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1. Introduction. An option pricing model establishes a relationship between the traded
derivatives, the underlying asset and the market variables, e.g., volatility of the underlying
asset [4, 24]. Option pricing models are used in practice to price derivative securities given
knowledge of the volatility and other market variables.

The celebrated constant-volatility Black-Scholes model [4, 24] is the most often used
option pricing model in financial practice. This classical model assumes constant volatility;
however, much recent evidence suggests that a constant volatility model is not adequate [27,
26]. Indeed, numerically inverting the Black-Scholes formula on real data sets supports the
notion of asymmetry with stock price (volatility skew), as well as dependence on time to
expiration (volatility term structure). Collectively this dependence is often referred to as the
volatility smile. The challenge is to accurately (and efficiently) model this volatility smile.

In practice, the constant-volatility Black-Scholes model is often applied by simply using
different volatility values for options with different strikes and maturities. In this paper, we
refer to this approach as the constant implied volatility approach. Although this method works
well for pricing European options, it is unsuitable for more complicated exotic options and
options with early exercise features. Moreover, as will be illustrated in §4, this approach can
produce incorrect hedge factors even for simple European options.

A few different approaches have been proposed for modeling the volatility smile. One
class of methods (Merton [25]) assumes a Poisson jump diffusion process for the underly-
ing asset. Stochastic volatility models (Hull and White [20]) have also been used. Das and
Sundaram [10] indicate that neither of these types of models sufficiently explains the implied
volatility structure.

Finally, there is the 1-factor continuous diffusion approach: an underlying asset with the
initial value Sinit is assumed to follow:

dSt

St
= µ(St, t)dt + σ∗(St, t)dWt, t ∈ [0, τ ], τ > 0,(1)

where Wt is a standard Brownian motion, τ is a fixed trading horizon, and µ, σ∗: <+ ×
[0, τ ] → < are deterministic functions. The function σ∗(s, t) is called the local volatility
function. The advantages of the 1-factor continuous diffusion model, compared to the jump
or stochastic model, include that no non-traded source of risk such as the jump or stochastic
volatility is introduced [17]. Consequently, the completeness of the model, i.e., the ability to
hedge options with the underlying asset, is maintained. Completeness is ultimately important
since it allows for arbitrage pricing and hedging [17].

In order to price complex exotic options using a 1-factor diffusion model (1), the volatil-
ity function σ∗(s, t) needs to be approximated. Volatility is the only variable in this 1-factor
model which is not directly observable in the market. Similar to the implied volatility in the
constant volatility model, one possible idea is to imply this local volatility function from the
market option price data. Indeed, it is established [17, 1] that the local volatility function can
be uniquely determined from the European call options of all strikes and maturities, under
the no arbitrage assumption of the observable European call option prices. Unfortunately, the
market European option prices are typically limited to a relatively few different strikes and
maturities. Therefore the problem of determining the local volatility function can be regarded
as a function approximation problem from a finite data set with a nonlinear observation func-
tional. Due to insufficient market option price data, this is a well-known ill-posed problem.

Computational methods have been proposed to solve this ill-posed problem [1, 2, 5, 17,
13, 14, 21, 22, 26]. Most of these methods [1, 5, 17, 13, 14, 21, 26] overcome the ill-posedness
of the problem by assuming the existence of a complete spanning set of European call option
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prices, which, in practice, requires use of extrapolation and interpolation of the available
market option prices [26, 13, 21, 5]. This can be problematic because potentially erroneous
non-market information are introduced into the data. Rubinstein proposes to compute the
implied probability without any exogenous assumption on the model for the local volatility
function [26, 21]. In [1] the local volatility is computed at each discretization nodal point
with a PDE approach. The methods [2, 22] use a regularization approach to the ill-posed local
volatility approximation problem. The closeness of the local volatility to a prior is used in [2]
and smoothness is used in [22].

The local volatility function approximation problem is ill-posed: there are typically an
infinite number of solutions to the problem. It is not difficult to find a local volatility function
σ(s, t) that matches the market option price data. However, for accurately pricing exotic
options, we are not merely concerned with matching the market option prices but would like
to reconstruct as accurately as possible the the true volatility function σ∗(s, t) in the diffusion
model (1). Accurately approximating the true volatility function is especially important for
computing hedge factors, even for simple European call/put options, see §4.

Smoothness of the function has long been used as a regularization criterion for function
approximation with a finite observation data [28, 29, 30]. Splines have known to possess good
approximation theoretical properties for a model both when the function is fixed and smooth
and when it is a sample function from a stochastic process [30]. However, approximating
the local volatility function from a finite set of option prices is more complex, compared to
a standard function approximation problem, since the (observation) option price functional is
nonlinear. Nevertheless, it is intuitive that smoothness regularization will play a similar role
here.

In [22] the lack of sufficient market option price data is overcome by regularizing with
smoothness of the local volatility function. The local volatility is computed at each discretiza-
tion point to match the given option prices with an additional objective of minimizing the
change of the derivative ∇σ(s, t). Unfortunately, this approach requires the solution of a
very large-scale nonlinear optimization problem: the dimension is equal to the total number
of discretization points. In addition, it requires determination of a regularization parameter.
Moreover, the computed local volatility function may not be smooth.

