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ABSTRACT

Within a hydropower station, by optimizing the allocation of water among
heterogeneous hydropower generation units, the power output could increase using
same amount of water that had been used historically which maximums the

benefits.

The purpose of this project is to propose a method for optimizing powerhouse

function within one reservoir and give examples for 10 federal hydropower station.

Firstly, two unit generation function approximation methods were developed and
compared using Least Square Cubic Spline with Specified End Conditions and Least
Square Quadratic Spline. Second derivative at two ends were estimated using a
quadratic Lagrange polynomial fit to the three smallest points to generate an
approximate of the first derivative. To adjust the approximation method on different
reservoirs, different number of intervals was applied and a few data points were

deleted. In this way, the approximation function is smooth.

After getting the generation function of each unit type, the loading order of different
types was identified according to the efficiency at EAOP. Allocation of water among
heterogeneous hydropower generation units required both the powerhouse
function and its first derivative to be continuous. It also required the operation of
hydropower units to be most efficient. The economic dispatch algorithm was

implemented on two reservoirs. The results indicated that the powerhouse function



was smooth and the first derivative of it was non-increasing. It is convenience using

this optimization function to do further calculation.

The Fish Passage Plan (FPP) was described in the end of this thesis. FPP is
developed annually by the U.S. Army Corps of Engineers and it has special
requirement with allocation of water among different units. Modification of the

loading order was made according to FPP.

Turbine generation data used in the report were acquired from Bonneville Power

Administration.
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GLOSSARY OF BPA TERMS

STS: submersible traveling screen.

ESBS: extended submersible barrier screen.

NS: No Screens.

FPP: fish passage plan.

PH: powerhouse.

Dispatch: determines order in which units are started.

Loading: determines how much water to run through each turbine that is

running.
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CHAPTER 1 INTRODUCTION

Optimization covers a broad variety of topics when considering the performance of
hydroelectric plants [Cook, 2008]. Various types of river and plant models [Yeh,
1985; Wurbs, 1993] that deal with parameters having a system wide scope are
necessary for such optimization. Optimal operation of multi-reservoir systems is a
complicated optimization problem with high- dimensional, dynamic, nonlinear, and
computationally expensive characteristics. This problem [Labadie, 2004; Yeh et al.,

1992; Cai et al., 2001] can be formulated as:

Maximize Expectation Xt Y., U(Qy ¢, Hyt, Prt) (D)

Such that W(Q,H,P) = 0 (2)

Where the decision variables in the optimization in equation (1) are release Q,., and
power output P, . over all reservoirs and time periods. The heads H, ; are functions
of the decisions variables Q, ;. U( ) in equation (1) is the utility function (which can
be measured in terms of income or other metrics of hydropower output). This utility
function is summed over all time period (t=1 to T) and over all reservoirs (r=1 to R).
There are a number of constraints that are included in the equation (2) including
minimum and maximum flow rates (e.g., fish-flush, ancillary service operations,
etc.), the relationship between a release Q, from reservoir r and the future head atr
and its downstream reservoirs, etc. The P, is computed by deciding on the
allocation of the flow (g;x) sent to each of the heterogeneous hydropower

generating units.



My focus in this research is to obtain improved simulator of the power P produced
by release Q given a head H within one time period and one reservoir [Shawwash et
al. , 2000]. The simulator is coded in Matlab to model the hydraulic system. This
value will be computed in advance for many values of Q and H, and stored for use in
a multi period, multi reservoir model like equation (1) and (2). In particular, it
addresses the optimal dispatching and loading of units (economic dispatch) within
an individual plant to minimize that plant's discharge for a given load requirement

or to maximize that plant's power for a given discharge requirement.

There are typically multiple units of the same type. Different kind of units are
heterogeneous [Lietal.,2012; Lietal., 2013; Arce et al. , 2002]. This means that the
amount of power generated for a given head and flow will be different from
different types. Moreover, the operation of hydroelectric plants can be improved
when these differences are known with sufficient precision. So it is crucial to get the

approximated generation function for different kinds of units.

This paper gives a quick and easy method to get the input for short-term operation
problem of hydropower, including fitting data to a model to calculate power output
for each type of unit, deciding how to allocate water within one reservoir among its
various units, and creating a piecewise linear function to simulate powerhouse
function. The methodology has the advantage of: 1) generating a smooth, non-
concave and continuous unit generation function fast and easily; 2) allowing further
multi-reservoir, multi-time optimization based on the non-concave, non-decreasing

powerhouse function for one reservoir, this pre-computed piecewise linear



powerhouse function can be used in designing a user-friendly, flexible,
computational efficient and fast real time operational tool which uses linear

programming instead of dynamic programming in solving optimal hydro scheduling

problem.

Generation of unit is a function of the gross head and the discharge of this unit
[Shawwash et al. , 2000]. Figure 1 shows a typical input-output curve for

hydroelectric plant where the net hydraulic head is constant [Wood and Wollenberg,

1996].
‘/;\
§ & Net head = 400 ft
—
>
2
£
Qutput, P(MW)

Figure 1 Hydroelectric unit input-output curve

Figure 2 shows the input-output characteristics of a hydroelectric plant with

variable head. The volume of water required for a given power output decreases as

the head increases.



