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Systems of linear equations of the form Az = b, where 4 is a large sparse
symmetric positive definite matrix, arise frequently in science and engineering.
The sequential computation of the solution vector z is well understood and many
algorithms for this problem employ the following steps. First, try to reorder the
rows and columns of A so that its Cholesky factor L is sparse. Next, determine
the structure of L by symbolically factoring 4 and allocate storage for L. Finally,
numerically factor 4 and then compute z by solving the triangular systems Ly=5b
and LTz = y.

In this thesis, we present parallel algorithms for the different steps of this
computation. We design our algorithms for message-passing multiprocessors. The
algorithms limit communication overhead and can solve problems that are too
large to reside in the memory of any single processor. We provide numerical
results based upon an implementation on an Intel hypercube.

We begin by presenting a parallel column-oriented sparse numeric Cholesky
factorization algorithm. Then, viewing A as a graph, we develop a parallel graph

partitioning algorithm that we use to order the columns of A and partition them



among the processors. In addition to producing a sparse L, the resulting order-
ing and partitioning allows for parallelism and reduces communication overhead
during the remaining phases of the computation. The parallel graph partitioning
algorithm is based on the sequential Kernighan-Lin algorithm for finding small
edge separators.

Since the computation of a particular column of L may depend on columns
stored on several processors, the processors cannot operate independently. The
elimination forest of A captures these dependencies and allows for efficient numeric
factorization. We provide a parallel algorithm for computing the forest and prove
its correctness. We also develop a parallel row-oriented symbolic factorization
algorithm that uses the elimination forest.

Finally, we describe fast parallel forward and backward triangular solve al-
gorithms. These algorithms solve for the components of z requiring information
from other processors by using a variant of Li and Coleman’s dense triangular

solve algorithms.
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Chapter 1

Introduction

Many problems in science and engineering require solving systems of linear
equations. In matrix notation, this entails computing the solution vector z to the

system

Az =5,

where the coefficient matrix 4 and the right hand side vector b are both given.
For many practical applications, A4 is an n x n large sparse symmetric positive
definite matrix. In this case, we can use Cholesky factorization to factor A into
a product of the form LLT, where L is a lower triangular matrix. Then, we can
easily compute z by solving the two triangular systems Ly = b and LTz = y.
If most of the entries in A and L are zero, we can save considerable computer
time and storage by manipulating and storing only the nonzeros. Unfortunately,
a sparse A does not guarantee a sparse L. The set of positions that are nonzero

in L and zero in A is known as fill. To reduce the amount of fill, one generally



solves the equivalent system
(PAPT)(Pz) = Pb

for some n x n permutation matrix P. Since A is positive definite, no pivoting is
required to maintain numerical stability and, hence, we are free to choose P solely
on the basis of fill and algorithm design considerations.

The different aspects of Cholesky factorization have been extensively studied
with regard to single processor systems [22] and many algorithms for this problem
employ the following four steps. First, find the matrix P and form PAPT. This
operation is known as a reordering of A. Next, determine the fill by symbolically
factoring 4 and then use it to allocate storage for L. Using this storage, numeri-
cally factor A and then find z by solving the appropriate triangular systems.

With the speeds of sequential machines reaching their theoretical limits, com-
puter manufacturers are increasingly turning to parallel architectures to obtain
higher execution rates. In recent years, dozens of new parallel machines have been
built using a wide variety of architectures and numbers of processors, ranging from
the 4 processor Cray X-MP to the 65,536 processor Thinking Machines hypercube.
Algorithm designers face the enormous problem of redesigning sequential codes to
effectively exploit the parallel processing capabilities of these machines.

In this thesis, we develop parallel algorithms for all four phases of sparse
Cholesky factorization. We design our algorithms for message-passing multipro-
cessors and implement them on an Intel hypercube. On message-passing multipro-

cessors, computations are performed by dividing the work into several tasks and



then assigning the tasks to the processors. We define a task as the computation
of a single column of L. If a processor is assigned column 3 of A, it is responsible
for computing column ¢ of L and then sending it to all the processors that need
it. We design all of our algorithms to limit communication overhead and to solve
problems that are too large to reside in the memory of any single processor.

In this chapter, we provide background material and introduce some terminol-
ogy; we conclude with a column-oriented sparse numeric Cholesky factorization
algorithm.

Before performing the factorization, we must decide how to partition the
columns among the processors and how to order them. We would like an order-
ing and partitioning that not only allows for parallelism, but also reduces the fill
and communication overhead that occurs during the factorization. In Chapter 2,
we develop a parallel algorithm for this problem that is based on the sequential
Kernighan-Lin algorithm for finding small edge separators. We use the separators
in both ordering the columns and partitioning them among the processors. The
sizes and graph theoretic properties of these separators determine the amount of
communication required during the remaining phases of the computation.

Of course, the processors cannot operate independently, since the computation
of a particular column may depend on columns of L stored on several processors.
In Chapter 3, we see that these dependencies are given by the elimination forest
of A. We provide a parallel algorithm for computing this forest and prove its
correctness.

Chapter 4 compares two very different parallel symbolic factorization algo-



rithms. Their behavior and running times depend on the size of the problem and
the way the columns are distributed among the processors.

Finally, Chapter 5 provides fast forward and backward triangular solve algo-
rithms. These algorithms solve for the components of z requiring information
from other processors by using a variant of Li and Coleman’s dense triangular

solve algorithms [35,36].

1.1 Graph Theory and Cholesky Factorization

We begin this section by defining a few graph theoretic terms that we use
throughout this thesis. Then, we briefly describe the relation between graph the-
ory and sparse Cholesky factorization. In examining the various phases of sparse
Cholesky factorization, we cast many of the problems encountered in graph theo-
retic terms and then use graph algorithms to attack them. Parter 46| was among
the first to suggest this approach and since then many others have used it to solve
a wide variety of sparse matrix problems. For a more detailed treatment of the
graph theoretic approach to sparse Cholesky factorization, the reader is referred to
George and Liu [22]. Harary (28] provides a general introduction to graph theory.

An undirected graph G = (V, E) consists of a set V of vertices and a set E of
edges. An edge (v, w) is an unordered pair of distinct vertices. Vertices v and w are
adjacent if (v,w) € E. Edge (v,w) is incident on vertices v and w. The adjacency
set of a vertex v is adj(v) = {w € V | (v,w) € E}. Furthermore, if S is a set of

vertices, its adjacency set is adj(§) = {w € V — S| (v,w) € E for some v € S}.



A graph G' = (V',E') is a subgraph of the graph G = (V,E) if V' C V and
E' C E. The set of edges with both end points in V' is denoted by E(V'). If
E' = E(V') then G' is the subgraph of G induced by V'.

A path of length k from v to w in G is a sequence of vertices v = vg,v;,...,v; =
w such that (v;,v;41) € E for i =0,1,...,k — 1 and the vertices vy,...,v; are all
distinct. A cycle is a path with vg = vi. If there exists a path between every pair
of vertices of a graph, the graph is connected. The connected components of G (or
just components) are the maximal connected subgraphs of G.

If G = (V,E)is agraph, V' C V is a vertez separator of G if removing V' from
G divides G into two or more components. Likewise, E' C E is an edge separator
if its removal divides G into two or more components.

A directed graph G = (V, E) consists of a set V of vertices and a set E of edges.
Unlike undirected graphs, an edge (v, w) is an ordered pair of distinct vertices and
is said to be directed from v to w. The same definitions concerning paths and
cycles apply to directed graphs. A vertex v has in-degree equal to the number of
edges (w,v) and out-degree equal to the number of edges (v, w).

A directed tree T = (V, E) is an acyclic directed graph in which exactly one
vertex, called the root, has out-degree 0 and the rest have out-degree 1. This
implies that, for every vertex v, there is a unique path from v to the root. If (v, w)
is an edge of T then v is a child of w and w is the parent of v. A vertex with no
children is called a leaf. The height of vertex v is the length of the longest path
from a leaf to v. The height of tree T is the height of its root. If there is a path

from v to w then v is a descendant of w and w is an ancestor of v. An induced



XX XX ©2)

XX X ®\®
4 X X X o - .

X XX X C)— @)

XXX X

_ X X D

Figure 1.1: A matrix A and its corresponding graph G.

subtree of T is an induced subgraph that happens to be a tree. The subtree of T
rooted at k is a subtree of T induced by k and some of its descendants in T. We
say that T is heap ordered if the vertices are linearly ordered in such a way that w
is less than v whenever w is a proper descendant of v. If G = (V, E) is a directed
graph, a directed tree T = (V, E') is a spanning tree of G if E' C E.

A directed forest is a directed graph that consists of one or more vertex-disjoint
directed trees.

In this thesis, we concentrate on solving linear systems Az = b, where A is an
n X n large sparse symmetric positive definite matrix. Positive definiteness ensures
that A has a nonzero diagonal. Since A is also symmetric, we can represent its
structure using an undirected graph G = (V,E), where V = {v},...,v,} and
(vi,vj) € E if and only if a;; # 0 and ¢ # j. An elimination order of G is
an ordering of the vertices of G, which we will write as a one-to-one function
a:V —1,...,n. We define the graph G, = (V, E,), where (va(v‘.),va(vj)) € FEq
if and only if (vi,v;) € E. Graph G, is just G with its vertices relabeled by a.

Since G is the graph of A, we can view a as a symmetric permutation of 4. More



formally, if for all 7, column i of the permutation matrix P has its single nonzero in
row a(7), then Gy is the graph of PAPT. Hence, finding an elimination order of G
corresponds to finding a symmetric permutation of A. This correspondence allows
us to equate the structure of a matrix with its graph and solve structural problems
with graph algorithms. Figure 1.1 contains a symmetric matrix structure, where
each nonzero is denoted by an X, and its corresponding graph.

One way to compute the structure of L is to carry out a structural version
of numeric Cholesky factorization on the structure of PAPT. We get such a
version of the algorithm by replacing numerical operations with Boolean ones.
(For more information on structural matrix algorithms, see Coleman, Edenbrandt,
and Gilbert {6,11].) We define the filled graph G, = (V, E}) of G to be the graph of
the structure of L computed by a structural factorization of PAPT. Rose, Tarjan,
and Lueker {50! provided a way of determining the edges in G% directly from G

and a without actually performing the structural factorization.

Lemma 1.1 Edge (u,v) € E if and only if there is a path u = vy,vy,..., v = w
in G with a(v;) < min(a(u),a(w)) for 1 <1 < k.

That is, there is an edge (u,v) in G, if and only if there is a path in G from u to
v through vertices numbered lower than both v and w. An immediate corollary of
Brayton, Gustavson, and Willoughby’s work [2] is that for every symmetric matrix
structure, there are numerical values that can be assigned to the nonzeros that
make the matrix positive definite and result in no numerical cancellation during
factorization. For such matrices, the structural factorization algorithm correctly

predicts the structure of L, and L + LT is the adjacency matrix of G%. Thus,



finding a P to reduce the amount of fill in L corresponds to finding an a to reduce

the number of edges in GJ,.

1.2 Message-passing Multiprocessors

In what follows, we develop a number of parallel algorithms for sparse Cholesky
factorization. All of them are designed for a class of message-passing multipro-
cessors typified by the currently available hypercube machines of Ametek, Intel,
and NCUBE [56]. These machines consist of several identical processors, each
containing some local memory. They coordinate their activities by passing mes-
sages along a network of communication links. On these machines, the number of
processors is typically quite a bit smaller than the size of the problem we want
to solve, and communication is considerably slower than computation. Therefore
we seek algorithms that do as much computation as possible locally, and use the
least possible amount of communication. Our only assumption about the topology
of the communication network is that any processor can communicate efficiently
with any other processor. See Feng [13] for a survey of network topologies.

We assume that the multiprocessor system supports two message passing prim-
itives: send and recv. A processor executes a send to ship information to another
processor. A processor uses a recv to receive information it has been sent. When
a processor is sent a message, that message remains in a buffer until the proces-
sor executes a recv. If a processor executes a recv and no message is currently

available, it waits for one to appear. Since processors will automatically forward
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Figure 1.2: Hypercubes of dimension 0, 1, 2, and 3.

messages, two processors that want to communicate need not be directly linked in
the network.

Hypercubes are one important class of message-passing multiprocessors that
are both commerically available and relatively inexpensive. A 0-dimensional hy-
percube or 0O-cube consists of a single processsor. To construct a 1l-cube, take
two processors (0-cubes) and place a single communication link between them.
In general, to construct an (n + 1)-cube, take two n-cubes and find a one-to-one
correspondence between the processors in the two cubes. Then, place one commu-
nication link between each pair of corresponding processors. Figure 1.2 contains
examples of low dimension hypercubes drawn as graphs, where each vertex rep-
resents a processor and each edge a communication link. Typically, at least one
of the processors in the hypercube is connnected to an additional processor called
the host. The user accesses the hypercube through the host, and although she can
use the host in a computation, she commonly employs it only to send data to the
processors of the hypercube and collect results.

It is easy to see that an n-cube contains 2" processors, where each processor is
linked to exactly n other processors. In an n-cube, the shortest distance between

any two processors is at most n, and for any processor ¢, we can find a spanning
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tree where ¢ is the root and n is the maximum distance from a leaf to ¢. Using
such a spanning tree, processor ¢ can broadcast a message to every other processor
in time proportional to that required to sequentially send n messages between
two adjacent processors. As each processor receives the broadcast message, it
sends the message to its immediate descendants in the spanning tree in order of
decreasing height. We will refer to this as a fan-out approach to broadcasting.
In a similar manner, we can use a fan-in approach to collect information from
all the processors onto a single processor. See Saad and Schultz [51,52,53] for
more topological properities of hypercubes and communication algorithms. See
Seitz [55] for a description of the first hypercube, the Caltech Cosmic Cube, and
Wiley [56] for some characteristics of existing hypercubes.

