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This is a dissertation in three parts, in each we explore the development and anal-

ysis of a parallel statistical or machine learning algorithm and its implementation.

First, we examine the Assembly Likelihood Evaluation (ALE) framework. This

algorithm defines a rigorous statistical likelihood metric used to validate and score

genome and metagenome assemblies. This algorithm can be used to identify spe-

cific errors within assemblies and their locations; enable comparison between as-

semblies allowing for optimization of the assembly process; and using re-sequencing

data, detect structural variations.

Second, we develop an algorithm for Expected Parallel Improvement (EPI).

This optimization method allows us to optimally sample many points concurrently

from an expensive to evaluate and unknown function. Instead of sampling sequen-

tially, which can be inefficient when the available resources allow for simultaneous

evaluation, EPI identifies the best set of points to sample next, allowing multiple

samplings to be performed in unison.

Finally, we explore Velvetrope: a parallel, bitwise algorithm for finding homol-

ogous regions within sequences. This algorithm employs a two-part filter between

sequences. It first finds offsets where two sequences share a higher than expected

amount of identity. It then filters areas within these offsets with higher than ex-

pected identity. The resulting positions along each sequence represent regions of

statistically significant similarity.
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ALE: a Generic Assembly Likelihood Evaluation Framework for

Assessing the Accuracy of Genome and Metagenome Assemblies

Joint work with Rob Egan 1,2, Peter Frazier 3 and Zhong Wang 1,2

1Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA

2Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

3Cornell University School of Operations Research and Information Engineering, Ithaca, New York 14853, USA

Abstract

There is a need for general-purpose methods for objectively evaluating the

quality of single and metagenome assemblies, and for automatically detecting any

errors they may contain. Current methods do not fully meet this need because they

require a reference, only consider one of the many aspects of assembly quality, or

lack statistical justification; none are designed to evaluate metagenome assemblies.

In this work we present an Assembly Likelihood Evaluation (ALE) framework

that overcomes these limitations, systematically evaluating the accuracy of an

assembly in a reference-independent manner using rigorous statistical methods.

This framework is comprehensive, and integrates read quality, mate pair orienta-

tion and insert length (for paired end reads), sequencing coverage, read alignment,

and k-mer frequency. ALE pinpoints synthetic and real errors in both single and

metagenomic assemblies, including single-base errors, insertions/deletions, genome

rearrangements and chimeric assemblies presented in metagenomes. The ALE

framework provides a comprehensive, reference-independent and statistically rig-

orous measure of single genome and metagenome assembly quality, which can be

used to identify miss-assemblies or to optimize the assembly process.
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CHAPTER 1

ALE INTRODUCTION

Deoxyribonucleic acid, or DNA, encodes the information vital to the development

and function of all life. Everything from the early development of a cell to the com-

plex structure of a central nervous system is encoded in four simple nucelobases,

or bases: Adenine, Thymine, Cytosine and Guanine. The primary structure (the

linear chain of bases) of this DNA within a chromosome contains all the informa-

tion necessary to build the proteins and structures that form all living organisms.

The primary structure of all the chromosomes within an organism makes up that

organism’s genome. Knowledge about the genome allows for deeper understanding

of the organism and inference about specific traits it may possess. Unfortunately,

the relatively small scale of the DNA molecule (3.4Å (10−10m)) prevents us from

simply reading the genome of an organism. However, DNA sequencing technol-

ogy allows us to indirectly observe pieces of an organism’s genome and attempt to

reconstruct it. This work provides a framework for evaluating such reconstructions.

DNA sequencing technology works by taking an organism (or many organisms

in the metagenomic case) and extracting the entirety of the DNA into a test tube

(on the order of 1010 base pairs (bps)). The DNA is then cut randomly into roughly

equal pieces (average sizes are 200bps to 5000bps). For paired-end sequencers these

pieces of DNA are then put into a sequencer that can “read” the ends of these

pieces. After about 100bps are read the chemistry within the sequencer causes

the fragment to break, leaving us with information about the nucleotide content

of the two ends of the sequence fragment, or “read.” This leaves us with some

information about the very ends of these pieces of DNA with some unknown insert

length between them (drawn from a known distribution). The end result of this
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lab-work is many millions or billions of short, paired reads that can then be used to

(attempt to) reassemble the entire genome of the organism (or organisms). Other

sequencing technologies allow for only one end of the fragment to be read, or many

short “strobes” read in a single direction along the strand, with gaps between

read sequence. Reassembling the genome from this information can be thought of

as trying to reassemble the combined pieces of many mixed jigsaw puzzles with

missing, overlapping and duplicated pieces of variable sizes. There are many pro-

grams that can create these assemblies (Velvet [Zerbino and Birney, 2008], Abyss

[Simpson et al., 2009] and others). However, there is no good metric for deter-

mining the quality of these assemblies, the current techniques either just use the

overall size of the pieces outputted (N50 length: accuracy irrelevant) or try to

map the suggested assembly onto a known reference, which is unknown in almost

all cases. Another difficulty these programs have is “finishing” assemblies, going

from large pieces of contiguous proposed assembly (contigs) and scaffolding them

together and filling in the gaps to create a complete, finished assembly.

Recent advances in next-generation, high throughput sequencing technolo-

gies have dramatically reduced the cost of sequencing ([Metzker, 2010]). With

the development of genome assemblers that take advantage of the large vol-

ume of sequence data, reference genomes are being produced at a high and

increasing rate using the whole genome shotgun strategy, from small, simple

microbial genomes ([Wu et al., 2009]) to large, complex plant or mammalian

genomes ([Fujimoto et al., 2010]; [Li and Homer, 2010]; [Schmutz et al., 2010];

[Zimin et al., 2008]). Meanwhile, genomes are also being generated directly

from complex communities using culture-independent approaches, including

singe-cell genome sequencing and metagenome sequencing ([Woyke et al., 2010];

[Yilmaz et al., 2011]; [Hess et al., 2011]; [Iverson et al., 2012]). The ability to as-
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semble a metagenome is particularly important because resolving the genomes of

individual species, or at least the most abundant, from a complex community is

crucial to exploring inter-species interactions and understanding the community’s

structure, dynamics and function. Single species are very difficult to isolate from a

metagenomic community, forcing the researcher to attempt to sequence the entire

community at once with many individual species at different concentrations and

with varying levels of genomic similarity.

Assembly of individual genomes from next-generation sequencing (NGS)

datasets poses significant informatics challenges, including short read length,

noisy data and large data volume ([Lin et al., 2011]; [Pop et al., 2009]). Due to

these challenges, errors widely exist in single genome assemblies derived from

NGS datasets, with different specific errors commonly associated with particu-

lar datasets, genomes, and tools ([Haiminen et al., 2011]). Beyond those chal-

lenges faced in assembling single genomes, there are also several challenges unique

to metagenome assembly. First, unlike in single genome assembly where the se-

quence depth (the number of sequenced reads that map onto a specific position on

a proposed assembly) for the target genome is expected to be Poisson distributed

about a uniform mean, the sequencing depth of genomes in a metagenome usually

vary greatly. Second, most genome assemblers have difficulties resolving repetitive

regions within a single genome, and this problem is exacerbated in metagenome

assembly because conserved genomic regions and lateral gene transfer have greatly

increased the portion of these “repetitive” genomic regions. Finally, although there

are quite a few single genome assemblers such as Velvet [Zerbino and Birney, 2008],

ABySS [Simpson et al., 2009], soapDenovo [Li and Homer, 2010] and All-Path-

LG [Gnerre et al., 2010] that are capable of assembling large genomes, there is

no metagenome specific assembler yet. Instead, assemblers designed for single
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genomes are being applied to metagenome data without significant modifications

[Qin et al., 2010][Hess et al., 2011]. The impact of using an assembler developed to

assemble single genome has not yet been systematically evaluated for metagenome

assembly, especially in how well it addresses challenges like variable sequencing

depth and closely related species that are unique to metagenomes. Quantita-

tive measurement of the quality of a metagenome assembly, as well as the ability

to compare the results of different assemblers from the same data set, are as of

yet impossible. Many current studies either use only the overall size of assem-

bly (N50 length), which ignores accuracy, or maps the resulting assembly onto

some known reference genomes obtained independently to estimate the accuracy

[Hess et al., 2011], but such references are not available in most cases. In this work

we focus on the accuracy of the proposed genome using only the proposed assembly

and the reads used to create it. This allows us to pinpoint localized errors instead

getting bogged down trying to quantify the completeness of an entire metagenome.

Several tools have been developed to detect errors in single genome assemblies.

If a reference genome for the targeted organism is available, or one is available

from a closely related species, erroneous insertions, deletions or large gaps can

be detected by comparative analysis of the reference and the genome assembly in

question ([Meader, 2010]; [Salzberg et al., 2012]; [Zimin et al., 2008]). If a refer-

ence is unavailable, the alignment of the raw reads with their assembly provides

indirect measures of assembly quality such as coverage depth and mate pair con-

sistency. This information can then be used to detect single-base changes, repeat

condensation or expansion, false segmental duplications, and other miss-assemblies

([Choi et al., 2008]; [Phillippy et al., 2008]; [Narzisi and Mishra, 2011]). Despite

this progress, researchers still lack a method that integrates indirect measures

of read alignment quality in a quantitative, comprehensive and statistically
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well-founded manner to systematically detect miss-assemblies presented in sin-

gle genome assemblies. Moreover, metrics suitable for evaluating metagenome

assembly accuracy, and associated quantitative methods for detecting errors in

metagenome assemblies, have yet to be developed.

In this work we aim to provide a comprehensive integrated framework for eval-

uating the quality of single genome and metagenome assemblies. In related work,

[Phillippy et al., 2008] also proposed a method for evaluating the quality of a whole

single genome, but the method proposed is a pipeline of conceptually separate tech-

niques for evaluating the different aspects of genome quality. [Choi et al., 2008]

also combined evidence from several conceptually separate measures of genome

quality to identify mis-assemblies. In the previous literature, those works that

use a single statistical framework tend to focus on only a single aspect of genome

quality: [Zimin et al., 2008] introduced a metric (CE statistic) for finding gaps in

an assembly by comparing to the genome of a related organism; [Meader, 2010]

developed a statistical method for estimating the rate of erroneous insertions and

deletions present in an assembly by comparison to an assembly of a closely re-

lated species; [Olson, 2009] uses mate pair information and a reference genome

from a similar organism to identify assembly errors and structural variation. All

of these previous approaches contrast with the current work, which is an inte-

grated method for validating several aspects of genome and metagenome assembly

quality simultaneously based on a single statistical model. Like the current work,

[Laserson et al., 2011] also used a single statistical model to assign a likelihood

score to assemblies, focusing specifically on the metagenomic case, but the statis-

tical model used ignores the role of mate pairs in assessing assembly quality, which

are becoming more prevalent with NGS technologies such as Illumina mate pairs

and PacBio “strobe” reads.
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In this work, we measure the overall quality of an assembly in a mathemati-

cally rigorous and reference-independent manner, using a probabilistic model for

the way that reads are generated from a genome. Using Bayesian statistics, we give

explicit expressions for the probability that an assembly is correct, and computa-

tional methods based on these expressions. These mathematical methods avoid

the pitfalls of summary statistics like N50 score, which only capture one dimension

of assembly quality. We provide an automated software tool (ALE) based on this

expression. The provided tool may be used in three ways. First, it allows exami-

nation of the contribution to this probability of correctness from each base in the

assembly, which can be used to identify specific errors and their locations. This

is particularly useful when finishing an assembly. Second, it provides an overall

score for different assemblies of the same genome or metagenome, thereby enabling

comparison of these assemblies and optimization of the assembly process. Two as-

semblies with roughly equal likelihood of correctness can be considered as having

roughly equal quality, while if one assembly has a likelihood that is much lower,

then we may safely discard it as inferior. When considering a single assembly in

isolation, these methods can also be used to give an absolute score that indicates

the quality of this assembly, and how this quality compares to the quality of other

assemblies. Third, when applying re-sequencing data to a reference genome ALE

can detect structural variations.
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CHAPTER 2

ALE METHODS

2.1 Reads and assembly properties

The set of reads R generated by a sequencer are referred to as a library. The

library defines the properties of reads and their corresponding distributions for

length, insert size and orientation as well as the structure of the reads, whether

that is mate pairs, strobe reads or single reads.

Every read drawn from the library is composed of one or more parts (mates)

of linear DNA sequence; each position corresponds to a nucleotide A, T, C, G

or an ambiguity code (see table 2.1) corresponding to the belief that the base is

one of a set of possible bases with equal probability. In addition to the nucletide

information, the sequencer also reports a quality score for each base corresponding

to the probability that the sequencer reported the correct base at a given position.

This quality score (or Q score) is reported in a log-scale and generally ranges from

high confidence (95-99%) for Illumina and Sanger reads (dropping off along the

length of the read) to low confidence (85%) for PacBio reads. A quality score of

25% would represent no knowledge about the base.
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Table 2.1: DNA nucleotide and ambiguity codes

Code Meaning Complement Opposite
A A T B
T T A V
G G C H
C C G D
K G or T M M
M A or C K K
R A or G Y Y
Y C or T R R
S C or G S W
W A or T W S
B C or G or T V A
V A or C or G B T/U
H A or C or T D G
D A or G or T H C
N G or A or T or C N -

Each read has the following properties,

Read rk Properties

Read rk:

Mate Pair #1: r
(1)
k︷ ︸︸ ︷

ATCGCCTGATTC︸ ︷︷ ︸
length: L

(
r
(1)
k

)
Insert Area︷ ︸︸ ︷

ATTCGAGTCGA︸ ︷︷ ︸
length: Ik

Mate Pair #2: r
(2)
k︷ ︸︸ ︷

TCATCTCGATGCA︸ ︷︷ ︸
length: L

(
r
(2)
k

)

Every read rk in the set of all reads R is composed of one or more mate pairs

{r(1)
k , r

(2)
k , . . .}. Sequencing technologies such as Illumina and SOLiD produce reads

with two mates, PacBio “strobe” reads can contain many read pairs, older tech-

nologies such as Sanger and 454 produce single reads. Each read has corresponding

lengths {L
(
r

(1)
k

)
, L
(
r

(2)
k

)
, . . .} drawn from some distribution. These mate pairs

are separated by a distance Ik drawn from another distribution, which we assume

is normal.
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Read Orientation ωk

−−−−−−−−−−−−−−→ Inward ←−−−−−−−−−−−−−−− ⇒ ω(rk) = +1

Read rk: ATCGCCTGATTC . . . . . . TCATCTCGATGCA

←−−−−−−−−−−−−−− Outward −−−−−−−−−−−−−−−→ ⇒ ω(rk) = −1

Every read has a unique orientation based on how the enzymes of the sequencer

bind to it. Read pairs of only two mates can be sequenced inward, towards the

middle, which would imply ω(rk) = +1 in our notation. Alternately, a read can be

sequenced outward, from the middle to the ends, which would imply ω(rk) = −1.

Smaller read fragments in Illumina sequencers tend to be sequenced inward, while

longer fragments are primarily sequenced outward with some small fraction facing

inward with a much smaller insert length. Reads with many mates, such as PacBio

strobe reads, are all sequenced in a single direction (left to right) which we denote

as ω(rk) = 0 as well as single reads, which do not have an orientation.

Each read can map onto an assembly in the following ways;

Read rk Singly Mapped to Assembly S

S · · ·
51

CGAA
55

TCGCC
60

TGATT
65

CATTC
70

G
rk · · ·GCAATCGCCTGATTC−−−−−−−−−−−−−−→ATTCG

Read rk Doubly Mapped to Assembly

S · · ·
51

CGAA
55

TCGCC
60

TGATT
65

CATTC
70

GAGTC
75

GATCA
80

TCTCG
85

ATG
88

CN
rk · · ·GCAATCGCCTGATTC−−−−−−−−−−−−−−→ATTCGAGTCGA←−−−−−−−−−−−−→

Implied Insert

TCATCTCGATGCA←−−−−−−−−−−−−−−−−

A read rk can be either singly mapped or doubly mapped (or more for strobe reads)

to an assembly S if one or both of it’s corresponding mate pairs map to some subset

of S. If the read is doubly mapped we can directly calculate the implied orientation
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ωk, insert length Ik and ordering of the reads. An assembly can be composed of

many broken up pieces of contiguous sequence, or contigs, which can lead to some

or many reads only being singly mapped, or singly mapped to multiple contigs

(called a chimer). By scaffolding these contigs into larger and larger pieces a more

complete assembly is formed. Unknown length between contigs can be represented

by one or more ambiguity codes such as N which represents that the assembly has

a base in that position, but there is no knowledge of which base it is (other codes

represent other sub-combinations of possible bases, see Table 2.1).

