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The accurate description of the coupled nuclear and electronic motion in large

complex systems is necessary to inform the design of renewable energy de-

vices. Treating many-body systems with exact quantum dynamics is typically

intractable due to the exponential scaling of quantum mechanics. It is there-

fore of theoretical interest to develop accurate approximate quantum dynam-

ics methods that are able to capture the mechanisms and varying time scales

of many-body systems, while retaining the favorable linear scaling of classical

methods. The focus of this dissertation is the development and application of

an approximate quantum dynamics method towards elucidating mechanisms

in the condensed phase.

The approximate quantum dynamic method of interest is based on the path

integral representation of the quantum Boltzmann distribution [1]. The quan-

tum Boltzmann distribution describes the classical distribution of a ”ring poly-

mer” in an extended phase space. Mapping Variable RPMD (MV-RPMD) is

an extension of RPMD that allows for the classical treatment of electronic state

transitions by mapping discrete states to continuous phase-space variables and

it employs classical trajectories to calculate real-time thermal correlation func-

tions [2]. We study the condensed phase reaction dynamics of a proton-coupled

electron transfer (PCET) system and an electron transfer (ET) system using MV-



RPMD.

We derive a more numerically stable quantum Boltzmann distribution in the

MV-RPMD framework by invoking the symmetric Trotter approximation. We

construct a four-state electron-proton system from a model PCET system bath

model comprised of a proton double well coupled to two discrete electronic

states. We establish bead convergence with significantly fewer beads than re-

quired in the original system. Further, in studying the mechanism of PCET we

show that population dynamics generated from MV-RPMD trajectories can be

used to accurately distinguish concerted and sequential PCET mechanisms. We

verify the accuracy of PCET mechanisms predicted by MV-RPMD population

dynamics by comparing against Fermi’s Golden Rule and Kramers rate calcula-

tions.

It is known that RPMD is an approximation to the ”ImF” version of semi-

classical instanton theory when used to calculate reaction rates in the deep tun-

neling regime [3]. This speaks to RPMD’s accuracy in approximating reaction

rates within this regime. In an effort to develop a nonadiabatic rate theory in

the MV-RPMD framework, we apply the method towards the calculation of an

MV-RPMD instanton configuration in a model two-state system [4] and pro-

vide preliminary results. Knowledge of the MV-RPMD instanton can provide

transition state information necessary for a nonadiabatic rate calculation. In this

vein, following our instanton configuration calculations, we develop three new

rate expressions, in terms of flux-side thermal correlation functions(TCF), in the

MV-RPMD framework .
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CHAPTER 1

INTRODUCTION

Charge and energy transfer in the condensed phase mediate many natural pro-

cesses including the tyrosine oxidation step in photosynthesis [5, 6, 7, 8], the pro-

ton pumping mechanism in respiration and emerging renewable energy tech-

nologies such as organic photovoltaics and dye-sensitized solar cells [9, 10].

Further understanding of the mechanisms underlying these processes will in-

form the design of more efficient clean energy technologies. However, statistical

methods are useful for determining energy landscapes, equilibrium properties

such as average energy, and statistical distributions of nuclei. Statistical meth-

ods fail to provide information about reactive pathways in chemical systems.

Experimental studies provide information about long-time dynamics but fail to

give short time information.

Real-time quantum dynamics methods can probe subfemtosecond dynamics

but are only feasible in small systems due to the exponential scaling problem in

quantum mechanics [11]. Additionally, accurately describing the wide range

of time scales and the degree of coupling between light and heavy quantum

mechanical particles in large complex systems remains a theoretical challenge.

While molecular dynamics is ideal because it scales linearly with system size,

it fails to capture quantum mechanical properties such as tunneling, zero-point

energy (ZPE) and interference.

Several approximations to quantum dynamics in large complex systems

have been reported in the literature. For example mixed quantum/classical

(MQC) methods such as surface hopping have been used to study systems such

as proton transfer, PCET, and ET [7, 12, 13]. MQC methods typically treat
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heavy nuclei classically and electronic degrees of freedom quantum mechani-

cally. While these methods are tractable relative to exact quantum dynamics,

they fail to preserve thermal distributions and accurately describe population

dynamics in the condensed phase due to the inconsistent treatment of coupled

nuclear and electronic motion. MQC methods consequently suffer from un-

controlled approximations to the coupled electronic and nuclear motion. More

accurate methods that introduce semiclassical approximations to quantum dy-

namics, treat all degrees of freedom in a consistent framework but lack effi-

ciency and fail to preserve detailed balance.

Approximate quantum dynamics methods also include a path integral based

methods based on the discretization of the quantum Boltzmann distribution

(QBD). These imaginary-time PI methods are favorable because they employ

classical trajectories and consequently scale almost linearly with system size.

Further, these methods treat all degrees of freedom in a consistent dynamic

framework, incorporate quantum tunneling and ZPE, and preserve the QBD.

Ring polymer molecular dynamics (RPMD) is an accurate and efficient

method for short-time dynamics including charge and energy transfer in large

complex systems. RPMD’s linear scaling, preservation of the QBD, its consistent

treatment of degrees of freedom, and its accurate description of tunneling and

ZPE [14] has made it a viable method for studying a wide range of chemical pro-

cesses in the condensed phase. For example RPMD has been used to simulate

quantum diffusion in liquid water, quantum diffusion in para-hydrogen [15],

hydride transfer rates in enzymes [16], bimolecular reaction rates [17, 18],

mixed valence ET in water between iron atoms [19], ET between cobalt hex-

amine complexes in water [20] and several other applications. A shortcoming

2



of RPMD is in its treatment of electrons as distinguishable particles which limits

its applicability to single electron processes. Further, RPMD does not allow for

the simulation of nonadiabatic processes, where the coupled motion of electrons

and nuclei occur on similar timescales.

It is of theoretical interest to develop extensions of RPMD which account

for the indistinguishable nature of electrons while also allowing for the treat-

ment of nonadiabatic processes. Several nonadiabatic versions of RPMD have

been reported in the literature, including surface hopping RPMD [21], Kineti-

cally constrained RPMD (KC-RPMD) [22], Coherent state RPMD [23], nonadi-

abatic MF-RPMD [24] and more [25, 2, 26, 27]. While there are several RPMD

extensions reported in the literature, the focus in the dissertation will be on de-

veloping and applying MV-RPMD [27, 2]. This extension, which originated in

our group, employs continuous electronic and nuclear variables which can be

used to generate classical equations of motion [2]. This method has been used

to simulate photo-initiated dynamics in model three-state systems in the gas

phase [27]. In an effort to extend MV-RPMD’s utility towards larger and more

realistic systems, we employ MV-RPMD in the simulation of condensed phase

nonadiabatic dynamics. The first application will be in studying the chronology

of proton and electron transfer in model PCET systems [28]. Further, in the

interest of applying MV-RPMD to a wider range of chemical problems we per-

form instanton configuration calculations. These calculations provide insight

into how, within the MV-RPMD framework, we can undertake a rate calcula-

tion in a model ET system in the condensed phase.

We start off the discussion with a review of the original RPMD formulation.

In chapter 2 we go into detail about its advantages and limitations. We then

3



discuss the nonadiabatic extension of RPMD, MV-RPMD, and the derivation of

a classically isomorphic QBD which generates statistics with increased stabil-

ity. In chapter 3 we discuss various PCET models that have been reported in

the literature. In chapter 4 we use MV-RPMD to gain mechanistic insight in

model PCET systems. In chapter 5 we review semiclassical instanton theory

and provide preliminary results for instanton configuration calculations for a

model two-state system. In chapter 5 we review RPMD rate theory, provide the

framework for its extension to nonadiabatic rate calculations in the MV-RPMD

framework, and outline the formalism for three novel MV-RPMD rate theories.

In chapter 6 we summarize our results and provide direction for future studies.

4



CHAPTER 2

IMAGINARY-TIME PATH INTEGRALS

In this section we will discuss the path integral discretization of the QBD. We

will discuss the RPMD approximation, its range of accuracy and some of the

limitations that have inspired its extended forms.

The exponential scaling of configuration space in quantum mechanics ren-

ders directly solving the Schrödinger equation for large, complex and often

more interesting systems an intractable challenge [29, 30]. One method for

circumventing the exponential scaling of computational cost for quantum sys-

tems is to take advantage of the classical isomorphism between the equilibrium

statistics of a quantum particle and the classical statistics of a ring polymer.

This allows us to reconstitute a quantum problem into a linearly scaled classical

problem. We start by considering a general system with mass M, momentum P

and coordinate R moving in a general one dimensional potential V(R) described

by the Hamiltonian,

Ĥ =
P̂2

2M
+ V(R̂) = T̂ + V̂ . (2.1)

The canonical partition function for a system with Hamiltonian, H, can be writ-

ten as the trace over the Boltzmann operator,

Z = Tr[e−βĤ] = Tr[e−β(T̂+V̂)] (2.2)

where β is 1/kbT and T is the system temperature. The trace can be written in

the basis of system coordinates as

Z = Tr[e−β(T̂+V̂)] =

∫
dR〈R|e−β(T̂+V̂)|R〉. (2.3)

5



Since T̂ and V̂ do not commute we employ the Trotter approximation and write

the trace as,

Z =

∫
dR〈R|e−β(T̂+V̂)|R〉 = lim

P→∞

∫
dR〈R|(e−

β
2P V̂e−

β
P T̂ e−

β
2P V̂)P

|R〉. (2.4)

We then insert P − 1 copies of identity

I =

∫
dR|R〉〈R| (2.5)

and we obtain a product of matrices

Z = lim
P→∞

∫
d{Rα}〈R1|e−

β
2P V̂e−

β
P T̂ e−

β
2P V̂ |R2〉〈R2|e−

β
2P V̂e−

β
P T̂ e−

β
2P V̂ |R3〉 (2.6)

×〈R3| . . . |RP〉〈RP|e−
β

2P V̂e−
β
P T̂ e−

β
2P V̂ |R1〉.

We can then write,

Z = lim
P→∞

∫
d{Rα}

P∏
α=1

〈Rα|e−
β

2P V̂e−
β
P T̂ e−

β
2P V̂ |Rα+1〉 (2.7)

= lim
P→∞

∫
d{Rα}

P∏
α=1

〈Rα|e−
β

2P V̂e−
β
P T̂ e−

β
2P V̂ |Rα+1〉

where {Rα} = {R1 . . .RP}. Evaluating the coordinate space matrix elements we get,

〈Rα|e−
β

2P V̂e−
β
P T̂ e−

β
2P V̂ |Rα+1〉 = e−

β
2P V(Rα)〈Rα|e−

β
P T̂ |Rα+1〉e−

β
2P V(Rα+1). (2.8)

The matrix elements of the kinetic energy operator, 〈Rα|e−
β
P T̂ |Rα+1〉, can be evalu-

ated by introducing a complete set of momentum states,

I =

∫
dp|p〉〈p| (2.9)

Where we now have∫
dP〈Rα|e−

β
P T̂ |p〉〈p|Rα+1〉 =

∫
dpe−

β
2PM p2
〈Rα|p〉〈P|Rα+1〉. (2.10)

The definition of the inner product of coordinate and momentum eigenstates is,

〈R|p〉 =
1
√

2π~
eipR. (2.11)
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The integral over momentum can be written as∫
dpe−

β
2PM p2
〈Rα|p〉〈p|Rα+1〉 =

∫
dpe−

β
2PM p2

e(ipRα−ipRα+1). (2.12)

Upon completing the square and evaluating the momentum integral we obtain

the matrix elements,

〈Rα|e−
β

2P V̂e−
β
P T̂ e−

β
2P V̂ |Rα+1〉 (2.13)

=

( mP
2πβ~2

)1/2
exp

[
−

mP
2β~2 (Rα − Rα+1)2 −

β

2P
(V(Rα) + V(Rα+1))

]
.

Due to the cyclic permutability of the trace, RP+1 = R1, we have

β

2P
(V(Rα) + V(Rα+1)) =

β

P
V(Rα). (2.14)

Substituting this back into the equation for the partition function,

Z = lim
P→∞

( mP
2πβ~2

)P/2 ∫
d{Rα}exp

(
−

P∑
α=1

[
−

mP
2β~2 (Rα − Rα+1)2 −

β

P
(V(Rα))

])
, (2.15)

which is the exact expression for the QBD in that path integral framework. For a

system with d nuclear dimensions, where H =
p̂2

2M +V(R̂) and p̂ and R̂ are vectors

of d-dimensions the QBD is,

Z = lim
P→∞

( mP
2πβ~2

)dP/2 ∫
d{Rα}exp

(
−

P∑
α=1

[
−

mP
2β~2 (Rα−Rα+1)T ·(Rα−Rα+1)−

β

P
(V(Rα))

])
.

(2.16)

We can connect the above expression to the quantum partition function by in-

troducing a set of P normalized gaussian integrals,

IN =

(2πM′

βP

)dP/2 ∫
d{pα}e−

βP
2M

∑P
α=1 pT ·p. (2.17)

The P-bead approximation to the quantum partition function is

Z = lim
P→∞

∫
d{pα}

∫
d{Rα}e−βPHP(Rα,pα) (2.18)
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where βP = β/P and

HP =

P∑
α=1

[pT
α · pα
2M

+
mP2

2β2~2 (Rα + Rα+1)T · (Rα − Rα+1) + V(Rα)
]
. (2.19)

The Gaussian variables are fictitious classical momenta, where the constant M′

has units of mass. Since the Gaussian integrals are normalized we have free-

dom in our choice of M′. The representation of the exact quantum partition

function as a P-dimensional classical phase-space integral for the fictitious clas-

sical system consisting of P bead is known as the classical isomorphism. This

is also referred to as the P-bead imaginary-time path integral representation for

the QBD. We can see this by considering the relationship β/P = it/~. Solving

for temperature we find β = itP/~ and T = ~/Pkbit. We can then interpret the

fictitious beads in the ring polymer to be a slice in imaginary-time and the ring

polymer to be imaginary-time propagation (0 < t < β/P).We arrive at an exact

representation of the QBD as a product of matrix elements which is formally

known to be the ”path integral discretization.” This idea originates from Feyn-

man’s use of path integrals in order to represent the quantum time evolution of

a system with classical paths [31, 32, 33, 34]. Path integral molecular dynam-

ics (PIMD) uses the classical dynamics generated by the Hamiltonian, HP in Eq.

(2.19) to sample the extended ring polymer phase space configurations along

thermostatted trajectories and calculates exact quantum statistics in the limit of

a large bead number P.

Ṙα =
∂HP

∂pα
, ṗα = −

∂HP

∂Rα

(2.20)

Additionally, it is straightforward to use path integral Monte Carlo (PIMC) im-

portance sampling in order to calculate exact quantum statistics within this

framework. In this vein, exact quantum statistics can be calculated using the

Boltzmann factor, e−βPH({Rα,Pα}), to importance sample extended ring polymer
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phase space configurations. Both PIMD and PIMC are very efficient for sys-

tems containing containing hundreds, sometimes thousands, of atoms. If we

wish to compute the expectation value of a quantum mechanical operator Â,

that is purely a function of the operator R̂, such that Â = A(R̂) we can write,

〈Â〉 =
tr[e−βĤ Â]
tr[e−βĤ]

=
1
Z

tr[e−βĤ Â]. (2.21)

We can write the expectation value in the limit of a discrete path integral as

〈Â〉 = lim
P→∞

∫
d{pα}

∫
d{Rα}

1
P

P∑
α=1

A(Rα)e−βPHP(Rα,pα) (2.22)

where we define the quantity

AP(R1 . . .RP) =
1
P

P∑
α=1

A(Rα) (2.23)

as the estimator for operator Â. In the limit of a large bead number the statistical

average of the estimator will give the exact expectation value for the observable

such that,

〈A〉 = lim
P→∞
〈AP(R1 . . .RP)〉e−βHP , (2.24)

Where 〈. . .〉e−βHP indicates the ensemble average is obtained with respect to the

sampling function e−βHP . Thermodynamic quantities can be calculated within

the path integral formalism. For example, consider the average internal energy

given by,

E = −
1
Z
∂

∂β
lnZ = −

1
Z
∂Z
∂β
. (2.25)

The exact quantum mechanical expectation value of energy can be computed

using path integrals,

〈E〉 = lim
P→∞
〈EP(R1 . . .RP)〉e−βHP (2.26)

where the energy estimator is,

EP(R1 . . .RP) =
P
2β
−

P∑
α=1

[ MP
2β2~2 (Rα − Rα+1)T · (Rα − Rα+1) −

1
P

V(Rα)
]
. (2.27)
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2.1 RPMD Approximation

While the path integral discretization of the QBD lends a convenient and ef-

ficient route to generating exact quantum statistics, methods like PIMD and

PIMC are limited to time-independent system properties. For more interesting

processes such as charge and energy transfer in biological systems or energy

technologies we need to employ dynamics methods. Ideally we would like a

method that incorporates accurate quantum information while preserving the

scalability of a classical dynamics method. To see how RPMD is a viable option

we start by considering the real-time quantum correlation function for a system

in thermal equilibrium,

cAB(t) =
1
Q

Tr[e−βĤ Â(0)B̂(t)], (2.28)

where Â and B̂ are Heisenberg-evolved system observables. Alternatively, this

can be written in a more symmetric and thus more classical form as the Kubo-

transformed correlation function,

c̃AB(t) =
1
βQ

∫ β

0
tr[e−(β−λ)Ĥ Â(0)e−λĤ B̂(t)]dλ (2.29)

where the Boltzmann operator e−βĤ is symmetrically averaged between Â(0).