All of the algorithms in this thesis have been coded in Fortran and run on
the Cornell Theory Center’s 16 processor Intel hypercube under XENIX 286 re-
lease 3.4 of the host operating system and iPSC release 3.0 of the node operating
system. The algorithms also run on a Vax 780 under Berkeley Unix, using the
Oak Ridge National Laboratories’ hypercube simulator [10]. Although we present
numerous timing results for the Intel hypercube in what follows, one should not
read too much into these numbers. The Intel hypercube is an experimental ma-
chine whose hardware and software are in a constant state of flux. During the
months we coded the algorithms in this thesis, there were several software releases
and some of them had a dramatic effect on running times. In addition, since the
communication primitives are at a very low level, running times are sensitive to

the way the user incorporates communication in her programs. Hopefully, higher
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level communication primitives will eventually be built into the system. On the
hardware side, Intel will soon release a version of the hypercube where each pro-
cessor has a communications co-processor. This should decrease running times of

any algorithm requiring nontrivial amounts of communication.

1.3 Dense Numeric Factorization

There are many ways of computing the Cholesky factorization of a symmetric
matrix [22]. One method is known as column or inner product Cholesky. In this
scheme, the columns of L are computed in order. The j*# column is determined by
first subtracting multiples of columns 1 through j—1 of L from the j** column of A.
The resulting column is then divided by the square root of its diagonal element
to obtain the j*# column of L. The computation requires only the lower triangle
of A. Note that once column j has been computed, appropriate multiples of it
can be subtracted from columns j + 1 through n of A at the same time. We will
use this idea to develop a parallel version of column Cholesky for sparse matrices.
We will not attempt to exploit parallelism within column operations; rather, the
parallelism will result from computing the columns of L simultaneously on different
processors. We assume that number of available processors p is no greater than
the number of columns of A, namely n. We expect such multiprocessor systems
to be used to factor large matrices, and hence, in practice, we expect n > p.

Parallel column Cholesky algorithms for dense matrices have already been de-

veloped for various architectures. George, Heath, and Liu [17] have implemented
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such an algorithm on a Denelcor HEP, a shared memory multiprocessor, and Geist
and Heath [15,16] have done the same for an Intel hypercube. Experimental results
on both machines indicate that the column Cholesky approach is a reasonable way
to exploit the parallelism inherent in the computation.

Our sparse column Cholesky factorization algorithm is similar to Heath’s al-
gorithm [29] for dense matrices. Figure 1.3 contains a version of his algorithm,

which we call DenseCholesky. It uses the following two subroutines.

e cmod(j,1) : subtracts the appropriate multiple of column i from column j

where 7 < j.
e cdiv(j) : divides column j by the square root of its diagonal element.

For ease of presentation, Dense Cholesky assumes that n = p and each processor is
assigned exactly one column of A. We let 6 denote the processor assigned column
k of A; it is this processor that is responsible for computing column & of L. Of
course, in an actual implementation, we would allow more than one column on
each processor, and we would ensure that each processor sends at most one copy of
any column of L to another processor. However, there is little value in presenting
the algorithm at this level of detail. To compute L, each processor executes the
DenseCholesky algorithm. We assume that each processor knows the location of
each column of 4, i.e., each processor knows 6, for all k. Note that a processor

can receive its needed columns in any order.



processor 6,

{Modify column k by all preceding columns.}
fori:=1tok—-1do
recv col j; {j defined by sender}
cmod(k,j);
od
cdiv(k);

{Send column k of L to the required processors.}
fori::=k+1tondo
send the entries of col k in rows 7 through n to processor 6;;

od

Figure 1.3: The DenseCholesky algorithm.

processor 6,

{Col k is the data structure for column k of L.}
initialize col k to contain the values in column k of A;
for : := 1 to nLrow(k] — 1 do

recv col j; {j defined by sender}

cmod(k,7);
od
cdiv(k);
{Send column k of L to the required processors.}

for each nonzero 7 in (nzcol k — {k}) do
send the nonzeros of col k in rows ¢ through n to processor 6;;

od

Figure 1.4: The SparseCholesky algorithm.
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1.4 Sparse Numeric Factorization

As in the dense case, we will use a column-oriented approach when A is sparse.
(See Liu [40] for an examination of this and other approaches to sparse parallel
Cholesky factorization.) We can use the DenseCholesky algorithm for sparse ma-
trices; however, if processor ; executes cmod(j,7) and the j** element of column
t is zero, then column j will remain unchanged. That is, the cmod will multiply
column ¢ by 0 and subtract the result from column j. Under these circumstances,
6; does not need to wait for column 7 in order to compute column j. In addi-
tion, 6; need not send column ¢ to ;. We can modify DenseCholesky to exploit
this observation provided each processor knows the exact number of columns for
which it must wait for each of its assigned columns. Namely, 6; must know how
many nonzeros are in the j** row of L. For typical sparse matrices, computing
this information first should speed up the computation of L and result in reduced
message traffic.

Figure 1.4 contains the SparseCholesky algorithm that uses the above obser-
vation, and is similar to code developed by George, Heath, Liu, and Ng [18]. We

define
Definition 1.2 Lrow(k) = {j | lx; # 0 and j < k}.

The SparseCholesky algorithm assumes nLrow(k] equals the size of Lrow(k). For
ease of presentation, we again assume that there is exactly one column per proces-
sor. In the worst case, SparseCholesky requires time proportional to that needed

to multiply L and LT, which is proportional to the time needed to factor A on a
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single processor. It passes at most O(|L|) messages, containing a total of O(]L|)
entries of L and their corresponding locations. In Chapter 3, we define the elimi-
nation forest for A and show how to use it and the structure of 4 to compute the
row structure of L, i.e., Lrow(k) for each row k. Chapter 4 contains algorithms

for computing the column structure of L and the entries of nLrow.



Chapter 2

Ordering

As noted in Chapter 1, the first step in computing the Cholesky factorization
of an n x n symmetric positive definite matrix A = (a;;) is to find a permutation
matrix P to reorder A. Equivalently, we want to find an elimination order a for
the graph G = (V, E) of A. On single processor systems, one typically selects P
solely to reduce fill. This is a good strategy since reducing fill, besides reducing
the needed storage, also reduces the factorization time. On message-passing mul-
tiprocessors, defining a good ordering is more complicated. We want all of the
processors to be busy throughout the factorization; that is, we want an ordering
that allows for parallelism. Also, all hypercubes currently on the market require
significantly more time to communicate a byte of data than to perform a floating
point operation on that byte. Therefore, we also want to reduce the amount of
communication needed during the factorization, perhaps even at the expense of

more fill. Both the parallelism and communication in the computation depend not

16
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only on P but also on the placement of A on the processors. As we shall see in this
chapter, it is possible to find a reordering of A and an assignment of its nonzeros
to processors that results in good processor utilization during the factorization,
while reducing both the fill and the communication.

Nested dissection is an ordering heuristic that reduces fill [22] and allows for

parallelism [40,48]

Nested dissection begins by finding a vertex separator S of
G whose removal would disconnect G into at least two components Cy,...,C.
It orders the vertices of S after those in Cy,...,Ck. Then no edge in G2 can
connect two vertices in different C;, since any path in G between two such vertices
must go through S. Besides reducing fill, this property also allows us to compute
columns of L corresponding to vertices in different C; in parallel [48]. To order
the remaining vertices in V, we apply this procedure recursively to the subgraphs
Ch1,...,Ck. Nested dissection orderings produce low fill if each separator is small
and the components it divides its subgraph into are all roughly the same size.
For example, planar graphs, two-dimensional finite element graphs, and graphs of
bounded genus all have nested dissection orderings that produce at most O(nlog n)
fill [25,37].

" In what follows, we define narrow and wide vertex separators and develop a
parallel ordering algorithm that uses either type of separator to order the columns
of A and assign them to processors. In a different setting, Liu [43] used both of
these separators to order grid graphs and analyzed the parallelism that results
during outer product Cholesky factorization. Our parallel ordering algorithm is

based on a simple modification of the Kernighan-Lin algorithm [31] for finding
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edge separators on a single processor. Gilbert and Zmijewski [26] first reported on
the ideas in this chapter.

George, Liu, and Ng [18,19,20,23] independently made many of the observations
in this section and implemented a different parallel ordering algorithm. In their
algorithm, each processor uses Sparspak’s nested dissection routines [22] to order
a part of the matrix; the host then computes the elimination forest and uses it to
reassign columns to processors. Unlike our algorithm, each processor must have

enough memory to store the adjacency structure of all of A.

2.1 The Kernighan-Lin Algorithm

In this section, we briefly review the Kernighan-Lin algorithm 31] for finding
small edge separators on a single pr;)cessor. We assume G = (V| E) is an arbitrary
graph with 2n vertices numbered from 1 to 2n. Each edge (z,7) has a cost ¢;;. Let
C = (cij) be the cost matrix of G, where c;; is the cost of (2,7) if it exists, and
is 0 otherwise. We want to partition the vertices of G into two sets 4 and B of
equal size, such that the total cost of all edges connecting vertices of 4 and B is
minimized. In other words, we want to find a mintmum cost edge separator that
divides the vertices of G into two equal-sized sets. Note that if the costs are all one
then a solution to this problem is an edge separator with the minimum number of
edges. Although this problem is NP-complete, Kernighan and Lin have devised an
iterative algorithm that works well in practice. In the remainder of this section,

we will describe the central idea behind their algorithm.
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Suppose the vertices of G are initially partitioned into two equal-sized sets, 4
and B, in some manner. Call an edge connecting a vertex of 4 to one of B an
ezternal edge; call any other edge an internal edge. Let T be the total cost of
~all the external edges. Kernighan and Lin’s algorithm reduces T by repeatedly
swapping equal-sized subsets of A and B. It selects the subsets to guarantee that T
decreases at each iteration of the algorithm. Hopefully, the algorithm will quickly
converge to a solution near the optimum.

Before explaining how the subsets to be swapped are chosen, we will need some
notation. Define the ezternal cost E,; of a vertex a € A to be the total cost of its

incident external edges,

E, = Z Caz-

zeB
Similarly, define the internal cost

I, = Z Caz-

z€A
Let Dy = Eq — I,. Following Kernighan and Lin, we will refer to D, as “the D

value of vertex a.” Define the corresponding quantities for the vertices of B.
P gq

If we swap a € 4 and b € B then we can update T by subtracting
9 = Da + Dy — 2cqp,
where g is called the gain in swapping a and b. Swapping a and b may alter the D
values of other vertices incident on a and b. These D values can be recalculated
as follows.
D), = D;+ 2czqa — 2¢0p, z € A~ {a} (2.1)

D; = Dy + 2¢cyp — 2¢ya, y € B — {b} (2.2)
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Using these definitions, we can state the Kernighan-Lin algorithm as follows.
First, unmark all the vertices of G and compute their initial D values with respect
to the current partition, A and B. Then locate two unmarked vertices, a € 4 and
b € B, that would produce the largest gain if swapped. Do not swap these vertices,
but simply mark them and update the D values of the unmarked vertices using
Equations 2.1 and 2.2. Repeat this process of marking vertices and updating
D values until no unmarked vertices remain. The result is a sequence of pairs
(as, bi) € A x B of vertices and their associated gains g;, fors = 1,...,n. Note that
the gains g; can be positive or negative and that ¥ ; g; = 0. Finally, determine
which vertices of A and B to swap by finding the smallest k£ that maximizes
G = Zf___l gi- If G > 0, swap vertices a;,...,a; of A with b;,...,b of B and
repeat this entire process. Otherwise, stop. Since G = 0, no further improvements
are possible using this approach.

One important feature of this algorithm is that it does not terminate upon
encountering a negative gain. Hence, during a single iteration, it may consider
the effect of swapping a pair of vertices that would increase T. The algorithm will
only swap these two vertices if it can locate other pairs of vertices that can be
swapped to produce an overall decrease in T. Thus, negative gains are tolerated
provided they ultimately result in a better edge separator.

In a straightforward implementation, one iteration of this algorithm requires
O(n?) time on a single processor. If C is stored as a dense matrix, the time to
compute the initial D values is O(n?). Since there are O(n?) possible pairs of

vertices, locating the pair with the maximum gain takes O(n?) time. Updating
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the remaining D values also takes at most O(n) time. Since the process of locating
pairs of vertices of maximum gain and updating D values is repeated n times, one
iteration of the entire algorithm requires at most O(n?) time.

Kernighan and Lin implemented two faster methods for selecting pairs of ver-
tices with large gains. In the first, not all vertices are considered, but rather some
small number of the vertices with the largest D values. Using this idea, one iter-
ation of the algorithm requires O(n?) time, but will not always select the pair of
vertices with the largest possible gain at each step. Another approach sorts the D
values of all the vertices before looking for the best pair. Employing this method,
one iteration still requires O(n®) time in the worst case; however, for nonnegative
edge costs, the actual running time will typically be O(n’logn), the time required
for n sorts.

Both methods perform well in practice. Kernighan and Lin tested a variety of
graphs with up to 360 vertices and various edge densities. Using random initial
partitions for these problems, they found that both implementations of their al-
gorithm almost always converged in 2 to 4 iterations, and that the probability of
a single iteration finding an optimal solution was approximately 27"/30 where n
was the number of vertices in the graph.

We conclude this section by noting that Kernighan and Lin proposed variants
of their basic algorithm that can be used to partition the vertices of a graph into
sets of different sizes or into more than two sets. In fact, the parallel algorithm in
the next section is just a parallel version of one of their algorithms for partitioning

the vertices of a graph into d sets, where d is a power of 2.



22
2.2 A Parallel Kernighan-Lin Algorithm

In this section, we assume that G = (V, E) is an arbitrary graph whose vertices
have been partitioned among p > 2 processors of a message-passing multiproces-
sor in some roughly even manner. We present a simple parallel version of the
Kernighan-Lin algorithm for partitioning the vertices of G into p roughly equal-
sized sets, each set residing on its own processor. Our goal is to produce a partition
with few edges connecting vertices in different sets. Since our graphs will corre-
spond to sparse matrices, each such edge represents a data dependency between
two processors and, hence, a communication that must take place during subse-
quent phases of the computation. Reducing the number of these edges will reduce
communication overhead and perhaps increase parallelism. Since we are primarily
interested in large sparse graphs, we assume that G is stored as a collection of
adjacency lists. A processor is assigned vertex v € V if it has the list of vertices
adjacent to v stored in its local memory. Finally, since we are interested in finding
edge separators with the minimum number of edges, we assume that the edges all
have cost one.