The coverage or depth at a specific position in an assembly is the num-

ber of reads that map in some form onto that position. Under a random

shearing process (in the read generation) we would expect the coverage to be

Poisson distributed about a common, uniform mean throughout the assembly

[Lander and Waterman, 1988]. Certain biases within sequencers towards GC rich

areas of a genome and the inclusion of metagenomic data can violate this assump-

tion, which we include in our model (see Section 2.6).

2.2 The ALE score and the likelihood of an assembly

The ALE framework is founded upon a statistical model that describes how reads

are generated from an assembly. Given a proposed assembly (a set of scaffolds

or contigs), S, and a set of reads R, this probabilistic model gives the likelihood

of observing this set of reads if the proposed assembly were correct. We write

this likelihood, P (R|S), and its calculation includes information about read qual-

ity, agreement between the mapped reads and the proposed assembly, mate pair

orientation, insert length (for paired end or strobe reads), and sequencing depth.
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This statistical model also provides a Bayesian prior probability distribution P (S)

describing how likely an assembly S would be, if we were unable to observe any

read information. This prior probability is computed using the k-mer distribution

of the assembly. A detailed description of the likelihood and prior probability is

given in the Methods section 2.3.4.

The ALE score is computed from these two values, and it is proportional to the

probability that the assembly S is correct. We write this probability as P (S|R).

Bayes’ rule tells us that this probability is

P (S|R) =
P (R|S)P (S)

Z
. (2.1)

where Z is a proportionality constant that ensures that P (S|R) is a probability

distribution. We see P (S|R) as a statistical measure of the overall quality of an

assembly S. As is typical in large-scale applications of Bayesian statistics, it is

computationally intractable to compute the constant Z exactly. The ALE score

is computed by replacing the constant Z with an approximation described in the

Methods section 2.4.

Although the ALE score can be reported as a standalone value, and understood

as an approximation to P (S|R), it is most useful for comparing two different

assemblies of the same genome, using the same set of reads to evaluate them.

Suppose we have two such assemblies, S1 and S2. Call A1 the total ALE score

of the first assembly, and A2 the total ALE score of the second assembly both

generated from the same set of reads R. The difference of these scores is then

A1 − A2 = log

(
P (R|S1)P (S1)

P (R|S2)P (S2)

)
. (2.2)

The assembly with the higher ALE score is also the one with the larger probability

of being correct. Moreover, we show that the difference between two assemblies’
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ALE scores describes their relative probabilities of correctness. If one assembly’s

ALE score is larger than the other’s, with a difference of x between their ALE

scores, then the assembly with the larger ALE score is more likely to be correct

by a multiplicative factor of ex. Below, we refer to the ALE score more precisely

as the total ALE score, to differentiate it from the sub-scores (described in section

2.3) used to construct it.

Assembly
(fasta)

Raw Reads
(fastq)

Alignment
(SAM/BAM)

K-mer Scoring

Depth Scoring

Placement Scoring

Insert Scoring

ALE Score

ALE Plot
(.pdf)

ALE Table
(.ale)

Figure 2.1: The components of the total ALE score. ALE takes a proposed as-
sembly and an alignment of reads as input. Four scores, the k-mer, placement,
depth and insert sub-scores are computed using the model described in the Meth-
ods section. From the four scores a total ALE score is calculated and reported as
a text file (.ale), and the text file can be used for input into the supplied plotter
to generate a PDF file for visualization.

Figure 1 shows the pipeline used to compute the total ALE score. Given a

set of reads and a proposed assembly, ALE first takes as input the alignments of

the reads onto the assembly in the form of a SAM or BAM file [Li et al., 2009],

which can be produced by a third-party alignment algorithm such as bowtie

[Langmead et al., 2009] or bwa [Li et al., 2009]. ALE then determines the proba-

bilistic placement of each read and a corresponding placement sub-score for each

mapped base, which describes how well the read agrees with the assembly. In the

case of paired end reads, ALE also calculates an insert sub-score for all mapped

bases of the assembly from the read pair, which describes how well the distance

between the mapped reads matches the distribution of lengths that we would ex-

pect from the library. ALE also calculates a depth sub-score, which describes

the quality of the sequencing depth accounting for the GC bias prevalent in some
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NGS technologies. The placement, insert and depth scores together determine

P (R|S). Independently, with only the assembly and not the reads, ALE calculates

the k-mer sub-score and P (S). Each sub-score is calculated for each scaffold or

contig within an assembly independently, allowing for variations commonly found

in metagenomes. The four sub-scores are then combined to form the total ALE

score. The constituent calculations in this pipeline are described in the Methods

section 2.3 and 2.4.

In addition, these four sub-scores are reported by ALE as a function of position

within the assembly, and can be visualized with the included plotting package

or imported in table form to another package such as the Integrative Genomics

Viewer (IGV) [Nicol et al., 2009], or the UCSC genome browser [Kent et al., 2002].

When used in this way, these sub-scores can be used to locate specific errors in an

assembly.

2.3 Probabilistic ingredients of the total ALE score

We can combine the two probabilities, P (R|S) and P (S), to provide an expression

for the probability of the assembly given the reads, P (S|R). While this combined

expression is too computationally expensive to compute exactly because of the

normalization factor, ALE provides a summary measure of quality called the total

ALE score that is proportional to P (S|R) and can be used compare assemblies.

Below, we first describe how P (R|S) and P (S) are computed from a set of reads

R and a given assembly S. We then describe how they are combined to compute

the ALE score, and how the ALE score can be used to compare the qualities of

different assemblies. We first provide an overview of how P (R|S) and P (S) are
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defined and computed, beginning with P (R|S) and then discussing P (S).

The statistical model from which P (R|S) is calculated supposes that each

paired read is generated at random from the genome or collection of genomes

according to the following process. First, the distance between the two paired read

ends, and their orientation, is chosen at random from a distribution that is specific

to the library used to generate them. Second, the locations of the mate pairs on

that genome are chosen at random, potentially with a consistent GC bias. Third

and finally, the content of each of the two paired ends are generated by taking the

genome’s true base pairs at the chosen locations and then copying these base pairs

into the reported read, with a given probability of error, insertion, or deletion for

each base pair given by the sequencer’s quality score.

The likelihood P (R|S) that results from this process can be factored into three

components

P (R|S) = Pplacement(R|S)Pinsert(R|S)Pdepth(R|S). (2.3)

The first component, Pplacement(R|S) describes how well the reads’ contents

match the assembly at the locations to which they are mapped. The second com-

ponent, Pinsert(R|S), describes how well the distances and orientations between

each paired read match the distances and orientations that we would expect from

the library. The third component Pdepth(R|S) describes how well the depth at each

location agrees with the depth that we would expect given the GC content at that

location. Contributions to these three quantities, as a function of position in the

assembly, are used to produce the placement, insert and depth sub-scores.

Together with the likelihood of the reads R given the assembly S, P (R|S), the

ALE framework also depends upon a Bayesian prior probability distribution over
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assemblies, written P (S). P (S) describes how likely we would believe the assem-

bly S to be, if we did not have any read information. In this prior probability

distribution, we encode the belief that within a single genome, each k-mer has a

unique k-mer frequency. This is the frequency of any set of k base pairs appearing

in order in the genome. This defines a 4k dimensional vector that is conserved

across a genome and can help discover when different genomes have been mistak-

enly combined in a metagenome setting [Teeling et al., 2004] [Woyke et al., 2006].

Because P (S) is determined by k-mer frequencies, we use the notation Pkmer(S)

rather than the more generic P (S) when referring to this probability distribution.

Contributions to Pkmer(S) as a function of position in the genome is referred to as

the k-mer sub-score.

2.3.1 Placement sub-score

Pplacement(R|S) quantifies the likelihood of observing a read ri, or set of reads R,

given an assembly S. It includes information about how the read maps onto the

assembly, the quality score of each base and orientation.

We assume that every paired read is independent of all other pairs of reads,

which allows us to write Pplacement(R|S) as

Pplacement(R|S) =
∏
ri∈R

Pplacement (ri|S) , (2.4)

where Pplacement (ri|S) describes how well the contents of a single read ri match

the assembly at the locations to which they are mapped, as well as how well the

distance and orientation between that read’s paired ends match the distance and

orientation that we expect from the library. We assume independence of these
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distributions, allowing us to write this as

Pplacement (ri|S) = Pmatches (ri|S)Porientation (ri|S) . (2.5)

Pmatches (ri|S) measures how well the read matches the section of the assembly to

which it maps. Making the assumption that each base j of the read is correctly

called by the sequencer independently with a probability equal to the base’s quality

score Qj, we can write this as

Pmatches (ri|S) =
∏

basej∈ri

P (basej|S) (2.6)

where

P (basej|S) = Qj (2.7)

when the base j correctly matches the assembly and

P (basej|S) = (1−Qj)/4 (2.8)

when it does not. This expression follows from our modeling assumption that all 4

possible errors that the sequencer could have reported at that base (three different

substitutions and a deletion) are equally likely when the read does not match the

sequence. This symmetry requires each of the four possible reported errors (a base

not equal to the assembly or a deletion) to have equal probability. An insertion,

which does not have a corresponding base in the assembly, is modeled similarly,

with the 4 in the denominator representing the uniform likelihood of observing any

of the 4 possible bases on the assembly at that position. The product across all

bases in a read is then equal to the total probability of observing that particular

read at the given location in the assembly.

If the assembly has an unknown base at the location (denoted by an “N”) then

we set

P (basej|S) = 1/4 (2.9)
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modeling the fact that there is no information about the correct base at that

location with a uniform distribution over all 4 possible bases. If an ambiguity code

is reported by the sequencer then the above expression is modified to account for a

distribution over the possible bases encoded by the corresponding code (see Table

2.1).

Each read is only allowed to be “placed” at a single position in the assembly. If

the aligner placed a particular read at more than one position, we choose a single

position at random, weighted by Pplacement(rj|S) score for each proposed position of

the read on the assembly. This allows for repeat regions to be properly represented

with the correct number of reads in expectation.

The orientation likelihood, Porientation (ri|S), is calculated by first counting the

number of times that each orientation occurs in the library using the mapping

information. The probability that a particular read from a particular library has a

particular orientation is then modeled as that orientation’s empirical frequency in

the library (this can be overridden with user-specified values for the probabilities).

The likelihood Porientation (ri|S) is then the empirical frequency of the observed

orientation of the read ri in the library from which ri belongs.

After combining these two independent probabilities we are left with the total

placement score Pplacement(R|S) for a given read. Below, we use this when calcu-

lating the probability that an assembly is correct given the reads, as well as the

overall total ALE score. We also use it to calculate per-base placement scores

at particular positions in the assembly. The placement sub-score at a particular

position is given as the geometric mean of P (rj|S) of all rj covering that specific
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position, [∏
R′

P (R|S)

]1/N

(2.10)

where the product is over all reads R′ covering the given position, and N is the

number of such reads.

2.3.2 Insert sub-score

The insert likelihood, Pinsert (ri|S), is determined by first observing all insert lengths

from all mappings of all reads and calculating the population mean, µ, and stan-

dard deviation, σ2 of these lengths (the mean and standard deviation can also be

set by the user, if they are known). This step only needs to be done once. Once

completed, we calculate the insert likelihood for each read ri by assuming that

the corresponding observed insert length Li is distributed normally with this mean

and variance, so that

Pinsert (ri|S) = Normal
(
Li;µ, σ

2
)
. (2.11)

In this expression, the insert length Li is computed from the read ri and its mapping

to the assembly S. Similar to the placement score we can calculate the geometric

mean of insert scores at a given position to come up with the insert sub-score. This

can be useful for determining areas of potential constriction or expansion within a

proposed assembly.

2.3.3 Depth sub-score

Pdepth(R|S) describes how well the depth at each location agrees with the depth

that we would expect given the GC content at that location (which is ideally
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Poisson-distributed [Lander and Waterman, 1988]).

For each read, the GC content is the proportion of bases that are either G or C.

Modern sequencers and library preparation techniques can bias GC-rich areas of a

genome [Aird et al., 2011] This bias affects the observed depth of reads mapping

onto specific areas of an assembly. To correct for this bias we first calculate for

each of the following 100 ranges of GC content over the average read length, 0%

to 1%, 1% to 2%, . . ., 99% to 100%, the average observed depth for positions in

each contig in the assembly with a GC content in this range. Call µdepth(Xi) the

observed average depth of all reads with a GC content falling in the same range

as the GC content percentage Xi. We set the minimum expected depth to be 10,

discounting regions of exceptionally low average depth.

We model the depths to be Poisson distributed about a mean drawn from a

Gamma distribution centered at the expected depth for that position given its GC

content. This models the dependence of the expected depth on more than just the

GC content at that position, such as the presence of “hard stops” (regions with

no reads mapping to them) and the GC content at nearby positions. It results in

an infinite mixture of Poissons that is equivalent to a Negative Binomial distri-

bution. For simplicity and computational convenience, we make an independence

assumption when computing this component. This causes the expected coverage

at a location to depend only upon the GC content at that position, and not the

GC content at nearby positions.

Then, at any given position the depth sub-score is

Pdepth (dj|S,Xi)

= Poisson (dj;Yi) , Yi ∼ Gamma(max(10, µdepth(Xi)), 1)

= NegBinom(dj; max(10, µdepth(Xi)), 1/2)

(2.12)
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where the depth is di and where the GC content percentage Xi is averaged across

all reads that map (in the placement step) to that position. See Section 2.6 for a

further analysis.

2.3.4 k-mer sub-score

Pkmer(S) ∝ P (S), the k-mer sub-score, describes the likelihood of the assembly S,

in the absence of any read information. Within this prior probability distribution,

we encode the belief that within a single genome, each k-mer (a permutation of k

base pairs, where k is a fixed user defined number initially set to 4) has a unique k-

mer frequency. This is the frequency with which the k-mer appears in the genome.

The 4k dimensional vector giving this frequency for each k-mer is conserved across

a genome and can help determine if two different genomes have been mistakenly

combined [Teeling et al., 2004] [Woyke et al., 2006]. Let K be the set of all possible

unique k-mers, so |K| = 4k, and for each i in K let ni be the number of times this

k-mer appears in a contig in the assembly. Then, the frequency fi of a particular

k-mer i within a contig is

fi =
ni∑
j∈K nj

. (2.13)

The k-mer score is the product of this frequency over each k-mer appearing in each

contig of the assembly S, which can be written as

Pkmer(S) =
∏
i∈K

fni
i . (2.14)

This is equivalent to assuming each k-mer in the assembly is drawn independently

with identical distributions from a multinomial distribution with probabilities em-

pirically estimated from the assembly.
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The k-mer sub-score of a base at any given position in the assembly is the (ge-

ometric) average of Pkmer(S) of all k-mers that cover that position. In calculating

this average, the very first base in the genome only has one contributing k-mer,

the second has two, up to k contributing k-mers after k − 1 bases.

2.4 Approximating Z

Bayes’ rule tells us that the probability that the assembly S is correct is

P (S|R) =
P (R|S)P (S)

Z
(2.15)

where Z is a proportionality constant that ensures that P (S|R) is a probability

distribution, where Z is found by summing over all possible assemblies S ′,

Z =
∑
S′

P (R|S ′)P (S ′). (2.16)

Z cannot be explicitly computed because the space of all possible assemblies is far

too large (4L where L is the length of the assembly).

