On Means Estimated from Fixed and Mixed Linear Models

Shayle R. Searle Friedrich Pukelsheim

Preprint Nr. 58 BU-868-M

1

1

Februar 1985

۰.

On Means Estimated from Fixed and Mixed Linear Models

Shayle R. Searle * and Friedrich Pukelsheim

Institut für Mathematik Universität Augsburg, Federal Republic of Germany

ABSTRACT

٩

Means estimated from fixed and mixed models of the 1-way classification are compared in terms both of sampling variances and of weights given to the class means. Extensions to other models are indicated.

*On leave from Cornell University, Ithaca, N.Y., supported by a U. S. Senior Scientist Award from the Alexander von Humboldt-Stiftung.

1. Introduction

Subclasses of data that contain differing numbers of observations can have their means combined linearly with a variety of different weights: weighting by the number of observations leads to the overall mean, weighting equally yields the mean of the subclass means, and a third possibility is weighting inversely according to variances when those variances are unequal. Several aspects of these means are considered.

2. Fixed Effects Models

Suppose y_{ij} is the j'th observation of the i'th class of a 1-way classification, with i = 1, ..., a and $j = 1, ..., n_i$; i.e., a classes and n_i observations in the i'th class. Then the model equation for y_{ij} can be taken as

$$y_{ij} = \mu_i + e_{ij} \tag{1}$$

where μ_i is the population mean of the *i*'th class, and e_{ij} is a random error term. In the fixed effects model the e_{ij} are assumed to be independent random variables identically distributed with zero mean and variance σ_e^2 ; and the covariance between any pair of (different) e_{ij} terms is assumed to be zero. Under these conditions the BLUE (best linear unbiased estimator) of μ_i and the sampling variance of that estimator are, respectively,

$$\hat{\mu}_i = \overline{y}_i = \sum_{j=1}^{n_i} y_{ij}/n_i \text{ and } v(\overline{y}_i) = \sigma^2/n_i, \qquad (2)$$

similar to Searle (1971, pages 325 and 339).

We consider three different weighted means of the μ_i s. First is μ_n , in which the number of observations are used as weights, $\mu_n = \sum n_i \mu_i / \sum n_i$. (All summations are with respect to *i*, over the range i = 1, 2, ..., a.) Second is μ_e , based on equal weights, $\mu_e = \sum \mu_i / a$; and third is a general weighted average, $\mu_w = \sum w_i \mu_i / \sum w_i$ using arbitrary weights w_i . The BLUEs of these and their sampling variances are as follows:

$$\hat{\mu}_n = \sum n_i \overline{y}_i / \sum n_i = \overline{y}_{..}, \text{ with } v(\hat{\mu}_n) = \sigma_e^2 / \sum n_i,$$
 (3)

$$\hat{\mu}_e = \sum \overline{y}_i/a$$
, with $v(\hat{\mu}_e) = \sigma_e^2(\sum 1/n_i)/a^2$, (4)

and

$$\hat{\mu}_w = \sum w_i \overline{y}_i / \sum w_i, \text{ with } v(\hat{\mu}_w) = \sigma_e^2 (\sum w_i^2 / n_i) / (\sum w_i)^2.$$
 (5)

Some elementary properties can be noted. $\hat{\mu}_n$ is the grand mean $\overline{y}_{...}$, whereas $\hat{\mu}_e$ is the mean of class means, $\sum \overline{y}_i/a$. They are equal when all n_i are the same, as are μ_n and μ_e . Also, μ_w for $w_i = n_i$ is μ_n , and μ_w for $w_i = 1$ is μ_e . Of the three estimators, $\hat{\mu}_n$ has the smallest variance as evidenced by an application of the Cauchy-Schwarz inequality:

$$\sum n_i \sum w_i^2/n_i \ge (\sum \sqrt{n_i} \sqrt{w_i^2/n_i})^2 = (\sum w_i)^2$$

so that

$$1/\sum n_i \leq \left(\sum w_i^2/n_i\right) \right) / \left(\sum w_i^2\right), \text{ i.e. } , v(\hat{\mu}_n) \leq v(\hat{\mu}_w).$$
 (6)

Thus no weighted mean of the μ_i s has a BLUE with smaller variance than that of μ_n . This is an attractive property for μ_n even though defining an overall mean as μ_e seems more natural than does μ_n because of the dependence of μ_n on the numbers of observations in the classes.