Our algorithm begins by dividing the p processors into two sets P; and P; with
sizes different by at most one. Sets P; and P, induce a roughly even division of
the vertices. Our initial goal is to reduce the number of edges connecting vertices
in P; to those in P;. If P = 0 or P, = () then there is nothing to do, so we stop.
Otherwise, we perform the following procedure. First, we select one processor in

each part, say ¢; € Py and ¢ € P, to be the leader of that part. If ¢ € P; then
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we will say that the leader of ¢ is ¢;. The leaders execute the simplified version

of the Kernighan-Lin algorithm described below.

Each processor in P; U P; computes the D values of all its vertices, and reports
these values to its leader. Each leader unmarks all of the vertices in its half of the
partition. Next, each leader selects the unmarked vertex with the largest D value.
The leaders mark these two vertices and save them on a list along with their gain.
The leaders update the D values of the unmarked vertices using Equations 2.1
and 2.2. From these equations, we see that they need the adjacency lists of both
selected vertices. The leaders request this information from the processors assigned
the selected vertices and, upon receiving it, update the relevant D values. The
leaders repeat this process of marking vertices and updating D values until all the
vertices assigned to the processors in P; or P; have been marked.

The leaders now decide what vertices to swap using the same procedure as
the Kernighan-Lin algorithm. They inform the processors of their decision, and
the processors swap the selected adjacency lists. After swapping vertices, each
processor still has the same number of vertices it had originally. The processors
repeat this entire algorithm until the number of external edges between P; and
P, cannot be decreased. Then, in parallel, P; and P, each apply this algorithm
recursively. In Figure 2.1, the ParallelKL algorithm outlines the entire procedure.

To reduce the number of messages passed between processors in P, and P,
we select vertices a and b to swap that maximize D, + Dj; that is, we ignore a
possible edge between a and b. Thus we may choose vertices whose actual gain is

less than maximum by at most 2.
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The processors divide themselves into two groups P; and P; with sizes dif-
ferent by at most one. If either group is empty, they stop. Otherwise, they
select one processor in each group, say ¢; € P, and ¢3 € Py, as the leader
of that group.

Each processor in P; U P; computes the D values of its vertices.

Each processor reports its D values to its leader. Each leader unmarks all
of the vertices in its half of the partition.

Each leader ¢; selects the vertex v; with the largest D value.

The leaders request the adjacency lists of v; and vy from their assigned
processors and update the D values of the unmarked vertices.

If at least one vertex in each half of the partition is unmarked, the processors
repeat from step 4.

Using the list of vertex pairs and gains, the leaders decide which vertices to
swap, and tell the other processors in their groups.

The processors carry out the swapping of vertices.

Beginning at step 2, the processors repeat until no further improvement is
possible.

In parallel, P; and P; each apply the algorithm recursively, from step 1.

Figure 2.1: The ParallelKL algorithm.
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As it stands, the algorithm requires a lot of message passing; each processor
repeatedly sends all of its adjacency lists to the current leader. Since we want to
solve problems too large for a single processor, some of this message passing is un-
avoidable. However, we can reduce it by allowing a pair of leaders to stop marking
vertices when further improvement seem unlikely. In our implementation, leaders
stop marking vertices when the sum of all the gains computed so far becomes too
negative or when they have encountered too many consecutive nonpositive gains.
Since we are primarily interested in sparse graphs, once the sum of all the cur-
rently computed gains becomes very negative, it will likely remain negative. In
addition, given a good initial assignment of vertices to processors, once a pair of
leaders have seen several consecutive nonpositive gains, it is likely that no further
improvement is possible using this approach. These modifications should improve
the algorithm’s running time without significantly affecting the sizes of the result-
ing edge separators. We will say more about the initial assignment of vertices to
processors in Sections 2.6 and 2.7.

As the leaders execute the algorithm, the other processors are mostly idle. Al-
though there is little parallelism at the beginning of this algorithm, more processors
become engaged in active work as the algorithm proceeds, i.e., more processors

become leaders.
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2.3 An Implementation and Analysis

To analyze the computational and communication complexity of the parallel
Kernighan-Lin algorithm, we will need some additional notation. Suppose G has
n vertices, numbered from 1 to n, and m edges. Let p be the total number of
available processors. To simplify the analysis, we assume that p is a power of
two, n is a multiple of p, and p < n < m. We also assume that each processor
initially has n/p vertices and knows the initial location of every vertex. Then
each processor will have exactly n/p vertices throughout the computation. Let g
be the maximum storage required by any processor for its vertices at any point
during the computation. We call the execution of line 1 of ParallelKL a level-k
cut, where k is the depth of the recursion. The first execution of line 1 is a level-0
cut. If k < log p, there are 2* level-k cuts, all of which can take place in parallel.
After making a cut, the relevant processors try to generate a small separator by
repeatedly executing lines 2-8 of Paralle/KL. We refer to a single execution as a
level-k iteration, where k is the level of the cut. We will assume that the number
of level-k iterations after any cut is bounded by some constant. Kernighan and
Lin’s experiments [31] support this assumption.

We begin by describing an implementation of the algorithm along with an
analysis of its computational complexity. For now, we will ignore the message
passing. Performing the initial level-0 cut takes O(p) time. Then, in parallel, each
| processor in each half of the partition computes the D values of all of its assigned

vertices in O(q) time and reports them to its leader. Each leader constructs a
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heap out of the D values it receives. The heap is a balanced binary tree with
the maximum D value stored at the root; see Aho, Hopcroft, and Ullman (1] for
details of algorithms to construct and maintain a heap. A leader stores its heap as
two n-vectors, one containing the D values and the other containing the vertices
corresponding to these values. Each leader also maintains an n-vector of pointers
from vertices of G to their D values in the heap. The leaders need these pointers
to update D values efficiently as vertices are marked. Constructing the heap and
the pointers into it takes O(n) time.

A leader removes the vertex with largest D value from the heap (which cor-
responds to marking it) and remakes the heap, in O(log n) time. After receiving
the adjacency lists of the current pair of marked vertices, a leader modifies the
D values of their neighbors and adjusts the heap accordingly, using O(log n) time
per modification. Since there are m edges in G, constructing the complete list of
vertex pairs and gains for a level-0 iteration takes O(mlogn) time. Determining
the vertices to swap requires O(n) time and (again ignoring message passing time)
these vertices can be swapped in O(m) time. Hence, the time for a single level-0
iteration is O(mlogn), since ¢ < m and p < n. Since we have assumed that the
number of iterations after any particular cut is bounded by some constant, the
time required to find the level-0 edge separator is also O(mlogn). At level k£ > 0,

we find the 2% edge separators in parallel. Thus, the entire algorithm takes
O(mlog n log p)

time, ignoring the time for message passing.
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To measure the communication complexity, we will count both the total num-
ber of messages and the total volume of message traffic, that is, the total number
of integers passed in messages. We assume that each processor has an integer
label which is known to every other processor. The processors use this labelling
to partition processors and select leaders and, hence, require no message passing
to perform a cut.

Now consider a single level-k iteration Let P' be the set of processors in one half
of the current partition. In line 3 of ParallelKL, each processor in P' reports its
D values (and corresponding vertex labels) to the leader of P' in a fan-in fashion.

2k+l

The set P' contains p/2%*! processors, so this step requires p/ — 1 messages.

The total number of integers passed is

logp' Il
P o n P
Z 2—;(2';) = 2k+1 log 2k+1a

i=1
where p' = p/25+1.
Each cut produces two leaders, both requiring a fan-in report of D values. For

0 < k < logp, there are 2% level-k cuts, each requiring at most some constant

number of iterations. Thus, execution of the entire algorithm produces
logp
k p
kz 0(2*"!(5i7 — 1) = Olplog p)
=1

D value messages containing a total of

logp n
p
kzl 0(2k+1(2kﬁlog F)) = O(nlog® p)

integers.

We could have implemented the reporting of D values by simply having each

processor send a message containing its D values directly to its leader. In this-
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approach, there would still be O(plog p) messages, but they would only contain a
total of O(nlogp) integers. We use the fan-in method because, on a hypercube,
it can be implemented so that only adjacent processors need to communicate.
The total number of integers sent over single links is the same —O(nlog® p)—in
the fan-in and direct-to-leader methods; the total number of messages sent over
single links is O(plog p) for fan-in and O(plog® p) for direct-to-leader. Since the
machines we are interested in have a significant minimum cost per message, fan-in
is more efficient. (Chamberlain and Powell [4,5] examine the fan-in approach to
communication in the context of LU and QR factorization.)

To calculate the message traffic required for the remainder of the algorithm,
first consider a single level-0 iteration. After constructing heaps of D values, the
two leaders request adjacency lists from other processors, communicate vertices
of maximum D value to each another, and tell processors what vertices to swap.
The other processors send adjacency lists to leaders, and all of the processors carry
out the swapping of vertices. All of this communication requires O(n) messages
containing a total of O(m) integers. Hence, the entire algorithm requires O(n log p)
messages containing a total of O(m log p) integers to carry out the communication
not involving D values.

There is one subtle point concerning the swapping of vertices. At the start
of the algorithm, each processor knows the location of each vertex. Thus, after
the initial level-0 cut, the two leaders know what vertices are assigned to each
processor. To tell each processor which of its vertices it must send to some other

processor, the leaders send a total of O(n) < O(m) integers in O(p) < O(n)
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messages. After the swap, the leaders at the next level iteration will not necessarily
know the location of each vertex. We can remedy this during the fan-in of D values
by including the processor of origin with every D value. This will not change the

complexity of fan-in. Therefore the entire parallel separator algorithm requires
O(nlogp)

messages containing a total of
O( max(n log? p,mlog p))

integers.

2.4 A Parallel Ordering Algorithm

Here we use our parallel edge separator algorithm to find nested dissection
orderings of A. First, the processors run ParallelKL on the graph G of 4. We
then use each edge separator to define a vertex separator as follows. Suppose some
edge separator divides a subset of the processors into two groups, say P; and P;.
We can partition the vertices incident on the edge separator into two groups V;
and V3, depending on whether they reside in P; or P;. Both V; and V5 are vertex
separators for a subgraph of G. We can select the smaller of the two sets, say Vj,
as the vertex separator defined by this edge separator. We will call V; a narrow
separator. Let V be the set of all vertices assigned to P; and P;. If the vertices in
V1 are ordered after the vertices in ¥V — V3, no communication across the cut, i.e.,

between processors in P; and those in P, is required to compute the columns of L
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corresponding to the vertices in V' — V;. However, as these columns are computed,
they will be sent to processors assigned vertices of V;. Thus, no matter where the
vertices of the narrow separator reside, communication across the cut will take
place as the columns that are not in the separator are computed.

Another possibility is to take all of V; U V2 as the separator of the subgraph,
since this guarantees that processors in P; and P; will not need to communicate
until they begin computing columns of L corresponding to vertices in V; UV;. This
is because no fill can occur between a vertex assigned to a processor P; and one
assigned to a processor in P; until the first of these columns is computed. We will
refer to such vertex separators as wide separators. Since these separators are larger
than narrow separators, they will give more fill. However, the number of columns
of L that must be communicated across the cut is bounded by |V; U V3], the size
of the wide separator. For narrow separators, the number of columns crossing the
cut is bounded only by |V|, the number of columns assigned to processors in P;
and P;. Thus, for wide separators, one may hope that the increase in computation
time will be more than offset by the decrease in communication time. Section 2.5
contains numerical factorization times using both narrow and wide separators to
find orderings.

After defining vertex separators, each processor orders all of its vertices, be-
ginning with those not contained in any separator. In our implementation, the
processors use Sparspak’s nested dissection routine [22] to order these vertices.
Finally, the processors order the vertices contained in the vertex separators after

all the other vertices, in such a way that vertices in level-k separators come after
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those in level-(k+1) separators. The result is a nested dissection ordering whose
first [log p] levels of vertex separators are based on the edge separators from the
parallel Kernighan-Lin algorithm. Note that a vertex can belong to more than
one separator, provided the separators are at different levels. We consider such a
vertex to reside in the separator with the smallest level number.

After all the vertices are numbered, those contained in the vertex separators are
redistributed among the processors to balance the computational load during the
factorization. In the case of a wide separator, we could wrap the vertices in V; onto
the processors in P;. That is, if V; = {v1,...,v} and P; = {¢o,...,¢;_1}, then
we would reassign vertex v; to processor ¢;, where j = (¢ — 1) mod /. Similarly,
we could wrap the vertices in V2 onto the processors in P;. This redistribution
of vertices would not change the edge separator between P; and P;; however,
it could increase the number of edges crossing higher numbered cuts and hence,
increase the number of vertices incident on those edges. To avoid this problem,
we reassign a vertex only if there is no increase the number of edges crossing other
cuts. Whenever a given vertex cannot be reassigned, we note that its assigned
processor has an extra vertex and skip this processor the next time around. More
formally, if vertex v; is assigned to processor ¢;, we try to reassign it to processor
o1, where ¢ is the first processor in the sequence B(i-1)modis Pimod!> P(i+1)modls - - -
that is assigned no more than |¢/l| vertices from the set {vg,...,vi_1}.

In the case of a narrow separator, V; is wrapped onto all the processors in P;
and P;. Unlike wide separators, narrow separators are not designed to limit the

number of columns communicated across cuts. Thus, we do not need to take the
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same precautions in wrapping them that we did with wide separators.

Vertex separators correspond to dense submatrices of L, which are more time
consuming to compute. Hence, redistributing these vertices evenly among all the
processors should give better processor utilization. If we succeed in finding small
separators, each processor will end up with roughly the same number of vertices.
Since the separator vertices are wrapped, the load will be fairly well balanced. In
our experiments, reassigning vertices required very little time and, in many cases,
significantly reduced the running time of the remaining phases of the computation.
Note that using either narrow or wide separators, at most p/2* processors need to
communicate in order to compute the columns of L corresponding to a level-k ver-
tex separator. On a hypercube, this implies that these columns can be computed
in a k-dimensional subcube. Not until the very end of the computation, when the
columns of L associated with the level-0 vertex separator are being computed, do

all the processors need to communicate.