Instead we compute an approximation Ẑ to Z. This provides an approximation

to P (S|R),

P (S|R) ≈ P (R|S)P (S)

Ẑ
. (2.17)

We can compare two assemblies generated from the same library of reads with-

out calculating Z, the denominator in our Bayesian likelihood framework, because

it cancels when taking the ratio of the likelihoods of the two assemblies. To de-

termine a total ALE score for a single assembly, however, we must calculate or

approximate Z. Our goal in approximating Z is to use a quantity that does not

depend on the assembly S (or only depends weakly through some empirically es-

timated quantities included as parameters in the overarching statistical model),
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and is approximately of the same order of magnitude as the exact value of Z. In

this section, we refer to our approximate Z as Ẑ, and define it as a product of the

terms,

Ẑ = ẐplacementẐinsertẐdepthẐkmer. (2.18)

We will define each term in this product separately.

2.4.1 Approximating arbitrary Z

The Z normalization factor in Bayes’ Theorem is defined as

Z =
∑
S′

P (R|S ′)P (S ′). (2.19)

The problem with computing this value explicitly is

1. The space S ′ is very large (4L where L is the length of an assembly).

2. The set of assemblies for which P (R|S ′) is above a certain threshold ε > 0

(like floating point precision ε = 10−8) is very small compared to the entire

space. This is because the probability P (R|S ′) falls off very quickly when

the reads do not agree with the assembly S ′, but this is still too large of a

space to compute Z explicitly.

If we make the approximation

P (R|S ′) ≈ E [P (R|S ′)] =
∑
r∈R′

P (r|S ′)P (r|S ′) =
∑
r∈R′

P (r|S0)2, (2.20)

where R′ is the set of all possible reads and R is a random set of reads drawn from

this set and S0 is an arbitrary assembly. We drop the dependence on S ′ in the final

equality because when summing over all possible reads every combination of read
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and assembly is evaluated, regardless of the specific assembly compared against.

This is to say that for any fixed S, every possible permutation of reads (location and

number of errors, quality scores, insert lengths, orientations, depths) is evaluated

with respect to that assembly. Let E be the set of all possible errors between

a read and an assembly and all combinations thereof, (for example, substitution

error at position 9 with quality score .97, etc). Then

E [P (R|S ′)] =
∑
r∈R′

P (r|S ′)2 =
∑
E

∑
re∈R′e

P (re|S ′)2 =
∑
r∈R′

P (r|S0)2, (2.21)

where R′e is the set of reads containing the errors e ∈ E. E contains all possible

errors (including no errors) so the space of reads can be partitioned with respect to

the errors when compared to any fixed assembly S ′. The value of P (re|S ′) is fixed

by the model and independent of the assembly. If there is an error at a specific

position, the placement score depends on the type of error and the quality score of

the read at that position, which is encoded in e ∈ E. So we can set P (re|S ′) = Ae

where Ae is a value independent of S ′.

In fact, this is true for any such assembly, making the dependence on S ′ moot.

Our equation for Z then becomes

Z ≈
∑
S′

E [P (R|S ′)]P (S ′) =
∑
S′

[∑
r∈R′

P (r|S0)2

]
P (S ′) =

∑
r∈R′

P (r|S0)2 = Ẑ

(2.22)

because
∑

S′ P (S ′) = 1 and the dependence on S ′ is dropped.

2.4.2 Approximating Zplacement

Ẑplacement is defined as

Ẑplacement =
∏
r∈R

Ẑplacement(r|S). (2.23)
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In this expression R is the set of reads actually observed, r is one read in this set

of reads, and Ẑplacement(r|S) is defined as

Ẑplacement(r|S) = E [Pplacement (r′) |S]

=
∑

r′∈R′ [Pplacement(r
′|S)]2

=
∑

matches

∑
orientation (Pmatches(r

′|S)Porientation(r′|S))2

. (2.24)

In this expression R′ is the set of all possible reads of the length given by r and r′ is

a random set of reads drawn from that set. We sum over all possible matches and

orientations, which is analogous to summing over all possible reads. Although S

appears in this expression, its value does not depend on S because of permutation

symmetry as described in Section 2.4.1. This symmetry allows us to calculate

this expression analytically, without enumerating over R′. In addition to its lack

of dependence of S and its ease of computation, this choice for Pplacement(r) is

motivated by the belief that this quantity scales roughly like

Pplacement(r) =
∑
S′

Pplacement(r|S ′)P (S ′), (2.25)

which is a quantity identical in form to Z, but restricted to the placement proba-

bility of a particular read.

2.4.3 Approximating Zinsert

We define Ẑplacement(r|S) as,

Ẑplacement(r|S) = E [Pinsert (r′) |S]

=
∑

r′∈R′ [Pinsert(r
′|S)]2

=
∑

insert (Pinsert(r
′|S))2

, (2.26)

where again, in this expression R′ is the set of all possible reads of the length given

by r and r′ is a random set of reads drawn from that set. Similarly, we sum over

all possible insert lengths.
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2.4.4 Approximating Zdepth

We define Ẑdepth as,

Ẑdepth =
∏

basei∈S

Ẑdepth (Xi|S) , (2.27)

where

Ẑdepth (Xi|S) = E [Pdepth (Xi|S) |S] =
∞∑
d=0

(Pdepth (d|Xi, S))2 , (2.28)

where Pdepth is defined as before and Xi is a random set of depths drawn from

the set of possible depths at location i. Although S appears in this expression, its

value does not depend on S. We can calculate this expression analytically using a

hyper-geometric function; see implementation section 4.4.

2.4.5 Approximating Zkmer

We define Ẑkmer as the expected kmer score,

Ẑkmer = E [Pkmer(S)] =

(∑
i∈K

f 2
i

)N

, (2.29)

where fi, K and ni are defined as before in section 2.3.4 and S is a random assembly

drawn from the set of all possible assemblies. This method finds the expected k-mer

score for a uniform random k-mer and applies that score N times. Although Ẑkmer

depends on S through the empirically determined fi, which may be undesirable,

this dependence follows naturally from our statistical model because the fi are

considered parameters, which are estimated from data and then treated as known

by the model.

The preceding calculations allow us to approximate Z and find an “absolute”

likelihood score for a given assembly without comparing it to another assembly
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with the same library and alignment.

2.5 Relationship of the difference of total ALE scores to

probability of correctness

Here we derive an expression described in the Results section for the difference

of two total ALE scores in terms of the probability that an assembly is correct.

Suppose we have two assemblies, S1 and S2. Call A1 the total ALE score of the

first assembly, and A2 the total ALE score of the second assembly, both generated

from the same set of reads R. The difference of these scores is then

A1 − A2

= log (P (R|S1)) + log (P (S1))− log
(
Ẑ
)

+ log (P (R|S2)) + log (P (S2)) + log
(
Ẑ
)

≈ log (P (R|S1)) + log (P (S1))− log (Z) + log (P (R|S2)) + log (P (S2)) + log (Z)

= log
(
P (R|S1)P (S1)
P (R|S2)P (S2)

)
.

(2.30)

2.6 Correction for GC Bias

Modern sequencers have a GC bias, which is to say that regions of the genome

with different concentrations of the bases G and C will produce different numbers

of reads, which will lead to the coverage of these regions within an assembly to

vary. In Figure 2.2 we see the average depth at different GC concentrations within a

Spirochaeta smaragdinae genome with reads generated from an Illumina sequencer.

This variation in average depth can cause many false positives related to the ALE

depth score. The Poisson distribution drops off steeply, which is to say that depth
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Figure 2.2: The average depth at various GC contents in the Spirochaeta smarag-
dinae genome for reads of length l = 77.

values away from the global mean would be scored very low, due solely to the

inherent depth bias of the sequencer. We need to model this bias to eliminate

these false positives.

We define the average GC content of a base relative to a read length l as the

average GC content of all reads of length l that could possibly overlap that position.

Assume we look at the following subsequence, focusing on the G at position 4

and assuming that the reads are of length 4.

...1234567...

...ATCGTCA...
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One sees the following possible reads of length l = 4 that can overlap with

position 4 with their corresponding GC content (Table 2.6)

Table 2.2: GC content of reads

read GC content
ATCG 50%
TCGT 50%
CGTC 75%
GTCA 50%

This implies that the base at position 4 is marked with an effective average GC

content of 56.25% given reads of length l = 4.

Figure 2.3: The GC content can vary greatly within a genome. This figure il-
lustrates the GC content of various positions along the Spirochaeta smaragdinae
genome for read length l = 77.
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Figure 2.4: The depth distributions for different ranges of GC content within the
Spirochaeta smaragdinae genome. We can see that the distributions have a fat tail
and have varying means.

We can see that the GC bias of the sequencer violates the assumption that

the depth is Poisson distributed with a uniform mean. To correct for this bias we

model the depth d at a position j being Poisson distributed with a mean drawn

from a Gamma distribution related to the depth at that positions GC content,

Pdepth (dj|S,Xi) = Poisson (dj;Yi]) (2.31)

with

Yi ∼ Gamma(max(10, µdepth(Xi)), 1). (2.32)

We set the mean of the Gamma distribution to the average depth of all positions

with the same GC content µdepth(Xi). The minimum value of the parameter is set to

10 in practice to further discount hard stops (positions with 0 depth) and contigs

that have very low, but consistent depth, which represents low evidence.
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The above equations result in a Negative Binomial distribution,

Pdepth (dj|S,Xi) = NegBinom(dj; max(10, µdepth(Xi)), 1/2), (2.33)

where the second parameter is analytically equal to 1
2
.

This model has the benefit of incorporating the inherent GC bias of the se-

quencer and fitting the data well (Figure 2.5). The ALE depth scores that are

generated by using this distribution have a lower variance (see Figure 2.6). This

means that scores that deviate from the mean are not scored as low as when using

the Poisson distribution.

Figure 2.5: The depth distribution for all positions with GC content between 40-
50%. We compare it to a Poisson distribution as well as the maximum likelihood
estimated Negative Binomial distributions with and without fixed parameter r.

2.7 Thresholding the total ALE score

In the plotting program distributed with ALE we use a thresholding algorithm to

highlight potential areas of poor assembly quality using the per-base ALE scores.

We do this by averaging scores within windows, allowing for the discovery of large

errors in the assembly while smoothing out the noise. By the Central Limit Theo-
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Figure 2.6: The distributions of ALE depth scores given to positions with 4-=50%
GC content. We see that the Poisson distribution tends to have a fat tail of low
scores. This is to say that it is very strict, punishing positions that fall outside
of the narrow probability distribution function. The fixed r Negative Binomial
function has a large number of medium scores and a low number of very low
scores, making it a much more forgiving distribution.

rem, when we average many independent and identically distributed random vari-

ables the result is approximately normally distributed. This allows us to create a

“threshold” for which to delineate “good” scores from “bad” and pinpoint prob-

lematic regions. This is represented by a solid black line in the figures labeled “5σ.”

This line is calculated by assuming that the individual scores at each position in

the assembly are drawn from a mixture of two normal distributions: one for high

accuracy and another for low accuracy. We use maximum likelihood to determine

the mean and variance of the two underlying distributions. See section 4.1 in the

implementation chapter for a more in-depth discussion. The threshold is set as

five standard deviations from the mean of the “high accuracy” distribution. This

allows us to readily find areas of inaccuracy that are unlikely to be drawn from

an accurate region. Five standard deviations corresponds to 1 false positive in 2

million positions if the joint normal distribution assumptions hold. The number of

standard deviations at which the black line is drawn can be set from the command

line by the user.
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A black bar is drawn on the plot if the likelihood falls below the threshold

at a significant fraction of the positions in any contiguous region with a given

length (this fraction and length are user defined, and are initially set to 0.01%

and 1000bp respectively) see figure 3.1, 3.3 and 3.4. The red bars correspond to

regions of potential inaccuracy in the assembly that should be examined further.

The plotter outputs these regions in a tab delineated text file for easy input into

genome viewing software programs like IGV.

34



CHAPTER 3

ALE RESULTS

3.1 Performance on major types of miss-assemblies in a

genome assembly with synthetic data

Common assembly errors include single-base substitutions, insertion/deletions,

chimeric assemblies derived from translocations or misjoins, and copy number er-

rors derived from repeat condensation/expansions. To test ALE’s ability to detect

these types of errors in an assembly, we generated synthetic reads from a reference

genome and then seeded the reference with each type of error. First, 400,000 pair-

end synthetic reads were generated from the first 350kbp at random positions of

Escherichia Coli K12 Substrain DH10B ([Durfee et al., 2008]). Their insert length

follows a normal distribution with mean 200bp and standard deviation 7bp. Next,

synthetic miss-assemblies were introduced at 6 different locations within this ref-

erence. The miss-assemblies introduced were a substitution, insertion, deletion,

inversion, translocation and a copy number error, respectively (Figure 3.1). We

treated this mutated genome as the proposed assembly.

We tested the ALE algorithm by aligning the above synthetic reads to the pro-

posed assembly using bowtie ([Langmead et al., 2009]) and ran the results through

the ALE software package. ALE automatically thresholds each error (see Meth-

ods) and produces plots of the sub-scores near each error using the included plotter

(Figure 3.1). We found that ALE is able to locate each type of error in the proposed

assembly. At the genome level, at least one of the four sub-scores drops dramati-

cally in each region containing a synthetic error. With this set of synthetic data,
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A B C D

Figure 3.1: The performance of ALE on synthetic errors in E.Coli. At the genome
level, at least one of the four sub-scores drops dramatically in each region con-
taining a synthetic error. A higher resolution view for each type is illustrated in
Figure 3.2, 3.3, 3.4 and 3.5. (A) Substitution, deletion and insertion errors; (B)
an inversion error; (C) an transposition error; and (D) an copy number error.

ALE reports no false discoveries. These results suggest that ALE systematically

reports all major types of errors with simulated data.

Furthermore, the total ALE score decreased as more errors were added to the

assembly. As shown in Figure 3.6, as the number of substitution, insertion and

deletion errors increased, the total ALE score decreased monotonically, the rate of

which is determined by the quality scores of the data (see Methods section ??).

This suggests that the total ALE score indicates overall assembly accuracy.
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A ...ATC GAT...G

...ATC GAT...T

...ATC GAT...G

...ATCGAT... ...ATC GAT...T

...ATCGAT...

68500bp 71500bp

Figure 3.2: Part A of Figure 3.1: A substitution, deletion and insertion error.
The placement sub-score drops significantly at positions 69kbp, 70kbp and 71kbp
respectively, which are the locations where the single-base substitution, deletion
and insertion errors were added.

B 3’ 5’W X Y Z

3’ 5’W X Y Z

139500bp 140500bp

Figure 3.3: Part B of Figure 3.1: An inversion error of length 200bp at position
140kbp causes a drop in the placement, insert and depth sub-score as read mates
fail to align to the region.
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C 3’ 5’W X Y Z

3’ 5’W ZY X

209500bp 200500bp

Figure 3.4: Part C of Figure 3.1: A transposition error of length 200bp at position
210kbp and a copy number error of length 77bp at position 280kbp both cause the
placement, insert and depth sub-scores to drop.

D 3’ 5’X Y Z

3’ 5’ZYX Y

179500bp 180500bp

Figure 3.5: Part D of Figure 3.1: A copy number error of length 77bp (read length)
was added at position 280kbp causing the depth and insert scores to drop, as well
as the placement at the very center where the two copies meet.
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Figure 3.6: The total ALE score decreases monotonically as the number of errors
increases. Insertion (green) and deletion (red) errors cause the total ALE score to
drop at a faster rate (per error) than substitution errors (blue) under the model.

3.2 Detecting chimeric assemblies in a synthetic metagenome

One common assembly error in metagenome assemblies is the chimeric assembly

consisting of two or more genomes. To test ALE’s ability to distinguish this type of

metagenome-specific error, we simulated a miss-assembled contig by joining several

pieces of two genomes (Brachyspira murdochii DSM 12563 ([Pati et al., 2010]) and

Conexibacter woesei DSM 14684 ([Pukall et al., 2010])) in a random order (Figure

3.7). Using a known, synthetic reference allows for the unbiased testing of ALE’s

sensitivity to chimeric metagenomes, since there is not any true metagenome ref-

erence available. K-mer sub-scores and plots were generated for this simulated
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Figure 3.7: The performance of ALE on synthetic metagenome assembly errors.
(A and B) The k-mer sub-score for each genome individually. (C) k-mer sub-score
for a simulated chimeric metagenome between the two genomes. A diagram above
(C) illustrates how the two genomes were mixed.

contig as well as the two correct genomes individually for comparison.

