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Structure Based Drug Design is an emerging tool employed in industry as well as 

academia in the design and discovery of therapeutically relevant molecules.  The 

enzyme S-Adenosylmethionine decarboxylase (AdoMetDC) is a critical enzyme in the 

polyamine biosynthetic pathway and an attractive target for design of anti-cancer and 

anti-proliferative compounds.  The polyamines putrescine, spermidine and sperimine 

are ubiquitous aliphatic cations essential for cell growth, differentiation, and 

proliferation.  The crystal structure of human, potato and bacterial AdoMetDC have 

been determined previously.  The crystal structure of human AdoMetDC with S-

adenosylmethionine methyl ester (MeAdoMet) and putrescine bound provided insights 

into the interactions of the substrate and putrescine with the enzyme.  It is well known 

that putrescine activates the autoprocessing and decarboxylation of human 

AdoMetDC.  To understand the structural basis of the activation, crystal structures of 

the wild type enzyme and the D174N, E178Q, and E256Q mutants were obtained in 

the putrescine free form.  Putrescine was added to the E178Q and E256Q mutants and 

the crystal structures obtained.  The crystal structures of the putrescine free mutants 

with MeAdoMet bound were also obtained.  A comparison of the crystal structures 

reveals the details of putrescine activation of Human AdoMetDC.  Based on the 

structural information of the active site and MeAdoMet binding interactions, a series 

of compounds were synthesized.  The crystal structure of human AdoMetDC with a 



 

member of each of the series was obtained.  The structures coupled to biochemical 

results and quantum chemical calculations revealed details about the substrate 

specificity of AdoMetDC.  The ligands were bound to AdoMetDC with the adenine 

base in the higher energy syn conformation.  A series of compounds with substitutions 

at the C8 position of the adenine base were obtained.  These compounds turned out to 

be more potent inhibitors than the unsubstituted parent compounds.  The crystal 

structure of processed form of AdoMetDC from Thermotoga maritima and complexed 

to MeAdoMet and 5’-Deoxy-5’-dimethyl thioadenosine (MMTA) were also obtained.  

The conservation of the binding mode of ligands in prokaryotes suggests the extension 

of inhibitors of human AdoMetDC to other therapeutically relevant species. 
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CHAPTER 1 

STRUCTURAL BIOLOGY IN DRUG DESIGN 

Section 1.1. Structural Biology 

Structural biology studies biological processes from a structural view point.  

The structural details of the molecule of interest can be obtained by numerous methods 

such as X-ray crystallography, nuclear magnetic resonance spectroscopy (NMR), 

electron microscopy, laser spectroscopy, and circular dichrosim.  X-ray 

crystallography is a powerful method used to obtain the atomic position of all atoms in 

the molecule of interest when arranged in the form of a crystal lattice.  This method is 

routinely used to study the structure of molecules varying from small inorganic salts to 

large macromolecular assemblies comprising of proteins, nucleic acids etc.  X-ray 

crystallography is currently the most accurate tool in determining the atomic 

coordinates of macromoleucles.  The structural information of biologically relevant 

macromolecules aids in understanding phenomenon such as catalysis, binding, 

structure, signaling and transport. 

 Determination of structure by X-ray crystallography primarily involves the 

processes of (1) growing 3-D crystals of macromolecule of interest (2) shooting a 

focused beam of X-rays through the crystal and obtaining a diffraction pattern (3) 

obtaining the electron density of the macromolecule using various phasing techniques 

and (4) building the model of the macromolecule based on the electron density maps 

and refinement of the model.  Crystals of macromolecules are usually obtained by 

incubating pure and homogenous macromolecule with suitable precipitating agents.  

The electron density of the macromolecule is a Fourier transform involving the 

intensity of spots on the diffraction pattern and the phase of each reflection.  The 

phase value of the each reflection cannot be measured experimentally and hence has to 

be inferred indirectly.  Many methods have been developed to solve the “phase 
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problem”.  Multiple isomorphous replacement (MIR) involves soaking of a heavy 

atom into the protein crystals.  The change in scattering upon addition of heavy atom 

is analyzed for phase determination.  The most powerful technique for solving the 

phase problem is multi-wavelength anomalous diffraction (MAD).  The anomalous 

diffraction of atoms is wavelength dependant and is carefully measured by collecting 

data at two different wavelengths.  Single-wavelength anomalous diffraction (SAD) 

phasing technique is routinely used to obtain the phase information. For this 

technique, the methionine residues in the protein are replaced with selenomethionine, 

which acts as a heavy atom.  Molecular replacement is the widely used phasing 

method where the initial phases of the model are obtained from the structure of a 

homologous protein with sufficient sequence identity.  Direct methods is a powerful 

phasing tool suitable for small molecule structures or with high resolution data.  This 

method looks for statistical relationships between sets of structure factors and 

estimates the phase values for those reflections. 

Section 1.2. Structure based drug design 

The determination of 3-D structure of macromolecules of therapeutic interest 

has always been a major research for industry as well as academia.  In most of the 

cases, the structure would reveal the ligand binding site, which could be used for 

rational design of molecules with better potency (1, 2).  More recently, virtual 

screening programs perform screening of libraries of millions of compounds to the 

active site to obtain a lead compound for further development.  The virtual screening 

process is an effective way to obtain novel lead compounds and reduce drug discovery 

costs.  The lead compounds are tested using biochemical methods for potency and 

promising candidates are developed further.  The development of HIV protease 

inhibitors Nelfinavir and Amprenavir and the influenza drug Relenza have been aided 
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by structural studies (2).  The drugs Captopril, Dorzolamide, Zanamivir are a few 

examples that have been rationally developed from a structural viewpoint (3, 4). 

Structure based drug design requires that targets have an experimentally 

determined crystal structure to high accuracy.  However, there are a lot of targets that 

do not have an experimentally determined crystal structure.  In those cases, homology 

modeling provides reasonably accurate structural information of macromolecules 

tough to crystallize (5, 6).  In many cases, the structural information from homology 

modeling has been vital in making key changes to the targets for successful 

crystallization.  As of now more than 40 drugs designed through structural means have 

entered clinical trials.  As a result, the use of structure in drug discovery is gaining 

more importance in recent times. 

Section 1.3. Polyamine biosynthesis and targets 

The polyamines putrescine, spermidine and spermine are simple aliphatic 

cations implicated in cell growth and proliferation (7, 8).  At physiological conditions, 

the polyamines are positively charged with the positive charges separated from each 

other by the aliphatic carbon chain.  The polyamines are known to bind to the negative 

charged DNA, RNA and nucleic acids (9).  They are also known to maintain 

chromatin conformation and regulate specific gene expression (10-12).  In addition, 

polyamines are also implicated in ion-channel regulation, membrane stability and free 

radical scavenging (13, 14).  Elevated levels of polyamines are found in rapidly 

proliferative cells, which make the polyamine biosynthetic pathway an attractive target 

for antiproliferative diseases and cancer chemotheraphy. 

The polyamine levels in the cells are maintained by the regulation of the 

biosynthetic enzymes, catabolic enzymes and transport in/out of the cellular 

membrane.  The polyamine biosynthetic pathway has two separate branches, the 

products of which are used in the production of all the polyamines (Figure 1.1).  In the 
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first branch of the pathway, putrescine is produced by the decarboxylation of ornithine 

by ornithine decarboxylase (ODC).  In plants, an alternate pathway also produces 

putrescine.  The amino acid arginine is decarboxylated to agmatine by arginine 

decarboxylase.  Agmatine is hydrolyzed to putrescine by agmatine ureohydrolase.  In 

the second branch of the pathway, S-adenosylmethionine (AdoMet) is decarboxylated 

to decarboxylated S-adenosylmethionine (dcAdoMet) by S-adenosylmethionine 

decarboxylase (AdoMetDC).  The aminopropyl group from dcAdoMet is transferred 

to putrescine to form spermidine and in the next step the aminopropyl group is 

transferred to spermidine to form spermine.  These transfer reactions are catalyzed by 

spermidine synthase and spermine synthase respectively.  In the catabolic pathway, the 

joint action of the enzymes spermidine/spermine N1-acetyltransferase and polyamine 

oxidase convert spermine to spermidine and spermidine to putrescine in each step 

respectively. 

The inhibitors to the polyamine biosynthetic pathway and the activators of the 

catabolic pathway have shown promise as antiproliferative agents.  The biggest 

success of the inhibitors of the polyamine pathway is α-difluoromethylornithine 

(DFMO), an inhibitor of ODC that is approved by FDA for the treatment of African 

sleeping sickness caused by the parasite Trypanasoma brucei gambiense.  DFMO has 

also been a subject of various clinical trials as a chemopreventive agent.  The 

inhibitors of AdoMetDC methylglyoxalbis(guanylhydrazone) (MGBG) and 4-

amidinoindan-1-one-2´-amidinohydrazone (CGP48664A) have been a subject various 
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Figure 1.1 Overview of the polyamine biosynthetic and catabolic pathway 
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clinical trials.  The compounds N1,N11-di(ethyl)norspermine (BE-3-3-3) and an 

unsaturated variant of N1,N12-di(ethyl)spermine (CGC-11047) are polyamine analogs 

that are inducers of SSAT and spermine oxidase.  These compounds are currently in 

Phase II clinical trials in multiple cancers.  The compounds mentioned above provide 

the proof of principle that the inhibitors of the polyamine pathway have potential 

therapeutic applications. 

Section 1.4. S-Adenosylmethionine Decarboxylase 

Decarboxylation reactions in enzymes usually depend on a pyridoxal-5´-

phosphate (PLP) or a pyruvoyl group for the reaction.  AdoMetDC belongs to a small 

class of enzymes that depend on a pyruvoyl group for the decarboxylation process.  

Other examples of pyruvoyl group dependant decarboxylases are histidine 

decarboxylase and aspartate decarboxylase respectively (15, 16). 

The pyruvoyl group in AdoMetDC is generated from a serine residue in a self-

cleavage reaction.  In humans, the processing reaction happens spontaneously and 

there might be other factors involved for processing in different species.  The 

mechanism of autoprocessing in human AdoMetDC is shown in Figure 1.2.  The 

cleavage occurs between the residues Glu67 – Ser 68.  The backbone of the serine 

residue attacks the adjacent carbonyl carbon of Glu67 to generate a five-member ring 

oxyoxazolidine intermediate.  The intermediate collapses to form an ester 

intermediate.  The basic residue His243 abstracts a proton from the Cα carbon of 

Ser68 resulting in the cleavage of the ester intermediate to two chains.  The subunit 

containing the N-terminal part of the uncleaved chain is called the β subunit and the 

subunit containing the C-terminal part is called the α subunit.  The N-terminus of the 

α subunit has a newly formed dehydroalanine residue that is tautomerized to form an 

imine, which is further hydrolyzed to form the pyruvoyl group. 
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The pyruvoyl group acts as a cofactor in the decarboxylation process.  The 

substrate AdoMet binds to the enzyme by making a Schiff base to the active site 

puruvoyl group (Figure1.3).  The decarboxylation reaction proceeds with the pair of 

electrons from the leaving group delocalized into the pyruvoyl group.  The acidic 

residue Cys82 protonates the Cα carbon of the substrate to generate the imine 

intermediate.  The imine is further hydrolyzed to release the product dcAdoMet and 

regenerate the pyruvoyl group for further rounds of catalysis.  It has also been 

observed that the incorrect protonation (on the pyruvoyl group) of the intermediate 

would result in the transamination of the pyruvoyl group resulting in a dead enzyme.  

Activity assays of human AdoMetDC have indicated that on an average, the enzyme 

performs 4-5 turnover reactions before being transaminated (17). 

The polyamine putrescine is known to regulate the activity of AdoMetDC by 

affecting the rates of autoprocessing and decarboxylation respectively.  However, the 

effect of putrescine on AdoMetDC are species specific.  Putrescine activates the 

autoprocessing reactions in humans.  Putrescine activates the decarboxylation reaction 

in humans, Trypanosoma brucei, Trypanosoma cruzi, and Caenorhabditis elegans.  In 

Neurospora crassa, putrescine is essential for the decarboxylation but there is no 

effect on the processing reaction (18-21). 

The crystal structure of human AdoMetDC with the methyl ester of AdoMet 

(MeAdoMet) and putrescine bound has been determined previously (22).  The crystal 

structure reveals the active site and the binding pocket of putrescine in the enzyme.  

Putrescine binds 16 – 20 Å from the active site (Figure 1.4) and makes extensive 

interactions with the enzyme.  Human AdoMetDC exists as a dimer and biochemical 

studies reveal positive cooperativity in putrescine and substrate binding to the dimeric 

form of the enzyme (Figure 1.5). 
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Figure 1.2. Mechanism of pyruvoyl group formation in AdoMetDC. 

 

 

Figure 1.3. Mechanism of decarboxylation of AdoMetDC. 

The crystal structure of human AdoMetDC provides an opportunity to 

investigate the regulation of the enzyme and rationally design inhibitors to the active 

site.  The subsequent chapters 2-4 describe insights obtained by X-ray crystallography, 

biochemical analysis, and molecular modeling into regulation, substrate specificity, 

and inhibitor design of human AdoMetDC respectively.  Chapter 5 describes the 

structural details of processing and complex formation in Thermotoga maritima 

AdoMetDC. 
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Figure 1.4. Monomeric form of processed human AdoMetDC.  The α and β subunits 
are colored brown and yellow respectively.  Putrescine and MeAdoMet are shown as 
sticks. 

 
Figure 1.5. Dimeric form of human AdoMetDC viewing down the 2-fold axis.  
Putrescine and MeAdoMet are shown in ball and stick. 
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CHAPTER 2 

STRUCTURAL BASIS FOR PUTRESCINE ACTIVATION OF HUMAN S-

ADENOSYLMETHIONINE DECARBOXYLASE1 

Section 2.1. Introduction 

S-Adenosylmethionine decarboxylase (AdoMetDC) is a critical enzyme in the 

polyamine biosynthetic pathway (1, 2) and depends on a pyruvoyl group for the 

decarboxylation reaction (3-5).  It is synthesized as a proenzyme that undergoes an 

apparent autocatalytic processing reaction to generate the pyruvoyl group from an 

internal serine residue.  The enzyme converts S-adenosylmethionine (AdoMet) to S-

adenosyl-5´-(3-methylthiopropylamine) (dcAdoMet).  The propylamine group from 

the product is transferred to putrescine to form spermidine, or spermidine to form 

spermine.  Putrescine is generated by the decarboxylation of ornithine by ornithine 

decarboxylase (ODC).  Polyamine levels are highly regulated in the cell and are 

closely linked to normal cell growth and division.  Both ODC and AdoMetDC are 

regulated through multiple mechanisms, catalyze reactions in the earlier stages of 

polyamine biosynthesis, and their reaction products are committed to polyamine 

biosynthesis.  Consequently, these enzymes are the focus of inhibitor design, for both 

anticancer and antiparasitic agents (6, 7).  α-Difluoromethylornithine is a suicide 

inhibitor of ODC and is approved by the Food and Drug Administration for the 

treatment of African sleeping sickness.  Two inhibitors of AdoMetDC, methylglyoxal 

bis(guanylhydrazone) and 4-amidinoindan-1-one-2´-amidinohydrazone 

(CGP48664A), have been the subject of several clinical trials (8-16).  Although 

neither compound is approved for clinical use, the polyamine biosynthetic pathway 

remains an attractive target for both cancer and antiparasitic chemotherapy. 

                                                
1 Reproduced with permission from Bale S, Lopez MM, Makhatadze G; Fang QI; Pegg AE, and Ealick 
SE. (2008). Biochemistry 47:13404-13417. Copyright 2008 American Chemical Society 
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All AdoMetDCs currently characterized are pyruvoyl enzymes but they can be 

divided into two classes.  Class 1 enzymes are present in bacteria and archaea and 

class 2 enzymes are present in eukaryotes (5, 17).  The human AdoMetDC proenzyme 

contains 334 amino acid residues.  The processing reaction generates the α- (67 amino 

acids) and β-subunits (266 amino acids) with the pyruvoyl group at the N-terminus of 

the β-subunit (18).  Only a small fraction of the total AdoMet pool is in the 

decarboxylated form and AdoMetDC activity is very highly regulated according to the 

need for polyamine synthesis (3, 19, 20).  An important part of this regulation in 

mammalian cells and some other eukaryotes with class 2 AdoMetDCs, but not in 

plants, is the activation of the enzyme by putrescine (3, 19-21).  Activation of the 

mammalian enzyme occurs at two stages: the rate of processing of the proenzyme is 

stimulated and the decarboxylase activity is increased in the presence of putrescine 

(22, 23).  These factors provide a link between the availability of putrescine and the 

production of dcAdoMet, which is the other substrate of spermidine synthase.  This 

allows the very efficient conversion of putrescine into spermidine without increasing 

the steady state pool of dcAdoMet. Mammalian cells therefore have spermidine 

content greatly in excess of putrescine and c.1-2% of the AdoMet is in the form of 

dcAdoMet (20, 24, 25).  AdoMetDCs from fungi and several protozoal parasites have 

also been shown to be activated by putrescine (20, 22, 26, 27), but this activation may 

occur only at the level of the stimulation of activity (28, 29). 

Structural studies of human AdoMetDC have indicated that the functional form 

of human AdoMetDC is an (αβ)2 dimer with one active site and one pyruvoyl cofactor 

per protomer (23, 30, 31).  The putrescine binding site is located between two central 

β-sheets of the enzyme, away from the active site and near the dimer interface (Figure 

2.1 A).  One end of putrescine is directly hydrogen bonded to Asp174, Glu15 and  
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Figure 2.1. Putrescine binding site of human AdoMetDC. (A) Ribbon diagram 
of AdoMetDC showing the putrescine binding site and the active site with MeAdoMet 
bound (from pdb 1I7B).  (B) Stereoview of interactions of putrescine with the enzyme. 
Putrescine carbon atoms are colored green. Water molecules are shown as red spheres 
and hydrogen bonds are shown as dashed lines. 

 

Thr176.  The other end is hydrogen bonded through water molecules to Glu178, 

Glu15, Glu256 and Ser113.  The aliphatic chain of putrescine stacks against Phe285 

and Phe111 (Figure 2.1 B). The putrescine molecule is linked to the active site by 

several buried charged residues.  Mutations of residues in the putrescine binding site 

modulate the effects of putrescine (32).  Studies using site-directed mutagenesis of the 

human and T. cruzi AdoMetDCs have identified multiple residues whose alteration 

abolished the activation (22, 29, 32-34).  These include Asp174 in the human enzyme, 

which is conserved in all the known putrescine-stimulated AdoMetDCs and is not 
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present in other class 2 AdoMetDCs such as those from plants, which are not 

putrescine activated (33, 35).  

Apart from these studies, there is virtually no information on the binding of 

putrescine to human AdoMetDC or the changes brought about by this binding.  To 

obtain further insights into the mechanism of putrescine activation, we undertook 

structural studies of human AdoMetDC and putrescine binding mutants D174N, 

E178Q and E256Q, with (+Put) and without (-Put) bound putrescine.  We have also 

studied the biochemical properties of the putrescine free enzymes using UV-CD 

spectroscopy, analytical ultracentrifugation and isothermal titration calorimetry (ITC).  

The crystal structures showed no global structural changes but revealed a local 

rearrangement of four aromatic residues near the putrescine binding site, Phe285, 

Phe315, Tyr318 and Phe320, and a conformational change in the loop 312-320.  

Biophysical studies confirmed one putrescine binding site per protomer and showed 

positive cooperativity between the two binding sites within the dimer.  Additionally, 

the D174N mutant did not bind putrescine and the E178Q and E256Q mutants bind 

putrescine weakly with no cooperativity.  Our findings demonstrate that putrescine 

activates AdoMetDC primarily through positioning of active site residues and 

electrostatic effects relayed to the active site largely through hydrogen bonding. 

Section 2.2. Materials and Methods 

Cloning and Expression.  The constructs for expression of human AdoMetDC 

and mutants were modified from those described previously  (18, 32-34) to place the 

(His)6 tag at the carboxyl end of the protein replacing the C-terminal –QQQQQS 

sequence. Briefly, primers 5'-

d(ATTAAAGAGGAGAAATTAACTATGGAAGCTGCACATTT-TTTC)-3' with a 

Bser I site (underlined) and 5'-(GTGGTGGGATTCACTCTGCTGTTG-TTGCTG)-3' 

with a BamH I site (underlined) were used as the sense and antisense primers in a PCR 



 

 18 

reaction using pQE-SAMDC as a template.  The product was digested with Bser I and 

BamH I and ligated into plasmid pQE-C145S (36), which encodes the C-terminal 

(His)6–tag, that had been digested with the same enzymes.  E.coli strain BL21(DE3) 

containing the AdoMetDC wild type plasmid or plasmid for the mutant proteins was 

grown at 30 °C overnight in a 2 x YT media containing 100 mg/mL ampicillin.  The 

protein expression was induced by addition of 1 mM isopropyl-1-thio-β-D-

galactopyranoside.  Cells were harvested after 4 h and resuspended in 50 mM sodium 

phosphate pH 8.0, 200 mM NaCl, 2.5 mM putrescine and 0.1 mM 

phenylmethylsulphonyl fluoride.  The cells were lysed using a French pressure cell.  

The wild type AdoMetDC and mutants were purified using a Ni-NTA (Qiagen) 

affinity column under native conditions in the presence of 2.5 mM putrescine.  

Fractions containing the desired protein were combined and concentrated by 

ammonium sulfate precipitation (80%).  The pellet was dissolved and dialyzed against 

50 mM phosphate, 200 mM NaCl, 1 mM ethylenediaminetetraacetic acid (EDTA) and 

1 mM tris(2-carboxyethyl)phosphine (TCEP) and loaded onto a Sephacryl S-200 HR 

equilibrated in the same buffer and connected to an AKTA (Pharmacia) 

chromatography system.  The eluted pure protein was concentrated by ammonium 

sulfate precipitation (80%), dissolved and dialyzed against 50 mM sodium phosphate 

pH 7.5, 1 mM TCEP, and 1 mM EDTA.  The concentrated protein was kept at –80 °C.  

The purified protein correctly processed into a 31 kDa α subunit and a 7.5 kDa β 

subunit as judged by SDS-PAGE electrophoresis.  The protein concentration was 

calculated spectrophotometrically using the extinction coefficient ε280 = 39,400 M-1 cm-

1.  Corrections for light scattering were taken into account (37). 

CD spectroscopy.  The CD experiments were performed using a Jasco J-715 

automatic recording spectrapolarimeter.  Spectra were recorded at 20 °C in 10 mM 

phosphate pH 7.5, 0.2 mM EDTA and 0.2 mM TCEP in the absence and presence of 
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putrescine.  Near-UV CD spectra were recorded in a 1 cm rectangular quartz cell.  The 

protein concentration was 15 µM.  The Far-UV CD spectra were recorded in a 1 mm 

cylindrical quartz cell.  The protein concentration was 2.5 µM.  The putrescine 

concentration was 4 fold higher than the wild type or 40-fold higher than the variant 

proteins to ensure that the proteins were saturated with putrescine.  The molar 

ellipticity,  [Θ], was calculated as: 
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where Mw is the mean molecular mass of amino acid residues in AdoMetDC (115 

Da), c is the protein concentration in mg/ml and l is the optical pathlength in 

centimeters. 