Maximum
output

)

acre-ft
h

Input, Q(

Output, P (MW)

Figure 2 Input-output curves for hydroelectric plant with a variable head

This paper proposals two methods to approximate unit generation function. A
modified least square cubic splines fitting in Matlab function and a least-square
quadratic splines fitting. The second method uses a novel constrained least square
method for solving the piecewise local curve fitting problem with global continuity

constraint [Hou et al., 2011].

Furthermore, this paper implements powerhouse function algorithm for ordering
the dispatch of water to different type of units with the goal of obtaining the most
power for a given amount of water dispatched based on economic dispatch.
Economic dispatch is defined as the process of allocating generation levels to the
generation units in the mix, so that the system load may be supplied entirely and
most economically. Various methods were in use such as: the base load method and

best point loading [Chowdhury and Rahman, 1990].



To summarize, the purpose of this paper is to propose a method for optimizing
powerhouse function within one reservoir and give examples for 10 federal

hydropower station.

This report addresses the following:

* Unit generation characteristics for each reservoir and each type,

* Approximation method of unit generation function,

* Adjustment of approximation method used on different cases,

* Ordering and loading turbine criteria,

* Optimization powerhouse function for one reservoir,

* Modification of powerhouse function for Fish Passage Plan.

Turbine generation data used in the report were acquired from Bonneville Power

Administration.



CHAPTER 2 METHODOLOGY

2.1 General framework

The purpose of this project is to propose different methods to approximate
hydroelectric unit generation function. This function is then used to obtain
improved relationship (which is called powerhouse function in this thesis) between
the generation G and release q given a head H within one time period for one
reservoir. In particular, this analysis includes the aspect that in order to produce the
power, from g, the water needs to be sent to hydropower generating units. There
are typically different kinds of units and multiple units of the same kind. This value
G will be computed in advance for many values of q and H, and stored for use in a

multi period model.

The framework for generating powerhouse function for one reservoir can be
described as a three-step process: 1) develop approximation generation function for
hydroelectric unit; 2) with given Q and H, allocate water release among all the units
of different kinds within one reservoir; 3) obtain optimized powerhouse function

for one reservoir. Detailed steps of the framework are as follows:

Step 1: Develop approximation generation function for hydroelectric unit

Step 1.1: With known generation and flow data, fit them to a unit generation
function using Least-Squares Cubic Splines with Specified End Conditions

(This can be found at: http://www.mathworks.com/help/curvefit/least-



Step 2:

Step 3:

squares-approximation-by-natural-cubic-splines.html) and Least-Square

Quadratic Splines [Hou et al., 2011] respectively.

Step 1.2: With the generation function G(q) obtained by previous step,
calculate the Efficient Average Operating Point (EAOP, will be discussed in
Section 2.2.1.1), which is the flow q at which G(q)/q is maximum, and unit

efficiency achieved around EAOP.

Allocate water release among all the units

Step 2.1: Unit efficiencies achieved around EAOP, generated by previous

calculation, are used to decide units operating order according to them.

Step 2.2: Loading units with flow of their EAOP until power target (PT, will be

discussed in Section 2.3) is reached.

Obtain optimized powerhouse function

Step 3.1: According to water loading criteria, calculate power output G with

given H and q using the unit generation function in Step 1.

Step 3.2: Store the value G computed in advance for many values of q and H

for future use in a multi period model.

2.2 Unit generation function

The ultimate goal of this study is to optimize powerhouse function for one reservoir

with given observed generation-flow data points for each type of unit. In order to do



this, the very first step is to study the characteristic of each unit type, and get the
functions G(q), G'(q), G"(q), and G(q)/q. Therefore, fitting data to a model to

calculate power output for each type of unit is crucial.
2.2.1 Unit generation function characteristics
2.2.1.1 Basic function of interest
Unit efficiency:
To compute the efficiency of the turbine at release q, we have:

G
e =11.81x103x @
gxH

Where e represents the fraction of the potential energy in the falling water
that is converted by the turbines to electrical energy. Here G is in megawatts,

q in cfs and H in feet.

(This can be found at: http://www.canyonhydro.com/micro/formulas.html)

G(q), G'(q), G(q), and G(q)/q

G(q), G’(q), G”’(q), and G(q)/q represents turbine generation function, first
derivative of generation function, second derivative of generation function
and average generation respectively. And the following states several
matters of fact: G(q) should always be increasing. G’(q) means generation
increase when adding one unit of flow at a certain base flow. G”(q) should

change from positive to negative.



In my study, for a given head H, turbine efficiency is proportional to average
generation G(q)/q. Maximizing efficiency is equivalent to maximizing
average generation. Moreover, to order the turbine of different
characteristics, it is important to know to what degree generation could
increase given the increasing of certain amount of flow. Therefore, first
derivative of generation function G’(q) should be studied. Also a monotonic
second derivative G”(q) is a good indicate of an appropriate approximation of

generation function, otherwise not.

Efficient Average Operating Point (EAOP)

According to Stedinger et al. (2013), the Efficient Average Operating Point
(EAOP) can be used to determine distribution of water among hydropower
generating units. The EAOP is the flow q where G(q)/q is maximum. Thus,

running a turbine at that rate results in the maximum energy per release.