3. Mixed Models

What is usually known as the random effects model for the 1-way classification has model equation $y_{ij} = \mu + \alpha_i + e_{ij}$ for e_{ij} as in the fixed effects model and for the α_i s being uncorrelated random effects with zero means and variance σ_{α}^2 ; and with the covariance between every α_i and every e_{hk} being zero. Since μ is a fixed effect this model is strictly a mixed model and we think of it in this manner because of being interested in estimating μ in the presence of the random effects. Its BLUE, to be denoted $\hat{\mu}_r$ is, similar to Searle (1971, page 463),

$$\hat{\mu}_{r} = \sum \frac{n_{i}}{n_{i}\sigma_{\alpha}^{2} + \sigma_{e}^{2}} \overline{y}_{i} / \sum \frac{n_{i}}{n_{i}\sigma_{\alpha}^{2} + \sigma_{e}^{2}} \text{ with } v(\hat{\mu}_{r}) = \sigma^{2} / \sum \frac{n_{i}}{n_{i}\sigma_{\alpha}^{2} + \sigma_{e}^{2}}.$$
 (7)

A comparison of variances is of interest. That of $\hat{\mu}_w$ in the mixed model, to be denoted $v_M(\hat{\mu}_w)$, is simply $v(\hat{\mu}_w)$ of (5) with σ_e^2/n_i replaced by $\sigma_a^2 + \sigma_e^2/n_i$; and by the same reasoning as used in deriving (6) one can show that $v(\hat{\mu}_r) < v_M(\hat{\mu}_w)$, of which $v(\hat{\mu}_r) < v_M(\hat{\mu}_n)$ is then but a special case. Nevertheless, $v(\hat{\mu}_n) = \sigma_e^2 / \sum n_i$ of (3) is less than $v(\hat{\mu}_r)$ of (7), as may be seen by observing that

$$1/v(\hat{\mu}_n) - 1/v(\hat{\mu}_r) = \sum n_i [1/\sigma_e^2 - 1/(n_i \sigma_a^2 + \sigma_e^2)] > 0$$

and so

$$v(\hat{\mu}_n) < v(\hat{\mu}_r) < v_M(\hat{\mu}_n). \tag{8}$$

Thus in the mixed model no linear combination of the \bar{y}_i s has a smaller variance than does μ_r (as is to be expected because $\hat{\mu}_r$ is the BLUE of μ), but $v(\hat{\mu}_n)$ in the fixed effects model has smaller variance than $v(\hat{\mu}_r)$ in the mixed model. The inequality chain in (8) can also be extended to

$$v(\hat{\mu}_n) < v(\hat{\mu}_e) < v(\hat{\mu}_r) < v_M(\hat{\mu}_n) < v_M(\hat{\mu}_e).$$

4. Relationships Among the Means

The intra-class correlation in the mixed model is $\rho = \sigma_{\alpha}^2/(\sigma_{\alpha}^2 + \sigma_e^2)$. To emphasize dependence on ρ we now write $\hat{\mu}_r$ of (7) as

$$\hat{\mu}_{r,\rho} = \sum \frac{n_i}{n_i\rho + 1 - \rho} \overline{y}_i \bigg/ \sum \frac{n_i}{n_i\rho + 1 - \rho}.$$
(9)

Immediately we see, by comparison with (3) and (4) that

$$\hat{\mu}_{r,0} = \hat{\mu}_n$$
 and $\hat{\mu}_{r,1} = \hat{\mu}_e$

This is not surprising. $\rho = 0$ is equivalent to $\sigma_{\alpha}^2 = 0$ as is true of the fixed effects model and so $\hat{\mu}_{r,0} = \hat{\mu}_n$, its BLUE counterpart in that model. And $\rho = 1$, although equivalent to $\sigma_e^2 = 0$, is more interestingly the case of observations within each class being perfectly correlated — in effect, identical. Hence, no matter what the value of n_i is, \bar{y}_i has variance σ_{α}^2 and so the linear combination of \bar{y}_i s that has minimum variance is $\hat{\mu}_e = \sum \bar{y}_i/a$.