In this paper, we propose a spline functional approach: a local volatility function σ(s, t)
is explicitly represented by a spline with a fixed set of spline knots and end condition. The
volatilities at the spline knots uniquely determine a local volatility function. We choose the
number of spline knots to be no greater than the number of option prices and they are placed
with respect to the given data. The spline is determined by solving a constrained nonlinear
optimization problem to match the market option prices as closely as possible. The dimen-
sion of the optimization problem is typically small, depending on the number of option prices
available. The approximation properties of the spline allow an accurate and smooth approx-
imation of the true local volatility function in a region within which the volatility values are
significant for pricing available options.

We start with the motivation for our proposed inverse spline approximation formulation
for the local volatility in §2. Computational issues for solving the proposed optimization
problem are discussed in §3. Numerical examples illustrating the reconstructed local volatility
surfaces with the European call option prices are described in §4. Using a European call option
example with the underlying following the known absolute diffusion process, we illustrate the
capability of the proposed method for accurately reconstructing the true volatility function.
A S&P 500 European index call option example with the real market data is also used to
illustrate the smoothness of the volatility function and the stability of the proposed approach.
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In §5, concluding remarks are given.

2. Local Volatility Function Approximation with Splines. Assume that the underly-
ing asset follows a continuous 1-factor diffusion process with the initial value Sinit:

dSt

St

= µ(St, t)dt + σ∗(St, t)dWt, t ∈ [0, τ ],

for some fixed time horizon [0, τ ], Wt is a Brownian motion, and µ(s, t), σ∗(s, t): <+ ×

[0, τ ] → < are deterministic functions sufficiently well behaved to guarantee that (1) has a
unique solution [23]. Note that in this notation σ∗(s, t) can be negative as well as positive.
(The conventional notion of positive volatility corresponds to

√

σ∗(s, t)2 in our notation.) For
simplicity, we assume that the instantaneous interest rate is a constant r > 0 and the dividend
rate is a constant q > 0 (A general stochastic interest derivative pricing is described in [19]).
Given Sinit, r and q, and under the no arbitrage assumption [24], an option with the volatility
σ(s, t), strike price K, and maturity T has a unique price v(σ(s, t), K, T).

Assume that we are given m market option (bid,ask)-pairs, {(bidj , askj)}
m
j=1, corre-

sponding to strike prices/expiration times {(Kj, Tj)}
m
j=1. Let

vj(σ(s, t))
def
= v(σ(s, t), Kj, Tj), j = 1, · · · , m.

We want to approximate, as accurately as possible, the true local volatility function σ∗(s, t) :
<+ × [0, τ ] → < from the requirement that

bidj ≤ vj(σ(s, t)) ≤ askj , j = 1, · · · , m.(2)

Since the observation data {(bidj , askj , Kj, Tj)}
m
j=1 is finite and the restriction is on the op-

tion values {vj(σ(s, t))}m
j=1, problem (2) can be considered an inverse function approximation

problem from a finite observation data. Let H denote the space of measurable functions in the
region [0, +∞)× [0, τ ]. The inverse function approximation problem (2) can be written as an
optimization problem:

min
σ(s,t)∈H

m
∑

j=1

[bidj − vj(σ(s, t)))]+ +
m

∑

j=1

[vj(σ(s, t))− askj)]
+,(3)

where x+ def
= max(x, 0). This is a nonlinear piecewise differentiable optimization problem:

to overcome nondifferentiability in (3), one can alternatively solve a variational least squares
problem:

min
σ(s,t)∈H

m
∑

j=1

(vj(σ(s, t))− v̄j)
2,(4)

where v̄j
def
=

bidj+askj

2 . Since the observation data is finite, problems (2,3,4) are severely
underdetermined: there are typically infinite number of solutions. It is easy to find a function
σ(s, t) that matches the market option price data [2, 5, 17, 13, 14, 21, 22, 26].

The local volatility reconstruction problem (2,3,4) is a complicated nonstandard function
approximation problem. The option price functional v(σ(s, t), K, T ) is nonlinear in the local
volatility function σ(s, t). It is a nonlinear inverse function approximation problem.

In most of the proposed methods [1, 2, 5, 17, 13, 14, 21, 26] matching the market option
price data has been emphasized; it is often the only objective. However, a function σ(s, t)
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which matches the finite set of market option prices can be very different from the true lo-
cal volatility σ∗(s, t), see §4 for an example. Moreover, the price v̄j generally has error (for
example when a bid-ask spread exists). In addition, the option value vj(σ(s, t)) can only be
computed numerically using a tree method or a PDE approach (there is no closed form solu-
tion for a general 1-factor model (1)). Hence, it may not be desirable to insist that vj(σ(s, t))
match exactly the observed market price v̄j for j = 1, · · · , m. For pricing and hedging of
exotic options, it is more important to compute a local volatility function σ(s, t) which is
close to the true local volatility function σ∗(s, t). In other words, in addition to calibrating the
market option price data sufficiently accurately, we would like to reconstruct the true local
volatility function σ∗(s, t) of the diffusion model (1) as accurately as possible.

Smoothness has long been used [28, 29, 30] as a regularization condition for a function
approximation problem with a limited observation data. In addition, smoothness of the local
volatility function can be important in computational option valuation schemes. Convergence
of a PDE finite difference method, for example, depends on the smoothness of the function
σ(s, t).

