Z,β +β

ε
x ) | Z ∈ Iα ]

+αH̃x (·,β +β
ε
x ) .

(A.18)

where H̃x(·,β ) = (m0x +m1x)/
√

2πβ .

Pick α = cx
√

β +β ε
x /(m0x +m1x). Then αH̃x (·,β +β ε

x ) = cx/
√

2π .

When ρ ≥ σ̃x(β )zα , i.e., µ ≥ dx + σ̃x(β )zα , since ∆(·,β + β ε
x ) is increasing at
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(−∞,0] and decreasing at [0,+∞), we know

E [m0x∆(−ρ− σ̃x(β )Z,β +β
ε
x )+m1x∆(ρ + σ̃x(β )Z,β +β

ε
x ) | Z ∈ Iα ]

≤ m0x∆(−ρ + σ̃x(β )zα ,β +β
ε
x )+m1x∆(ρ− σ̃x(β )zα ,β +β

ε
x ),

which goes to 0 as ρ →+∞, i.e., µ →+∞.

Moreover, (A.8) shows that Rx(µ,β )→−cx as ρ →+∞, i.e., µ →+∞.

(2.16) and (A.18) then yield

limsup
µ→+∞

Lx(µ,β ,Vx)≤ lim
µ→+∞

Rx(µ,β )+ limsup
µ→+∞

E [Vx(µ + σ̃x(β )Z,β +β
ε
x )]

≤−cx + cx/
√

2π < 0.

It follows that we can find µx(β ) ≥ dx + σ̃x(β )zα such that for all µ ≥ µx(β ),

Lx(µ,β ,Vx)< 0 and hence Vx(µ,β ) = 0.

Similarly, we can find some µ
x
(β ) ≤ dx− σ̃x(β )zα such that Vx(µ,β ) = 0 for all

µ ≤ µ
x
(β ).

Case II cx
√

β +β ε
x /(m0x +m1x)≥ 1. Then

E [V (µ + σ̃x(β )Z,β +β
ε
x )]≤ H̃x (·,β +β

ε
x ) =

m0x +m1x√
2π(β +β ε

x )
≤ cx/

√
2π.

It follows that

limsup
µ→+∞

Lx(µ,β ,Vx)≤−cx + cx/
√

2π < 0.

Hence we can also find µx(β ) and µ
x
(β ) satisfying Special Condition 2.
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APPENDIX B

APPENDIX OF CHAPTER 3

B.1 Mathematical Proofs

B.1.1 Proof of Lemma 1

Proof. From the definition of the function h(·, ·) (just after (3.14)), for any vectors a,

b and b′ with b(i) ≤ b′(i) for all i, we have h(a,b) ≤ h(a,b′). From (3.14), we have

Vn(~x,A,β ) = h(µn(A), σ̃n (~x,A,β )), where for all x′ ∈ A, the element of σ̃n(~x,A,β )

corresponding to x′ is
[
Σn

(
x′,x(1)

)
−Σn

(
x′,x(2)

)]
/B, where B is the denominator

(in the lower equation for pairs) in (3.11). Hence we only need to show that B is

a decreasing function of ρ

(
x(1),x(2)

)
. The result follows immediately by observing

Λ

(
x(1),x(2)

)
= ρ

(
x(1),x(2)

)[
Λ(x(1),x(1))Λ(x(2),x(2))

]1/2
.

B.1.2 Preliminary Results for the Convergence Proofs

We first state and prove several lemmas needed to prove the convergence results stated

in Section 3.5. These lemmas all assume Assumptions 1 and 2. Condition 4 is assumed

only in the proof of Theorem 1.

Lemma 8. There exist random variables µ∞ ∈ Rk and Σ∞ ∈ Σk
+ (the space of k× k

positive semi-definite matrices), such that µn converges to µ∞, and Σn converges to Σ∞

almost surely.
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Proof. Let (µn,Σn) and Mn =
(
µn,Σn +µnµT

n
)
. We can write the components of Mn as

the conditional expectation of an integrable random variable with respect to Xn, Yn by

µn = Enθ ,Σn +µnµT
n = Enθθ T . This implies that Mn is a uniformly integrable martin-

gale and hence converges almost surely (Doob’s second martingale convergence theo-

rem, e.g. see Oksendal 2003, App. C). Because (µn,Σn) is a continuous transformation

of Mn, it also converges almost surely to some random variable (µ∞,Σ∞).

Lemma 9. Σn(x′,x) = Σ0(x′,x)−Σ0 (x,Xn) [Sn]
−1Σ0 (Xn,x′).

Proof. Let ix′ be the index of x′ in Xn,x. (If x′ appears more than once, let it be the

index of one occurance.) Let ex′ be a column vector with length |Xn|+1 that has value

1 at entry ix′ and 0 elsewhere. Let ex be defined similarly. Using (3.5), (3.7) and the

symmetry of [Sn]
−1, we then have

Σn(x′,x) = eT
x′Σn (Xn,x,Xn,x)ex = eT

x′

(
I|Xn|+1−Kn(x)

[
I|Xn|,

~0
])

Σ0 (Xn,x,Xn,x)ex

= eT
x′Σ0 (Xn,x,Xn,x)ex− eT

x′Kn(x)
[
I|Xn|,

~0
]

Σ0 (Xn,x,Xn,x)ex

= Σ0(x′,x)− eT
x′Σ0 (Xn,x,Xn,x)

[
I|Xn|,

~0
]T

[Sn]
−1
[
I|Xn|,

~0
]

Σ0 (Xn,x,Xn,x)ex

= Σ0(x′,x)−Σ0
(
x′,Xn

)
[Sn]
−1

Σ0 (Xn,x)

= Σ0(x′,x)−Σ0 (x,Xn) [Sn]
−1

Σ0
(
Xn,x′

)
.

Lemma 10. Σn+1(x,x)≤ Σn(x,x) for all x.

Proof. Using standard results from Bayesian linear regression (e.g., Gelman et al.

2004, Sec. 14.6) and the Sherman-Morrison-Woodbury formula (e.g., Rasmussen and

Williams 2006, App. A.3), the posterior variance Σn+1 of θ can be computed recur-

sively by

Σn+1 = Σn−ΣnXn+1
[
XT

n+1 (Λ+Σn)Xn+1
]−1

XT
n+1Σn,
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where

Xn+1 =


ex, if~xn+1 = x,[
ex(1),ex(2)

]
, if~xn+1 =

(
x(1),x(2)

)
,

and ex is a k×1 vector with a value of 1 at the entry for x and 0 elsewhere.