To find the maximum of the average generation rate G(q)/q, we can set to

zero its derivative with respect to q. Thus we seek the q = EAOP where:

_d (G(q)> _G(@ 6
dq\ q q q?

which yields the desired relationship:

G(EAOP)

G'(BAOP) = ——



Thus, at the point where q = EAOP, the marginal generation per unit release
G’(EAOP) equals the average generation rate G(EAOP)/EAOP. We use this
relationship elsewhere to compute EAOP for given head. Using the fitted
spline function, EAOP was obtained by evaluating G(q)/q over the range of q

values in the original data to find the maximum.

Around the most efficient operating point, turbines often achieve efficiencies

of 80-90%. Greater efficiencies are generally achieved with higher heads.

2.2.1.2 Two Turbine Generation Shapes

Turbine characteristics could be dramatically different from type to type. Basically,

two shapes, S-shape and concave-shape, could describe a large proportion of them.

For the classic S-shape turbine generation function, the first derivative increases
first, and becomes decreasing and the second derivative starts positive, and then

becomes negative.

Meanwhile the first derivative of the concave-shape generation function is always
decreasing and the second derivative of it is always negative. In most case with
concave-shape, G'(q) > G(q)/q for all g, and EAOP is the largest allowable flow
because G(q)/q continues to increase monotonically until the maximum allowable

flow rate is reached.

10



The following two figures Figure 3 and Figure 4 are typical examples of these two

shapes. These curves are based data produced by Steve Barton, BPA, and described

in Stedinger et al., 2013 for Grand Coulee Dam.

approxirnation generation function

100

generation (W)

0 2000 4000 6000
flowqcfs)
first derivative and average generation
0.025
0.02
0.015
0.01 first derivative
average generation
0.005
0
0 2000 4000 6000
flow{cfs)

d2Gdq2

3

x 10

&

second derivative

2000 4000 6000
flowfcfs)

Figure 3 Grand Coulee unit type 1 Head=280 (S-Shape)--Upper left: generation versus flow G(q).
Upper right: the second derivative of generation function G”(q). Lower: the first derivative G’(q) and
average generation G(q)/q

11



approximation generation function x10% second derivalive

100
80
g
2 60
c
b
g 40
&
(=]
20
ol & -1.2
0 1000 2000 3000 4000 0 1000 2000 3000 4000
flowqcfs) flow{cfs)
first derivative and average generation
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first derivative
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Figure 4 Grand Coulee unit type 2 Head=280 (Concave-Shape)--Upper left: generation versus flow
G(q). Upper right: the second derivative of generation function G”(q). Lower: the first derivative G’(q)
and average generation G(q)/q

2.2.2 Introduce and define diagnostic tools

Several simple statistics are usually being used to evaluate the fitting of

approximation curve.

Mean generation is the mean of the observed generation.

R? is the square of the sample correlation coefficient between the outcomes and

their predicted values.

SSres = 2i(y; — fi)?, the residual sum of squares

12



SSiot = 2i(yi — ¥)?, the total sum of squares

 SStot

RZ=1
SSres

Standard error is the magnitude of the average error.

SE = /SS,os/n

Residual plot is the plot of [Gi - G(qi)] versus q;.

A good fit model of the data should have R? close to 1 and SE close to 0. Residual plot

is a visual check of which part of the model doesn’t fit the data well.
2.2.3 Least-Squares Cubic Splines with Specified End Conditions
2.2.3.1 Least-Squares Cubic Splines

Since the two shapes of generation function that introduced in section 2.2.1.2 could
cover most of the cases, it is reasonable to think of using a polynomial to fit the
observed data. However, it is hard to decide on the order of the polynomial. Higher
order might result in capturing too much noise in the data and in turn lower order
might result in losing lots of information. Another way to fit the data is using spline.
Also fit is not satisfactory because even though the function is smooth, the second

derivative is not monotonic due to the noise in the observed data.

Finally, Stedinger et al. (2013) suggests splines that are piecewise polynomial

functions which combine ease of handling in a computer with great flexibility. Least-

13



squares cubic spline allows us to construct the least-squares approximation to given
data (x, y) from the space S of "natural” cubic splines with given breaks b(1) <

< b(l+1).

The construction of a least-squares cubic spline usually requires that we discretize
the flow domain into n evenly spaced intervals that are separated by the nodes
qi=q1+(i-1)*Aq, where i=2, ..., n+1, Aq= (qn+1-q1)/n, and apply cubic polynomial

fitting on each interval to minimize sum of square error.

(This can be found at: http://www.mathworks.com/help/curvefit/least-squares-

approximation-by-natural-cubic-splines.html)

2.2.3.2  End Conditions with Finite Difference

The available Matlab package for least squares splines works very well. However, it
employs the assumption of the cubic splines that the second derivatives are zero at
the end point. This assumption did not always work well with the BPA turbine data.
So Stedinger et al., 2013 developed an extension of their procedure that results in a
least squares spline that has a specified second derivative at each end point.
Reasonable second derivative values were computed using finite difference

approximations with the turbine power curve data.