Analytical Ultracentrifugation.  Equilibrium sedimentation experiments were 

performed using a Beckman XL-A analytical ultracentrifuge with an AN-60Ti rotor, 

operating at 4 °C.  Samples were loaded into two-sector cells and spun at three 

different speeds (12,000, 15,000 and 20,000 rpm).  The absorbance at 280 nm, A, was 

recorded as a function of the radial position, r.  Equilibrium was considered to be 

attained when replicate scans separated by 6 h were indistinguishable.  The data sets 

for each protein were globally fitted according to a model in which single species are 
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where I is the baseline offset constant, M is the molecular weight of the species 

present in solution, ν is the partial specific volume (0.749 cm3/g) calculated as 

described in (38), ω is the angular velocity, R is the gas constant in erg/(mol•K), T is 
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the temperature in Kelvin and ρ is the density of the solvent (1 g/cm3).  The goodness 

of the fit was assessed by the quality of the residuals. 

Isothermal Titration Calorimetry.  The ITC experiments were performed using 

a VP-ITC titration microcalorimeter (MicroCal, Inc.).  The procedure for these 

experiments has been described previously (39).  In brief, the experiments were 

performed by injecting 3-10 µl of putrescine with concentrations ranging between 0.7 

and 16 mM into the sample cell containing the protein solution.  The protein 

concentration varied between 12 and 87 µM, depending on the magnitude of the heat 

effects observed.  The buffer used was 50 mM phosphate pH 7.5, 1 mM EDTA and 1 

mM TCEP.  Dilution effects were taken into account by injecting the putrescine 

solution into the buffer.  The heat of the reaction after each injection, qi, was obtained 

by integrating the peak after the injection using the ORIGIN software provided by the 

manufacturer.  The binding isotherms were fitted to a single set of sites (as described 

previously, (40)), model 1 in which 2 molecules of putrescine bind to the dimeric 

protein according to scheme 1 as shown below. 
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+!+=  and [M]T is the total protein concentration expressed per 

monomer, [L]T is the total putrescine concentration, n is the stoichiometry of the interaction, 

ΔH is the enthalpy of binding  and K is the equilibrium constant. 

Putrescine binding to wild type AdoMetDC was also fitted according to model 

2 (scheme 2 shown below) (41). 
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The heat of the reaction expressed per mol of protein relates to the thermodynamic 

parameters as follows: 
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ΔH1 and ΔH2 are the enthalpies of binding the first and second putrescine molecule, 

respectively.  ΔH1 and ΔH2 are both expressed per mol of monomer.  K1 and K2 are the 

apparent binding constants under the approximation that the free putrescine 

concentration is equal to the total concentration. 

The populations of each species in equilibrium were calculated as: 
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Fits to equations 3 and 4 were done using nonlinear fitting routine NLREG 

(http://www.nlreg.com/), as described previously (42). 

Putrescine Analysis. Putrescine was released from bound protein by treatment 

with perchloric acid and determined by reverse-phase HPLC using post-column 

derivatization with o-phthalaldehyde and fluorescence detection (43). 

Crystallization Conditions.  The protein was buffer exchanged into 10 mM N-

(2-hydroxyethyl)piperazine-N´-2-ethanesulfonic acid, pH 7.5, 200 mM NaCl and 1 

mM dithiothreitol (DTT) using Bio-Rad buffer exchange chromatography columns.  

For crystallization, the concentration of the protein was maintained at 10 mg/mL for 
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the E178Q(-Put) mutant and at 5 mg/mL for the D174N(-Put) and E256Q(-Put) 

mutant.  The crystals were grown using the hanging drop method at 22 °C in 13-16% 

polyethylene glycol 8000, 100 mM tris(hydroxymethyl)aminomethane, pH 7.5-8.5, 10 

mM DTT.  The crystals grew to a maximum size of 0.2 mm × 0.15 mm × 0.1 mm in 2-

3 days.  For the complexes of the mutants with MeAdoMet, each of the mutants was 

incubated with 4-6 molar excess of MeAdoMet for 24 h prior to crystallization.  To 

obtain structures of the mutants with putrescine bound, the E178Q and E256Q mutant 

proteins were incubated with 4-6 M excess of putrescine for 2 h prior to 

crystallization. 

Data Collection and Processing.  The data for the D174N(-Put), E178Q(-Put) 

and E256Q(-Put) were collected at the A1 station of the Cornell High Energy 

Synchrotron Source (CHESS) using a ADSC Quantum 210 detector.  Data for 

D174N(-Put) and E256Q(-Put) were collected over 180° with a 1° oscillation angle 

and 30 s exposure time per image at a crystal to detector distance of 175 mm.  Data for 

the E178Q(-Put) were collected over 110° with a 1° oscillation angle and 60 s 

exposure time per image at a crystal to detector distance of 185 mm.  The data for the 

putrescine free mutant complexes with MeAdoMet and E178Q(+Put) and 

E256Q(+Put) were collected at NE-CAT beamlines 24-ID-C and 24-ID-E, 

respectively, at the Advanced Photon Source (APS).  Data were collected over a range 

of 160° - 360° with a 1 s exposure time and a 1° oscillation range.  The crystal to 

detector distance varied between 200 – 280 mm. The data for the wild type 

AdoMetDC(-Put) were collected at a home source using a Rigaku R-AXIS IV++ 

detector and CuKα radiation from a Rigaku RU-300 rotating anode generator.  Data 

were collected over 140° with a 0.5º oscillation angle and 20 min exposure per 

oscillation with a crystal to detector distance of 180 mm.  The crystals were 

sequentially transferred to solutions with 2%, 5%, 8%, 15% and 18% glycerol with 1- 
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2 min equilibration between each step.  The crystals were flash frozen under liquid 

nitrogen for the MeAdoMet complexes and putrescine bound mutants and the crystals 

were directly flash frozen under a liquid nitrogen stream for putrescine free mutants 

and AdoMetDC(-Put).  The data were indexed, integrated and scaled using the 

HKL2000 program suite (44).  The data collection statistics are summarized in Table 

2.1 and 2.2 respectively. 

Structure Determination and Refinement.  All the structures were determined 

by molecular replacement using CNS (45).  The structure of 

AdoMetDC(+Put)/MeAdoMet (PDB ID 1I7B), minus pyruvoyl group, putrescine, 

MeAdoMet and water molecules, was used as the search model.  The model building 

for the E178Q(-Put) structure was done using the program O (46).  The model 

building for the rest of the structures was done using the program COOT (47).  The 

refinement process included successive rounds of simulated annealing, minimization, 

B-factor refinement, calculation of composite omit maps, difference Fourier maps and 

model building.  After a few rounds of refinement, the improved difference Fo-Fc 

Fourier map was used to identify ligands.  The ligand was then added to the model 

followed by another round of refinement and picking of water molecules.  The 

parameter and the topology files for MeAdoMet were generated using the HIC-Up 

server (48).  The difference Fo-Fc Fourier map was also used to identify conformational 

changes of residues in the putrescine binding site as well as the active site.  The final 

refinement statistics are given in Table 2.3 and 2.4 respectively.  A difference distance 

matrix program was used to identify conformational changes in the backbone of the 

protein structure (49, 50). 

Section 2.3. Results 

Studies were carried out with wild type AdoMetDC and three mutants of the 

protein in which acidic residues that hydrogen bond with putrescine (Figure 2.1 B)  
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Table 2.1. Data collection statistics for AdoMetDC mutants and complexes 
 

 D174N 
(-Put) 

E256Q 
(-Put) 

E178Q 
(-Put) 

D174N(-
Put) 

/MeAdoMet 

E256Q(-
Put) 

/MeAdoMet 
Wavelength (Å) 0.9764 0.9764 0.9766 0.9795 0.9795 
Space Group (Å) C2 C2 C2 C2 C2 

a (Å) 90.60 90.71 90.57 99.22 94.44 
b (Å) 55.24 55.90 56.26 50.60 50.08 
c (Å) 74.22 74.33 74.05 68.82 70.17 
β (°) 109.64 109.84 109.73 104.95 105.00 

Resolution (Å) 1.84 1.88 1.98 1.70 2.00 
Total reflections 88255 71106 53478 122776 54248 

Unique reflections 27642 27282 21433 35113 18180 
Redundancy 3.2(2.8) 2.6(2.3) 2.5(2.2) 3.5(2.5) 2.9(2.7) 

% completeness 92.1(73.8) 96.7(87.0) 89.8(89.4) 96.3(78.0) 84.0(72.6) 
I/σ 15.9(2.2) 16.0(2.0) 14.4(2.0) 15.4(2.2) 9.9(3.3) 

Rsym* 6.4(39.0) 4.9(39.6) 7.1(43.8) 8.3(32.8) 10.7(25.6) 
Matthews coef. 

(Å3/Da) 
2.28 2.31 2.32 2.18 2.09 

Solvent content (%) 45.1 45.9 45.9 42.5 40.1 
 
Values in parenthesis are for the highest resolution shell. 
* Rsym=ΣΣi|Ii - <I>|/Σ<I>, where <I> is the mean intensity of the N reflections with 
intensities Ii  and common indices h,k,l. 
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Table 2.2. Data collection statistics for AdoMetDC mutants and complexes. 
 

 E178Q(-Put) 
/MeAdoMet 

AdoMetDC 
(-Put) 

E178Q 
(+Put) 

E256Q 
(+Put) 

Wavelength (Å) 0.9795 1.5418 0.9792 0.9792 
Space Group (Å) C2 C2 C2 C2 

a (Å) 100.15 90.57 91.60 92.35 
b (Å) 51.07 55.54 54.49 53.54 
c (Å) 68.95 74.31 74.58 74.71 
β (°) 105.40 109.66 109.45 109.09 

Resolution (Å) 1.97 2.35 2.10 1.75 
Total reflections 73956 41261 69216 123289 

Unique reflections 23589 14524 19713 34072 
Redundancy 3.1(2.5) 2.8(2.6) 3.5(2.8) 3.6(3.0) 

% completeness 98.6(91.1) 99.1(95.7) 96.8(79.8) 97.7(89.6) 
I/σ 15.0(3.4) 13.9(2.0) 34.4(6.2) 30.1(4.6) 

Rsym* 8.0(23.8) 9.1(46.8) 3.7(12.2) 4.2(15.8) 
Matthews coef. 

(Å3/Da) 
2.22 2.30 2.29 2.28 

Solvent content (%) 43.5 45.5 45.3 45.0 
 
Values in parenthesis are for the highest resolution shell. 
* Rsym=ΣΣi|Ii - <I>|/Σ<I>, where <I> is the mean intensity of the N reflections with 
intensities Ii  and common indices h,k,l 

 



 

 26 

 
 
 
Table 2.3. Refinement statistics for AdoMetDC mutants and complexes. 

 
 D174N 

(-Put) 
E256Q 
(-Put) 

E178Q 
(-Put) 

D174N(-Put)/ 
MeAdoMet 

E256Q(-Put)/ 
MeAdoMet 

Resolution (Å) 1.84 1.88 1.98 1.70 2.00 
R-factora 0.241 0.226 0.208 0.214 0.217 
R-freeb 0.278 0.254 0.243 0.239 0.245 
No of non-H atoms      
Protein 2424 2428 2433 2468 2470 
Ligand 8 8 12 28 28 
Water 182 153 109 176 201 
B-factors      
Protein (Å2) 48.5 47.8 38.6 32.7 35.9 
Ligand (Å2) 83.6 67.3 56.6 30.1 38.1 
rms deviations      
bonds (Å) 0.007 0.010 0.006 0.013 0.024 
angles 1.4 1.4 1.3 1.6 1.8 
dihedrals 25.8 25.7 25.4 27.7 28.6 
Ramachandran plot      
Most favored region (%) 89.6 90.1 91.2 90.5 90.0 
Additional favored region 
(%) 

8.8 9.5 7.3 7.6 9.6 

Generously allowed 
 region (%) 

0.4 0.4 0.4 1.5 0.0 

Disallowed region (%) 1.2 0.0 0.0 0.4 0.4 
 

aR-factor = Σhkl||Fobs|-k|Fcal||/Σhkl|Fobs|, where Fobs and Fcal are observed and calculated 
structure factors, respectively.  In bR-free the sum is extended over a subset of 
reflections (5%) that were excluded from all stages of refinement 
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Table 2.4. Refinement statistics for AdoMetDC mutants and complexes. 

 
 E178Q(-Put)/ 

MeAdoMet 
AdoMetDC(

-Put) 
E178Q 
(+Put) 

E256Q 
(+Put) 

Resolution (Å) 1.97 2.35 2.10 1.75 
R-factora 0.205 0.222 0.219 0.230 
R-freeb 0.228 0.283 0.249 0.241 
No of non-H atoms     
Protein 2484 2456 2503 2500 
Ligand 28 8 14 6 
Water 222 110 142 220 
B-factors     
Protein (Å2) 29.6 52.3 40.5 31.9 
Ligand (Å2) 40.4 87.2 58.9 28.6 
rms deviations     
bonds (Å) 0.014 0.006 0.023 0.040 
angles 1.6 1.3 1.6 2.1 
dihedrals 27.4 24.3 25.6 26.2 
Ramachandran plot     
Most favored region (%) 90.9 86.2 90.8 91.2 
Additional favored region 
(%) 

8.0 12.3 8.5 8.8 

Generously allowed region 
(%) 

1.1 1.5 0.7 0.0 

Disallowed region (%) 0.0 0.0 0.0 0.0 
 

aR-factor = Σhkl||Fobs|-k|Fcal||/Σhkl|Fobs|, where Fobs and Fcal are observed and calculated 
structure factors, respectively.  In bR-free the sum is extended over a subset of 
reflections (5%) that were excluded from all stages of refinement 
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were altered to the corresponding amides.  The proteins were dialyzed extensively to 

remove bound putrescine.  Direct analysis of the protein preparations confirmed that 

they contained <0.001mol putrescine/mol protein. 

Far-UV and Near-UV CD.  Far-UV CD spectroscopy was used to assess the 

effect of substitutions and putrescine binding on the secondary structure of the protein.  

Figure 2.2 A shows the Far-UV CD spectra for the wild type AdoMetDC and mutants.  

In all cases the spectra show a minimum at 218 nm and a maximum at 195 nm, typical 

of proteins with significant β-sheet content.  The difference in ellipticity among the 

proteins is within the experimental error indicating that these single amino acid 

substitutions did not perturb the secondary structure of AdoMetDC.  Figure 2.2 A 

inset shows the effect of putrescine binding on the wild type AdoMetDC secondary 

structure.  It can be seen that the holo protein has overall the same secondary structure 

as the apo form. The small difference observed might be due to contributions of the 

aromatic residues which interact with putrescine (Phe111, Phe285, Tyr318, Phe315 

and Phe320) (23, 30, 31). 

Near-UV CD is very sensitive to the environment of aromatic side chains and 

therefore to the tertiary structure of the protein.  Figure 2.2 B shows the near-UV CD 

spectra for the AdoMetDC wild type and variant proteins.  The overall shapes of the 

spectra are similar with a minimum at 278 nm and a maximum at 256 nm.  The small 

difference in absolute values observed among proteins is probably due to slightly 

different orientation of the aromatic residues caused by the substitutions.  Putrescine 

has a small effect on the near-UV CD for the wild type and E256Q proteins (Figures 

2.2 C and D, respectively).  Under saturated conditions of putrescine, the ligand causes 

a small increase in ellipticity, probably due to a more rigid environment of the 

aromatic residues.  On the other hand, no change in ellipticity was observed for 

E178Q and D174N, respectively (Figures 2.2 E and F, respectively). 



 

 29 

 

Figure 2.2. (A) Effect of mutations on the Far-UV CD spectra for human wild 
type AdoMetDC (thick solid line), E256Q (thin solid line), D174N (dashed 
line) and E178Q (dashed-and-dotted line). Inset: Effect of putrescine on the 
Far-UV CD spectra: wild type protein in the absence (thick solid line) and 
presence (thin solid line) of putrescine. (B) Effect of mutations on the Near-
UV CD spectra for wild type AdoMetDC (thick solid line), E256Q (thin solid 
line), D174N (dashed line) and E178Q (dashed-and-dotted line). Effect of 
putrescine on the Near-UV CD spectra: wild type AdoMetDC (C), E256Q (D), 
E178Q (E) and D174N (F) in the absence (thick solid line) and presence (thin 
solid line) of putrescine. 

 

This is expected for D174N as the substitution abolishes putrescine binding to 

the protein (see later Results). 
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         Analytical Ultracentrifugation of the AdoMetDC Proteins.  The X-ray structure 

of the human wild type AdoMetDC shows that the protein crystallizes as a dimer (18, 

23). To assess if this is the functional unit in solution and if the putrescine or 

mutations affect the oligomerization state of the protein, sedimentation equilibrium 

experiments were performed at three different speeds.  For each protein the data were 

globally fitted according to different oligomeric models.  In all cases, the experimental 

data were best fitted according to a model with single species in equilibrium (equation 

2 in Materials and Methods) and a molecular weight of a dimer.  Figure 2.3 shows 

representative data for the wild type AdoMetDC.  The molecular weight obtained from 

the global fit was 77.2 +/-0.3 kDa in very good agreement with the theoretical one 

(76.8 kDa).   

Putrescine Binding to AdoMetDC Characterized by ITC.  In the ITC 

experiments, the heat released upon putrescine binding to the proteins was measured.  

Figure 2.4 A shows representative heat effects for putrescine binding to wild type 

AdoMetDC at 15 °C.  The heat of binding is proportional to the enthalpy and degree 

of binding and thus allows model-dependent estimates of the enthalpy (ΔH), the 

binding constant (K) and the stoichiometry (n).  Figure 2.4 B shows the binding 

isotherm in which the heat effect is plotted as a function of putrescine concentration.  

The experimental data were fitted according to equation 3 (in Materials and Methods), 

which considers independent and non interactive binding sites (scheme 1).  The n 

parameter was kept constant as 1 molecule of putrescine per monomer of wild type 

AdoMetDC.  It can be seen that the fit to model 1 does not represent the experimental 

data.  The binding isotherm was then fitted according to equation 4 (in Materials and 

Methods), which considers two interactive ligand binding sites per dimeric protein, 

according to the model shown in scheme 2.  The fitted parameters are summarized in 

Table 2.5.  We observed that the second putrescine molecule binds with significantly  



 

 31 

 

Figure 2.3. Equilibrium sedimentation analysis of human AdoMetDC. Representative 
traces for the wild type AdoMetDC at 12,000 (circles), 15,000 (squares) and 20,000 
rpm (triangles). Solid lines represent the global fit according to equation 2. The 
molecular weight obtained from the fit was (77.2 ±0.1) kDa. 

 

higher affinity to the dimeric protein than the first one.  We found that K2 > K1/4 

which implies that putrescine binding to the wild type AdoMetDC protein has positive 

cooperativity.  The cooperativity in a two-site system can be characterized by  
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We observe that ΔΔG is very significant (Table 2.5) if we compare it to the ΔG for the 

total process from the apo to the holo forms.  The ΔG for this process is calculated as 
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Figure 2.4 C shows the changes in the population of the different species in 

equilibrium as a function of the putrescine concentration according to equations 5, 6 
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Figure 2.4. Putrescine binding to wild type AdoMetDC by ITC. (A) Representative 
isothermal titration calorimetry experiment at 15 °C. Heat effects are recorded as a 
function of time during 45 successive 3 µL injections of 0.70 mM solution of 
putrescine into the cell containing 0.0138 mM protein (a) or buffer (b). Buffer 
conditions were 50 mM sodium phosphate pH 7.5, 1 mM EDTA, 1 mM TCEP. (B) 
Cumulative heat effect corresponding to the titration in panel A (o) as a function of 
putrescine concentration. The thin line is the fit of the experimental data to equation 
3. The thick line is the fit of the experimental data to equation 4 with the parameters 
listed in Table 3. (C) Populations present in solution as a function of putrescine 
concentration: [M2]/[MT] (thick solid line), [M2L]/[MT] (dashed line) and 
[M2L2]/[MT] (thin solid line) calculated according to equations 5, 6 and 7, 
respectively. 
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Table 2.5.  Thermodynamic parameters for putrescine binding to the AdoMetDC 

proteins from the ITC experiments at 15 °Ca.   

 

Protein K1  K2  ΔH1 ΔH2 ΔG ΔΔGcoop
 

AdoMetDC(-Put) 9x104 3.4x105 -5.8 1.2 -13.8b -1.55c 

E256Q(-Put) 1.0x104 - -6.1 - -10.3b NA 

E178Q(-Put) 2.0x103 - -1.2 - -8.7b NA 

D174N(-Put) NE - NE - NE NA 
 
a The binding constants are expressed in M-1, the enthalpies are expressed in kcal 
per mol of monomer and free energies are expressed in kcal/mol.  The error in the 
enthalpies and binding constants is ~15%.  Note that for E256Q and E178Q, 
K1=K2=K and ΔH1=ΔH2; NA: not applicable; NE - no heat effect was observed for 
D174N. b calculated according to equation (9); c calculated according to equation (8)  
 

and 7 in Materials and Methods.  We observe that the M2L concentration is never 

higher than 20% of the total protein and the high cooperativity favors the binding of 

the second putrescine molecule (M2L2).  The stoichiometry of the interaction is 

consistent with the crystal structure of the human AdoMetDC protein which shows 

that each monomer is able to bind one molecule of putrescine (23, 30, 31). 

Figure 2.5 shows the putrescine binding isotherms for the AdoMetDC mutant proteins 

at 15 °C.  One obvious conclusion can be drawn from these results: the putrescine 

binding to the D174N variant does not show any significant heat effect (Figure 2.5 C), 

strongly suggesting that AdoMetDC-D174N is no longer able to bind putrescine.  To 

ensure that the lack of heat effect was due to lack of binding and not to a very small 

enthalpy of binding at that temperature or not enough protein concentration, 

experiments were performed at different temperature and different protein 

concentrations (results not shown).  In all cases, titration of the D174N variant protein 
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with putrescine produced no significant heat effect under our experimental conditions.  

Thus, substitution of Asp174 by asparagine abolishes putrescine binding all together. 

However, the putrescine binding to the E256Q and E178Q variant proteins 

shows significant heat effects different from that with wild type AdoMetDC.  The 

isotherms for the E256Q and E178Q can be fitted according to equation 3 (model 1, 

Figures 2.5 A and 2.5 B).  The fitted parameters are summarized in Table 2.5.  It is 

obvious from these results that the mechanisms of putrescine interaction with the 

human AdoMetDC wild type protein and the E256Q, E178Q and D174N mutant 

proteins are very different.  Substitution of Glu178 or Glu256 by glutamine not only 

abolishes the positive cooperativity for the binding of the second molecule of 

putrescine to these proteins, but also dramatically decreases the putrescine binding 

affinity as compared to K1 for the wild type protein (Table 2.5).  