It is clear that Λ+Σn and XT
n+1 (Λ+Σn)Xn+1 are positive definite. Hence for any x,

Σn+1(x,x) = Σn(x,x)− eT
x ΣnXn+1

[
XT

n+1 (Λ+Σn)Xn+1
]−1

XT
n+1Σnex ≤ Σn(x,x).

Lemma 11. For all x and x(1) 6= x(2), P
(

x(1),x(2)
)
= Λ

(
x(1),x(1)

)
+Λ

(
x(2),x(2)

)
−

2Λ

(
x(1),x(2)

)
> 0 and

ν
KGβ

n (x)≤ 1
c(x)

√
2maxx′ Σ0(x′,x′)Σn(x,x)

βπΛ(x,x)
,

ν
KGβ

n

(
x(1),x(2)

)
≤ 1

c
(
x(1),x(2)

)√2maxx′ Σ0(x′,x′)
βπP

(
x(1),x(2)

) [√Σn
(
x(1),x(1)

)
+
√

Σn
(
x(2),x(2)

)]
.

Proof. First, we have

Vn (~x,An(~x),β ) = En [max µn+1 (An(~x)) |~xn+1 =~x,βn+1 = β ]−max µn (An(~x))

= E [max{µn (An(~x))+ σ̃n (~x,An(~x),β )Z}]−max µn (An(~x))

≤max µn (An(~x))+E [max{σ̃n (~x,An(~x),β )Z}]−max µn (An(~x))

= E [max{σ̃n (~x,An(~x),β )Z}]≤ E [max{|σ̃n (~x,An(~x),β ) | · |Z|}]

= E|Z| ·max{|σ̃n (~x,An(~x),β ) |}=
√

2/π ·max{|σ̃n (~x,An(~x),β ) |}

=
√

2/π · max
j=1,2,...,|An(~x)|

|eT
j σ̃n (~x,An(~x),β ) |,

where e j is a |An(~x)|×1 vector with 1 at entry j and 0 elsewhere.

We now derive an upper bound on eT
j σ̃n (~x,An(~x),β ). First, P

(
x(1),x(2)

)
= [ex(1)−

ex(2)]
T Λ[ex(1) − ex(2)] > 0 because Λ is positive definite by Assumption 2, where ex( j)
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is a vector with 1 at entry x( j) and 0 elsewhere. Similarly, we have Σn

(
x(1),x(1)

)
+

Σn

(
x(2),x(2)

)
− 2Σn

(
x(1),x(2)

)
≥ 0 because Σn is positive semi-definite. Now apply-

ing (3.11) and Lemma 10, for~x = x we have

|eT
j σ̃n (x,An(x),β ) |=

|eT
j Σn (An(x),x) |√

β−1Λ(x,x)+Σn(x,x)
=

|Σn

(
A( j)

n (x),x
)
|√

β−1Λ(x,x)+Σn(x,x)

≤

√√√√Σn

(
A( j)

n (x),A( j)
n (x)

)
Σn(x,x)

β−1Λ(x,x)
≤

√√√√Σ0

(
A( j)

n (x),A( j)
n (x)

)
Σn(x,x)

β−1Λ(x,x)
,

where A( j)
n (~x) is the jth component of An(~x). Similarly for~x =

(
x(1),x(2)

)
we have

|eT
j σ̃n (~x,An(~x),β ) |=

|eT
j Σn

(
An(~x),x(1)

)
− eT

j Σn

(
An(~x),x(2)

)
|√

β−1P
(
x(1),x(2)

)
+Σn

(
x(1),x(1)

)
+Σn

(
x(2),x(2)

)
−2Σn

(
x(1),x(2)

)
≤
|Σn

(
A( j)

n (~x),x(1)
)
|+ |Σn

(
A( j)

n (~x),x(2)
)
|√

β−1P
(
x(1),x(2)

)
≤

√√√√Σn

(
A( j)

n (~x),A( j)
n (~x)

)
β−1P

(
x(1),x(2)

) [√
Σn
(
x(1),x(1)

)
+
√

Σn
(
x(2),x(2)

)]

≤

√√√√Σ0

(
A( j)

n (~x),A( j)
n (~x)

)
β−1P

(
x(1),x(2)

) [√
Σn
(
x(1),x(1)

)
+
√

Σn
(
x(2),x(2)

)]
.

The claimed bounds in the lemma for ν
KGβ

n (x) and for ν
KGβ

n

(
x(1),x(2)

)
follow di-

rectly.

Lemma 12. Under the allocation rule x1 = x2 = · · · = xn = x, Σn (x,x) decreases to 0

as n→+∞. Under the allocation rule~x1 =~x2 = · · ·=~xn =
(

x(1),x(2)
)

, Σn

(
x(1),x(1)

)
and Σn

(
x(2),x(2)

)
decrease to 0 as n→+∞.

Proof. Lemma 10 shows that Σn(x,x) is a decreasing sequence bounded below by zero,

for all x. It suffices to show that the limit is 0 under these two cases.
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First consider the case when x1 = x2 = · · · = xn = x0. Note Σ0 (Xn,Xn) =

Σ0(x0,x0)eeT , where e is an n× 1 vector with n entries of 1. By Lemma 9 and the

Sherman-Morrison-Woodbury formula, for any x and x′,

Σn
(
x,x′
)
= Σ0

(
x,x′
)
−Σ0 (x,Xn) [Sn]

−1
Σ0
(
Xn,x′

)
= Σ0

(
x,x′
)
−Σ0 (x,x0)Σ0

(
x′,x0

)
eT [

Σ0(x0,x0)eeT +Λ(x0,x0) In
]−1

e

= Σ0
(
x,x′
)
− Σ0 (x,x0)Σ0 (x′,x0)

Λ(x0,x0)
eT
[

In−
Σ0(x0,x0)

nΣ0(x0,x0)+Λ(x0,x0)
eeT
]

e

= Σ0(x,x′)−
nΣ0(x,x0)Σ0(x′,x0)

nΣ0 (x0,x0)+Λ(x0,x0)
.

Specifically,

Σn (x0,x0) = Σ0 (x0,x0)

[
1− nΣ0 (x0,x0)

nΣ0 (x0,x0)+Λ(x0,x0)

]
→ 0 as n→+∞.

Next consider the case when~x1 =~x2 = · · ·=~xn =
(

x(1)0 ,x(2)0

)
. Let

D1 =

Σ0

(
x(1)0 ,x(1)0

)
Σ0

(
x(1)0 ,x(2)0

)
Σ0

(
x(1)0 ,x(2)0

)
Σ0

(
x(2)0 ,x(2)0

)
 , D2 =

Λ

(
x(1)0 ,x(1)0

)
Λ

(
x(1)0 ,x(2)0

)
Λ

(
x(1)0 ,x(2)0

)
Λ

(
x(2)0 ,x(2)0

)
 .