Suppose the second derivatives at the two ends are s”(0) and s”(1), respectively, for
a spline on [0,1]. In order to use the Matlab LS-Spline function rather than write a
new function ourselves, we construct a cubic polynomial for the first and last

interval with s”(0) and s”(1) equal to the specified non-zero values; furthermore, the

14



constructed splines has f(x) = f(x) = f’(x) = 0 at the second largest knot, and the
second smallest knot, respectively. Then the least square cubic spline was obtained
by fitting the original data minus the two constructed splines function, and then
adding the constructed splines to the LS-Spline to obtain our final LS-Spline
approximation. Because adding two cubic splines with the same knots yields a cubic
splines over those knots, adding the specialized and constructed splines to the least
squares splines yields a spline function that is both a LS fit to the data and has the

desired end conditions.
2.2.3.3  Least-Squares Cubic Splines with Specified End Conditions

This section describes the three key steps in the development of a LS-Spline with

reasonable second-derivative end conditions.

* C(Calculate second derivative at the two end points using numerical

differentiation

Using a quadratic Lagrange polynomial fit to the three smallest points to generate an
approximate of the first derivative yields the approximation [Chapra and Canale,
2006]:

2X — X; — Xj41 2X — Xi—1 — X1

G 0 D T R ) (= )

f'(x) = f(xi-1)

2X — Xi_1 — Xj

Ki+1 — Xiz1) Kig1 — Xi)

+ f(Xi+1)

which is applicable for unequally spaced point.
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The second derivative of this linear approximation of the first derivative is:

2f(%i-1) 4 2f(x;) 4 2f(Xi41)

(Xi—1 = X)Xic1 — Xip1) 5 = Xm) K — Xi41) Kipr — Xio1) Kip1 — Xi)

f'(x) =

This approximation is used to obtain finite difference estimates of the second

derivative of the turbine power curves at both end points.
* C(Construct specialized spline function for first and last intervals

Assume there are 6 intervals for the cubic spline corresponding to 7 knots.

Then for interval between 1 and 2, the approximation function is:

G=ax(q—qy)®+bx(q—qy)*+cx(q—q;) +d

In step one, the second derivative of point 1 (s”(0)) and point 7 (s”(1)) is calculated.
We constructed a cubic function between 1 and 2 and another cubic function

between 6 and 7 that have the desired s”(0) and s”(1).

Function 1 (between nodal points 1 and 2):

We require:

f'(x1)=s"(0); f(x2)=0; f'(xz) = 0; f"(x,) =0

16



Suppose:
f(x) = aX(x — x,)3 + bX(x — %)% + cX(x — x,) +d

Then the conditions at x = Xz require that

The second derivative of this polynomial at x = x; is
f'(x) = 6Xax(x; —X3)
which must equal to s”(0). Thus we obtain

s"(0)

i 6X(X; — X3)

s"(0)X(x — x,)°
6X (X1 — X3)

f(x) =

Function 2 (between nodal points 6 and 7):

Use the same method as above which yields:

s"(1)X(x — x6)°
6X (X7 — Xg)

f(x) =

* Fita Least square cubic spline to the original data minus the constructed spline

functions.

There might be more than 1 data point between knot 1 and 2. For all of the data
points, calculate the value of the constructed function, then use original data minus

17



constructed function value. Followed, apply least square cubic spline over the whole
range use the updated value. So, the approximation function is the cubic spline

function plus the constructed function.

* Calculate coefficients for the generation function

Combine the coefficients of the special functions for the two end intervals with the
LS spline for the whole interval so that our approximation of the turbine power
function is described by one single cubic spline that satisfied specified second
derivatives at the two end points. The equations for this conversion are relatively
easy to obtain. For the last interval, s”(1)(x-xs)3/[6(x7 — X6)] is of exactly the correct
form to add the coefficients of (x-xs)3 for the least squares spline and for f(x). For
the first interval one can expand s”(0)(x-x2)3/[6(x1 — x2)] in powers of (x-X1) to get
the coefficients needed to add the two cubic polynomials in powers of (x-x1) over

the first interval.

The plots below (Figure 5, 6, 7, 8) display the First and Second derivatives of cubic
spline approximations derived from Grand Coulee turbines type 1 with a head equal
to 302 ft using different methods. We are trying to have smaller end intervals to
minimize the distortion and thus tried 1/4 and 1/64 length of other intervals as end
interval to see how they would work. The analysis showed that with 1/4 length of
others we could still see distortion in the first and last panels. With 1/64, the largest
and smallest panels were so small, we could hardly see the distortion in f'(q), but it

is still there as shown by the f'(q) plot. Thus we proceeded to modify the least
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squares spline procedure to allow non-zero second derivatives at the first and last

knot.

.
0.028 . ‘ . . . . . . -l
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Figure 5 These two plots show least square cubic spline with zero second-derivative end conditions
and six intervals of equal length

From Figure 5 it's noted that making the second derive of the spline go to zero is
both unnatural, and distorts the first derivative function at the end points. Attempts
were made on making the first and last intervals smaller to decrease the error. The
result is displayed in the figures below. This did not solve the problem because one

can still see the distortion in the first and last intervals.
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Figure 6 These two plots show least square cubic spline with zero second-derivative end conditions
with first and last intervals that are short 1/4 length

The following two plots are least square cubic spline with zero second-derivative
end conditions and using 1/64 length of the other interval as the first and last ones.
The fitted spline function improves a lot. Compare this pair with the former ones,
even though the trend of the second derivative is the same, the first derivative
doesn’t have visible flat tails at two ends because the distortion is restricted to a

small interval. The second derivative function does behave poorly at the end points.