In [22] it is proposed to use smoothness as a regularization condition to approximate the
local volatility function. The regularized optimization problem

min
σ(s,t)∈H

m
∑

j=1

(vj(σ(s, t)))− v̄j)
2 + λ‖∇σ(s, t)‖2(5)

is used in [22] where λ is a positive constant and ‖ · ‖2 denotes the L2 norm. The change of
the first order derivative is minimized depending on the regularization parameter λ for which
determining a suitable value may not be easy. In addition, computational implementation
of this method requires solving a large-scale discretized optimization problem: for a PDE
implementation, the dimension is NM where N is the number of discretization points in s

and M is the number of discretization points in t. A simple gradient descent algorithm is
used in [22]. Since the optimization problem is (5) highly nonlinear, with such a method, the
computed solution is typically inaccurate. To use a more sophisticated optimization algorithm,
the Jacobian matrix of the vector function (v1, · · · , vm) needs to be evaluated but this becomes
extremely costly due to the large dimension of the discretized problem.

Splines have long been used in approximating smooth curves and surfaces (see, e.g.,
[16]). They have also been used as a tool for regularizing ill-posedness of function approx-
imations from finite observation data [30]. In a typical 1-dimensional spline interpolation
setting, assuming values fi, i = 1, · · · , m, of the dependent variable f(x) corresponding to
values xi, i = 1, · · · , m, are given, a spline is chosen to fit the data (fi, xi), i = 1, · · · , m.
Given the number of knots p and their locations, the freedom of the spline is the coefficient of
each spline segment. The cubic spline has long been used by craftsman and engineers as the
mechanic spline. It is the smoothest twice continuously differentiable function that matches
the observations: the minimizer of

min
f(x)∈S

∫ b

a
(f ′′(x))2dx, subject to f(xi) = fi, i = 1, · · · , m,

is a natural cubic spline, where S is the Sobolev space of functions whose first order deriva-
tives are continuously differentiable and the second order derivatives are square integrable
(assuming m ≥ 2). For mechanical splines, this corresponds to minimize the elastic strain
energy. For 2-dimensional surface fitting, the bicubic spline defined on a regular grid is twice
continuously differentiable [3, 16]. The bicubic spline has a similar variational minimization
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property. Advantages of spline interpolation include its fast convergence on many types of
meshes, computational efficiency, and insensitivity to roundoff errors [3].

Approximating the local volatility function by a spline is particularly reasonable if the
local volatility function is smooth. Is this a reasonable expectation for the local volatility
function? Assume that the underlying follows the 1-factor diffusion process (1). Let there
be given observable arbitrage-free market European call prices v(K, T ) for all strikes K ∈

[0,∞) and all maturities T ∈ (0, τ ]. From Proposition 1 in [1], the local volatility function
σ∗(s, t) of the diffusion process (1) that is consistent with the market is given uniquely by

(σ∗(K, T ))2 = 2
∂v
∂T

+ qv(K, T ) + K(r − q) ∂v
∂K

K2 ∂2v
∂K2

.(6)

This formula suggests that, assuming v(K, T ) is sufficiently smooth (note that ∂2v
∂K2 and ∂v

∂T

already exist), (σ∗(K, T ))2 is sufficiently smooth in the region (0,∞)× (0, τ ] as well.
In this paper, we use a 2-dimensional spline functional to directly approximate a local

volatility function1. Let the number of spline knots p ≤ m. We choose a set of fixed spline
knots {(s̄j , t̄j)}

p
j=1 in the region [0,∞) × [0, τ ]. Given {(s̄i, t̄i)}

p
i=1 spline knots with cor-

responding local volatility values σ̄i
def
= σ(s̄i, t̄i), an interpolating cubic spline c(s, t) with a

fixed end condition (in our computation the natural spline end condition is used) is uniquely
defined by setting c(s̄i, t̄i) = σ̄i, i = 1, · · · , p. We then determine the local volatility values
σ̄i (hence the spline) by calibrating the market observable option prices. The freedom in this
problem is represented by the volatility values {σ̄i} at the given knots {(s̄i, t̄i)}. If σ̄ is a
p-vector, σ̄ = (σ̄1, · · · , σ̄p)

T , then we denote the corresponding interpolating spline with the
specified end condition as c(s, t; σ̄).

Let

vj(c(s, t; σ̄))
def
= v(c(s, t; σ̄), Kj, Tj), j = 1, · · · , m.

To allow the possibility of incorporating additional a priori information, l and u are lower and
upper bounds that can be imposed on the local volatilities at the knots. Thus, we define the in-
verse spline local volatility approximation problem: Given p spline knots, (s̄1, t̄1) · · · , (s̄p, t̄p),
solve for the p-vector σ̄

min
σ̄∈<p

f(σ̄)
def
=

1

2

m
∑

j=1

wj [vj(c(s, t; σ̄))− v̄j ]
2

subject to l ≤ σ̄ ≤ u,(7)

where positive constants {wj}
m
j=1 are weights, allowing account to be taken of different ac-

curacies of v̄j or computed vj . The determination of an approximation in the l1 or l∞ norm
instead may be a valuable alternative although the problem becomes even more difficult to
solve computationally. Note also that the formulation (7) is quite general: European call/put
or even more complicated option prices can be used to compute the spline volatility approxi-
mation to the local volatility function σ∗(s, t).