Crystal Structures of Putrescine Free AdoMetDC.  Crystal structures of 

AdoMetDC(-Put), D174N(-Put), E178Q(-Put) and E256Q(-Put) were obtained. 

Difference Fourier maps (Fo-Fc) and composite omit maps clearly show that putrescine 

was absent in these structures.  Instead the putrescine binding site in the AdoMetDC(-

Put) and D174N(-Put) and E256Q(-Put) mutants contains four additional water 

molecules (Figure 2.6 A).  The nitrogen atom of putrescine closer to the active site is 

replaced with a water molecule (WA).  This water molecule makes hydrogen bonds to 

water molecules WB and WC, which in turn are hydrogen bonded to Glu256 and 

Ser113, respectively.  A fourth water molecule (WD) is present roughly at the center of 

the putrescine binding site and hydrogen bonds to WA.  Asp174 is found in various 

conformations in the putrescine free structures and is not hydrogen bonded to any 

conserved water molecule.  The structure of the E178Q(-Put) mutant shows a ligand 
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Figure 2.5. Dependence of the heat effect of putrescine binding to AdoMetDC-E256Q 
(A), AdoMetDC-E178Q (B) and AdoMetDC-D174N (C) as a function of the ratio 
putrescine/protein. Solid lines are the best fit to equation 3 with the parameters in 
Table 2.5. 
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Figure 2.6. Putrescine binding site in the putrescine free mutants. (A) Stereoview of 
putrescine binding site in the E256Q(-Put) mutant. Water molecules are shown as red 
spheres and hydrogen bonds are shown as dashed lines.  (B) Stereoview of the 
putrescine binding site in the E178Q(-Put) mutant. The density maps show a planar 
ligand comprised of four atoms bound in the putrescine binding site. A molecule of 
urea was modeled into the density.  The difference Fo-Fc Fourier map is calculated 
omitting urea and is contoured at 4.0 σ.  The hydrogen bonds are omitted for clarity. 

 

bound in the putrescine binding site.  Based on the electron density, which is 

triangular and flat, a molecule of urea was modeled into the putrescine binding site.  

The carbonyl oxygen of urea occupies the same position as the putrescine amino group 

closer to the active site and WA, and is hydrogen bonded to the enzyme through water 

molecules.  A stereoview of the ligand bound in the putrescine binding site of the 

E178Q(-Put) mutant is shown in Figure 2.6 B. 

Three regions of the AdoMetDC show differences in the putrescine free 

structures relative to the putrescine bound structures: residues 171-173, 301-304 and 
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315-320 (Figure 2.7).  In addition the side chains of Phe285, Ser 312 and Met314 

show different conformation in the putrescine free structures.  Loop 171-173 is 

adjacent to Asp174, which is required for putrescine binding.  Four aromatic residues, 

Phe285, Phe315, Tyr318 and Phe320, are repositioned in the putrescine free structures 

mostly through changes in the χ1 torsion angles plus lateral shifts (Figure 2.8).  The 

repositioning is associated with a 1.5 to 3 Å shift in loop 312-318 and causes the 

putrescine binding site to become more solvent exposed.  The biochemical relevance 

of loop 301-304 is unclear because it is far away from both the putrescine binding site 

and the active site. 

 
Figure 2.7. Dimeric form of AdoMetDC.  Putrescine and MeAdoMet bound in the 
active site are shown as sticks. There is no overall change in the secondary structure. 
The loops undergoing conformational upon putrescine binding are colored red and 
labeled.  

 

Crystal Structures of the Putrescine Free AdoMetDC/MeAdoMet Complexes.  

Complexes of putrescine free mutants with MeAdoMet were prepared to determine the 

effects of the absence of putrescine on the conformation of the substrate and active site 

residues.  Difference Fourier maps showed MeAdoMet bound in the active site of all 

three mutants covalently linked to the pyruvoyl cofactor through a Schiff base.  The  
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Figure 2.8. Stereoview of the changes in the conformation of aromatic side chains 
occurring due to putrescine binding. AdoMetDC(+Put) is shown in blue and 
AdoMetDC(-Put) is shown in gray. The conformational shift in loop Phe320-Ser312 
as an effect of the changes in the aromatic side chains is clearly seen. 

 

MeAdoMet conformation and the active site are essentially the same as for the 

complex of wt-AdoMetDC with MeAdoMet (30).  The 2´ and 3´ oxygen atoms of the 

ribose each make a hydrogen bond to the carboxylate group of Glu247.  The adenine 

base stacks between Phe7 and Phe223 with an overall syn conformation.  All three 

mutant complexes, including E178Q, showed the same four conserved water 

molecules in the putrescine binding site.  The mutant complexes also showed the same 

reorganization of the four aromatic residues Phe285, Phe315, Tyr318 and Phe320 and 

the conformational change in loop 312-320 seen without putrescine and substrate 

analog. 

Structure of Mutants with Added Putrescine.  Structures of E178Q and E256Q 

were determined after the addition of putrescine.  The structure of D174N with 

putrescine was not determined because biochemical studies reported here show that 

this mutant does not bind putrescine.  For both E178Q(+Put) and E256Q(+Put) 

addition of putrescine resulted in a reversal of the conformational changes in Phe285, 

Phe315, Tyr318 and Phe320 and the 312-320 loop seen in the putrescine free 

structures (Figure 2.8).  The putrescine molecule is in the same position as observed in 

all previously reported human AdoMetDC structures (23, 30, 31).  In both structures 

the aliphatic chain of putrescine stacks against Phe111 and Phe285, with the latter 



 

 39 

residue involved in repositioning the aromatic residues for the putrescine free 

structures. 

In the E256Q(+Put) mutant, one end of putrescine makes direct hydrogen 

bonds to Glu15, Asp174 and Thr176 while the other end makes water mediated 

hydrogen bonds to Glu178 and Gln256 as previously observed (23, 30, 31).  The 

E178Q(+Put) mutant structure shows some interesting differences.  One end of the 

putrescine molecule makes direct hydrogen bonds to Glu15, Asp174 and Thr176 and 

the other end of the putrescine makes a water mediated hydrogen bond with Glu256; 

however, there is no bridging water molecule between putrescine and Gln178.  

Additionally, compared to all other AdoMetDC structures, there is a conformational 

change in residues Glu11, Lys80, Ser229 and His243 in E256Q(+Put), which link the 

putrescine binding site and the active site (Figure 2.9).  The χ1 torsion angle of 

His243, which is important for both the processing and decarboxylation reactions, 

changes from -63° to 90°.  In the alternate conformation the side chain is pointed away 

from both the pyruvyl cofactor and Ser229.  Residues Lys80 and Glu11 also undergo 

conformational changes and are hydrogen bonded to each other through Ser254 and a 

water molecule.  The other significant change in E256Q(+Put) is the transformation of 

the disordered loop 291-299 into a short α-helix. This helix is located at the dimer 

interface and interacts across the twofold axis with the same helix from the other 

protomer.  The closest contact between the two helices is at the sulfur atoms of 

Cys292, which are 3.6 Å apart. 

Section 2.4. Discussion 

Putrescine Binding to AdoMetDC and Mutants.  Activation of the AdoMetDC 

autoprocessing and decarboxylation reactions is species dependent.  The regulation of 

the polyamine biosynthetic pathway by putrescine in certain species is poorly 

understood and a thorough understanding of the regulation of polyamine levels might  
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Figure 2.9. Stereoview of the comparison of the catalytic residues His243, Glu11, 
Lys80 and Ser229 in E256Q(+Put) and E256Q(-Put) mutants. E256Q(+Put) has 
carbon atoms colored in green and E256Q(-Put) has carbon atoms colored yellow. 

 

provide an alternate route for inhibiting the pathway.  However, the activation of 

autoprocessing and decarboxylation processes of human AdoMetDC by putrescine and 

other diamines is well known and studied (23).  The rate of activation of the enzyme is 

highest by putrescine when compared to other diamines.  The only previous direct 

measurements of putrescine binding to AdoMetDC were carried out with the T. cruzi 

enzyme (29).  The Kd, which was determined by ultrafiltration and by fluorescence 

change measurements, was 150-180 µM.  This is more than an order of magnitude 

greater than the values measured here by ITC for the human enzyme but, as described 

below, it has been shown recently that a much more active enzyme that is not 

putrescine-activated is formed by a heterodimer between T. cruzi AdoMetDC and a 

structurally homologous regulatory protein (51).  Although Asp174 appears to be a 

key residue in binding for both enzymes since mutation to valine in T. cruzi (29) or 

asparagine in human (Table 2.5) abolished binding, it appears that there is little 

similarity in the activation of the parasite and mammalian enzymes.  Our value is 

much closer to that which would be expected on the basis of the amount of putrescine 

needed for enzyme activation (Ka of c. 20 µM) (3, 19-21) or processing (Ka c. 50 µM) 

(23).  The latter value may be increased due to competition for binding by nucleic 
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acids in the reticulocyte lysates used for studying processing in coupled 

transcription/translation systems. 

The tight binding of putrescine to human AdoMetDC is also consistent with 

the difficulty in removing putrescine from the enzyme.  This requires extensive 

dialysis and it is noteworthy that all of the previously published structures of the 

protein contain a bound putrescine even though it was not added to the buffers used 

for crystallization.  The current results using ITC confirm that there is only one 

putrescine binding site in the human AdoMetDC αβ protomer and rules out postulated 

models in which two putrescine molecules bring about the changes in AdoMetDC 

activity (19, 34, 52).  The previously unrecognized cooperative binding of putrescine 

to mammalian AdoMetDC is likely to explain the complex kinetics for activation 

previously reported (52).  Furthermore, the ITC data confirm that in solution, the 

putrescine molecule binds in the site identified by the crystal structure.  Mutation of 

Asp174, which interacts directly with the putrescine, totally abolished binding, 

highlighting the effect of the hydrogen bond from this residue upon putrescine 

binding.  Mutations of Glu178 and Glu256, which both interact indirectly via a water 

molecule, greatly reduced the affinity for putrescine.  Potato AdoMetDC, which is not 

activated by putrescine, is generally quite similar to the human structure but is an αβ 

monomer (35).  In this structure, several amino acid substitutions in the putrescine 

binding pocket (Asp174 to valine, Phe111 to arginine, Leu13 to arginine and Phe285 

to histidine) introduce side chains that mimic the role of putrescine in the human 

enzyme.  Thus, dimerization and putrescine activation may be linked. 

Structure of the Putrescine Binding Site with and without Putrescine.  Previous 

structural studies clearly identified the putrescine binding site in human AdoMetDC 

(23, 30, 31).  Putrescine is bound between the two central β-sheets of the enzyme at a 

distance of 15 to 20 Å from the active site.  The putrescine amino group farther from 
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the active site is directly hydrogen bonded to Asp174, Glu15 and Thr176.  The closer 

amino group is hydrogen bonded through water molecules to Glu178, Glu15, Glu256 

and Ser113.  The carbon chain of putrescine stacks against Phe285 and Phe111.  The 

crystal structure also shows that there is only one molecule of putrescine bound per 

monomer.  

Previously reported structures provided insights into the mechanism of 

putrescine activation of human AdoMetDC (23).  On the basis of these studies, the 

mechanism of putrescine activation was believed to be due to two reasons.  First, 

putrescine binds inside the β-sandwich region through charge neutralization of acidic 

residues and hydrophobic interactions to aromatic residues and it was proposed that 

stability of the β-sandwich is necessary for the correct orientation of residues for the 

autoprocessing reaction.  Second, there is a hydrogen bonding network from the 

putrescine binding site to His243, which plays a critical role in the autoprocessing 

mechanism and in the decarboxylation processes through electrostatics and hydrogen 

bonding.  

The crystal structures of the putrescine free enzyme and mutants provide newer 

insights into the putrescine binding site.  The putrescine binding site is solvent 

accessible from one side and in the absence of putrescine the site is filled with water 

molecules.  The comparison of crystal structures of putrescine free and putrescine 

bound AdoMetDC structures showed no significant changes in the secondary 

structure.  The Far-UV CD experiments have also shown that there is no significant 

change in the secondary structure of AdoMetDC and the mutants upon putrescine 

binding, supporting the crystal structures. These observations suggest that putrescine 

has little effect in stabilizing the secondary structure of the enzyme as previously 

thought. 
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Conformational Changes upon Putrescine Binding.  Difference distance matrix 

analysis (49, 50) showed significant changes in the Cα positions of residues 171-173, 

301-304, 312-320.  Asp174 is required for putrescine binding and residues 171-173 

are near the entrance of the putrescine binding site.  Consequently, these residues 

appear to serve as a gate to the putrescine binding site.  In addition repositioning of the 

aromatic residues Phe285, Phe315, Tyr318 and Phe320 and the loop containing 

residues 312-320 further opens the putrescine binding site (Figure 2.8).  In the absence 

of putrescine, the site is filled with water, more open and more solvent accessible.  

Binding of putrescine displaces two water molecules and Phe285 moves towards the 

aliphatic portion of the putrescine molecule, followed by closing off of the entrance 

thus shielding the putrescine from the solvent.  These changes result in closer contacts 

between the protein side chains and an enhancement of electrostatic effects.  The near-

UV CD experiments showed a small effect for the wt-AdoMetDC and the E256Q 

mutant, which is due to the change in the aromatic side chain positions.  This finding 

is in agreement with the change in the orientation of Phe285, Phe315, Tyr318 and 

Phe320 observed upon putrescine binding. 

Positive Cooperativity of Putrescine Binding.  Human AdoMetDC is a 

homodimer with two active sites and two putrescine binding sites.  ITC studies 

showed positive cooperativity of putrescine binding for WT-AdoMetDC while no 

cooperativity was observed for the mutants (Table 2.6).  Loop 312-320, which 

undergoes a shift upon putrescine binding, is at the dimer interface (Figure 2.10 A).  

The main contacts between this loop and the twofold related protomer occur between 

the residues Ser312-Ser312´, Met314-Cys310´, Phe315-Arg307´ and Gln311-Gln311´, 

where the prime designates residues in the twofold related protomer.  The effect of 

putrescine binding and conformational changes in the loop provide a possible 

mechanism by which changes in one putrescine binding site are relayed through the 
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dimer interface to the putrescine binding site in the other monomer.  Not consistent 

with this argument is that the E178Q and E256Q mutants bind putrescine but do not 

show cooperativity even though the same conformational changes are observed upon 

putrescine binding for loop 312-320 and the four aromatic residues, suggesting that 

other factors are involved. 

Table 2.6. Effects of putrescine on AdoMetDC and mutants. 
 Processing 

(-Put) 

Processinga 

(+Put) 

Decarboxyl- 

ation (-Put) 

Decarboxyl- 

ationb 

(+Put) 

Cooperativity 

in Put 

binding 

WT 1 5-8 1 4 yes 

D174N 1 NA 1 NA NA 

E178Q 1 1 4 1 none 

E256Q 1 1 1 1 none 
a Activation measured at 1 mM Put (23) 
b Activation measured at 0.2 mM Put (32) 

Structural Insights into Putrescine Stimulation of AdoMetDC Activity.  

Structural comparisons suggest no global conformational changes upon putrescine 

binding to AdoMetDC; however, several local conformational changes are observed.  

This suggests that the primary effect of putrescine is electrostatic and that this effect is 

transmitted to the active site though hydrogen bonding (Figure 2.10 B).  Binding of 

putrescine introduces two positive charges into a binding pocket that contains three 

conserved acidic residues.  Glu178 and Glu256, are hydrogen bonded through water to 

the putrescine amino group closer to the active site and are near Lys80, which is 

disordered in most AdoMetDC structures.  Lys80 is also near Glu11 and His243, two 

residues important for both autoprocessing and catalysis.  Through this network the 

pKa of His243 would increase in the presence of putrescine and decrease in the 
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absence.  His243 is proposed as the base for proton abstraction needed for the 

cleavage of the ester intermediate (23, 33).  It may also play a role in the 

decarboxylation reaction but this cannot be assessed using mutants since the 

autoprocessing step is essential for activity.  The side chain of Glu11 is positioned to 

assist in protonation/deprotonation of the His243.  Glu11 is an essential residue for the 

activation by putrescine although it plays no direct role in putrescine binding.  

Mutation of Glu11 to glutamine abolishes putrescine activation of processing (34) and 

mutation to aspartate causes putrescine to be an inhibitor of processing (23).  Mutation 

E11K prevents processing completely (34).  Mutation E11Q greatly reduces 

AdoMetDC activity (34) and reduces the stimulation by putrescine by 60%.  The 

E11D change reduces activity of the processed enzyme by about 4-fold and putrescine 

activation by about 50% (unpublished).  The mutant K80A has only about 10% 

activity and is stimulated by putrescine only at very high concentrations with a Ka of 

400 µM.  Similarly, the processing of this mutant is much slower than wild type and is 

putrescine activated but requires much higher levels of putrescine  (Ka of c. 1 mM).  

Combination of the K80A/E11D mutation abolishes the inhibitory effect on 

processing of this mutation and the K80A and K80A/E11D mutants have identical 

responses to putrescine (unpublished).  ITC binding results show that the D174N 

mutant protein does not bind putrescine.  Asp174 hydrogen bonds to the putrescine 

amino group away from the active site and initiates the conformational changes that 

close the putrescine binding site and shield it from the solvent.  The E178Q and 

E256Q mutants bind putrescine but show no stimulation of processing.  Both 

glutamate/glutamine residues interact through water with putrescine and also 

participate in the hydrogen bonding network that links the putrescine binding site and 

active site.  The negative charge appears to be key for influencing active site 

electrostatics and its absence blocks the effects of putrescine. 
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Figure 2.10. (A) Dimer interface of AdoMetDC. The monomers are colored green and 
gray respectively. The loop 315-320 is colored red one monomer and blue in the other. 
The residues at the interface are shown in sticks.  (B) Charge network between the 
putrescine binding site and the active site. Putrescine, MeAdoMet and the active site 
pyruvoyl group carbon atoms are colored green. Water molecules are shown as red 
spheres and hydrogen bonds are shown as dashed lines. 

 

In contrast the E178Q mutant has decarboxylation activity in the absence of 

putrescine comparable to wild type with putrescine, while the decarboxylation activity 
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of the E256Q mutant is not simulated by putrescine.  These results are consistent with 

a proposed model of charge relay through Lys80 to Glu11 to His243 resulting from 

putrescine binding. 

Another possibility is that putrescine utilizes electrostatic interactions to 

correctly position active site residues.  Evidence for a structural switch comes from the 

structure of the E256Q(+Put), which shows conformational changes in Glu11, Lys80, 

Ser229 and His243.  The largest change occurs in His243, which rotates about its  χ1 

torsion angle by about 150 degrees.  In this conformation the side chain is pointed 

away from both the pyruvoyl cofactor and Ser229.  Previous biochemical data shows 

that the catalytic activity of the E256Q(-Put) mutant is far lower than the wild type 

enzyme and is not stimulated by the addition of putrescine (32), suggesting this 

positioning of residues represents a low activity state in which putrescine is unable to 

influence the correct positioning of active site residues.  The structure E178Q(+Put) 

lacks a bridging water molecule between putrescine and Gln178, resulting in no 

activation of the E178Q(-Put) mutant by putrescine. 

 Implications for Other AdoMetDCs:  The effect of putrescine varies among 

species.  Class 1a and 1b enzymes have a fold that is similar to both the N-terminal 

and C-terminal halves of the class 2 protomer; however, class 1 AdoMetDCs do not 

have a putrescine binding site and are not stimulated by putrescine.  Class 2a 

AdoMetDCs include the plant enzymes and have a fold very similar to the class 1a 

protomer but are monomeric rather than dimeric (35).  The class 2a enzymes contain a 

buried cluster of charged residues that is reminiscent of the putrescine binding site 

found in human AdoMetDC; however, the pocket is filled by two arginine residues 

that are not present in any class 2b enzyme.  Class 2a AdoMetDCs are not stimulated 

by putrescine but have constitutive processing and decarboxylation activities similar to 

those of the putrescine activated human AdoMetDC. 
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Multiple sequence alignments show that all of the key active residues are 

conserved in the class 2a and class 2b AdoMetDCs as are the residues that connect the 

buried charged cluster.  Class 2a and 2b are distinguished in part by the nature of the 

buried cluster.  Within class 2b there are two subclasses.  The first is represented by 

human AdoMetDC and is distinguished by a conserved Lys80.  Within this group the 

three acidic residues in the putrescine binding site are conserved.  The four aromatic 

residues are not entirely conserved; however, these residues are always aromatic or 

large hydrophobic residues.  The second subclass includes apicomplexan parasites and 

is distinguished by the substitution of isoleucine in place of Lys80.  A hydrophobic 

residue would interrupt the electrostatic transfer of charge and suggests that putrescine 

stimulates this group of AdoMetDCs by a different mechanism than that of human 

AdoMetDC.  Studies on the Trypanosome brucei AdoMetDC showed that putrescine 

stimulates the decarboxylation reaction; however, the activity was about 1000-fold 

lower than the activity of the human AdoMetDC (51).  Recently, Phillips and 

coworkers showed that formation of a heterodimer between AdoMetDC and a 

structurally homologous but inactive regulatory protein resulted in decarboxylation 

rates comparable to human AdoMetDC (51).  Furthermore, the heterodimeric T. 

brucei AdoMetDC was not stimulated by addition of putrescine.  No structures are 

available for this group of AdoMetDCs and the mechanism of stimulation remains to 

be determined. 

Regulating polyamine levels by controlling the enzymes in the polyamine 

biosynthetic pathway is a promising target for cancer and anti-parasitic therapy (6, 7). 

Our results suggest that an alternate approach to inhibiting AdoMetDC would be to 

target the putrescine binding site.  Compounds binding to this site that mimic the 

effects of some of the mutants described above may prevent processing or 

significantly block activity. 
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CHAPTER 3 

ROLE OF THE SULFONIUM CENTER IN DETERMINING LIGAND 

SPECIFICTY OF HUMAN S-ADENOSYLMETHIONINE DECARBOXYLASE2 

Section 3.1. Introduction 

The polyamines putrescine, spermidine and spermine are aliphatic polycations 

that are critical for maintaining cell differentiation and proliferation (1-3).  Elevated 

levels of polyamines are found in cancerous and tumor cell lines (4, 5).  Thus, 

depleting polyamine levels by inhibition of the polyamine biosynthetic pathway is a 

promising approach for the treatment and prevention of cancer and also for the 

treatment of various parasitic diseases.  S-adenosylmethionine decarboxylase 

(AdoMetDC) is a key enzyme in the polyamine biosynthetic pathway and depends on 

a pyruvoyl cofactor for the decarboxylation reaction (6-9).  AdoMetDC catalyzes the 

decarboxylation of S-adenosylmethionine (AdoMet) to S-adenosyl-5´-(3-

methylthiopropylamine) (dcAdoMet).  The aminopropyl group from dcAdoMet is 

transferred to putrescine or spermidine to form spermidine or spermine, respectively.  