0.028

0027

0025} 1 i

0025+

0.024 b A

00231

0.022

0 500 1000 1500 2000 2500 3000 3500 4000 4500 S0 W00, MIS0N R2000; 2S00 PSO000 G300 4000 %4300

Figure 7 These two plots show least square cubic spline with zero second-derivative end conditions
with first and last intervals that are short 1/64 length
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The last two plots are least square cubic spline plus constructed spline functions for
the two ends to achieve specified second derivatives. It provides a much better
second derivative model because it doesn’t have big jumps at the end. The first

derivative function is very smooth.

o656 first derivative of generation function forGrandCouleetype Thead=302 x10%  second derivative of generation function forGrandCouleetype Thead=302
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Figure 8 These two plots show least square cubic spline with specified non-zero second-derivative
with equally spaced intervals

Also, the following table compares the residual sum of square and R? of each method

with § = 50.5 MW.

Table 1 residual sum of square and R? of each method

Method | Equal | 1/4 1/64 | Specified second derivative

SE 0.0192 | 0.0033 | 0.0034 | 0.0088

R? 1 1 1 1

According to table 1, using smaller length as the end intervals improves the
approximation function a lot. Also with the specified second derivative, the
distortions in the first and last intervals disappear without significant increase of

the residual sum of square.
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2.2.4 Least-Squares Quadratic Splines
2.2.4.1 Method Description

In order to get approximations of generation function for certain head and certain
type of unit, assume we have flow-generation data (x; yi), i=1, 2, ..., n, in which x

refers to flow q, y refers to generation G and n is the number of data points.

Divide the data into k group:

s, = {(xVy)i=12,..n,}

S ={(x®.y®)i=12,...,n,

Se={(x,y),i=12 ..,n

in which,
— ®
(2)
bl = Xni+1 < X = Xny+n, < b2
(k) —
by, < Xnp+ng++ne_q+1 = Xj = Xpgtng+otng = by
and
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n; +n,+--+ng=n

The way to calculate nodal points b;, i=0, 1, 2, ..., k, are as following. Assume the max

flow is flowmax, the min flow is flowmin, then the interval between groups is:

1
interval = X X (flowpax — flowpin)

the nodal points are by, by, ... ,bx, respectively with
by = flowin, by = flow %, b;;1 = b; + interval
For quadratic spline, assume basis function:
h;(x) =1, h,(x) = x, h;(x) = x?
and
h(x) = [h; (), h; (), h3(x)]

{(xj(i)},j =1,2,3andi = 1,2, ...,k are the coefficients

the approximated function is:

( 3
£ = Z o Phy(x), by <x<by
=1

3
f(x) ={ LX) = z O(]-(Z)h]-(x) ) b, <x<b,
j=1

3

fk(X) = z (X](k)h](X) ’ bk—l <x< bk
\ j=1
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Using least square approximation, we need to optimize all the coefficients {a].(i)} to

minimize the error between the approximated function and the given data, such that
the approximated function f(x) and the first derivative of it f'(x) are continuous, the

equations are as follow:

n n e
(1r)nin(k) [i (f1 (Xi(l)) — yi(l))2 + i (fz (Xi(Z)) _ i(z))z 4ot Z (fk(xi(k)) _ Yi(k))z]
B e BT p— -

s.t. fi(by) = f5(by),f(by) = f5(by), ..., fx_1 (bx—1) = fi(bx_1)
f1’(b1) = le(bl)'le(bz) = f3,(b2)' ---:fk—1’(bk—1) = fk’(bk—1)

In which the constraint is to make sure consistency of the approximation function

and its first derivative in the spline function.
2.2.4.2 Implementation in Matlab

The Matlab function fmincon is used to find minimum of constrained nonlinear

multivariable function. The equation looks like:

clx)<0
ceq(x) =0
min f(x) such that A-x<b
x

Aeq -x =beg
Ib<x <ub,

b and beq are vectors, A and Aeq are matrices, c(x) and ceq(x) are functions that
return vectors, and f(x) is a function that returns a scalar. f(x), c(x), and ceq(x) can

be nonlinear functions. x, 1b, and ub can be passed as vectors or matrices.
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The syntax looks like:

[x,fval] = fmincon (fun,x0,A,b,Aeq,beq, 1b,ub,nonlcon,options)

(This can be found at: http://www.mathworks.com/help/optim/ug/fmincon.html)

To solve this problem in Matlab using function fmincon:

h(xf)) yii) . gi)
® ) :
X; = h(Xz ) , Vi = NP , o = O(gl) ) i=12, ..k
o o
) 0 X
T T
y=[yLys, ...ya] . a=[af,al, .., af]
X 0 .. O
X = 0o X, .. O
0 0 .. X
h(b;) —h(b,) 0 0 0
0 h(b,) —h(by) 0 0
0 0 0 —h(bgk_5) 0
0 0 0 h(bk—1) —h(bx_,)
0 0 Ay — Ak-1
0O 0 2
B=]0 -1 O
2 0 0
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B 0 0
A_|0 B 0
0 0 .. B [3(k—1)]2

The optimization equation turns to be [Gluss, 1964]:
min||Xa — y/|?
o
s.t. Za=0, YT(AY) =0

That is because:

{ fi(by) = f,(by)
f1’(b1) = le(b1)

o+ oalVb; +a(Pb2 = a® + aPb; + (b2 (D
agl) + 20(g,1)b1 = agz) + 2(>(gz)b1 (2)

-

from (2), we get

0(gl) _ agz)

b. =
! ZX(agZ) —agl))

plug into (1), we get
4x(a§1) - (xgz))x(agl) - agz)) = (agl) - ocgz))2

In my problem, the independent variable is a. Aeq is Z, beq is 0. ceq(x) is YT(AY).