Despite these consequences of putting $\rho = 0$ and $\rho = 1$ in $\hat{\mu}_r$, it is nevertheless surprising how quickly the weights given to each \overline{y}_i change from being proportional to n_i in $\hat{\mu}_{r,0} = \mu_n$ to approaching being equal in $\hat{\mu}_{r,1} = \mu_e$ as ρ increases from 0 to 1. Consider two classes, one described as having a large number of observations, n_L , and the other having a small number, n_S , with, of course, $n_L > n_S$. In $\hat{\mu}_r$ the ratio of the weight given \overline{y}_S to that given to y_L is τ_ρ say, where, from (9)

$$\tau_{\rho} = \frac{\text{coefficient of } \overline{y}_{S} \text{ in } \hat{\mu}_{r,\rho}}{\text{coefficient of } \overline{y}_{L} \text{ in } \hat{\mu}_{r,\rho}} = \frac{n_{S}(n_{L}\rho + 1 - \rho)}{n_{L}(n_{S}\rho + 1 - \rho)}.$$
(10)

Now $\tau_0 = n_S/n_L$, corresponding to $\hat{\mu}_{r,0} = \hat{\mu}_n$, and as ρ increases from zero to unity τ_ρ increases from $\tau_0 = n_S/n_L$ to $\tau_1 = 1$. Thus as $\rho \to 1$ we see that y_S , the mean of the smaller sized class, gets increasingly larger weights in $\hat{\mu}_{r,\rho}$, relative to \overline{y}_L . What is interesting about this is that this increase can, depending on the magnitudes of n_L and n_S be quite appreciable, even for very small values of ρ . The accompanying table shows values of τ_ρ for three pairs of n_L , n_S values and a range of values of ρ .

(show table)

5. Extensions

Consider a 2-way nested classification of a main classes the *i*'th of which has b_i subclasses, in the *j*'th of which there are n_{ij} observations y_{ijk} for $k = 1, \ldots, n_{ij}$, with $i = 1, \ldots, a$ and $j = 1, \ldots, b_i$. A mixed model for this situation can be taken as $y_{ijk} = \mu_i + \beta_{ij} + e_{ijk}$ where μ_i is a fixed effect and β_{ij} and e_{ijk} are random effects with zero means, variances σ_{β}^2 and σ_e^2 , respectively, and with all covariances zero. Then, similar to $\hat{\mu}_r$ of (7), the BLUE of μ_i is

$$\hat{\mu}_{i} = \sum_{j=1}^{b} \frac{n_{ij}}{n_{ij}\sigma_{\beta}^{2} + \sigma_{e}^{2}} \overline{y}_{ij} / \sum_{j=1}^{b} \frac{n_{ij}}{n_{ij}\sigma_{\beta}^{2} + \sigma_{e}^{2}}.$$
(11)

Discussions of this and of linear combinations of the $\hat{\mu}_i$ s, can be made similar to those of Sections 2 and 3. Analogous extensions could also be made for a 2-way crossed classification for combining BLUEs $\hat{\mu}_{ij} = \overline{y}_{ij}$ in situations where $v(\overline{y}_{ij}) = \sigma_{\gamma}^2 + \sigma_e^2/n_{ij}$.

Reference

Searle, S.R. (1971): Linear Models. Wiley, New York.

4

EXAMPLES OF THE RELATIVE WEIGHTS GIVEN TO TWO SAMPLE MEANS IN THE ESTIMATOR

ς, Υ

• •

$$\hat{\mu}_{r,\rho} = \sum_{n_1 \sigma_{\tau}^2 \sigma_{\tau}^2} \bar{y}_1 / \sum_{n_1 \sigma_{\tau}^2 \sigma_{\tau}^2 \sigma_{\tau}^2} \bar{y}_1$$

$$\rho = \frac{\sigma_{\alpha}^2}{\sigma_{\alpha}^2 + \sigma_{\tau}^2}$$

$$\frac{\tau_{\rho} = \frac{coefficient of \bar{y}_S in \hat{\mu}_{r,\rho}}{coefficient of \bar{y}_L in \hat{\mu}_{r,\rho}} = \frac{n_S(n_L \rho + 1 - \rho)}{n_L(n_S \rho + 1 - \rho)}$$

$$\frac{Three sets of n_L, n_S values}{100, 20, 100, 5}$$

$$\frac{n_L, n_S}{20, 4, 100, 20, 100, 5}$$

$$0 \ (\hat{\mu}_{r,0} = \hat{\mu}_n)$$

$$.20 \ .20 \ .05$$

$$.33 \ .61 \ .28$$

$$.1 \ .45 \ .75 \ .38$$

$$.3 \ .71 \ .92 \ .70$$

$$.5 \ .840 \ .962 \ .842$$

$$.7 \ .923 \ .983 \ .925$$

$$.9 \ .978 \ .996 \ .979$$

$$1.0 \ (\hat{\mu}_{r,1} = \hat{\mu}_e)$$

$$1.00 \ 1.00 \ 1.00$$

-

Bestellungen nimmt entgegen:

Institut für Mathematik der Universität Augsburg Memminger Str. 6 8900 Augsburg

٠,

Verzeichnis der erschienenen Preprints

 Hoffmann, K.-H.; Sprekels, J.: Real-time Control of the Free Boundary in a Two-phase Stefan Problem (1982), Numer. Funct. Anal. and Optimiz. 5, 47-76 (1982)

- Schert, R.: Eine Bemerkung zu einer Arbeit von C. Meyer über Imaginär-quadratische Körper mit der Klassenzahl 2 (1982)
- 3. Brokate, M.: A Hyperbolic Free Boundary Problem: Existence, Uniqueness and Discretization (1982)
- 4. Grötschel, M.; Padberg, M.: Polyhedral Aspects of the Traveling Salesman Problem I: Theory (1983)
- 5. Grötschel, M.; Padberg, M.: Polyhedral Aspects of the Traveling Salesman Problem II: Computation (1983)
- 6. Ritter, J.; Sehgal, S. K.: On a Conjecture of Zassenhaus on Torsion Units in Integral Group Rings (1983), Math. Ann. 264, 257-270 (1983)
- 7. Barahona, F.; Grötschel, M.; Mahjoub, A. R.: Facets of the Bipartite Subgraph Polytope (1983)
- 8. Grötschel, M.; Jünger, M.; Reinelt, G.: A Cutting Plane Algorithm for the Linear Ordering Problem (1983)
- 9. Grötschel, M.; Jünger, M.; Reinelt, G.: Optimal Triangulation of Large Real World Input-output Matrices (1983), Statistische Hefte, 25 (1984), 261-295
- 10. Jünger, M.; Pulleyblank, W. R.; Reinelt, G.: On Partitioning the Edges of Graphs into Connected Subgraphs (1983)
- 11. Grötschel, M.: On Intersections of Longest Cycles (1983), "Graph Theory and Combinatorics", B. Bollobás, London, Academic Press, 1984, 171-189
- 12. Hoffmann, K.-H.; Sprekels, J.: Real-time Control in a Free Boundary Problem Connected with the Continuous (1983) Casting of Steel, Intern. Ser. Numer. Math. 68, Birkhäuser-Verlag (1983)

- 13. Brokate, M.: Numerical Solution of a Hyperbolic Free Boundary Problem with a Method of Characteristics (1983)
- 14. Hoffmann, K.-H.; Sprekels, J.: Exact Bounds for the Radially Symmetric Shape of Confined Plasma in the Unit Circle (1983), Math. Meth. in Appl. Sci. 6 (1984) 496-511
- 15. Grötschel, M.: Polyhedral Combinatorics: An Annotated Bibliography (1983)
- 16. Euler, R.; Jünger, M.; Reinelt, G.: Generalizations of Cliques, Odd Cycles and Anticycles and their Relation to Independence System Polyhedra (1983)
- 17. Hoffmann, K.-H.; Sprekels, J.: On the Identification of Coefficients of Elliptic Problems by Asymptotic Regularization (1983)
- 18. Hoffmann, K.-H.; Sprekels, J.: A Note on the Thermostat Control of Heating Processes in Materials with Thermal Memory (1983), Mat. Aplic. Comp., V. 3, n°. 3, pp. 257 a 264, 1984
- 19. Alt, H. W.; Hoffmann, K.-H.; Sprekels, J.: A Numerical Procedure to Solve Certain Identification Problems (1983), Intern. Ser. Numer. Math. 68, Birkhäuser-Verlag
- 20. Brüning, J.: Heat Equation Asymptotics for Singular Sturm-Liouville Operators (1983), Math. Ann. 268, 173-196 (1984)
- 21. Knabner, P.: A Free Boundary Problem Arising from the Leaching of Saline Soils (1983)
- 22. Knabner, P.: Regularization of the Cauchy Problem for the Heat Equation by Norm Bounds (1984)
- 23. Brüning, J.; Heintze, E.: Spektrale Starrheit gewisser Drehflächen (1984), Math. Ann. 269, 95-101 (1984)
- 24. Hoffmann, K.-H.; Sprekels, J.: On the Identification of Parameters in General Variational Inequalities by Asymptotic Regularization (1984)
- 25. Hoffmann, K.-H.; Kornstaedt, H.-H.; Sprekels, J.: Automatische Steuerung freier Ränder bei Stefan Problemen durch Thermostatkontrollen am festen Rand (1984)