Let U = [I2, I2, . . . , I2]
T be a 2n × 2 matrix with n I2-blocks. Let u =[

Σ0

(
x,x(1)0

)
,Σ0

(
x,x(2)0

)]T
and v =

[
Σ0

(
x′,x(1)0

)
,Σ0

(
x′,x(2)0

)]T
be two 2×1 vectors.

Then Σ0 (Xn,Xn) = UD1UT , and Γn is a block diagonal matrix with n blocks, with

each block equal to D2. Similar to the above argument we have

Σn
(
x,x′
)
= Σ0

(
x,x′
)
−Σ0 (x,Xn) [Sn]

−1
Σ0
(
Xn,x′

)
= Σ0

(
x,x′
)
−Σ0 (x,Xn)

[
UD1UT +Γn

]−1
Σ0
(
Xn,x′

)
= Σ0

(
x,x′
)
−Σ0(x,Xn)

[
Γ
−1
n −Γ

−1
n U

(
D−1

1 +UT
Γ
−1
n U

)−1
UT

Γ
−1
n

]
Σ0
(
Xn,x′

)
= Σ0

(
x,x′
)
−n
[
uT D−1

2 v−nuT D−1
2
[
D−1

1 +nD−1
2
]−1

D−1
2 v
]

= Σ0
(
x,x′
)
−nuT (nD1 +D2)

−1 v,

154



where the last line follows from the previous line by the following computation, which

uses the matrix identity A−1B−1 = (BA)−1 and the Sherman-Morrison-Woodbury for-

mula:

[
I−nD−1

2 (D−1
1 +nD−1

2 )−1]D−1
2 =

[
I−n(D−1

1 D2 +nI)−1]D−1
2

=
[
I−
(
I +n−1D−1

1 D2
)−1
]

D−1
2 =

[
I− (I−D−1

1 (nI +D2D−1
1 )−1D2

]
D−1

2

= D−1
1 (nI +D2D−1

1 )−1 = (nD1 +D2)
−1.

Simple algebra then yields limn→+∞ nuT (nD1 +D2)
−1 v= (d2+d3−d4)/d1, where

d1 = Σ0

(
x(1)0 ,x(1)0

)
Σ0

(
x(2)0 ,x(2)0

)
−
[
Σ0

(
x(1)0 ,x(2)0

)]2
,

d2 = Σ0

(
x(1)0 ,x(1)0

)
Σ0

(
x,x(2)0

)
Σ0

(
x′,x(2)0

)
,

d3 = Σ0

(
x(2)0 ,x(2)0

)
Σ0

(
x,x(1)0

)
Σ0

(
x′,x(1)0

)
,

d4 = Σ0

(
x(1)0 ,x(2)0

)[
Σ0

(
x,x(1)0

)
Σ0

(
x′,x(2)0

)
+Σ0

(
x,x(2)0

)
Σ0

(
x′,x(1)0

)]
.

Under Assumption 2, we always have d1 > 0 because Σ0 is positive definite. Specifically,

when x = x′ = x(i)0 (i = 1,2), [d2 +d3−d4]/d1 = Σ0

(
x(i)0 ,x(i)0

)
. Hence Σn

(
x(i)0 ,x(i)0

)
→

0 as n→+∞ for i = 1,2.

Lemma 13. If alternative x is sampled infinitely often, then Σn(x,x)→ 0 and ν
KGβ

n (x)→

0 as n→ ∞. If alternative x′ 6= x is also sampled infinitely often, then Σn(x′,x′)→ 0 and

ν
KGβ

n (x,x′)→ 0 as n→ ∞.

Proof. There are k possible decisions in Ξ that involve sampling alternative x, namely,

x and (x,x′) for x′ 6= x. Because x is sampled infinitely many times, at least one of

these k decisions is chosen infinitely often. Let ~x be one such decision and {qn}∞
n=1

be a strictly increasing subsequence of Z+ such that ~xqn =~x for n = 1,2, . . . Because

the ordering of the decision-observation pairs can be changed without altering Σn(x,x),
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and because taking additional observations can only decrease Σn(x,x) by Lemma 10,

we know that an upper bound on Σqn(x,x) is given by the posterior variance of θx at

time n under an allocation rule, call it π , that chooses x1 = x2 = · · · = xn = ~x. Call

this posterior variance Σπ
n (x,x), so we have Σqn(x,x) ≤ Σπ

n (x,x). Lemma 12 shows

limn→∞ Σπ
n (x,x) = 0. Hence limn→∞ Σqn(x,x) = 0. Because {Σn(x,x)}n is a non-negative

decreasing sequence, limn→∞ Σn(x,x) exists and equals 0, due to the uniqueness of the

limit. Combining this with Lemma 11 and the non-negativity of the KGβ factors, we

have limn→∞ ν
KGβ

n (x) = 0.

If x′ 6= x is also sampled infinitely often, similarly we have limn→∞ Σn(x′,x′) = 0,

and thus limn→∞ ν
KGβ

n (x,x′) = 0 by Lemma 11.

Lemma 14. If liminfn→∞ ν
KGβ

n (~x) = 0 for all~x ∈ Ξ, then limn→∞ Σn(x,x) = 0 for all x.

Proof. Consider an arbitrary sample path on which the µn converges to µ∞. Lemma 8

shows that the set of such sample paths is almost sure. We will show that the claim holds

on this sample path.

Lemma 10 shows that {Σn(x,x)}n is a non-negative decreasing sequence and hence

limn→∞ Σn(x,x) exists and is non-negative for any x. We prove the contrapositive of the

statement of the lemma. That is, we suppose that maxx [limn→∞ Σn(x,x)] > 0 and show

that liminfn→∞ ν
KGβ

n (~x)> 0 for some~x ∈ Ξ.

We choose two alternatives on which to focus in our analysis. First, because at

least one decision ~x′ ∈ Ξ is chosen by the algorithm infinitely often, Lemma 13 shows

that there exists an alternative x′ with limn→∞ Σn(x′,x′) = 0. Second, by our choice

of sample path, limn→∞ µn = µ∞. Let x∗ = argmax µ∞, breaking ties arbitrarily. Then
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µ∞(x∗)≥ µ∞(x) for all x. It follows that there exists N large enough and a sequence {εn}

decreasing to 0 such that µn(x∗)≥ µn(x)−εn for all x for n≥ N. If limn→∞ Σn(x∗,x∗)>

0, let x(1) = x∗ and x(2) = x′; otherwise pick x(1) with limn→∞ Σn

(
x(1),x(1)

)
> 0 and let

x(2) = x∗. Let~x =
(

x(1),x(2)
)

.