2.5 Numerical Results

We have implemented the wide and narrow ordering algorithms of Section 2.4
that use the parallel Kernighan-Lin algorithm. We have added this code to the
parallel elimination forest, symbolic factorization and triangular system solver
codes discussed in Chapters 3, 4, and 5. Together with George, Heath, Liu, and
Ng’s parallel numeric factorization code [18,20,23], we have a collection of routines

that perform all phases of sparse Cholesky factorization in parallel. We have used
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Table 2.1: Test problems.

Problem | Equations | Nonzeros | Density (%)
1 346 3226 2.69
2 512 3502 1.34
3 758 5994 1.04
4 878 7448 0.97
b} 918 7384 0.88
6 1005 8621 0.85
7 1007 8575 0.85
8 1242 10426 0.68
9 1561 10681 0.44

10 1882 12904 0.38

the Oak Ridge hypercube simulator [10] to generate communication statistics and
the Cornell Theory Center's 16 processor Intel hypercube to measure running
times.

We have compared three algorithms for ordering the columns of a matrix and
assigning them to processors: the narrow and wide algorithms of Section 2.2, and
a simple sequential strategy we will call seqg-wrap. The seq-wrap method orders
the matrix sequentially on the host using Sparspak’s nested dissection routine and
then distributes the columns to all the processors of the hypercube in a wrap fash-
ion. Thus, this method orders the columns to reduce fill and distributes them in
a way that should result in good processor utilization, but it ignores the issue of
communication. We ran these three algorithms on the 10 finite element problems
listed in Table 2.1. The first eight problems represent various physical structures
and are described by Everstine [12]; the last two are derived from L-shaped trian-

gular meshes and are described by George and Liu [21].



Table 2.2: Ordering times (seconds).

Problem | Seq-wrap Narrow Wide
1 1.88 7.85 7.38
2 1.74 8.34 8.57
3 4.90 13.23 13.28
4 5.00 8.95 8.70
) 5.80 16.10 15.18
6 7.42 23.12 23.30
7 5.88 9.22 9.56
8 7.96 15.67 15.64
9 9.60 12.48 12.94
10 11.78 11.13 10.90

Table 2.3: Message traffic during numeric factorization.

Problem Seq-wrap Narrow Wide
1 3526 (2.13) | 2402 (1.93) | 1580 (1.74)
2 3166 (2.11) | 1087 (1.57) 778 (1.39)
3 6689 (2.11) | 2745 (1.84) | 2070 (1.63)
4 8836 (2.13) | 4558 (1.85) | 3321 (1.64)
5 8849 (2.13) | 4951 (1.95) | 4230 (1.83)
6 10123 (2.13) | 5694 (1.97) | 4884 (1.83)
7 10438 (2.13) | 4843 (1.83) | 3318 (1.60)
8 12897 (2.13) | 7534 (2.00) | 6312 (1.82)
9 15825 (2.13) | 7982 (1.97) | 6334 (1.76)
10 18917 (2.13) | 9537 (1.95) | 7368 (1.75)

35



Table 2.4: Flops during numeric factorization.
Problem | Seq-wrap Narrow Wide
1 127294 110344 142954
2 36190 37197 45574
3 93408 112187 166011
4 192834 266103 500606
5 239274 277298 638908
6 458580 470572 897429
7 258793 315552 608565
8 558595 781817 1437048
9 629271 693393 1109808
10 841932 983679 1866030

Table 2.5: Numeric factorization times (seconds).

Problem | Seq-wrap Narrow Wide
1 5.06 4.39 3.88
2 3.13 2.22 2.33
3 6.81 5.99 6.53
4 9.91 7.43 10.13
5 10.51 9.18 14.30
6 14.29 17.72 23.46
7 11.25 7.99 12.17
8 17.99 19.51 28.73
9 19.81 16.65 23.40
10 25.45 22.02 34.66

36
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Table 2.2 lists the time required to perform the orderings. Under seq-wrap, we
list the time the host uses to order the matrix, ignoring the time required to send
the columns to the nodes of the hypercube. Under narrow and wide, we list the
times for the parallel Kernighan-Lin algorithm. These include the time to swap
columns among processors during the algorithm and the time needed to wrap the
columns of the resulting separators. As with seq-wrap, we do not include the time
to initially send the columns to the nodes. The initial orderings of problems 3, 5,
6, and 8 were very poor. Due to message-passing delays, narrow and wide both
require more time then seq-wrap in all cases except the last. However, as we shall
see below, narrow and wide orderings usually succeed in reducing the numeric
factorization time. On single-processor machines, numeric factorization is the
most time consuming step in solving sparse linear systems. For larger problems,
we can expect narrow and wide to require less time than seq-wrap, provided the
problem has a reasonable initial ordering. The parallel ordering algorithms also
allow us to solve problems that are too large to reside in the memory of any one
processor.

After ordering a matrix with one of the algorithms above and symbolically
factoring it, we used George, Heath, Liu, and Ng’s parallel numeric factorization
code [18,20,23| (in an experimental version from February 1987) to compute the
Cholesky factor. For each problem, Table 2.3 lists the total number of messages the
processors pass during numeric factorizaton. Each message contains the nonzero
values of a single column of the Cholesky factor, along with the positions of its

nonzeros. Table 2.3 also lists, in parentheses after each total, the average distance
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travelled by the messages. Since we used a 4-dimensional cube, a message makes at
most 4 hops. On the Intel hypercube, messages are broken up into packets of 1024
bytes, and the smallest message is 1024 bytes. Since almost all of the messages
passed were smaller than 1024 bytes, we have listed only the total number of
messages. Only the wide approach produced messages longer than 1024 bytes and
just for problems 8 and 10. In both of these cases, 1% of the messages were longer
than 1024 bytes and all were less than 2048 bytes. As expected, the wide approach
results in both the lowest total message traffic and lowest average distance travelled
per message. For our test problems, narrow requires 32% to 66% fewer messages
than seq-wrap, while wide requires 14% to 34% fewer messages than narrow.

Table 2.4 lists the total number of flops the processors perform during the
numeric factorization. For most of the problems, the narrow method performs
almost as well as Sparspak’s nested dissection routine. Due to the large separators,
the wide method requires about twice as many flops as the narrow method for the
larger problems. For a fixed number of processors, the relative difference between
the narrow and wide flop requirements will decrease as the sizes of the problems
increase, since the percentage of the columns belonging to wide separators will
decrease. Our test problems are all relatively small, and the percentage of columns
belonging to wide separators range from 35%, for the largest problem, to 80%, for
the smallest.

Table 2.5 lists the factorization times for the three methods. Even though the
narrow approach requires somewhat more flops and the wide approach consider-

ably more flops than seq-wrap, both methods frequently require less time. Fac-
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Figure 2.2: A partitioning of a 12 x 12 grid graph.

torization time depends not only on the number of flops, but also on the amount
of communication and on how well the load is balanced. Narrow and wide require
significantly less communication than seq-wrap, but may not do as well at bal-
ancing the load. For example, if the graph is irregular, interprocessor separators
at the same level may be of very different sizes and, in fact, this happens with
problems 6 and 8. As a result, seq-wrap produces the best factorization times for
these problems. Overall, narrow is the best method in terms of factorization time,

and hence, it is used to order our test matrices in all the numerical experiments

that follow.

2.6 Remarks on the Kernighan-Lin Algorithm

We have seen that using either narrow or wide vertex separators to reorder
large sparse symmetric positive definite matrices can decrease the factorization

time by lowering the total volume of message traffic. Since both the amount of
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fill and message traffic depend on the size of these separators, our hope is that
we can find small ones for certain types of graphs. In particular, we would like
to know if the sequential version of the Kernighan and Lin algorithm presented
in Section 2.1 will always find minimum edge separators for a particular class of
graphs, regardless of the initial partition.

Let G be an n x n grid graph where n is even. Suppose it is initially partitioned
as in Figure 2.2. The total number of external edges in G is 2n, twice the minimum.
(One minimum edge separator divides the first n/2 rows from the others.) The
Kernighan-Lin algorithm will not necessarily find a partitioning with the minimum
number of external edges. At each step of the algorithm, it must mark a pair
of vertices that produces the maximum gain, and, due to the regularity of the
graph, it usually has more than one choice. By carefully selecting the vertices to
be marked at each step, we can force the algorithm to stop after one iteration
without swapping a single pair of vertices.

To see this, think of actually swapping the vertex pairs as they are marked. In
Figure 2.2, we can choose the sequence of pairs so that the black vertices in the
upper left move to the right, trading places with the white vertices in the upper
right. The black vertices in the lower right move to the left, trading places with the
white vertices in the lower left. Figure 2.3 shows the partition after swapping the
first 30 pairs of vertices. The black vertices in the lower half of Figure 2.3 resemble
the letter L. As the swapping progresses from here, the vertical part of this L grows
wider, while the horizontal part grows thinner. The upper black vertices behave

similarly. The total number of external edges is never less than 2n. Therefore
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Figure 2.3: The partitioning after swapping the first 30 pairs of vertices.

the sum of gains is never positive, so the algorithm will not actually swap any
vertices. Thus, the Kernighan-Lin algorithm does not necessarily find minimum
edge sepa.r.ators even for grid graphs. It is important to note, however, that the
algorithm can find a minimum edge separator for a grid graph partitioned as in
Figure 2.2, if it chooses to mark the vertices in the proper order. We do not know

if such an order exists for every initial partition of the graph.

2.7 Discussion

Many graph algorithms are based on finding a small set of vertices or edges
whose removal divides the graph into two or more nearly equal parts. Exam-
ples include layout of circuits in a model of VLSI (34|, efficient sparse Gaussian
elimination [25,27,37], and solving various graph problems [38]. Lipton, Rose,
and Tarjan [37] have shown that random graphs do not contain good separators.

However, many graphs one encounters in practice do have good separators, since
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most real-world problems have considerable structure. Therefore, finding good
separators of graphs is irﬁportant. Our experience with the Kernighan-Lin algo-
rithm is that it always converges quickly, regardless of the initial partition, but
that the quality of this partition affects the size of the resulting edge separator.
We are currently examining ways to improve the Kernighan-Lin algorithm. One
possiblity is to develop a parallel heuristic for finding good initial partitions, such
as a technique for finding highly connected subgraphs of a graph. We could then
use this partitioning as input to the algorithm. Another approach is to modify
the Kernighan-Lin algorithm so that it uses global knowledge about the graph in
breaking ties between the vertices of maximum gain. This could eliminate the
problem with the grid graph in Section 2.6.

As we saw in our experiments, the parallel Kernighan-Lin algorithm can pro-
duce an assignment of columns to processors and an ordering that results in poor
processor utilization during numeric factorization. This happens when interpro-
cesor separators at the same level are of very different sizes. One approach to this
problem is to assign weights to the vertices and then partition them in a way that
gives each processor roughly the same total weight. If we made the weight of a
vertex proportional to the number of edges incident on it, this approach would
allow denser parts of the graph to be distributed over more processors and may
result in a more uniform distribution of the separators. Kernighan and Lin have
suggested a modification of their algorithm that will handle this case for positive
integer weights. Namely, if a vertex has weight k > 1, replace it with a cluster of

k vertices of weight 1, bound together by edges of appropriately high cost.
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At the top level of the parallel Kernighan-Lin algorithm, the two leaders per-
form the entire computation, once the initial D values have been computed. Here,
the only advantage of using more than two processors is that more memory is
available for storing the graph, so bigger problems can be solved. Of course, as
more processors become leaders, more processors become actively involved in the
computation. Designing a more parallel algorithm for finding separators is an
interesting problem.

For a fixed number of processors, as the problem size increases, the percentage
of columns belonging to interprocessor separators will typically decrease. As a
result, we expect numeric factorization time differences between the narrow and
wide approaches to decrease as the problem size increases. Since each processor in
the Cornell Theory Center’s Intel hypercube contains four megabytes of memory,
we have enough memory to solve problems much larger than our test problems.
However, the Intel hypercube limits the maximum length of a message and the
total message buffer space. To solve significantly larger problems, we need to
explicitly break long messages into several pieces and to consume messages waiting
in buffers as quickly as possible. These revisions are currently underway, and when
they are complete, we expect to be able to solve problems at least five times larger
than our largest test problem.

In general, a parallel algorithm will perform better if it first decomposes the
problem it is solving into parts that have high locality and require low communi-
cation overhead. Thus, finding good graph partitionings should be a useful first

step for a wide variety of parallel problems. For example, in LU factorization with
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partial pivoting, if we use wide separators to partition the columns of the matrix,
then our pivot searches will be confined to single groups of processors. We can also
use wide separators in iterative methods, e.g., Jacobi and Gauss-Seidel splitting
methods, to reduce the amount of communication.

Simulated annealing is another promising iterative approach to finding small
edge separators. At each step, this algorithm creates a new partition from the
current one and replaces the current partition with the new one if it is better.
If the new partition is worse, the algorithm probabilistically decides whether to
accept it as the current partition, with the probability of acceptance decreasing
as the number of iterations increase. This feature will hopefully allow the algo-
rithm to move away from a local minimum that is far from a global minimum.
Kirkpatrick, Gelatt, and Vecchi [32,33] discuss applications of simulated anneal-
ing to optimization problems and provide experimental results for various graph
problems, including graph partitioning.

For a class of regular graphs with small optimal edge separators, Bui, Chaud-
huri, Leighton, and Sipser [3] develop a polynomial time algorithm that they prove
almost always finds optimal edge separators. The algorithm uses the maxflow-
mincut algorithm to find edge separators and, in polynomial time, either finds the
optimal separator along with a proof of its optimally or halts without output. In
experiments with graphs in this class with small vertex degree, the authors found
that their algorithm usually locates the optimal edge separator. They also found
that the Kernighan-Lin and the simulated annealing algorithms often find poor

separators when the graphs in this class have vertex degree equal to 3.
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The problem of finding a good ordering along with a good assignment of nonze-
ros to processors deserves further study. Peters examines aspects of this issue for
shared memory multiprocessors [48] and message-passing multiprocessors [47]. Liu
and Mirzaian [41,42,44] use tree rotations to create more evenly balanced elimina-
tion forests and thereby, better parallel orderings. Fox and Otto [14] suggest two
different approaches to automatic load balancing. The first method uses simulated
annealing to rebalance the computation when it becomes imbalanced enough to
warrant the extra computation. The second method simply partitions the prob-
lem into relatively large pieces; it then breaks each large piece into smaller pieces
and evenly divides them among all of the processors. Smaller final pieces result in

better load balancing, at the expense of more communication.