The function f(x) is ||Xa — y||2. In options, I choose 'interior-point' as my algorithm.
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In this optimization problem, there are two very strong linear and nonlinear
equation constraints. Therefore if the initial point x¢ is not picked properly, it is very

likely that the optimization will stop with a local minimum.

This conjecture was verified when 1 first set the initial point x0 to be 0 in this
problem. It turned out that the error blew out to be 10 to the 8th and the fmincon
stopped because the size of the current step is less than the selected value of the

step size tolerance.

In order to solve for the better initial point xo, within every interval, three points
were picked, (xi, yi), i=1, 2, 3, which represents the first, the last and the middle one
respectively. And the coefficients of the quadratic polynomial that went through

these three points were calculated.
xa=y and a= Y
X

In which,

1 x x1 Y1 oy
x=|1 x, x3|, y=|¥z{[, o= |

1 x3 X3

Then take a as the initial points for this interval.
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2.3 Powerhouse function based on economic dispatch

In Stedinger et al. (2013), it described a method for ordering the dispatch of water to
different type of turbines with the goal of obtaining the most power for a given

amount of water dispatched. That method is described here.

Step a: Order turbines such that turbine 1 has greatest efficiency G(EAOP;)/q at its
EAOP,;, turbine 2 is second,.., and the last turbine k has the lowest
G(EAOP,)/q. This ignores turbine size, and the convenience of loading and

shutting down turbines.

Step b: For power target PT, optimal solution starts by loading turbines of type 1
with flow EAOP; until PT is reached, if possible. If there are n; turbines of

type 1, the load can be met by loading only turbine of type 1 at flow EAOP; if

PT < n,xG,(EAOP,)

Step c: If the inequality above is not met, then before loading units of type 2, the
efficient type 1 units are run beyond their most efficient operating point until

their efficiency drops to that of type 2 units.

Increase the average flow q/n; through all type 1 units, until either PT is met,

or the following equations is satisfied:

G1(q1) = G2(EAOP)

where g, = q/n; < q"** (flow through type 1 units).
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At that point it becomes optimal to bring on type 2 units for part of all of the
period, while leaving the flow through type 1 units at g, (%! where

G{(Ch[z]) = G,(EAOP;)

unless the solution is constrained by q; < q{*%*.

Continue to load type 2 units until all are operating the full period at flow
EAOP,.

Step d: When type 2 units are fully loaded at EAOP, and
PT = nyXG;(q1'%) + nyxG,(EAOP,)

It is time to increase the flow in all units until their marginal efficiency equals

G3(EAOP;). Soincrease q; and g, so that total flow:

q = nyXq, + n,Xq, attempts to yield generation PT while maintaining
G1(q1) = G2(qz) > G3(EAOP;) and q; < q;"* fori=1,2

at all times to maximize efficiency with all of the n; + n, units running.
The following is an explanation of G;(q;) = G;(q2).

qa—-—n ><q1>

G =nyXG1(qy) + npXG,(q2) = nyXG1(qq) + Ny XG, <
2

_:_1> = n, X (G} (q1) — G3(q2))

G' = n,xG{(qy) + nzxcg(qz)x(
2

In order to maximize G, we need the first derivative of G to be 0, so:

G1(q1) = G3(q2)
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Step e: The previous step stops when G;(q;) = G;(q,) = G3(EAOP;). Then it is time
to maintain the current flow rates in units type 1 and 2 at g, 13! and g,3, and
to begin to bring on units of type 3 for all or part of the period. This means

that all operating units will have the same efficiency:

G{(%B]) = Gé(q2[3]) = G3(EAOP;)
unless constrained by q; < q/"*** fori=1,2.

And type 3 units are loaded only when their average efficiency is at least that

of unit types 1 and 2.

When all of the unit type 3 units are running at qz3 = EAOP3 we need to
continue with step d above to increase the generation of all three types of

units so that:

q = nyXqq + nyXq, +n3Xq; attempts to yield generation PT while

maintaining

G1(q1) = G2(qz2) = G3(q3) > G4L(EAOP,) and q; < ¢;** fori=1,23
Step f: When we reach

Gi(q:) = 63(q.1) = 63(q5*) = G;(EAOP,)

with

PT = nyXGy (1) + nyxGy(q,™) + ngxGs(qs™)

it is time to add units of type 4 at flow rate EAOP,.
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Step g: Algorithm continues as necessary. When no new units can be loaded, and if
all units reach their maximum turbine release rate and g;"*** for a given
head, the maximum powerhouse generation has been reached, which may be

less than PT.

As for the case with three different turbine types, the powerhouse function will have
6 different parts, three constant slope parts with two transition parts between the

first two and the last two and a final part. The illustration is as below.