For each n≥ N, let

a1
n = µn

(
x(1)
)
, a2

n = µn

(
x(2)
)
,

b1
n =

Σn

(
x(1),x(1)

)
−Σn

(
x(1),x(2)

)
√

β−1P+Qn
, b2

n =
Σn

(
x(2),x(1)

)
−Σn

(
x(2),x(2)

)
√

β−1P+Qn
,

where P and Qn are given in (3.12). Then we have the following:

Vn (~x,An(~x),β ) = En [max µn+1 (An(~x)) |~xn+1 =~x,βn+1 = β ]−max µn (An(~x))

≥ En

[
max

{
µn+1

(
x(1)
)
,µn+1

(
x(2)
)}
|~xn+1 =~x,βn+1 = β

]
(B.1)

−max
{

µn

(
x(1)
)
,µn

(
x(2)
)}
− εn

= E
[
max

{
a1

n +b1
nZ,a2

n +b2
nZ
}]
−max{a1

n,a
2
n}− εn

= |b1
n−b2

n| f
(
−|a

1
n−a2

n|
|b1

n−b2
n|

)
− εn, (B.2)

where f (−s) = ϕ(s)− sΦ(−s) is as defined in Section 3.3.2, and (B.2) is understood to

be 0 when |b1
n−b2

n|= 0. In this sequence of expressions, the first line applies (3.13); the

second line uses max µn(An(~x)) ≤ µn(x∗)+ εn = max{µn(x(1),µn(x(2))}+ εn together

with the fact that An(~x) contains x(1) and x(2); the third line uses (3.10) and (3.11); and

the last line follows from computations involving the normal distribution, which may be

found in equation (14) of Frazier et al. (2009). We will take the limit of (B.2) as n goes

to ∞.

By our choice of sample path, µn converges to µ∞, so limn→∞ |a1
n−a2

n|= |µ∞(x(1))−
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µ∞(x(2))| := γ1 < ∞. We now show that limn→∞ |b1
n−b2

n| is strictly positive. First,

|b1
n−b2

n|=
|Σn

(
x(1),x(1)

)
−2Σn

(
x(1),x(2)

)
+Σn

(
x(2),x(2)

)
|√

β−1P+Qn
=

|Qn|√
β−1P+Qn

.

Then,
{

Σn

(
x(1),x(1)

)}
n

is bounded above by Σ0(x(1),x(1)) by Lemma 10, and

limn→∞ Σn

(
x(2),x(2)

)
= 0, so

lim
n→∞
|Σn

(
x(1),x(2)

)
| ≤ lim

n→∞

√
Σn
(
x(1),x(1)

)
Σn
(
x(2),x(2)

)
= 0.

Hence limn→∞ Σn

(
x(1),x(2)

)
= 0. It follows that

lim
n→∞

Qn = lim
n→∞

Σn

(
x(1),x(1)

)
−2Σn

(
x(1),x(2)

)
+Σn

(
x(2),x(2)

)
= lim

n→∞
Σn(x(1),x(1)),

which is strictly positive by the construction of x(1). Thus,

lim
n→∞
|b1

n−b2
n|= liminf

n→∞

|Qn|√
β−1P+Qn

=
| limn→∞ Σn(x(1),x(1))|√

β−1P+ limn→∞ Σn(x(1),x(1))
:= γ2 > 0.

Recall (B.2). The function s 7→ f (−s) is continuous, so (B.2) is continuous in (|a1
n−

a2
n|, |b1

n−b2
n|) on [0,∞)× (0,∞), and the limit of (B.2) as n→ ∞ is γ2 f (−γ1/γ2). Since

Vn(~x,An(~x),β ) is bounded below by (B.2),

liminf
n→∞

ν
KGβ

n (~x) =
liminfn→∞Vn (~x,An(~x),β )

βc(~x)
≥ 1

βc(~x)
γ2 f
(
−γ1

γ2

)
> 0,

where we have used that γ1 < ∞ and γ2 > 0, and f (−s) is strictly positive for s < ∞.

B.1.3 Proof of Theorem 1 (Convergence Proof)

Proof. We first show, by contradiction, that liminfn→∞ ν
KGβ

n (~x) = 0 almost surely for

all~x ∈ Ξ. Consider an arbitrary sample path of the KG2
β

algorithm from the almost sure

set on which the claim of Lemma 14 holds. Let

χ0 :=
{
~x ∈ Ξ : lim

n→∞
ν

KGβ

n (~x) exists and is 0
}

and χ1 :=
{
~x ∈ Ξ : liminf

n→∞
ν

KGβ

n (~x) = 0
}
,
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Suppose for contradiction that χ1 6= Ξ, i.e., that

Ξ\χ1 =
{
~x ∈ Ξ : liminf

n→∞
ν

KGβ

n (~x)> 0
}

is not empty.

Pick ~x ∈ Ξ \ χ1. By Condition 4, there exists a subsequence of Z+, denoted by

{ni}∞
i=1, such that~xni ∈Ξni for all i. Also, liminfi→∞ ν

KGβ

ni (~x)≥ liminfn→∞ ν
KGβ

n (~x)> 0.

Thus there exists some ε > 0 and a subsequence of {ni}∞
i=1, denoted {n j}∞

j=1, such that

ν
KGβ

n j (~x)≥ ε for all j. Then ν
KGβ

n j

(
~xn j

)
≥ ν

KGβ

n j (~x)≥ ε for all j.

For each ~x′ ∈ Ξ \ χ0, the contrapositive of Lemma 13 implies there exists a finite

number N (~x′) such that the KG2
β

algorithm does not choose~x′ for n > N (~x′). Let N :=

max~x′∈Ξ\χ0 N (~x′). Then~xn ∈ χ0 for all n > N.

For each ~x′ ∈ χ0, limn→∞ ν
KGβ

n (~x′) = 0. Hence there exists a finite number N0 (~x′)

such that ν
KGβ

n (~x′) < ε for all n > N0 (~x′). Let N0 := max~x′∈χ0 N0 (~x′). Then for all

n > N0, ν
KGβ

n (~x′)< ε for any~x′ ∈ χ0.

It follows that ν
KGβ

n (~xn)< ε for all n>max{N0,N}, which contradicts ν
KGβ

n j

(
~xn j

)
≥

ε for all j. We thus conclude that χ1 = Ξ on this sample path, i.e. liminfn→∞ ν
KGβ

n (~x) =

0 for all~x ∈ Ξ. Since the chosen sample path was arbtitrary, this holds almost surely.