Chapter 3

Elimination Forests

After reordering A, we must allocate storage for L and then numerically fac-
tor A. As we saw in Chapter 1, we must compute the size of Lrow(k) for each
column k, in order to efficiently factor 4. In this chapter, we define the elimination
forest for A and show that it contains the row structure of L. In Chapter 4, we
use the elimination forest to allocate storage for L and show how it can be used
to compute the sizes of the Lrow(k).

Liu [39] has provided an efficient algorithm for computing elimination forests
on a single processor system. This algorithm could be employed here by collecting
all the columns of A onto a single processor. There are two obvious drawbacks
to this approach. First, since only one of the p processors would be used for this
computation, we would not be exploiting all of the available computational power.
Second, since the entire matrix would have to fit in the memory available to a

single processor, the size of the problems we could solve would be severely limited.

46
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In this chapter, we develop an efficient algorithm for computing the elimination
forest for A without moving the columns of A off their assigned processors and
without excessive message passing. This work was originally reported in Gilbert
and Zmijewski [57,58]. George, Heath, Liu, and Ng [18,19,20,23] have indepen-
dently suggested the use of elimination forests in sparse factorization and have
implemented symbolic and numeric factorization codes that compute the needed

elimination forest on a single processor.

3.1 Background

An elimination forest for 4 is a directed forest F = (V, E) where V = {1,...,n}

and (i,7) € E if and only if
7 =min{k | l}; # 0 and k > i}.

That is, (¢,7) € E if and only if the first nonzero below the diagonal in column % of
L occurs in row j. (Figure 3.1 contains an example of a matrix and its elimination
forest. In L, an original nonzero is denoted by an X, and a fill is denoted by
an @. In this case F happens to be a tree; in fact, each connected component of
the graph of A corresponds to a tree in the forest.) If {z,5) € E then a nonzero
multiple of column 7 of L is used to compute column j. Thus, the computation of
column j cannot finish before that of column i. Similarly, if there is a path from ¢
to j in F, column ¢ must be computed before column j. We will say that column
J depends on column 1 if the computation of column ¢ must be completed before

that of column j.
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Figure 3.1: A Cholesky factor L and its corresponding elimination forest F.

Parent: [2[4[4[5[6]0]

Figure 3.2: A vector represention of the forest F in Figure 3.1.

Schreiber [54] and Liu [39] applied elimination forests to different aspects of
Cholesky factorization. They proved several results relating the forest to the
nonzero structure of L. We will restate some of these results here and provide
somewhat simpler proofs. In particular, we will show that F allows us to compute
Lrow(k) for k = 1,...,n. Our proofs are in terms of the nonzero structures of
A and L, rather than the graphs of these structures, and hence, we must assume
that no cancellation occurs while factoring A.

From the definition of F, there is at most one edge leaving any given node and
all edges are from lower numbered nodes to higher numbered ones. Thus, we have

the following result.
Lemma 3.1 [54] F is a heap ordered forest. O

Since F is a forest, we can represent it as a vector Parent of pointers. The itk

element of Parent is j if and only if (1,7) € E and is 0 otherwise. We will refer
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Figure 3.3: Part of the nonzero structure of L.

to j as the parent of ¢ in F. Figure 3.2 depicts Parent for the elimination forest
in Figure 3.1. This simple representation will prove quite useful in Section 3.2,

where we give an algorithm for computing F on a multiprocessor system.

Our first two theorems relate the row structure of L to F.
Theorem 3.2 [54] If ¢ € Lrow(k) then 7 is a descendant of k in F.

Proof: The proof is a simple backwards induction argument on the columns
of L. For column n, there is nothing to prove. Assume the theorem holds for
every nonzero in columns ¢ + 1 through n of L. Suppose 1 € Lrow(k), i.e., l; # 0
and k > 1. ff the first nonzero below the diagonal in column 7 of L occurs in row
k then (i,k) € E by definition. In this case, 7 is a descendant of k in F. Now,
assume the first nonzero below the diagonal in column ¢ of L is in row j, where
1 < j < k. Thus, (z,7) € E. Since [;; # 0, a nonzero multiple of column ¢ must be
added to column j in computing L. Given l; # 0, this implies that lgj # 0 (see
Figure 3.3). But j > 1, so the induction hypothesis tells us that j is a descendant
of k in F. Since (i,j) € E, we conclude that ¢ is a descendant of k in F. O

From this theorem, it is easy to see that F' captures every dependency that

exists between the columns of L and only those dependencies. Thus, F can be
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Figure 3.4: Subtrees of the forest F' in Figure 3.1.

thought of as the set of dependencies that exist between the columns of L. Using
an argument similiar to the proof of the theorem, we can establish the following

stronger result. Its proof is left to the reader.

Theorem 3.3 [54] If i € Lrow(k) then there is a path from i to k in F and for

all v on this path, v € Lrow(k).

Corollary 3.4 [54] The set Lrow(k) U {k} induces a subtree of F rooted at k.

The corollary tells us that the row structure of L is given by certain subtrees
of the elimination forest F'. Following Liu [39], we let T((k) denote the subtree of
F induced by Lrow(k) U {k}. Figure 3.4 depicts these subtrees for the matrix L

in Figure 3.1, and the next theorem tells us how to find them using the matrix A.

Theorem 3.5 [39] If j € Lrow(k) then there exists d < j such that azq # 0 and

d is a descendant of 7 in F'.
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Proof:  The proof is an induction on the elements of Lrow(k). Let j be the
smallest element of Lrow(k). It follows immediately from the column Cholesky
algorithm that, since li; is the first nonzero in row j, it cannot be fill. Thus,
arj # 0 and the statement of the theorem holds with d = j. Now, let 7 be
an arbitrary element of Lrow(k) and assume the theorem holds for all smaller
elements. If a;; # 0 then there is nothing to prove. So, assume ar; = 0. Since
lkj # 0, a nonzero multiple of some column of L, say 1, is added to column j of
A causing a fill at position (k,j) (see Figure 3.3). Thus, [j; and /z; must both be
nonzero. Since l; # 0 and ¢ < j, the induction hypothesis tells us that there is
some d < 4 such that agq # 0 and d is a descendant of ¢ in F. In addition, since
l; # 0, it follows from Theorem 3.2 that 4 is a descendant of j in F. We conclude
that d is a descendant of j in F' and, hence, the theorem holds for j. T

We can think of T'(k) as consisting of the root k along with two other types of
nodes, those corresponding to original nonzeros in row k and those corresponding
to fill in row k. The theorem tells us that a node representing fill has as a descen-
dant a node representing an original nonzero. Thus, the set of nodes representing
original nonzeros of row k contains all of the leaves of T'(k) (Figure 3.4). This
allows use to easily compute the structure of the k** row of L, given F' and the
structure of the k** row of A.

We now turn our attention to computing F on a single processor system. Note
that F' was defined in terms of the matrix L. It would be useful if we could

compute F' directly from A without explicitly forming L. We could then use F

and A to determine the structure of L. As shown in Figure 3.5, the SeqElimForest
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for j:=1tondo
parent(j] := 0;

for each a;; # 0 where : < 5 do

{Find the root of the tree containing 1.}
Ti=1;
while parent|r| # 0 do

T := parent[r];

od

{Make j the root of this tree.}
if r # j then
parent[r] := j;
do
do

Figure 3.5: The SeqFElimForest algorithm.

algorithm [39] computes F' directly from A = (a;), generating a vector parent that
represents F'.

The algorithm scans A by rows. For each nonzero a;; in the lower triangle of 4,
it makes j the root of the subtree containing ¢ by adding at most one edge to F'.
Note that the algorithm requires only the nonzero structure of the lower triangle
of A. We can represent such a structure as a set of ordered pairs of integers. If
A represents the nonzero structure of the lower triangle of A, then (j,7) € 4 if
and only if ¢ < j and a;; # 0. On occasion, we will execute SeqElimForest using
a set of ordered pairs in place of a matrix. We show that SeqElimForest correctly
computes the elimination forest in Section 3.3.

Depending on the structure of F, the loop for finding the root of a subtree

can be the most time consuming part of SeqElimForest. Liu [39] has suggested
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speeding up this search by using path compression and weighted union [1]. The
basic idea is to maintain two forests, the first being the desired elimination forest
and the second a compressed version of the first that is used for finding roots
of subtrees quickly. Using this idea, we can compute F in O(ma(m,n)) time,
where m is the number of nonzeros in A4 below the diagonal, n is the number
of rows in A, 1 < n < m, and a(m,n) is related to the inverse of Ackerman’s
function. The function a grows extremely slowly. In fact, for any values of m and
n that one would encounter in practice, a(m,n) < 4. We assume SeqElimForest

is implemented in this manner.

3.2 A Parallel Elimination Forest Algorithm

We saw in Chapter 1 that, in order to develop an efficient sparse column
Cholesky factorization routine for a multiprocessor, each processor must know the
size of Lrow(k) for each column k of A assigned to it. From Section 3.1, we know
that we can easily obtain this information from the elimination forest F' and the
nonzero structure of 4. Here we develop an algorithm for computing F on a
multiprocessor where each processor possesses only part of the lower triangle of A.
For this algorithm, A need not be partitioned by columns.

The algorithm for computing F has two main parts.

1. Each processor ¢; computes an elimination forest F; based solely on the

nonzeros of A assigned to it, using SeqElimForest.

2. The processors merge the F; to obtain the correct elimination forest F for A.
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We will examine both of these steps in detail.

The SeqElimForest algorithm computes an elimination forest F for 4 by scan-
ning the rows of A. Each processor ¢; computes an elimination forest F; by
executing SeqElimForest on the nonzeros of 4 it has been assigned. Because ¢;
only knows some of 4, F; is not, typically, the correct elimination forest, F, for the
entire matrix. However, F; is related to F. Recall that a path in an elimination
forest corresponds to a dependency between two columns of L. If ¢; discovers such
a dependency given its incomplete knowledge of 4, that dependency will still hold
if one considers all of A. Thus, F; can be thought of as a subset of F'

The next step is to merge the various F; to obtain F. The merging is carried out
pairwise and in parallel. For example, suppose we have four processors ¢1, ..., @4
containing the elimination forests F1,..., Fy, respectively. Processor ¢; sends F}
to ¢2 and ¢2 then merges F} and F5 to obtain a new elimination forest Fia. At
the same time, ¢3 sends F3 to ¢4 and ¢4 then merges F3 and Fy to obtain a new
elimination forest F3 4. After ¢; is finished, it sends F} 3 to ¢4 and ¢4 merges F} ;
and F3 4 to obtain the correct elimination forest, F, for the entire matrix 4. At
the end of this merging process, one processor contains F and broadcasts it to the
remaining processors. Since sending a forest means sending an n-vector, exactly
2p — 2 messages, each consisting of n integers, are sent during the creation of F
and its broadcast.

We now describe the process of merging two elimination forests. Suppose we
want to merge F; = (V,E;) and F; = (V,E;). Both forests represent sets of

column dependencies. To create a new forest that represents both sets, we run
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Figure 3.7: The matrix representation of F; and Fj.

SeqElimForest on U, where (j,1) € U if and only if (i,5) € E; U E3. Whenever the
algorithm examines an edge (j,7) € U, it makes j the root of the tree containing
@ in the forest it is constructing.

Let us consider the example in Figure 3.1, and assume processor ¢; has been
given rows 2, 5, and 6, and processor ¢ has been given rows 1, 3, and 4. Pro-
cessors ¢; and ¢2 compute elimination forests F; = (V,E;) and F;, = (V, E;)
(Figure 3.6). Processor ¢; then sends Fy to ¢2, and ¢2 merges F; and F; by
running SegElimForest on U. Since we can view the edges in U as the nonzero
positions of a matrix, this is equivalent to running SeqElimForest on the matrix
in Figure 3.7. The result is the elimination forest for the entire matrix, as shown
in Figure 3.1.

Figure 3.8 contains the Union algorithm for constructing U from Fj and Fj in



fori:=1ton do
nz(i| := nil;

od

fori:=1ton do

if parentl[:] # 0 then

append ¢ to nzrow|[parent1[i]];
if parent2[z] # 0 then

append ¢ to nzrow|parent2[i]];

od

Figure 3.8: The Union algorithm.

O(n) time. It scans parent! and parent?, the vector representations of Fy and Fj,
and creates an n-vector of pointers nzrow. The pointer nzrow(j] points to a linked
list of nondecreasing integers, where ¢ is an element of the list if and only if
(7,0) € U.

We first analyze the parallel running time needed to compute F, ignoring the

time required to pass messages. Processor ¢; computes F; in
O(gia(gi,n) + n)

time, where g; is the total number of nonzeros of A4 assigned to ¢;. Once the pro-
cessors have computed all the Fj, they can begin merging them. Since a processor
can merge two F; in O(na(n,n)) time, and the F; are merged pairwise and in

parallel, we can construct F in
O(qa(g,n) + na(n,n)log p)

time, where ¢ equals the largest g;.



Message-passing to compute and broadcast F consists of 2log p rounds of n-
word messages. On a hypercube architecture, the messages are all between adja-

cent processors, so message-passing time is O(n log p).

3.3 A Proof of Correctness

In this section, we prove that our algorithm for computing the elimination forest
on a multiprocessor is correct. We assume that the nonzeros of 4 = (a;;) have
been partitioned into p sets, Ny, ..., Np_1, and assigned to processors ¢y, . . ., ®p-1,
respectively. The N need not correspond to columns of A. Recall that the
algorithm for generating the elimination forest consists of two parts. First, each ¢;
produces a forest F by running SegElimForest on Ni. Then, the processors merge
the F} into a single forest F, again using SeqElimForest. Our object is to show that
F is indeed the correct elimination forest for A as defined in Section 3.1. Toward
this end, we will require some additional notation. Let G = (V,E) be the graph
of A and G* = (V, E*) be the corresponding filled graph, where V = {1,...,n}
for notational simplicity. Let F'4 be the correct elimination forest for 4. We will

show that F = F4,
Lemma 3.8 Every forest created by SeqFElimForest is heap ordered.