The Fourier transform of the quantum mechanical real-time correlation function

and the Kubo-transformed correlation function are,

CAB(ω) =

∫ ∞

−∞

e−iωtcAB(t)dt, C̃AB(ω) =

∫ ∞

−∞

e−iωtc̃AB(t)dt (2.30)

and they have the relationship,

CAB(ω) =
β~ω

1 − e−β~ω
C̃AB(ω) (2.31)

so knowledge of either is sufficient to calculate the other. The rigorous path in-

tegral discretization of Eq. (2.28) or Eq. (2.29) [31] can be done in a variety of
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ways and leads to a number of exact and approximate methods for generating

quantum dynamics. These include methods such as Quasi-adiabatic Path Inte-

gral (QUAPI) method [35, 30] and General Quantum Master Equations (GQME)

[36, 37]. These methods tend to be highly demanding computationally and con-

sequently impractical for large, often more interesting, systems. The reasoning

behind the development of RPMD is to exploit the classical isomorphism be-

tween ring polymer statistics and quantum statistics in an approximate quan-

tum dynamics method. We start by noting that it is easy to show that the Kubo-

transformed quantum thermal correlation function (TCF) has a classical analog

at t = 0,

c̃AB(0) ≈ lim
P→∞

∫
d{pα}

∫
d{Rα}e−βPHP(Rα,pα)AP(R0)BP(R0) (2.32)

where, again, the functions AP(R0) and BP(R0) are averaged over the beads of

the ring polymer at t = 0,

AP(R) =
1
P

P∑
α=1

A(Rα), BP(R) =
1
P

P∑
α=1

B(Rα) (2.33)

and HP refers to the classical ring polymer Hamiltonian in Eq. (2.19). By taking

the fictitious mass, M, in the momenta term in Eq. (2.19), to be the physical mass

of the system, we can generate an ensemble average of classical trajectories.

This ensemble average of trajectories provides a classical-like approximation to

the Kubo-transformed quantum correlation function. RPMD approximates Eq.

(2.29) for t > 0 such that,

c̃AB(t) ≈ lim
P→∞

∫
d{pα}

∫
d{Rα}e−βPHP(Rα,pα)AP(R0)BP(Rt) (2.34)

The evaluation of Eq. (2.34) involves initializing a distribution of ring polymer

extended phase space configurations using PIMC or PIMD. Subsequently, an

ensemble of ring polymer MD trajectories are launched from this distribution
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and propagated under the ring polymer Hamiltonian, HP, with dynamic prop-

erties averaged over the ensemble.

Features of RPMD

The RPMD approximation of the correlation function, c̃AB(t), is a classical corre-

lation function in the extended ring polymer phase space of the P-bead imagi-

nary time path integral. In the limit of high temperature, the harmonic spring

force constant, MP2/β2, becomes so large that the radius of gyration of the ring

polymer shrinks to zero, which corresponds to a single-bead limit.

It can be shown that RMPD correlation functions give the exact Kubo-

transformed quantum mechanical correlation function as t → 0 by expanding

both in a Taylor series about t = 0, considering the case where A(R̂) and B(R̂) are

hermitian operators [38]. Even coefficients of the expansion of both terms are

the only ones to survive since c̃AB(t) and RPMD correlations functions are real

and even. Upon comparing terms in the expansion it is revealed that RPMD

has a leading O(t8) error term for position autocorrelation functions and O(t4)

for general correlation functions with nonlinear operators [?].

If the system potential, V(R̂), is harmonic, Eq. 2.19 will give the exact quan-

tum result in the limit as P → ∞ for all correlation functions of the form c̃Aq(t)

and c̃qB(t). For the case of position autocorrelation functions, c̃qq(t), RPMD gives

the exact result for any value of P [39].
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Justification and Applicability

While Hele and co-workers published a derivation establishing the connec-

tion between the RPMD approximation made in Eq. (2.34) and the Kubo-

transformed correlation function in Eq. (2.29) [40, 41], a detailed understanding

of the physical nature of the approximation has yet to be reported. Despite the

lack of a rigorous proof for the RPMD approximation for t > 0, the use of RPMD

has been justified on numerous grounds.

First, as mentioned previously, the connection between RPMD transition

state theory and quantum transition state theory (t → 0+) has been reported

in the literature [40, 41]. Further, the mathematical relationship between RPMD

as approximate dynamics and exact quantum Matsubara dynamics brings us

closer to a complete proof of the RPMD approximation [42, 43]. Moreover,

Richardson and co-workers showed that RPMD rate theory in the deep tun-

neling regime is connected to semiclassical instanton theory, namely the ”ImF”

method [3]. It is also worth noting that our knowledge of RPMD’s quantum ap-

proximations widely inform our choice of application. We can first see this by

considering the harmonic spring terms in the ring polymer Hamiltonian which,

unlike a single classical particle, incorporate ZPE, and accurately describes the

delocalized nature of a quantum particle. The latter feature represents the quan-

tum dispersion as well as quantum mechanical tunneling through an energy

barrier.

A significant shortcoming of the RPMD approximation is in its central as-

sumption that real-time quantum coherences dissipate rapidly in condensed

phase chemical systems. The method’s inability to accurately account for quan-

tum coherence effects result in its failure to capture quantum features such as
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Rabi oscillations [38]. Specifically, this is due to the lack of phase informa-

tion in the RPMD equations of motion. Consequently, RPMD is most useful

in condensed phase systems where thermal averaging and strong inter-mode

coupling are dominant resulting in rapid quantum decoherence. Despite these

shortcomings RPMD has proven to be quite accurate in the study of single par-

ticle processes such as proton transfer (PT) and electron transfer (ET) [44, 45].

If we wish to use RPMD to study dynamic processes involving the mo-

tion of multiple quantum particles, we must address RPMD’s single surface

and single particle limitations. The issue of RPMD being a single surface

method restricts its use to adiabatic processes where electrons and nuclei move

on widely differing time scales. This has influenced multiple efforts toward

nonadiabatic extensions of RPMD such as surface hopping RPMD [21], KC-

RPMD [46, 22], Coherent-state RPMD [23], MV-RPMD (which is the focus of

this study) [2, 27, 28], nonadiabatic MF-RPMD [24] and more [26]. In regards

to the latter issue, the method’s treatment of quantum particles as unique ren-

ders it an inviable method for studying the dynamics of indistinguishable quan-

tum particles such as fermions and bosons. In order for the second issue to be

corrected, the distribution that falls out of the path integral discretization of the

QBD would have to accurately account for fermionic or bosonic statistics. While

there have been numerous studies on the fermionic and bosonic extension of

PIMD and PIMC for capturing fermionic statistics [47, 48], there are limited dy-

namic studies of identical particles in the condensed phase.

Next we will discuss some past developments of nondiabatic RPMD theories

and their limitations. Subsequently we will discuss the MV-RPMD formalism

in detail, all of which will motivate our efforts toward applying RPMD to in-
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teresting nonadiabatic systems such as photochemical processes. The challenge

remains in how we describe the discrete system states. We will show how to

represent discrete system states with continuous coordinates that can be inte-

grated in a classical MD simulation within the RPMD framework.

2.2 Review of MV-RPMD Formalism

2.2.1 Nonadiabaticity in RPMD

One of the first efforts to extend RPMD for treatment of nonadiabatic systems

was the development of KC-RPMD [22, 46]. The KC-RPMD method employs

a continuous collective variable which reports on kink-pair formation. The col-

lective variable used in tandem with a constraint on kink-pairs has proven to be

highly accurate for rate calculations of ET in a wide range of regimes [22, 46].

While KC-RPMD is highly accurate across a wide range of regimes, it does not

preserve the QBD and is limited to two-state systems [22, 46]. Nonadiabatic

RPMD, developed by Jeremy Richardson and co-workers [26] resolves the two-

state limitation of KC-RPMD by treating discrete states with continuous har-

monic oscillator variables. Despite this improvement, nonadiabatic RPMD also

fails to preserve the QBD.

Nonadiabatic MF-RPMD, which was recently developed by a former mem-

ber of our group Jessica Duke [24], was shown to be accurate in the calculation

of ET rates across all regimes. This method is general for multi-electron systems,

multiple states and preserves the QBD. While nonadiabatic MF-RPMD is suc-

cessful at capturing ET rates across all regimes, it is limited to systems starting
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in thermal equilibrium. Ideally we would like a nonadiabatic version of RPMD

that is amenable to excited state (non-equilibrium) dynamics and would allow

for the study of photochemical processes such as singlet fission and photosyn-

thesis. Moving toward this goal, our group has used MV-RPMD in the past to

simulate photo-initiated dynamics in the gas phase [27]. The novel work pre-

sented in this dissertation is the first application of MV-RPMD in the condensed

phase toward proton coupled electron transfer (PCET) reactions. Before we get

into applications of MV-RPMD, we will review the MV-RPMD formalism.

2.2.2 Mapping Variable Ring Polymer Molecular Dynamics

The Hamiltonian for a general K-level system is

Ĥ =
PT P
2M

+ V0(R) +

K∑
n,m=1

|ψn〉Vnm(R)〈ψm|, (2.35)

where R,P are nuclear position and momentum operators respectively, V0(R) is

a state independent nuclear potential, Vnm(R) are elements of the diabatic poten-

tial energy matrix, and |ψn〉 represents the nth electronic state. Implementing the

Meyer-Miller-Stock-Thoss protocol [49], we map the electronic states to singly

excited oscillator (SEO) states,

|ψn〉〈ψm| → a†nam ≡ |n〉〈m|, (2.36)

where a†n and am are boson creation and annihilation operators respectively that

obey the commutation rules [a†n, am] = δnm. In Eq. (2.36), we use the notation |n〉 =

|0102 . . . 1n . . . 0K〉, to represent SEO states that correspond to a product of K − 1

uncoupled oscillators in the ground state and one oscillator in the first excited

state. Following the original MV-RPMD derivation, path integral discretization
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of the canonical partition function, Z = Tr
[
e−βĤ

]
where β = 1/kT , is performed

using continuous Cartesian variables for the electronic and nuclear degrees of

freedom by inserting N − 1 copies of the identity,

I =

∫
dx

∫
dR |x,R〉〈x,R|P, (2.37)

where P ≡
∑

n |n〉〈n| is the projection operator in the SEO basis. Evaluating the

matrix elements of the Boltzmann operator using the symmetric Trotter approx-

imation (see Section 2.3) and employing a Wigner transform in the electronic

variables, we obtain an exact path integral expression for the quantum Boltz-

mann distribution in electronic and nuclear phase space variables,

Z ∝ lim
N→∞

∫
d{Rα}

∫
d{Pα}

∫
d{xα}

∫
d{pα}

× e−βN HN ({Rα},{Pα},{xα},{pα})sgn(Θ), (2.38)

where βN = β/N,
∫

d{Rα} ≡
∫

dR1

∫
dR2 . . .

∫
dRN and similarly for the other

variables of integration. In Eq. (2.38), the MV-RPMD Hamiltonian is

HN = HRP +

N∑
α=1

( 1
βN

xT
αxα +

1
βN

pT
αpα

)
−

1
βN

ln |Θ|, (2.39)

where N is the number of ring polymer beads, and the nuclear ring polymer

Hamiltonian,

HRP =

N∑
α=1

[PT
α · Pα

2M
+ V0(Rα)

+
1
2

Mω2
N(Rα − Rα+1)T · (Rα − Rα+1)

]
, (2.40)

where M is the physical mass of the nuclei, and ωN = N/β. The electron-nuclear

interaction term in Eq. (2.39) is

Θ = Re(Tr[Γ]), (2.41)

where

Γ =

N∏
α=1

(Cα −
1
2
I)M(Rα,Rα+1), (2.42)
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Cα = (xα + ipα) ⊗ (xα − ipα)T , (2.43)

and xα, pα are continuous position and momentum vectors of length K repre-

senting the K electronic states of the αth ring polymer bead. Finally, the interac-

tion matrix in Eq. (2.42) is given by

Mnm(Rα,Rα+1) =


e−

βN
2 [Vnn(Rα)+Vnn(Rα+1)] + O(β2

N) n = m (2.44)∑
j,n −

βN
4 [Vn j(Rα) + Vn j(Rα+1)]e−

βN
2 [V j j(Rα)+V j j(Rα+1)] n , m

+
∑

j,m −
βN
4 [V jm(Rα) + V jm(Rα+1)]e−

βN
2 [V j j(Rα)+V j j(Rα+1)] + O(β2

N)

,

a result that is well known in the context of state space path integrals. The inter-

action matrix in Eq. (2.44) is symmetric (in keeping with the original quantum

Hamiltonian) making the MV-RPMD Hamiltonian symmetric, and improving

the numerical stability of the approximate dynamics. We also emphasize that

the symmetric and asymmetric formulations are equivalent for equilibrium sim-

ulations and exhibit similar bead-convergence properties.

2.3 Symmetrized Trotter Approximation

In the limit that N → ∞, the high-temperature symmetric Trotter approximation

is used to separate the state independent nuclear potential operator, V0 and the

diabatic potential energy matrix, V , from the nuclear kinetic operator T ,

〈n,Rα|e−βN H |Rα+1,m〉 (2.44)

≈ 〈n,Rα|e−
βN
2 V0e−

βN
2 Ve−βNT e−

βN
2 Ve−

βN
2 V0 |Rα+1,m〉

= e−
βN
2 (V0(Rα)+V0(Rα+1))〈Rα|e−βNT |Rα+1〉

×〈n|e−
βN
2 V(Rα)e−

βN
2 V(Rα+1)|m〉.

The nuclear kinetic matrix element can be evaluated exactly to obtain

〈Rα|e−βNT |Rα+1〉
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=

∫
dP〈Rα|P〉〈P|e−βNT |Rα+1〉 (2.45)

=

∫
dP〈Rα|P〉e−βN P2/2m〈P|Rα+1〉

=

( M
2πβN

)1/2
e−

βN
2 Mω2

N (Rα−Rα+1)2
.

Substituting Eq. (2.46) back in the Boltzmann matrix element, we have

〈n,Rα|e−βN HN |Rα+1,m〉

≈

( M
2πβN

)1/2
e
−
βN
2

(
V0(Rα+V0(Rα+1)+

Mω2
N

2 (Rα−Rα+1)2
)

×〈n|e−
βN
2 [V(Rα)+V(Rα+1)]|m〉. (2.46)

In order to evaluate the electronic matrix element, we begin by defining a diago-

nal matrix with elements, VD (Rα,Rα+1) = 1
2 (VD(Rα) + VD(Rα+1)), and off-diagonal

matrix elements VOD (Rα,Rα+1) = 1
2 (VOD(Rα) + VOD(Rα+1)). Employing a high-

temperature Trotter approximation, we further split the off-diagonal terms sym-

metrically around the diagonal terms to obtain

〈n|e−βN (VD+VOD)|m〉 (2.47)

≈ 〈n|e
−βN

2 VODe−βNVDe
−βN

2 VOD |m〉

=
∑

j,k

〈n|e
−βN

2 VOD | j〉〈 j|e−βNVd |k〉〈k|e
−βN

2 VOD |m〉

=
∑

j

〈n|e
−βN

2 VOD | j〉e−βNV j j〈 j|e
−βN

2 VOD |m〉.

The off-diagonal matrix elements are easily evaluated,

〈n|e
−βN

2 VOD | j〉 ≈ 〈n|(1 −
βN

2
VOD)| j〉 + O(β2

N)

=


1 n = j

βN
2 [VOD]n, j n , j

(2.48)

where [V]nm is used to indicate off-diagonal elements of the diabatic potential

energy matrix. Substituting Eq. (2.49) into Eq.(2.48), we obtain an expression
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for the electronic matrix elements by considering two cases: Case 1 (n = m): If

n = j

〈n|e−βN (VD+VOD)|n〉 (2.49)

= 〈n|e
−βN

2 VOD |n〉e−βNVnn〈n|e
−βN

2 VOD |n〉 = e−βNVnn

If n , j

〈n|e−βN (VD+VOD)|n〉 (2.50)

=
∑
n, j

〈n|e
−βN

2 VOD | j〉e−βNV j j〈 j|e
−βN

2 VOD |n〉

=
∑
n, j

(
−βN

2

)2

V2
n je
−βNV j j = 0 + O(β2

N)

Case 2 (n , m): If n = j and if m , j

∑
m, j

〈n|e
−βN

2 VOD | j〉e−βNV j j〈 j|e
−βN

2 VOD |m〉

=
∑
m, j

−
βN

2
V jme−βNV j j (2.51)

If n , j and if m = j

∑
n, j

〈n|e
−βN

2 VOD | j〉e−βNV j j〈 j|e
−βN

2 VOD |m〉

=
∑
n, j

−
βN

2
Vn je−βNV j j (2.52)

If n , j and if m , j

∑
n,m, j

〈n|e
−βN

2 VOD | j〉e−βNV j j〈 j|e
−βN

2 VOD |m〉 (2.53)

=
∑

n,m, j

(
βN

2

)2

Vn jV jme−βNV j j = 0 + O(β2
N)
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2.3.1 Implementation Details