Since we chose a sample path on which Lemma 14 holds, limn→∞ Σn(x,x) = 0 on

this sample path. Moreover, as the set of sample paths on which Lemma 14 holds is

almost sure, limn→∞ Σn(x,x) = 0 almost surely.

To show that limn µn(x) = θ(x) almost surely for each x, we first show this limit

holds in L2. For each x, E
[
(µn(x)−θ(x))2] = E

[
En
[
(µn(x)−θ(x))2]] = E [Σn(x,x)].

Taking the limit as n→ ∞ and using 0 ≤ Σn(x,x) ≤ Σ0(x,x) with the dominated con-

vergence theorem implies limn→∞ E
[
(µn(x)−θ(x))2]= E [limn→∞ Σn(x,x)] = 0. Then,

159



since µn(x) converges to θ(x) in L2, and Lemma 8 implies limn→∞ µn(x) exists almost

surely, this almost sure limit equals θ(x).

We now show that limn→∞ argmaxx µn(x) = argmaxx θ(x) almost surely. First, x∗ ∈

argmaxx θ(x) is almost surely unique as a realization of a multivariate normal random

variable, and so ε = θ(x∗)−maxx 6=x∗ θ(x) is almost surely strictly positive. Fix a sample

path on which limn→∞ µn(x) = θ(x) for each x (which occurs almost surely). There

exists N < ∞ such that |µn− θ(x)| < ε

2 for all n > N. Then, for all n > N and all

x 6= x∗, µn(x∗) > θ(x∗)− ε

2 > θ(x)+ ε

2 > µn(x), implying x∗ is the unique element in

argmaxx µn(x). This shows that limn→∞ argmaxx µn(x) = argmaxx θ(x) almost surely.

B.2 MLE for Unknown Parameters in Section 3.6.2

This section derives the MLE used in Section 3.6.2to estimate the parameters η , σ2
0 ,

~α = {αi}1≤i≤d , σ2
ε and ρ , which determine Λ, µ0 and Σ0 through the model defined

in Section 3.6.1. The derivation is related to results of Huang et al. (2006) and Ras-

mussen and Williams (2006, Sections 2 and 5), but it goes beyond this previous work in

considering the sampling correlation ρ .

Continue to let Xn and Yn represent all design points and outputs that have been

observed through stage n, including the initialization phase. Let m = |Xn| be the total

number of observations. Set g=σ2
0/σ2, σ2 =σ2

0 +σ2
ε , and let δi j be 1 if X

(i)
n and X

( j)
n

are sampled using CRN, and 0 otherwise. Then Yn ∼N
(

η~1,σ2R
)

for a correlation
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matrix R defined by

R(i, j) =


1, if i = j,

gexp
{
−∑

d
l=1 αl

[
ζl

(
X

(i)
n

)
−ζl

(
X

( j)
n

)]2
}
+(1−g)ρδi j, if i 6= j.

The MLE is then argmax
η ,σ2

0 ,~α,σ2
ε ,ρ

log p
(
Yn | η ,σ2

0 ,~α,σ2
ε ,ρ
)
. We reparameterize this

problem by replacing (σ2
0 ,σ

2
ε ) with (g,σ2), which uniquely determine each other, to

obtain an equivalent formulation of the MLE,

argmax
η ,σ2,g,~α,ρ

log p
(
Yn | η ,σ2

0 ,~α,σ2
ε ,ρ
)
= argmax

η ,σ2,g,~α,ρ

log p
(
Yn | η ,σ2

0 ,R
)
,

where we have noted that the parameters g,~α,ρ only influence the log-likelihood

through the correlation matrix R, which is determined by them.

We solve this optimization problem in two steps, first optimizing over σ2 and η

with the other parameters fixed, which can be done analytically, and then numerically

optimizing the resulting value over the set of R matrices that can be achieved with the

remaining parameters g, ~α ,ρ . We first describe optimization over σ2 and η in the fol-

lowing lemma.

Lemma 15. The maximum log-likelihood over η and σ2 with R fixed is

log p
(
Yn | η̂ , σ̂2,R

)
=max

η ,σ2
log p

(
Yn |η ,σ2,R

)
=−1

2
(
m log σ̂

2+log |R|
)
−m

2
(1+log2π),

where~1 denotes a length-m column vector of ones, |R| is the determinant of R, and

σ̂
2 =

1
n

(
Yn− η̂~1

)T
R−1

(
Yn− η̂~1

)
η̂ =

(
~1T R−1~1

)−1
~1T R−1Yn. (B.3)

Proof. We first rewrite the log-likelihood as

log p
(
Yn |η,σ2,R

)
=−1

2

(
Yn−η~1

)T (
σ

2R
)−1
(
Yn−η~1

)
− 1

2
log |σ2R|− m

2
log2π

=− 1
2σ2

(
Yn−η~1

)T
R−1
(
Yn−η~1

)
− m

2
logσ

2− 1
2

log|R|− m
2

log2π
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Observe that η̂ = argminη

[(
Yn−η~1

)T
R−1

(
Yn−η~1

)]
=
(
~1T R−1~1

)−1
~1T R−1Yn

is the generalized least squares estimate of η . Let C :=
(
Yn− η̂~1

)T
R−1

(
Yn− η̂~1

)
.

We then consider a function H : R+ 7→ R with H(s) = C/s+m logs. Since H ′(s) =

−C/s2 +m/s, we know C/m is the global minimum of H. It follows that σ̂2 =C/m is

the MLE of σ2. We thus conclude that log p
(
Yn | η̂ , σ̂2,R

)
=−1

2

(
m log σ̂2 + log |R|

)
−

m
2 (1+ log2π) is the maximum log marginal likelihood of Yn given matrix R.