Proof: Suppose we construct a forest H by running SeqElimForest on a set B
of ordered pairs. At stage j of the algorithm, we consider those (j,1) € B, where

¢ < j. At the beginning of this stage, j is an isolated vertex in H. During it, we



58

make j the root of various trees in H consisting of nodes numbered less than j.
Thus, each step of the algorithm maintains heap order. O

As we saw in Section 3.2, each F; can be viewed as a set of dependencies
between the columns of L. We would like each F) to be a subset of F. That is,
we don’t want any information contained in the F} to be lost during the merging

process. The next lemma tells us that this does not happen.

Lemma 3.7 For all k, if ¢ is a descendant of j in F} then i is a descendant of 5

in F.

Proof: Let F ; be the result of merging Fy = (V, E1) and F; = (V, E;). We will
show that all the descendant relationships in Fj and F; are also in Fi 3. Suppose
i is a descendant of j in Fy. Let T : i = ko,...,k; = j be the path from i to j
in F1. The proof will be by induction on [, the length of T. If [ = 1 then (1, j)
is an edge of F}, and hence, (j,t) € U. When (7,7) is examined during the merge
of F1 and F3, ¢ is made a descendant of j in the partially constructed F1,2. Since
edges are never removed during the/construction of F13, 1 is a descendant of j
in F1,2. Now assume [ > 1. By the induction hypothesis, i is a descendant of k;_,
and kj_; is a descendant of k; in F} 3. Thus, ¢ is a descendant of 7 in F} ;. Since
F} can replace F1 in this argument, we conclude that merging Fy and F, preserves
the dependencies found in both forests. Since F is built up by a series of such
merges, the lemma holds. O

Now that we have seen that F' embodies the information in each of the F}, we

will show that F' and G* are closely related. The following two lemmas and two
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corollaries prove that an edge in G* corresponds to a descendant relationship in

F and an edge in F' corresponds to an edge in G*.
Lemma 3.8 If (4,5) € E*, where i < j, then i is a descendant of j in F.

Proof:  Since (7,5) € E*, Lemma 1.1 tells us that there exists a path in G
from i to j through lower numbered vertices. Let T : i = ko,ki,...,k; = 7 be
the shortest such path. The proof is by induction on [, the length of 7. If [ = 1
then (i,j) € E. Therefore element aj; of A is nonzero and is assigned to some
processor ¢,. During the construction of F}, ¢, examined aj; and made j the root
of the tree containing i. Thus, ¢ is a descendant of j in F,. From Lemma 3.7, i is
a descendant of 7 in F.

Now, suppose [ > 1. Let k, be the largest vertex on T less than i. Since
v = ko,k1,...,kr is a path in G from 7 to k, through lower numbered vertices,
(kr,t) € E*. Furthermore, this path is of length less than [, so k, is a descendant
of i in F' by the induction hypothesis. A similar argument shows that k, is also a
descendant of 7 in F. Since 7 and j have a common descendant and F is a forest,
either ¢ is a descendant of j or j is a descendant of i. But i < j, so Lemma 3.6

allows us to conclude that ¢ is a descendant of j in F. O

Lemma 3.9 Let Z be a set of directed edges, where (1,j) € Z implies (i,5) € E*
and j > ¢. If SeqElimForest is run on Z then for every edge (1,5) in the resulting
forest, edge (z,5) is in E*.

Proof: Suppose some processor ¢ constructs forest H by running SeqElimForest

on Z. The proof is by induction on the construction of H. Suppose that at some
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step of the construction ¢ examines (j,7) € Z. At this point, ¢ makes j the root
of the tree containing : in the partially constructed forest. This is accomplished
as follows. Let @ = 19,71,...,2: be the path from 7 to the root 7; of its subtree. If
1t # J then (14,7) is added to the forest. Otherwise, no edge is added.

Assume 13; # j. We must show that (¢¢,j) € E*. That is, we must show that
the undirected form of the edge added at this stage of the construction is in the
filled graph G*. If t = 0 then we have added the edge (¢,;) to the forest. Since
(7,1) € Z, we have (i,5) € E* by definition of Z.

Now, assume ¢t > 0. Since heap order is maintained at all times during
the construction, we know that 79 < ¢; < --- < . Furthermore, the edges
(0y%1), (21,%2), ..., (t—1,2¢) were all added to the forest earlier in the construction
and so, by the induction hypothesis, the undirected forms of all these edges are
in E*. Thus, there exist paths in G from ¢} to 74, through lower numbered ver-
tices for £ = 0,1,...,¢ — 1. Patching all of these paths together, we get a path in
G from 19 = ¢ to 3; through vertices numbered less than #;. Since (z,5) € E* and
1 <13 < j, there is a path in G from j to ¢; through lower numbered vertices. We

conclude that (i¢,7) € E*. O
Corollary 3.10 For all &, if (z,7) is an edge of F} then (i,7) € E*.

Proof:  Processor ¢ constructs Fj by running SeqElimForest on Nj. Since

Ny C E C E*, the corollary holds. O

Corollary 3.11 If (i,7) is an edge of F then (i,5) € E*.



61

Proof: Consider merging F) and F, on ¢3, and let F1 2 be the resulting forest.
Processor ¢; merges F) and F; by running SeqElimForest on the edges in F
and Fy. The undirected forms of all of these edges are in E*, and hence, the same
is true of the edges in F}3. Since F is built up by a series of such merges, the
corollary is true. O

Our last lemma gives us a condition for deciding if two arbitrary forests are

equal. We will use it and the relationship between F and G* to prove F = F4.

Lemma 3.12 Let H; = (V, E;) and H; = (V, E;) be two directed forests on the
same set of vertices. If for all (z,j) € F1, 1 is a descendant of j in Hy, and for all

(2,7) € Eq, 1 is a descendant of j in Hy, then H; = H,.

Proof: Under the assumptions of the lemma, an easy induction argument shows
that 7 is a descendant of j in H; if and only if 4 is a descendant of j in H,. Now
assume (1, ) € E1. By hypothesis, i is a descendant of j in H;. Suppose (1,7) & Ey
and let k be some vertex on the path from i to j in Hj, excluding the end points.
Since 7 is a descendant of k in H;, we know that ¢ is a descendant of & in H,.
Likewise, we know that k is a descendant of j in H;. Thus, there is a path in
Hy from 1 to j through k. Noting that k # 4,5 and (i,5) € E;, we conclude that
there are two distinct paths from i to j in H;. But this is impossible since Hj is a
forest. This contradiction proves that if (i,5) € E; then (i,5) € E;. Since E; and
E; can be interchanged in the above argument, we have shown that E; = E,. O
Finally, we come to the main result of this section. Using the above lemmas,

we show that our parallel elimination forest algorithm is correct.
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Theorem 3.13 F = F4.

Proof: If (i,5) is an edge of F4 then (3,) is also an edge of G* by the way F4
is defined. Thus, from Lemma 3.8, i is a descendant of j in F.

If (4,7) is an edge of F' then Corollary 3.11 tells us that (1,j) is in G*. Theo-
rem 3.2 implies that ¢ is a descendant of j in F4. Since each edge in one forest
represents a descendant relationship in the other, Lemma 3.12 proves the theorem.

a
Corollary 3.14 SeqElimForest for computing F'4 on a single processor is correct.

Proof:  For a single processor system, no forest merges are required. The lone

processor simply runs SeqElimForest using all the nonzeros of 4. O

3.4 Numerical Results

We implemented the parallel elimination forest algorithm of Section 3.2, as-
suming that the nonzero structure of 4 is partitioned among the processors by
rows. Note that since A is symmetric, the nonzero structures of row k& and column
k are the same. We obtained an implementation of Liu’s sequential elimination
forest from George, Heath, Liu, and Ng [19]. The implementation of Liu’s al-
gorithm uses path compression but not weighted union. After ordering our test
matrices and assigning their columns to processors using the narrow ordering al-
gorithm of Chapter 2, we compared the parallel and sequential elimination forest
algorithms. The sequential elimination forest algorithm runs on the host; the

parallel algorithm runs on the nodes of the hypercube.
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Table 3.1: Elimination forest times (seconds).

Problem Elimination Forest
Sequential Parallel
1 0.281 0.560
2 0.281 0.720
3 0.500 1.035
4 0.621 1.230
5 0.602 1.290
6 0.719 1.410
7 0.719 1.390
8 0.879 1.790
9 0.922 2.120
10 1.121 2.535

Table 3.1 provides running times for the computation of the elimination forests.
Although the parallel elimination forest algorithm takes about twice as long as
the sequential algorithm for all of our test problems, the running times of both
algorithms are small when compared to the other phases of the computation. For
problems at least twice as large or dense, we expect the parallel algorithm to take
less time than the sequential one. The main advantage of the parallel elimination

forest algorithm is that it can solve problems that are too large to reside on a

single processor.

3.5 Discussion

The parallel elimination forest algorithm carries out its computation without

moving the columns of A off their assigned processors and without requiring ex-
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cessive message passing. This allows us to solve problems that are too large to
reside on a single processor. For problems small enough to reside on the single host
processor, the sequential algorithm is faster than the parallel one. This is mainly
because the pairwise merge uses fewer processors as it proceeds, so utilization is
low. It is not clear how to overcome this. Gilbert and Hafsteinsson [24] give a
shared-memory symbolic factorization algorithm with good processor utilization
throughout, but a message-passing implementation of that algorithm would waste

huge amounts of time passing small messages.



Chapter 4

Symbolic Factorization

After we have computed the elimination forest F and distributed it to all of the
processors, we can begin the computation of L. First, we must allocate storage
for the columns of L. That is, if a processor contains column i of A, it must
allocate storage for column ¢ of L. As noted earlier, F' contains the row structure
of L; however, F' cannot readily be used to compute the column structure of L.
Thus, although every processor contains a copy of F, the processors must perform
a symbolic factorization of A to determine the column structure of L. In this
chapter, we discuss two different symbolic factorization algorithms. Gilbert and

Zmijewski [58] first reported on the ideas in this chapter.

4.1 Column Symbolic Factorization

To determine the column structure of L, we could simulate the numeric fac-

torization on the nonzero structure of A. However, as noted by George, Heath,
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processor §;

{Col k is the data structure for column & of L.
Nzcol k is the data structure for the nonzero structure of column & of L.}

{Compute the nonzero structure of column k& of L.}
initialize nzcol k to contain the nonzero positions in column k of A;

for : := 1 to nchild[k] do
recv nzcol 7; {7 defined by sender}
merge nzcol j into nzcol k;

od

{Nzcol k now contains the nonzero structure of column k of L and must
be sent to the appropriate processor.}

send (nzcol k — {k}) to processor Oparent);

{Allocate storage for column k.}

set up the data structure for col k using nzcol k;

Figure 4.1: The ColSymFact algorithm.

Liu, and Ng [19], a faster algorithm employs the following observation. If (i, k) is
an edge in F then a nonzero multiple of the #*» column of L is needed in the com-
putation of column k. Thus, if we ignore the i** element of column i, the sparsity
pattern of column 4 is contained in the sparsity pattern of column k. In general,
if we disregard elements of column i in rows less than k, the sparsity pattern of
column k contains the sparsity pattern of column ¢ whenever 7 is a descendant
of k in F. The columns of L used to compute column k are those in Lrow(k)
and, as we saw in Section 3.1, they form a tree in F. It follows that the nonzero
structure of column k of L can be found by merging the nonzero structures of each
column of L that is a child of k in F and the nonzero structure of the k** column

of A. For a single processor system, this observation leads to a way to carry out
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the symbolic factorization in time proportional to the number of nonzeros in L.
Since numeric factorization requires time proportional to that needed to multiply
L and L7, this approach can save considerable time. It is used in Sparspak [22].
In order to implement a parallel column-oriented symbolic factorization algo-
rithm, each processor must determine the number of children node k of F has, for
each of its columns k. This is accomplished in O(n) time by scanning the vector
representation of F. We assume that the results are saved in a vector nchild,
where nchild[i] is the number of children of node 7 in F, and that F is stored as a
vector parent. Figure 4.1 contains the code for the column-oriented symbolic fac-
torization algorithm ColSymFact. For ease of presentation, we again assume one
column per processor. Ignoring the time required to pass messages, this approach
requires at most O(|L|) time. In the worst case, ColSymFact sends O(n) messages
containing a total of O(|L|) integers. For a narrow nested dissection ordering,
the O(n) messages contain a total of O(z,) integers, where z, is the number of
nonzeros in the rows of L corresponding to interprocessor separators. For a wide
nested dissection ordering, ColSymFact sends only O(n,) messages containing a
total of O(z.) integers, where n, is the number of columns of L belonging to the
interprocessor separators and z is the total number of nonzeros in these columns.
Depending on the assignment of columns to processors, the height of the trees in
the elimination forest, and the communication speed, the processors could spend a
lot of time waiting for messages, and hence, ColSymFact could have low processor
utilization. In general, ColSymFact will perform better if the elimination forest

contains trees that are short and wide, rather than long and narrow.
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4.2 Row Symbolic Factorization

A different approach to symbolic factorization is to use F to compute the row
structure of L and then transpose the result. We will call this the RowSymFact al-
gorithm. Note that since A4 is symmetric, typical Cholesky factorization routines
for single processor systems (e.g., Sparspak [22]) would save only the nonzero
structure of the lower triangle of A along with the corresponding numeric values.
However, for this approach, we assume that for each column of A4, its assigned
processor saves the sparsity pattern of the entire column. This allows us to de-
termine Lrow(k) from F. To compute Lrow(k), we need the sparsity pattern of
row k of A (Theorem 3.5). More precisely, we need to know where the nonzeros
occur in columns 1 through k£ —1 of row k of 4. Since A is symmetric, the sparsity
pattern of the k** column of 4 is also the sparsity pattern of the k** row. Thus,
the processor assigned column k will be able to compute Lrow(k) from F. Since
L will, in general, be much more dense than A, the additional storage required
should not be significant. After the Lrow(k) are computed, this overhead storage
can be reclaimed and used for the nonzeros of L. Saving sparsity patterns of en-
tire columns also simplifies the implementation of the parallel elimination forest
algorithm, since we can scan rows by scanning columns.