AdoMetDC catalyzes an early step in the pathway and dcAdoMet is completely 

committed to polyamine biosynthesis; thus, AdoMetDC is an attractive target for drug 

design. 

The early inhibitors of AdoMetDC included the potent competitive inhibitor 

methylglyoxal bisguanylhydrazone (MGBG) (10).  Clinical studies on this compound 

were hampered by an unexpected mitochondrial toxicity unrelated to its inhibition of 

AdoMetDC.  An MGBG analogue, 4-amidinoindan-1-one-2´-amidinohydrazone 

(CGP48664A) showed promise in multiple phase I and phase II clinical trials (11-18).  

Irreversible (or slowly reversible) substrate analogue inhibitors, which form a Schiff 

                                                
2 Reproduced with permission from Biochemistry, submitted for publication. Unpublished work 
copyright 2009 American Chemical Society. 



 

 57 

base with the active site pyruvoyl group, have also been synthesized but are limited by 

their nonspecific activity towards cellular aldehydes and ketones (19).  In vitro assays 

showed that a positive charge at the position of the sulfonium ion is essential for 

ligand binding and inhibition (20).  Thioether and sulfoxide substrate analogues, 

which lack the positive charge, showed no activity.  Alternately, replacement of a 

sulfur atom with a nitrogen atom, which is protonated at physiological pH and retains 

the positive charge, resulted in AdoMetDC inhibition.  This is consistent with the 

observation that S-adenosylhomocysteine (SAH) is not a substrate for AdoMetDC 

(21). 

Previously, the structure of AdoMetDC and its complexes with inhibitors 5´-

deoxy-5´-[N-methyl-N-(3-hydrazinopropyl)amino]adenosine (MHZPA), 5´-deoxy-5´-

[N-methyl-N-[(2-aminooxy)ethyl]amino]adenosine (MAOEA), the methyl ester of 

AdoMet (MeAdoMet), MGBG and CGP48664A were determined (22).  MGBG and 

CGP48664A act as competitive inhibitors of the enzyme and stack between Phe7 and 

Phe223, and form hydrogen bonds with Glu247, Ser229 and the backbone amide of 

Leu65.  The substrate analogues MHZPA, MAOEA and MeAdoMet have positive 

charges at the sulfonium ion position and covalently bind to the enzyme acting as 

slowly reversible inhibitors.  The adenine base of these inhibitors stacks between Phe7 

and Phe223, the glycosidic bond adopts an unusual syn conformation, and both ribose 

hydroxyl groups hydrogen bond to Glu247.  The requirement for a positive charge in 

substrate analogues remained puzzling because no negatively charged amino acid side 

chain was located nearby. 

We chose to investigate the basis of the ligand specificity of AdoMetDC using 

crystallography, quantum chemical calculations and stopped-flow kinetic experiments.  

We determined crystal structures of the enzyme co-crystallized with 5´-deoxy-5´-

(dimethylsulfonio)adenosine (MMTA) and 5´-deoxy-5´-(N-dimethyl)amino-8-
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methyladenosine (DMAMA).  The energy difference between the syn and anti 

conformation of the ligands in solution and in the active site of the enzyme was 

obtained using quantum chemical calculations.  Stopped-flow kinetic experiments 

were carried out to investigate the importance of Phe7 and Phe223, two residues 

located near the positive charge.  Our results show that ligand specificity in human 

AdoMetDC is mainly due to cation-π interactions and to electrostatic interactions 

between N3 of adenine and the sulfonium ion, which stabilizes the syn conformation. 

Section 3.2. Materials and Methods 

Materials.  The syntheses of MMTA and DMAMA were previously reported 

(23) and the compounds were the gift of Dr. Jack Secrist at Southern Research 

Institute. 

Protein Expression and Purification.  The plasmid encoding the enzyme was 

cloned into a pQE30 vector and transformed into JM109 strain E. coli cells.  An 

overnight culture of 10 mL was grown in LB media at 37 °C with 100 mg/mL 

ampicillin for resistance and then introduced into larger cell cultures of 1 L volume 

containing 100 mg/mL ampicillin.  The cells were grown until they reached an O.D600 

of 0.6 and then induced with 100 mg/L isopropyl-1-β-D galactopyranoside.  The 

temperature was reduced to 15 °C and the cells were allowed to grow and express the 

protein overnight.  The cells were harvested by centrifugation and washed using a 

wash buffer containing 20 mM Na2HPO4, pH 7.0, 500 mM NaCl, 2.5 mM putrescine, 

0.02% polyoxyethyleneglycol dodecyl ether (Brij-35) and 10 mM imidazole and 

stored at -80 °C.  The frozen cell pellet was resuspended in the wash buffer and lysed 

using a French press at 1500 psi.  The cellular debris was separated from the lysate by 

centrifugation at 12000 g.  Talon metal affinity resin was equilibrated with the wash 

buffer and the protein was bound to the resin by gently spinning the lysate and the 

resin together for 1.5 h.  The resin was loaded onto a column and washed with the 
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wash buffer 15-20 times the column volume.  The washing was continued with the 

wash buffer containing 25 mM imidazole.  The protein was eluted with the wash 

buffer containing 100 - 200 mM imidazole.  The elute was concentrated to around 10 

mL and passed through a Sephadex G-75 column pre-equilibrated with 10 mM N-(2-

hydroxyethyl)piperazine-N´-2-ethanesulfonic acid (HEPES), pH 7.5, 2.5 mM 

putrescine, 5 mM DTT, 0.1 mM ethylene diamine tetraacetic acid (EDTA), 0.02 % 

Brij-35 and 300 mM NaCl.  The fractions containing the protein were identified by 

UV peaks at 280 nm and collected.  The protein was concentrated to 10 mg/mL and 

stored at -80 °C. 

Crystallization.  The protein was buffer exchanged into 10 mM HEPES, pH 

7.5, 200 mM NaCl and 1 mM DTT using Bio-Rad buffer exchange chromatography 

columns.  The protein was incubated separately with a 4-6 molar excess of MMTA 

and DMAMA for 24 h prior to crystallization.  The crystals were grown using the 

hanging drop method at 22 °C in 13-16% polyethylene glycol 8000, 100 mM 

tris(hydroxymethyl)aminomethane, pH 8.0-9.0 and 10 mM DTT.  Crystals appeared 

overnight and were stable for 1-2 weeks but deteriorated after that. 

Data Collection and Processing.  The crystals were sequentially transferred to 

solutions containing the well solution with 2%, 5%, 8%, 15% and 18% glycerol with 

1-2 min equilibration between each step.  The crystals were flash frozen under liquid 

nitrogen before being placed in the liquid nitrogen stream.  The data for the complex 

of AdoMetDC with MMTA were collected at NE-CAT beamline 8-BM at the 

Advanced Photon Source using a ADSC Quantum 315 detector (Area Detector 

Systems Corporation).  Data were collected over a rotation range of 200º with an 

oscillation range of 1º and 60 s exposure per frame with a detector to crystal distance 

of 320 mm.  The data for the complex of DMAMA were collected at the NE-CAT 

beamline 24-ID-C.  Data were collected over a rotation range of 200º with an 
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oscillation range of 1º and 1 s exposure per frame with a detector to crystal distance of 

250 mm.  The data for the complexes were indexed, integrated and scaled using the 

HKL2000 program suite (24).  The data collection statistics for both complexes are 

summarized in Table 3.1. 

Structure Determination and Refinement.  The structures of the complexes 

were determined by molecular replacement with CNS (25) using the structure of the 

AdoMetDC/MeAdoMet complex (PDB code 1I7B) as the search model.  Model 

building for the complex of MMTA was performed using the program O (26).  The 

model building for the complex of DMAMA was performed using the program Coot 

(27).  The initial model obtained from molecular replacement was adjusted using 

composite omit maps and refined using successive rounds of simulated annealing, 

minimization, B-factor refinement, generation of new composite omit maps, 

difference Fourier maps and model building.  After a few rounds of refinement, the 

positions and the conformations of the ligand molecules were identified using the 

improved difference Fourier maps and composite omit maps.  The ligands were 

included in the models and water molecules were added based on the peaks in the 

difference Fourier maps.  The parameter and the topology files for the ligands were 

generated using the HIC-Up server (28).  The difference maps also showed density for 

a molecule of putrescine bound in each of the structures.  The final refinement 

statistics for both complexes are given in Table 3.2. 

Quantum Mechanical Calculations.  The quantum chemical calculations on the 

cation-π interactions were performed using Jaguar version 6.0 or 6.5 (Schrödinger).  

The X-ray structure of MMTA bound to AdoMetDC was employed for these 

calculations and single point energy calculations were performed using the LMP2/6-

31G** method on the following: (CH3)3S+ (from MMTA) plus two benzene rings 

(from Phe7 and Phe223); (CH3)3S+ (from MMTA) plus one benzene ring (from 
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Phe223); (CH3)3S+ (from MMTA) plus one benzene ring (from Phe7); (CH3)3S+ alone; 

benzene alone; (CH3)2S (from MMTA) plus two benzene rings (from Phe223 and 

 

Table 3.1. Data Collection Statistics for AdoMetDC Complexes 

 
 AdoMetDC + MMTA AdoMetDC + DMAMA 

Wavelength (Å) 0.9795 0.9795 
Space Group (Å) C2 C2 
a (Å) 93.85 99.45 
b (Å) 49.54 50.02 
c (Å) 70.00 68.69 
β 105.03 105.32 
Resolution (Å) 2.24 1.81 
Total/Unique reflections 56742/15123 107489/29093 
Redundancya 3.9(4.0) 3.7(2.5) 
% complete 95.1(99.4) 95.8(73.5) 
I/σ 8.9(4.26) 17.7(3.4) 

Rsym
b 10.5(31.7) 7.9(21.5) 

Matthews no. 2.05 2.19 
Solvent content 38.9 42.9 

 
aValues for the highest resolution shell are given in parentheses. 
bRsym = ΣΣiIi - <I> | /Σ<I>, where <I> is the mean intensity of the N reflections with 
intensities Ii  and common indices h,k,l. 
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Table 3.2.  Refinement Statistics for AdoMetDC Complexes 

 
 AdoMetDC+MMTA AdoMetDC+DMAMA 

Resolution (Å) 2.24 1.81 
R factora 0.226 0.193 
Rfree

b 0.274 0.218 
No of non-H atoms   
Protein 2405 2439 
Ligand 21 22 
Water 76 234 
B-factors   
Protein (Å2) 32.6 29.3 
Ligand (Å2) 43.1 22.8 
Putrescine (Å2) 35.0 47.7 
rms deviations   
bonds (Å) 0.006 0.008 
angles (°) 1.3 1.3 
dihedrals (°) 25.1 25.3 
Ramachandran plot   
Most favored region (%) 90.7 92.0 
Additional favored 
region (%) 

8.5 6.9 

Generously allowed 
region (%) 

0.8 0.8 

Disallowed region (%) 0.0 0.4 

 
aR factor = Σhkl||Fobs|-k|Fcal|/Σhkl|Fobs|, where Fobs and Fcal are observed and calculated 
structure factors respectively.  
bFor Rfree, the sum is extended over a subset of reflections (5%) excluded from all 
stages of refinement. 
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 Phe7); (CH3)2S alone.  The level of theory for the calculations is sufficient to account 

for the polarization effect and hence cation-π interactions (29). 

The energies and conformations of MMTA and 5´-deoxy-5´-methyl 

thioadenosine (MTA) in solution were determined starting with the NMR structure of 

AdoMet in solution (30) and truncating the molecule to MMTA or MTA.  The syn 

conformation was obtained by adjusting the O-C1´-N9-C4 torsion angle.  The 

structures were subjected to geometry optimization using the B3LYP/6-31G* density 

functional method and the SCRF implicit aqueous solvation model available in Jaguar.  

The single point energy of the geometry optimized structures was then obtained using 

the Local Moller-Plesset second-order perturbation (LMP2)/cc-PVTZ(-f) method with 

aqueous self-consistent reaction field (SCRF) solvation. 

The energies of the syn and anti conformations of MMTA in complex with the 

enzyme were determined using the MMTA complex as the basis.  The truncated 

model for the syn conformation consisted of MMTA and residues Phe223 and Phe7.  

Backbone atoms of the adjacent residues were also included in the calculations.  In 

addition, an acetate moiety derived from Glu247 was included.  Hydrogen atoms were 

added to the model.  Constrained geometry optimization was performed at the Hartree- 

Fock (HF)/6-31G** level and the single point energy was then calculated at the 

LMP2//6-31G** level.  All atoms were constrained during the geometry optimization 

except the adenine ring, the ribose C1´ atom and the ribose hydroxyl groups.  The anti 

conformation was generated from this truncated model by adjusting the O-C1´-N9-C4 

torsion angle to -140° followed by geometry optimization as described above.  The 

partial charges after geometry optimization were obtained for each of atom. 

Stopped-Flow Experiments.  The stopped-flow experiments were performed 

using a KinTek Stopped-Flow apparatus (Model SF-2004, KinTek Corp., Austin, TX).  

Experiments were carried out at 25 °C in 10 mM HEPES, pH 7.5, 200 mM NaCl, and 
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1 mM DTT.  The time dependence of binding was measured by monitoring changes in 

the intrinsic protein fluorescence.  An excitation wavelength of 298 nm (rather than 

the excitation maximum of ~280 nm) was used to avoid problems associated with 

inner filtering caused by increasing the ligand concentration.  Emission was observed 

using a band-pass filter centered at 340 nm (± 10 nm).  All reported concentrations 

refer to the final value after rapidly mixing ligand with enzyme at a ratio of 1:1 (v/v).  

The final enzyme concentration was 25 µM for the WT protein, F7A and E247A 

mutants and 100 µM for the F223A mutant.  AdoMet was mixed with enzyme in at 

least a 4-fold excess in order to maintain pseudo-first order conditions.  Linear and 

nonlinear regression of the data were performed using GraFit 5 (Erithacus Software, 

Horley, Surrey, UK).

Figure Preparation.  Structural figures were generated using Pymol (31). 

Section 3.3. Results 

Cocrystallization of AdoMetDC with Ligands.  The enzyme was cocrystallized 

in the presence of SAH, MMTA, DMAMA and MTA.  The crystallization 

experiments show that only MMTA and DMAMA bound to the enzyme in the crystal 

while MTA and SAH did not.  Cocrystallization experiments for MTA and SAH were 

performed at increased concentrations and incubation times to increase the possibility 

of binding at the active site; however, no active site density was observed. 

Crystal Structure of AdoMetDC with MMTA.  The overall fold of AdoMetDC 

is a four-layer αββα sandwich as previously described (32).  AdoMetDC 

autoprocessing results in an α subunit with an N-terminal pyruvoyl group and a 

smaller β subunit (32, 33).  One molecule of putrescine is bound between the β sheets 

for each monomer and is located about 15-20 Å from the active site.  

In the crystal structure of AdoMetDC with MMTA, loops containing residues 

1-4, 22-26, 165-172, 288-299, 328-334 were disordered and were excluded from the 
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model.  MMTA ribose forms hydrogen bonds to Glu247; the O2´ - Oε2 distance is 3.2 

Å and the O3´ - Oε1 distance is 2.7 Å.  The sulfonium sulfur atom is 4.4 Å from the 

center of Phe233 ring and the closest contact of sulfur atom with Phe223 is 3.9 Å 

(Cε1).  The methylene carbon atom adjacent to the sulfonium ion of MMTA is 4.4 Å 

from the center of Phe7 and 3.6 Å from the Cε2 carbon of Phe7.  The glycosidic bond 

of MMTA adopts a syn conformation and the adenine ring stacks between Phe223 and 

Phe7.  The stereoview of the electron density for MMTA in the active site is shown in 

Figure 3.1.  

Crystal Structure of AdoMetDC with DMAMA.  In the structure of AdoMetDC 

with DMAMA the loops containing the residues 1-3, 24-26, 165-173, 288-299, 328-

334 were missing in the crystal structure.  The ribose makes two hydrogen bonds to 

Glu247 with the O2´- Oε2 distance being 2.9 Å and the O3´- Oε1 distance being 2.6 

Å.  The nitrogen is 4.7 Å from the center of Phe223 and 4.2 Å from the Cε1 atom of 

Phe223.  The methylene carbon atom adjacent to the nitrogen atom is at a distance of 

4.3 Å from the center of Phe7 and 3.7 Å from the Cε2 carbon of Phe7.  The adenosine 

moiety of DMAMA is in a syn conformation with the adenine base stacking between 

Phe7 and Phe223.  A stereoview of the electron density for DMAMA in the active site 

is shown in Figure 3.2. 

Quantum Mechanical Calculations.  The LMP2/6-31G** energies from the 

quantum mechanical calculations are shown in Table 3.3.  The calculated gas phase 

binding energy of (CH3)3S+ between two benzene rings in the same geometrical 

orientations as Phe7 and Phe223 is -5.09 kcal/mol.  On the other hand, the binding 

energy of (CH3)2S between two benzene rings in the same geometrical orientations as 

Phe7 and Phe223 is only -0.60 kcal/mol.  These calculations suggest that the cation-π 

interaction provides an addition stabilization of approximately -4.5 kcal/mol.  Similar 

calculations suggest that the binding energy of (CH3)3S+ to Phe223 is -3.15 kcal/mol  
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Figure 3.1.  Stereoview of the complex of MMTA with AdoMetDC.  The difference 
Fo-Fc Fourier density is contoured at 2.5σ.  The carbon atoms of the ligand are colored 
green.  The hydrogen bonds are shown as red dashed lines. 

 

 

Figure 3.2.  Stereoview of the complex of DMAMA with AdoMetDC.  The difference 
Fo-Fc Fourier density is contoured at 4σ.  The carbon atoms of the ligand are colored 
green.  The hydrogen bonds are shown as red dashed lines. 

 
and the binding energy to Phe7 is -3.41 kcal/mol. 

The ab initio energy of the syn conformation of MMTA in the complex with 

Phe223, Phe7 and Glu247 is -3039.28899965619 hartrees and the energy of the anti 

conformation is -3039.26998403002 hartrees.  Thus, the energy difference between 
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the syn and anti conformations of MMTA in the active site is -11.93 kcal/mol favoring 

the syn conformation.  This would represent the stabilization of the syn conformation 

caused primarily by Phe223 and Phe7. 

We also investigated the conformational energetics of MMTA and MTA in 

aqueous solution using quantum chemical calculations.  The results are in agreement 

with the experimental results described by Markham et al. (30)  These compounds 

prefer an anti conformation in aqueous solution.  The LMP2/cc-PVTZ(-f) //B3LYP/6-

31G* calculated energy difference between the anti and syn conformations was 1.06 

kcal/mol for MMTA and 0.88 kcal/mol for MTA favoring the anti conformation in 

each case.  

Table 3.3.  Quantum Chemical Energies of Residues / Ligands  

 

 Energy in hartrees 

Benzene -231. 47989407141 

(CH3)2S -477.13908367149 

(CH3)2S    +   Phe223   +  Phe 7 -940.10191861550 

(CH3)3S+  +   Phe223 -748.08525375049 

(CH3)3S+  +   Phe7 -748.08567703979 

(CH3)3S+ -516.60034059742 

(CH3)3S+   +   Phe223   +  Phe 7 -979.57032658617 

 

Stopped-Flow Experiments.  An intrinsic fluorescence change was observed 

when AdoMetDC was rapidly mixed with AdoMet.  However, when SAH was mixed 

with AdoMetDC, there was no significant change other than that determined to be due 

to photobleaching (compared to a control minus SAH).  This indicates that SAH 

binding is much weaker and/or produces no discernable conformational change.  The 
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signal when MMTA was mixed with AdoMetDC was also too weak to measure the 

kinetics of the binding reaction.  

Kinetic data of AdoMet binding to WT AdoMetDC along with the F223A, 

F7A and E247A mutants were collected.  For WT, F7A and E247A the data were best 

fit to a double exponential equation  

(F=A1e-lt + A2e-l2t + C) to yield the observed rates (l1 and l2) and amplitudes 

(A1 and A2) of the two phases at each concentration of AdoMet.  The concentration 

dependence of the fast and slow phases are plotted in Figure 3.  The fast phase 

exhibited a linear concentration dependence, and did not saturate.  The slow phase was 

approximately hyperbolic and saturated at relatively low concentrations.  The data are 

best described by a minimal model of two sequential steps: 

 

    k1        k2 

E + S ↔ EX ↔ EA 

     k-1       k-2 

 

According to this model, the fast phase of the reaction occurs at an observed rate 

approximately equal to the sum of all four intrinsic rate constants (34): 

 

λ1 ~ k1[S] + k-1 + k2 + k-2 

 

A linear fit of the fast phase (AdoMet binding to WT enzyme) results in a k1 = 0.136 ± 

0.005 µM-1s-1, k-1 = 33 ± 2 s-1 and k2 + k-2 = 3.7 ± 0.2 s-1.  Therefore, the dissociation 

constant (Kd) for AdoMet binding to AdoMetDC can be estimated to be 242 ± 17 µM 

from the ratio of k-1/k1.  
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Figure 3.3.  Plots of observed rate vs. [AdoMet] for the WT, F223A, F7A and E247A 
mutants.  The linear concentration dependence of the observed rates was fit using a 
line which allowed for the definition of k1 and k-1.  A hyperbolic fit of the slow phase 
defined the sum of k2 and k-2, except in the case of F223A, where the kinetics were 
monophasic and indicative of a more simple one step binding model.  In this case the 
slope of the best fit line defines the k1 and the y-intercept defines the k-1 directly. 
 

For the F7A and E247A mutants, the data were analyzed in a similar fashion 

except that a lower overall signal change caused photobleaching to become a 

significant component of the data.  Therefore, the decrease due to photobleaching was 

corrected by using data from a control reaction where substrate was omitted (resulting 

in a linear decrease in fluorescence).  After correction, the kinetic parameters were 
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obtained as for the WT enzyme.  The values of k-1 and k2 + k-2 were similar for both 

the mutants but the value of the second order rate constant for substrate binding (k1) 

changed significantly.  Based upon the values of k1 and k-1, the Kd for the F7A mutant 

was 370 ± 60 µM and the Kd for the E247A mutant was 12.2 ± 3.6 mM.  

The fluorescence change seen upon mixing AdoMet with the F223A mutant 

was best fit using a single exponential equation.  The concentration dependence of the 

observed rate varied linearly with a slope (k1) of 1.7 ± 0.3 × 10-4 µM-1s-1 and a y-

intercept (k-1) of 2.4 ± 0.2 s-1 yielding a Kd of 14 ± 3 mM.  Generally, the values 

measured here follow the same trend as the steady state kinetic parameters (kcat and 

Km) obtained previously (22).  A comparison of Kd values for AdoMet binding to WT, 

F223A, F7A, and E247A mutants reveals that the importance of residues for substrate 

binding follows the order F223A ~ E247A >> F7A > WT. 