To complete the calculation of the MLE, we maximize the expression for

log p
(
Yn | η̂ , σ̂2,R

)
from Lemma 15 over matrices R that can be obtained by varying

the remaining parameters g, ρ and ~α . Denote such maximizers by ĝ, ρ̂ and ~̂α . To find

them, we examine the partial derivatives of log p
(
Yn | η̂ , σ̂2,R

)
with respect to g, ρ and

αl (l = 1, . . . ,d). Let t denote any of these parameters. Rasmussen and Williams (2006,

Sec. 5) show ∂R−1

∂ t =−R−1 ∂R
∂ t R−1 and ∂ log |R|

∂ t = tr
(

R−1 ∂R
∂ t

)
. Thus, we can write

∂

∂ t
log p(Yn | R) =−

1
2

[(
n

σ̂2
∂ σ̂2

∂ t

)
+ tr

(
R−1 ∂R

∂ t

)]
,

where

∂ σ̂2

∂ t
=−1

n

(
2

∂ η̂

∂ t

(
Yn− η̂~1

)T
R−1~1+

(
Yn− η̂~1

)T
R−1 ∂R

∂ t
R−1

(
Yn− η̂~1

))
,

∂ η̂

∂ t
=
(
~1T R−1~1

)−2
~1T R−1 ∂R

∂ t
R−1~1~1T R−1Yn−

(
~1T R−1~1

)−1
~1T R−1 ∂R

∂ t
R−1Yn.
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Each entry of the matrix ∂R
∂ t is given by ∂R

∂ t (i, i) = 0 for i = 1,2, . . . ,m and, for i 6= j,

∂R
∂g

(i, j) = exp

{
−

d

∑
l=1

αl

[
ζl

(
X

(i)
n

)
−ζl

(
X

( j)
n

)]2
}
−ρδi j,

∂R
∂αl

(i, j) =−g
[
ζl

(
X

(i)
n

)
−ζl

(
X

( j)
n

)]2
exp

{
−

d

∑
l=1

αl

[
ζl

(
X

(i)
n

)
−ζl

(
X

( j)
n

)]2
}
,

l = 1,2, . . . ,d,

∂R
∂ρ

(i, j) = (1−g)δi j.

By applying a Cholesky decomposition to the positive definite matrix R, one can

avoid a direct inversion of R in the computations above by solving triangular linear

systems. Letting G be the Cholesky factor, the log determinant of R can be calculated

efficiently by log |R|= 2∑
m
1=1 logGii.

With these expressions, we can then use gradient based maximization methods to

find ĝ, ρ̂ and ~̂α . As previously discussed, MLEs η̂ and σ̂2 are given by (B.3), and

MLEs σ̂2
0 , σ̂2

ε follow from inverting the definitions of g and σ2 and applying the inverted

expressions to ĝ and σ̂2.

B.3 Gradients Results

This section provides details to support the computation of gradients of the posterior

means and predictive covariances with respect to sampling decisions (singletons or

pairs), under the assumption that the alternatives sampled are embedded in Rd . These

were used in Section 3.6.3 to compute the gradient of the VOI and KG factor with re-

spect to the location of the sampling decision. We also demonstrate simplifications of

those results for the special case of a GP prior distribution with Gaussian kernel and con-

stant mean, and a sampling covariance that satisfies a compound sphericity assumption

163



(as in Section 3.6.1 and Section 3.6.2).

We continue the notational convention of Section 3.6.3, in which derivatives taken

with respect to x (in the case of singletons) and~x (in the case of pairs), actually indicate

derivatives taken with respect to these alternatives’ grid coordinates: (ζi(x) : i= 1, . . . ,d)

for singletons; and (ζi(x(1)),ζi(x(2)) : i = 1, . . . ,d) for pairs.

The expressions provided in B.3.1 and B.3.2 are for general priors and sampling

models, and have within them terms such as ∇x [µ0(x)], ∇x [Σ0(x,x)], and ∇x [Λ(x,x)],

whose values depend on the specific prior and form of sampling correlation assumed.

Specific values for these quantities for the prior and sampling correlation used in Section

3.6.2 - 3.6.3 are provided in Appendix B.3.3.

B.3.1 Gradients of µn (x′) and σ̃n (x,x′,β ) when Sampling a Single-

ton

In this section, we provide expressions for ∇x [µn (x′)] and ∇x [σ̃n (x,x′,β )] for an arbi-

trary alternative x′. These expressions can be substituted in (3.19) to obtain an expres-

sion for the gradient of the VOI Vn (x,An(x),β ) when sampling a singleton ~x = x, that

holds when An(x) is as described in Section 3.6.3.

To support this computation, let Jn (x′) := ∇x′ [Σ0 (x′,Xn)] be a d×|Xn| matrix, the

ith column of which is ∇x′ [Σ0 (x′,Xn(i))], where Xn(i) is the ith entry of Xn. Recall

Ỹn, Sn and Kn(~x) from (3.5).

We first provide an expression for ∇x [µn (x′)].

Lemma 16. ∇x [µn (x′)] = ∇x [µ0(x)]+ Jn(x)[Sn]
−1Ỹn if x = x′, and is~0 if x 6= x′.
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Proof. If x 6= x′, then µn(x′) does not depend on x, so ∇x [µn(x′)] = 0. Now consider

x = x′. Note that x is the last element of Xn,x. Let ex be a column vector [0,0, . . . ,0,1]T

with length |Xn|+1. Then

µn(x) = eT
x µn (Xn,x) = eT

x

[
µ0 (Xn,x)+Kn(x)Ỹn

]
= eT

x µ0 (Xn,x)+ eT
x Σ0 (Xn,x,Xn,x)

[
I|Xn|,

~0
]T

[Sn]
−1Ỹn

= µ0(x)+Σ0 (x,Xn) [Sn]
−1Ỹn,

where we use (3.5) and (3.6) in the last line. Because [Sn]
−1Ỹn does not depend

on x, the gradient is ∇x [µn(x)] = ∇x (µ0x) + ∇x [Σ0(x,Xn)] [Sn]
−1Ỹn = ∇x [µ0(x)] +

Jn(x)[Sn]
−1Ỹn.

We now provide an expression for ∇x [σ̃n (x,x′,β )].

Lemma 17.

∇x
[
σ̃n
(
x,x′,β

)]
=

B∇x [Σn(x′,x)]−Σn (x′,x)∇x(B)
B2

where B :=
√

Λ(x,x)/β +Σn(x,x), and

∇x
[
Σn
(
x′,x
)]

=


∇x [Σ0(x′,x)]− Jn(x)[Sn]

−1Σ0(Xn,x′), if x′ 6= x,

∇x [Σ0(x,x)]−2Jn(x)[Sn]
−1Σ0(Xn,x), if x′ = x,

∇x(B) =
1

2B

{
∇x [Λ(x,x)/β +Σ0(x,x)]−2Jn(x)[Sn]

−1
Σ0(Xn,x)

}
.

Proof. Recall that σ̃nx′(X ,β ) = Σn(x′,x)/B, so ∇x [σ̃n (x,x′,β )] is as claimed. Next,

recall from Lemma 9 that Σn(x′,x) = Σ0(x′,x)−Σ0 (x,Xn) [Sn]
−1Σ0 (Xn,x′). Thus if

x′ 6= x, then

∇x
[
Σn(x′,x)

]
= ∇x

[
Σ0(x′,x)

]
−∇x [Σ0(x,Xn)] [Sn]

−1
Σ0
(
Xn,x′

)
= ∇x

[
Σ0(x′,x)

]
− Jn(x)[Sn]

−1
Σ0
(
Xn,x′

)
.
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If x′ = x, then using standard matrix differentiation, we can compute the gradient as

∇x [Σn(x,x)] = ∇x [Σ0(x,x)]− 2Jn(x)[Sn]
−1Σ0 (Xn,x). The claimed formula for ∇x(B)

follows from simple algebra.