In our implementation of RowSymPFact, we assume that the matrix has been or-
dered using ParallelKL. Recall that this algorithm finds interprocessor separators
that partition the columns in groups that reside on single processors. These sep-

arators are then ordered last. In RowSymFact, each processor computes Lrow(k)
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for k:=1tondo
visited[k] := 0;
Lrow|k] := empty list;
Lecolumn[k] := empty list;
od

for each column k in an interprocessor separator on this processor do

{Compute Lrow(k).}
for each a;; # 0 where : < k do
{Examine the path from i to k in F.}
t:=u;
while ¢t # k and visited[t] # k do
append t to Lrow[k];
visited[t] := k;
t := parent|[t];
od
od
od

for each column k in an interprocessor separator on this processor do
{Transpose Lrow(k).}
for each i in Lrow[k] do

append k to Lcolumnz];
od
od

send the partial column structures to the appropriate processors;
compute the remaining row structures and transpose them;
receive the partial column structures and allocate storage for L;

Figure 4.2: The RowSymFact algorithm.
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in decreasing order of k for each of its assigned columns k. Once a processor
has computed Lrow(k) for each of its columns k belonging to an interprocessor
separator, it transposes these row structures and sends out the resulting (partial)
column structures to the appropriate processors. Each processor then computes
and transposes Lrow(k) for its remaining columns k. Each of these additional
column structures resides on the processor assigned that column. Finally, the pro-
cessors receive the column structures they have been sent and allocate storage for
the columns of L. Figure 4.2 contains the RowSymFact algorithm. Ignoring the
time required to pass messages, RowSym~Fact requires at most O(|L|) time. The
algorithm sends O(p?) messages containing at most O(|L!) integers, and unlike
ColSymFact, always generates the same number of messages. As with ColSym-
Fact, RowSymFact sends messages containing a total of O(z,) integers for narrow
orderings and O(z.) integers for wide orderings. Provided each processor has
enough columns not belonging to any interprocessor separator, no processor will

have to wait for messages and RowSymFact will have good utilization.

4.3 Numerical Results

We have implemented RowSymFact and obtained an implementation of Col-
SymPFact from George, Heath, Liu, and Ng [19]. We ran both algorithms on our
test problems and have provided the results in Table 4.1. For these problems,
RowSymFact was significantly slower than ColSymFact. Relative to the number

of processors, the test problems are all small and, as a result, a large percentage
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Table 4.1: Symbolic factorization times (seconds).

Problem Symbolic Factorization
Column Row
1 0.48 1.17
2 0.27 0.80
3 0.57 1.66
4 0.68 1.97
3 1.00 1.92
6 1.64 4.32
7 0.65 2.29
8 2.05 4.71
9 1.31 3.95
10 1.63 5.06

of the columns belong to interprocessor separators. In addition, these columns are
typically denser than those not belonging to an interprocessor separator. During
the RowSymFact algorithm, the processors do not have enough work left once they
have processed the columns belonging to the interprocessor separators. Hence,
they become idle before their needed partial column structures arrive. Since Col-
SymFact communicates in a more uniform fashion than RowSymFact, it does not
encounter this problem. For problems at least twice as large or on machines with
faster communication, we expect RowSymFact to be competitive with ColSym-
Fact.

Recall from Chapter 1 that we need to know the sizes of the Lrow(k) to carry
out the numeric factorization. We compute these sizes using code very similar to
that in RowSymPFact for computing Lrow(k). We perform this computation prior

to the symbolic factorization, and since we have saved the entire sparsity pattern
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of each column, no message passing is required. In code from George, Heath, Liu,
and Ng, the processors carry out this computation after the symbolic factorization.
Each processor scans its columns of L, determining the total number of nonzeros
in each row, and then broadcasts this information to the other processors. For our
test problems, both algorithms required a relatively insignificant amount of time.
With a narrow nested dissection ordering, running times for our approach ranged
from 0.06 to 0.28 seconds, and running times for the George, Heath, Liu, and Ng

approach ranged from 0.22 to 1.16 seconds.



Chapter 5

Triangular System Solving

After computing the Cholesky factor L of A, we can find the solution to the
system of linear equations Az = b by solving the triangular systems Ly = b and
LTz = y. On a single processor machine, solving triangular systems is trivial.
However, as we shall see in this chapter, developing a good triangular solver for a
message-passing multiprocessor requires some care. Even given a fixed assignment
of columns to processors, we have a lot of flexibility in choosing the frequency and
volume of message traffic during the solve. Since the solve requires relatively little
computation (O(|L|) flops), we must be careful to ensure that the processors spend
most of their time doing useful work, rather than passing or waiting for messages.
As with all our algorithms, we want the computation to mask the communication.
A number of different algorithms for solving dense triangular systems have been
proposed [4,30,35,36,49]. If we order a sparse matrix using a nested dissection

algorithm, e.g., the parallel ordering algorithm in Chapter 2, then the separators
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will correspond to dense blocks in L. For these blocks, we can use dense triangular
solve techniques. Li and Coleman [35,36] have devised one of the most promising
dense triangular solve algorithms. In this chapter, we review their algorithm and

then show how to incorporate it in a sparse triangular solver.

5.1 Dense Triangular System Solving

In this section, we will concentrate on solving Ly = b on a message-passing
multiprocessor, where L is dense. We assume that the multiprocessor contains an
embedded ring and the columns of L are wrapped around this ring. We also assume
that each processor maintains a list mycols of its assigned columns in increasing
order. At the start of the triangular solve, processor 8; contains the values of the
right-hand side b; all other processors initialize b to be a vector of zeros. Figure 5.1
contains a sequential algorithm SegSolve for computing the solution to Ly = b by
columns. The algorithm overwrites b with y and requires O(n?) time. After 6,
computes y; and uses it to update b, it sends b to 6, ;. Thus, only one processor
is active at any time. The entire solution vector ends up on 6,.

To introduce some parallelism into the SegSolve algorithm, we can have the
processors issue sends before they complete updating b. Since the columns of L are
wrapped onto the processors, after computing y, processor ) is next responsible
for computing yi,p. Thus, after computing yx, processor 6; need only modify
bk+1,---,bk+p—1 before issuing the send. It can modify the remaining components

of b after the send. Li and Coleman [36] used this idea to develop a parallel



for each 5 € mycols do

if 7 > 1 then
recv b;

fi

bj := bj/ljj;

fori:=j7+1tondo
bi :=b; — bj * lij;

od

send b to processor 0, ;

od

Figure 5.1: The SegSolve algorithm.

for each j € mycols do

if 7 > 1 then
recv i,...,Tp_1;
for::=1top—1do
bjric1 :=bji—1 + 45
od
fi

bj := bj/ljj;

m :=min(j + p — 1,n);

fori:=j+1tomdo
bi := b; — bj * l;;

od

send bj.1,...,bm to processor 8;.1;

fori:=m+1 tondo
b; := b; — bj * l;j;
od
od

Figure 5.2: The ParallelSolve algorithm.
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version of the SegSolve algorithm. Figure 5.2 contains their algorithm, which
we call ParallelSolve. The algorithm uses a vector z of length p — 1 to receive
contributions to 5. When ParallelSolve terminates, component y; of the solution
will reside on processor ;. In practice, ParallelSolve works well when n > p.
For a 16 processor Intel hypercube and n = 1000, Li and Coleman report that
SeqSolve requires 1122.6 seconds, but ParallelSolve needs only 41.7 seconds.

Li and Coleman analyzed the running time of ParallelSolve in terms of flops,
assuming that the columns of L are wrapped around an embedded ring of proces-
sors. To account for message passing times, they defined ¢ to be the maximum
number of flops that can be executed during the time required to send p or less
double precision words between two adjacent processors. If n > p(t + p) then the

running time of the algorithm is proportional to

1 n2 2 2
2 ;+n+p(t+p) —pt—p° +pp —t.

Asymptotically, this is the best possible, namely, O(n?/p). Except at the very
beginning and end of the computation, the processors spend no time waiting for
messages.

For n < p(t + p), ParallelSolve is communication rather than computation
bound, with the processors idly waiting for each message they receive. The al-
gorithm requires O(p(t + p)) time and is essentially sequential when n is only
moderately larger than p. Li and Coleman [35] devised an improvement to their
algorithm for this case. They partitioned the p — 1 length vector that they pass

around the ring into ¢ roughly equal sized segments, where 1 < ¢ < p. After a



7

processor updates one of these g segments, it sends the segment directly to the
processor that needs it. One of the ¢ segments travels around the ring as before,
while the rest travel across the ring. Thus, each processor receives q updates to b
before computing another component of the solution vector. For n < p(t+ p), this
algorithm is faster than the original one. Once 6; computes yy, it updates at most
'p/q] components of b before issuing a send to 6, allowing 6, to compute
Yk41 Sooner.

To simplify the analysis of the improved algorithm, Li and Coleman assumed
that ¢ divides p and that a cross-ring message of size p = p/q takes time at most
tlog p flops. Here, t is the maximum number of flops that can be executed during
the time required to send P or less double precision words between two adjacent
processors. Li and Coleman also assumed that the processors forward messages
immediately at zero cost. Under these assumptions, the running time of this new

algorithm is proportional to
_ 1__
(t+p)n - 5p(P-1) - ¢,

when n < p(t + p). Since p(t + p) can be rather large, this improvement to
the algorithm is significant. Li and Coleman have estimated ¢ at 40 for an Intel
hypercube. Thus, for a 16 processor Intel hypercube, p(t + p) is 896 and, for 64
processors, it is 6656.

The choice of ¢ is important. For p = 128 and n = 1000, Li and Coleman
report solving times that vary between 9.6 seconds and 46.3 seconds as q ranges

over the powers of 2 from 1 to 128. For this particular problem, the plot of ¢



versus running time resembles an upright parabola with smallest time at ¢ = 8.
In general, we want to select a value for q just large enough to ensure that the
processors do not idly wait for messages during the computation. Selecting a larger
value will only increase the message passing overhead, and thereby increase the
total running time. Under the same assumptions used to determine the running
time, Li and Coleman determined that the desired value of q is given by ¢*(n, p, t),

where ¢*(n,p,t) is

. Jp 2p p(p+1)
max ¢ 1,min<{ =, , )
2°(3-2t)+ /(3 —2t)? + 8(tlogp+1) m—p(t—1)
for n < p(t + p), and is 1, otherwise. Thus, for n > p(t + p), we have the original

ParallelSolve algorithm. For fixed p and ¢, ¢*(n,p,t) is constant for all n outside
of a certain range. In particular, if p = 16 and ¢t = 40, then ¢*(n,p,t) = 4 for all
n < 691 and ¢*(n,p,t) =1 for all n > 876. Experimently, Li and Coleman found
that ¢*(n, p,t) overestimates the best choice for q by roughly a factor of 2. This is
not surprising, since the processors require time to forward messages and do not
necessarily do so immediately. All of this suggests that, rather than recompute
q*(n,p,t) for each n, it may be reasonable in practice to set g equal to q*(n,p,t)/2
for all n < p(t + p), and equal to 1, otherwise.

To solve for LTz = y, Li and Coleman suggested an algorithm very similar to
ParallelSolve. Here, we must solve a triangular system by rows. Instead of passing
around a p — 1 length vector of updates to y, we pass around p — 1 components of
the solution vector, z. When a processor ¢ receives such a message, it immediately

computes the next component of z and sends it and the p — 2 earlier components
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to the next processor. Processor ¢ then updates the right hand side y by scanning
its rows and subtracting off multiples of the p most recently computed components
of z. As with ParallelSolve, we can break the p—1 length messages into q segments

when n is small relative to p.

5.2 Sparse Triangular System Solving

We can use dense triangular solve techniques in solving sparse triangular sys-
tems. In the rest of this chapter, we assume that A4 is sparse and has been ordered
by the nested dissection algorithm in Chapter 2. We further assume that if a pro-
cessor is assigned column k of A it also has by, the kt? component of b. Otherwise,
it initializes b; to zero. If L is the Cholesky factor of 4, we can solve Ly = b as
follows. First, each processor computes y; for each of its assigned columns k that
are not part of any interprocessor separator. These components of y can be com-
puted without any communication. After each component is computed, it is used
to update b. Next, the processors compute the remaining components of y using
a variant of the dense algorithms described in the last section. These components
correspond to the interprocessor separators, and each such separator is a dense
block in L.

To use the improved version of the ParallelSolve algorithm for sparse matri-
ces, we have made the following two modifications. First, note that the blocks
of L corresponding to the interprocessor separators need not consist entirely of

nonzeros. Since the computation of y; depends only on those y; where ¢ < k and
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ki # 0, the ParallelSolve algorithm could generate unneeded messages. We can
avoid this as follows. After updating a segment of b, a processor sends the segment
to processor #;, where j is the first nonzero in the segment. If no such j exists,
no message is sent. Analogous to numeric factorization, a processor must know
when it has received enough messages to compute the next component of y. To
compute yi, the processors must modify b; exactly |Lrow(k)| times. Since any
processor can modify by, the messages we send contain both components of b and
the number of times each has been modified. Each processsor computed the sizes
of the appropriate Lrow(k) for the numeric factorization phase, and so, each can
determine how long to wait before computing the next component of y.

Our second modification to the improved ParallelSolve allows for a general
mapping of columns to processors. This is required for wide separators, since
the corresponding columns of L do not necessarily follow a strict wrap mapping.
As in the dense algorithm, for each column k of L, some processer ¢ updates b
using column k. However, rather than send a message after updating each of ¢
segments, processor ¢ stops sending messages regarding updates using column k
only after it reaches a component b;, where column j is assigned to ¢. Of course,
when we do not have a wrap mapping of columns, Li and Coleman’s analysis of
the running time of the triangular solve no longer applies. However, this approach
should still work well provided the mapping does not deviate too much from a
wrap mapping. The sparse forward solver we have outlined above will pass at
most O(qn,) messages, where n, is the total number of columns in interprocessor

separators. Each message contains at most [p/q| components of b along with their
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indices and the number of times they have been modified.

As noted in the last section, the value of ¢*(n,16,40) is 4, for all n < 691, and
this is about twice the optimal value of g. When we order our test problems using
the narrow method of Chapter 2, the largest interprocessor separator consists of
83 columns. Hence, in our implementation of the forward solve, we have fixed q
at 2. Note that according to Li and Coleman’s analysis, we should decrease q as p
decreases, i.e., as we solve for components correponding to higher level separators.
In practice, decreasing ¢ from 2 to 1, for the appropriate separators, produces no
significant change in running times.