Section 3.4. Discussion 

Cation-π Interactions and Ligand Specificity of AdoMetDC.  Cation-π 

interactions are ubiquitous in nature and aid in protein stability, ligand recognition, 

catalysis and ion channel function (35, 36).  In the gas phase, the binding energy of 

cations to aromatic groups ranges from 10-40 kcal/mol which places the cation-π 

interaction among the strongest noncovalent forces (35, 37).  The magnitude of the 

cation-π interaction depends on the geometry, distance and the nature of the cation and 

the aromatic group.  In biological systems, the bulk of these interactions are seen with 

the amino acid side chains of proteins.  Aromatic amino acids such as tryptophan, 

tyrosine and phenylalanine interact with positive charged amino acids such as lysine 

and arginine.  The energetics of these interactions have been studied both 

experimentally and theoretically (38, 39).  In a few cases, ligand recognition by an 

enzyme is attributed completely to the cation-π interaction (40).  It has been shown 

that AdoMetDC binds substrate analogues only if they have a positive charge at the 
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sulfonium position (20).  MHZPA and MAOEA, which do not contain a sulfonium 

center, have an ammonium group that is protonated at physiological pH.  The inability 

to form MTA and SAH complexes in cocrystallization experiments is consistent with 

this observation.  

The results reported here suggest that cation-π interactions play a primary role 

in determining substrate specificity.  The crystal structure of AdoMetDC with MMTA 

shows that the sulfonium center is at a favorable distance and geometry for a cation-π 

interaction with Phe223.  The positive charge of the sulfonium ion is distributed to the 

adjacent methyl and the methylene groups (Figure 3.4).  The methylene group of 

MMTA is at a favorable distance and geometry for a cation-π interaction with Phe7.  

The quantum chemical calculations suggest the stabilization of a (CH3)3S+ group in 

the active site is primarily due to its interaction with Phe223 and Phe7.  Other ligands 

with a positive charge such as MHZPA, MAOEA, MeAdoMet and DMAMA show 

similar interactions with Phe223 and Phe7 (Figure 3.5).  The magnitude of 

stabilization obtained due to the cation-π interaction is approximately -4.5 kcal/mol.  

The interaction may be weakened from its maximum value by distribution of positive 

charge to adjacent carbon and hydrogen atoms and because of non-ideal geometry. 

The cation-π interaction as a theme for sulfonium recognition was debated by 

Markham et al. based on a survey of the crystal structures of AdoMet with various 

enzymes (30).  The survey which spanned 20 crystal structures showed that the 

sulfonium of AdoMet interacts with negatively charged atoms and aromatic amino 

acids in very few cases.  In glycine-N-methyltransferase (PDB code 1xva) and HhaI 

DNA methylase (PDB code 1hmy), the sulfonium interacts with negatively charged 

carboxylate atoms (41, 42).  There are only two cases in the survey where the 

sulfonium ion has a close contact with an aromatic group.  The sulfonium ion of 

AdoMet is 3.2 Å from the methylene carbon atom of Trp41 in HhaI DNA methylase  
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Figure 3.4.  Schematic diagram of the key interactions MMTA makes in the active site 
of AdoMetDC.  The adenine base stacks in the syn conformation aided by aromatic 
stacking interactions to Phe7 and Phe223.  The N6 of the adenine base hydrogen 
bonds to the backbone carbonyl of Glu67.  The sulfonium ion and the terminal methyl 
group have a cation-π interaction with Phe223 (shown in red) and the partially 
positively charged methylene group adjacent to sulfonium interacts with Phe7.  The 
N3 atom is partially negative charged and interacts with the sulfonium.  The partial 
charges on the relevant atoms are indicated.  The ribose makes two hydrogen bonds to 
Glu247.  
 

(PDB code 1hmy) and in the structure of AdoMetDC with MeAdoMet bound (PDB 

code 1I7B) the sulfonium ion is located 4.1 Å from the center of Phe223.  The survey 

concluded that in a broader picture, cation-π interactions are not a recurring theme for 

sulfonium recognition.  However, the uniqueness of the AdoMet decarboxylation 

reaction in this study may explain the importance of cation-π interaction for 

AdoMetDC, which further is supported by theoretical calculations and stopped-flow 

kinetic experiments.
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Figure 3.5.  The superposition of the complexes of AdoMetDC showing the geometry 
of the cation-π interaction between the positive sulfonium / nitrogen with Phe223.  
The color coding for the complexes is as follows; MMTA, red; DMAMA, magenta; 
MeAdoMet, green; MAOEA, blue; MHZPA, yellow. 

 

Stabilization of the syn Conformation by AdoMetDC.  The conformational 

preference of AdoMet in solution and gas phase was studied by Markham et al. (30).  

According to the NMR studies, AdoMet prefers an anti conformation about the 

glycosidic bond in solution and a syn conformation in vacuum.  The energy difference 

between the anti and syn conformations in solution was calculated to be -34 kcal/mol 

based on the modeling studies using NMR constraints.  This energy difference was 

calculated based on molecular mechanics without polarization effects and it is likely 

that the actual difference is less negative (23).  The crystal structure of AdoMetDC 
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with MeAdoMet, MHZPA and MAOEA reported previously showed that the enzyme 

binds the ligands in the energetically unfavorable syn conformation (22). 

The crystal structures of AdoMetDC with MMTA and DMAMA also show 

that the adenosine moiety binds in a syn conformation.  The quantum chemical 

calculations for MMTA in a truncated model of the enzyme with only Phe7, Phe223 

and Glu247 included suggest that the syn conformation of the ligand is stabilized by 

~12 kcal/mol compared to hypothetical anti conformation, which has never been 

observed in an AdoMetDC complex.  The actual energy difference is likely to be 

greater than the above value since the anti conformation places the six-membered ring 

of the adenine in close proximity to Asn224 and Pro225.  Moreover, the amino group 

on the adenine ring is in close proximity and makes hydrogen bonds to Glu67 in the 

syn conformation but forms no appreciable interactions with the enzyme in the anti 

conformation.  

The syn conformation of the adenine base is primarily stabilized by stacking 

interactions with Phe7 and Phe223 and hydrogen bonds of the ribose to Glu247.  The 

N3 atom of the adenine base carries a partial negative charge and interacts favorably 

with the sulfonium ion.  This electrostatic effect further contributes in stabilizing the 

syn conformation of the ligand.  The preference of AdoMetDC to bind ligands in the 

syn conformation was recently exploited in the design of substrate analogues with 

enhanced affinity.  Substitution at the C8 position on the adenine base favored the syn 

conformation resulting a 5-18 fold increase in potency compared to the unsubstituted 

compounds (23). 

Insights into Inhibitor Design.  The design of substrate analogue inhibitors for 

AdoMetDC benefit from the presence of a positive charge required for the cation-π 

interaction.  Unlike MAOEA and MHZPA, MMTA shows competitive inhibition 

because it lacks an amino terminus required to form a Schiff base with the active site 
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pyruvoyl group.  Studies on MMTA also show that the ribose, adenine base and the 

positive charge are sufficient for inhibition of AdoMetDC.  The schematic diagram 

showing all of the stabilizing interactions of MMTA in the active site is shown in 

Figure 3.4.  

The MMTA analog, DMAMA shows that the replacement of the sulfur by 

nitrogen also yields a competitive inhibitor because the nitrogen is protonated at 

physiological pH.  DMAMA has a methyl substitution at the 8-position which should 

favor the syn conformation in solution and improve the binding to AdoMetDC (23).  

Because MMTA and DMAMA lack hydrazino or oxyamino groups, which react 

nonspecifically with cellular aldehydes and ketones, and because further evolution of 

their structures are possible, MMTA and DMAMA, with IC50 values of 15 µM and 

600 nM (23), respectively, are promising lead compounds for inhibitor design. 
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CHAPTER 4 

NEW INSIGHTS INTO THE DESIGN OF INHIBITORS OF HUMAN S-

ADENOSYLMETHIONINE DECARBOXYLASE: STUDIES OF ADENINE C8 

SUBSTITUTION IN STRUCTURAL ANALOGUES OF S-

ADENOSYLMETHIONINE3 

Section 4.1. Introduction 

S-Adenosylmethionine decarboxylase (AdoMetDC) is a pyruvoyl dependent 

decarboxylase and a critical enzyme in the polyamine biosynthetic pathway, which is 

found in mammals, Protista and many other species (1-4).  The polyamines 

putrescine, spermidine and spermine are essential for cell growth and play important 

roles in cell proliferation and differentiation (5-7).  Polyamines have been found to be 

elevated in various types of cancer including non small cell lung cancer, prostate 

cancer, melanoma, and pancreatic cancer (8, 9).  Polyamine levels in cells depend on 

the polyamine biosynthetic and catabolic pathways as well as on import and export of 

polyamines across the cellular membrane.  Altering regulation of the key enzymes in 

the polyamine pathway is a therapeutic strategy for treatment of various types of 

cancers.  AdoMetDC catalyzes the conversion of S-adenosylmethionine (AdoMet) to 

decarboxylated S-adenosylmethionine (dcAdoMet), which then donates the 

aminopropyl group to putrescine or spermidine to form spermidine and spermine, 

respectively.  AdoMetDC is at a key branch point in the pathway and its action 

commits AdoMet to polyamine biosynthesis and removes it from the pool available 

for methyl transfer to a variety of substrates. 

                                                
3 Reproduced in part with permission from McCloskey DE, Bale S, Secrist III JA, Tiwari A, Moss III 
TH, Valiyaveettil J, Brooks WH, Guida WC, Pegg AE, Ealick SE. (2009) J. Med. Chem. 52(5) 1388-
1407 Copyright 2009 American Chemical Society 
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Attempts to regulate polyamine levels have resulted in the development of 

inhibitors that target the biosynthetic enzymes ornithine decarboxylase (ODC) (10), 

AdoMetDC and the catabolic enzyme spermidine/spermine N1-acetyltransferase 

(SSAT) (11).  The best-known inhibitor of ODC is α-difluoromethylornithine 

(DFMO), which irreversibly inactivates the enzyme.  The success of DFMO in cancer 

therapy has been limited as the cells compensate for the decreased synthesis of 

polyamines through increased cellular uptake of polyamines (12).  DFMO is currently 

being investigated as a chemopreventive agent against carcinogenesis (13-17).  The 

development of drugs to inhibit AdoMetDC (Figure 4.1 A) started with the 

competitive inhibitor methylglyoxal bis(guanylhydrazone) 1 (MGBG), which is 

similar to spermidine in structure (18).  Use of MGBG 1 caused extreme toxicity in 

humans and many analogues of MGBG 1 were developed in attempts to decrease the 

toxicity.  One such AdoMetDC inhibitor that resulted was 4-amidinoindan-1-one-2′-

amidinohydrazone 2 (CGP48664A), which progressed into clinical trials as a cancer 

chemotherapeutic agent (19).  Alternatively, inhibitors such as 5′-deoxy-5′-[(3-

hydrazinopropyl)methylamino]adenosine 3 (MHZPA), 5′-deoxy-5′-[(3-

hydrazinoethyl)methylamino]adenosine 4 (MHZEA) and 5′-[(2-

aminooxyethyl)methylamino]-5′-deoxyadenosine 5 (MAOEA) that are structural 

analogues of the natural substrate were developed (Figure 4.1 B).  These compounds 

inactivate AdoMetDC by forming a Schiff base to the active site pyruvoyl group (20).  

Another known nucleoside inhibitor of AdoMetDC is 5′-[[(Z)-4-amino-2-

butenyl]methylamino]-5′-deoxyadenosine.  This butenyl analogue was designed as an 

enzyme-activated irreversible inhibitor (21) but subsequent experiments showed that it 

acted via transamination of the pyruvate prosthetic group (20). 



 

 84 

 

Figure 4.1: Previously described inhibitors of hAdoMetDC 

The crystal structure of AdoMetDC and its S68A and H243A mutants were 

solved to aid understanding of the mechanisms of decarboxylation and autoprocessing 

(22-24).  The crystal structures of AdoMetDC with inhibitors such as MAOEA 5, 

MHZPA 3 and the methyl ester of S-adenosylmethionine (MeAdoMet) also have been 

solved previously (25).  These structures show that the adenine base of the inhibitors 

assumes an unusual syn conformation within the active site.  The preference for the 

unusual conformation has led us to develop new structural analogues of AdoMet with 

modifications on the adenine base and to investigate, through biochemical analysis, 

computational modeling, and analysis of crystal structures, whether these compounds 

would be more potent inhibitors of AdoMetDC than the unsubstituted parent 

compounds.  Substitution at the 8-position of adenine is expected to result in ligands 

that favor the syn conformation in solution, and it was hoped that this would increase 

their ability to inhibit AdoMetDC.  We now describe the synthesis of several series of 

structural analogues of AdoMet with 8-substituted adenine and present AdoMetDC 

inhibition data.  We report the crystal structures of the AdoMetDC F223A mutant 

complexed with MeAdoMet and the wild-type protein complexed with several 8-

substituted inhibitors. 
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Section 4.2. Materials and Methods 

Target Synthesis.  TLC analysis was performed on Analtech precoated (250 

µm) silica gel GF plates.  Melting points were determined on a Mel-Temp apparatus 

and are uncorrected.  Purifications by flash chromatography were carried out on 

Merck silica gel (230-400 mesh).  Evaporations were performed with a rotary 

evaporator, higher boiling solvents (dimethylformamide (DMF), pyridine) were 

removed in vacuo (<1 mm, bath to 35 °C).  Products were dried in vacuo (<1 mm) at 

22-25 °C over P2O5.  The mass spectral data were obtained with a Varian-MAT 311A 

mass spectrometer in the fast atom bombardment (FAB) mode or with a Bruker 

BIOTOF II by electrospray ionization (ESI). 1H NMR spectra were recorded on a 

Nicolet NT-300 NB spectrometer operating at 300.635 MHz.  Chemical shifts in 

CDCl3 and Me2SO-d6 are expressed in parts per million downfield from 

tetramethylsilane (TMS) and in D2O chemical shifts are expressed in parts per million 

downfield from sodium 3-(trimethylsilyl)propionate-2,2,3.3-d4 (TMSP).  Chemical 

shifts (δ) listed for multiplets were measured from the approximate centers, and 

relative integrals of peak areas agreed with those expected for the assigned structures.  

UV absorption spectra were determined on a Perkin-Elmer Lambda 19 spectrometer 

by dissolving each compound in MeOH or EtOH, and diluting 10-fold with 0.1 N 

HCl, pH 7 buffer, or 0.1 N NaOH.  Numbers in parentheses are extinction coefficients 

(ε x 10-3).  Microanalyses were performed by Atlantic Microlab, Inc. (Atlanta, GA) or 

the Spectroscopic and Analytical Department of Southern Research Institute.  

Analytical results indicated by element symbols were within ±0.4% of the theoretical 

values, and where solvents are indicated in the formula, their presence was confirmed 

by 1H NMR. 

Chemical Synthesis.  Our synthetic efforts relating to AdoMetDC date back 

many years, when we prepared an early series of related compounds that included 
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MHZPA 3 and MAOEA 5 (26).  In our current research, we have prepared a series of 

compounds with various 8-substituents on an adenosine template having a chain 

extension at C-5′.  These compounds fall into four broad categories with respect to the 

various substituents at C-5′, and synthetic schemes will be organized based upon these 

categories.  For comparison purposes, we have included available compounds with an 

8-H within the four categories.  End groups of the C-5´ substituent such as an 

aminooxyalkyl will bind covalently and to a large extent irreversibly to the pyruvoyl 

group within the active site of the enzyme, while groups ending in an amide will not 

even bind reversibly to the pyruvoyl group.  Amino end groups will bind covalently, 

but entirely reversibly, while a hydrazide group binds with some reversibility.  In 

addition to these compounds we have prepared several compounds without a chain 

extension at C-5′, i.e., compounds that do not reach the vicinity of the pyruvate group 

within the binding site. 

The syntheses of some of the 8-unsubstituted compounds date back to our 

earlier work (26), and these compounds dictated our initial synthetic approaches.  We 

began by assuming that we needed to block the 2′- and 3′-hydroxyl groups, which we 

did with an isopropylidene group.  Later, we discovered that it was possible to conduct 

the chemistry without blocking these two hydroxyl groups, and that the new schemes 

were superior to those that utilized a blocking-deblocking sequence.  In situations 

where we had already prepared a target compound utilizing a blocked precursor, we 

did not go back and resynthesize the compound without using a blocking group, and 

the schemes below reflect that fact.  Figure 4.2 presents the precursor nucleoside series 

8 and 9 that we have used along with their syntheses. 

Target compounds with an aminooxyalkylamino side chain at C-5′ were 

prepared using two different routes, as shown in Figure 4.3.  In our original sequence, 

which utilized a 2′,3′-O-isopropylidene group for protection, we generated the 
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hydroxyalkylamino precursor 15 by displacement of a tosyl group with the requisite 

amine.  Using N-hydroxyphthalimide, triphenylphosphine and DEAD (27) the 

aminooxy precursor 16 was produced and then converted to the desired target 5 under 

acidic conditions.  Later we found that it was more effective to first generate the 

aminooxy precursors ethyl N-(2-bromoethoxy)ethanimidate (28) and ethyl N-(N-4-

bromobutoxy)ethanimidate (29), which could be appended to C-5′ by halide 

displacement with a 5′-methylamino-5′-deoxynucleoside to produce product series 11 

and 13.  Initially we carried out this displacement with an isopropylidene protecting 

group on the nucleoside, but subsequently determined that the reaction works as well 

or better without the protecting group.  By the above means targets 12a-c and 14a-f 

were prepared. 

All of the amides and hydrazides were made by similar procedures, as shown 

in Figure 4.4.  The 5′-methylamino-5′-deoxynucleosides were treated with the 

appropriate ω-chloroester followed by treatment with either ammonia or hydrazine.  If 

an isopropylidene group was involved, then it was removed with an acidic 

deprotection step.  In this manner targets 17d-f, j-m, with two different linker lengths 

and various 8-substitutions were prepared.  Targets with an aminoalkylamino side 

chain at C-5′ were mainly prepared utilizing the displacement of a C-5′ leaving group 

with the asymmetrical amine (Figure 4.5).  For example, treatment of 8a with 3-

methylaminoethylamine produced a mixture of 18f and 19d, which were separated to 

afford pure 18f, our desired target.  In the case where this procedure involved a 

starting material with an isopropylidene group, treatment with acid produced the 

desired final product.  In early work, compounds 21c,d were prepared by treatment of 

a 5′-methylamino-5′-deoxynucleoside with 3-bromopropylphthalimide followed by 

two deprotection steps. 
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Figure 4.2 Synthetic scheme for new inhibitors – part I. (a) (CH3)4Sn or (CH3CH2)4Sn, 
HMDS/dioxane, NMP, (Ph3P)4Pd, 110 °C; (b) CH3NH2, MeOH, 110 °C; (c) 
C6H5B(OH)2, K2CO3, (Ph3P)4Pd, 1,2-DME-H2O (2:1), 90 °C; (d) SOCl2, 
CH3CN/pyridine, 0 °C-RT, NH4OH, RT; (e) MsCl, pyridine, 0 °C; (f) 33% CH3NH2, 
EtOH, RT (9e,f,g) or 90 °C (9a-d); (g) NaOMe/MeOH, RT 
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Figure 4.3 Synthetic scheme for new inhibitors – part II.  
(a) CH3(OEt)C=NO(CH2)2Br, DMF, DIEA, 50 °C; (b) 1 N H2SO4, RT; (c) 
CH3(OEt)C=NO(CH2)4Br, DMF, DIEA, 50 °C; (d) 2-(methylaminoethanol), RT; (e) -
hydroxyphthalimide, PPh3, DEAD, THF, RT; (f) 1 N H2SO4, 60 °C.  

 

 

 

Figure 4.4 Synthetic scheme for new inhibitors – part III. (a) Cl(CH2)nCO2Et (n = 1 or 
2), DMF, DIEA, 60 °C; (b) NH3/MeOH, RT; (c) 1 N H2SO4, RT; (d) NH2NH2, H2O, 
EtOH, reflux.  
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Figure 4.5 Synthetic scheme for new inhibitors – part IV. (a) CH3NH(CH2)nNH2 (n = 
1 or 2), RT; (b) 1 N H2SO4, RT; (c) 3-bromopropylphthalimide, DMF, DIEA, 60 °C; 
(d) NH2NH2, H2O, reflux; (e) 1H- pyrazole-1-carboxamidine · HCl, DMF, DIEA, RT; 
(f) 3-(methylamino)propionitrile, RT; (g) NH2OH · HCl, MeOH, DMF, KOH, RT. 

 

Figure 4.6 Synthetic scheme for new inhibitors – part V. (a) (CH3)2NH, 2 M solution 
in MeOH, 90 °C; (b) CH3SNa, DMF, RT; (c) CH3Br, Et2O, HCO2H, HOAc, RT; (d) 
IRA-400 (Cl) ion exchange resin. 
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Building on the aminoalkylamino side chain, reaction of 18e with 1-

carboxamidinopyrazole (30) produced the guanidine target 22a.  In a related sequence, 

the target amidoxime 22c was prepared by treating 8j with 3-

(methylamino)propionitrile to produce the nitrile 22b (31), which was treated with 

hydroxylamine hydrochloride under basic conditions. 

The 5′-dimethylamino and 5′-dimethylsulfonio compounds 23a,b and 25a-d 

were prepared by routine methods (Figure 4.6).  The dimethylamino group was 

introduced by displacement of a 5′-chlorine on 8a or 8g (32) with dimethylamine.  The 

5′-methylthio compounds 24a,b were treated with methyl bromide to produce 25a and 

25c.  Ion exchange was utilized to prepare the chloride salts 25b and 25d. 8-Methyl-

5′-methylthio nucleoside 24a was prepared by displacement of the 5′-chlorine in 8a 

with sodium thiomethoxide. 

Protein Production.  For crystallography of wild type and F223A mutant of 

human AdoMetDC (hAdoMetDC), plasmids in the pQE30 vector in E. coli were 

produced as described previously (25).  This construct replaces the N-terminal 

methionine with MRGS(H)6GS- for purification by immobilized metal affinity 

chromatography.  A different plasmid also based on the pQE30 vector was used for 

the production of protein for the hAdoMetDC enzyme assays.  In this plasmid, the 

(H)6 tag was located at the carboxyl end replacing the terminal –QQQQQS.  The 

position of the (H)6 tag did not alter the activity of the purified enzyme. 