B.3.2 Gradients of µn (x′) and σ̃n (~x,x′,β ) when Sampling a Pair

In this section, we describe computation of ∇~x [µn (x′)] and ∇~x [σ̃n (~x,x′,β )] for an arbi-

trary alternative x′. These expressions can be substituted in (3.20) to obtain an expres-

sion for the gradient of the VOI Vn (x,An(x),β ) when sampling a pair~x, that holds when

An(x) is as described in Section 3.6.3.

The gradient ∇x(i) [µn(x′)] for i = 1,2 is given in Lemma 16 where we replace x by

x(i). The derivation is similar and is hence omitted. The derivation of ∇x(i) [σ̃n (~x,x′,β )]

when sampling pairs differs from that of the gradient when sampling a singleton, so

details follow.

Lemma 18. For i = 1,2,

∇x(i)
[
σ̃n
(
~x,x′,β

)]
=

1
B2

{
B∇x(i)

[
Σn

(
x′,x(1)

)
−Σn

(
x′,x(2)

)]
−
[
Σn

(
x′,x(1)

)
−Σn

(
x′,x(2)

)]
∇x(i)(B)

}
,

(B.4)

where

B :=
{

β
−1
[
Λ

(
x(1),x(1)

)
+Λ

(
x(2),x(2)

)
−2Λ

(
x(1),x(2)

)]
+Σn

(
x(1),x(1)

)
+Σn

(
x(2),x(2)

)
−2Σn

(
x(1),x(2)

)} 1
2
,

(B.5)
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∇x(i)

[
Σn

(
x′,x(1)

)
−Σn

(
x′,x(2)

)]
(B.6)

=



∇x(1)

[
Σ0

(
x′,x(1)

)]
− Jn

(
x(1)
)
[Sn]
−1Σ0 (Xn,x′) , if i = 1,x′ 6= x(1)

∇x(1)

[
Σ0

(
x(1),x(1)

)
−Σ0

(
x(1),x(2)

)]
−Jn

(
x(1)
)
[Sn]
−1
[
2Σ0

(
Xn,x(1)

)
−Σ0

(
Xn,x(2)

)]
, if i = 1,x′ = x(1)

−∇x(2)

[
Σ0

(
x′,x(2)

)]
+ Jn

(
x(2)
)
[Sn]
−1Σ0 (Xn,x′) , if i = 2,x′ 6= x(2)

∇x(2)

[
Σ0

(
x(1),x(2)

)
−Σ0

(
x(2),x(2)

)]
+Jn

(
x(2)
)
[Sn]
−1
[
2Σ0

(
Xn,x(2)

)
−Σ0

(
Xn,x(1)

)]
, if i = 2,x′ = x(2)

and

∇x(i)(B) =
1
B

{
∇x(i)

[
1
2

[
β
−1

Λ(x(i),x(i))+Σ0(x(i),x(i))
]
−
[
β
−1

Λ(x(1),x(2))+Σ0(x(1),x(2))
]]

+ Jn

(
x(i)
)
[Sn]
−1 [

Σ0
(
Xn,x3−i)−Σ0

(
Xn,xi)]}.

Proof. First, recall that σ̃n (~x,x′,β ) = 1
B

[
Σn

(
x′,x(1)

)
−Σn

(
x′,x(2)

)]
, hence (B.4) fol-

lows. Using (3.5) and (3.6), similar to the proof of Lemma 17, we have for i = 1,2 that

Σn

(
x′,x(i)

)
= Σ0

(
x′,x(i)

)
−Σ0

(
x(i),Xn

)
[Sn]
−1Σ0 (Xn,x′).

We show the first two cases (i = 1) of (B.6). The other two cases

(i = 2) follow similarly, and are ommitted. In the first case (x′ 6= x(1)) we

have ∇x(1)

[
Σn

(
x′,x(1)

)
−Σn

(
x′,x(2)

)]
= ∇x(1)

[
Σn

(
x′,x(1)

)]
= ∇x(1)

[
Σ0

(
x′,x(1)

)]
−

Jn

(
x(1)
)
[Sn]
−1Σ0 (Xn,x′). In the second case (x′ = x(1)) then from the ob-

servation that Σn

(
x(1),x(1)

)
− Σn

(
x(1),x(2)

)
= Σ0

(
x(1),x(1)

)
− Σ0

(
x(1),x(2)

)
−

Σ0

(
x(1),Xn

)
[Sn]
−1Σ0

(
Xn,x(1)

)
+Σ0

(
x(1),Xn

)
[Sn]
−1Σ0

(
Xn,x(2)

)
, it follows from
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standard matrix differentiation and the definition of Jn

(
x(1)
)

that

∇x(1)

[
Σn

(
x(1),x(1)

)
−Σn

(
x(1),x(2)

)]
=∇x(1)

[
Σ0

(
x(1),x(1)

)
−Σ0

(
x(1),x(2)

)]
−2Jn

(
x(1)
)
[Sn]
−1

Σ0

(
Xn,x(1)

)
+ Jn

(
x(1)
)
[Sn]
−1

Σ0

(
Xn,x(2)

)
.

It remains to compute ∇x(i)(B). Notice that for i = 1,

∇x(1)

[
Σn

(
x(1),x(1)

)
+Σn

(
x(2),x(2)

)
−2Σn

(
x(1),x(2)

)]
=∇x(1)

[
Σn

(
x(1),x(1)

)
−Σn

(
x(1),x(2)

)]
−∇x(1)

[
Σn

(
x(2),x(1)

)
−Σn

(
x(2),x(2)

)]
=∇x(1)

[
Σ0

(
x(1),x(1)

)
−2Σ0

(
x(1),x(2)

)]
+2Jn(x(1))[Sn]

−1
[
Σ0

(
Xn,x(2)

)
−Σ0

(
Xn,x(1)

)]
,

where the last equation follows from (B.6). ∇x(1)(B) then follows from the definition of

B. The formula for ∇x(2)(B) is similar.

B.3.3 Simplification under Compound Sphericity, Constant Prior

Mean, and Gaussian Kernel

The gradients of the VOI and KG factors in Appendices B.3.1-B.3.2 involve the gradi-

ents of the sampling covariance matrix, and of the mean and covariance for the unknown

mean θ . That is, they include the terms ∇x [Λ(x,x′)], ∇x [µ0(x)] and ∇x [Σ0 (x,x′)] for ar-

bitrary x,x′. These values depend on the prior distribution and the assumed form of the

sampling correlation.