The inverse spline local volatility problem (7) is a minimization problem with respect to
the local volatility σ̄ at the spline knots. The computed volatility function has some depen-
dence on the number of knots p and the location of the knots {(s̄i, t̄i)}

p
i=1. The choice of the

1 If it is known that σ(s, t) is a function of s or t only, then one can use 1-dimensional spline.
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number of knots and their placement in spline approximation is generally a complicated issue
[16, 30]. The situation here is not typical for spline approximation due to the fact that the
dependent option price function is not the function to be approximated. Rather, it depends
on the values of the unknown volatility function in the region R+ × [0, τ ]. Moreover, the
dependence on the unknown volatility values is not uniform in the region R+ × [0, τ ]. The
option premium depends little on the volatility values with small t and s far from Sinit. It is
convenient to view this as follows [1]: there exists a region centered around Sinit within which
the volatility values are significant in pricing and hedging: we denote this region as Dj for the
option vj , see Fig. 1 for illustration of its typical shape. We can at most expect to approximate

well the local volatilities in the region D
def
= ∪m

j=1Dj from the market option data. In our ex-
periments, we often choose the number of knots equal to the number of observations. In order
to construct and evaluate a spline efficiently, the spline knots can be placed in a rectangular
mesh covering the region D and bicubic spline interpolation [3] can be used.

Significant

Insignificant

Time  t 

S
init

jT

K j

FIG. 1. The Local Volatility in the Shaded Region Dj Is Significant in Pricing and Hedging

If the number of spline knots are chosen to be no more than the number of observation
data points, the degrees of freedom, compared to that of a (discretized) formulation of (3),
is significantly decreased (several orders of magnitude). In addition to gaining smoothness
of the local volatility function, formulation (7) significantly decreases the computational cost
compared to that of the (discretized) formulations (3,5) due to reduction of the dimension of
the optimization problem.

It is not appropriate to choose p much larger than m since (7) may become underdeter-
mined. If one decides to use more spline knots, additional regularization, e.g.,

min
σ̄∈<p

f(σ̄)
def
=

1

2

m
∑

j=1

wj [vj(c(s, t; σ̄)) − v̄j ]
2 + λη(c(s, t; σ̄))

subject to l ≤ σ̄ ≤ u,(8)

is more appropriate: here λ > 0 is a regularization parameter and η(σ(s, t; σ)) is a smoothing
norm for the tensor product splines [15].

In this paper, we focus on the formulation (7) and assume p is not greater than m. In
order to solve the inverse local volatility problem (7), an optimization method will be needed
to evaluate the values of options vj(c(s, t; σ̄)) for any spline c(s, t; σ̄); the derivatives may
also be computed. We discuss this next.

3. The Computational Procedure. Our proposal is to approximate the local volatility
surface, σ∗(s, t), with a cubic spline c(s, t; σ̄) by solving (7) for the vector σ̄ = (σ̄1, · · · , σ̄p)

T .
Problem (7), when p ≤ m, is well-defined once the p knots (s̄1, t̄1), · · · , (s̄p, t̄p) have been
chosen appropriately. To express (7) more succinctly, define a vector-valued function F :
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<p → <m where component j of F is given by w
1

2

j [vj(c(s, t; σ̄)) − v̄j ], for j = 1, · · · , m.
Therefore (7) can be rewritten:

min
σ̄∈<p

f(σ̄)
def
=

1

2
‖F (σ̄)‖2

2

subject to l ≤ σ̄ ≤ u.(9)

Problem (9) is a box-constrained nonlinear least-squares problem in σ̄; there are a va-
riety of optimization methods available to enable its solution. In our implementation we
use a trust region/interior method based on [7, 6], in which a sequence of strictly interior
points are generated: {σ̄(k)} ∈ int{F}, where F = {σ̄ ∈ <p : l ≤ σ̄ ≤ u}. Moreover,
the sequence corresponds to a monotonically decreasing sequence of function values, i.e.,
f (k+1) < f (k), k = 1, · · · ,∞, where f (k) = f(σ̄(k)). Under mild assumptions this approach
guarantees convergence, i.e., σ̄(k) → σ̄∗, where σ̄∗is a local minimizer for problem (9).

The Jacobian of F with respect to σ̄ is required: J(σ̄)
def
= ∇F (σ̄). Note that J is an

m× p matrix. In the square case when p = m, it is possible to use a standard secant update to
approximate J , e.g., [12], which can significantly reduce the cost. Under reasonable assump-
tions a superlinear rate of convergence can be achieved. We note that there are optimization
approaches that do not require the calculation (or approximation) of the Jacobian matrix J ;
however, they typically converge very slowly - we have not investigated those methods in this
work.

In this paper we explore two possibilities in the framework of our optimization approach:
1. Use of automatic differentiation [8] and/or finite-differencing to compute J(k) def

=

J(σ̄(k));
2. Use of a secant update to approximate J(k) when p = m.

3.1. The Problem Structure. The evaluation of f(σ̄) requires the evaluation of each

component of F , i.e., w
1

2

j [vj(c(s, t); σ̄)− v̄j ], for j = 1, · · · , m. These are generalized Black-
Scholes computations. There are several ways to approach this – we choose, as an example,
to use a standard PDE-discretization technique.