Generation A\ —

>
A B C D E F' Flow

Figure 9 powerhouse curve example with three different turbine types: number in the figure refer to part, character refer
to total flow of certain point

Table 2 summary of how to calculate flow for every important point in Figure 9

Point Equation for computation

A n, xEAOP,
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B n1><q£2] (qEZ] is defined in step c)

C n1><q£2] + n,XEAOP,

D n1><q£3] +n, qug] (qF] and q£3] are defined in step e)
E n1><q£3] +n, ><q£3] + n3XEAOP;

F nyXqr ™ + npXqr ™ + nyxqy

[ developed with Prof. Shoemaker the equations in Table 3 to calculate powerhouse

function and amount of flow going through each type of turbine.

Table 3 summary of how to calculate powerhouse function

Part | Range Equation for powerhouse function Equation for amount of flow going through
each type of turbine
1 [0, A] <G (EAOP q < EAOP;, all through the 1st unit of type 1
EAOP, 1( 1)
EAOP; < q < 2XEAOP;, 1st unit full time, 2nd
unit of type 1 a fraction of time...
q :
2 [A, B] %Gy (—) All through type 1 with same flow for all the
units
3 [B.C] q —nixq,? Type 1: nyxq; 2!
nyxG1(q.?") + TOPZxGZ(EAOPZ)
Type 2: q — nyxq,?!
g,/ is defined in step c
4 [C, D] Max:nyxG1(q,) + ny,%XG,(q5) Type 1: n,xq, all units with same flow
s.t.nyXqq + nyXq, =q Type 2: n,Xq, all units with same flow
a1 = g%, g, = EAOP,
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5 [D, E] n1XG1(Q1[3]) + nZXGZ(q2[3]) Type 1: nyxq, !
— [31 — [3]
q —ny1Xq, N2 Xq; . [3]
Type 2: n,x
EAOP, yp 2Xq>
XG5 (EAOPS) Type 3: g — nyxq; ¥ — n, %,
g:" and ¢, are defined in step e

6 [E, F] Max:n;xG1(q,) + ny,XG,(q5) Type 1: n,xq, all units with same flow

+ n3xG3(q3)

s.t.nyXqq + nyXq, + n3Xqz =q

@M =z q 2 ‘I1[3]'QZmax 2q; 2 QZ[S]’Qsmax

> q; = EAOP,

Type 2: n,Xq, all units with same flow

Type 3: nzXq; all units with same flow

CHAPTER 3

3.1 Case description

This project is based on 10 federal hydropower plants on the Columbia basin which
belong to BPA (Bonneville Power Administration) system. BPA’s service territory
includes Idaho, Oregon, Washington, western Montana and small parts of eastern

Montana, California, Nevada, Utah and Wyoming. This project focuses on 10 plants

as shown in Figure 10 and Figure 11.

RESULTS AND DISCUSSION
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Figure 11 Reservoir Network Topology: 10-Project Schematic and Hydraulic Lag Times for the CV-
STR Hydro Modeling Pilot Sow

3.2 Generation Data and Spline Analysis

There are totally 10 federal projects: Grand Coulee, Chief Joseph, Lower Granite,
Little Goose, Lower Monumental, Ice Harbor, Mc Nary, John Day, The Dalles, and
Bonneville. And 7 of them have 2 different operation situations: with and without
screens, so there are 17 different reservoirs to study. The figures below compare the
least squares cubic spline function (with end-point second derivatives specified)
with the original data, report the first derivative of the spline function and average

generation G(q)/q, the second derivative , and the error of the spline function.

3.2.1 Grand Coulee

Grand Coulee has 4 different turbine types. The following table summaries the unit

characteristics of different turbines.
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Table 4 Grand Coulee turbine generation characteristics

Unit 1-9 | Unit 10-18 | Unit 19-21 | Unit 22-24

(TYPE1) | (TYPE2) | (TYPE3) | (TYPE4)
Maximum Generation (MW) | 119 125 705 805
Minimum Generation (MW) | 0 0 0 0
Maximum Flow (cfs) 4481 4416 29748 33391
Minimum Flow (cfs) 277 461 4584 6549

To approximate the generation function for Grand Coulee, 6 equally spaced intervals
and specified second derivative calculated using first 3 and last 3 points at two ends
for the least square cubic spline were used. The following 4 figures are the 4 types

respectively (take head=280ft for example).

approximation generation function x 10" second derivative

100
z 2
= %
S 50 50
i o
[s1]) g -]
T 2
o=
0L& -4
0 2000 4000 6000 0 2000 4000 6000
flow(cfs) flow(cfs)
first derivative and average generation residual
0.03 0.04
0.02 ¢« 0.02
0.01 first derivative T g
average generation
0 02
0 2000 4000 6000 0 2000 4000 6000
flowicfs) flow(cfs)

Figure 12 Grand Coulee unit type 1 Head=280, y = 44.5, SE=0.0068, R2=1 (S-Shape)--Upper left: the
original generation versus flow G(q) shown as circles and the fitted least-square spline with specified
end condition. Upper right: the second derivative of spline generation function G”(q). Lower left: the
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first derivative G’(q) and average generation G(q)/q of the spline. Lower right: the error for the fitted
function

As discussed before, the maximum of G(q)/q occurs at the flow EAOP where G’(q) =
G(q)/q. The lower left plot in Figure 12 shows that EAOP occurs very close to the
maximum turbine flow. G’(q) and G(q)/q are both very flat. Here the second
derivative starts positive, and then becomes negative. So this is the classic S-shaped

turbine generation function.