ALE relies on k-mer sub-score (the default is k=4) to distinguish contigs coming

from different microbial species, because tetra-nucleotide frequencies are a reliable

species-specific signature ([Teeling et al., 2004]; [Woyke et al., 2006]). If a genome,

or contig, contains two or more distinct regions characterized by different k-mer

vectors, then the k-mer sub-score will be lower for the positions characterized by

the less prevalent k-mer vector (see Methods). Because the other sub-scores are
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unaffected by the mixture, the drop in total ALE score is due to the lower k-

mer sub-score. This unique capability of ALE allows easy detection of chimeric

contig/scaffolds within a metagenome assembly. As shown in Figure 3.7, the k-

mer sub-score is consistent for each of the two genomes individually as expected

(Figure 3.7, A and B). In contrast, the k-mer sub-score is much lower for the mixed

genomes, clearly identifying where two genomes are mixed together in the same

assembly.

3.3 Discovery of errors in real genome assemblies

The above experiments used simulated reads, or assemblies with simulated errors.

Real reads and real genome/metagenome assemblies are often very noisy, present-

ing an additional challenge to ALE. To test ALE using real world assemblies with

real reads we chose a finished genome, Spirochaeta smargdinae DSM 11293, orig-

inally constructed from 454 and Illumina reads ([Mavromatis et al., 2010]), and

applied ALE to it using one lane of 2x76 paired end Illumina reads. The results

are shown in Figure 3.8 and Table 3.1. At the genome level, ALE found sev-

eral errors, including a large 560kbp region (3.91mb 4.48mp) in the proposed

assembly where the depth sub-score dropped below the threshold. We found 3

areas producing errors that are likely due to repeat condensation. For example,

further examination of two regions (408kbp-415kbp and 4.241mbp-4.247mbp) by

overlaying the Illumina short read data indicates these regions have much higher

sequence depth (2X) than neighboring regions, and contain many SNPs (two alleles

of roughly equal ratio) (Figure 3.8, B and C), supporting the hypothesis that there

are two copies of these regions in this genome. The boundaries of these regions also

have abnormal placement and insert sub-scores, further supporting the hypothesis
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Figure 3.8: (A) the ALE plot for Spirochaeta smaragdinae using 44M paired reads.
Four ALE sub-scores were plotted across the entire genome assembly: placement
(blue), k-mer (green), insert (purple) and depth (red). miss-assemblies identified
by ALE default thresholds were highlighted. Two of these miss-assemblies are
displayed in the integrated genome viewer (IGV, in Figure 3.9), with the origi-
nal Illumina data used by ALE and the validation data from PacBio sequencing.
SNPs automatically identified by IGV are shown as colored bars in the sequencing
coverage plots (the coverage is indicated by the numbers on the left).

that there are miss-assemblies at the above locations.

Table 3.1: miss-assemblies identified in Spirochaeta smaragdinae.

Threshold Violation Type Starting Position Ending Position
Placement 411624 412375
Placement 4243804 4244967
Placement 4317554 4317856

Insert 383643 688112
Depth 3909940 4481198

To determine whether these errors identified by ALE are true assembly errors or

Illumina artifacts, we independently validated the results using PacBio sequenc-
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[0 - 244]

411,000 bp 412,000 bp 413,000 bp

[0 - 106]

Depth
Insert
K-mer
Place

Illumina

PacBio

[0 - 478]

4,243,000 bp 4,244,000 bp 4,245,000 bp

[0 - 149]

Depth
Insert
K-mer
Place

Illumina

PacBio

Figure 3.9: Two of these miss-assemblies from Figure 3.8 displayed in the inte-
grated genome viewer (IGV), with the original Illumina data used by ALE and the
validation data from PacBio sequencing. SNPs automatically identified by IGV are
shown as colored bars in the sequencing coverage plots (the coverage is indicated
by the numbers on the left).

ing data. A total of 53 SMRT cells comprising 221mb of mapped reads or 34

folds of overage were aligned to the assembly. Manual inspection of the resulting

PacBio alignment confirms 5/5 assembly errors (Figure 3.8 B and C & Table 3.1),

suggesting the errors identified by ALE are true errors in the assembly.
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3.4 Sensitivity to SNVs in real data

To show that ALE has a high sensitivity to real errors in real data we ex-

amine a re-sequencing project. In this project one lane of Illumina 36x2

paired reads was generated from a new strain of Rhodobacter sphaeroides 2.4.1

([Choudhary et al., 2006]) with an insert length of 200bp covering the genome

with an average coverage depth of 557. This genome has a very high GC content

(68%) and contains 336 hard stops and many more very low depth regions. A hard

stop is a region where a bias in the sequencer causes it to report 0 depth (no reads)

without any read pairs spanning the region. This makes SNV detection difficult for

many SNP detectors ([Wang et al., 2011]). The reads were aligned to the reference

genome and used to independently compile a reference set of 222 possible SNVs

between the strains (176 from Chromosome1, length 3.2Mbp; 46 from Chromo-

some2, length 0.94Mbp). The placement sub-score was then computed using the

same re-aligned reads.

To determine the positions with the least evidence under the model we sorted

the placement sub-scores for each chromosome. The 0.0001% worst scoring posi-

tions (219 regions) on Chromosome1 are within a read length of 154 of the 176

variants (88%), and the top 0.0005% worst positions (977 regions) contain more

than 97% of the variants. The same experiment for Chromosome2 recovers 87%

(40 of 46 variants from 63 regions) and 96% (from 309 regions) respectively. For

a further discussion refer to section 4.2. This shows that the positions at which

the proposed assembly differs from the genome generating the reads are among

the positions with the loewest sub-scores. The regions with poor sub-scores that

do not correspond to the variant list are other regions unsupported by the read

evidence, such as hard stops regions of very low coverage that stem from the bias
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of the sequencer. This shows that ALE can locate regions unsupported by the

read evidence, including SNVs, and that ALE accurately gauges assembly quality

at multiple base resolutions.

3.5 ALE’s performance with Pacific Biosciences RS data

The above experiments were all performed with next generation short read data.

Currently, Pacific Biosciences (PacBio) sequencing platform, also referred to as

“third-generation” sequencing, is becoming increasing popular due to its long read

length (up to several kb) ([Eid et al., 2009]). These long reads are expected to

greatly reduce the complexity associated with genome assembly validation. In

contrast with the second generation sequencing, single-molecule based PacBio RS

sequencing has a much higher base error rate ( 15%), making it an ideal candidate

for testing the robustness of ALE against very noisy data. For this purpose we

examined the reference genome of Lambda Phage and corresponding PacBio reads

of average depth 548x and a randomly sampled set at 50x. To determine ALE’s

performance on this dataset, the reference genome was synthetically mutated by

adding 12 substitution, insertion and deletion errors at various locations (Table

3.5). At 548x depth, within the top 12 lowest placement sub-scores, ALE recovered

all 12 errors at the mutated positions, while reporting no false positives. At 50x

depth, excluding the low coverage edges, the 12 errors were detected in the top 14

lowest placement sub-scores, with 2 false positives. In comparison, the standard

Pacific Biosciences variant caller, EviCons, correctly identified only 10 of these

errors with low confidence at default settings and the full 548x depth. This shows

that ALE is a robust measure of assembly accuracy with noisy sequencing data,

and it is a generic framework that can be used with both short and long sequence
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read technologies.

Operation Mutation Position 548x 50x 548x
Type Details Evicon Rank Rank

(PacBio) (ALE) (ALE)
Sub C → A 881 1 5 5
Ins CC → CCC 2161 - 14 12
Del G → - 3681 1 9 8
N/A - 15712 - 7 -
Del AACGGGCAGA 16561 1 4 4
Ins AACGGGCAGA 17030 1 3 2
Sub A → G 22881 1 10 7
Sub T → A 28561 1 11 10
Del T 34560 1 12 11
Sub G → C 36560 1 8 9
Ins ACGTACGT 40721 1 1 1

N/A - 41318 - 13 -
Del TCATCGCG 43200 - 6 6
Ins C 47600 1 2 3

Table 3.2: Performance of ALE on synthetic assembly errors in Lambda Phage
genome with different PacBio sequencing depths (50x and 548x)

3.6 Discussion

ALE facilitates the rapid discovery of many types of errors in genome assemblies,

including metagenomes. It does this by applying a rigorous statistical model and

calculating the likelihood of observing a specific assembly given the reads that

were used to generate it. This allows ALE to determine specific regions within a

proposed assembly that are poorly supported by the reads. By integrating several

aspects of the assembly and the reads, including k-mer composition, sequence

depth, insert length, and how well individual bases map, ALE is able to find errors

as small as a single substitution error or indel, as well as large copy number errors

and chimeric metagenome assemblies.
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This framework can serve as a guide to optimize the genome assembly in the

following two ways. First, total ALE scores can be used to identify the best assem-

bly from those generated by different assembly protocols. Second, by modifying

the regions in which ALE reports low sub-scores, more accurate genomes can be

constructed. The space of possible corrections to an input genome is too large to

allow the current implementation of ALE to be used as an independent assembler,

but it could be used to compare and combine the results from different assemblers

and produce an assembly that is most likely to be correct. ALE could also be used

to present an alternative method for calculating assembly quality in local assembly

algorithms such as Genovo ([Laserson et al., 2011]).

When used with a reference genome and re-sequencing data, ALE can dis-

cover structural variations. As shown in the cases of Spirochaeta smaragdinae and

Rhodobacter sphaeroides, ALE readily detects structural variations whose sizes

vary from a few bases to several hundred kilobases.

ALE is influenced by the quality of its input: the read data and the alignments

of those reads onto the proposed assembly. Data with biased content or alignments,

while accepted by ALE, tend to produce noisy sub-scores. The robustness of ALE,

however, allows for the recovery of an accurate assembly quality measure as long

as the random noise is consistent with the statistical model used by ALE (see

Methods).

Future experimental work is needed to determine the profile of assembly errors

within a given dataset. This would better characterize the sub-scores of specific

assembly errors, and allow the computation of a per-base confidence in the cor-

rectness of the assembly at each base from the corresponding sub-scores. One

possible approach would be to select a number of regions with good sub-scores,
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mutate those regions of the assembly to simulate errors, and then reevaluate the

sub-scores at these regions. Comparing the sub-scores before and after mutation

would provide information about the distribution of sub-scores for accurate and er-

roneous regions, in that dataset. Additionally, this could inform an auto-correction

algorithm based on ALE to fix problematic regions.

In addition, the model could be extended in future work to account for factors

like origin of replication bias prevalent in circular genomes, automatic detection

of sequencer bias and different potential distributions for insert length and cover-

age depth. Biases such as hard stops in Illumina could potentially be found by

examining unlikely distributions of read orientation at specific locations coupled

with low depth. Specific signatures within the different ALE metrics could be used

to classify and correct for specific biases, much as ALE currently corrects for GC

content (see Methods).
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CHAPTER 4

ALE IMPLEMENTATION

4.1 Mixture model for score thresholding

In order to distinguish “good” scores from “bad” scores in an assembly we make

a series of assumptions about the distribution from which the scores are drawn.

When we smooth the data we are effectively averaging many random variables

corresponding to the scores at a given position, which due to the Central Limit

Theorem means that they can be considered to be normally distributed, if they are

independent and identically distributed. The independence assumption is made by

assuming the length of the assembly is much larger than the length of a read and

the fact that reads are considered independent. The scores are all generated from

the same model and are therefore identically distributed.

We assume that the scores ~s are drawn from one of two Gaussian distributions,

a “good” distribution Ng and a “bad” distribution Nb.

p (si|λ) = wgφ
(
si|µg, σ2

g

)
+ wbφ

(
si|µb, σ2

b

)
(4.1)

where wg +wb = 1 are weights and φ is the Normal probability mass function and

λ is the collection of hyperparameters {wg, wb, µg, µb, σ2
g , σ

2
b}.

The likelihood of the model is

p (~s|λ) =
L∏
i=1

p (si|λ) . (4.2)

We cannot maximize this likelihood analytically, but we can find local optima using

expectation maximization.
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4.1.1 Expectation maximization

We iterate using the a posteriori probability of a single score si being drawn from

one of the two components,

pg(si, λ) =
wgφ

(
si|µg, σ2

g

)
wgφ

(
si|µg, σ2

g

)
+ wbφ (si|µb, σ2

b )
(4.3)

and

pb(si, λ) =
wbφ (si|µb, σ2

b )

wgφ
(
si|µg, σ2

g

)
+ wbφ (si|µb, σ2

b )
(4.4)

at each iteration we update the hyperparameters λ using the following formulas,

w
(t+1)
d =

1

2

L∑
i=1

pd(si, λ
(t)) (4.5)

µ
(t+1)
d =

∑L
i=1 pd(si, λ

(t))si∑L
i=1 pd(si, λ

(t))
(4.6)

σ2(t+1)

d =

∑L
i=1 pd(si, λ

(t))s2
i∑L

i=1 pd(si, λ
(t))
− µ2

d (4.7)

for each d ∈ {g, b} until the change in the total likelihood is less than some thresh-

old, or after some number of maximum iterations.

To speed up this process only a random 10% of the data or a random 10,000

points are used to build the model, whichever is smaller. If the model fails to

converge, a different random set of data is chosen, up to a maximum number of

iterations. This adds a level of robustness that overcomes certain pathological

situations where the 2-Gaussian mixture model will fail.

4.1.2 Example with ALE depth score

As an example we will examine the ALE depth score for Spirochaeta smaragdinae

from Section 3.3. This genome has two distinct regions in the depth score repre-
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senting “good” and “bad” scores. The two Gaussian mixture model fits the data

much better than a single Gaussian distribution as seen in Figure 4.1 and Table

4.1.

Figure 4.1: We see the difference between the observed depth scores (blue dots),
the two component Gaussian mixture model (green line) and a single component
Gaussian mixture model (red dashed line). It is clear that the mixture model is a
far superior fit to the data

2-Gaussian mixture single Gaussian
µ -12.56, -1.05 -2.47
σ2 1.72, 0.32 3.85

log(p) -42627.63 -12771185.48

Table 4.1: The components and log likelihoods of the two models. We can see
that the two Gaussian mixture model is 2 orders of magnitude more likely (in log
space) than the single Gaussian model.
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4.2 False positive rate vs. number of reported errors

In section 3.4 the values given were for the top 0.0001% and top 0.0005% of lowest

ALE scoring positions. These values were arbitrarily chosen (and can be set by the

user in the software package). In Figure 4.2 we see how the number of reported

lowest scoring positions affects the sensitivity and accuracy of ALE with respect

to the manually curated set of errors.

Of the top 250 positions on chromosome 1 with the lowest ALE placement

score, 88% of them are within an insert length (200bp) of either a hard stop (0

depth) or a variant. Furthermore, these 250 positions are within an insert length of

84% of the variants and we find 58% at the exact base ALE reports. This is to say

that we are able to independently locate 154 of 176 variants with a false positive

rate of 12% within the first 250 lowest ALE placement scores. For chromosome 2

the lowest 75 ALE placement score positions return 85% (41 of 46) of the variants

(60% exactly) with an 11% false positive rate. As a whole ALE discovers 188 of

the 222 variants with a false positive rate of 12%.

In figure 4.2 we can see how the total number of lowest ALE placement scores

observed changes the number of variants that we correctly reproduce and the total

true positive rate. As we look at more positions we recover more variants, but with

a higher rate of false positives. Depending on the number of errors in the genome,

the slope at which the true positive rate decreases will vary. A binary search for

an acceptable false positive rate can be performed to meet the needs of accuracy

in individual projects.
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Figure 4.2: We use ALE to score a re-sequencing genome of E.Coli in which a
set of errors has been manually and independently curated. The top X lowest
ALE placement scores at positions where there is at least a single read correspond
well to the variants discovered in genome finishing. As we increase the number
of ALE scores examined the total percent of variants found exactly and within
a read (36bp) or insert (200bp) length increases. The top area corresponding to
these low scores tend to contain, or is within a short distance of a variant or a hard
stop (region of 0 depth). This is to say that the true positive rate is very high
(false positive rate very low). This figure shows how the various rates change with
the number of ALE scores reported for Chromosome 1 of the E.Coli re-sequencing
project. We see that after 150 positions that most variants are found, but we still
have a very low false positive rate.
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Figure 4.3: Similar to Figure 4.2, for Chromosome 2, which is smaller, after only
75 scores most variants are discovered and the false positive rate is around 10%.
As we look at more scores we discover more variants, but the false positive rate
increases.