Given Sinit, r, q, and σ(s, t), let V (s, t) denote the option value of an underlying asset
with strike price K and expiry date T at (s, t), t ∈ [0, T ]. Under the no arbitrage assumption,
the option value satisfies the following generalized Black-Scholes equation [24]

∂V

∂t
+ (r − q)s

∂V

∂s
+

1

2
σ(s, t)2s2 ∂2V

∂s2
= rV.(10)

The boundary conditions for the European call option are :

lim
s→+∞

∂V (s, t)

∂s
= e−q(T−t), t ∈ [0, T ],

V (0, t) = 0, t ∈ [0, T ],

V (s, T ) = max(s − K, 0).

We use a Crank-Nicholson finite difference solution strategy for solving (10), based on
discretization on a uniform grid. Given a 2-dimensional grid the numerical solution of (10) is
standard and discussed in several texts. Zvan et al [31] have a good discussion of complexity
issues. It is possible to increase efficiency by employing a number of computing techniques
such as vectorization and pipelining – description of these implementation aspects goes be-
yond the scope of this paper.
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3.2. Computing the Jacobian and the gradient. The Jacobian matrix J(σ̄) satisfies

J(σ̄) =
∂v

∂c
×

∂c

∂σ̄
,

where ∂v
∂c is an m-by-MN matrix, ∂c

∂σ̄ is an MN -by-p matrix.

It is useful to note that matrix C
def
= ∂c

∂σ̄ is constant and therefore needs to be computed
just once for the entire problem (given a fixed discretization and spline knot placement). The
product ∂v

∂c × C can be computed directly using automatic differentiation (forward mode)
or approximately using finite differences (differencing v along the columns of C). In either
case the work involved is O(p · ω(F )) where ω(F ) is the work (flops) required to evaluate
F . (In the finite-differencing case this is a tight bound whereas this bound can be undercut
considerably if automatic differentiation is used [18].)

The gradient of f , with respect to σ̄, is simply JT F . Therefore if the function F and its
Jacobian J have been computed as described above the gradient is given by a matrix-vector
multiplication.

If the secant method is used in the square case, i.e., p = m, then the gradient is approx-
imated by A × F where A is the secant approximation to the Jacobian. The Jacobian is not
computed (except, possibly, for secant method restarts) with this approach.

4. Computational Examples. We now describe some computational experience with
our proposed method for reconstructing the local volatility function σ∗(s, t) from limited
observation data. We illustrate how European call options can be used to approximate the true
local volatility function.

We have implemented the proposed method in Matlab using a trust region optimiza-
tion algorithm with a PDE approach for function and Jacobian evaluation. Without precise
knowledge of accuracy of the market data, the weights in the inverse spline local volatility
approximation problem (7) are simply set to unity: wj

def
= 1, j = 1, · · · , m. The generalized

Black-Scholes PDE (10) is solved with a Crank-Nicolson finite difference method. Given any
σ̄, the bicubic spline c(s, t; σ̄) with the variational end condition (the second order derivative
at the end is zero) is computed and evaluated using the functions in the Matlab spline toolbox
[11]. We use a simple discretization scheme: a uniformly spaced mesh with N × M grid
points in the region [0, 2Sinit] × [0, τ ] where τ is the maximum maturity in the market option
data:

si = i
2Sinit
N−1 , i = 0, · · · , N − 1,

tj = j τ
M−1 , j = 0, · · · , M − 1.

(11)

For simplicity, we have chosen the spline knots to be on a uniform rectangular mesh cov-
ering the region D in which the volatility values are significant in pricing the market options.
Given a European option, we do not have an explicit knowledge of the region D. In our ex-
periments, we have used [γ1Sinit, γ2Sinit] × [0, τ ] as an estimate of D with γ1 ∈ [.6, .8] and
γ2 ∈ [1.4, 1.6] depending on the magnitude of Sinit. The number of spline knots p typically
equals the number of observation m. In the event that the market option prices are calibrated
to high precision, we have experimented with p < m.

4.1. Reconstructing Local Volatility, Pricing and Hedging. In order to demonstrate
the effectiveness of the proposed method in reconstructing the true local volatility surface and
its accuracy in pricing and hedging, we consider a synthetic European call option example
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used in [22]. In this example, the underlying is assumed to follow an absolute diffusion
process:

dSt

St
= µ(St, t)dt + σ∗(St, t)dWt(12)

where the local volatility function σ∗(s, t) is a function of the underlying only,

σ∗(s, t) =
α

s
,

with α = 15, and Wt representing a standard Brownian motion. We use the same parameter
setting as in [1]: Let the initial stock index be Sinit = 100, the risk free interest rate r = 0.05

and the dividend rate q = 0.02.
We consider, as market option data, 22 European call options on the underlying following

the absolute diffusion process (12). Eleven options have half year maturity with strike prices
[90 : 2 : 110] and another eleven options have one year maturity with the same strikes. Thus
the option strike and maturity vectors are given below

K = [90; 92; · · · ; 110; 90; 92; · · · ; 110] ∈ <22,

T = [0.5; 0.5; · · · ; 0.5; 1; 1; · · · ; 1] ∈ <22.

For the absolute diffusion process (12), the analytic formula for pricing European options
exists [9] and we set the market European option call price v̄j equal to this analytic value. The
discretization parameters in (11) are set as M = 101 and N = 51.
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FIG. 2. The Reconstructed and True Local Volatility

For this example the lower and upper bounds for the local volatility at the knot σ̄i are
li = −1 and ui = 1 respectively (though no variable is at the bound at the computed solution
in this case). First, we let p = m and place the spline knots on the grid [0 : 20 : 200]× [0, 1].
The initial volatility values at knots are specified as σ̄

(0)
i = 0.15, i = 1, · · · , 22. The resulting

optimization problem is relatively easy to solve. The optimization method requires 7 iterations
(6 Jacobian evaluations) and the computed optimal objective function value f(σ̄∗) is 10−6.