In order to measure the improvement in equilibrium statistics due to sym-

metrization of the Trotter splitting we consider equilibrium properties of a

model ET system. These include state-specific nuclear probability distributions,

and the average total energy. All equilibrium simulations were performed using

standard path integral Monte Carlo (PIMC) importance sampling techniques,

although the use of PIMD is also straight forward. The nuclear probability dis-

tribution is defined as,

P(n,R) =
tr[δ(R − R̂)|n〉〈n|e−βĤ]

tr[e−βĤ]
(2.54)

which can be written as,

〈δ(R − RP) Γnn

tr[Γ]
sgn(Θ)〉W

〈sgn(Θ)〉W
(2.55)

where the angular brackets indicate average is taken with respect to sampling

function, W = e−βN HN ({ξα}0), and {ξα}t represents the set of bead positions and mo-

menta {Rα,Pα, xα,pα}, and Γ is,

Γ =

N∏
α=1

(Cα −
1
2
I)M(Rα,Rα+1), (2.56)

Cα = (xα + ipα) ⊗ (xα − ipα)T . (2.57)

Γnn is Γ projected on to a particular electronic state n. The average total energy

of the system is obtained using a primitive energy estimator,

〈E〉 = −
1
Z
∂Z
∂β
. (2.58)

where,

−
1
Z
∂Z
∂β

=

P∑
α

P2
α

2MP
+

mP
2β2

P∑
α=1

(Rα − Rα+1)2 +
1
P

∑
α=1

V(Rα) −
1
Θ

∂Θ

∂β
. (2.59)
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2.3.2 Equilibrium Simulation Result: Model ET

We test the statistical improvements due to the symmetrized QBD by study-

ing the equilibrium properties of a model ET system developed by Ananth and

Miller [44]. The diabatic matrix elements are defined by,

V11 = a1s2 + b1s + c1 (2.60)

and,

V22 = a2s2 + b2s + c2. (2.61)

The parameters for the diagonal elements are reported in Table 2.1. and the

Diabat a b c
V11 4.7722 × 10−3 1.1308 × 10−2 -2.1576
V22 4.7722 × 10−3 −1.1308 × 10−2 -2.1576

Table 2.1: Diabatic potential energy surface parameters for ET model

constant off-diagonal coupling is V12 = V21 = 2.0662 × 10−5. We run simulations

Figure 2.1: Diabatic potential energy curves for ET model with state 1 in
red and state 2 in brown

at 300 K (β = 1052a.u.). Fig (2.2) shows the average energy bead convergence
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for the model ET system using the symmetrized QBD. Convergence is achieved

with 5 beads to give an average energy of 5.36 × 10−3 with error bars on the or-

der of 10−6. We compared these results to bead convergence achieved with the

asymmetric QBD and found that at 6 beads, the symmetrized QBD generates

statistics with error bars an order of magnitude smaller than the asymmetric

QBD. This suggests that the symmetrized Trotter splitting of the diabatic ma-

trix increases the stability of the statistics. This is attributed to the fact that the

elements in the symmetrized diabatic matrix are symmetrically modulated by

neighboring beads.

Figure 2.2: Average energy bead convergence
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2.3.3 MV-RPMD Trajectories and Correlation Functions

In general, thermal real-time correlation functions in the MV-RPMD framework

are written as

CAB(t) =
〈sgn(Θ)A({ξα}0)B({ξα}t)〉W

〈sgn(Θ)〉W
, (2.62)

where {ξα}t represents the set of bead positions and momenta {Rα,Pα, xα,pα} at

time t, and the bead-averaged function A({ξα}0) = 1/N
∑
α A(ξα(0)) and B({ξα}t)

is similarly defined. The initial positions and momenta are generated from

a standard Path Integral Monte Carlo (PIMC) simulation that employs the

sampling function, W. This corresponds to a system initially at equilibrium,

W = e−βN HN ({ξα}0), with the MV-RPMD Hamiltonian, HN , defined in Eq. (2.39).

However, this function can also be defined to describe an initial non-equilibrium

distribution as discussed later on (see Section 4.4). Real-time trajectories are

generated by integrating equations of motion corresponding to the MV-RPMD

Hamiltonian,

Ṙα =
∂HP

∂Pα

, Ṗα = −
∂HP

∂Rα

ẋα =
∂HP

∂pα
, ṗα = −

∂HP

∂xα
. (2.63)

These trajectories preserve the QBD for a P-level system. Upon evaluating the

derivatives in terms of HP in Eq. (2.39) we get,

Ṙα =
Pα

M
(2.64)

Ṗα = −
MP
β2 (2Rα − Rα+1 − Rα−1) −

(
∂V0

∂Rα

)
−

P
βΘ

(
∂Θ

∂Rα

)
(2.65)

[ẋα] j =
2P
β

[pα] j −
P
βΘ

(
∂Θ

∂[pα] j

)
(2.66)

[ṗα] j = −
2P
β

[xα] j +
P
βΘ

(
∂Θ

∂[xα] j

)
(2.67)
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where [] j refers to the jth component of the electronic variable. Again, real-time

TCFs in the RPMD framework are identical to the Kubo-transformed correlation

functions at time zero and the same is true for MV-RPMD TCFs. For example

the Kubo-transformed nuclear position-position TCF is,

c̃RR(t) =
1
βZ

∫ β

0
tr[e−(β−λ)ĤR̂(0)e−λĤR̂(t)]dλ (2.68)

and the corresponding MV-RPMD correlation function is written as,

CMVR
RR (t) =

1
Z

∫
d{xα}

∫
d{pα}

∫
d{Rα}

∫
d{Pα}e−βPHP({xα},{xα},{xα},{xα})R̄(0)R̄(t)sgn(Θ).

(2.69)

where

R̄ =
1
P

P∑
α=1

Rα. (2.70)

2.4 Summary

In this chapter we reviewed the imaginary-time path integral discretization of

the QBD which results in what is known to be the classical isomorphism be-

tween the classical statistics of a ring polymer and the exact quantum statistics

of a quantum particle. We explored the basic theory of RPMD, an efficient yet

approximate method that preserves the QBD and provides a consistent dynamic

framework for reaction dynamics. We mentioned some of the limitations of

RPMD, including its inability to capture real-time quantum coherence beyond

t = β~, and describe multi-electron/multi-state quantum systems. We described

nonadiabtatic extensions of RPMD, including MV-RPMD and nonadiabatic MF-

RPMD (both developed in our group) and their applications to classes of nona-

diabatic reactions.
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We then provided a derivation of an improved QBD in the MV-RPMD frame-

work where the symmetric Trotter approximation is invoked and generated

statistics for a model ET system with increased stability in convergence. We

also provided the mathematical formalism required to generate approximate

quantum dynamics in the MV-RPMD framework with the goal of calculating

real-time TCFs.

Given MV-RPMD’s success at capturing excited state dynamics in the gas

phase, it is now of interest to consider nonadiabatic multi-particle reactions in

the condensed phase. Eventually we’d like to use MV-RPMD in the simulation

of proton coupled electron transfer reactions. The next section will review some

of the PCET model systems reported in the literature which will set the ground

work for PCET simulations in the condensed phase with MV-RPMD.
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CHAPTER 3

MODELING PCET

PCET reactions are typically described in terms of a reactant, metastable inter-

mediate, and product species,

D −H + A (DeDp) (3.1)

[D −H]+ + A− (AeDp) (3.2)

D− + [H −A]+ (DeAp) (3.3)

D + H −A (ApAe) (3.4)

Here D and A represent donor and acceptor molecules respectively, and

DeDp corresponds to both the electron and proton being on the donor, DeAp

correspond to the electron being on the donor and the proton being on the ac-

ceptor, DpAe corresponds to the electron being on the acceptor and the proton

being on the donor, and ApAe corresponds to both the electron and the proton

being on the acceptor. The reaction mechanism can be categorized as either se-

quential or concerted depending whether both the electron and proton transfer

in a single step. In the concerted mechanism the proton and electron transfer

simultaneously without the formation of metastable intermediates. In the se-

quential mechanism you can have either the proton transfer first, forming the

metastable DeAp species, followed by electron transfer to form the product ApAe

species. Conversely in a sequential mechanism an electron can transfer first,

forming the intermediate species AeDp, followed by proton transfer to form the

product species ApAe.
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3.1 Model Systems

In this section we will review the various PCET model systems that have been

reported in the literature as well as the model PCET system we develop in this

study. Further, we will comment on the extent of RPMD and MV-RPMD’s ap-

plicability across model systems.

3.1.1 Capped Coulomb Potentials Coupled to Proton Double

Well

The first model to consider for PCET is a colinear system bath model [50], where

in the position representation we have the potential energy function,

U(qe, qp, qs,Q) = Usys(qe, qp, qs) + UB(qs,Q) (3.5)

where UB(qs,Q) is the potential energy term associated with the bath coordinate,

and system potential energy is,

Usys(qe, qp, qs) = Ue(qe)+Up(qp)+Us(qs)+Ues(qe, qs)+Ups(qp, qs)+Uep(qp, qe) (3.6)

The variables qe, qp, qs, are scalar coordinates that describe the positions of the

electron, electron, proton and solvent respectively. The vector Q describes the

bath oscillator positions. The first term in the system potential models the inter-

action between the transferring electron and the donor and acceptor sites,

Ue(qe) =


aDq2

e + bDqe + cD, rout
D ≤ qe ≤ rin

D

aAq2
e + bAqe + cA, rout

A ≤ qe ≤ rin
A

−µe

[
1

qe−rd
+ 1

qe−rd

]
, otherwise

(3.7)
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In Eq. (3.7) rD and rA are the positions of the electron donor and acceptor sites.

This model consists of two symmetric Coulombic wells which are capped by

quadratic functions to remove singularities. The second term, Up(qp), is a quartic

potential which models the interaction between the transferring proton and the

donor and acceptor cites,

Up(qp) = −
mpω

2
p

2
q2

p +
m2

pω
4
p

16V0
q4

p. (3.8)

Here, ωp is the proton vibrational frequency, and V0 is the proton transfer barrier

height. The solvent potential is defined as

Us(qs) =
1
2

msω
2
sq

2
s (3.9)

where ms is the solvent mass, and ωs is the effective frequency of the solvent

coordinate. The coupling between the electron and solvent is defined as

Ues(qe, qs) = −µesqeqs. (3.10)

Similar the coupling between the electron and proton is defined as,

Ups(qp, qs) = −µepqpqs. (3.11)

Interaction between the transferring electron and proton are modeled via the

capped Coulombic potential

Uep(qep) =


−

µep

qe−qp
, |qe − qp| > Rcut

−
µe

Rcut
, otherwise.

(3.12)

The term UB(qs,Q) models the dissipative bath that is coupled to the PCET reac-

tion. The bath exhibits an ohmic spectral density J(ω) with the cutoff frequency

designated by ωc. The density is defined as,

J(ω) = ηωe−ω/ωc , (3.13)
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where η is the friction coefficient. The density is discretized into f oscillators

with frequencies defined as,

ω j = −ωcln
( j − 0.5

f

)
(3.14)

and the coupling constants are defined as

c j = ω j

(2ηMωc

fπ

)1/2
. (3.15)

Miller and coworkers find dynamic and equilibrium calculations to converge

with P = 32 for the proton coordinate and P = 1024 for the electron coordinate

[51]. These bead convergence parameters depend on the mass of the quantized

particle, where lighter particles require a larger number of beads. While Miller

and coworkers successfully use RPMD to capture PCET rates across multiple

regimes, a shortcoming is in its treatment of electron and proton as distinguish-

able particles. The next model PCET system discussed moves away from treat-

ing the electron as a distinguishable particle by representing discrete electron

acceptor and donor states in terms of a solvent polarization coupled to a proton

double well.

3.1.2 Two electronic states coupled to Proton Double Well

The next model we consider was developed by Schiffer [52] and implemented

in a rate calculation using flux-side TCF by Ananth and Miller [53]. The PCET

Hamiltonian is comprised of a position space proton coupled to discrete ET

states defined in terms of solvent polarization. The system Hamiltonian is

H =
P2

s

2ms
+

P2
R

2mR
+ Vp(R) + Vps(R, s) + Vi j(R, s). (3.16)
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In Eq. (3.16), R is the proton coordinate with conjugate momentum PR, and Vp(R)

is a double well potential in the proton coordinate,

Vp(R) = −
mRω

2
R

2
R2 +

m2
Rω

4
R

16V0
R4 − λR3, (3.17)

where mR is the mass of the proton, ωR is the frequency, λ is a measure of anhar-

monicity, and V0 determines the height of the barrier for proton transfer. Further,

the proton-solvent coupling is

Vps(R, s) = −µ1s tanh(φR), (3.18)

where µ1 and φ are constants that can be chosen to favor either concerted or

sequential mechanism. The two-state diabatic potential for electron transfer is

Vii(R, s) =
1
2

msω
2
s(s − si)2 + aiµ2 tanh(φR), (3.19)

where µ2, ai, and φ are constants that can be tuned to construct models that

favor either concerted or sequential mechanisms. The parameter si is the value

of the donor and acceptor potential minima for states one and two respectively.

Parameters for the three models considered here are provided in Table 3.1

Parametera Model I Model II Model III
mR 1836.1 1836.1 1836.1
ωR 0.0104 0.0104 0.0104
V0 0.012 0.014 0.012
s1 -2.13 -2.16 -2.13
s2 2.13 2.16 2.13

V12 0.00245 0.0124 0.00245
µ1 0.0011 0.017 -0.0011

µ2 × 103 5.84 0.71 5.84
λ 0.0 0.012 0.0

Table 3.1: Parameters (in atomic units) for the model Hamiltonians in Eq.
3.16
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Figure 3.1: The diabatic states defined in terms of solvent polarization.
V11(s) is shown in red and V22(s) is shown in green.

3.2 Concerted PCET

In Fig.(3.2) we show state-specific proton potentials, where the red curve cor-

responds to the proton double well coupled to the donor electronic state and

the green curve corresponds to the proton double well coupled to the accep-

tor electronic state. The solvent/proton coupling is described by the term

Vps(R, s) = −µ1s tanh(φR). We see as we move along the red curve, the stable

configuration corresponds to the proton being situated at the donor. We also

see, moving from left to right along the red curve, we form a metastable con-

figuration where the electron is situated on the donor and the proton is on the

acceptor. Therefore, the process of proton transfer is modeled by moving from

the stable minimum on the left (proton on donor) to the metastable configu-

ration on the right (proton on the acceptor). Subsequently, moving from the

metastable configuration on the right side on the red curve to the stable con-
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Figure 3.2: The Proton double well potential coupled to solvent polariza-
tion. Vp(R) + Vps(R; s1) is shown in red and Vp(R) + Vps(R; s2) is
shown in green.

figuration in the right side of the green curve corresponds to ET. This process

collectively would be described as sequential PT followed by ET. Moving from

the stable configuration in the red curve on the left, to the metastable green

curve on the left, followed by the stable configuration on the green curve on the

right corresponds to sequential ET followed by PT. Finally, moving from the sta-

ble configuration in the red curve to the stable configuration on the green curve

corresponds to concerted PCET.

Considering the discrete electronic states (V11 and V22) shown in Fig. (3.1),

the electron/proton coupling term aiµ2 tanh(φR) , serves to stabilize the donor

electronic state when the proton is on the donor and stabilize the electronic ac-

ceptor state when the proton is on the acceptor. When the electron is on the

donor and the proton is on the acceptor, aiµ2 tanh(φR) increases the energy of

V11 creating a metastable configuration in the electronic donor state. Similarly,
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when the electron is on the acceptor and the proton is on the donor, aiµ2 tanh(φR),

increases the energy of aiµ2 tanh(φR) creating a metastable configuration in the

acceptor electronic state.

3.2.1 Equilibrium: Two State model

In our equilibrium calculations we consider the concerted PCET system (Model

I). We plot average energy as a function of bead number out to P = 16 shown

in Fig. (3.3). We run PIMC calculations out to 1 × 108 MC configurations for

bead calculations less than P = 12 and use 1 × 109 MC configurations for higher

bead calculations. We find calculations with a bead number greater than 15 for

this system to be numerically demanding. Given that the proton is represented

with a position-space ring polymer (RP), past studies suggest we would need

at least 32 beads in the proton coordinate in order to establish convergence. We

Figure 3.3: Average energy bead convergence

also calculated state-specific solvent histograms, shown in Fig. (3.4). The noise
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apparent in the solvent histogram is a consequence of not establishing conver-

gence with respect to number of MC points. Despite this, we find the peaks

of the solvent histograms to be situated at the local minima of the donor and

acceptor electronic states. We also calculated state-specific proton histograms,
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Figure 3.4: State-specific solvent histogram for concerted two state cou-
pled to proton double well model

shown in Fig. (3.5). We find the peaks of the proton histograms to be situated at

the local minima of the donor and acceptor proton configurations.

Since currently we are unable to separately quantize electronic continuous

variables, and proton position space variables, the P = 32 requirement places

unnecessary computational demands on converging calculations in the MV-

RPMD representation. However, since we are working with discrete electronic

states in the MV-RPMD framework (instead of a position space RP representa-

tion) convergence with respect to the electronic coordinates depend on the ratio

between coupling and temperature (β∆). Since we are working in the weak

coupling (nonadiabatic) regime for most systems we are interested in, the bur-
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Figure 3.5: State-specific proton histogram for concerted two state coupled
to proton double well model

den of bead convergence would decrease in a full state space representation of

our PCET system. The next section discusses how to represent the mixed state-

space electron/position space proton model with four local donor/electron pro-

ton states through a quasi-diabatization procedure in concerted and sequential

model systems.