The wild type hAdoMetDC was purified based on the protocol described by 

Ekstrom et al. (22).  The plasmid encoding the enzyme is in the pQE30 vector and was 

transformed into JM109 strain E. coli cells.  The cells were grown as an overnight 

culture in LB media at 37 °C and then introduced into larger cell cultures with both of 

the cultures containing 100 mg/mL ampicillin.  The cells were grown until they 

reached an O.D600 of 0.6 and then were induced with 100 mg/L isopropyl β-D-
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thiogalactopyranoside (IPTG).  The cells were allowed to grow overnight at 15 °C and 

were then harvested by centrifugation, washed using a wash buffer which contained 20 

mM Na2HPO4, pH 7.0, 500 mM NaCl, 2.5 mM putrescine, 0.02% Brij-35 and 10 mM 

imidazole, and stored at -80 °C.  The frozen cell pellet was thawed, suspended in the 

wash buffer, and lysed using a French press at 1500 psi.  The cellular debris and the 

lysate were separated by centrifugation at 12000 g.  Talon metal affinity resin was 

equilibrated with the wash buffer and then the lysate and the resin were gently spun 

together for 1.5 h.  The resin was loaded onto a column and washed with a volume of 

wash buffer equivalent to 15-20 times the column volume.  Next, the column was 

washed in the same manner with wash buffer containing 25 mM imidazole.  The 

protein was then eluted with buffer containing 100-200 mM imidazole.  The eluted 

protein solution was concentrated to around 10 mL and passed through a Sephadex G-

75 column pre-equilibrated with 10 mM N-(2-hydroxyethyl)piperazine-N′-2-

ethanesulfonic acid (HEPES), pH 7.5, 2.5 mM putrescine, 5 mM dithiothreitol (DTT), 

0.1 mM ethylenediaminetetraacetic acid, 0.02 % Brij-35, and 300 mM NaCl.  The 

buffer was run through the column and the fractions containing the protein were 

identified by UV absorbance at 280 nm.  The protein was concentrated to ~ 10 mg/mL 

and stored at -80 °C.  The purification of the F223A mutant was similar to that of the 

native enzyme. 

Structure Determination.  The protein was thawed on ice and buffer exchanged 

to 10 mM HEPES, pH 7.5, 200 mM NaCl and 1 mM DTT using Bio-Rad buffer 

exchange chromatography columns (Bio-Rad Laboratories, Hercules, CA 94547).  The 

wild type protein was incubated with a 4-6 M excess of inhibitor for 24 h prior to 

crystallization.  The F223A mutant was diluted to ~6 mg/mL and incubated with a 4-6 

M excess of MeAdoMet for 24 h prior to crystallization.  Crystals of both the native 

and the mutant complexes were grown using the hanging drop method at 22 °C in 13-
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16% PEG 8000, 100 mM Tris, pH 8.0-9.0, and 10 mM DTT.  Crystals appeared 

overnight and were stable for 1-2 weeks. 

The data for the 12a complex were collected at a home source with a Rigaku 

R-AxisIV++ image plate detector using Cu-Kα radiation from a Rigaku RU-300 

rotating anode generator.  The data for the 14e complex were collected at NE-CAT 

beamline 8-BM at the Advanced Photon Source (APS) using a ADSC Q315 detector.  

Data for the 17f complex were collected at NE-CAT beamline 24-ID-C using a ADSC 

Q315 detector.  The data for AdoMetDC F223A with MeAdoMet and the complexes 

with 17d and 21c were collected at the F2, A1 and A1 stations of CHESS respectively, 

using an ADSC Q210 detector.  The diffraction quality of the crystals strongly 

depended on cryoprotection conditions.  The crystals were sequentially transferred to a 

solution containing the well solution with 2%, 5%, 8%, 15% and 18% glycerol with 1-

2 min equilibration between each step.  The data for all of the complexes were 

indexed, integrated and scaled using the HKL2000 (33) program suite.  The data 

collection statistics are summarized in Table 4.1. 

The structures of all of the complexes were determined by molecular 

replacement using the structure of native AdoMetDC with MeAdoMet bound (PDB 

1I7B) as the search model, and the CNS program suite (34).  The model building was 

done using the program O (35) or Coot (36).  The conformations of the ligand 

molecules were determined using difference Fo-Fc and composite omit maps.  The 

parameter and the topology files for the ligands were generated using the HIC-Up 

server (37).  The difference maps also showed density for a molecule of putrescine 

bound in all of the structures.  The refinement statistics of the complexes are given in 

Table 4.2. 

Molecular Modeling.  Determination of the conformational preference of 

ligands in the active site of AdoMetDC was carried out with Macromodel version 7.2 
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(38) available from Schrödinger, L. L. C.  To make the computational studies 

tractable, the protein was truncated to a shell of atoms that included any residue that 

contained an atom within 20.0 Å of MeAdoMet located in the active site of 

AdoMetDC (from PDB 1I7B) and was used as the starting model for conformational 

searching/energy minimization.  Removal of water molecules from this “docking 

shell” was followed by appropriate hydrogen treatment using Schrödinger’s protein 

preparation utility that aids in the generation of appropriate ionic states and histidine 

tautomers for active site amino acids and minimizes the protein’s potential energy 

gradient through a series of constrained energy minimizations.  For the conformational 

searches, the appropriate ligand was added to the active site and, where appropriate, 

the covalent bond between the amino terminus of the ligand and the pyruvoyl group 

was formed. 

The resulting structures were subjected to 50,000 mixed Monte Carlo 

MCMM/Low Mode conformational search steps (39, 40) allowing residues within a 5 

Å shell surrounding the active site to move freely during each Monte Carlo/Low Mode 

step and subsequent energy minimization step of the search.  All other protein atoms 

were constrained to their starting position.  Residues His5, Glu67, Cys226 and Glu247 

were also constrained to their starting position.  The energy minimization step was 

considered to have converged when the energy gradient was less than 0.05 kJ / mol.  

The AMBER* force field (41, 42), with a distance dependent dielectric “constant” 

further attenuated by a factor of four was employed for the calculations, and the 

energy minimizations relied upon the TNCG minimization technique (43).  The global 

minimum and low energy ensemble of structures within 15 kJ/mol of the global 

minimum (after convergence) were further refined by energy minimization until a 

gradient less than 0.01 kJ / mol was obtained with just the ligand allowed to move 

during this subsequent energy minimization procedure.  All protein atoms during this 
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process were constrained to their starting position.  The jobs were run with the 

nucleoside starting in both the syn and anti conformations for completeness.  The 

AMBER* parameters for the sulfonium ion were adapted from Markham et al. (44). 

The modeling of the terminal three atoms of 14e was done using 

conformational searching with Macromodel version 7.2 as described above.  Since the 

position of the rest of the ligand and the protein was determined to high accuracy by 

fitting to the electron density determined by X-ray diffraction, all of the protein and 

the ligand atoms except the last three non-hydrogen atoms and their attached 

hydrogens were fixed during the conformational search.  Torsional rotation was 

allowed around the last two bonds of the C-5' extension during the conformational 

search.  A visual survey of the five lowest energy structures, which spanned an energy 

range of 6.5 kJ/mol, showed that they were similar and the global minimum of the 

search was utilized to obtain the coordinates of the disordered terminal atoms of 14e. 

AdoMetDC Activity and Inhibition.  AdoMetDC was assayed by measuring the 

release of 14CO2 from S-adenosyl-L-[carboxy-14C]methionine (Amersham Pharmacia 

Biotech, ~60 mCi/mmol) (45). Assay of 30 ng of C-terminal his-tagged AdoMetDC 

under these conditions results in ~7000 cpm with a background of 30, and an activity 

of ~1.5 pmol/min/ng protein.  For determination of the abilities of compounds to 

inhibit AdoMetDC, the enzyme activity was determined in the presence of no inhibitor 

and at least 5 concentrations of each potential inhibitor.  The enzyme concentation was 

1 nM.  The IC50 values were determined from curve fitting to plots of the inhibitor 

concentration versus the % inhibition of AdoMetDC.
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 Table 4.1.  Data collection statistics for hAdoMetDC complexes. 

 
 F223A + 

MeAdoMet 
WT + 
12a 

WT + 
14e 

WT + 
17d 

WT +  
17f 

WT + 
21c 

Wavelength 
(Å) 

0.9795 1.5418 0.9795 0.9790 0.9792 0.9771 

Space Group 
(Å) 

C2 C2 C2 C2 C2 C2 

a (Å) 95.98 96.78 94.43 99.82 99.65 100.08 

b (Å) 44.25 44.46 50.04 50.95 50.75 50.75 
c (Å) 70.83 70.55 70.41 68.98 68.90 69.04 
β 104.52 104.17 105.34 105.52 105.34 105.56 

Resolution 
(Å) 

2.62 2.43 1.83 1.84 1.91 1.86 

Total/Unique 
reflections 

23532/ 
8160 

26010 
/10403 

83134/ 
26894 

89749/ 
28243 

97188/ 
25449 

77769/ 
27505 

Redundancy 2.9(2.6)* 2.5 (1.9) 3.1(3.1) 3.2(2.6) 3.8(2.6) 2.8(2.5) 
% complete 92.9(91.2) 93.6(86.8) 95.6(95.5) 97.6(94.1) 98.8(91.0) 98.7(96.8) 

I/σ 13.3(2.0) 10.9(2.9) 13.5(2.7) 17.4(8.0) 16.6(3.9) 14.2(2.2) 

Rsym 7.7(45.2) 9.0(33.8) 7.2(54.8) 6.0(14.0) 7.6(25.0) 7.1(39.1) 

Matthews no 1.90 1.92 2.09 2.21 2.19 2.21 

Solvent 
content (%) 

34.1 34.8 39.7 43.2 42.9 43.2 

* Values in parenthesis are for the highest resolution shell. 
Rsym=ΣΣi|Ii - <I> | /Σ<I>, where <I> is the mean intensity of the N reflections with 
intensities Ii  and common indices h,k,l. 
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Table 4.2.  Refinement statistics for hAdoMetDC complexes. 
 F223A + 

 MeAdoMet 
WT + 
12a 

WT + 
14e 

WT + 
17d 

WT + 
17f 

WT + 
21c 

Resolution (Å) 2.62 2.43 1.83 1.84 1.91 1.86 
R-factora 0.203 0.199 0.208 0.204 0.197 0.200 
R-freeb 0.280 0.247 0.231 0.237 0.208 0.232 
No of non-H atoms       
Protein 2473 2419 2381 2489 2454 2470 
Ligand 28 25 28 26 25 25 
Water 79 73 137 222 212 217 
B-factors       
Protein (Å2) 41.3 31.5 29.6 26.8 28.2 32.4 
Ligand (Å2) 63.4 42.1 32.3 26.0 43.9 39.9 
Putrescine (Å2) 32.4 27.9 40.0 22.4 24.7 29.8 
rms deviations       
Bonds (Å) 0.010 0.011 0.007 0.006 0.012 0.008 
Angles (º) 1.4 1.4 1.3 1.3 1.4 1.3 
Dihedrals (º) 24.9 25.2 25.3 25.3 25.8 25.2 
Ramachandran plot       
Most favored region (%) 84.2 89.3 91.4 91.8 92.1 92.5 
Additional favored 
region (%) 

14.7 9.5 7.8 7.8 7.5 7.5 

Generously allowed 
region (%) 

0.8 0.8 0.4 0.4 0.4 0.0 

Disallowed region (%) 0.4 0.4 0.4 0.0 0.0 0.0 

 
aR-factor = Σhkl||Fobs|-k|Fcal||/Σhkl|Fobs|, where Fobs and Fcal are observed and calculated 
structure factors, respectively.  In bR-free the sum is extended over a subset of 
reflections that were excluded from all stages of refinement. 
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 Section 4.3. Results 

Modeling of MeAdoMet in the active site of AdoMetDC.  The crystal structures 

of AdoMetDC complexed with MeAdoMet or the inhibitors MHZPA 3 and MAOEA 

5 have shown that the ligand binds with the adenine base in the unusual syn 

conformation (25).  The active site residues of AdoMetDC with MeAdoMet bound are 

shown in Figure 4.7.  However, NMR data, coupled with molecular modeling studies, 

suggest that in solution AdoMet assumes an anti conformation as an energy minimum 

(44).  A survey of crystal structures in which AdoMet is bound showed that the 

substrate assumes a range of glycosidic torsion angles, but that the anti conformation 

is preferred (44).  In order to explain the conformational preferences and the related 

energetics of ligand binding to AdoMetDC, the modeling of MeAdoMet in the active 

site of AdoMetDC was done.  Since MeAdoMet is tethered to the active site of 

AdoMetDC through covalent bonding to the pyruvoyl group, docking involving 

positional and orientational sampling was not performed.  Instead, a conformational 

search to locate the populated low energy conformations of AdoMet in the AdoMetDC 

active site was performed using the mixed Monte Carlo/Low Mode conformational 

search method within the MacroModel program (38-40).  The conformational search 

started with AdoMet in either the anti or syn conformation and in each case the five 

lowest energy structures from the search exhibited a syn conformation for the adenine 

nucleoside.  A superposition of the modeled structure with the crystal structure (Figure 

4.7) indicates that the results of the conformational search match well with those 

observed crystallographically.  Conformational searches were also done for AdoMet, 

5′-deoxy-5′-(dimethylsulfonio)adenosine (MMTA), MHZPA 3, and MAOEA 5 

binding to AdoMetDC, and each yielded a syn conformation for the glycosidic bond 

(data not shown).  The ribose makes key hydrogen bonds to Glu247 and the adenine 

base stacks between Phe7 and Phe223 and also makes hydrogen bonds to the 
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backbone amide and C-terminal carboxyl group of Glu67.  These interactions together 

with π-π stacking of the adenine base with Phe223 and with Phe7 constrain the 

glycosidic bond to the syn conformation 

   

 

Figure 4.7 Comparison of the crystal structure of hAdoMetDC complexed with 
MeAdoMet to that of a structure derived from the modeling of the complex.  The 
crystal structure has all atoms colored grey. For the model, the active site pyruvoyl 
group is shown in magenta and MeAdoMet carbon atoms are shown in green.  
MeAdoMet makes a Schiff base to the pyruvoyl group.  The ribose makes two 
hydrogen bonds to Glu247 (shown as red dashed lines).  The adenine base stacks 
between Phe223 and Phe7 in the unusual syn conformation.  The hydrogen bonds 
between the adenine base and the backbone of Glu67 stabilize the syn conformation.  
The modeling result agrees well with the experimentally determined crystal structure. 

 

Virtual mutations in the active site of AdoMetDC.  Virtual mutations were 

made to study the effect of various residues on the conformation of the bound 

nucleoside.  Conformational searching with MacroModel employing the AdoMetDC 

F223A and F7A single amino acid mutants, with MeAdoMet in the active site, 

resulted in a mixture of syn and anti conformations in the low energy ensemble.  With 

each of the mutations, the global minimum was an anti conformation of the adenine 

base closely followed by a syn conformation with an energy difference of ~2 kJ/mol.  

The global minimum energy conformation of the ligand bound in the anti 
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conformation in the F223A mutant exhibits major changes compared to the 2nd lowest 

energy conformer which adopts the syn conformation.  In the F223A binding site, the 

ribose of the global minimum energy structure is displaced and makes hydrogen bonds 

to Glu247 and Cys226 instead of to Glu247 alone (Figure 4.8 A).  This change causes 

the ligand to twist back upon itself, the sulfonium stacks over the adenine base, and 

the adenine base makes three hydrogen bonds to Ser66.  In the F7A binding site, the 

ligand assumes a similar conformation as with the F223A mutant.  The Phe223 side 

chain undergoes a torsional change to accommodate the conformational change of the 

ligand and also stacks with the adenine base (Figure 4.8 B).  The presence of the anti 

conformation in low energy structures of the ligand in the enzyme active site where 

virtual mutations have been made suggests the importance of the phenyl groups in 

maintaining the syn conformation of the ligand within the wild-type enzyme binding 

site.  However, since we observed a syn conformation of the nucleoside as the 2nd 

lowest energy structure in our conformational search on the F223A mutant and since 

the relative energy of that structure compared to the global minimum (� E = 2.5 

kJ/mol) is well within the error limit of our calculations, we were prompted to obtain 

the crystal structure of the F223A mutant complexed with MeAdoMet. 

Structure of F223A Complexed with MeAdoMet.  The structure of the F223A 

mutant is similar to that of the wild type protein (22).  The human AdoMetDC 

protomer has a four layer αββα fold in which two β-sheets are sandwiched between 

two layers of α-helices.  The secondary structural elements are related by a pseudo 

twofold axis suggesting that the protomer resulted from gene duplication.  The 

proenzyme consists of 334 amino acid residues and the enzyme undergoes 

autoprocessing to give the α and the β subunits (22).   
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Figure 4.8 Comparison of modeling of hAdoMetDC F223A and hAdoMetDC F7A 
each complexed with MeAdoMet with the crystal structure of F223A mutant with 
MeAdoMet bound. Global minimum of modeling of MeAdoMet in the active site of 
the F223A mutant superposed with the crystal structure (A) and the F7A mutant (B) of 
hAdoMetDC (see Materials and Methods for details).  The crystal structure has all 
atoms colored grey. The pyruvoyl group is shown in magenta and the ligand carbon 
atoms are shown in green for the models.  Hydrogen bonds are shown as dashed lines.  
The adenine base attains an anti conformation in the models.  The ribose makes one 
hydrogen bond to Glu247 and the other to the backbone carbonyl of Cys226.  The 
adenine base makes three hydrogen bonds to Ser66.  In the F7A model (B) the Phe223 
residue changes its conformation to stack with the adenine base of MeAdoMet in the 
anti conformation. 
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The autoprocessing reaction yields the active enzyme with the pyruvoyl 

cofactor.  The pyruvoyl group is located at the end of the N terminal β-sheet and the 

active site involves residues from both of the β-sheets.  The binding site of putrescine, 

which activates both the autoprocessing and decarboxylation reactions of 

hAdoMetDC, is located well away from the ligand binding site within the wild-type 

enzyme.  Experimental conditions for the purification of the enzyme included 

putrescine at sufficient concentration to ensure high occupancy of the putrescine 

binding site.  The loops between the residues 1-4, 21-27, 165-173, 288-299, 329-334 

are disordered in the crystal structures.   

The crystal structure of hAdoMetDC F223A complexed with MeAdoMet was 

solved using molecular replacement.  The difference Fo-Fc density shows that 

MeAdoMet is covalently bound to the enzyme and the nucleoside adopts a clear syn 

conformation (Figure 4.8 A).  As expected, the composite omit map density shows no 

density for the Phe223 side chain.  The ribose makes two hydrogen bonds to Glu247, 

which anchor the ligand, and the base is held in syn conformation by stacking 

interactions with Phe7 and hydrogen bonds between the adenine and Glu67.  One 

molecule of putrescine per monomer is present in the expected putrescine binding site.  

A superposition of the F223A/MeAdoMet structure and the wild type structure with 

MeAdoMet shows that there is no appreciable change in the position or conformation 

of the ligand.  The loops disordered in the mutant are also disordered in the wild type 

protein. 

Biochemical Analysis of Potential Inhibitors of hAdoMetDC.  The 

demonstrated importance of the syn conformation of the adenine base of the AdoMet 

substrate for binding in the active site of the enzyme led us to explore whether this 

could be exploited in designing better hAdoMetDC inhibitors.  It is known that 8-

substitution on adenine rings causes the nucleotide to favor a syn conformation in 
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solution (26, 27, 46, 47).  It was thought that structural analogues of AdoMet that 

preferred the syn conformation in solution would lead to improved hAdoMetDC 

inhibition.  Modeling of the active site had indicated that there was sufficient room to 

accommodate even rather large substituents at C8 of adenine.  Several series of 

AdoMet structural analogues were synthesized with substituents ranging from a 

methyl group to a phenyl group at the 8-position of adenine.  Each of these 

compounds was then assayed for their ability to inhibit hAdoMetDC and IC50 values 

for the inhibition were determined (Table 4.3). 

The inhibitors tested fall into four groups as described in the "Chemical 

Synthesis" sub section.  One group (12a-c, 14a-f, 5) has an aminooxyalkyl side chain 

at C-5′, which can form a Schiff base with the pyruvate of AdoMetDC(20, 48-50)  

Compounds of this group were potent inhibitors with a 4-aminooxybutyl group being 

slightly superior to a 2-aminooxyethyl addition.  A second group of compounds 

(17d,e,f,j,k,l,m) had an amide or a hydrazide side chain at C-5′ and a third group of 

inhibitors (18a,b,d,e,f; 19a,b,c,d; 21c,d) had an aminoalkylamino side chain at C-5′.  

Also related to the third group by the synthetic method are 22a and 22c, which, 

respectively, have a guanidine and an amidoxime at the end of the C-5′ side chain.  

The compounds of groups 2 and 3 were less potent (particularly those with the 

aminoalkylamino, guanidine, or amidoxime side chain) but are more likely to be stable 

under in vivo conditions.  The final group of compounds consisted of 5′-

dimethylamino (23a,b) or 5′-dimethylsulfonio (25b,d) compounds.  Compound 25d 

has previously reported to be an AdoMetDC inhibitor with a Ki in the µM range (32).  

As shown in Table 4.3, the replacement of sulfur by nitrogen slightly improves the 

AdoMetDC inhibition. 
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 Table 4.3.  Inhibition of  hAdoMetDCa.   
Compound IC50 

12a 7 nM 
12b 86 nM 
12c < 5% inhibition at 100 µM 
14a 49 nM 
14b < 5% inhibition at 100 µM 
14c 11 nM 
14d 5 nM 
14e 15 nM 
14f 18 nM 
5 (MAOEA) 55 nM 
17d 400 nM 
17e 4 µM 
17f < 5% inhibition at 100 µM 
17j 7 µM 
17k 170 nM 
17l 1.5 µM 
17m 31 µM 
18a 440 µM 
18b < 5% inhibition at 100 µM 
18d 500 µM 
18e < 5% inhibition at 100 µM 
18f 88 µM 
19a < 5% inhibition at 100 µM 
19b < 5% inhibition at 100 µM 
19c < 5% inhibition at 100 µM 
19d < 5% inhibition at 100 µM 
21c 70 µM 
21d 420 µM 
22a < 5% inhibition at 100 µM 
22c 157 µM 
23a 600 nM 
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Table 4.3. (Continued)  
23b 9 µM 
25b 3 µM 
25d 15 µM 

a Each of the potential inhibitors was assayed for the ability to inhibit hAdoMetDC. At 
least five concentrations of each compound were used and IC50 values were calculated 
from curve fits to plots of inhibitor concentration versus % inhibition of hAdoMetDC. 