Fig. 2 demonstrates the accuracy of the local volatility reconstruction: the reconstructed
spline surface c(s, t; σ̄∗) very accurately approximates the the actual volatility surface σ∗(s, t)
in the neighborhood of the region [75, 125]× [0, 1]. To better observe accuracy of reconstruc-
tion, the three plots on the left in Fig. 3 display the local volatility curves for t = 0, 0.58 and

9



t = 1 respectively. Since the calibration error is very small and the reconstructed volatility
surface is nearly linear, we experimented with choosing the number of spline knots less than
m. The three plots on the right of Fig. 3 display the local volatility curves reconstructed
with eight spline knots placed on the mesh [.4Sinit : .4Sinit : 1.6Sinit] × [0, 1]. We observe that
the local volatility reconstruction remains excellent, with a slightly larger deviation when t is
small and s is far from Sinit.
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FIG. 3. Left: Knots = [0 : 20 : 200] × [0, 1], Right: Knots = [.4Sinit : .4Sinit : 1.6Sinit] × [0, 1]

To illustrate the accuracy of pricing using the reconstructed local volatility c(s, t; σ̄∗)

rather than the true local volatility σ∗(s, t), we compare prices and hedge factors of a number
of European call options using both the true and reconstructed volatility surfaces. The hedge
factors vega (sensitivity to the change in volatility), delta (sensitivity to the change under-
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max relative error average relative error
Price 7.8e−3 2.1e−3

Vega 9.8e−3 6.1e−3

Delta 4.8e−2 1.3e−2

Gamma 9.5e−2 5.9e−2

Rho 4.5e−3 2.0e−3

Theta 6.9e−3 2.2e−3

TABLE 1
Accuracy of Pricing and Hedging

lying), gamma (sensitivity of delta to change in the underlying ), rho (sensitivity to change
in the interest rate) and theta (sensitivity to change in the maturity) are computed using a fi-
nite difference approximation. A constant shift in both volatility surfaces is used to calculate
the vega hedge factor. For European call options with strikes and maturities over the grid
[85 : 5 : 110] × [.4 : .1 : .7], the results are shown in Table 1. They indicate that fairly ac-
curate prices as well as hedge factors are obtained using the reconstructed volatility surface
c(s, t; σ̄∗). Note that the PDE option evaluation with the chosen discretization can generate
errors of at least these magnitudes.

We emphasize that the formulation (7) is appropriate when the number of spline knots p

is not greater than the number of observations m. If p is much larger than m, then formulation
(7) can become severely underdetermined. To illustrate the potential pitfalls of allowing too
much freedom in approximating σ∗(s, t), we simulate the more realistic market situation when
there is a bid-ask spread in the given option prices by setting

v̄j = exact price of option j + .02rand

where rand is a Matlab generated random number. We compare the local volatility recon-
structions using the spline knots on the rectangular meshes [.4Sinit : .4Sinit : 1.6Sinit] × [0, 1]

(p = 8) and [0 :2 :200]× [0, 1] (p = 202 < MN ). The plots on the left in Fig. 4 illustrate the
reconstructed local volatility curves using the rectangular mesh [.4Sinit : .4Sinit :1.6Sinit]×[0, 1]
for knots. The plots on the right in Fig. 4 illustrate the reconstructed local volatility curves
using the rectangular mesh [0 :2 :2Sinit]× [0, 1] for knots. Although the available option prices
are matched with very high accuracy (error about 10−6) using p = 202, the computed local
volatility surface does not resemble the true local volatility surface σ∗(s, t). Using eight knots
on the rectangular mesh [.4Sinit : .4Sinit : 1.6Sinit] × [0, 1], on the other hand, yields a much
more accurate volatility surface, even though the calibration error of the available options is
larger (about 10−4).

Next we illustrate that a constant implied volatility approach can produce incorrect hedge
factors even though the option prices may be computed accurately. We use the same absolute
diffusion model (12) but with greater volatility: the constant α = 75 is used instead of α = 15.
The same initial underlying Sinit = 100 and the risk free interest rate r = 0.05 are used but the
dividend rate q is set to zero. We consider European call options with strikes and maturities at
the grid [80 : 4 : 120]× [.25, .5, 1]. The spline knots are at the grid [0 : 20 :2Sinit] × [.25, .5, 1].
Fig. 5 displays the price and hedge factors of options with maturity .25 year using the true
volatility, reconstructed volatility, and constant implied volatility. From these plots, we see
that the price and all the hedge factors computed using the reconstructed volatility function
are fairly accurate approximation to the true values. Using the constant implied volatility
method, however, large errors exist in hedge factors (mostly noticeably in theta, delta, gamma
and vega).

11



75 80 85 90 95 100 105 110 115 120 125
0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

Index

Lo
ca

l V
ol

at
ili

ty

Local Volatility Curves at t =  0.00

Reconstructed Vol.
Exact Vol.

75 80 85 90 95 100 105 110 115 120 125
0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

Index

Lo
ca

l V
ol

at
ili

ty

Local Volatility Curves at t =  0.00

Reconstructed Vol.
Exact Vol.