3.3 Summary

In this chapter we discussed two models for condensed phase PCET reported

in the literature. The first is comprised of capped Coulombic wells coupled to

a proton double well potential. In the RPMD framework, Miller and coworkers

represented the electronic and proton with distinct position-space ring poly-

mers. While this works well at capturing PCET rates across multiple regimes,

it treats electrons and protons as distinguishable particles and is limited to sin-
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gle proton/electron processes. The next model moves towards representing a

broader range of PCET systems by treating the electron with discrete ET states

in the MV-RPMD framework. The treatment of discrete ET states with contin-

uous electronic conjugate variables solves the issue of treating the electron as a

distinguishable particle and is generalizable to multi-electron processes. There

are still two shortcomings to the mixed PCET representation. The first is that the

proton is still being treated as a distinguishable particle and the model system is

limited to single proton processes. Further, the position-space RP representation

of the proton, imposes an unnecessary numerical demand on bead convergence

in the mapping variables framework. The P = 32 bead requirement is due to the

light proton mass while in MV-RPMD, bead convergence with respect to elec-

tronic states depend on β∆. Since we work in the nonadiabatic (weak coupling)

regime, bead convergence with respect to electronic mapping variables are sig-

nificantly less demanding. It is then wise to consider moving away from the

mixed PCET representation into a more general multi-proton/multi-electron

system such as the full state-space representation of PCET. Efforts toward this

goal will be the focus of the next section.
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CHAPTER 4

SIMULATING PCET WITH MV-RPMD

4.1 Diabatization: Four State electron-proton representation

For each value of the solvent configuration in the range −6 a0 ≤ s ≤ 6 a0, we

diagonalize the system hamiltonian on a uniform DVR grid in the proton coor-

dinate with a grid range of −2 a0 ≤ R ≤ 2 a0 and 100 grid points. The adiabatic

eigenstates obtained upon diagonalizing the system Hamiltonian are writtten

as 〈R; s|εi〉where εi is the ith adiabatic state with eigenenergy Ei.

Further, by diagonalizing the system Hamiltonian for a single electronic state

(donor or acceptor) at each value of s, we construct localized proton wavefunc-

tions, 〈R; s|l j〉 where l j is the jth quasi-diabatic local electron-proton states that

can be expressed in terms of the adiabatic eigenstates as,

〈R; s|l j〉 =
∑

i

∫
dR′〈R; s|εi〉〈εi|R′; s〉〈R′; s|l j〉 (4.1)

Matrix elements of the Hamiltonian in the quasi-diabatic basis can then be

constructed using

〈l j|H|l j′〉 =
∑
i,i′
〈l j|εi〉〈εi|H|εi′〉〈εi′ |l′j〉 =

∑
i

〈l j|εi〉Ei〈εi|l′j〉,

where Ei is the energy of the ith eigenstate of the Hamiltonian in Eq. (3.16).

The overlap between the reference quasi-diabatic wavefunction and the adi-

abatic state for a given value of the solvent coordinate, s, is then obtained by

evaluating

〈εi|l j〉 =

∫
dR〈εi|R〉〈R|l j〉. (4.2)
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4.2 PCET Model Systems

Previous work using RPMD for the simulation of PCET in condensed phase

model systems used a position-space representation to describe a single dis-

tinguishable electron and proton coupled to a thermal bath [51]. Exact quan-

tum dynamics studies [53] and surface hopping based simulations [52] for sim-

ilar model systems choose to employ a two-state representation of the elec-

tron donor and acceptor states coupled to a position space proton. Here,

we transform these model Hamiltonians to a representation where four lo-

calized, quasi-diabatic electron-proton states are coupled to a thermal bath

via a solvent polarization coordinate. The quasi-diabatic states are labeled,

DD, DA, AD, and AA following previous literature, where the letters D/A

indicate the donor/acceptor state of the particle and the first letter describes the

state of the electron while the second letter describes the state of the proton.

Following the quasi-diabatization procedure presented in the previous sec-

tion we obtain a four-state system-bath PCET Hamiltonian,

H =
P2

s

2ms
+

A∑
X,X′,Y,Y′=D

|XY〉VXYX′Y′(s)〈X′Y ′|

+
∑

j

P2
j

2M
+

1
2

Mω2
j(Q j −

c js
Mω2

j

)2. (4.3)

where s, Ps and ms are the position, momentum, and mass of the solvent po-

larization coordinate, VXY,X′Y′(s) are the elements of the diabatic potential energy

matrix where the subscripts X/Y/X′/Y ′ = {D, A} label the donor and acceptor

states of the particles. In Eq. 4.3, P j, Q j and M are the momentum, position and

mass of the jth bath mode, and c j is the coupling between the solvent and the
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jth bath mode of frequency ω j. The bath spectral density is Ohmic,

J(ω) = ηωe−ω/ωc , (4.4)

with cut-off frequency ωc = ωs and the dimensionless parameter η/msωs deter-

mines the coupling strength between the solvent and the bath modes [54]. The

continuous spectral density is discretized into f oscillators with frequencies [55]

ω j = −ωclog
( j − 0.5

f

)
, (4.5)

and the coupling constants c j are defined as

c j = −ω j

(2ηMωc
fπ

)1/2
, (4.6)

where j = 1, . . . , f .

The diagonal elements of the potential energy matrix in Eq. 4.3 obtained

through our quasi-diabatization protocol are fitted to quadratic polynomials of

the form,

VXYXY(s) = as2 + bs + c (4.7)

and the off-diagonal couplings are taken to be constants that are independent of

the solvent coordinate.

4.3 State Population Dynamics

For the PCET model systems considered here, the nuclear position vector, Rα =

(sα,Qα), includes both the 1D solvent coordinate coupled to the local electron-

proton states and the positions of all the bath modes.

Here, we investigate the mechanism of thermal PCET by initializing trajec-

tories to a non-equilibrium distribution, ρneq(0), corresponding to a particular
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choice of dividing surface. We then track the electron-proton state population

dynamics by evaluating the real-time quantum correlation function,

CPn,h(t) = Tr
[
ρneq(0)Pn(t)h

]
, (4.8)

where the Heaviside function, h, is defined in terms of the solvent coordinate

and allows us to separately ensemble average over trajectories moving forward

(from the dividing surface towards reactants) and backwards (towards prod-

ucts),

h =


h(st − s‡) forward

h(s‡ − st) backward.
(4.9)

In the MV-RPMD framework, the heaviside function in Eq. (4.10) is writ-

ten in terms of the solvent ring polymer centroid, h ≡ h(±(s̄t − s‡)), where

s̄ = 1/N
∑N
α=1 sα. The nth state populations at time t are evaluated using the

‘Boltzmann’ estimator [2, 27],

Pβn =
Γnn

Tr[Γ]
, (4.10)

where Γnn is a diagonal element of the matrix previously defined in Eq. (2.57)

and the time-evolved positions and momenta are obtained by integrating the

MV-RPMD equations of motion in Eq. ( 2.63).

To initialize trajectories to the dividing surface, we define an initial non-

equilibrium density operator, ρneq = ρ
sys
neq ⊗ ρ

bath
eq where the full system is

divided into a relevant subsystem described with non-equilibrium initial condi-

tions and the bath that is initially at equilibrium. The subsystem density matrix

is defined by

ρ
sys
neq = e−βHsδ(s − s‡)

K∏
n=1

δ(Pn − P
‡
n), (4.11)

where Hs is the subsystem Hamiltonian given by the first line of Eq. (4.4), Pn

is the population of the nth state, and the solvent position, s‡, and electron-

proton state populations, P‡n, together define the dividing surface. Ignoring the
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Boltzmann weights associated with each electronic state, we can write the cor-

responding constraints in the MV-RPMD framework as,

ρ
sys
neq(0) = e−βHRP(s)δ(s̄0 − s‡)

K∏
n=1

δ(PSC
n (0) − P‡n), (4.12)

where the nuclear ring polymer Hamiltonian is defined in Eq. (2.40) and s̄0 is

the nuclear RP centroid constrained to its dividing surface value, s‡. Further, in

Eq. (4.13), we use the recently derived ‘semiclassical’ estimator [56],

PSC
n =

1
N

N∑
α=1

[
PSC

n

]
α

=
1

2N

N∑
α=1

([xα]2
n +

[
pα

]2
n − 1), (4.13)

where
[
PSC

n

]
α

is the state population associated with the αth bead. We note

that this population estimator was rigorously derived in the context of MV-

RPMD to yield the exact equilibrium populations at time t = 0 [56], and is

of similar form to the original semiclassical population function [57, 58]. The

present bead-averaged form in Eq. (4.14)has also been used as an estimator in

the Nonadiabatic-RPMD method where trajectories are initialized to an exact

equilibrium path-integral distribution and time-evolved under the semiclassi-

cal mapping Hamiltonian [59]. Finally, it is important to recognize that con-

straining electronic state populations via PSC
n in the correlation function in Eq.

( 4.12), does not constrain Pβn to the same values at t = 0 since the latter includes

the correct Boltzmann weights for each electronic state at a given nuclear con-

figuration. For each model, we calculate the real-time correlation function in Eq.

(4.9) by sampling the initial nuclear and electronic non-equilibrium distribution

using Path Integral Monte Carlo (PIMC). The initial electronic state population

variables should be sampled subject to the bead-average constraint described

in Eq. ( 4.12). However, following previous work [27], we implement this con-

straint by setting individual bead state populations to the desired values at the
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dividing surface rather than constraining the average,[
PSC

n

]
α

= P‡n. (4.14)

In the next section we discuss the simulation details for equilibrium and dy-

namics for concerted and sequential PCET models.

4.4 Concerted PCET

4.4.1 Equilibrium

The parameters for the concerted model are reported in the appendix (A.2). We

use PIMC to generate state-specific solvent histograms shown in Fig. (4.1). We

used 1 × 108 MC point to achieve equilibrium convergence.

Figure 4.1: State-specific solvent histogram for concerted four state model

We show bead convergence for the concerted model in Fig. (4.2). Average
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energy bead convergence is established with 5 beads and error bars are on the

order of 10−5. Similarly we achieved bead convergence for the sequential ET-PT

and PT-ET models systems. The parameters for these models are also reported

in the appendix (A.2). We note that in these systems, due to ET and PT being in

weak coupling regime, we establish convergence with significantly fewer beads

in the full state-space representation compared to the mixed position-space pro-

ton/discrete electronic state representation which would require a P = 32 bead

calculation.

Figure 4.2: Average energy bead convergence

4.4.2 Dynamics

The dividing surface in model I is chosen to be the intersection of the reactant

(DD) and product (AA) quasi-diabatic state potentials such that s‡ = 0 a.u. and

only the DD and AA states are populated with P‡DD = P
‡

AA = 0.5 and
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P
‡

DA = P
‡

AD = 0. We sample the distribution with a total of 5×108 MC points

and bead convergence is achieved with N = 10 beads.

For model I, MV-RPMD trajectories initialized to the dividing surface are

propagated using a 4th order Adams-Bashforth-Moulton predictor corrector in-

tegrator with a time step of size 10−2 fs. Trajectories were integrated for a total

simulation time of 500 fs for models I. The number of trajectories used to obtain

the converged results shown below were 2.5 × 104.

We separate the ensemble of trajectories into a group that moves ‘forward’

towards product formation (increasing values of the solvent coordinate) and a

group that moves ‘backward’ towards the reactant state (decreasing values of

the solvent coordinate) to obtain the correlation function CPn,h(t) defined in Eq.

(4.9). Splicing the forward and backward averages together at time zero, we

obtain the population plots shown here.
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Figure 4.3: The quasi-diabatic state potentials as a function of solvent co-
ordinate are shown for model I, with state DD in red, DA in
green, AD in blue, and AA in pink.
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Figure 4.4: Population dynamics for model I (concerted), where popula-
tion transfers directly from the reactant DD state (in red) to
product AA state in pink. The intermediate AD (in blue) and
DA (in green) states are not populated during the course of the
reaction.

The diabatic potential energy surfaces as a function of the solvent coordinate

for model I are shown in Fig. 4.3, and the corresponding population dynamics

are shown in Fig. 4.4. Reading the plot chronologically from left to right, we

find the initially populated reactant state (DD) where both electron and proton

are in the donor state transfers population to the product state (AA) where both

the electron and proton are in the acceptor state. This indicates a concerted

PCET mechanism where the proton and electron transfer simultaneously on a

sub-picosecond time scale. The energetically unfavorable AD and DA states are

not involved in the PCET process, but we find a small population in both states

that decays to zero at long times.
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Figure 4.5: The quasi-diabatic state potentials as a function of solvent co-
ordinate for model II with state DD in red, DA in green, AD in
blue, and AA in pink.

Figure 4.6: Population dynamics for model II (sequential PT-ET), where
population first transfers from the reactant DD state (in red) to
the DA state (in green) corresponding to proton transfer before
the electron transfers leading to a rapid rise in the population
of the product AA state in pink.

4.5 Sequential PT-ET

4.5.1 Dynamics

The dividing surface for model II is chosen to be the intersection of the reactant

(DD) and product (AA) quasi-diabatic state potentials such that s‡ = 0 a.u. and47



only the DD and AA states are populated with P‡DD = P
‡

AA = 0.5 and

P
‡

DA = P
‡

AD = 0. We sample the distribution with a total of 5×108 MC points

and bead convergence is achieved with N = 10 beads.

For model II, MV-RPMD trajectories initialized to the dividing surface are

propagated using a 4th order Adams-Bashforth-Moulton predictor corrector in-

tegrator with a time step of size 10−2 fs. Trajectories were integrated for a total

simulation time of 3000 fs. The number of trajectories used to obtain the con-

verged results shown below were 8 × 104.

We separate the ensemble of trajectories into a group that moves ‘forward’

towards product formation (increasing values of the solvent coordinate) and a

group that moves ‘backward’ towards the reactant state (decreasing values of

the solvent coordinate) to obtain the correlation function CPn,h(t) defined in Eq.

(4.9). Splicing the forward and backward averages together at time zero, we

obtain the population plots shown here.

We plot the diabatic potential energy surfaces for model II in Fig. 4.5 and

the corresponding MV-RPMD population dynamics plotted in Fig. 4.6. Again,

reading the plot chronologically, we find that both the reactant (DD) state and

the DA (proton transfer only) state are populated although the monotonic trend

indicates that at sufficiently long times t → −∞ the DD state will be fully popu-

lated and the DA state will have zero population.

In Fig. 4.6, we see additional population transfer from the DD to DA state

on a timescale of ≈ 200 fs preceding the rise in the product (AA) state popula-

tion. We also note a negligible population transfer from the DA to AD state at

short times that decays into thermal population in the AD state at longer times.
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These results thus suggest a sequential mechanism for PCET where the proton

transfers first, facilitating electron transfer.

4.6 Sequential ET-PT
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Figure 4.7: The quasi-diabatic state potentials as a function of solvent co-
ordinate are shown for model III, with state DD in red, DA in
green, AD in blue, and AA in pink.

4.6.1 Dynamics

The dividing surface for model III chosen to be the intersection of the reactant

(DD) and product (AA) quasi-diabatic state potentials such that s‡ = 0 a.u. and

only the DD and AA states are populated with P‡DD = P
‡

AA = 0.5 and

P
‡

DA = P
‡

AD = 0. We sample the distribution with a total of 5×108 MC points

and bead convergence is achieved with N = 10 beads.

For model III, MV-RPMD trajectories initialized to the dividing surface are

propagated using a 4th order Adams-Bashforth-Moulton predictor corrector in-

tegrator with a time step of size 10−2 fs. Trajectories were integrated for a total
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simulation time of 500 fs. The number of trajectories used to obtain the con-

verged results shown below were 1.5 × 105.

We separate the ensemble of trajectories into a group that moves ‘forward’

towards product formation (increasing values of the solvent coordinate) and a

group that moves ‘backward’ towards the reactant state (decreasing values of

the solvent coordinate) to obtain the correlation function CPn,h(t) defined in Eq.

(4.9). Splicing the forward and backward averages together at time zero, we

obtain the population plots shown here.

The diabatic potential energy surfaces for model III is shown in Fig. 4.7 and

the corresponding population dynamics in Fig. 4.8. We find that the system

is initially in the reactant DD state with significant thermal population the DA

state. Following the dynamics we find, however, that unlike model II popula-

tion transfers from the reactant state to the AD state corresponding to electron

transfer preceding the rise in population of the product AA state. This indicates

a sequential PCET mechanism where the electron transfers first facilitating pro-

ton transfer.

4.7 Alternate Dividing Surface: Sequential ET-PT

4.7.1 Dynamics

Finally, we use model III to demonstrate that the mechanism predicted by

MV-RPMD is independent of the choice of initial dividing surface We choose

a different dividing surface with s‡ = −0.8 a.u. (at the intersection of the
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Figure 4.8: Population dynamics for model III (sequential ET-PT), where
population first transfers from the reactant DD state (in red) to
the AD state (in blue) corresponding to electron transfer before
the proton transfers leading to a rapid rise in the population of
the product AA state in pink. The DA state (in green) shows
some initial thermal population but is not populated during
the course of the reaction.

DD and AD states) and the initial electronic state populations are taken to be

P
‡

DD = P
‡

AD = 0.5 and P‡DA = P
‡

AA = 0. For this simulation, trajectories were

integrated for a total time of 500 fs and 2.5 × 104 trajectories were employed to

obtain the converged results shown here.