 

Within each of these groups, there was a consistent improvement of inhibitory 

activity when an 8-methyl substituent was added to the adenine ring.  The reduction in 

the IC50 value varied from 3.4-fold for compound 14d to 15-17-fold for compounds 

23a and 17d.  There was an 8-fold increase in potency when an adenine 8-methyl 

substituent was added to compound 5 (MAOEA) forming compound 12a.  This is 

consistent with the concept that the 8-methyl substitution on adenine biases the 

corresponding nucleoside toward the syn conformation and that this is the form that is 

bound at the active site.  An adenine 8-hydroxy substituent resulted in slightly 

increased potency compared to no substituent, but was not as effective as the 8-methyl 

substituent (compare 14c to 14f and 14d).  Larger 8-substitutions did not improve the 

effectiveness.  An 8-phenyl addition to compounds 5, 14f and 18d abolished the 

inhibitory activity.  Smaller additions such as 8-ethyl (compare 14d and 14e, 17d and 

17e, and 21c and 21d) or 8-methylamino (compare 12a and 12b and 21c and 18a) 

were tolerated but were not as potent as 8-methyl. 

Crystal Structures of hAdoMetDC Complexes.  The crystal structure of native 

hAdoMetDC with 12a was solved using molecular replacement (Figure 4.9 A).  As 

noted above, 12a is structurally similar to the previously studied inhibitor MAOEA 5 

except that it has a methyl substitution at the 8-position on the adenine base.  The 

electron density indicates that the amino terminus of 12a forms a Schiff base with the 

pyruvoyl group of the enzyme.  The adenine base of 12a adopts a syn conformation in 
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the crystal structure as expected.  There is one molecule of putrescine bound in the 

putrescine binding site. 

The crystal structure of native hAdoMetDC with 14e was solved using 

molecular replacement (Figure 4.9 B).  Compound 14e is similar to MAOEA 5 except 

for an ethyl substituent on the 8-position of the adenine base and two extra carbon 

atoms between the tertiary nitrogen (near ribose) and the terminal nitrogen.  The 

presence of a three-carbon linker between the ribose and the amino terminus makes 

this ligand interesting to study.  The electron density maps show no density for Schiff 

base formation between the pyruvoyl group and the amino terminus of the ligand.  

There is no density for the terminal three atoms of the ligand but there is good density 

for the rest of the ligand.  The position of the last three atoms was obtained by 

modeling them to an energetically favorable conformation using molecular modeling.  

The density around the pyruvoyl group fits it well and does not show any evidence of 

formation of a Schiff base.  The ribose makes the critical hydrogen bonds to Glu247 

and anchors the ligand.  The nucleoside is held in the syn conformation and is 

stabilized by π-π stacking.  The density of the ethyl substituent on the base is well 

defined indicating that the substituent is not disordered. 

The crystal structures of hAdoMetDC with 17d (Figure 4.9 C), 17f (Figure 4.9 

D) and 21c (Figure 4.9 E) were also determined by molecular replacement.  The three 

ligands have 8-methyl substituents; the first two have carboxamide end groups at the 

5´-tail, while the third ligand has an amino group in this position.  All three ligands 

showed clear electron density and all three ligands bound in the syn conformation. 

Section 4.3. Discussion 

The active site of AdoMetDC contains a bound pyruvoyl cofactor.  The 

interactions of various ligands at the active site were previously elucidated from the  
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Figure 4.9 Complexes of hAdoMetDC with inhibitors having 8-substitutions. The 
carbon atoms of the inhibitor are shown in green and the pyruvoyl group is shown in 
magenta. Water molecules are shown as red spheres and hydrogen bonds are shown as 
dashed lines. (A) Complex with 12a. The ligand makes a Schiff base linkage to the 
active site pyruvoyl group.  (B) Complex with 14e.  There is no evidence from the 
electron density for the formation of a Schiff base and there is no density for the 
terminal three atoms of the ligand.  The position of the terminal three atoms is 
determined by modeling. (C) Complex with 17d. The carboxy terminus of the ligand 
makes hydrogen bonds to Leu65 and Ser229. (D) Complex with 17f. The carboxy 
terminus of the ligand makes water mediated hydrogen bonds to Glu11 and Gly9.  (E) 
Complex with 21c. The amino terminus of the ligand makes water mediated hydrogen 
bonds to Glu11 and Gly9.  The inhibitors 17d, 17f and 21c do not make a Schiff base 
to the enzyme and are hence competitive inhibitors.  The adenine base of all the 
inhibitors attains a syn conformation.
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crystal structures obtained from complexes of the enzyme with the inhibitors MHZPA 

3 (PDB 1I79), MAOEA 5 (PDB 1I72), MeAdoMet (PDB 1I7B), MGBG 1 (PDB 

1I7C), and CGP48664A 2 (PDB 1I7M) (25).  The crystal structure of MeAdoMet 

covalently bound to the enzyme most closely approximates the substrate AdoMet in 

the active site.  The crystal structure shows key interactions of MeAdoMet with the 

enzyme including: (1) hydrogen bonding of the ribose oxygens with Glu247, (2) π-π 

stacking interactions of the adenine ring with Phe223 and Phe7, (3) hydrogen bonding 

of the 6-amino substituent of the adenine ring with the Glu67, the C-terminal residue 

of the β-chain and (4) hydrogen bonding of N-1 of the adenine ring with the backbone 

amide group of Glu67 (Figure 4.7).  Similar interactions are also present in the 

structures of MHZPA 3 and MAOEA 5 complexed with hAdoMetDC.  The glycosidic 

angle for the adenine base in the structures ranges from 128° to 139°, which 

demonstrates a preference for the syn conformation of the nucleoside when bound to 

the active site. Crystal structures of MGBG 1 and CGP48664A 2 with the enzyme 

show that they stack between the two phenyl rings and make hydrogen bonds to 

Glu247. 

The molecular modeling of MeAdoMet in the active site of hAdoMetDC was 

performed by using mixed Monte Carlo/Low Mode conformational searching as 

described above.  The glycosidic torsional angle was free to rotate during the 

conformational search, which would allow a wide range of  rotomers that are 

compatible with the steric constraints of the active site before energy minimization.  

The low energy structures show that the adenine-derived nucleosides prefer the syn 

conformation in the active site of hAdoMetDC.  Markham et al.  have studied the 

conformational preferences of AdoMet in solution and in vacuo (44).  These studies 

based on 1H NMR and calculations based on NMR constraints have showed that 

AdoMet prefers an anti conformation in solution and a syn conformation in vacuo.  In 
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solution, the energy difference between the anti and the corresponding syn 

conformation, which includes steric, electrostatic and the solvation contributions, is 

around -34 kJ/mol.  However, these calculations were based on molecular mechanics 

without polarization effects and it is likely that the energy difference is much less 

negative.  Our crystal structures and modeling results show that hAdoMetDC binds 

ligands in the syn conformation and that the energy difference is overcome by 

hydrogen bonding and π-π interactions Phe7 and Phe233.  Typical π-π interactions of 

parallel geometry account for a stabilization of 8-12 kJ/mol (51), suggesting that other 

factors may be involved. 

The roles of Phe223 and Phe7 in AdoMetDC were previously studied through 

crystal structures and kinetic experiments (25).  Kinetic data from reaction of 

hAdoMetDC F223A and Phe7A mutants with the substrate AdoMet have shown that 

there is a 45-fold reduction of efficiency (kcat/km) for the F7A mutant and a 1400-fold 

decrease with the F223A mutant.  In addition, MGBG 1 and CGP48664A 2 show a 

significant increase in the IC50 values for both the F7A and F233A mutants when 

compared to the wild-type enzyme, with decrease in binding greater for the F223A 

than for F7A. Therefore, we chose to investigate the structural and conformational 

properties of MeAdoMet in the active site of the F223A mutant. 

Our conformational searches with virtual mutations were done to understand 

the roles of Phe223 and Phe7 in stabilizing the syn conformation.  In contrast to 

calculations done with the wild type enzyme structure, in which only the syn 

conformation was observed for the ensemble of lowest energy structures, the global 

minimum from both the mutations has the base in an anti conformation and the next 

higher energy structure has the base in a syn conformation.  The difference in the 

energy between these conformations is about 2 kJ/mol, which we estimate to be within 

the error limit of our molecular mechanics based calculations.  The energy difference 
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between the syn and anti conformation of both structures is low, and based on the X-

ray structure of hAdoMetDC F223A with bound MeAdoMet, the enzyme binds the 

ligands in the syn conformation, suggesting that π-π interactions with Phe7 are 

sufficient to maintain the syn conformation.  Thus, although the modeling studies were 

incapable of accurately predicting that the syn conformation of the nucleoside would 

be maintained in the F223A mutant, it was possible to infer from these studies that the 

binding affinity of the nucleoside for the enzyme would be diminished.  

Our attempts to exploit the requirement by AdoMetDC for a ligand with a syn 

conformation were successful as demonstrated by the 8 to 18-fold improvement in 

inhibition when a methyl group is attached to C-8.  However, the larger substituents 

that we tested provided no benefit over the unsubstituted parent compounds.  In fact, 

the 8-phenyl substituent rendered the compounds much less potent than the 

unsubstituted analogue.  Modeling studies of the active site had indicated that there 

should be sufficient space to accommodate the larger groups with the adenine in the 

syn conformation.  A more detailed look at the area occupied by adenine C-8 

substituents has indicated that this area is near the solvent interface.  Based on our 

biochemical results, although large 8-substituents were structurally compatible with 

the active site, the penalty of incompletely burying a large hydrophobic group within a 

hydrophobic cavity is apparently greater than the gain from favoring the syn 

conformation.  We are now exploring the effect of more hydrophilic C-8 adenine 

substituents that should be more compatible with proximity to the solvent.  Such 

substituents may be useful in maintaining the inhibitory potency associated with the 

syn structure while still allowing species specific binding. 

Structures of many of the AdoMet analogues bound to AdoMetDC have shown 

that they inhibit the enzyme through Schiff base formation with the pyruvoyl group of 

the enzyme.  The linker length between the tertiary ammonium/sulfur and the terminal 
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nitrogen of those inhibitors is typically 3-4 atoms, which makes the formation of a 

Schiff base geometrically and sterically feasible. Compound 14e has a linker length of 

five atoms.  The electron density map for the complex of 14e shows a break in the 

density after the pyruvoyl group, suggesting that there is no Schiff base formation.  

There is good density for the ligand except at the three terminal atoms, which are 

disordered and have no density.  The positions of the last three atoms were fixed in an 

energetically favorable conformation using computer modeling.  The five atoms of the 

linker region appear to cause a sterically unfavorable orientation for formation of the 

Schiff base.  The ligand is still held rigidly in the active site by hydrogen bonds to 

Glu247 and the π-π stacking interactions with Phe7 and Phe223 and thus little 

movement is allowed to accommodate Schiff base formation for the longer linker 

region.  Even though compound 14e is not covalently attached to the pyruvoyl group 

its potency is better than MAOEA 5 and nearly as good as compound 12a. 

Conclusion. Previous structural studies showed that AdoMet binds to the 

active site of hAdoMetDC in the syn conformation, suggesting that adenosine 

analogues favoring the syn conformation in solution might be more potent inhibitors 

than corresponding analogues favoring the lower energy anti conformation.  8-

Substituted nucleoside analogues favor the syn conformation because of unfavorable 

interactions in the anti conformation between a bulky 8-substituent and ribose.  We 

used computer simulations to predict 8-substituted compounds that might bind to 

hAdoMetDC, and synthesized and assayed the most promising candidates.  We also 

determined crystal structures of several compounds bound to hAdoMetDC to validate 

the predictions; the structures confirmed that the 8-substituted analogues bound in the 

syn conformation and retained the previously identified features of AdoMet binding, 

namely, purine stacking between Phe7 and Phe223, and hydrogen bonding between 

the ribose hydroxyl groups and Glu247.  A group of adenosine analogues was 
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generated by varying the size and nature of the both the 8-substitutent and the 5'-

modification.  In general, 8-substituted analogues bound with a potency of 8 to 18-fold 

higher compared to the corresponding compound with a hydrogen atom at the 8-

position; however, 8-substituents larger then methyl often showed lower potency than 

the corresponding 8-H compound.  The observation results from excessive solvent 

exposure for large 8-substituents.  Computer modeling and X-ray crystallography were 

also used to understand the preference for the syn conformation.  Modeling studies 

suggested an important role for the two active site phenylalanine residues in addition 

to Glu247; however, the crystal structure of the F223A mutant hAdoMetDC showed 

that AdoMet still binds in the syn conformation, suggesting that other factors that 

favor the syn conformation remain to be identified. 
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CHAPTER 5 

COMPLEXES OF THERMOTOGA MARITIMA S-ADENOSYLMETHIONINE 

DECARBOXYLASE WITH SUBSTRATE ANALOGS PROVIDE INSIGHTS INTO 

SUBSTRATE SPECIFICTY AND INHIBITOR DESIGN 

Section 5.1. Introduction 

S-Adenosylmethionine decarboxylase (AdoMetDC) is a critical enzyme at a 

key branch point in the polyamine biosynthetic pathway (1-4).  AdoMetDC catalyzes 

the decarboxylation of S-adenosylmethionine (AdoMet) to S-adenosyl-5´-(3-

methylthiopropylamine) (dcAdoMet).  The propylamine group from dcAdoMet is 

transferred to putrescine and spermidine to form spermidine and spermine 

respectively.  The primary role of AdoMet in cells is as a methyl group donor to a 

variety of substrates.  After the decarboxylation process, dcAdoMet is committed to 

polyamine biosynthesis.  The polyamines putrescine, spermidine and spermine are 

ubiquitous across all forms of life and are implicated in cellular growth and 

differentiation.  Elevated levels of polyamines are associated with various tumors and 

parasitic diseases (5, 6).  AdoMetDC and other enzymes in the polyamine biosynthetic 

pathway are promising targets for anti-tumor and anti-proliferative diseases (7, 8). 

AdoMetDC is expressed as a proenzyme and undergoes an internal serinolysis 

reaction as part of a post-translational modification to generate the active site pyruvoyl 

group.  This process cleaves the peptide chain to α and β chains with the pyruvoyl 

group generated at the N-terminus of the α chain.  The α chain is derived from the 

carboxy end of the proenzyme and the β chain is derived from the amino end of the 

proenzyme.  The crystal structures of wild type human AdoMetDC (hAdoMetDC) and 

the H243A and S68A mutants provided insights into the mechanism of auto-

processing of the enzyme (9-11).  The crystal structures of AdoMetDC from plants 



 

 122 

and Thermotoga maritima have also been determined (12, 13).  The dimeric fold of T. 

maritima AdoMetDC (TmAdoMetDC) is similar to the monomeric protomer of 

human and plant AdoMetDC, suggesting evolutionary links of gene duplication and 

fusion.   

The crystal structure of the human enzyme has been determined complexed to 

various ligands and substrate analogs (14).  The complex of the human enzyme with S-

adenosylmethionine methyl ester (MeAdoMet) reveals key interactions of the ligand 

with the active site residues and the binding conformation of the ligand.  The ligand 

makes a Schiff base with the pyruvoyl group and the adenine base binds in an unusual 

syn conformation stabilized by stacking interactions with Phe223 and Phe7 and 

hydrogen bonds to Glu67.  The hydroxyl groups of the ribose make two hydrogen 

bonds to Glu247.  No information is available in terms of the substrate/ligand binding 

conformation for prokaryotic AdoMetDCs.  The crystal structures of the proenzyme 

and the non-processible S63A mutant of TmAdoMetDC have been reported 

previously (13).  In this paper, we report the crystal structure of processed 

TmAdoMetDC and the complexes with MeAdoMet and 5´-deoxy-5´-dimethyl 

thioadenosine (MMTA).  We compare the complexes from T. maritima with the 

complexes from hAdoMetDC.  The comparison and the conservation of the active site 

residues reveal recurring themes for substrate recognition and inhibitor design  

Section 5.2. Materials and Methods 

Protein expression, processing and purification.  The expression and 

purification protocol of TmAdoMetDC is described in a previous paper(13).  The 

pTmSpeD.28 plasmid encoding the enzyme was transformed into the B834(DE3) 

strain of E. coli.  An overnight starter culture of 10 mL was grown in LB media 

supplemented with 35 µg/mL kanomycin. It was then introduced into a 1 L cell culture 

and grown until the O.D600 reached 0.6 and subsequently induced with 1 mM 
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isopropyl β-D-thiogalactoside.  The temperature was reduced to 15 °C and the protein 

expressed overnight.  The cells were harvested by centrifugation and stored at –80 °C.  

The cells were suspended in a wash buffer consisting of 50 mM Tris-HCl, pH 

8.0, 10 mM imidazole, and 500 mM NaCl and lysed using a sonicator.  Processing of 

the enzyme was induced by heating the lysate at 80 °C for 1 h.  The heating process 

also served as a partial purification step.  The lysate was centrifuged and the 

supernatant was passed through a Ni-NTA column equilibrated with the wash buffer.  

The column was washed with 100 mL wash buffer followed by 50 mL of buffer 

containing 50 mM Tris-HCl, pH 8.0, 35 mM imidazole, and 500 mM NaCl.  The 

protein was eluted with elution buffer containing 50 mM Tris-HCl, pH 8.0, 150 mM 

imidazole, and 500 mM NaCl, and dialyzed into 20 mM Tris-HCl, pH 8.0, and 1 mM 

dithiothreitol.  The protein was concentrated to 6 mg/mL and stored at –80 °C. 

Crystallization conditions.  The protein was crystallized using the hanging 

drop vapor diffusion method at room temperature.  The crystallization conditions were 

2.4 – 2.8 M ammonium formate, and 100 mM HEPES, pH 8.0.  Crystals appeared in 2 

weeks and grew to a maximum size of 0.2 × 0.15 × 0.1 mm in 3-4 weeks.  For the 

crystals of the complexes, the crystals were transferred into a well solution containing 

5 mM MeAdoMet or MMTA, respectively, for 4 h to allow the ligands to soak into the 

active site of the enzyme. 

Data collection and processing.  The data for the processed enzyme was 

collected at our home source on a Rigaku R-AXIS IV++ detector with Cu Kα radiation 

from a Rigaku RU-300 rotating anode generator.  Data were collected over 100° with 

a 0.5° oscillation range and 15 min exposure per frame at a crystal to detector distance 

of 180 mm.  Crystals of the complexes were sequentially transferred into well solution 

containing 5%, 10%, 15% and 20% glycerol and 200 mM concentrations of 

ammonium formate prior to freezing in liquid nitrogen.  The data for the complexes 
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were collected at the 24-ID-E beamline at the NE-CAT sector of the Advanced Photon 

Source.  Data were collected over 140° and 150° for the MeAdoMet and MMTA 

complexes, respectively, with a 1° oscillation range and 1 s exposure per frame at a 

crystal to detector distance of 260 mm.  The data were indexed, integrated and scaled 

using the HKL2000 program suite (15).  The data collection statistics are summarized 

in Table 5.1. 

Structure determination and Refinement.  The structures of the processed 

enzyme and the complexes were solved by molecular replacement using the CNS 

program suite (16).  The structure of the wild type proenzyme (PDB code 1TLU) was 

used as the search model for molecular replacement.  The model building for the 

protein was done by the program COOT (17).  The refinement process included 

successive rounds of simulated annealing, B factor refinement, minimization and 

calculation of composite omit maps and difference Fourier maps. Model building was 

done against the composite omit maps. After several rounds of refinement and model 

building, the difference Fourier and composite omit maps were used to identify 

missing ligands and water molecules.  The topology and parameter files for 

MeAdoMet and MMTA were obtained from the HIC-UP server (18).  The ligand and 

water molecules were added to the structure followed by a few rounds of refinement 

as mentioned above.  The final refinement statistics are shown in Table 5.2. 

Figure preparation.  Figures were prepared using PyMOL (22) and 

ChemDraw.  
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Table 5.1. Summary of Data Collection and Processing Statistics 

 TmAdoMetDC 
Processed 

TmAdoMetDC + 
MeAdoMet 

TmAdoMetDC + 
MMTA 

Wavelength 
(Å) 

1.5418 0.9792 0.9792 

Space group R3 R3 R3 
a = b (Å) 104.71 105.20 105.47 
c (Å) 69.84 70.06 70.11 
Resolution (Å) 2.06 1.90 1.90 
Total 
reflections 

49357 91891 101615 

Unique 
reflections 

16833 22459 22388 

Redundancya 2.9 (1.7) 4.1 (2.3) 4.5 (2.8) 
Completeness 
(%) 

95.4 (71.2) 98.9 (90.4) 97.6 (79.6) 

I/σ 23.1 (4.1) 17.9 (3.1) 24.4 (2.9) 
Rsym

b 4.5 (21.0) 9.6 (21.6) 6.5 (23.6) 
Matthews no. 2.49 2.52 2.54 
Solvent content 
(%) 

49.7 50.3 50.8 

 
aValues for the highest resolution shell are given in parentheses. 
bRsym=ΣΣiIi - <I> | /Σ<I>, where <I> is the mean intensity of the N reflections with 
intensities Ii  and common indices h,k,l. 
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Table 5.2. Refinement statistics for processed TmAdoMetDC and complexes 

 TmAdoMetDC 
Processed 

TmAdoMetDC 
+ MeAdoMet 

TmAdoMetDC 
+ MMTA 

Resolution (Å) 2.06 1.90 1.90 
R factora(%) 0.233 0.212 24.9 
Rfree

b
 (%) 0.262 0.238 28.0 

No of non-H atoms    
 Protein 1868 1917 1900 
 Ligand - 56 42 
 Water 115 108 61 
B factors (Å2)    
 Protein  28.3 33.5 31.0 
 Ligand (Å2) - 54.6/44.4 46.1/41.9 
Rms deviations    
 Bonds (Å) 0.011 0.031 0.006 
 Angles (º) 1.4 1.5 1.2 
 Dihedrals (º) 25.0 27.2 25.3 
Ramachandran plot    
 Most favored 
region (%) 

94.5 95.6 95.6 

 Additional allowed 
region (%) 

5.5 4.4 4.4 

 Disallowed region 
(%) 

0.0 0.0 0.0 

 
aR factor = Σhkl||Fobs|-k|Fcal|/Σhkl|Fobs|, where Fobs and Fcal are observed and calculated 
structure factors respectively.  
bFor Rfree, the sum is extended over a subset of reflections (5% for processed; 10% for 
TmAdoMetDC/MeAdoMet and TmAdoMetDC/MMTA) excluded from all stages of 
refinement. 
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Section 5.3. Results 

Overall structure of processed enzyme.  Heating TmAdoMetDC in crude lysate 

of E. coli induces processing of the enzyme.  The structure of the processed enzyme 

was solved by molecular replacement using the structure of the proenzyme as the 

search model.  The overall structure of processed enzyme in the asymmetric unit is a 

dimer comprised of two 2-fold related protomers. The protomer is a two-layer αβ 

sandwich with an anti-parallel β-sheet flanked by two α-helices (similar to the 

monomer of the proenzyme).  The dimer interface is formed by the interaction of the 

β-sheets of the protomers.  The autoprocessing occurs between residues Glu62-Ser63 

located in a β-turn between residues Val59-His64.  The electron density maps show a 

break in the main chain density and the formation of a pyruvoyl group at Ser63.  