26.	Grötschel, M.: Developments in Combinatorial Optimization (1984), "Persepctives in Mathematics" (Anniversary of Oberwolfach 1984), W. Jäger, J. Moser & R. Remmert, Basel, Birkhäuser-Verlag, 1984, 249- 294
27.	Knabner, P.: Control of Stefan Problems by Means of Linear- Quadratic Defect Minimization (1984)
28.	Grötschel, M.; Jünger, M.; Reinelt, G.: Acyclic Subdigraphs and Linear Orderings: Polytopes, Facets and a Cutting Plane Algorithm (1984)
29.	Müller-Funk, U.; Pukelsheim, F.; Witting, H.: On the Duality between Locally Optimal Tests and Optimal Experi- mental Designs (1984)
30.	Jürgens, U.: The Estimation of a Nonstationary Random Coeffi- cient AR(1) Process (1984)
31.	Brüning, J.: Spectral Analysis of Singular Sturm-Liouville Problems with Operator Coefficients (1984)
32.	Schröder, H.: Some Continuous Index Theorems (1984)
33.	Zehendner, E.: A Non-Existence Theorem for Cyclic MDS- Codes (1984)
34.	Christof, K.; Pukelsheim, F.: Approximate Design Theory for a Simple Block Design with Random Block Effects (1984)
35.	Grötschel, M.; Lovász, L.; Schrijer, A.: Relaxations of Vertex Packing (1984)
36.	Barahona, F.; Grötschel, M.: On the Cycle Polytope of a Binary Matroid (1984)
37.	Grötschel, M.; Holland, O.: Solving Matching Problems with Linear Programming (1984)
38.	Grötschel, M.: Polyedrische Kombinatorik und Schnittebe- nenverfahren (1984), Bericht Nr. 231 (1984) der Mathematisch-Statistischen Sektion, Forschungs- zentrum Graz, Österreich
39.	Gurgel, M. A.; Wakabayashi, Y.: On k-leaf connected graphs (1984)
40.	Hoffmann, KH.; Sprekels, J.: The Method of Asymptotic Regularization and Restricted Parameter Identi- fication Problems in Variational Inequalities (1984)

۰ ،

• •

Kielhöfer, H.: Multiple Eigenvalue Bifurcation for Fredhom 41. Operators (1984) Baksalary, J. K.; Pukelsheim, F.: A Note on the Matrix Ordering 42. of Special C-Matrices (1984) Pawlow, I.; Niezgódka, M.: Discrete Approximation of 43. Multi-Phase Stefan Problems with Possible Degeneration (1984) Pawlow, I.: Boundary Control of Degenerate Two-Phase 44. Stefan Problems (1984) Kielhöfer, H.: Interaction of Periodic and Stationary 45. Bifurcation from Multiple Eigenvalues (1984) 46. Grötschel, M.: Fortschritte in der polyedrischen Kombinatorik (1984) Schröder, H.: On the Homotopy type of the regular group of 47. a real W*-algebra (1984) Pukelsheim, F.: A Note on Predictable Criteria for Absolute 48. Continuity and Singularity of Two Probability Measures (1984) 49. Knabner, P.: Global Existence in a General Stefan-like Problem (1984) 50. Hoffmann, K.-H.; Sprekels, J.: On the Identification of Heat Conductivity and Latent Heat in a One-Phase Stefan Problem (1985) 51. Appell, J. Deux Méthodes Topologiques pour la Résolution des Equations Elliptiques Non linéaires sans Compacité 52. Appell, J.; de Pascale Espedito: Théorèmes de Bornage pour l'Opérateur de Nemyckii dans les Espaces Idéaux 53. Appell, J.: Misure di Non Compattezza in Spazi Ideali