4.3 Influence of alignment input

ALE takes as input a proposed assembly and a SAM/BAM [Li et al., 2009] file of

alignments of reads onto this proposed assembly. This allows ALE to calculate

the probability of observing the assembly given the reads. ALE assumes that this

mapping will include, if not all possible mappings, at least the “best” mapping for

each read in the library (if such a mapping exists). For assemblies with many repeat

regions (¿100) or libraries with large insert sizes, this can be difficult to obtain due

to the bias introduced using default parameters of standard aligners. While an
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extensive review of alignment packages and their optimization is beyond the scope

of this work, a review can be found in [Li and Homer, 2010]. If an assembly has

many repeats and the aligner bias causes the reporting of reads only mapping to a

fraction of possible regions, then ALE will see the unmapped regions as having 0

depth (no supporting reads) which will result in artificially low depth sub-scores.

The robustness of ALE will still allow for comparison between assemblies with

similar biases, but should be taken into account if the input to ALE is biased for

only certain assemblies. To avoid this bias some mappers must be explicitly forced

to search for all possible placements (-a in bowtie).

In summary, ALE determines the likelihood of an assembly given the reads and

an accurate, unbiased alignment of those reads onto the assembly, without which

the model assumptions are violated. These preconditions are usually met except

for certain pathological genomes, and even in these cases can be readily corrected

by changing the parameters of the aligner used to make ALE’s input.

4.4 Depth Z normalization

When calculating Ẑdepth at a specific position analytically,

Ẑdepth(r, k) =
∞∑
k=0

(
nbPMF

(
k, r,

1

2

))2

=
1

4r
2F1

(
r, r; 1;

1

4

)
(4.8)

where r is the depth, k is the expected depth, 2F1 is a hyper geometric function,

2F1

(
r, r; 1;

1

4

)
=
∞∑
n=0

(r)2
n

4nn!(1)n
(4.9)

where

(r)n =
Γ(r + n)

Γ(r)
(4.10)
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and nbPMF is the negative binomial probability mass function

nbPMF (k, r, p) =

(
k + r − 1

k

)
(1− p)rpk. (4.11)

We note that numerically evaluating this function results in precision errors for

large r due to the fact that we are multiplying a very small number by a very large

number. If we move the fraction into the hyper-geometric function and take the

exponential of the log we get

Ẑdepth(r) =
∞∑
n=0

exp (2S(r + n)− 2S(r)− 2S(n+ 1)− (r + n) log(4)) (4.12)

where

S(x) = log (Γ(x)) (4.13)

and we can use Stirling’s approximation,

S(x) = log

(
x− 1

2

)
log(x)−x+log(2π)+

1

12x
− 1

360x3
+

1

1260x5
− 1

1680x7
+O

(
1

x9

)
(4.14)

to estimate this value. The sum is calculated in practice from n = 0 until the

resulting contribution is less than machine precision (10−16 for doubles) due to the

fact that the interior function is monotonically decreasing. This is pre-computed

in python for common values of r (0 to 2048) for constant time lookup. Other

values are computed in real time as needed.

This allows us to numerically calculate Ẑdepth with high precision.

4.5 Availability and requirements

• Project name: ALE

• Project home page: www.alescore.org (and www.github.com/sc932/ALE)
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• Operating systems: Linux 32/64-bit, Mac OSX, Windows (Cygwin)

• Programming languages: Python, C

• Other requirements: Some python packages, see documentation

• License: UoI/CNSA Open Source
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Part II

EPI: Expected Parallel

Improvement
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EPI: Expected Parallel Improvement

Joint work with Peter Frazier1

1Cornell University School of Operations Research and Information Engineering, Ithaca, New York 14853, USA

Abstract

This derivative-free global optimization method allows us to optimally sample

many points concurrently from an expensive to evaluate, unknown and possibly

non-convex function. Instead of sampling sequentially, which can be inefficient

when the available resources allow for simultaneous evaluation, EPI provides the

best set of points to sample next, allowing multiple samplings to be performed in

unison.

In this work we develop a model for expected parallel improvement based on

numerically estimating the expected improvement using multiple samples and use

multi-start gradient descent to find the optimal set of points to sample next, while

fully taking into account points that are currently being sampled for which the

result is not yet known.

59



CHAPTER 5

EPI INTRODUCTION

5.1 Optimization of Expensive Functions

Optimization attempts to find the maximum or minimum value of some function

or experiment. The goal is to find the input or set of parameters that either

maximizes or minimizes a particular value. This can be maximizing gains in a

financial model, minimizing costs in operations, finding the best result of a drug

trial or any of a number of real world examples. The basic setup is that there

is something that is desirable to maximize or minimize and we want to find the

parameters that obtain this. The underlying functions may be difficult to sample;

whether requiring long amounts of time such as drug trials, or excessive money

such as financial models, or both such as exploration of natural resources. This

limitation forces a good optimization algorithm to find the best possible solution

quickly and efficiently, requiring as few exploratory samplings as possible before

converging to an optimal solution.

The quantitative and data-intensive explosion in fields such as bioinformatics

and other sciences is producing petabytes of data and increasingly complex models

and computer algorithms to analyze it. As the amount of data being inputed and

the complexity of these algorithms grow they take more and more time to compute.

Even with modern supercomputers that can perform many peta-FLOPS (1015

Floating Point Operations Per Second) scientific codes simulating fluid dynamics

[Compo et al., 2011] and complex chemical reactions [Valiev et al., 2010] can take

many hours or days to compute, using millions of CPU hours or more. The assem-

bly of a single genome using the software package Velvet [Zerbino and Birney, 2008]
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can take 24 hours or more on a high memory supercomputer. The sheer amount

of time and resources required to run these simulations and computations means

that the fine-tuning of the parameters of the models is extremely time and resource

intensive.

Statistical methods such as EGO [Jones et al., 1998] attempt to solve this prob-

lem by estimating the underlying function that is being optimized and computing

the next point to sample so that it maximizes the expected improvement over the

best result observed so far. When performed sequentially this method quickly con-

verges to a point that is locally optimal within the space of possible inputs. This

method is limited by its sequential nature, however, and cannot take advantage

of possible parallel computational or sampling resources allowing for samples to

be drawn concurrently. There have been some heuristic attempts to address the

problem of parallel expected improvement [Ginsbourger et al., 2008], but all suffer

from limitations by making restrictive assumptions about points being currently

sampled. In this work we develop a model for expected parallel improvement, based

on numerically estimating expected improvement using multiple samples and use

multi-start gradient descent to find the optimal set of points to sample next, while

fully taking into account points that are currently being sampled for which the

result is not yet known.

5.2 Gaussian Processes

We begin with a Gaussian process prior on a continuous function f . The function

f has domain A ⊆ Rd. Our overarching goal is to solve the global optimization

problem
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max
x∈A

f(x). (5.1)

This problem can be constrained or unconstrained depending on the set A.

The paper [Jones et al., 1998] developed a method for choosing which points

to evaluate next based on fitting a global metamodel to the points evaluated thus

far, and then maximizing a merit criterion over the whole surface to choose the

single point to evaluate next.

Although [Jones et al., 1998] describes their technique, EGO, in terms of a

kriging metamodel and uses frequentist language, their technique can also be un-

derstood in a Bayesian framework. This framework uses a Gaussian process prior

on the function f , which is a probabilistic model whose estimates of f have the

corresponding framework described below.

Any Gaussian process prior on f is described by a mean function µ : A 7→ R

and a covariance function Σ : A × A 7→ R+. The mean function is general,

and sometimes reflects some overall trends believed to be in the data, but is more

commonly chosen to be 0. The covariance function must satisfy certain conditions:

Σ(x, x) ≥ 0, (5.2)

Σ(x, y) = Σ(y, x), (5.3)

and it must be positive semi-definite;

~vTΣ~v ≥ 0, ∀~v ∈ Rd. (5.4)
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Common choices for Σ include the Gaussian covariance function, Σ(x, x′) =

a exp(−b‖x − x′‖2) for some parameters a and b and the power exponential error

function, Σ(x, x′) = a exp(−
∑

i bi(xi − x′i)p) for some parameters ~b ∈ Rd, p and a.

5.3 Gaussian process priors

Putting a Gaussian Process (GP) prior on f , written

f ∼ GP(µ(·),Σ(·, ·)) (5.5)

means that if we take any fixed set of points x1, . . . , xn ∈ A and consider the

vector (f(x1), . . . , f(xn)) as an unknown quantity, our prior on it is the multivariate

normal,

(f(x1), . . . , f(xn)) ∼ N



µ(x1)

...

µ(xn)

 ,


Σ(x1, x1) · · · Σ(xn, x1)

...
. . .

...

Σ(x1, xn) · · · Σ(xn, xn


 . (5.6)

GPs are analytically convenient. If we observe the function f at x1, . . . , xn,

getting values y1 = f(x1), . . . yn = f(xn), then the posterior of f is also a GP,

f |x1:n, y1:n ∼ GP (µn,Σn) (5.7)

where µn and Σn are defined in the Methods section 6.1. We can see the evolution

of the GP as more points are sampled in Figure 5.1.
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Figure 5.1: We can watch the GPP mean (green dashed) and variance (green
shaded) evolve to become closer and closer to the true function (blue line) as more
and more samples (red x) are drawn from the function. The mean adapts to fit
the points sampled and the variance is lowest near sampled points.
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5.4 Expected Improvement

When considering where to measure next, the EGO algorithm, and more generally

the Expectation Improvement (EI) criterion, computes a merit function defined as

EI(x) = En
[
[f(x)− f ?n]+

]
= E

[
f ?n+1 − f ?n|xn = x

]
(5.8)

where f ?n = maxm≤n f(xm).

This is the point where we expect the greatest improvement to the best point

sampled so far, f ?n. The algoritm attempts to maximize the EI at every iteration,

sampling only the points with the greatest potential return. In Figure 5.2 we show

the values of EI for the GPP in Figure 5.1.

Figure 5.2: The expected improvement of panels 4 and 5 of Figure 5.1. We can
see that regions with low mean and high variance have the highest expected im-
provement.
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5.4.1 Parrallel Heuristics

The inherent downside to the EGO algorithm is that it is sequential; it results in

only a single proposed sample point, which must be sampled before a new point

can be proposed. This is a waste of resources if many points can be sampled

simultaneously. Under the EGO algorithm these excess resources would sit idle

while each point is sampled one at a time.

There are a few heuristic extensions to the EGO algorithm that attempt to

alleviate this bottleneck including the constant liar and kriging believer methods

proposed by [Ginsbourger et al., 2008].

Constant liar heuristic

In this heuristic the points that are currently being sampled are all artificially set to

a constant value like min(~y),max(~y) or mean(~y) and then normal EI maximization

is performed. This method fails to accurately account for the subtleties of the

model and information that the GPP provides at each location.

Kriging believer heuristic

In this heuristic the points being sampled are assumed to return a value equal to

their expectation, effectively lowering the variance to 0 at the given point. This

method fails to account for the true variance at the given point and could force the

algorithm to be trapped in low yielding regions that happen to have low expected

mean, but a high variance that this heuristic ignores.
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5.5 Expected Parallel Improvement

We propose to extend the EI algorithm to be used in parallel systems, where we

can evaluate several function values simultaneously on different cores, CPUs or

GPGPUs. Instead of having to pick a single point to sample next, we can pick

several.

The core of this idea is that we can calculate the expected improvement for

simultaneous evaluation of points xn+1, . . . , xn+l = ~x as

EI(xn+1, . . . , xn+l) = En
[
[max {f(xn+1), . . . , f(xn+l)} − f ?n]+

]
. (5.9)

The optimization then approximates the solution to

argmax
~x∈Rd×l

EI(~x), (5.10)

and chooses this batch of points to evaluate next. While the purely sequential

case allows straightforward analytic evaluation of EI(x), calculating EI(~x) in the

parallel case is more challenging and requires numerical estimation. Although

straightforward estimation via standard Monte Carlo are inefficient, we deploy

several techniques to more accurately estimate and optimize EI(~x).
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CHAPTER 6

EPI METHODS

6.1 Components of the Gaussian Prior

In the following sections we will explicitly define the mean (Section 6.1.1) and

variance (Section 6.1.2) of the GP, as well as their component-wise gradients.

We will also define the partial derivatives for our default covariance function, the

squared exponential covariance in Section 6.1.3.

6.1.1 The GP mean

First we try to decompose the GP mean in order to easily find an analytic expres-

sion for its gradient:

~µ? = K(~x?,X)K(X,X)−1~y. (6.1)

Where we define the matrix K(~y, ~z) component-wise as

K(~y, ~z)ij = cov(yi, zj). (6.2)

We note that if ~x? is a single point then the matrix K(~x?,X) collapses to a vector.

We also rewrite K(X,X)−1 as K−1 for simplicity,

~µ? = K(~x?,X)K−1~y. (6.3)

We further note that we can decompose the resulting vector dot product into a

sum for each component of ~µ?,

µ?i =
N∑
j=1

cov(x?i, Xj)
(
K−1~y

)
j
. (6.4)
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When we take the gradient, we note that it can be brought inside the sum and

the vector (K−1~y) is constant with respect to x?,

∂

∂x?t
µ?i =

N∑
j=1

(
K−1~y

)
j

∂

∂x?t
cov(x?i, Xj). (6.5)

We note that

∂

∂x?t
µ?i =


∑N

j=1 (K−1~y)j
∂

∂x?i
cov(x?i, Xj) for i = t

0 otherwise
. (6.6)

6.1.2 The GP variance

Now we do the same thing for the covariance which is defined as

Σ(µstar) = K(X?,X?)−K(X?,X)K(X,X)−1K(X,X?). (6.7)

The components (i, j) of Σ (see Section 8.2.1) are

Σij = cov(x?i, x?j)−
N∑
p=1

N∑
q=1

K−1
qp cov(x?i, Xq)cov(x?j, Xp) (6.8)

and the derivative ∂
∂x?t

Σij becomes

∂

∂x?t
cov(x?i, x?j)−

N∑
p=1

N∑
q=1

K−1
qp

(
cov(x?i, Xq)

∂

∂x?t
cov(x?j, Xp) + cov(x?j, Xp)

∂

∂x?t
cov(x?i, Xq)

)
(6.9)

For a more detailed discussion see Section 8.2.1.

6.1.3 Defining the covariance derivatives

A common function for the covariance is the squared exponential covariance func-

tion,

cov(xi, xj) = σ2
f exp

(
− 1

2l2
|xi − xj|2

)
+ σ2

nδij, (6.10)
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where δij is the Kronecker delta,

δij =

 1 if i = j

0 if i 6= j
. (6.11)

We will use an instance of this covariance function where l is a length scale, σ2
f

is the signal variance, and σ2
n is the sample variance. The maximum likelihood of

these parameters can be determined from the training data as seen in section 8.1.

We will treat them as constants for now.

It will be sufficient to show the partial derivative of one of the variables because

cov(xi, xj) = cov(xj, xi).

∂

∂xi
cov(xi, xj) = δij +

∂

∂xi
σ2
f exp

(
− 1

2l2
|xi − xj|2

)
(6.12)

= δij +
−σ2

f

2l2
exp

(
− 1

2l2
|xi − xj|2

)
∂

∂xi
|xi − xj|2 (6.13)

=
xj − xi
l2

cov(xi, xj) + δij. (6.14)

6.2 Estimation of expected improvement

We estimate the expected improvement at a set of points ~x by sampling from the

GP over many Monte Carlo iterations.