Once we have completed the forward solve Ly = b, we must perform the
backward solve LTz = y. In order to implement a backward solver similar to,
our forward solver, we would have to know the column structure of LT for all
those columns in interprocessor separators. That is, we would have to know the
structure of row 1 of L for each column ¢ in an interprocessor separator. The
RowSymFact algorithm computes these structures, but then transposes them to
determine the column structure of L. We could save the row structures for use
during the backsolve, or we could recompute them as needed from the elimina-
tion forest. However, we elected to use neither the extra time or storage and
implemented a much simpler algorithm that performs well in pracfice.

In solving LTz = y, we must first compute those components of z correspond-
ing to interprocessor separators. We use a variant of the method suggested at the
end of Section 5.1 that communicates a p — 1 length vector consisting of compo-

nents of z. The only difference is that we allow for non-wrap mappings by having
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the processors send all the known values of z, rather than just the p — 1 most
recently computed components. Initially, all the processors use this algorithm to
compute those zj corresponding to the level-0 separator. After some processor
computes the last such component, it sends the known components of z to the
two processors assigned the last column of the two level-1 interprocessor separa-
tors. In parallel, these two processors then initiate the computation of those z;
corresponding to the two level-1 separators. Once the processors have computed
all the z; corresponding to interprocessor separators, they can compute its re-
maining values of z without any communication. This backward solver generates
at most O(n,) messages, each containing at most O(n,) components of = along

with their indices.

5.3 Numerical Results

We have implemented the sparse forward and backward solve algorithms of
Section 5.2 and obtained implementations of different solvers from George, Heath,
Liu, and Ng. We will refer to our algorithms as the Separator solvers, since they
depend on the use of interprocessor separators, and those of George, Heath, Liu,
and Ng as the General solvers, since they do not depend on the ordering. The
General forward solver is similar to the Separator forward solver in that it performs
its computation in a manner analogous to numeric factorization. Processor 6 is
responsible for computing yx and waits until b; has been modified |Lrow(k)| times

before doing so. Once 6 has computed yy, it multiplies each component of column
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k by yx and subtracts the result from the corresponding component of b. As each
component b; of b is updated, procesor 8; determines if this is the last update it
is going to make to b;. If so, it immediately sends bj, its index, and the number
of times it has modified b; to processor 8;. For dense matrices, this algorithm is
essentially the improved ParallelSolve algorithm with ¢ = p. The General forward
solver generates at most O(pn,) messages, each consisting of 2 integers and a
component of b. Depending on the value of q used in the Separator forward solver,
the General algorithm may send many more messages.

The General backward solver is quite straightforward. When a processor com-
putes zp, it broadcasts z; to all the other processors. After receiving z;, a proces-
sor scans its rows and updates its right hand side. Thus, the algorithm generates
O(n?) messages, each containing component of z and its index. Unlike the Sepa-
rator backward solver, the General algorithm does not exploit the assignment of
columns to processors or the ordering. As a result, the processors spend a lot of
time waiting for and broadcasting unneeded messages.

Table 5.1 lists the running times for all four triangular solve algorithms on our
test matrices ordered by the narrow method. The Separator and General forward
solvers require almost the same amount of time for all of the problems. However,
with large enough problems, the Separator algorithm should run faster than the
General algorithm. For the backward solve, the Separator approach is 4.1 to 11.4
times faster than the General approach. Comparing Tables 5.1 and 2.5, we see that
the General backward solver requires more time than the numeric factorization for

all but two of the test problems.
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Table 5.1: Triangular solve times (seconds).

Problem Forward Solve Backward Solve
Separator General Separator General
1 0.74 0.72 0.92 5.00
2 0.36 0.37 0.50 7.22
3 0.76 0.69 1.12 11.13
4 1.01 0.91 1.65 13.07
5 1.41 1.28 2.27 13.50
6 1.95 1.85 3.61 15.15
7 0.93 0.83 1.33 15.13
8 2.12 2.02 4.54 18.60
9 1.76 1.69 3.31 23.67
10 1.95 1.89 3.95 28.81

5.4 Discussion

In general, solving a triangular system requires much less work than numeri-
cally factoring a matrix. As a result, it is harder to design a parallel triangular sys-
tem solver that masks communication with computation. The General backward
solve algorithm requires O(n?) messages to perform only O(|L|) work, and hence,
message-passing overhead dominates its running time. Using this algorithm, the
backward system solving phase, which is trivial on sequential machines, can be
the most timing consuming part of the entire parallel computation. By exploiting
both the sparsity of the matrix and the assignment of its columns to processors,
we were able to develop a fast backward triangular system solver whose running
times are small compared to numeric factorization times.

The General forward solver sends O(pn,) messages, while the Separator for-
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ward solver sends O(gn,) messages, where n, is the total number of columns in
interprocessor separators. In general, for fixed p, as the problem size increases, n,
will increase and g will decrease. Hence, for larger problems, we expect the Sepa-
rator forward solver, with its lower message-passing overhead, to require less time
than the General forward solver. For problems that have very good separators, n,
may be insignificant compared to n, and in this case, the two forward solvers may
require roughly the same amount of time.

Recently, Heath and Romine [30] developed new dense column- and row-
oriented triangular system solving algorithms that they call wavefront algorithms.
These algorithms are more general versions of Li and Coleman’s algorithms that
do not require a wrap mapping of columns or rows to processors. In the column-
oriented wavefront algorithm, each column is divided into segments of length &k,
for some fixed 1 < k < n. After a processor updates the right hand side using
a column segment, it sends the corresponding portion of the right hand side to
the processor assigned the next column of L. Depending on the segment size,
this algorithm can generate many more messages than the improved ParallelSolve
algorithm. Heath and Romine’s experiments indicate that wavefront algorithms
perform best under a wrap mapping with large p and n moderately larger than p.
Like the ParallelSolve algorithm, these algorithms could be adapted for sparse
matrices. However, because of their higher message-passing overhead, they might
only prove superior for mappings that deviate significantly from a wrap mapping

or for limited ranges of p and n.



Chapter 6

Conclusion

Below we briefly discuss the main contributions of this thesis and provide
possible directions for future research.

Our emphasis was on developing parallel algorithms for the four phases of
sparse Cholesky factorization: ordering, symbolic factorization, numeric factor-
ization, and triangular system solving. We designed our algorithms for a class of
message-passing multiprocessors typified by hypercube machines. Since passing
a message on these machines is typically much slower than performing a floating
point operation, we developed parallel algorithms that require low communica-
tion overhead. Even with faster message passing, it would still be important to
reduce communication overhead. We want the processors to spend as much time
as possible doing useful work (i.e., flops), and to solve large problems, we want
the message buffers to consume as little memory as possible. We also designed

our algorithms so that the original matrix and its Cholesky factor always remain
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partitioned among the processors in a roughly even manner. This allows us to
solve problems that are too large to reside in the memory available to any single
processor.

We began by presenting a column-oriented sparse numeric factorization algo-
rithm. We then developed a parallel algorithm for ordering and partitioning that
orders the columns and assigns them to processors in a way that reduces fill and
communication overhead during numeric factorization. This algorithm is a simple
parallel version of the sequential Kernighan-Lin algorithm for finding small edge
separators. We used this parallel Kernighan-Lin algorithm to find small interpro-
cessor separators that evenly divide subgraphs of the original matrix onto subsets
of processors. The sizes and the graph theoretic properties of these separators
determine the amount of communication required during the remaining phases of
the computation. Designing a more parallel algorithm for finding separators is an
interesting open problem.

In our experiments, the Kernighan-Lin algorithm always converged quickly,
regardless of the initial partition, but the quality of this partition affected the
size of the resulting edge separator. To find smaller separators, we might want to
develop a parallel heuristic for finding good initial partitions, such as a technique
for finding highly connected subgraphs of a graph. To improve the final partition,
we might want to assign weights to vertices and partition the graph into pieces of
roughly equal total weight. If the weight of a vertex is proportional to the number
of edges incident on it, this change could allow for a more even distribution of the

columns belonging to the interprocessor separators and, hence, result in better
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load balancing.

In general, a parallel algorithm will perform better if it first decomposes the
problem it is solving into parts that have high locality and require low commu-
nication overhead. Thus, applying a parallel graph partitioning algorithm, such
as the parallel Kernighan-Lin algorithm, could be a useful first step for a wide
variety of parallel problems. For Cholesky factorization, as well as other matrix
problems, the problem of finding a good ordering along with a good assignment
of nonzeros to processors deserves further study.

After examining the ordering phase, we showed that a column-oriented numeric
factorization algorithm could be implemented more efficiently if each processor
knew the elimination forest for the matrix. We presented a parallel algorithm for
computing elimination forests and proved that it works correctly for any assign-
ment of nonzeros to processors. Although the running times of both the parallel
elimination forest algorithm and its sequential counterpart were small relative to
the other phases of the computation, designing a more parallel and faster elim-
ination forest algorithm for a message-passing multiprocessor is an interesting
problem.

We then described a row-oriented parallel symbolic factorization algorithm.
For large enough problems, this algorithm may generate fewer messages and have
better processor utilization than an alternative column-oriented approach. Finally,
we developed parallel forward and backward triangular solve algorithms that em-
ploy Li and Coleman’s techniques for solving dense triangular systems. The back-

ward solver is significantly faster than a more straightforward algorithm. In both
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the symbolic factorization and triangular system solving phases, the amount of
work required is in general significantly less than that needed for numeric fac-
torization. As a result, running times for these phases are very sensitive to how
we map the problem on the processors and carry out the communication. Our
algorithms for both phases depend on the existence of interprocessor separators.
Faster, more general algorithms for these phases can probably be developed.

We designed our algorithms under the assumption they would be used to factor
large matrices; however, all of our test problems are relatively small. On a Vax 780,
Sparspak can numerically factor the largest of these problems in less than 30
seconds and requires a total time of under 3 minutes to perform all four phases
of the computation on all ten test problems. Message-passing multiprocessors are
not needed to solve problems of this size. Thus, we plan on experimenting with
much bigger problems and much bigger hypercubes. To do so, we must revise some
of our code to overcome limitations of the Intel hypercube, e.g., limits on message
length, message buffer space, and total memory. These revisions are currently
underway.

Overall, it appears that sparse Cholesky factorization can be implemented
efficiently on a message-passing multiprocessor. As on sequential machines, the
numeric factorization phase is the most time consuming phase for large problems.
For our test problems ordered with the narrow method, the speed-up for this phase
increased from 2.9 to 7.2 as the problem size increased. Since we use interprocessor
separators to partition problems into independent parts, we expect the numeric

factorization speed-up to continue to increase with the problem size, given a fixed
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number of processors and sufficiently sparse problems. Provided the processors are
fast enough and contain enough memory, message-passing multiprocessors have the
potential to solve large problems much more quickly than conventional sequential
machines.

The current Ametek, Intel, and NCUBE hypercubes all have relatively slow
processors and communication [9]. For an Intel hypercube without the optional
vector boards, Moler [45] reported a single processor execution rate of 0.033 mil-
lion floating point operations per second (megaflops), and Dunigan [9] reported
that communicating an eight-byte message between adjacent processors is 26 times
slower than performing a floating-point operation. Thus, the largest Intel hyper-
cube, a 128 processor machine, has a maximum megaflop rate of 4.224. Unfortu-
nately message-passing overhead and imperfect load balancing can result in much
lower rates in practice. Using a full precision parallel version of LINPACK to
perform an LU factorization of a dense matrix with 1890 equations, Moler (45]
achieved 3.020 megaflops during the factorization phase and 0.079 megaflops dur-
ing the triangular system solving phase. For comparison, in solving a system
of linear equations of order 100 with full precision LINPACK (8!, Dongarra 7|
achieved 33 megaflops on a Cray X-MP, 2.5 megaflops on an IBM 370/195, and
0.13 megaflops on a Vax 11/780 with a floating point accelerator. Hence, even if
present day hypercubes could achieve their maximum megaflop rates, they might
not be worth the enormous effort required to rewrite existing sequential codes.
As a result, one should view these machines simply as tools for studying parallel

algorithms, rather than as high-speed state-of-the-art supercomputers. Hopefully,
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future hypercubes will have much faster processors and communication.

If hypercubes are to achieve widespread use, they must become easier to pro-
gram. For example, on the Intel hypercube, all messages are vectors of some type.
The user provides the vector and its length in bytes and opens a “communications
channel” for the operating system to use in transmitting the message. An obvious
improvement is to allow the user to send and receive arbitrary data structures
without packing and unpacking them into vectors and without computing their
sizes and opening channels.

Currently, hypercubes are programmed using conventional sequential program-
ming languages (e.g., Lisp, C, Fortran) that have been extended with message-
passing primitives. An important and difficult problem is to develop and imple-
ment new parallel programming languages to relieve the user of the burden of
explicitly providing message-passing and synchronization details. Providing such
details can easily be the most difficult aspect of programming these machines. For
example, a sequential implementation of sparse forward triangular solve consists
of 6 or 7 lines of code within two nested loops. In our parallel implementation,
we have over 150 additional lines of code that is not directly related to computing
flops. Most of this extra code involves sending and receiving data and interpreting
data that have been received.

In designing a parallel language for a messsage-passing multiprocessor, we
might allow the user to write programs that consist of blocks of sequential code.
With each block, we could associate a list of data dependencies. When a processor

assigned a particular block of code received all of the block’s dependent data, it
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could execute the code. Of course, a processor might need to execute the same
code for different data, so we would have to allow several data-dependency lists to
be associated with a single block of code. The operating system could automati-
cally handle the message passing. Whenever a processor signaled the completion
of some computation (e.g., by setting a Boolean flag associated with the results),
the operating system could automatically send the results to all the other proces-
sors that need them. As with computing elimination forests in parallel, the user
might still have to explicitly compute the data dependencies, but perhaps even
this computation could be automated in some cases.

In summary, message-passing multiprocessor programming currently resembles
assembly language programming. The primitive operations are available, but the
process of translating even simple ideas into working code is long and arduous.
If these machines are going to establish themselves in the scientific computing

community, the tools to program them at a higher level must be developed.
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