Despite initializing MV-RPMD trajectories to the same initial dividing sur-

face for all three models, we find population dynamics point to three different

PCET mechanisms. Here we show that MV-RPMD simulations can yield mech-

anistic insights independent of the initial choice of dividing surface for the re-

active trajectories by using a different dividing surface in model III. In Fig. 4.9

we plot the results of this simulation where the initial dividing surface is chosen

to be at the intersection of the reactant DD state and the electron-transfer only

AD state. We find the predicted mechanism is unchanged —population transfer

from the reactant state to the AD state first, before PCET product formation.
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Figure 4.9: Population dynamics for model III (sequential ET-PT), with
reactant state in red, PT state in green, ET in blue and product
state in pink where trajectories are initialized to the electron
transfer transition state.

4.7.2 Verification with Rate Theories

We verify the accuracy of the PCET mechanism predicted by the MV-RPMD

simulation by calculating Fermi’s Golden Rule (FGR) rates for concerted PCET,

electron-transfer, and proton-transfer for each model [60]. For Models I and III,

the electron transfer is near-adiabatic and we use Kramer’s rate theory [61] to

calculate rates for these processes.

We estimate the FGR rate using a simple analytical form derived for sys-

tems in which the reactant and product diabatic potential energy surfaces are

displaced harmonic oscillators with frequency ω and coupling ∆ [62],

kFGR =
2π
~ω
|∆|2evz−S coth(z)Iv

(
S csch (z)

)
, (4.15)

where ω =
√

2a/ms is the frequency of the product diabatic state, v = (VR−VP)/ω,

z = βω/2, S = msωV2
d/2~, Iv is a modified Bessel function of the first kind, Vd is the

horizontal displacement of the diabatic potential energy functions, and VR/P are

the values of the potential energy at the reactant/product minimum such that
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Reaction Path Model I Model II Model III
kDD→AA 1.85 × 107 1.61 × 106 4.70 × 106

kDD→DA 9.81 × 10−17 2.53 × 109 5.97 × 104

kDD→AD 2.69 × 105∗ 1.01 × 106 1.03 × 1011∗

Table 4.1: FGR and Kramer’s theory rates (indicated with a ∗) for con-
certed PCET (kDD→AA), electron transfer (kDD→AD), and pro-
ton transfer (kDD→DA) from the reactant DD state for all three
models are reported in s−1. The fastest rate for each model is
highlighted in bold to indicate the preferred mechanism.

VR − VP measures the driving force. For adiabatic ET, we use Kramers theory,

[61]

kKT =


√

1 +

(
γ

2ωb

)2

−
γ

2ωb

 ω2πe
−βG‡

cl , (4.16)

where ωb is the frequency at the top of the barrier, G‡cl is the solvent FE barrier

when the solvent is treated classically, and γ = η/MS . [63] The resulting rates

are reported in Table and as expected we find that the fastest rate for model

I corresponds to a concerted PCET reaction, for model II the proton transfer

reaction is the most rapid and for model III the electron transfer reaction rate is

the fastest.

4.8 Summary

We have extended the applicability of MV-RPMD to the simulation of con-

densed phase PCET using an improved formalism and a new population es-

timator to follow state to state population transfer dynamics. We employed a

simple quasi-diabatization procedure to build three model PCET systems where

four local electron-proton states are coupled to a thermal bath via a single sol-

vent polarization coordinate. Following the population dynamics by initial-
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izing MV-RPMD trajectories to an arbitrary dividing surface we identify the

mechanism of PCET for each of the three models and verify the accuracy of the

predicted mechanism against FGR and Kramer’s rate theory predictions. By

performing a simulation with a different dividing surface, we were also able

to clearly establish that our MV-RPMD simulations yield mechanisms that are

independent of the initial choice of dividing surface to which trajectories are

constrained.

The direct dynamic simulation techniques presented here can be readily ex-

tended to future studies of complex photochemical reactions and particularly

photo-initiated PCET processes in the condensed phase. Future work in this

direction will include deriving a systematic correction to the approximate MV-

RPMD dynamics. In addition, we recognize that accurately parameterizing a

system-bath Hamiltonian of the form described in Appendix from an atomistic

simulation remains a significant challenge.
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CHAPTER 5

MV-RPMD RATE THEORY

5.1 Semiclassical Instanton Theory

There are two versions of the semiclassical instanton rate theories. The first

is derived from the exact quantum flux-side correlation function. For a 1-D

system, the rate expression for the first approach is ,

kinstZ = (2π~3)−1/2
∣∣∣∣∣d2S̄
dβ2

∣∣∣∣∣1/2exp(−S̄ /~) (5.1)

where β = 1/kT , Z is the reactant partition function, and S̄ is the classical

action along the ”instanton” trajectory. The trajectory is a period orbit in the

inverted potential with a period β~. Below the ”cross-over” temperature Tc =

1/kβc, with βc = 2π/~ωb and ωb is the barrier frequency, one or more periodic

orbits can form.

The second, which is sometimes called the ”ImF” method, is obtained by

modeling the rate of transmission through a barrier with the rate of decay of the

thermal average of shape resonances through the barrier. The method gives a

rate expression with an exponent containing the action of the instanton, but a

different prefactor. The rate expression is given by,

kZr ≈
2
β~

ImR (5.2)

where,

R =
∑

k

e−β(Erk−iγk/2) (5.3)
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Upon performing the analytic continuation of the Hamiltonian Ĥ into the

complex plane, we obtain the discrete spectrum described by the set of complex

numbers Erk − iγk/2. Deriving the instanton theory involves a combination of

steepest descent and analytic continuation applied to the exact expression for

Zr.

The first approach is typically preferred as it is more mathematical rigorous,

but in the ”ImF” approach the connection of instanton theory to RPMD becomes

apparent. The following sections will give a brief review of both methods.

5.2 Miller-Schwartz-Tromp Flux-side TCF

We start our derivation of the flux-side rate expression by considering the

collinear reaction A + BC → AB + C, where the initial arrangement A + BC

is denoted by ”a” and the final arrangement is denoted by ”b”. The rate can

be expressed as the sum over the Boltzmann average of initial vibrational states

and translational energy [64, 65],

ka→b = (2πµkT )(−1/2)Q−1
BC

∑
ηa,ηb

∫ ∞

0
dE1e−β(E1+εηa )|S ηa,ηb(E1)|2 (5.4)

where β = 1/kT , µ is the reduced mass for the initial arrangement ”a”, ηa and ηb

are the vibrational quantum numbers of BC and AB respectively, E1 is the initial

translational energy, and |S ηa,ηb(E1)|2 is the S scattering matrix for the reactive

process. The vibrational partition function of BC is,

QBC =
∑
ηa

e−βεηa (5.5)

where εηa are the vibrational energy levels of BC. In order to recast Eq. (5.4) into

a more convenient form, we can introduce the notion of flux through a surface
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Figure 5.1: Sketch of collinear potential energy surface forA+BC→ AB+C.

[66]. In Figure (5.1), x and y are mass weighted or skewed reaction coordinates

that diagonalize the kinetic energy: x = R(µ/M)1/2, y = r(m/M)1/2. R and r are

the transitional and vibrational coordinates, respectively and µ and m are the

reduced masses [(m=BC/(B+C), µ= A(B+C)/(A+B+C)]. M is an arbitrary mass,

with a corresponding classical kinetic energy 1
2 M(ẋ2 + ẏ2)2 and s and u in the

figure are linear combinations of x and y which diagonalize the potential energy

at the saddle point. S1, S2, and S3 correspond to 1D cuts through the 2D surface

which are defined by lines. Consider the first surface, S1, defined by R0 − R = 0,

where R0 is an asymptotically large value of the coordinate R. The flux through

S1 in terms of the wave function Ψ(r,R) is,

−Re
∫ ∞

∞

drΨ(r,R)∗
~

iµ
∂

∂R
Ψ(r,R)|R = R0. (5.6)
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Here, ”Re” denotes ”the real part of”, and a positive flux is associated with

decreasing R, such that flux is chosen to be in the direction of the reaction. The

asymptotic form of the scattering solution to the Schrödinger equation, (H −

E)ΨP1,ηa = 0, with E = P2
1/2µ is,

ΨP1,ηa(r,R) ≈ −
exp(−ikηaR)

(2π~)1/2 φηa(r) +
∑
η
′
a

exp(−ikη′aR)

(2π~)1/2 φη′a(r)
(vηa

v′ηa

)
S ηa,η

′
a
(E1) (5.7)

where E1 = P2
1/2µ is the initial kinetic energy, kn = [2µ(E − εn)]1/2/~ is the wave

number, and vn = ~kn/µ is the asymptotic velocity channel. This corresponds to

an incident vibrational state ηa. The velocity channel is a normalization for the

translational function, which also correspond to delta function normalization

on the momentum scale. We can then express the flux in terms of the scattering

wave function,

−Re
∫ ∞

∞

drΨP1,ηa(r,R)∗
~

iµ
∂

∂R
ΨP1,ηa(r,R) = vηa(2π~)

−1
[
1 −

∑
η
′
a

|S ηa,η
′
a
(E1)|2

]
. (5.8)

In the asymptotic region of ”b”, which is the product region, y = r(m/M)1/2 is

large, which corresponds to large value of the vibrational coordinate of AB. In

the region of ”b”, ΨP1,ηa , since it corresponds to an incident wave in arrangement

”a”, has only outgoing waves such that,

ΨP1,ηa(r,Rb) ≈
∑
ηb

exp(−ikηbRb)
(2π~)1/2 φηb(rb)

(vηa

vηb

)
S ηa,ηb(E1) (5.9)

where Rb and rb are the translational and vibrational coordinates of AB and C

respectively. The surface S2 is defined by R0 − Rb and the flux through S2 is,

vηa(2π~)
−1

∑
ηa

|S ηb,ηa(E1)|2. (5.10)

Because of unitarity,

1 =
∑
η
′
a

|S η
′
a,ηa

(E1)|2 +
∑
ηb

|S ηb,ηa(E1)|2 (5.11)

58



we see that the flux through S1, and S2 are equivalent. Further the flux through

any closed surface is zero which follows from the continuity equation [66],

Re
∮

dS · Ψ∗
~

iµ
∇Ψ = 0. (5.12)

Since S1, and S2 can be made into a closed surface by joining the segments at

infinity, the flux through S1, and S2 must be equal. Writing the flux integral as a

volume rather than a surface integral, we can define a surface f (r,R) = 0, where

f (r,R) < 0 corresponds to reactant region of configuration space and f (r,R) > 0

corresponds to the product region of configuration space. The flux through this

surface written as a volume integral is,

Re
∫

dqδ( f (q))Ψ∗(q)
∂ f (q)
∂q

· vΨ(q) ≡ Re〈Ψ|F|Ψ〉 (5.13)

where q = (r,R), and the components of the velocity operator are vk =

(~/imk)(∂/∂qk), k = 1, 2 and the flux operator is,

F = δ( f (q))
∂ f (q)
∂q

· v (5.14)

Now we can see that the scattering matrix can be expressed in terms of the real

part of the Flux operator in the basis of scattering states,

(2π~)−1
∑
ηb

|S ηb,ηa(E1)|2 = v−1
ηa

Re〈ΨP1,ηa |F|ΨP1,ηa〉. (5.15)

We can then write the expression for the rate as,

ka→b = Q−1
a

∑
ηa

∫ ∞

0
dE1exp[−β(E1 + εηa)]v

−1
ηa
〈ΨP1,ηa |F|ΨP1,ηa〉 (5.16)

where we take the real part of the right hand side of Eq. (5.16). We also should

point out that the flux is independent of the choice of any surface that divides

reactants and products, since the flux through any closed surface is the same.

Since

e−βHΨP1,ηa = exp[−β(E1 + εηa)]ΨP1,ηa (5.17)
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and,

E1 = P2
1/2µ (5.18)

dE1 = P1/µdP1 = vηadP1 (5.19)

we can rewrite Eq. (5.16) as ,

ka→b = Q−1
a

∑
ηa

∫ 0

−∞

dP1 〈ΨP1,ηa |Fe−βH |ΨP1,ηa〉 (5.20)

where P1 = −(2µE1)1/2. We can rewrite the integral over all momenta, negative

and positive, by inserting a projection operator P defined by,

PΨ = Ψ P1 < 0

PΨ = 0 P1 > 0
(5.21)

then Eq. (5.20) can be written as

ka→b = Q−1
a

∑
ηa

∫ ∞

−∞

dP1 〈ΨP1,ηa |Fe−βHP|ΨP1,ηa〉 (5.22)

which can be rewritten in terms of the quantum mechanical trace,

k =
1

Qa
tr[F̂e−βĤP] (5.23)

and since F̂ and P commute we can write the well known formally exact rate

expression as [64, 65],

k =
1

Qa
tr[e−βĤ F̂P] (5.24)

where F̂ is the flux operator defined by,

F̂ = δ(s)
p
m

(5.25)

where s and p are the reaction coordinate and momenta respectively. The hamil-

tonian is,

H =
p2

2m
+ V(s). (5.26)
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The projection operator, P, is defined in terms of the heaviside in the conjugate

momenta,

P = lim
t→∞

eiĤt/~h(p)e−iĤt/~ (5.27)

where the heaviside function projects onto all states that have positive momen-

tum in the infinite future (t → +∞). The reaction coordinate direction is defined

from s → −∞ to s → +∞. Noting that the projection operator, P, is defined in

terms of the eigenstates of Ĥ it’s clear that [Ĥ,P] = 0. We can then rewrite Eq.

(5.1) in a more symmetrical form as,

k =
1
Z

tr[F̂e−βĤ/2Pe−βĤ/2] (5.28)

and with P given by Eq. (5.4) we can write,

k = lim
t→∞

1
Z

tr[F̂e−βĤ/2eiĤt/~h(p)e−iĤt/~e−βĤ/2] (5.29)

5.3 RPMD Rate Theory

It is perhaps not surprising that, since there is an established connection be-

tween RPMD and quantum transition state theory, RPMD has successfully been

used in the calculation of reaction rates. RPMD’s accuracy and efficiency allows

for approximate quantum mechanical rate calculations that help inform how

certain degrees of freedom within a reactive system contribute to the speed of a

reaction. This is promising as we seek to better understand quantum mechan-

ical properties of large scale systems and how knowledge of these properties

may inform the design novel materials for a variety of technologies. In 2004

Craig and Manolopolous showed that RPMD can be used to calculate approxi-

mate Kubo-transformed flux-side correlation functions of the form [67],

C̃ f s(t) =
1
β

∫ β

0
tr[e−(β−λ)Ĥ f̂ (0)e−λĤe+iĤt/~ĥe−iĤt/~]dλ (5.30)
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where ĥ = h[s(q)] is a step function that projects onto the product side of the

transition state dividing surface at s(q) = 0 and

F̂ =
i
h

[Ĥ, ĥ] (5.31)

is the reactive flux operator. The reaction rate coefficient can then be written as

k =
1
Zr

lim
t→∞

C̃ f s(t) (5.32)

where Zr is the reactant partition function. Since the side operator, ĥ is config-

urational, and the flux operator F̂ is not, the RPMD method cannot be applied

directly to the Kubo-transformed flux-side correlation function. One remedy is

noting that F̂ is the Heisenberg derivative of the side operator. We can then

calculate the flux-side correlation function equivalently as,

C̃ f s(t) = −
d
dt

C̃ss(t), (5.33)

where C̃ss(t) is a Kubo-transformed side-side correlation function,

C̃ss(t) =
1
β

∫ β

0
tr[e−(β−λ)Ĥĥ(0)e−λĤe+iĤt/~ĥe−iĤt/~]dλ (5.34)

Since both operators in C̃ss(t) are configurational, RPMD can be applied and

the corresponding approximation to C̃ f s(t) can be obtained upon differentiation

C̃ss(t). Still, there are a few issues to consider in the RPMD approximation to the

Kubo-transformed flux-side correlation function. First, the operator ĥ is a non-

linear functions of q̂. As mentioned earlier in the discussion on the features of

RPMD, RPMD autocorrelation functions involving nonlinear operators having

a leading error term O(t4). This is particularly problematic since we need to cal-

culate the long-time limit of the flux-side correlation function in order to obtain

a rate constant, and the method is expected to degrade with time [38]. More

worrying, the Kubo-transformed flux-side correlation function has a divergent
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first derivative due to the integral over λ. This divergence can be avoided, in an

exact calculation, by alternatively using the Miller, Schwartz, and Tromp [65]

expression for the flux-side correlation,

C̃ f s(t) = tr[e−βĤ/2F̂(0)e−βĤ/2e+iĤt/~ĥe−iĤt/~] (5.35)

which has the same long-time limit as C̃ f s(t) and therefore gives the same reac-

tion rate when substituted into Eq. (5.3). We will note that this is still unsat-

isfactory since RPMD is an approximation and is limited to Kubo-transformed

correlation functions. Nevertheless, RPMD proves to be an accurate approxi-

mation to the exact Kubo-transformed flux-side correlation function for stan-

dard models of chemical reactions, including a quartic double well coupled to

a bath of harmonic oscillators [67]. In fact the RPMD approximation of the

Kubo-transformed flux-side correlation function has been shown to give com-

parable accuracy to the classical Wigner model [68, 69] and centroid molecular

dynamics (CMD) [70]. We will now discuss how to express Eq. (5.5) in terms

of an RPMD TCF. Consider a d-dimensional system described by the following

Hamiltonian,

H(p,q) =

d∑
i=1

p2
i

2mi
+ V(q1, . . . qd) (5.36)

where we define s as the reaction coordinate and the value of the reaction coor-

dinate at the dividing surface that divides reactant and product is s(q1, . . . qd) = 0

and s > 0 corresponds to the products. The RPMD approximation to the Kubo-

transformed side-side correlation function in Eq. (5.5) for a multidimensional

harmonic ring polymer is [33],

C̃ss(t) =
1

(2π~)N

∫
dP0

∫
dQ0e−βnHn(P0,Q0)hn(Q0)hn(Qt) (5.37)
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where n is the number of ring-polymer beads, βn = β/n, and N = nd. The Hamil-

tonian is,

Hn(P0,Q0) =

d∑
i=1

n∑
j=1

[ Pi, j

2mi
+

1
2

miωi(Qi, j − Qi,( j−1))2
]