The mean ~µ and covariance Σ of the points to be sampled Σ is defined in section

6.1.1 and 6.1.2.

We can simulate drawing points from this multivariate gaussian like so,

~y′ = ~µ+ L~n (6.15)
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where L is the Cholesky decomposition of Σ and ~n is a vector of independent,

identically distributed normal variables with mean 0 and variance 1.

The improvement from this simulated sample is

I ′ = [f ?n −min(~y′)]
+
. (6.16)

By averaging over many such simulated draws we can accurately estimate the

expected improvement for the set of points ~x. Further discussion and analysis of

the accuracy of this method is discussed in section 8.3.1.

6.3 Estimation and optimization of EI(~x)

To optimize EI(~x), we calculate stochastic gradients

g(~x) = 5EI(~x) (6.17)

and use infinitesimal perturbation analysis [Fu, 1994] to interchange derivative and

expectation, see section 6.3.1. Then use multistart gradient descent to find the set

of points that maximize EI(~x), see section 6.4.

6.3.1 Proof of validity of interchange

Let ~x = (~x1, . . . , ~xl) and

Z (~x) =

[
f ?n − min

i=1,...,l
f (~xi)

]+

(6.18)

with

f ?n = min
m≤n

f (~xm) . (6.19)
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Then

EIn(~x) = En [Z (~x)] . (6.20)

We want to show

∇ [En [Z (~x)]] = En [∇Z (~x)] = En [gn(~x)] (6.21)

for all ~x with ~xi 6= ~xj for every i 6= j.

We have

gn(~x) =

 0 if i?(~x) = 0

−∇~xf(~xi) if i?(~x) = i
(6.22)

and

i?(~x) =

 0 if f ?n ≤ mini=1,...,l f(~xi)

min argmini=1,...,l f(~xi) otherwise.
(6.23)

To show this, we will show

1. Z(·) is differentiable at ~x

2. On the event that Z(·) is differentiable at ~x and i?(~x) = i, ∇~xZ(~x)

3. For some ε > 0 and each ~x′ with |~x′ − ~x| < ε,

|Z(~x)− Z(~x′)| ≤ |~x′ − ~x| (6.24)

where M is a random variable with En [M ] <∞.

We require that for some ε > 0 and each i = 1, . . . , l that f(·) is almost surely

differentiable at ~xi for all ~x′′i with |~x′′i − ~xi| < ε.

(1) and (2) follow from

{Z(·) is differentiable at ~x} ⊆ {f(~xi) 6= f(~xj)∀i 6= j and f(~xi) 6= f ?n} . (6.25)
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This requires that f(·) is differentiable almost surely under Pn.

Let ~x′ be a point.

|Z(~x)− Z(~x′)| =
∣∣fi?(~x)(~x)− fi?(~x′)(~x

′)
∣∣ (6.26)

where

fi(~x) =

 f(~xi) if i > 0

f ?n if i = 0
(6.27)

If

fi?(~x)(~x) ≥ fi?(~x′)(~x
′) (6.28)

then equation 6.26 becomes

fi?(~x)(~x)− fi?(~x′)(~x
′) ≤ fi?(~x′)(~x)− fi?(~x′)(~x

′) =
∣∣fi?(~x′)(~x)− fi?(~x′)(~x

′)
∣∣ (6.29)

If

fi?(~x)(~x) ≤ fi?(~x′)(~x
′) (6.30)

then equation 6.26 becomes

fi?(~x′)(~x)− fi?(~x)(~x) ≤ fi?(~x)(~x
′)− fi?(~x)(~x) =

∣∣fi?(~x)(~x
′)− fi?(~x)(~x)

∣∣ (6.31)

So equation 6.26 becomes

≤
∣∣fi?(~x)(~x

′)− fi?(~x)(~x)
∣∣+
∣∣fi?(~x′)(~x)− fi?(~x′)(~x

′)
∣∣ ≤ l∑

i=0

|fi(~x′)− fi(~x)| (6.32)

Now, we fix i. Let

M = sup
~x′′:|~x−~x′′|<ε

max
~u∈Rd
|~u · ∇~xfi(~x′′)| (6.33)

|fi(~x′)− fi(~x)| ≤M ||~x′ − ~x||2 (6.34)
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6.4 Multistart gradient descent

We use multistart gradient descent to find the set of points that maximizes the

parallel expected improvement over some number of total restarts R.

For each multistart iteration we draw the initial points ~x(t=0) from a Latin

hypercube. The update formula for each ~xi in the set of proposed points to sample

is

~x
(t+1)
i = ~x

(t)
i +

a

tγ
∇~xiEI

(
~P (t)| ~X

)
(6.35)

where a and γ are parameters of the gradient descent model. ~P (t) is the union of

the set of points being currently sampled and the proposed new points to sample.

This update is performed for some set number of iterations, or until∣∣∣~x(t+1)
i − ~x(t)

i

∣∣∣ < ε (6.36)

for some threshold ε > 0.

After R restarts, the set of points with the best expected EI is chosen as the

set of points to sample next. Figure 6.1 shows the paths of 128 multistart gradient

descent paths with l = 2 on the EI of the Branin function.

We note that some points appear to not move in Figure 6.1. This happens

when one of the points does has a very high expected evaluation value under the

GP. This causes that point to not contribute to the EI, and therefor the gradient

of the EI with respect to that point is low, or zero, causing it to remain stationary

while the other point rushes to the maximum EI (from section 6.2).
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Figure 6.1: The gradient descent paths of 2 points (simulating 2 free cores, l = 2)
with initial points chosen from a Latin hypercube of the domain over 128 restarts
(each color represents a different restart). The EI of the function is shown as a
contour plot. We see the paths converging on the point of highest EI.
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CHAPTER 7

EPI RESULTS

In this chapter we will present preliminary results using the EPI algorithm and

software package. The research is ongoing and the full results will be published in

a forthcoming paper with Peter Frazier.

7.1 Parallel speedup using function drawn from prior

To test the speedup obtained by using EPI over serial methods such as EGO

we generate a set of test functions from a 1-D prior and determine the average

improvement at each wall clock unit of time for EGO and EPI running with 2, 4

and 8 cores. Each wall clock unit of time represents n samplings of the function

where n is the number of cores being used.

We can see in Figure 7.1 that the number of cores (or concurrent experiments)

is directly proportional to the ending average improvement after a set number

of wall clock time. Future work includes refining these results, increasing the

maximum number of cores and testing EPI against other heuristics in this and

higher dimensional spaces.
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Figure 7.1: Parallel speedup using function drawn from prior. We can see that
the number of cores is directly related to the final average improvement. EPI with
8 cores results in a markedly better average improvement when compared to the
serial method EGO (1 core).
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CHAPTER 8

EPI IMPLEMENTATION

8.1 Adaptation of hyperparameters

In this section we show how we adapt the hyperparameters of the GP

using the sampling information. This follows the methods outlined in

[Rasmussen and Williams, 2006].

The log-likelihood of the data ~y given the points sampled X and the hyperpa-

rameters θ is

log p(~y|X, θ) = −1

2
~yTK−1~y − 1

2
log |K| − n

2
log 2π (8.1)

where K is the covariance function defined as before, θ are the hyperparameters

of the covariance function and | · | is the matrix norm defined for a matrix A as

|A| = max

(
|A~x|
|~x|

: ~x ∈ Rn\{~0}
)
. (8.2)

The partial derivative with respect to each hyperparameter θi is

∂

∂θi
log p(~y|X, θ) =

1

2
~yTK−1∂K

∂θi
K−1~y − 1

2
tr

(
K−1∂K

∂θi

)
(8.3)

where tr(·) is the trace of a matrix. If we set ~α = K−1~y this further reduces to

∂

∂θi
log p(~y|X, θ) =

1

2
tr

(
(~α~αT −K−1)

∂K

∂θi

)
. (8.4)

The key part of this equation is the partial derivative of K with respect to

each hyperparameter. For our squared exponential covariance function the partial

derivatives are

∂

∂σ2
f

cov(xi, xj) = exp

(
− 1

2l2
|xi − xj|2

)
=

cov(xi, xj)

σ2
f

, (8.5)
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∂

∂l
cov(xi, xj) =

1

l3
|xi − xj|2cov(xi, xj) (8.6)

and

∂

∂σ2
n

cov(xi, xj) = δij. (8.7)

8.1.1 Example of hyperparameter evolution

In this section we demonstrate the hyperparameter evolution capabilities of the

software package. We start with a function drawn from the prior with hyperpa-

rameters set to (σ2
f = 1, l = 1, σ2

n = 0.01) and a domain of [−7, 7]. We set the

initial hyperparameters at (σ2
f = 1, l = 2, σ2

n = 0.1). As we sample points from the

function we expect these hyperparameters to become closer and closer to those of

the prior from which it was drawn.

As we sample sets of 20 points from a latin hypercube we notice in Figure 8.1

and Figure 8.2 that the likelihood of the parameters becomes maximized near the

correct values. The algorithm is able to use gradient decent to find the point of

maximum likelihood, the correct values of the hyperparameters.

8.2 Math Appendix

In this section we will show the component-wise calculation of the gradient of the

covariance matrix as well as a method for differentiating the Cholesky decomposi-

tion of this matrix.
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σ2
n

l
l

σ2
n

Figure 8.1: Likelihood of hyperparameters l and σ2
n at various values after 20 points

(top) and 60 points (bottom) have been sampled from the function.
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Figure 8.2: We note that visually the set of hyperparameters that the algorithm
finds using the adaptive method provide a better fit to the data (bottom) than
those initially provided in the experiment (top).
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8.2.1 Variance matrix calculations

From [Rasmussen and Williams, 2006] we have

Σ = K( ~x?, ~x?)−K( ~x?, ~X)K( ~X, ~X)−1K( ~X, ~x?). (8.8)

We will use K−1 = K( ~X, ~X)−1. We have by definition

K( ~x?, ~x?)ij = cov(x?i, x?j) (8.9)

K( ~x?, ~X)ij = cov(x?i, Xj) (8.10)

K( ~X, ~x?)ij = cov(Xi, x?j). (8.11)

We will define a temporary matrix T (1) to be

T (1) = K( ~x?, ~X)K−1 (8.12)

and decompose it into its components to get

T
(1)
ip =

N∑
q=1

K−1
qp cov(x?i, Xq). (8.13)

We then define

T (2) = T (1)K( ~X, ~x?) (8.14)

and decompose it to get

T
(2)
ij =

N∑
p=1

T
(1)
ip cov(Xp, x?j) =

N∑
p=1

N∑
q=1

K−1
qp cov(x?i, Xq)cov(x?j, Xp). (8.15)

and note

Σij = K( ~x?, ~x?)ij − T (2)
ij (8.16)

Σij = cov(x?i, x?j)−
N∑
p=1

N∑
q=1

K−1
qp cov(x?i, Xq)cov(x?j, Xp). (8.17)
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The partial derivative is found by applying the operation component wise and a

simple use of the chain rule

∂
∂x?t

Σij = ∂
∂x?t

cov(x?i, x?j)

−
∑N

p=1

∑N
q=1K

−1
qp

(
cov(x?i, Xq)

∂
∂x?t

cov(x?j, Xp) + cov(x?j, Xp)
∂

∂x?t
cov(x?i, Xq)

)
(8.18)

where we note that ∂
∂x?t

T
(2)
ij =

2
∑N

p=1

∑N
q=1 K

−1
qp

(
cov(x?i, Xq)

∂
∂x?i

cov(x?i, Xp)
)

t = i = j∑N
p=1

∑N
q=1 K

−1
qp cov(x?j, Xp)

∂
∂x?i

cov(x?i, Xq) t = i 6= j∑N
p=1

∑N
q=1K

−1
qp cov(x?i, Xp)

∂
∂x?j

cov(x?j, Xq) t = j 6= i

0 otherwise

. (8.19)

8.2.2 Differentiation of the Cholesky decomposition

To incorporate the gradient into the Cholesky decomposition we follow the method

outlined by [Smith, 1995].

The algorithm takes Σ as input and produces a lower triangular matrix L and

∂
∂x?t

L such that Σ = LLT .

We use the following notation

∂

∂x?t
Lij = Lij(x?t) (8.20)

1. Lij = Σij

Lij(x?t) = ∂
∂x?t

Σij

2. for k = 1 . . . N if |Lkk| > εm (machine precision)

(a) Lkk =
√
Lkk

Lkk(x?t) = 1
2

Lkk(x?t)

Lkk
.
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(b) for j = k + 1 . . . N

Ljk = Ljk/Lkk

Ljk(x?t) =
Ljk(x?t)

+LjkLkk(x?t)

Lkk
.

(c) for j = k + 1 . . . N and i = j . . . N

Lij = Lij − LikLjk

Lij(x?t) = Lij(x?t) − Lik(x?t)Ljk − LikLjk(x?t).

This returns a lower triangular matrix L and ∂
∂x?t

L such that Σ = LLT .

8.3 GPGPU Computing

GPU computing allows for the cheap implementation of parallel algorithms. Mod-

ern graphics cards can have many hundreds of cores and can perform many ter-

aFLOPS from within a desktop workstation. The development and maturation of

C-like programing languages like CUDA and openCL allow for the implementation

of parallel codes on these General Purpose Graphical Processing Units (GPGPUs)

if the algorithm can be designed to fit into the tight memory restrictions of the

GPGPU cores, as shown below.

8.3.1 Expected Improvement

The trivially parallelizeable Monte Carlo step in the expected improvement al-

gorithm and relatively low memory requirements (O(l2)) lends itself to GPGPU

implementation perfectly. We implement this algorithm into a CUDA kernel and

compare it to a serial python implementation.
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Speedup

The CUDA implementation of the EI algorithm is about 300 times faster to run

on the GPGPU than on a CPU (using python). In figure 8.3 we see the wall clock

time required to compute the expected improvement for 4 points in 2 dimensions

(l = 4, d = 2).

Figure 8.3: Wall clock time to compute En [EI(~x)] on a CPU (blue, line) and GPU
(green, x) for l = 4.

8.3.2 Memory Restrictions

GPGPU cores have very low memory per core/block (16KB for tesla, 4KB for a

GT 2XX card). Our algorithm uses matrices of various sizes (table 8.1), some of
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Table 8.1: GPP matrix memory footprint

Variable Size
K n× n
K? n× l
K?? l × l

L = cholesky(K + σ2I) n× n
~v = L\K? n× l
~α = LT\L\~y n× 1
~µ = KT

? ~α l × 1
Σ = K?? − ~vT~v l × l

~∇~µ l × d
~∇Σ l × l × d

which grow to be quite large as more points are sampled.

The trivially MC portions of the algorithm only “need” the matrices of size l× l

to compute their estimates, so that is all that is sent to the GPU, the calculations

involving n× n are computed on the CPU where system memory is abundant.

Memory Transfer

The required vectors and matrices need to be transfered to the GPU as linear

arrays. This is accomplished by flattening each component in the following ways.

This allows for easy deconstruction into 2-D and 3-D arrays once the data is in the

global memory of the GPU.

~µ =


[µ(1)

1 , . . . , µ(1)
c , µ

(1)
c+1, . . . , µ

(1)
l

]
︸ ︷︷ ︸

l

, . . . ,
[
µ

(R)
1 , . . . , µ(R)

c , µ
(R)
c+1, . . . , µ

(R)
l

]
︸ ︷︷ ︸

l


︸ ︷︷ ︸

R


(8.21)
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Requiring memory of O(lR) per run, O(l) per GPU block.

Σ =




[Σ(1)

11 , . . . ,Σ
(1)
1l

]
︸ ︷︷ ︸

l

, . . . ,
[
Σ

(1)
l1 , . . . ,Σ

(1)
ll

]
︸ ︷︷ ︸

l


︸ ︷︷ ︸

l

, . . . ,

[Σ(R)
11 , . . . ,Σ

(R)
1l

]
︸ ︷︷ ︸

l

, . . . ,
[
Σ

(R)
l1 , . . . ,Σ

(R)
ll

]
︸ ︷︷ ︸

l


︸ ︷︷ ︸

l


︸ ︷︷ ︸

R


(8.22)

Requiring memory of O(l2R) per run, O(l2) per GPU block.