Residues Ser61 and Glu62 are disordered in the processed enzyme and become 

ordered upon ligand binding (see next section).  The active site is at the dimeric 

interface and contains residues from both protomers.  A comparison of the processed 

structure and the proenzyme shows no significant change in the overall secondary 

structure. The overall structure of the processed enzyme is shown in Fig. 5.1 (A).  A 

stereoview of the comparison of the proenzyme and the processed enzyme at the 

processing site is shown in Fig. 5.1 (B). 

Complex with MeAdoMet.  The crystal structure of TmAdoMetDC complexed 

to MeAdoMet was solved by molecular replacement.  The difference Fo- Fc density 

shows that MeAdoMet binds to the enzyme by making a Schiff base with the active 

site pyruvoyl group in both protomers.  The 2´ and 3´ oxygen atoms of the ribose 

make hydrogen bonds to the carboxylate group of Glu72´ (´ marks residues from the 

two-fold related protomer).  The adenine base of MeAdoMet binds in the unusual syn 

conformation stacking against Phe49´.  Residue Phe49´ undergoes a torsional change 

in N-CA-CB-CG angle by 90° to stack against the adenine base.  Residue His47´  
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Figure 5.1. (A) Overall structure of processed TmAdoMetDC.  The dimeric structure 
of the enzyme is shown with the monomers colored green and violet.  The pryuvoyl 
group formed is shown in ball-and-stick and labeled.  (B) Stereoview of the 
superposition of processed enzyme (carbon atoms colored green) and the proenzyme 
(shown in black).  Residues Ser61 and Glu62 are disordered in the processed enzyme. 

 

undergoes a torsional change in N-CA-CB-CG angle by 130° to stack edge-to-face 

against Phe49´.  Residues Ser61 and Glu62 become ordered upon binding of 

MeAdoMet.  The N6 and N1 atoms of the adenine base make two hydrogen bonds to 

the carboxylate and amide group of Glu62, respectively.  The sulfonium ion of 

MeAdoMet is sandwiched between the aromatic rings of Phe49´ and Trp70´.  The 

sulfonium atom is 4.4 Å from the CZ2 atom of the tryptophan ring, which is also the 

closest contact of the sulfonium with Trp70´.  The sulfonium atom is 4.7 Å away from 

the center of the six membered ring of tryptophan.  The sulfonium is 4.2 Å from the 

center of the Phe49´ ring and 3.8 Å from the CD2 and CE2 atoms of the ring, which is 
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also the closest contact of the sulfonium with Phe49´.  Residue Tyr52´ undergoes a 

torsional change in the N-CA-CB-CG angle by 100°, moving closer into the active site 

upon ligand binding.  Tyr52´ partially shields MeAdoMet from the external solvent.  

A stereoview of MeAdoMet bound to TmAdoMetDC is shown in Fig. 5.2 (A). A 

schematic view of the interactions of MeAdoMet with the active site residues is shown 

in Fig. 5.3. 

Complex with MMTA.  The crystal structure of TmAdoMetDC complexed to 

MMTA was solved by molecular replacement.  MMTA lacks the terminal nitrogen 

group necessary to make a Schiff base to the enzyme and binds as a competitive 

inhibitor.  The difference Fo- Fc maps show MMTA binding in the active site in both 

protomers.  The enzyme undergoes conformational changes in residues Phe49´, His47´ 

and Tyr52´ (as explained in the previous section) upon MMTA binding.  The adenine 

base of MMTA binds in the syn conformation stacking against Phe49´.  The 2´ and 3´ 

oxygen atoms of the ribose make hydrogen bonds to the carboxylate group of Glu72´.  

The N1 atom of the adenine base makes a hydrogen bond to the amide group of 

Glu62. The carboxylate end of Glu62 is disordered in chain D and attains an alternate 

conformation in chain B.  The density for the terminal end of Glu62 is too weak to 

assign a second hydrogen bond between the N6 atom of the adenine base and the 

carboxylate end of Glu62 as seen in the MeAdoMet complex.  The sulfonium atom is 

4.3 Å from the CZ2 atom of the tryptophan ring, which is also the closest contact of 

the sulfonium with Trp70´.  The sulfonium atom is 4.5 Å away from the center of the 

six membered ring of tryptophan. The methyl group on the sulfonium is partially 

positive charged and is 4.1 Å from the center of the Trp70´ ring and 3.6 Å from the  
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Figure 5.2. Complexes of TmAdoMetDC. (A) Stereoview of MeAdoMet covalently 
bound to the enzyme.  The pyruvoyl group has carbon atoms colored pink and 
MeAdoMet has carbon atoms colored green.  (B) Stereoview of MMTA bound to the 
enzyme.  The pyruvoyl group has carbon atoms colored brown and MMTA has carbon 
atoms colored green.  Hydrogen bonds are shown as dashed lines. 
 

CZ2 atom of the ring, which is also the closest contact of the methyl group with 

Trp70´.  The sulfonium is 4.5 Å from the center of the Phe49´ ring and 4.0 Å from the 

CD2 and CE2 atoms of the ring, which is also the closest contact of the sulfonium 

with Phe49´.  A stereoview of MMTA bound to TmAdoMetDC is shown in Fig. 5.2 

(B).  

Section 5.4. Discussion 

Processing of AdoMetDC.  AdoMetDC is ubiquitously expressed as a 

proenzyme and undergoes internal serinolysis to mature to the active enzyme.  The 

self-processing occurs between a glutamate and serine residue resulting in the 

formation of a pyruvoyl group from the serine residue.  Processing occurs  
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Figure 5.3. Schematic view of interactions of MeAdoMet in the active site of 
TmAdoMetDC. 

spontaneously in the human and the potato enzyme as seen in the crystal structures 

and supported by the activity studies (9, 10, 12).  Putrescine activates the processing 

and decarboxylation rates of hAdoMetDC (10, 23).  Mechanical strain in the β-turn 

preceding the cleavage site has been implicated in autoprocessing in histidine 

decarboxylase and aspartate decarboxylase (24, 25).  The processing site in 

TmAdoMetDC is in a β-turn and processing was induced by heating the enzyme for 1 

h at 80 °C.  The heat treatment for processing might be a physiologically relevant step 

as T. maritima is a thermophilic bacteria with an optimum growth at 80 °C.  

Comparison of the processed enzyme and the proenzyme reveals no significant 

changes in the secondary structure, suggesting that mechanical strain might not play a 

role in processing of the enzyme.  

The mechanism of processing of hAdoMetDC has been extensively studied 

through site directed mutagenesis and crystal structures as reported previously (10, 11, 

13).  The conservation of active site residues in TmAdoMetDC suggests that the 

mechanism of processing is similar.  The hydroxyl group of Ser63 attacks the carbonyl 

atom of the adjacent Glu62 resulting in the formation of an oxyoxazolidine 
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intermediate.  The hydroxyl group needs to be activated for such an attack and there is 

no basic residue in the vicinity for such a role.  The activation of Ser63 could occur by 

a water molecule, but there is no clear evidence for the activation process.  The 

oxyoxazolidine intermediate collapses to generate the ester intermediate.  The amide 

hydrogen of Ser63 is abstracted by His68´ resulting in the cleavage of the protein 

backbone to the α and β chains.  The dehydroalanine residue at the N-terminus of the 

α chain undergoes tautomerization and subsequent hydrolysis to generate the pyruvoyl 

group. 

Substrate specificity of AdoMetDC.  Biochemical studies have shown that 

substrate analogs lacking a positive charge do not bind to hAdoMetDC (26, 27).  The 

crystal structure of hAdoMetDC has been determined with various ligands that are 

substrate analogs (14).  Substrate analogs lacking positive charge at the sulfonium 

position do not bind to the enzyme as analyzed from the crystal structures (data not 

shown).  The crystal structures of the enzyme with various ligands reveal that the 

positive center stacks between Phe223 and Phe7 and the substrate specificity arises 

from the favorable cation-π interactions between the sulfonium and the aromatic rings. 

The complexes of TmAdoMetDC with MeAdoMet and MMTA reveal similar 

interactions to those seen in the human enzyme.  The sulfonium center of MeAdoMet 

and MMTA is sandwiched between Trp70´ and Phe49´.  The geometry and distance of 

the sulfonium center from the aromatic rings are favorable for a cation-π interaction.  

Cation-π interactions in biology are implicated in protein stability, ligand recognition, 

catalysis and ion channels (28, 29 , 30).  The strength of the interaction depends on the 

distance and geometry of the cation from the aromatic ring and also on the nature of 

the cation and the interacting aromatic group. There are no negative charged residues 

around the sulfonium center in either enzyme and the critical necessity of the positive 
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charge for binding suggests that the cation-π interaction plays a significant role in 

ligand recognition in AdoMetDC. 

Ligands binding to AdoMetDC.  The adenine base of the ligand binds in an 

unusual syn conformation in hAdoMetDC.  The base is sandwiched between Phe223 

and Phe7 for favorable π stacking interactions.  The N6 and N1 atoms of the adenine 

base make two hydrogen bonds to the carboxylate and amide group of terminus of 

Glu67, respectively.  The syn conformation is further stabilized by electrostatic 

interactions between the N3 atom of the base and the sulfonium center (unpublished 

data).  The crystal structure of the F223A mutant with MeAdoMet shows that the 

adenine base still binds in the syn conformation, suggesting that π stacking to Phe7, 

hydrogen bonding to Glu67 and electrostatic effects are sufficient to stabilize the 

adenine base in the higher energy conformation (31). 

Both of the ligands MeAdoMet and MMTA bind to TmAdoMetDC in the high 

energy syn conformation.  The syn conformation is stabilized by π-π interactions with 

Phe49´.  The adenine base is positioned edge-to-face 5.4 Å away from Trp70´ (residue 

identical to Phe7 in hAdoMetDC) and does not have a favorable geometry or distance 

for stabilization by the aromatic ring.  In the syn conformation, the N3 atom of the 

adenine base is partially negatively charged and is present 3.7 Å away from the 

positive charge of the sulfonium center in the MeAdoMet complex.  In the MMTA 

complex, the distance between the corresponding atoms is 3.4 Å. Electrostatic 

interactions and hydrogen bonding to Glu62 further stabilize the syn conformation of 

the adenine base. 

Comparison of T.maritima and Human AdoMetDC.  The crystal structure of 

the processed form of TmAdoMetDC provides the first insight into the active form of 

the enzyme from prokaryotes.  The similarity in the overall structure of 

TmAdoMetDC and hAdoMetDC also presents a strong case of protein evolution as 
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discussed previously.  TbAdoMetDC is a homodimer formed by two protomers related 

by 2-fold symmetry.  Processing is observed in both the protomers are the active sites 

in the dimer are separated by ~26 Å.  The human enzyme is a homodimer comprising 

of two (αβ) protomers.  The N-terminal and C-terminal halves of hAdoMetDC are 

structurally homologous to each other and also to the protomer of TbAdoMetDC 

suggesting that the human enzyme evolved by gene duplication and subsequent fusing.  

The superposition of the processed from of TbAdometDC and hAdoMetDC is shown 

in Figure 5.4.  The human enzyme has two extra β strands extending out the central β 

sheet in both the N-terminal and C-terminal half when compared to TbAdoMetDC. 

The complexes of TmAdoMetDC with MeAdoMet and MMTA further 

elucidate the role of the active site residues in binding the substrate as well as the 

autoprocessing and decarboxylation reactions.  The comparison of the active site 

reveals the absolute conservation of the residues involved in the autoprocessing and 

decarboxylation processes of both the enzymes (shown in Table 5.3).  The only outlier 

of the absolute conservation is Trp70´ that is mutated to a phenylalanine in the human 

enzyme.  The mutation from tryptophan to phenylalanine would conserve the role of 

the amino acid residue in stacking the adenine base of the substrate.  The processing 

site in the C-terminal half of the enzyme is lost due to the mutation of Glu-Ser 

(essential motif for processing) to Gly-Thr, mutation of residues essential for substrate 

binding/decarboxylation and an insertion of an amino acid in the β turn Lys234-

Thr238 (comparison of residues shown in Table 5.4). 

As discussed in the previous sections, cation - π interactions determine the 

substrate specificity in both the AdoMetDCs and the enzymes would bind the 

substrate AdoMet in the syn conformation.  The role of AdoMet in cells is 

predominantly a methyl group donor.  The process would be facilitated if AdoMet is 

in the more open anti conformation.  For the decarboxylation process, the substrate  
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Figure 5.4. Superposition of processed form of TbAdoMetDC (blue) and hAdoMetDC 
(orange).  The pyruvoyl cofactor is shown as sticks. 
 
 
Table 5.3. Active site residues in TmAdoMetDC and hAdoMetDC 
 

T. maritimaa Human Role 
Pyr63 Pyr68 Schiff base to the substrate 
His68´ His243 Base for autoprocessing 
Phe49´ Phe223 Stacking adenine base & sulphonium 

of substrate 
Trp70´ Phe7 Stacking adenine base & sulphonium 

of substrate 
Glu72´ Glu247 Hydrogen bonding to ribose moiety of 

substrate 
Cys83 Cys82 Acid for decarboxylation 
Glu62 Glu67 Hydrogen bonding to adenine base of 

substrate 
Ser55´ Ser229 Positioning base for autoprocessing 

 
a Residues labelled (´) come from the two-fold related protomer  
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assumes the unusual, closed syn conformation which is stabilized by residues 

conserved in prokaryotes and higher organisms. 

Implications for drug design.  Regulating the polyamine biosynthetic pathway 

and maintaining polyamine levels is a promising therapeutic strategy for cancer and 

parasitic diseases.  Inhibitors of AdoMetDC have potential application as anti-cancer 

agents and have been a subject of clinical trials (32, 33).  The development of 

substrate analogs such as MHZPA and MAOEA as inhibitors resulted in compounds 

that inhibit human AdoMetDC with IC50 values in the nM to pM range (unpublished 

data).  The key interactions of the inhibitors with the active site of the enzyme include: 

(a) hydrogen bonding to Glu247 and Glu67, (b) stacking interactions with Phe7 and 

Phe223, (c) cation-π interactions to Phe223, and Phe7 (d) interactions with the 

pyruvoyl group.  The complexes of TmAdoMetDC reveal the conservation of key 

interactions mentioned above in prokaryotes when compared to higher organisms 

(Figure 5.5).  

The inhibitors of polyamine biosynthesis have potential applications in the 

treatment of African trypanosomiasis and other parasitic infections.  The crystal 

structure of AdoMetDC from T. brucei (TbAdoMetDC) has not been determined.  The 

structure of TbAdoMedDC would provide a template for structure-based drug design 

for AdoMetDCs relevant to parasitic infections.  It has been recently discovered that 

TbAdoMetDC exists as a heterodimeric complex formed by the active enzyme and a 

catalytically inactive homolog termed the prozyme (34). The sequence alignment 

between human and TbAdoMetDC shows that residues Glu266, Tyr242, Phe28 and 

Glu85 in TbAdoMetDC are likely to be involved in substrate binding.  Residues 

Glu266 and Glu85 are equivalent to Glu247 and Glu67, and residues Tyr242 and 

Phe28 are equivalent to Phe223 and Phe7 in the human enzyme, respectively.  The 

conservation of the nature of the substrate binding residues suggests that the parasitic 
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Figure 5.5. Stereoview of the comparison of active sites of TmAdoMetDC (carbon 
atoms colored green) and human AdoMetDC (carbon atoms colored cyan) with 
MeAdoMet bound.  Hydrogen bonds are omitted for clarity.  
 

Table 5.4. Comparison of residues in the second “active” sitea 

T. maritima Human Role 
Ser63 Thr238 Pyruvoyl froming residue 
Glu62 Gly237 Residue in the β turn 
Ser61 Asp236 Residue in the β turn 

- Ser235 Residue in the β turn 
Ile60 Lys234 Residue in the β turn 
Val59 Met233 Residue in the β turn 
His68 Ser73/Arg76 Base for processing 
Ser55 Gln60 Base for processing 
Cys83 - Acid for decarboxylation 

aSer73 and Arg76 are positioned in a similar position to His68.  Missing residues in 
equivalent positions in the human enzyme are indicated by a dash. 

AdoMetDC binds ligands in a similar fashion to the human and the prokaryotic 

enzymes.  The similarity also suggests that inhibitors designed for hAdoMetDC have a 

potential to block activity of AdoMetDCs in other species 
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CHAPTER 6 

CONCLUSIONS 

 Structure based drug design employing X-ray crystallography as a tool is 

gaining wider acceptance by pharmaceutical companies and academia in reducing the 

costs associated with drug discovery and reduce the time frame involved for drug 

development.  S-Adenosylmethionine decarboxylase (AdoMetDC) is an attractive 

target for inhibitor design in the polyamine biosynthetic pathway.  The enzyme is 

expressed as an inactive proenzyme which undergoes internal serinolysis as a post-

translational modification to mature into the active form.  In humans, the rate of the 

autoprocessing and decarboxylation reactions are activated by putrescine which binds 

at the allosteric site in the enzyme.  Biochemical assays indicate that a positive charge 

at the position of the sulphonium of the substrate is essential for substrate analogs to 

inhibit AdoMetDC.  Previously obtained crystal structures showed that AdoMetDC 

binds substrate analogs in the unusual and higher energy syn conformation.  The 

existence of a proenzyme, activation by putrescine, requirement of positive charge for 

inhibition and the binding of ligands in the syn conformation make AdoMetDC an 

interesting target to pursue for inhibitor design. 

The tools of structure based drug discovery were used in understanding the 

molecular details of inhibition of human AdoMetDC at various sites and stages of the 

enzyme lifetime.  The activity of AdoMetDC can be blocked by (1) Inhibiting the 

putrescine binding site (2) Inhibiting the active site (3) Inhibiting the autoprocessing 

reaction.  The crystal structures of human AdoMetDC solved previously identified the 

putrescine binding site and the interactions putrescine would make with the enzyme.  

To investigate the structural basis of putrescine activation, the crystal structure of the 

wild type AdoMetDC, D174N, E178Q, and E256Q mutants in the putrescine free form 

were obtained.  The comparison of the crystal structures revealed that putrescine 
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effects are primarily electrostatic that orient the catalytic residues through a hydrogen 

bonding network mediated by Lys80. 

The crystal structure of AdoMetDC with substrate analogs 5´-deoxy-5´-[N-

methyl-N-(3-hydrazinopropyl)amino]adenosine (MHZPA), 5´-deoxy-5´-[N-methyl-N-

[(2-aminooxy)ethyl]amino]adenosine (MAOEA), and the methyl ester of S-

adenosylmethionine (MeAdoMet) elucidated the interactions of potential inhibitors 

with the active site of the enzyme.  The structural information obtained from these 

complexes was used to rationally design inhibitors to the active site of the enzyme.  

The inhibitors synthesized broadly fall into four categories based on the terminal 

group at the 5´ end of the ribose moiety.  The crystal structure of human AdoMetDC 

was obtained cocrystallized with a representative ligand from each of the category of 

ligands synthesized. 

The complexes of AdoMetDC with competitive inhibitors 5´-deoxy-5´-

(dimethylsulfonio)adenosine (MMTA) and 5´-deoxy-5´-(N-dimethyl)amino-8-

methyladenosine (DMAMA) were obtained.  The structural information from the 

complexes combined with quantum chemical calculations and stopped flow 

experiments provided insights into ligand specificity of AdoMetDC.  The positive 

charge on the central sulphur/nitrogen atom of the ligands stacks between Phe223 and 

Phe7 and is stabilized by favorable cation - π interactions to the aromatic rings.  The 

stabilization obtained by cation - π interactions is ~ 4.5 kcal/mol as obtained from 

quantum chemical calculations.  The stopped flow experiments demonstrate that the 

importance of residues in binding ligands follows the order Phe223 ~ Glu247 >> 

Phe7.  

The crystal structure of the F223A mutant of AdoMetDC complexed to 

MeAdoMet revealed that the ligand binds to the enzyme in the syn conformation.  The 

crystal structure of human AdoMetDC was obtained complexed with 5´-deoxy-5´-[(3-
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aminopropyl)methylamino]-8-methyl-adenosine, 5´-deoxy-5´-[(2-

carboxamidoethyl)methylamino]-8-methyl-adenosine, 5´-deoxy-5´-[(2-

aminooxyethyl)methylamino]-8-methyl-adenosine, 5´-deoxy-5´-[(4-

aminooxybutyl)methylamino]-8-ethyl-adenosine, and 5´-deoxy-5´-

[(carboxamidomethyl)methylamino]-8-methyl-adenosine.  All these ligands have a 

substituent at the C8 position.  The substituent would favor a syn conformation of the 

adenine base in solution.  The inhibitors mentioned above also have a variety of 

terminal groups at the 5´ end to investigate the possibility of formation of a Schiff base 

to the active site pyruvoyl group.  The crystal structures revealed that a linker length 

of two carbon atoms between the central sulphur/nitrogen and the terminal group is 

ideal for the formation of a Schiff base.  The inhibition studies of these ligands suggest 

that the C8 substituted ligands were 5-18 times more potent than the unsubstituted 

parent compounds. 

In addition to the material discussed in chapters 2 - 5, complexes of 

AdoMetDC with 5´-deoxy-5´-[(2-aminooxyethyl)ethylamino]-adenosine, 5´-deoxy-5´-

[(2-hydrazinocarbonylethyl)methylamino]-8-adenosine, 5´-deoxy-5´-[(2-

carboxamidoethyl)amino]-adenosine, and 5´-deoxy-5´-[(2-

hydrazinocarbonylethyl)amino]-adenosine were also obtained (data not shown).  The 

latter two inhibitors do not have a third substituent on the central nitrogen atom but 

still maintain a positive charge at physiological pH for binding to AdoMetDC. 

Human AdoMetDC undergoes processing between residues Glu67 and Ser68 

to mature the active enzyme.  The S68A mutant prevents processing and traps the 

enzyme in the form of the proenzyme.  The crystal structure of the S68A mutant of 

AdoMetDC complexed to competitive inhibitors MMTA and DMAMA were obtained 

(data not shown).  The binding of the inhibitors induced a conformational change in 

the β turn containing the processing site.  The structural information could be used in 
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designing inhibitors to the proenzyme that block the autoprocessing reaction and 

hence block AdoMetDC activity.  

In addition to the inhibitor design of human AdoMetDC, the crystal structure 

of Thermotoga maritima AdoMetDC (TmAdoMetDC) in the processed form and 

complexed to MeAdoMet and MMTA were obtained.  The similarity between the 

prokaryotic and human enzyme suggests a case of evolution of the human enzyme by 

gene duplication and fusion.  In addition to the overall structure, the active site 

residues involved in autoprocessing and decarboxylation reactions in human 

AdoMetDC are also conserved in TbAdoMetDC.  The ligands MeAdoMet and 

MMTA bind to TbAdoMetDC in a similar pose as to the human enzyme and make 

similar interactions to the residues in the active site as in the human enzyme.  The 

comparison of the crystal structures of TbAdoMetDC and human AdoMetDC reveal 

recurring themes for substrate recognition and inhibitor design.  

 

 

 