+

n∑
j=1

V(Q1, j, . . . ,Q f , j), (5.38)

and the flux-side TCF in the RPMD representation can be written as

C̃ f s(t) ≈
1

(2π~)N

∫
dP0

∫
dQ0e−βnHn(P0,Q0)δ(Q0)vs(P0,Q0)hn(Qt) (5.39)

where the rate can approximated by,

k ≈
1
Zr

lim
t→∞

1
(2π~)N

∫
dP0

∫
dQ0e−βnHn(P0,Q0)δ(Q0)vs(P0,Q0)hn(Qt). (5.40)

5.4 ImF and RPMD

The connection of RPMD and semiclassical instant theory arises from the ap-

plication of the steepest decent approximation and analytic continuation of the

ring polymer expression for the partition function. We begin by locating the

saddle point on the ring polymer potential surface in the ring polymer Hamil-

tonian,

URP(R) =

P∑
α=1

V(Rα) +
mP2

2β2~2

P∑
α=1

(Rα − Rα+1)2 (5.41)

The stationary points of URP satisfy,

V
′

(Rα) = m
Rα+1 − 2Rα + Rα−1

(βP~)2 . (5.42)

The solutions correspond to all the normal modes of the ring polymer being

zero with the exception of the centroid mode R̄0. The centroid mode is located

at the barrier maximum R†. The normal modes Q of a free ring polymer with P

beads correspond to the eigenstates of a P-member cyclic Huckel system. For
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an even number of beads the normal modes are given by,

Q0 =
1
P

P∑
α=1

Rα, (5.43)

Qk =

( 2
P

)1/2 P∑
α=1

sin
(2αkπ

P

)
Rα, k = 1, . . . , (P − 2)/2 (5.44)

Q−k =

( 2
P

)1/2 P∑
α=1

cos
(2αkπ

P

)
Rα, k = 1, . . . , (P − 2)/2 (5.45)

QP/2 =
1
P

P∑
α=1

(−1)PRα, (5.46)

For an odd number of beads the last mode is omitted. The frequencies corre-

sponding to each normal mode are

ω±k =
2P
β~

sin
(
|k|π
P

)
. (5.47)

Further, the normal mode frequencies satisfy

ω±k =≈ 2|k|π/β~ (5.48)

for low values of k and as P → ∞ . The solutions for the free RP corresponds

to all normal modes being zero except for the centroid which is located at the

barrier maximum R†. Above the cross-over temperature, Tc, the geometry at the

barrier R† is the saddle point on URP(R), which is equivalent to the dynamics of

the ring polymer in classical limit where the ring polymer collapses to a single

point. Below Tc , URP(R) changes the geometry of Rα such that it is no longer a

saddle point. Above the crossover temperature, Tc the normal mode frequencies√
ω2

k = ω2
b are real except for the imaginary frequency, iωb corresponding to the

centroid mode. Below Tc the normal mode frequencies (ω±1 < ωb), so the modes

are no longer stable and the geometry RP = R† has three imaginary frequencies.

The unstable modes, Q±1 describe the RP lowering its energy by ”draping” over

the barrier.
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The physical interpretation of the saddle point below the critical tempera-

ture corresponds to a finite-difference approximation to Newton’s second law,

describing the classical dynamics of a particle on an inverted potential surface

−V(R). Each bead in the RP corresponds to equally spaced imaginary time-steps

with a duration of β~. It then follows that the saddle point is a finite difference

approximation to the periodic instanton trajectory. The instanton rate is calcu-

lated by computing the normal modes and frequencies of the RP at the saddle

point by diagonalizing the Hessian. The next step is to multiply the RP coor-

dinates by complex scaling factors in order to transform the partition function,

which is real and infinite, into the R term in Eq. (5.2) which is finite and complex.

Finally computing the integrals over the normal modes using steepest descent

gives the RP form of the ImF instanton rate. This can be expressed as,

ImR =
P
√

BP

2

( m
2πβP~2

)p/2
e−βPUP

P−1∏
k=0

∫
dQkeβPmη2

k Q2
k/2, (5.49)

where Qk and ηk are the normal modes and frequencies respectively. Evalua-

tion of the gaussian integrals and substituting in Eq (5.2) yields the following

expression for the instanton rate,

kinstZr = AP(β)e−βPUP (5.50)

where

AP(β) =
1
βP~

√
mβP

2πβP~2

∣∣∣∣∣ P−1∏
k=0

~ηkβP

∣∣∣∣∣−1

. (5.51)

This expression tends to the standard ”ImF” form of the instanton rate in the

limit P → ∞, where βPUP is the classical action S/~ along the instanton tra-

jectory. The connection to RPMD rate theory is given by first considering the

constrained partition function in terms of the free energy F,

Z =

∫
due−βF(u) (5.52)
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where the free energy, F(u) is,

F(u) = −
1
β

ln[Zσ=u] (5.53)

and Zσ=u is the constrained partition function,

Zσ=u =
1

(2π~)P

∫
dP

∫
dRe−βPHP(P,R)δ(σ(R) − u) (5.54)

where σ(R) is the unstable degree of freedom for which the evaluation of the

integral over the free energy can be accurately approximated using steepest de-

cent about u = 0. Integrated over u and making the steepest decent approxima-

tion we obtain,

ImR =

√
π

2β|F ′′(0)|
1

(2π~)P

∫
dP

∫
dRe−βPHP(P,R)δ(σ(R) − u). (5.55)

5.5 Finding the MV-RPMD Instanton

In the previous section we discussed RPMD’s connection to semiclassical in-

stanton theory. Namely, we saw that the RPMD instanton is a classical path

that minimizes the action along the reaction coordinate. This corresponds to a

periodic orbit on an inverted potential with period β~. In order to calculate the

RPMD instanton one needs to compute the normal modes at the saddle point

by diagonalizing the Hessian of the RP Hamiltonian [3, 71, 72, 73]. The un-

stable mode, or the transition state, will correspond to the eigenvector with the

negative eigenvalue. The next step is to use a combination of complex scaling,

where we multiply the unstable mode by i =
√
−1 for values greater than zero,

and steepest descent to evaluate the integrals over all modes [71, 72, 73]. Doing

so will give an expression, which in the limit of a large bead number, gives the

”ImF” form of the instanton rate which is exact for a harmonic barrier.
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With our goal being the development of a nonadiabatic rate theory in the

MV-RPMD formalism, it is of interest to apply the above technique to MV-

RPMD, in order to find the instanton configuration for nonadiabatic systems.

This is done by diagonalizing the Hessian of the MV-RPMD Hamiltonian and

finding the unstable mode (eigenvector with a negative eigenvalue) along the

MV-RPMD potential surface. Following these prescriptive measures, nonadia-

batic instanton configurations have been reproduced for a two-state spin-boson

model in the weak and strong coupling regime in both nuclear and electronic

degrees of freedom [74].Despite this, current optimization algorithms are not

generalizable to systems with a large number of states. It is then wise to turn to

other methods for calculating high-dimensional nonadiabatic instanton config-

urations.

Another method to consider, due to its classical scaling and efficiency in

practice, is exact PIMC calculations in MV-RPMD framework. Using PIMC we

can calculate average instanton configurations in both nuclear and electronic de-

grees of freedom. Being that PIMC is an exact quantum statistics method, and

the instanton is an imaginary-time periodic path around the reaction barrier,

PIMC in the MV-RPMD framework should be able to generate exact instanton

configurations. The next section will discuss some preliminary results working

toward this goal.

5.6 Averaging Algorithm

The first step in calculating the MV-RPMD instanton is to consider the issue of

artificially labeling beads in the calculation of average bead configurations. In
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order to circumvent this issue we devise an algorithm that post processes RP

equilibrated configurations such the first bead has the most positive solvent po-

larization value. We begin by initializing the PIMC simulation such that the

ring polymer beads are randomly distributed about the crossing. Upon gener-

ating sufficient electronic and nuclear configurations we arrange the nuclear RP

beads such that the first bead, which we arbitrarily label as ”bead 1”, has the

most positive nuclear position value. We then reorder the remaining nuclear

beads such that the contiguous order of the remaining P − 1 beads are retained.

We then order the remaining electronic conjugate variables according to the nu-

clear instanton bead ordering.

5.7 Equilibrium Simulation Results

For our instanton configuration calculations we use a simple two-state model

described by the Hamiltonian [4]

H =
1
2

mṠ 2 + ∆σx +
1
2

mω2(S − σzS 0)2 (5.56)

where σ is the Pauli spin matrix, and ∆ is the adiabatic coupling. The parame-

ters are chosen to be ω = 1.0, m = 1.0, β = 5.0 and S 0 = 5.0. This corresponds

to two-state system defined in terms of a solvent polarization coordinate. We

establish convergence with 1 × 108 Monte Carlo points for each bead simula-

tion.Figure (5.2) shows the average energy, given by the Eq. (2.6), as a function

of MC points. We establish average energy bead convergence with 12 bead to

get 〈E〉 = 6.5a.u. We find the instanton path corresponding to this system to be

in qualitative agreement with the exact quantum instanton calculation reported

by Cao and Voth [4]. Disappointingly, our method of averaging instantaneous
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Figure 5.2: Average energy bead convergence as a function of MC points

instanton configurations introduces arbitrary discrepancies in which bead as-

sumes the minimum value in individual instanton configurations. This causes

the average minimum value to be located slightly above the minimum value

reported by Cao and Voth [4]

We also calculate the average semiclassical population for this system and

plot each bead population throughout the course of the MC simulation. As the

simulation approaches convergence with respect to the number of MC points

the population of state 1 (shown in red in Fig. 5.4) and the population of state

2 (shown in green in Fig 5.4) approach equality. This suggests that constrain-

ing the ring polymer centroid to the barrier constrains the average electronic

population of each bead to be equal.

In order to demonstrate why the minimum value of the averaged instanton

configuration is slightly greater than the reported value, we plot instantaneous
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Figure 5.3: The nonadiabatic instanton trajectory plotted as a function of
imaginary time

P
o
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o
n

Beads (P)

Figure 5.4: Average Semiclassical Population with the population of state
1 (shown in red) and state 2 (shown in green) over the course
of the MC simulation

instanton configurations in Fig (5.5). As mentioned before, the arbitrary choice

of making the ”bead 1” have the maximum value causes discrepancies in which
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bead number assumes the minimum value in each instantaneous instanton con-

figuration. The bead number with minimum value shifts between bead 6-10

causing bead 8 (which should have the minimum value) to be on average at a

position slightly greater than the minimum value reported by Cao and Voth.

Figure 5.5: Instantaneous instanton trajectories

5.7.1 Summary

We calculated the average instanton configuration using the QBD correspond-

ing to the MV-RPMD Hamiltonian discussed throughout this study. While the

average instanton is in reasonable agreement with the exact calculation reported

by Cao and Voth [4], we find the average minimum value of the instanton path

to be slightly greater than the reported figure. We attribute this to an artifact

of the our averaging algorithm. Our choice to make the first bead the most

positive, while reordering the remaining beads contiguously causes an artificial
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shift in the beads assigned to the minimum value of instantaneous paths. We

see this from analyzing instantaneous instanton trajectories. While the instan-

taneous instanton paths have the correct minimum value, there is an ambiguity

in which beads gets assigned the minimum values such that at any point in the

Monte Carlo simulation bead 6-10 can have the minimum value while we’d ex-

pect the minimum to be located at bead 8 for a 14-bead calculation. Possible

solutions to this issue may include initializing the PIMC simulation such that

the RP solvent beads have the correct instanton configuration. Another pos-

sible solution is simulated annealing, where we run a PIMC simulation at a

significantly higher temperature and initialize subsequent calculations with the

converged high temperature RP configuration.

5.8 MF-RPMD Rate Theory

In the past MF-RPMD has been used to approximate the rate of ET in the con-

densed phase. It is known that because MF-RPMD approximates nuclear dy-

namics along a mean potential energy surface, it neglects fluctuation in elec-

tronic degrees of freedom. This approximation works well in multi-state sys-

tems with strong coupling between states. In the MF-RPMD approximation,

nuclear motion occurs on an averaged potential surface. In strongly coupled

systems this is precisely the case, where electronic transition between states are

so rapid nuclear motion is approximately moving on an averaged surface. The

MF-RPMD approximation fails when electronic and nuclear motion are on com-

parable timescales which corresponds to the nonadiabatic regime (weak cou-

pling). This is due to the fact that MF-RPMD does not correctly account for

fluctuations in electronic degrees of freedom and subsequently poorly approx-
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imates nuclear motion. As a result, MF-RPMD has been widely ignored as a

viable method for the simulation nonadiabatic charge and energy transfer pro-

cesses.

A former member of our group, Jessica Duke, developed two remedies to the

inaccuracies in MF-RPMD [24]. The first accounts for the fact that in MF-RPMD,

the probability of forming ”kink” configurations (probabilities of forming elec-

tronic transition states) are not correctly accounted for the the MF-RPMD flux-

side TCF expression. By correctly accounting for electronic transition state prob-

abilities in MF-RPMD rate calculation, ET rates across a full range of coupling

strengths were accurately approximated. While modifying MF-RPMD such that

it can reproduce nonadiabatic ET rates is an impressive feat, the probabilities of

forming kinks are introduced in a mathematically inconsistent manner. Further,

this method failed to capture ET in the inverted regime.

The second remedy was to introduce a population reaction coordinate, de-

fined as the difference in product and reactant populations. This method re-

sulted in the accurate rate calculation of ET across a full range of coupling

strengths and in regimes outside of the normal regime. Despite this feat, MF-

RPMD defined in terms of the population coordinate still failed to give quanti-

tative agreement with FGR rate calculations in the inverted regime.

The following section outlines MV-RPMD rate theory developments which

may alleviate some of the inherent issues with MF-RPMD and hopefully will

lead to its application to general multi-level/multi-particle nonadiabatic sys-

tems in the condensed phase.
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5.9 MV-RPMD Flux-side TCF: Solvent Reaction coordinate

The Bennett-Chandler expression for the rate constant is,

k =
〈ξ̇0h(ξ̇0)〉c〈δ(ξ0 − ξ

†)〉
〈h(ξ† − ξ0)〉

× lim
t→∞

〈ξ̇0h(ξt − ξ
†)〉c

〈ξ̇0h(ξ̇0)〉c〈δ(ξ0 − ξ†)〉
. (5.57)

canceling the numerator and denominator in the expression we get the rate in

terms of a flux-side TCF introduced previously,

k = lim
t→∞

〈ξ̇0h(ξt − ξ
†)〉c

〈h(ξ† − ξ0)〉
(5.58)

The rate is defined in terms of a one-dimensional reaction coordinate ξ, where

ξ̇0 is the velocity at t = 0 and ξ‡ is the dividing surface. Following the tra-

ditional mean field RPMD approach we define ξ as a function of the solvent

polarization bead average, also called the ring polymer center of mass (COM),

ξ = R̄ = 1/N
∑N
α=1 Rα, where the transition state, the reactant well, and the prod-

uct well correspond to R̄ = R†, R̄ ≤ R†, and R̄ ≥ R† respectively. The transition

state R† corresponds to the point of degeneracy between the two states. The rate

can then be expressed as,

k = lim
t→∞

〈 ˙̄R0h(R̄t − R†)〉c
〈h(R† − R̄0)〉

(5.59)

The rate constants calculated using the solvent polarization as the reaction

coordinate, in the MF-RPMD framework, has been shown to severely overes-

timate the rate in the weak coupling regime [24]. This is because the rate ex-

pression neglects the probability of forming electronic transition states which

is proportional to the coupling squared. This also fails to accurately capture

reaction rates in the inverted regime.

In the MV-RPMD representation, unlike MF-RPMD, the statistical sampling

and dynamics include explicit electronic state information, as well as the inter-
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Figure 5.6: A schematic of the two-state electron transfer system in the adi-
abatic basis. The yellow curve is the reactant well and the green
curve is the product and both are functions of solvent polariza-
tion. The black dashed line corresponds the the reaction tran-
sition state (R‡)

.

action between electronic states and nuclei in the Γ matrix defined in Eq. (2.42).