∇~µ =




[∇ ~x1µ

(1)
1

]
︸ ︷︷ ︸

d

, . . . ,
[
∇~xlµ

(1)
l

]
︸ ︷︷ ︸

d


︸ ︷︷ ︸

l

, . . . ,

[∇ ~x1µ
(R)
1

]
︸ ︷︷ ︸

d

, . . . ,
[
∇~xlµ

(R)
l

]
︸ ︷︷ ︸

d


︸ ︷︷ ︸

l


︸ ︷︷ ︸

R


(8.23)

Requiring memory of O(ldR) per run, O(ld) per GPU block.

∇Σ =






[∇ ~x1Σ

(1)
11

]
︸ ︷︷ ︸

d

, . . . ,
[
∇~xlΣ

(1)
1l

]
︸ ︷︷ ︸

d


︸ ︷︷ ︸

l

, . . . ,

[∇ ~x1Σ
(1)
l1

]
︸ ︷︷ ︸

d

, . . . ,
[
∇~xlΣ

(1)
ll

]
︸ ︷︷ ︸

d


︸ ︷︷ ︸

l


︸ ︷︷ ︸

l

, . . .


︸ ︷︷ ︸

R


(8.24)
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Requiring memory of O(l2dR) per run, O(l2d) per GPU block.

∇EI =




[∇ ~x1EI(1)

]
︸ ︷︷ ︸

d

, . . . ,
[
∇~xlEI(1)

]
︸ ︷︷ ︸

d


︸ ︷︷ ︸

l

, . . . ,

[∇ ~x1EI(R)
]

︸ ︷︷ ︸
d

, . . . ,
[
∇~xlEI(R)

]
︸ ︷︷ ︸

d


︸ ︷︷ ︸

l


︸ ︷︷ ︸

R


(8.25)

Requiring memory of O(ldR) per run, O(ld) per GPU block.

8.4 Availability and requirements

• Project name: EPI

• Project home page: www.github.com/sc932/EPI

• Operating systems: Linux 32/64-bit, Mac OSX, Windows (Cygwin)

• Programming languages: Python, C, CUDA

• Other requirements: Some python packages, see documentation

• License: UoI/CNSA Open Source

88



Part III

Velvetrope
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Velvetrope: a parallel, bitwise algorithm for finding homolo-

gous regions within sequences

Joint work with Nick Hengartner1 and Joel Berendzen2

1Information Sciences Group (CCS-3), MS B265, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

2Applied Modern Physics Group (P-21), MS D454, Los Alamos National Laboratory, Los Alamos, NM 87545,

USA

Abstract

Existing methods for recognizing common patterns in sequence data streams do

not scale well. This scaling problem becomes critical for problems that are driven

by large-scale sequencing, such as metagenomics and cancer genomics. Restricting

comparisons to exact identities of amino acids between a single test sequence and

a set of test sequences allows many efficiencies to be realized, including bitwise

parallel operation and low-order scaling.

We introduce an algorithm based on global and local densities of matches at the

amino-acid level that finds areas of high commonality across a set of sequences. It

produces results that are intermediate between local and multiple sequence align-

ment and can address questions that other approaches cannot. The speed of the

algorithm is superior to BLASTX and HMMER v3, and the scaling is O(N) where

N is the total length of the sequences being compared.
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CHAPTER 9

VELVETROPE INTRODUCTION

Next generation biological sequencing technologies have created a virtual torrent

of new sequence data. The analysis challenges that this data presents need to be

addressed by new algorithms that are designed to be as efficient as possible and

can scale with the data. One area of analytic interest is that of alignment, finding

where two genetic sequences are similar. Finding these highly conserved regions can

lead to new insights on how distantly related organisms perform related tasks. By

examining all of the ways that nature has evolved solutions to a specific challenge,

like synthesizing glucose, we can come up with new and efficient techniques for

applications in everything from biofuels to medicine.

Finding shared elements of sequence among possibly-related genes is

a fundamental operation that underlies most of the analytical meth-

ods of molecular biology, including local sequence alignment, gene match-

ing, multiple sequence alignment, phylogenetic tree calculation, and taxo-

nomic assignments. The earliest approaches to finding this homology be-

tween sequences was derived from pairwise sequence alignment algorithms

such as Needleman-Wunsch [Needleman and Wunsch, 1970] or Smith-Waterman

[Smith, Waterman et al., 1981] both of which employ dynamic programming and

are computationally expensive, in the sense that it does not scale linearly with

the size of the data. A second approach employs hidden–Markov model (HMM)

algorithms such as HMMer [Eddy, 1998]. The HMM may be local or non-local in

nature, is built up by training from a curated data set, and is also generally com-

putationally expensive. A third approach relies upon exact or near-exact matches

between short solid patterns (k-mers for a length k) before also resorting to dy-
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namic programming. The k-mer approach underlies many algorithms such as the

widely–used pairwise aligner and gene matcher BLAST [Altschul et al., 1990] and

its relatives [Kent, 2002, Zhang et al., 2000, Altschul et al., 1997]. k-mers also are

the first pass in the widely used multiple–sequence aligners MUSCLE [Edgar, 2004]

and DIALIGN-TX [Subramanian et al., 2008]. Though the k-mer approach can

be made quite computationally efficient, especially as k is made large, detecting

distant homologies requires use of short values of k and it is easy to construct

pathological cases where commonality will not be detected even for the limiting

value of k = 1.

The importance of computational efficiency and scaling is made paramount by

the recent advances and demands of data-driven projects in fields such as shotgun

metagenomic sequencing and cancer genomics. Such projects routinely create data

sets exceeding 10 Gbp (1010bp) and will soon extend to the Tbp (1012bp) region

as new sequencing technologies come online. Speed and scaling, especially at the

early steps of analysis, is critical to make advances in these fields tractable.

Velvetrope was conceived to enable the identification of sequence homology

with an algorithm that is simple, scalable and parallel from the start. Our ap-

proach is based on finding areas of high densities of shared identities (Amino Acid

or DNA) in local (adjustable) regions between sequences, rather than finding k-

mers. This allows for rapid bitwise operations between sequences, computeable in

parallel. These areas are found by performing first a global, then local filter on the

shared identities. By omitting the k-mer step we allow Velvetrope to access homol-

ogy information between evolutionarily distant sequences otherwise inaccessible by

other existing methods.
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While areas of high sequence identity density are qualitatively similar to local

alignments, they are significantly different from the outputs of traditional pairwise-

local or global alignment algorithms. These regions do correspond to areas with a

high probability of being in a standard alignment as they represent areas of high

local homology. Rather than explicitly calling these regions alignments we refer to

them as “in the club,” thus giving rise to the name, ’Velvetrope’ the traditional

barrier between those in and out of a club.

Velvetrope is a quick, simple and highly parallelizable method (we present both

a serial and parallel implementation) that finds areas of high similarity between

many sequences in a pairwise fashion, never performing a k-mer based step and

independent of order. This allows for it to quickly find areas of high local homology,

including areas that these other methods may ignore like proteins with transposed

domains.
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CHAPTER 10

VELVETROPE METHODS

To find the areas of high local homology between sequences we employ a two-

part filtering system that first finds offsets (sets of positions) where two sequences

share a higher than expected amount of identity (global filter), and then filters

these sets of positions to find areas with higher than expected identity within

them (local filter).

Velvetrope’s filtering system implements only bitwise operations on a sequence

of interest S compared against a possibly large set of other test sequences T. The

first step is a global filter and works by taking the sequence of interest and com-

paring it using DNA or Amino Acid translations (up to 6 frames of reference).

For the motivating examples we will assume we are in a coding region and use an

Amino Acid translation. We can compare the sequence S against each sequence

in the set of sequences to be compared against T ∈ T using simple AND opera-

tions. To track the sequence identities within these offsets we construct a binary

concordance matrix M that keeps track of all matches (sequence identities) across

all possible offsets between the two sequences.

The aggregate number of matches for every offset found is compared to what

would be expected if the test sequence were randomly rearranged at that offset; if

the number of matches is above some threshold then this offset is saved as having

a possible area of high local homology; this is the global filter. All possible offsets

up to the length of the proposed sequence are checked in this fashion. By looking

at all possible offsets between the two sequences we can allow the areas being

compared to shift across the two sequences, even becoming transposed if need be.

This can be done in parallel for all sequences in T and even across different offset
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sets within a particular test sequence.

The next filter is local and works by looking over a fixed-bit window in each

of the possible offsets proposed by the first step. The window keeps a running

average of the number of matches within it, correcting for the expected number of

random matches and keeping track of only the difference between the number of

matches were actually found and what is expected. When there is a large spike in

this value then the window has shifted over an area with a large number of possibly

non-random matches, an area of high sequence identity density. The region is then

saved as an area of high local homology between the two sequences.

10.1 Construction of the Concordance Matrix M

We construct the concordance matrix M by comparing a sequence of interest S

against each test sequence T ∈ T aligned so residue 1 in the sequence of interest

(S1) is being compared to residue 1 of the test sequence (T1), residue 2 compared

against residue 2 (S2, T2), etc. The first row of the bit-matrix is then constructed

as follows: if the residue in the sequence of interest matches the residue it is lined

up against in the test sequence then we give that position a value of 1, otherwise we

give it a 0. We note that the row has length min(LS, LT ), where LS is the length

of the sequence of interest S and LT is the length of the test sequence T . The test

sequence is then shifted so that now residue 2 of the test sequence (T2) lines up

with residue 1 of the sequence of interest (S1), residue 3 compared against residue

2 etc. (T3, S2). This corresponds to offset 2. The second row is then constructed

as before. We define some minimum window size w (user defined, initialized to

20), all LS + LT − 2w possible offsets of overlap greater than or equal to w are
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tested. In general

Mij =

 1 if Sj = Ti+j

0 otherwise
, (10.1)

for all

1 ≤ i ≤ LS + LT − 2w (10.2)

and

max(1, LT − (w + i)) ≤ j ≤ max(1, i+ w − LS). (10.3)

This creates a banded (LS + LT − 2w) × (min(LS, LT )) matrix M that contains

all pairwise comparisons between all possible offsets of size at least w between

the sequence of interest S and the test sequence T . Instead of using the binary

matrix we could also use a transition matrix such as the BLOSSUM62 matrix

[Henikoff and Henikoff, 1992] to encode more information about the relative simi-

larity of individual amino acids at the cost of higher memory requirements (which

is highly restricted in GPGPUs).

If every amino acid in T were randomly distributed and there were equal fre-

quencies of every amino acid we would have (inside the band of the matrix that

actually contains information)

E[Mij] =
1

20
. (10.4)

This is not always true, and the algorithm takes local expectation into account,

but this can be used as an approximation for motivation purposes. This is to say,

long linear stretches of ones in this matrix should be rare and possibly contain

useful information about areas of high similarity.

For example purposes we will compare the RNA Polymerase Beta Subunit

between E. Coli and Bacillus subtilis [GenBank, 2009] for the rest of the imple-
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mentation section. We can see the row sum of the concordance matrix that these

two genes imply compared against the expectation in Table 10.1 and 10.1.

residue 1181 1182 1183 1184 1185 1186 1187 1188 1189 · · ·
SOI I A T P V F D G A · · ·

offset
...

...
...

...
...

...
...

...
...

971· · · * * * I H I A S P · · ·
972· · · * * I H I A S P V · · ·
973· · · * I H I A S P V F · · ·
974· · · I H I A S P V F D · · ·
975· · · H I A S P V F D G · · ·
976· · · I A S P V F D G A · · ·
977· · · A S P V F D G A R · · ·
978· · · S P V F D G A R * · · ·
979· · · P V F D G A R * * · · ·
980· · · V F D G A R * * * · · ·

...
...

...
...

...
...

...
...

...

Table 10.1: This is a subset of the ’offset matrix’ constructed when comparing two
genes. The black letters represent residues 1181-1189 of our sequence of interest.
We are looking at a small section of the rows represented by offsets of 971-980. A
red letter represents a match. As we can see there is an area of possible alignment
in offset 976 as there are many more matches than we would believe to be expected.

10.2 First filter: Global

Now that we have this (LS +LT − 2w)× (min(LS, LT )) binary matrix M , we want

to find what offsets result in abnormal quantities of matches. We want to find

the rows in the matrix that have a higher than expected number of ones in them.

To do this we take the sum of each row and compare it to the expectation of the

number of matches based on amino acid frequency between that offset of the test

sequence and the sequence of interest using a random model. If the sum of the

ones is higher than some predetermined multiple of standard deviations away from

the mean then it is marked as having a possible alignment. A default value of 3.5
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residue 1181 1182 1183 1184 1185 1186 1187 1188 1189 · · ·

offset
...

...
...

...
...

...
...

...
...

971· · · * * * 0 0 0 0 0 0 · · ·
972· · · * * 0 0 0 0 0 0 0 · · ·
973· · · * 0 0 0 0 0 0 0 0 · · ·
974· · · 1 0 0 0 0 0 0 0 0 · · ·
975· · · 0 0 0 0 0 0 0 0 0 · · ·
976· · · 1 1 0 1 1 1 1 1 1 · · ·
977· · · 0 0 0 0 0 0 0 0 0 · · ·
978· · · 0 0 0 0 0 0 0 0 * · · ·
979· · · 0 0 0 0 0 0 0 * * · · ·
980· · · 0 0 0 0 0 0 * * * · · ·

...
...

...
...

...
...

...
...

...

Table 10.2: The matches of the offset matrix encoded into a binary bit-matrix.
A 1 represents a match, a 0 represents no match. Alternatively a BLOSSUM or
other amino acid transition matrix could be used in lieu of the more simple (and
less memory intensive) bit matrix shown.

assures that false positives should be extremely rare. We mark a row i if,

∑
j

Mij > E

(∑
j

Aij

)
+ α

√√√√E

(∑
j

Aij

)
. (10.5)

where E(X) is the expectation of X, Ai: is a random vector constructed from

sequences with the same amino acid composition, α is a parameter and is set to

3.5 by default and the square root represents the standard deviation (we assume

a Poisson distribution). The value of 3.5 ensures a false positive rate of less than

0.1% and we only look at one side distribution, offsets with higher than expected

matches. The value of the mean and expectation is calculated analytically by

combinatorially looking at all possible permutations of the test sequence. See

figure 10.1.

We note that as the lengths of the sequences grow large the signal can become

lost in the noise. Even a k-mer of length 1Kbp would be lost when comparing a

3Gbp sequence using this method. To account for this and also to make easier use
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of the Graphics Processing Unit (GPU) implementation of this algorithm, which

enforces strict memory constraints, we break up the sequences into chunks of length

1000 before forming the matrix M . This not only ensures that the noise will not

overwhelm the signal, but also allows for much faster, parallel implementations.

Areas of similarity that extend over a separation are rejoined in the recompilation

step. By only looking over a linear number of offsets in the length of the test

sequences we achieve scaling of O(N) where N is the total length of the sequences

being compared. This is far less computationally complex than the alternative

dynamic programming and HMM based methods.

Figure 10.1: Values of sums of rows of the bit matrix plotted against standard
deviations from the mean. The right picture is a zoom in of the area where all 4
qualifying offsets lie.
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10.3 Second filter: Local

We now have the set of offsets that have a significant number of ones in them. The

next goal is to quickly find where the areas of high density are in these vectors, if

such areas exist, as these would be areas of high homology between the sequences.

This is done by taking a running sum of each vector from its start; at each point

we subtract off the expectation based on the amino acid frequency of the two

sequences for each position. This has an effect of calculating how many ones have

been found at or before that position above the number that would be expected.

We know that this value must increase at some point in the vector because at the

end there needs to be some extra number of ones equal to some number of standard

deviations away from the mean, based on it passing the global step. Where this

value peaks is where the club starts (it has a significant jump in the running sum

over some window). When the value flattens out again that part of the sequence

is no longer in the club (see Figure 10.2).