In this section, we provide specific values for these quantities that result from adopt-

ing the modeling choices from Section 3.6.2 - 3.6.3: a GP prior with a Gaussian kernel
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and constant mean, and compound sphericity. These choices substantially simplify the

expressions from Appendices B.3.1-B.3.2, as many terms become 0.

First, under compound sphericity, ∇x [Λ(x,x′)] =~0 for arbitrary x and x′. Second,

under constant prior mean, ∇x [µ0(x)] = ∇x [η ] =~0. Third, we compute ∇x [Σ0(x,x′)]

for arbitrary x and x′. Denote by ◦ the Hadamard (componentwise) product of two

vectors u and v of the same length, so that (u ◦ v)(i) = u(i)v(i). Then ∇x [Σ0 (x,x′)] =

2Σ0 (x,x′)α ◦ [ζ (x)−ζ (x′)] . In particular, ∇x [Σ0(x,x)] = ∇x
[
σ2

0
]
=~0.
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APPENDIX C

APPENDIX OF CHAPTER 4

C.1 Proof of Lemma 2

Proof. By (4.3) and (4.5),

an+1 (x) =
∫

µn+1 (x+δ ,ω) p(δ ,ω)dδ dω.

Since the posterior mean µn+1(·, ·) is a linear function of the observations up to time n

and yn+1, we can write an+1 (x) | Dn,θn+1,ωn+1 as

sn (x,θn+1,ωn+1)+ tn (x,θn+1,ωn+1) · yn+1,

where sn and tn are real-valued, deterministic functions of Dn. Now since yn+1 condi-

tioned on Dn,θn+1,ωn+1 is normally distributed, we know that an+1 (x) is also normally

distributed conditioned on Dn,θn+1,ωn+1.

By the tower property,

an (x) = En [g(x)] = En [En+1 [g(x)]] .

Also since Σn+1 does not depend on yn+1 (it is fully determined by Dn, θn+1 and ωn+1),

we know that bn is well defined. By (4.4) and the conditional variance formula,

bn (x,θn+1,ωn+1)

= Varn [g(x)]−Varn+1 [g(x)]

= Varn [g(x)]−En [Varn+1 [g(x)] | θn+1,ωn+1]

= Varn [En+1 [g(x)] | θn+1,ωn+1] .

Thus (4.8) follows.
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C.2 Convergence Properties

Assume Θ×Ω is compact, and U(·, ·) is a continuous function on Θ×Ω.

For any set A⊆Θ×Ω, define

Mn(A) = ∑
m≤n

1{(θm,ωm)∈A}.

Proposition 2. For any non-empty A⊆Θ×Ω, Mn(A)> 0 for some n.

Proof. For contradiction we assume that there exists a non-empty A⊆ Θ×Ω such that

Mn(A) = 0 for all n. Let (θ ∗,ω∗) be a cluster point of the sequence {(θn,ωn)}n (it exists

since Θ×Ω is compact). Let A′ be a closed, non-empty subset of A, and

ε = liminf
n→∞

sup
(θ ,ω)∈A′

Vn (θ ,ω) .

Lemma 19. Under certain regularity assumptions on the prior, ε > 0.

Proof. Use that we never measure in A′ implying variance is bounded below, and used

that the posterior mean cannot be too large or small, based on supU and infU .

Thus, there exist θ ′,ω ′ ∈ A′ ⊆ A such that

liminf
n→∞

Vn
(
θ
′,ω ′

)
≥ ε.

Lemma 20. There exists δ > 0 such that

limsup
n→∞

Vn (θ ,ω)≤ ε/2

for all (θ ,ω) ∈ Bδ (θ
∗,ω∗).
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Proof. Use that we measure infinitely often near (θ ∗,ω∗).

Vn (θ ,ω) = E
[
max

x
an(x)+bn (x,θ ,ω)Z

]
−max

x
an(x)

≤max
x

an(x)+E
[
max

x
bn (x,θ ,ω)Z

]
−max

x
an(x)

= E
[
max

x
bn (x,θ ,ω)Z

]
= E

[
max

x
bn (x,θ ,ω)Z1Z>0 +max

x
bn (x,θ ,ω)Z1Z<0

]
= max

x
bn (x,θ ,ω)E [Z1Z>0]+min

x
bn (x,θ ,ω)E [Z1Z<0]

=
[
max

x
bn (x,θ ,ω)−min

x
bn (x,θ ,ω)

]
/
√

2π

≤
√

2
π

max
x
|bn (x,θ ,ω) |.

By (4.19),

bn (x,θ ,ω) =

∫∫
Σn (x+δ ′,ω ′,θ ,ω) p(δ ′,ω ′)dδ ′dω ′√

Σn (θ ,ω,θ ,ω)
.

|Σn
(
x+δ

′,ω ′,θ ,ω
)
|

≤
√

Σn (x+δ ′,ω ′,x+δ ′,ω ′)Σn (θ ,ω,θ ,ω)

Thus, there exists N < ∞ such that for all n≥ N, Vn(θ
′,ω ′)≥ ε >Vn(θ ,ω), for any

(θ ,ω) ∈ Bδ (θ
∗,ω∗). It follows from (4.6) that for all n ≥ N, (θn,ωn) /∈ Bδ (θ

∗,ω∗),

which contradicts the fact that (θ ∗,ω∗) is a cluster point of the sequence {(θn,ωn)}n.

The contradiction shows Mn(A)> 0 for some n.

Theorem 2. Every point (θ ,ω) is a cluster point of the sequence {(θn,ωn)}n, or is

measured.
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Proof. Let δ = infn ||(θ ,ω)− (θn,ωn) ||. For contradiction assume δ > 0. Let A =

Bδ/2 (θ ,ω). By Proposition 2, there exists some n such that (θn,ωn) ∈ A, which means

that ||(θ ,ω)− (θn,ωn) || ≤ δ/2. This contradicts the definition of δ .

Corollary 1. limn→∞ µn (θ ,ω) =U (θ ,ω) for all θ ,ω .
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Shi, L, S Ólafsson. 2000. Nested partitions method for stochastic optimization. Methodology

and Computing in Applied Probability 2(3) 271–291.

Siegmund, D. 1985. Sequential analysis: tests and confidence intervals. Springer Series in

Statistics, Springer-Verlag, New York.

SimOpt.org. 2011. . http://simopt.org/.

Sloane, N. 2007. The on-line encyclopedia of integer sequences. Towards Mechanized Mathe-

matical Assistants 130.
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