Within the MV-RPMD framework the rate cate be calculated piecewise as,

k = lim
t→∞

〈 ˙̄R0h(R̄t − R†)〉c
〈sgn(Θ)〉c

×
〈sgn(Θ)〉
〈h(R† − R̄0)〉

(5.60)

where the left quantity is a dynamic calculation where initial RP configurations

are sampled such that R̄ = 1/N
∑N
α=1 Rα = 0 . Trajectories launched from this en-

semble of initial configurations can be used to calculated flux-side TCF defined

by the solvent polarization coordinate. The time dependent product heaviside

function (left quantity in Eq. 6.15), h(R̄t − R†), is,

h(R̄t − R†) =


1 if R̄t > 0 products

0 if R̄t < 0 reactants
(5.61)

The static, reactant heaviside function (right quantity in Eq. 6.15) defined in
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terms of solvent polarization is,

h(R† − R̄0) =


1 if R̄0 < 0 reactants

0 if R̄0 > 0 products
(5.62)

5.10 MV-RPMD Flux-side TCF: Population Reaction coordi-

nate

Next we consider the reaction rate defined in terms of the population coordi-

nate. The reaction coordinate is defined as ξ = ∆P, where we define ξ = ∆P as

the difference in bead population of the two electronic states,

∆P =


1 reactant

0 transition state

−1 product.

(5.63)

Using this reaction coordinate, the transition state, the reactant well, and the

product well correspond to ∆P = 0, ∆P = −1, and ∆P = 1 respectively. The rate

can then be expressed as,

k = lim
t→∞

〈∆̇P0h(∆Pt)〉c
〈h(∆P0)〉

. (5.64)

We run two separate simulations where we calculate,

lim
t→∞

〈∆̇P0h(∆Pt)〉c
〈sgn(Θ)〉c

×
〈sgn(Θ)〉
〈h(∆P0)〉

(5.65)

where the left quantity is a dynamic calculation where initial configurations are

sampled with a constraint on the semiclassical population estimator, PSC
1 =

PSC
2 = 0.5, for each bead in the RP. Trajectories launched from the ensemble of

initial constrained configurations can be used to calculate the flux-side TCF de-

fined by the population reaction coordinate. The population reaction coordinate
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is defined in terms of the Boltzmann population as,

∆P =
Γ2 − Γ1

tr[Γ]
(5.66)

The population reaction coordinate is defined in terms of the semiclassical esti-

mator as,

∆P = PSC
2 − PSC

1 (5.67)

The derivative of the semiclassical population difference is,

˙∆PSC
0 = ([xα]2[ẋα]2 + [pα]2[ ṗα]2 − [xα]1[ẋα]1 − [pα]1[ṗα]1). (5.68)

and the time dependent product and static reactant heaviside functions, respec-

tively are,

h(∆Pt) =


1 if P2(t) > P1(t)

0 if P2(t) < P1(t)
(5.69)

and,

h(∆P0) =


1 if P1(0) > P2(0)

0 if P1(0) < P2(0)
(5.70)

which both can be used with the Boltzmann or semiclassical estimator.

5.11 MV-RPMD Flux-side TCF: Wigner Transform of Flux Op-

erator

A final expression to consider is the flux-side TCF defined in terms of the Wigner

transform of the flux operator in the MV-RPMD framework. We can define the

rate in terms of the Wigner transformed flux operator as ,

k = lim
t→∞

〈FW(0)P2(t)〉
〈P1(t)〉

. (5.71)
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We start the derivation of the Wigner transform of the flux operator by consid-

ering a two-state Hamiltonian operator defined by,

Ĥ = V11|1〉〈1| + V22|2〉〈2| + V12|1〉〈2| + V21|2〉〈1| (5.72)

F̂ =
i
~

[Ĥ,P2] (5.73)

where,

P2 = |2〉〈2| (5.74)

F̂ =
i
~

(V11|1〉〈1|2〉〈2| + V22|2〉〈2|2〉〈2| (5.75)

+V12|1〉〈2|2〉〈2| + V21|2〉〈1|2〉〈2|

−(|2〉〈2|1〉〈1|V11 + |2〉〈2|2〉〈2|V22

+|2〉〈2|1〉〈2|V12 + |2〉〈2|2〉〈1|V21)

since 〈2|1〉 = 〈1|2〉 = 0 and 〈2|2〉 = 〈1|1〉 = 1 we have,

F̂ =
i
~

(V12|1〉〈2| − V21|2〉〈1|) (5.76)

if we map discrete states to creation and annihilation operators such that a†nam =

|n〉〈m|we have,

F̂ = a†1a2V12 − a†2a1V21 (5.77)

and if we note that a†n = 1
√

2
(x̂n − ip̂n) and am = 1

√
2
(x̂m + ip̂m) and if we consider

systems where V12 = V21 we get 8 terms in the flux expression,

F̂ =
i

2~
[(x̂1 − ip̂1)(x̂2 + ip̂2)V12 − (x̂2 − ip̂2)(x̂1 + ip̂1)V12] (5.78)

and expanding we get,

F̂ =
i
~

[V12(x̂1 x̂2 − ip̂1 x̂2 + ix̂1 p̂2 − i2 p̂1 p̂2) (5.79)

−V12(x̂2 x̂1 − ip̂2 x̂1 + ix̂1 p̂2 − i2 p̂2 p̂1)]

=
1
~

V12(p̂1 x̂2 − x̂1 p̂2)
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where the knowledge of the Wigner transform of two of the expressions gives

sufficient information for the Wigner transform of the other six. Following the

prescription outlined in the derivation of the semiclassical estimator [56] (See

Appendix) we have,

[−ip̂1 x̂2]W = −i
∫

dp1

∫
dp2

∫
d∆x1

∫
d∆x2 (5.80)

×〈x1 − ∆x1/2, x2 − ∆x2/2|

×p̂1 x̂2|x1 + ∆x1/2, x2 + ∆x2/2〉

×ei(p1∆x1+p2∆x2)

since

x̂2|x1 + ∆x1/2, x2 + ∆x2/2〉 = (x2 − ∆x2/2)|x1 + ∆x1/2, x2 + ∆x2/2〉 (5.81)

and inserting a complete set of momentum states I =
∫

dp′1
∫

dp′2|p
′
1, p′2〉〈p

′
1, p′2|.

[−ip̂1 x̂2]W = −i
∫

dp′1

∫
dp′2

∫
d∆x1

∫
d∆x2(x2 − ∆x2/2) (5.82)

× 〈x1 − ∆x1/2, x2 − ∆x2/2| p̂1|p′1, p′2〉

×〈p′1, p′2|x1 + ∆x1/2, x2 + ∆x2/2〉

×ei(p1∆x1+p2∆x2)

and since,

p̂1|p′1, p′2〉 = p1|p′1, p′2〉 (5.83)

we have

[−ip̂1 x̂2]W = −i
∫

dp′1

∫
dp′2

∫
d∆x1

∫
d∆x2(x2 − ∆x2/2)p1 (5.84)

× 〈x1 − ∆x1/2, x2 − ∆x2/2|p′1, p′2〉

×〈p′1, p′2|x1 + ∆x1/2, x2 + ∆x2/2〉

×ei(p1∆x1+p2∆x2)
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and noting

〈x1 − ∆x1/2, x2 − ∆x2/2|p′1, p′2〉 = eip′1(x1+∆x1/2)eip′2(x2+∆x2/2) (5.85)

we get,

[−ip̂1 x̂2]W = −i
∫

dp′1

∫
dp′2

∫
d∆x1

∫
d∆x2(x2 − ∆x2/2)p1 (5.86)

×eip′1(x1+∆x1/2)eip′2(x2+∆x2/2)

×e−ip′1(x1−∆x1/2)e−ip′2(x2−∆x2/2)

×ei(p1∆x1+p2∆x2)

(5.87)

and using the definition in Eq. (A.11) we find,

[−ip̂1 x̂2]W = −i
∫

dp′1

∫
dp′2

∫
d∆x1

∫
d∆x2(x2 − ∆x2/2)p1 (5.88)

×eip′1∆x1eip′2∆x2

×ei(p1∆x1+p2∆x2)

=

∫
d∆x1

∫
d∆x2(x2 − ∆x2/2)p1

×δ(∆x1)δ(∆x2)

×ei(p1∆x1+p2∆x2) = −ip1x2

so we have,

[−ip̂1 x̂2]W = −ip1x2 (5.89)

Thus we have a continuous expression for the flux in terms of conjugate vari-

ables,

[F̂]W =
1
~

[V12(p1x2 − x1 p2)]. (5.90)
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5.12 Summary

In this section we discussed limitations of MF-RPMD nonadiabatic rate calcu-

lations and why one might be interested in the formulation of an MV-RPMD

rate theory. First we noted that rate calculations formulated in terms of solvent

polarization COM, in the MF-RPMD formalism, do not work well at captur-

ing nonadiabatic reaction rates. This is because constraining initial electronic

population does sufficiently constrain nuclear coordinates and constraining nu-

clear coordinates do not sufficiently constrain population. This results in the re-

quirement of a double constraint in population and nuclear coordinates, which

proves to be numerically demanding in practice. The correction to the rate is

therefore introduced by multiplying the estimator for flux-side by the probabil-

ity of forming RP ”kinks” which corresponds to the probability of forming elec-

tronic transition states. While this correction to the rate calculation allowed for

the use of MF-RPMD to calculate rates across a full range of coupling strengths,

it is mathematically inconsistent and fails to capture ET in the inverted regime.

In an effort to remedy this inconsistency, the population difference coordi-

nate was developed. The population coordinate distinguishes between reac-

tants and products in all regimes of ET and gives the desired turnover for ET in

the inverted regime. Still given that this method restricts kink formation outside

of the adiabatic crossing, it fails to quantitatively agree with the exact FGR rate

calculation.

We then sought to explore different formulations of the flux-side TCFs in the

MV-RPMD formalism where ”kink” probabilities are accounted for in a math-

ematically consistent manner. Ideally we would like to be able to capture reac-
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tion rates across a full range of coupling strengths, and across all regimes while

keeping our methods general for multi-electron systems. Further, if we wish

to study the rate of photochemical reactions, MV-RPMD is ideal since it consis-

tently treats discrete system states with continuous conjugate variables.

Working toward the goal of applying MV-RPMD to a rate calculation, we

explore three MV-RPMD rate formulations. The first is the MV-RPMD flux-side

TCF defined in terms of a solvent polarization reaction coordinate. The second

is the MV-RPMD flux-side TCF defined in terms of a population difference reac-

tion coordinate. Finally, we outline the derivation of the continuous representa-

tion of the flux operator (for a two-state system) which can be implemented in a

flux-side MV-RPMD TCF calculation. In the future we hope to apply these MV-

RPMD rate theories to rate calculations in nonadiabatic condensed phase sys-

tems. This will inform the development of an efficient yet general MV-RPMD

rate theory that can be applied to multi-state systems across a wide range of

coupling strengths and regimes.
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CHAPTER 6

CONCLUSIONS

This dissertation focused on the extension and application of a nonadiabatic ver-

sion of RPMD (MV-RPMD), which allowed for the accurate and efficient simu-

lation of quantum mechanical reactions in the condensed phase. We started

our discussion with a review of imaginary-time path integrals and the classical

isomorphism that falls out of the path integral discretization of the QBD. This

provides an exact, yet efficient, method for generating quantum statistics for

systems in the condensed phase.

Next we reviewed the real-time extension of the PI formalism, RPMD, which

approximates Kubo-transformed thermal correlation functions and gives the ex-

act result as t → 0. We then went on to discuss the details of the RPMD approx-

imations, its limitations and motivations for its extension. While RPMD has

been successfully applied to a wide range of chemical problem, it’s inability to

treat features like quantum coherence, multi-quantum particle processes, and

multi-state processes necessitates efforts toward its extension.

Our review of nonadiabatic extensions of RPMD motivated our discussion

of MV-RPMD. In MV-RPMD we represent discrete system states with continu-

ous variables by mapping to SEO states. We then take the Wigner Transform of

the SEO states in order to represent our system with a quasi-probability distri-

bution which allow us to sample continuous conjugate variables that can be in-

tegrated in classical EOMs. We also derive an improved QBD in the MV-RPMD

framework by employing the symmetric Trotter splitting of kinetic and poten-

tial energy operators. We demonstrate improved numerical stability in average

energy bead convergence of a model ET system.

84



To motivate our study of PCET using MV-RPMD, we review the model PCET

systems that have been reported in the literature. The first was PCET modeled

by capped Coulombic wells coupled to a proton double well in the presence of

a solvent coordinate. RPMD bead convergence within this model depends on

the proton and electron mass, which typically requires 32 beads and 1024 beads

for converged dynamics respectively. The shortcoming of this model is its treat-

ment of the electron and proton as unique particles. The next model studied

was a proton double well coupled to discrete ET states coupled to a proton dou-

ble well. Since we are working in the weak coupling (nonadiabatic) regime,

the burden of bead convergence is dominated by the light proton mass, which

requires 32 beads. In the MV-RPMD representation, the 32 bead requirement

proves to be computationally demanding. We then turn to the method of quasi-

diabatization in order to represent our PCET system with four discrete elec-

tron/proton states. This significantly reduces the number of beads required for

convergence in equilibrium and dynamic simulations. We were able to demon-

strate that MV-RPMD can be used to accurately distinguish between concerted

and sequential PCET processes.

In order to extend our application of MV-RPMD to nonadiabatic rate cal-

culations in the condensed phase, we review two equivalent rate theories, the

flux-side thermal correlation function and the Semiclassical ”ImF” method. The

latter has been shown to be equivalent to RPMD rate calculations in the deep

tunneling regime (where the barrier can be approximated by a harmonic well)

which further shed light on the nature of the RPMD approximation. Knowing

that the instanton is the imaginary-time periodic path around a reaction barrier,

or the real-time path on an inverted potential barrier, we can use MV-RPMD to

calculate instanton configuration by sampling configurations at the barrier. We
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calculate the average instanton configuration for a two-state model in the weak

coupling regime and found our preliminary results to agree qualitatively with

exact calculations reported in the literature.

Finally, we reviewed RPMD rate theory, past applications and motivations

for its extension. We then formulated two flux-side TCF expressions using the

MV-RPMD formalism. The first involved a reaction coordinate defined by the

solvent polarization COM where dynamic trajectories are initialized such that

the RP solvent polarization COM is constrained to the barrier. The second in-

volves a population coordinate defined by the difference in the product and

reactant population where the propagated product heaviside can either be de-

fined in terms of the Boltzmann or the semiclassical population estimator. Fi-

nally we provide the derivation of the flux estimator which we can use within

the MV-RPMD formalism to calculate a flux-side TCF.

More recent work in our group has been toward finding the optimal divid-

ing surface on the MV-RPMD effective potential (MV-RPMD instanton) for the

calculation of nonadiabatic rates in the condensed phase [74]. The develop-

ment of a robust MV-RPMD rate theory that is applicable across a full range of

coupling strengths and across all regimes will further the progress toward sim-

ulating and subsequently understanding complex charge and energy processes

in the condensed phase. Deeper understanding of these process will inform the

rational design of novel materials in renewable energy technologies.
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APPENDIX A

CHAPTER 1 OF APPENDIX

A.1 Derivation of Semiclassical Population estimator

We start the derivation of the semiclassical population estimator with the fol-

lowing definitions,

〈x|p〉 =
1

(2π)1/2 eipx (A.1)∫
〈x|p〉〈p|x′〉dp =

1
2π

∫
eip(x−x′)dp = δ(x − x′) (A.2)

and ∫
δ(x) f (x) = f (0) (A.3)

if we have the operator Ŝ , for the thermal population of a particular state α,

defined by

Ŝ =
1
2

(x̂2
α + p̂2

α − 1) (A.4)

the wigner transform of Ŝ is,

[Ŝ ]W =

∫
d∆x〈x − ∆x/2|Ŝ|x + ∆x/2〉eip·∆x (A.5)

if we have α = 1, for a two-sate system

[x̂2
1]W =

∫
d∆x1

∫
d∆x2〈x1−∆x1/2, x2−∆x2/2|x̂2

1|x1 + ∆x1/2, x2 + ∆x2/2〉ei(p1∆x1+p2∆x2)

(A.6)

[x̂2
1]W =

∫
d∆x1

∫
d∆x2(x1 + ∆x1/2)2δ(∆x1)δ(∆x2)ei(p1∆x1+p2∆x2) = x2

1 (A.7)

since,

〈xα − ∆xα/2|xα + ∆xα/2〉 = δ(∆xα) (A.8)

[p̂2
1]W =

∫
d∆x1

∫
d∆x2〈x1−∆x1/2, x2−∆x2/2| p̂2

1|x1 +∆x1/2, x2 +∆x2/2〉ei(p1∆x1+p2∆x2)

(A.9)
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and we insert a complete set of momentum states,

I =

∫
dp′1

∫
dp′2|p

′
1, p′2〉〈p

′
1, p′2| (A.10)

[p̂2
1]W =

∫
dp′1

∫
dp′2

∫
d∆x1

∫
d∆x2 (A.11)

× 〈x1 − ∆x1/2, x2 − ∆x2/2| p̂2
1|p
′
1, p′2〉

×〈p′1, p′2|x1 + ∆x1/2, x2 + ∆x2/2〉ei(p1∆x1+p2∆x2)

[ p̂2
1]W =

∫
dp′1

∫
dp′2

∫
d∆x1

∫
d∆x2(p′21) (A.12)

×eip′1(x1+∆x1/2)eip′2(x2+∆x2/2)

×e−ip′1(x1−∆x1/2)e−ip′2(x2−∆x2/2)

×ei(p1∆x1+p2∆x2)

=

∫
dp′1

∫
dp′2

∫
d∆x1

∫
d∆x2(p′21)

×eip′1∆x1eip′2∆x2

×ei(p1∆x1+p2∆x2)

=

∫
d∆x1

∫
d∆x2(p′21)

×δ(∆x1)δ(∆x2)

×ei(p1∆x1+p2∆x2)=p2
1

and it’s easy to show the Wigner transform of a constant is the constant itself.