75 80 85 90 95 100 105 110 115 120 125
0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

Index

Lo
ca

l V
ol

at
ili

ty

Local Volatility Curves at t =  0.58

Reconstructed Vol.
Exact Vol.

75 80 85 90 95 100 105 110 115 120 125
0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

Index

Lo
ca

l V
ol

at
ili

ty
Local Volatility Curves at t =  0.58

Reconstructed Vol.
Exact Vol.

75 80 85 90 95 100 105 110 115 120 125
0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

Index

Lo
ca

l V
ol

at
ili

ty

Local Volatility Curves at t =  1.00

Reconstructed Vol.
Exact Vol.

75 80 85 90 95 100 105 110 115 120 125
0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

Index

Lo
ca

l V
ol

at
ili

ty

Local Volatility Curves at t =  1.00

Reconstructed Vol.
Exact Vol.

FIG. 4. Left: Knots = [.4Sinit : .4Sinit : 1.6Sinit] × [0,1], Right: Knots = [0 : 2 : 200] × [0, 1]
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Maturity (in years) Strike (% of spot)
85% 90% 95% 100% 105% 110% 115% 120% 130% 140%

.175 .190 .168 .133 .113 .102 .097 .120 .142 .169 .200

.425 .177 .155 .138 .125 .109 .103 .100 .114 .130 .150

.695 .172 .157 .144 .133 .118 .104 .100 .101 .108 .124
.94 .171 .159 .149 .137 .127 .113 .106 .103 .100 .110
1 .171 .159 .150 .138 .128 .115 .107 .103 .099 .108

1.5 .169 .160 .151 .142 .133 .124 .119 .113 .107 .102
2 .169 .161 .153 .145 .137 .130 .126 .119 .115 .111
3 .168 .161 .155 .149 .143 .137 .133 .128 .124 .123
4 .168 .162 .157 .152 .148 .143 .139 .135 .130 .128
5 .168 .164 .159 .154 .151 .148 .144 .140 .136 .132

TABLE 2
Implied Volatilities for S&P Index Call Options

In addition to choosing the number of spline knots p, the placement of the knots requires
some care as well. The spline knots should be placed to cover the region D within which
the values of the local volatility are significant in the option values. We have used the uni-
form spacing in the interval [0, 2Sinit] and [.4Sinit, 1.6Sinit] in this synthetic example but an
alternative is to place them nonuniformly with a more refined placement around s = Sinit.
Moreover, one need to avoid placing spline knots too closely together since this can lead to ill
conditioning of the Jacobian matrix ∇F .

4.2. A S&P 500 Example Illustrating Smoothness and Stability. We consider now a
more realistic example of approximating the local volatility function σ∗(s, t) from the Euro-
pean S&P 500 index call options. We use the same European call option data of October 1995
given in [1]. The market option price data (in the implied Black-Scholes constant volatility) is
given in Table 2. Similar to [1], we use only the options with no more than two years maturity
in our computation. The initial index, interest rate and dividend rate are set as in [1],

Sinit = $590, r = 0.06, and q = 0.0262.

The discretization parameters in (11) are set

N = 101, and M = 101.

In order to solve the proposed inverse spline volatility problem (7), we compute the mar-
ket European call option prices with given strikes and maturities using the constant volatil-
ity Black-Scholes formula with the corresponding implied volatility. The Matlab function
blsprice is used.

For this example the number of spline knots p equals the number of observations m and
the spline knots are placed on a rectangular mesh [.8Sinit : .066Sinit :1.4Sinit]×[0 : .33:2].Using
all the call option prices with maturity T ≤ 2 in Table 2, the reconstructed local volatility
surface is given in Fig. 6. This optimization problem seems to be more nonlinear and difficult
to solve. After 28 iterations, the average error of vj(c(s, t; σ̄)) − v̄j using the reconstructed
local volatility is 0.0076. The average error using the constant implied volatility via the PDE
implementation with this discretization, compared to the Black-Scholes analytic formula, is
0.0510.

The reconstructed local volatility surfaces can be slightly different if different spline knots
are chosen. In order to show that volatility surface reconstruction, pricing and hedging are
relatively robust, we consider the second spline knots placement using the rectangular mesh
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max rel. diff. avg. rel. diff.
Price 6.8e−3 1.4e−3

Vega 1.3e−2 2.7e−3

Delta 4.3e−2 1.6e−2

Gamma 8.8e−2 4.1e−2

Rho 5.3e−3 2.0e−3

Theta 4.9e−2 9.2e−3

TABLE 3
Differences Between Using Two Rectangular Meshes for Knots

max rel. diff. avg. rel. diff.
Price 11% 6%
Vega 15% 9%
Delta 19% 11%
Gamma 27% 17%
Rho 12% 7%
Theta 29% 16%

TABLE 4
Relative Difference in Pricing and Hedging Using Constant Volatility

K × [0 : .33 : 2]. The average price calibrating error for the market call options in this
case is .0027. The reconstructed volatility surface using this knot placement is shown in Fig.
7. Comparing Fig. 6 with Fig. 7, the reconstructed volatility surfaces are quite similar in
the region D, noting the shape of D. For options with strikes and maturities over the grid
[.85 : .1 : 1.15]Sinit × [.85 : .1 : 1.15], the relative difference of pricing and hedging factor
with the two spline knot placements are shown in Table 3. We observe that indeed they are
acceptably close.