Two parameters are used here (combined with the one from the global filter,

they represent all three parameters of the model), the width of the block used for

approximating the derivative and the number of matches above the expectation

that are needed to trigger the start of the region. We can get the quick, bitwise

location of the high density region in the vector, which corresponds to our “in the

club” region. A useful side effect of this filter is that if there is no region of high

density, if we have just accidentally found an outlier from the global filter that just

happens to have a lot of sparse matches, then it will not trigger and we will not

get a false positive from the result of the global step.
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Figure 10.2: The four vectors that passed the global filter test and their running
sum calculation. When the approximate derivative of the running sum reaches a
certain point the region is marked as having a possible alignment and shaded. For
the vector blue means no match and not in that region, cyan is a match but not
in the region (random match), yellow is the region of possible alignment and red
are the positions in that region that have matches. The location of the region is
marked along with the total density of matches within that region.

10.4 Recompilation

Now we have identified the regions where we have reason to believe there are local

alignments between the two sequences, our “in club” areas. We can see where

they lie on their respective sequences and how their densities compare with each

other and the sequences as a whole. This can be important information because

the shifting of conserved regions and possible transposition events can represent

evolutionary distance between the sequences. If we consider the conserved regions

to be fixed by natural selection, then their relative drift away from each other

should be related to the point when they originally diverged. We can see an

example of this in Figure 10.3 where there is a difference in the sequence length
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between conserved areas of sequence.

Figure 10.3: Above we see where each area of possible local alignment lies within
the sequence of interest (top) and the test sequence (bottom) along with their
respective positions and densities
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CHAPTER 11

VELVETROPE RESULTS

11.1 Comparison to Needleman-Wunsch algorithm

We now compare the algorithm on a pairwise basis to the Needleman-Wunsch

(NW) algorithm [Durbin et al., 2006] [Needleman and Wunsch, 1970]. We will

compare specific regions of the NW alignment to areas that the Velvetrope al-

gorithm determined were locally aligned.

For these examples we will use pairs of generated sequences. First an Hidden

Markov Model (HMM) based generated pair and then a pathologically designed

pair where two conserved areas have been transposed. These aren’t exactly fair

comparisons because algorithms like NW and BLAST are not designed to handle

instances like this, they just want to align the entire sequence from end to end. The

point of this section is to show that although the Velvetrope algorithm does not

solve the same problem as these algorithms and thus cannot be directly compared,

it can solve some other problems that these standard methods cannot.

11.1.1 Comparison to NW: HMM generated sequence

First we generate the sequence of interest by randomly sampling 800 amino acids.

The test sequence is then generated using the following HMM,

The parameter values are set as follows:
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Figure 11.1: The HMM for generating the test sequence. There are 6 states,
Start(S), High Density(H) where there is a 0.63 chance of sampling from the se-
quence of interest and 0.37 chance of random, Low Density(L) where all sampling
is random, Deletion(D) where we shorten the sequence, Insertion(I) where we add a
random element to the sequence but don’t increment the position we are comparing
ourselves to in the sequence of interest, and End(E)



δ = 1
800

tHL = tLH = 1
20

tLD = tLI = 1
20

εD = εI = 3
5

tIL = tID = 2
5

εH = 19
20
− δ

εL = 17
20
− δ

(11.1)

We use the BLOSUM62 matrix [Henikoff and Henikoff, 1992], and a relatively

high deletion penalty (equal to the highest transfer) and an emission rate of a

quarter of that.
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Figure 11.2: The local filter information on the single line of high density returned
from the global filter

Figure 11.3: Topological information on the relative position and density of the
alignment

Below is the area of local alignment as determined by Velvetrope as compared

to the same region aligned by NW.

RES: [388,469] of gene1

RVRGYIVWIKTLDPWHINSKCFGGSDIMCTHDTHIVYHHVYRKSELHEKMLESNRFCAVRQIHHSHADHFWRLVNVEAVFCW

CVEKEYVWFKYNAPWHINSKCFRGGDIHCTHDTWIVYLHVYLTSNLHEKGLTGNRFTAVVQHHIAMADVFWRLTNVEWVKVG

RES: [362,443] of gene2

RES: [470,476] of gene1

NSFYQTG

NYAFQYA

RES: [444,450] of gene2

We note that by trying to align the random sections earlier and later in the

sequence the algorithm fails to accurately pick up this area of high local alignment.

RES: [425,506]

RVRGYI-VWI--KTLDPWHINS--KCFGGSDIM-CTHDTHIVYHHVYRKS-ELHEKMLESNRF-CAVRQ--IHHSHADHFWR
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R-NKKNRT-CKNERIDGTCI-FWLK-FAGTP-SCCV-EKEYVWFK-YNAPWHINSKCFRGGDIHC-THDTWIVYLHV-YLTS

RES: [425,506]

RES: [507,525]

-LVNVEAVFCWNSF-YQTG

NLHEKGLTGNRFTAVVQ-H

RES: [507,525]

11.1.2 Comparison to NW: Pathological Transposition

Now we look at a pathological example where we generate the sequence of interest

randomly as before.

For the test sequence we generate the first 200 residues randomly. Then for the

next 100 we draw from SOI[500:600] at a rate of .63 and random otherwise. This

is followed by another 200 random residues. Then for the next 100 we draw from

SOI[200:300] at a rate of .63 and random otherwise. This is followed by a final 200

random sequences.

This gives the effect of SOI = [random, gene1, random, gene2, random] and

TS = [random, gene2, random, gene1, random].

NW and Velvetrope are both run on this example with the following results

and local alignments

Below is the area of local alignment as determined by Velvetrope for the first

conserved section.

RES: [186,267] of gene1

GANHKYQVHQPLNAMYYQGSTHHFCELKRTWVNYTWIEMCIICNKCNECGVVVYNQSRLKVWCSICHSPAEVKQDTIMYLCH

LNPHQPHAHYPCDNNYYQGSTIHFCELKRTWQNYTWIELRIILIFCNECSVSVYLTSALKVIGIICHPPYELEQDKIMYNTH
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Figure 11.4: The local filter information on the two lines of high density returned
from the global filter

Figure 11.5: Topological information on the relative position and density of the
alignments. We can see that they are transposed as expected. The densities are
0.57 and 0.55 respectively.

RES: [486,567] of gene2

RES: [268,304] of gene1

KFCETVEMHQEMDQIACHAYEGIWLSHVKDVFKCEVN

KFCTTWEMHSEMDDSAEHAHWGIFLPHVKDVNALFLK

RES: [568,604] of gene2

Below is the area of local alignment as determined by Velvetrope for the second

conserved section as compared to the same region aligned by NW.

RES: [496,577] of gene1

VNEKPYCGETMHKAFSMVSCRWCIEVLWGVCGRSLHQAEKNREVPAAVHNTVKCFEMMYPRQMHDVATPEHKMHYSVVKCRG

IYWWPRCIDTMDKRTSMVSCRIGREVLWGMLGRSLHQAEKNREVPQVVHNMVKCLKCVGVSKMDMVATFHHAMHYEPVMCRG

RES: [196,277] of gene2
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RES: [578,605] of gene1

PCGLCNFICDTDPLMKGFDEPNKNWMTI

PCVECNAICDTDQLMKINIRPNSDWTVV

RES: [278,305] of gene2

This algorithm is clearly not set up to deal with transposed conserved regions

and it fails as expected.

RES: [556,637]

VNEKPYCGETMHKAFSMV-SCRWCIEVLWGVCGRSLHQA-EKNREVPAAVHNTVKCFEMMY-P--RQM-HDVATPEHKMHYS

AH-YP-C-DN-N-YY-QGSTIHFC-E-LKRT-WQN-YTWIEL-R-I-ILIF-CNECSVSVYLTSALKVIGIICHPPYELEQD

RES: [556,637]

RES: [638,674]

VVKCRGPCG-LCNFICDTDPLMK-GFDEPNKNW-MTI

KI-MYN-THKFCT-TWEMHSEMDDS-AE-HAHWGIFL

RES: [638,674]

11.2 Multiple Sequence Alignment

Multi-domain proteins have traditionally been cumbersome to Multiple Sequence

Alignment (MSA) algorithms like MUSCLE [Edgar, 2004] and DIALIGN-TX

[Subramanian et al., 2008] like the 31 multi-domain lectin proteins in Reference

8 of BAliBASE v3 [Thompson et al., 1999]. The two domains for lectin are trans-

posed for 4 of the organisms and are ordered “correctly” for the other 27 in the

reference database (See figure 11.6). Because Velvetrope works independent of

order it allows us to find transposed domains from within a protein such as this

with relative ease and compute a probable, non-traditional MSA.
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Comparing a sequence of interest against a large set of test sequences allows

Velvetrope to find the areas within the sequence of interest that are homologous

to multiple test sequences. By combining this information across many sequences

(as in figure 11.8) we make a histogram of which residues were matches and in the

club across many test sequences. We are able to discern areas of possible multi-

ple alignment from within the sequence of interest in this fashion. By looking at

the areas within the sequence of interest which are consistently identical to test

sequences or in the club we can generate regular expressions of sequence that can

be readily re-mapped onto the sequence of interest, representing a non-traditional

multiple alignment. This allows us to find a probable MSA and because Velvetrope

only compares a single sequence of interest against a larger set we can use this to

quickly append a new sequence to a multiple alignment multiple orders of mag-

nitude faster than traditional methods which would have to recalculate the entire

MSA for every appended sequence.

Traditional methods, like those in BAliBASE, have to be prompted with do-

main information to make sense of a multi-domain protein at all. Even with this

information they only align the prompted domain and merely append the other

domain(s) around the domain of interest. This results in a MSA that does not

represent the true alignment between the proteins. Velvetrope is able to produce

a shorter MSA with all domains represented without any prior information. In

Figure 12.1 we look at two MSAs in which BAliBASE was prompted with the two

lectin domains and it generates an non-intuitive alignment. While using just a

single sequence of interest we are able to find both domains and re-map them onto

that sequence and generate a much more compact and representative probable

MSA very quickly.
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Figure 11.6: The lectin sequences from Reference 8 - Circular Permutations of
BAliBASE3. The reference contains 31 two-domain lectin proteins from a myriad
of organisms. In 4 of the sequences the Lectin2 domain comes before the Lectin1
domain, the opposite for the remaining 27. This presents a problem for most
multiple alignment algorithms which will try to align one domain or the other.

Local alignment comparison

While Velvetrope does not perform a local alignment in the traditional sense

it is able to find areas of high local homology between sequences, regardless

of order or k-mer density, that are highly probable areas of local alignment.

Velvetrope compares well at a visual level to standard algorithms like BLAST

[Altschul et al., 1990] and HMMer [Eddy, 1998] and the C/CUDA implementation

executes at the same order of magnitude or faster than these methods. Velvetrope

is very susceptible to high indel rates within a conserved region (shifts the offsets)

but has been shown to equal or outperform these other methods in areas of low in-
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Figure 11.7: We see that by combining the information about shared identity
(solid, blue columns) and club membership (light, always larger, green columns)
from a single sequence of interest across many test sequences we can find the areas
of the sequence of interest that are shared among a large percentage of the whole
set. This information, shown for the lectin protien from BAliBASE reference 8,
can be used to determine where the two protien domains are (areas where the
columns are high) and create a probable MSA.

del rate especially when there are only short k-mers within the homologous region

between the two sequences.
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Figure 11.8: Two sets of alignments of the two-domain lectin protein reference.
Red corresponds to the Lectin1 domain. Green is the Lectin2 domain. Orange is
the Velvetrope alignment. Blue is the BAliBASE alignment. BAliBASE resolves
the two-domain problem by manually specifying which domain to align (Lectin1
in the first alignment, Lectin2 in the second). This causes the aligner to append
whatever domain not specified to the beginning or end of the alignment. Velvetrope
is order independent which allows it to pick out areas of homology regardless of
position in the sequence without any expert tuning. Lectin1 suffers from low
homologous identity in the latter part of its domain and is therefore not picked up
by Velvetrope, but is aligned by the non-homology components of BAliBASE.

11.3 Comparison to other methods

To compare the sensitivity and specificity of Velvetrope to other popular methods

such as BLAST [Altschul et al., 1990] and HMMer [Eddy, 1998] we contrast the re-

gions of similarity that each algorithm reports when comparing genes from E. Coli

and Bacillus subtilis [GenBank, 2009]. Using each programs default parameters

we obtain the results:

Method Reported Bases Similar Reported Regions Similar
BLAST 1112 3
HMMer 1081 5

Velvetrope 842 7

We note that the default settings of Velvetrope are much more specific and

less sensitive than both BLAST and HMMer. By modifying the parameters of

the two filters we can increase the sensitivity at the cost of the specificity. Using

the default parameters allows us to use Velvetrope as a quick first-pass algorithm

to find areas of high identity that could then be expanded by algorithms such as

BLAST and HMMer that are significantly more computationally intensive.
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Figure 11.9: The regions within E. Coli that each algorithm found identity in when
compared to Bacillus subtilis.

Figure 11.10: The bases within E. Coli that each algorithm found identity in when
compared to Bacillus subtilis and their respective overlaps between the algorithms.
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CHAPTER 12

VELVETROPE IMPLEMENTATION

Velvetrope is designed to be easily parrallelizeable and far less complex than

other methods. In figure 12.1 we compare the implementation of Vevletrope to that

of BLAST [Altschul et al., 1990]. We do not show HMMer on the plot because it

is so computationally expensive that it does not fit, requiring many minutes for

comparing only a few hundred sequences.

Velvetrope is able to find areas of sequence homology quickly and efficiently

across multiple sequences. It finds these areas of high shared identity density in

a way that allows it to locate areas otherwise missed by k-mer based or position

dependent methods. It is able to correctly find probable alignments in multi-

domain proteins and pairwise local areas of similarity between distant homologies.

Its low order of computational complexity, O(N) where N is the total length of the

sequences being compared, allows for it to scale with the data intensive challenges

that fields like metagenomics and cancer genomics present.

We also present a freely available, open source implementation (both serial and

parallel; in Python, C and CUDA) with easy to navigate HTML output similar to

MEME [Bailey et al., 2006]. The API and documentation make it easily extendible

and able to adapt to the future computationally intensive problems it is designed

to address.

12.1 Availability and requirements

• Project name: Velvetrope

• Project home page: velvetrope.sourceforge.net
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Figure 12.1: The sequential C implementation of Velvetrope can compare 10,000
sequences to a SOI in almost exactly a minute. BLAST, which has been optimized
for many years across many platforms can perform the same number of calculations
in 20 seconds. The CUDA implementation of Velvetrope can execute the algorithm
in under 3 seconds, but requires another 15 seconds to load the data onto the
GPGPU across the PCI-E bus. If the sequence information is cached on the
GPGPU then this memory transfer step is alleviated and Velvetrope can compare
SOIs against these cached sequences at a rate much faster than BLAST.

• Operating systems: Linux 32/64-bit, Mac OSX, Windows (Cygwin)

• Programming languages: Python, C, CUDA, HTML/CSS

• Other requirements: Some python packages, see documentation

• License: GPL v2.01
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APPENDIX A

APPENDIX

A.1 Computational Resources

A.1.1 Code Repository

All code written for this thesis and each project is open source and can be found

on github at (www.github.com/sc932).

See individual projects for licences, all open source.

A.1.2 Workstation

All speed tests using wall clock time were performed on my personal workstation

(originally built in 2008) with the following specifications (Table A.1)

Table A.1: Workstation configuration

Operating Sytstem Ubuntu 11.04
CPU 2x Xeon 2.5Ghz Quad Core (8 cores)

Memory 32GB DDR400
GPU NVIDIA GeForce 480 GTX (480 cores)
HDD 64GB SSD (150Mb/s read/write), 1TB Raid 10 (storage)

Software Python 2.7.1+, gcc 4.5.2, CUDA 4.1
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A.1.3 Hopper

Some computations were performed on Hopper, a 153,216 processor (1.28PFlop)

U.S. Department of Energy supercomputer at the National Energy Research Sci-

entific Computing Center (NERSC), with the following specifications (Table A.2)

Table A.2: Hopper node configuration

Operating Sytstem Cray Linux Environment
CPU 2x AMD 12-core MagnyCours 2.1Ghz (24 cores)

Memory 32GB DDR1333
GPU N/A
HDD via Interlink

Software Python 2.6, gcc 4.6.2
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