[1]W =

∫
d∆x1

∫
d∆x2〈x1−∆x1/2, x2−∆x2/2|1|x1+∆x1/2, x2+∆x2/2〉ei(p1∆x1+p2∆x2) = 1

(A.13)

so finally we have [Ŝ α]W for a particular state α,

[Ŝ ]W =
1
2

(x2
α + p2

α − 1). (A.14)

88



A.2 Parameters for Quasi-Diabatic Potential Surfaces

We provide the diabatic potential energy matrix parameters for all three models

below.

Diabat a b c
VDD 0.0015 0.0075 -0.0041
VDA 0.0015 0.0055 0.0072
VAD 0.0015 -0.0055 0.0072
VAA 0.0015 -0.0075 -0.0041

Table A.1: Diabatic potential energy surface parameters for model I

Coupling ∆

VDD,DA 9.7 × 10−5

VDD,AD 2.5 × 10−3

VDD,AA 1.8 × 10−4

VDA,AD 1.8 × 10−4

VDA,AA 2.5 × 10−3

VAD,AA 9.7 × 10−5

Table A.2: Diabatic coupling matrix elements for model I

Diabat a b c
VDD 0.0015 0.0072 -0.0018
VDA 0.0018 0.0058 -0.0013
VAD 0.0018 -0.0061 0.0034
VAA 0.0016 -0.0083 -0.0018

Table A.3: Diabatic potential energy surface parameters for model II
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Coupling ∆

VDD,DA 1.1 × 10−3

VDD,AD 1.2 × 10−4

VDD,AA 1.2 × 10−4

VDA,AD 1.2 × 10−4

VDA,AA 1.2 × 10−4

VAD,AA 1.4 × 10−3

Table A.4: Diabatic coupling matrix elements for model II

Diabat a b c
VDD 0.0015 0.008 0.0009
VDA 0.0015 0.0098 0.013
VAD 0.0015 -0.0056 -0.0095
VAA 0.0015 -0.013 0.0009

Table A.5: Diabatic potential energy surface parametersfor model III.

Coupling ∆

VDD,DA 6.9 × 10−4

VDD,AD 2.5 × 10−3

VDD,AA 1.8 × 10−4

VDA,AD 1.8 × 10−4

VDA,AA 2.5 × 10−3

VAD,AA 6.9 × 10−4

Table A.6: Diabatic coupling matrix elements for model III

90



BIBLIOGRAPHY

[1] David Chandler and Peter G. Wolynes. Exploiting the isomorphism be-
tween quantum theory and classical statistical mechanics of polyatomic
fluids. J. Chem. Phys., 74:4078–4095, 1981.

[2] Nandini Ananth. Mapping variable ring polymer molecular dynamics:
A path-integral based method for nonadiabatic processes. J. Chem. Phys.,
139(12):124102, 2013.

[3] Jeremy O. Richardson and Stuart C. Althorpe. Ring-polymer molecular
dynamics rate-theory in the deep-tunneling regime: Connection with semi-
classical instanton theory. J. Chem. Phys., 131(214106), 2009.

[4] Jianshu Cao, Camilla Minichino, and Gregory A. Voth. The computation of
electron transfer rates: The nonadiabatic instanton solution. J. Chem. Phys.,
103(1391), 1995.

[5] My Hang V Huynh and Thomas J Meyer. Proton-coupled electron transfer.
Chem. Rev., 107(11):5004–5064, 2007.

[6] R. I. Cukier and D. G. Nocera. Proton-coupled electron transfer. Ann. Rev.
Phys. Chem., 49(1):337–369, 1998.

[7] Sharon Hammes-Schiffer and Alexander V Soudackov. Proton-coupled
electron transfer in solution, proteins, and electrochemistry. J. Phys. Chem.
B, 112(45):14108–14123, 2008.

[8] Jeffrey J Warren, Tristan A Tronic, and James M Mayer. Thermochemistry
of proton-coupled electron transfer reagents and its implications. Chem.
Rev., 110(12):6961–7001, 2010.

[9] Mrten Wikström. Identification of the electron transfers in cytochrome oxi-
dase that are coupled to proton-pumping. Nature, 338(6218):776–778, 1989.

[10] Daniel G. Nocera. Solar fuels and solar chemicals industry. Acc. Chem. Res.,
50(3):616–619, 2017.

[11] Nancy Makri. Time-dependent quantum methods for large systems. Annu.
Rev. Phys. Chem., 50:167–191, 1999.

91



[12] Sharon Hammes-Schiffer and Alexei A Stuchebrukhov. Theory of coupled
electron and proton transfer reactions. Chem. Rev., 110(12):6939–6960, 2010.

[13] Sharon Hammes-Schiffer. Proton-coupled electron transfer: Moving to-
gether and charging forward. J. Am. Chem. Soc., 137(28):8860–8871, 2015.

[14] S. Habershon, D. E. Manolopoulos, T. E. Markland, and :T. F. Miller III.
Ring-polymer molecular dynamics: quantum effects in chemical dynam-
ics from classical trajectories in an extended phase space. Ann. Rev. Phys.
Chem., 64:387–413, 2013.

[15] Thomas F. Miller III and David E. Manolopoulos. Quantum diffusion in liq-
uid para-hydrogen from ring-polymer molecular dynamics. J. Chem. Phys.,
122(184503), 2005.

[16] Nicholas Boekelheide, Romelia Salomon-Ferrer, and Thomas F. Miller, III.
Dynamics and dissipation in enzyme catalysis. Proc. Natl. Acad. Sci. U.S.A,
108:16159–16163, 2011.

[17] Yury V. Suleimanova, Rosana Collepardo-Guevara, and David E.
Manolopoulos. Bimolecular reaction rates from ring polymer molecular
dynamics: Application to H+CH4 → H2 +CH3. J. Chem. Phys., 134(044131),
2011.

[18] Rosana Collepardo-Guevara, Yury V. Suleimanov, and David E.
Manolopoulos. Bimolecular reaction rates from ring polymer molecular
dynamics. J. Phys. Chem., 130(174713), 2009.

[19] Artur R Menzeleev, Nandini Ananth, and Thomas F Miller III. Direct sim-
ulation of electron transfer using ring polymer molecular dynamics: Com-
parison with semiclassical instanton theory and exact quantum methods.
J. Chem. Phys., 135(7):074106, 2011.

[20] Kenion Rachel L. and Nandini Ananth. Direct simulation of elec-
tron transfer in the cobalt hexammine(ii/iii) self-exchange reaction.
Phys.Chem.Chem.Phys., 18(26117), 2016.

[21] Farnaz A. Shakib and Pengfei Huo. Ring polymer surface hopping: Incor-
porating nuclear quantum effects into nonadiabatic molecular dynamics
simulations. J. Chem. Phys., 8(13):3073–3080, 2017.

[22] Artur R. Menzeleev, Franziska Bell, and Thomas F. Miller III. Kinetically

92



constrained ring-polymer molecular dynamics for non-adiabatic chemical
reactions. J. Chem. Phys., 140(6), 2014.

[23] Sutirtha N. Chowdhury and Pengfei Huo. Coherent state mapping ring
polymer molecular dynamics for non-adiabatic quantum propagations. J.
Chem. Phys., 147(214109), 2017.

[24] Jessica R. Duke and Nandini Ananth. Mean field ring polymer molecular
dynamics for electronically nonadiabatic reaction rates. Faraday Discuss.,
195, 2016.

[25] Philip Shushkov, Richard Li, and John C. Tully. Ring polymer molec-
ular dynamics with surface hopping. The Journal of Chemical Physics,
137(22):22A549, Dec 2012.

[26] Jeremy O. Richardson and Michael Thoss. Communication: Nonadiabatic
ring-polymer molecular dynamics. J. Chem. Phys., 139(3):031102, 2013.

[27] Jessica R. Duke and Nandini Ananth. Simulating excited state dynamics
in systems with multiple avoided crossings using mapping variable ring
polymer molecular dynamics. J. Phys. Chem. Lett., 6(21):4219–4223, 2015.

[28] Sadrach Pierre, Jessica R. Duke, T. J. H. Hele, and Nandini Ananth. A
mapping variable ring polymer molecular dynamics study of condensed
phase proton-coupled electron transfer. J. Chem. Phys., 147(2017), 2017.

[29] Dmitrii E. Makarov and Nancy Makri. Path integrals for dissipative sys-
tems by tensor multiplication. condensed phase quantum dynamics for ar-
bitrarily long time. Chem. Phys. Lett., 221:482–491, 1994.

[30] Nancy Makri. Numerical path integral techniques for long time dynamics
of quantum dissipative systems. J. Math. Phys., 35(5):2430, 1995.

[31] Richard P. Feynman and Albert R. Hibbs. Quantum Mechanics and Path
Integrals. McGraw-Hill, New York, 1965.

[32] M. Parrinello and A. Rahman. Study of an f center in molten kcl study of
an f center in molten kcl study of an f center in molten kcl study of an f cent
in molten kcl. J. Chem. Phys., 80:860, 1984.

[33] David Chandler and Peter G. Wolynes. Exploiting the isomorphism be-

93



tween quantum theory and classical statistical mechanics of polyatomic
fluids. J. Chem. Phys., 74:4078, 1981.

[34] M. E. Tuckerman and A. Hughes. Classical and Quantum Dynamics in Con-
densed Phase Simulations. World Scientific, Singapore, 1998.

[35] Maria Topaler and Nancy Makri. Quantum rates for a double well coupled
to a dissipative bath: Accurate path integral results and comparison with
approximate theories. J. Chem. Phys., 101:7500–7519, 1994.

[36] Aaron Kelly, Andrés Montoya-Castillo, Lu Wang, and Thomas E. Mark-
land. Generalized quantum master equations in and out of equilibrium:
when can one win? J. Chem. Phys., 144:184105, 2016.

[37] Aaron Kelly, Nora Brackbill, and Thomas E. Markland. Accurate nonadi-
abatic quantum dynamics on the cheap: Making the most of mean field
theory with master equations. J. Chem. Phys., 142:094110, 2015.

[38] Bastiaan J. Braams and David E. Manolopoulos. On the short-time limit of
ring polymer molecular dynamics. J. Chem. Phys., 125(124105), 2006.

[39] Ian R. Craig and David E. Manolopoulos. Quantum statistics and classical
mechanics: Real time correlation functions from ring polymer molecular
dynamics. J. Chem. Phys., 121(8):3368–3373, 2004.

[40] Stuart C. Althorpe and Timothy J. H. Hele. Derivation of a true (t →
0+) quantum transition-state theory. i. uniqueness and equivalence to
ring-polymer molecular dynamics transition-state-theory. J. Chem. Phys.,
138:084108, 2013.

[41] Stuart C. Althorpe and Timothy J. H. Hele. Derivation of a true (t → 0+)
quantum transition-state theory. ii. recovery of the exact quantum rate in
the absence of recrossing. J. Chem. Phys., 139(8):084115, 2013.

[42] T. J. H. Hele, M. J. Willatt, A. Muolo, and S. C. Althorpe. Boltzmann-
conserving classical dynamics in quantum time-correlation functions:
‘matsubara dynamics’. J. Chem. Phys., 142:134103, 2015.

[43] T. J. H. Hele, M. J. Willatt, A. Muolo, and S. C. Althorpe. Communication:
Relation of centroid molecular dynamics and ring-polymer molecular dy-
namics to exact quantum dynamics. J. Chem. Phys., 142:191101, 2015.

94



[44] Artur R. Menzeleev, Nandini Ananth, and Thomas F. Miller III. Direct sim-
ulation of electron transfer using ring polymer molecular dynamics: Com-
parison with semiclassical instanton theory and exact quantum methods.
J. Chem. Phys., 135(7), 2011.

[45] Rosana Collepardo-Guevara, Ian R. Craig, and David E. Manolopoulos.
Proton transfer in a polar solvent from ring polymer reaction rate theory. J.
Chem. Phys., 128:144502, 2008.

[46] Joshua S. Kretchmer and Thomas F. Miller, III. Kinetically-constrained ring-
polymer molecular dynamics for non-adiabatic chemistries involving sol-
vent and donor-acceptor dynamical effects. Farad. Discuss.,, 195:191–214,
2016.

[47] Shinichi Miura and Susumu Okazaki. Path integral molecular dy-
namics for bose–einstein and fermi–dirac statistics. J. Chem. Phys.,
112(23):Okazaki2000, 2000.

[48] Militzer B. and D. M. Ceperley. Path integral monte carlo calculation of the
deuterium hugoniot. Phys. Rev. Lett., 85(9):1890, 2000.

[49] Michael Thoss and Gerhard Stock. Mapping approach to the semiclassical
description of nonadiabatic quantum dynamics. Phys. Rev. A, 59:64–79, Jan
1999.

[50] Joshua S. Kretchmer and Thomas F. Miller III. Tipping the balance between
concerted versus sequential proton-coupled electron transfer. Inorg. Chem.,
55(3):1022–1031, 2016.

[51] Joshua S. Kretchmer and Thomas F. Miller III. Direct simulation of proton-
coupled electron transfer across multiple regimes. J. Chem. Phys., 138(13),
2013.

[52] Jian-Yun Fang and Sharon Hammes-Schiffer. Proton-coupled electron
transfer reactions in solution: Molecular dynamics with quantum transi-
tions for model systems. J. Chem. Phys., 106(20):8442–8454, 1997.

[53] Nandini Ananth and Thomas F. Miller III. Flux-correlation approach
to characterizing reaction pathways in quantum systems: a study of
condensed-phase proton-coupled electron transfer. Mol. Phys., 110(9-
10):1009–1015, 2012.

95



[54] A.O Caldeira and A.J Leggett. Quantum tunnelling in a dissipative system.
Ann. Phys., 149(2):374 – 456, 1983.

[55] Ian R. Craig and David E. Manolopoulos. A refined ring polymer
molecular dynamics theory of chemical reaction rates. J. Chem. Phys.,
123(3):034102, 2005.

[56] Timothy J. H. Hele and Nandini Ananth. Deriving the exact nonadiabatic
quantum propagator in the mapping variable representation. Faraday Dis-
cuss., 195:269–289, 2016.

[57] Hans-Dieter Meyer and William H. Miller. A classical analog for electronic
degrees of freedom in nonadiabatic collision processes. J. Chem. Phys.,
70(7):3214–3223, 1979.

[58] Gerhard Stock and Michael Thoss. Semiclassical description of nonadia-
batic quantum dynamics. Phys. Rev. Lett., 78:578–581, Jan 1997.

[59] Jeremy O. Richardson, Philipp Meyer, Marc-Oliver Pleinert, and Michael
Thoss. An analysis of nonadiabatic ring-polymer molecular dynamics and
its application to vibronic spectra. Chem. Phys., 482:124–134, 2017.

[60] Enrico Fermi. Nuclear physics: a course given by Enrico Fermi at the University
of Chicago, (University of Chicago Press, 1950).

[61] Niels E Henriksen and Flemming Y Hansen. Theories of molecular reaction
dynamics: the microscopic foundation of chemical kinetics, (Oxford University
Press on Demand, 2008).

[62] Jens Ulstrup and Joshua Jortner. The effect of intramolecular quantum
modes on free energy relationships for electron transfer reactions. J. Chem.
Phys., 63(10):4358–4368, 1975.

[63] Nancy Makri. Stabilization of localized states in dissipative tunneling sys-
tems interacting with monochromatic fields. J. Chem. Phys., 106(6):2286–
2297, 1997.

[64] William H. Miller. Quantum mechanical transition state theory and a new
semiclassical model for reaction rate constants. J. Chem. Phys., 61:1823,
1974.

96



[65] William H. Miller, Steven D. Schwartz, and John W. Tromp. Quantum me-
chanical rate constants for bimolecular reactions. J. Chem. Phys., 79:4889,
1983.

[66] L. I. Schiff. Quantum Mechanics. McGraw-Hill, New York, 1968.

[67] Ian R. Craig and David E. Manolopoulos. Chemical reaction rates from
ring polymer molecular dynamics. J. Chem. Phys., 122:084106, 2004.

[68] Haobin Wang, Xiong Sun, and William H. Miller. Semiclassical approxi-
mations for the calculation of thermal rate constants for chemical reactions
in complex molecular systems. J. Chem. Phys., 108:9726, 1998.

[69] Xiong Sun, Haobin Wang, and William H. Miller. Semiclassical theory of
electronically nonadiabatic dynamics: Results of a linearized approxima-
tion to the initial value representation. J. Chem. Phys., 109:7064, 1998.

[70] Eitan Geva and Qiang Shi. Quantum-mechanical reaction rate constants
from centroid molecular dynamics simulations. J. Chem. Phys., 115:9209,
2001.

[71] Ian Affleck. Quantum-statitical metastability. Phys. Rev. Lett., 46(6):388,
1981.

[72] Curtis G. Callan, Jr. and Sidney Coleman. Fate of the false vacuum. ii. first
quantum corrections*. Phys. Rev. D, 16(6):1762, 1977.

[73] V. A. Benderkii, Dmitrii E. Makarov, and C.A. Wight. Advance in Chemical
Physics, Volume LXXXVIII. John Wiley and Sons, 1994.

[74] Srinanth Ranya, Sadrach Pierre, and Nandini Ananth. Optimal dividing
surfaces for nonadiabatic rate calculations using the mapping variable co-
ordinate space instanton. Manuscript in preparation, 2018.

97