For pricing simple European call/put options, different volatilities are often used in prac-
tice to price options of different strikes/maturities in order to accommodate volatility smile.
For pricing an exotic option such as a knock-out option, a constant volatility model is inappro-
priate since the price of this option depends on volatilities of different strikes and maturities.
In order to illustrate the potential error in using a constant volatility in pricing exotic options,
we simply examine here the price and hedge factors differences between using a constant
volatility model and the 1-factor model with the reconstructed volatility function. We use the
same S&P 500 index option example and choose the the arithmetic average (which is 0.1319)
of the implied volatilities with T ≤ 2 as the constant volatility. We compare the prices at a
grid [.85: .1:1.15]Sinit× [.85: .1:1.15] of strike price and maturity dates (different from given
market data). The results are in Table 4. These two methods give significantly different prices:
we notice as much as 11% relative difference. Similarly all the hedge factors computed using
the constant volatility have a large relative difference, we document the results in Table 4. To
visualize the difference in detail, we plot the price and hedge factor curves for options with
1-year maturity in Fig.8.

4.3. Incorporate Additional Information. Using market option data to imply the lo-
cal volatility function in a diffusion model is a look-ahead technique. Frequently, historical
data has been used to estimate a constant volatility. The latter is a look-back technique. An
interesting question is whether it is possible to combine both techniques to generate better
approximation to the true local volatility.

In the proposed spline volatility formulation (7), there are two potential ways that a priori
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Tol Regular quasi-Newton
Iterations Time Iterations Time J evals

1e−2 7 321.29 11 131.85 3
1e−3 10 401.43 18 193.91 4
1e−4 19 651.89 28 286.78 5
1e−5 25 795.45 36 332.13 6

TABLE 5
Quasi Newton results

information can be incorporated. The first is to use the simple bounds to limit the range of the
local volatilities at knots. The second possibility is to specify fixed local volatilities at some
chosen knots.

We have experimented with setting tighter bounds on the volatility σ̄ for the S&P 500
index European call option example. We observe that, as long as the bounds are not too small
(l ≤ −.3, , u ≥ .3 in the S&P 500 example), they can influence volatility values of small t

and s far from Sinit but do not have much impact in the region D within which the volatility
function is significant in market option prices. However, setting bounds too tight can impede
calibrating the market option prices. Therefore, unless one has reliable knowledge on the
bounds of the volatilities, they should be sufficiently large to ensure that the calibrating error
is sufficiently small. Similar remarks can be made if one wishes to set the volatilities at certain
knots to some fixed values.

Finally, we would like to illustrate the potential computational saving by using the quasi-
Newton updates. In Table 5 we present Matlab computational results for the S&P index option
problem with different tolerances for optimization. We observe significant improvement us-
ing quasi Newton approach in computational time. The quasi-Newton approach takes more
iterations to converge but requires fewer Jacobian evaluations.

5. Concluding Remarks. Assuming that the underlying asset of options follows a con-
tinuous 1-factor diffusion model, we propose a method of accurately approximating the local
volatility function σ∗(s, t) using a finite set of option prices. We emphasize that accurate
approximation of the true local volatility surface is crucial in hedging all options (including
simple European options) and pricing exotic options. Moreover, since the market option data
typically has bid-ask spreads, exact calibration of the option data (the average of the bid-ask
spreads) is not necessary and can be harmful.

Based on the formula (6) established in [17, 1], the local volatility function σ∗(K, T )2

is smooth if the European call option value function v(K, T ) is sufficiently smooth. We use
a spline functional approach to reconstruct the true local volatility function. Choosing the
number of spline knots and their placement, we represent a local volatility function σ(s, t) by
an interpolating spline with a fixed end condition. The volatility values at knots are determined
by solving a small nonlinear optimization problem subject to simple bounds. The number of
variables in the optimization (7) is not greater than the number of option observations.

We solve the proposed inverse spline approximation optimization problem using a trust
region method with the function and Jacobian evaluations using a PDE approach. Computa-
tional efficiency through structure exploitation within the framework of finite difference and
automatic differentiation is discussed.

We consider two European call options examples illustrating the capability of the pro-
posed method. In the first example, we consider synthetic European call options for which the
underlying follows a known absolute diffusion model. Option observation data is simulated by
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evaluating a set of European call options using the analytic formula. The reconstructed local
volatility is compared to the true local volatility, indicating a fairly accurate reconstruction in
the region within which the local volatility values are significant for option evaluations. With
the same example, we illustrate that the constant implied volatility approach can produce
incorrect hedge factors even for simple European options. Moreover, when the observable
option prices have bid-ask spreads, calibrating market data exactly by using too many spline
knots can lead to poor reconstruction of the true local volatility function. In the second ex-
ample, a S&P 500 index European call option with market option data of October 1995 is
considered. We illustrate the smoothness of the reconstructed local volatility and stability of
the proposed method in pricing and hedging.

We have illustrated the potential of the proposed spline volatility approach in discovering
the true local volatility function of the underlying from a finite set of option prices. We
plan to further investigate automatic techniques for the optimal selection of the number of
knots p ≤ m and their placement. The importance of the proposed local volatility function
reconstruction in pricing exotic options or American options will also be explored.

6. Acknowledgement. We would like to thank Yohan Kim for carefully reading the
manuscript and his useful comments.
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