approximation generation function « 107 second derivative
0

generation(My)

0 4 -1.5
0 1000 2000 3000 4000 0 1000 2000 3000 4000

flow(cfs) flow(cfs)
first derivative and average generation w107 residual
0.04 10
o 5
0.02 3
0.01 first derivative .
average generation
0 | 5
0 1000 2000 3000 4000 0 1000 2000 3000 4000
flow(cfs) flow(cfs)

Figure 13 Grand Coulee unit type 2 Head=280, y = 44.5, SE=0.0019, R2=1 (Concave)--Upper left: the

original generation versus flow G(q) shown as circles and the fitted least-square spline with specified

end condition. Upper right: the second derivative of spline generation function G”(q). Lower left: the

first derivative G’(q) and average generation G(q)/q of the spline. Lower right: the error for the fitted
function
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approximation generation function

generation(MyV)

flow(cfs) i 104

first derivative and average generation
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x 107 second derivative
-2

42G/dg2
o

0.02

0.0

first derivative

i

average generation
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flow(cfs) % 104
residual

0 1 2 )
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Figure 14 Grand Coulee unit type 3 Head=280, y = 310, SE=0.0034, R2=1 (Concave)--Upper left: the
original generation versus flow G(q) shown as circles and the fitted least-square spline with specified
end condition. Upper right: the second derivative of spline generation function G”(q). Lower left: the
first derivative G’(q) and average generation G(q)/q of the spline. Lower right: the error for the fitted

function

Note that in these two cases (Grand Coulee TYPE 2 and TYPE 3) the second

derivative is always negative, and G’(q) > G(q)/q for all g. In this instance, EAOP is

the largest allowable flow because G(q)/q continues to increase monotonically until

the maximum allowable flow rate is reached.
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approximation generation function x 10" second derivative
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Figure 15 Grand Coulee unit type 4 Head=280, y = 347.5, SE=0.0284, R2=1 (S-shape & Concave)--
Upper left: the original generation versus flow G(q) shown as circles and the fitted least-square
spline with specified end condition. Upper right: the second derivative of spline generation function
G”(q). Lower left: the first derivative G’(q) and average generation G(q)/q of the spline. Lower right:
the error for the fitted function

Grand Coulee Type 4 is a combination of both shapes with S-shape in the beginning
and concave shape coming after. In this case, the second derivative changes from

positive to negative but decreases first and increases after.

All the approximations for Grand Coulee have R?=1 which is a good indication of

good fit.

3.2.2 Chief Joseph

Chief Joseph has 3 different turbine types. The following table summaries the unit

characteristics of different turbines.

Table 5 Chief Joseph turbine generation characteristics

Unit 1-4, 15, 16 | Unit 5-14 | Unit 17-27
(TYPE 1) (TYPE 2) | (TYPE 3)

39



Maximum Generation (MW) | 96 98 103
Minimum Generation (MW) | 28.5 27.5 335
Maximum Flow (cfs) 8547 7992 8689
Minimum Flow (cfs) 2813 2665 3288

To approximation the generation function for Chief Joseph, 6 equally spaced
intervals and specified second derivative calculated using first 3 and last 3 points at
two ends for the least square cubic spline were used. The results for type 1 are

shown in Figure 16 (take head=170ft for example).

approximation generation function x10® second denvative
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— 80 )
:
g g0
.;,’2 60 8
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: e
o 40 4
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first derivative and average generation residual
0.02 0.15
first derivative
0.015 o average generation 0.1
9
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£
0.005 0
20 -0.025
000 4000 6000 000 10000 000 4000 6000 8000 10000
flowfcfs) flovqcfs)

Figure 16 Chief Joseph unit type 1 Head=170, y = 63, SE=0.0280, R2=1 --Upper left: the original
generation versus flow G(q) shown as circles and the fitted least-square spline with specified end
condition. Upper right: the second derivative of spline generation function G”(q). Lower left: the first
derivative G’(q) and average generation G(q)/q of the spline. Lower right: the error for the fitted
function

A Concern is that we can see that in Figure 16 the second derivative for Chief Joseph

has too many fluctuations. As described in section 2.2.3.3, we used the first three
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points to calculate second derivative. But in this case, too many fluctuations may
occur due to the specified second derivate at two ends. So instead, we use the first,
the third, and the fifth or 1st, 4th | 7th _points to calculate second derivative using
the below equation:

F(x) = 2f (xi-1) N 2f (x;) 2f (Xi41)

B Oemg —x)Oog = x401) (g =22 — x01) (41 — Xi—1) (K41 — X;)

We assume that the last of these three points is the k™ point, so the three points are
1st, (k+1)/2th, kth respectively. Figure 17-19 are three examples of Chief Joseph

turbine type 1 while k=3, 7, 21 respectively.

approximation generation function x10®  second derivative
100 4
— 80 )
g
= g1
.,g 60 b
o -2
g o
@ 40 4
220000 4000 6000 8000 10000 .28000 4000 6000 8000 10000
flow(cfs) flow{cfs)
first derivative and average generation residual
0.0 0.15
first derivative
0.015 o= average generation 0.1
o
0.01 T 0.05
£
0.005 0
20 -0.025
000 4000 6000 8000 10000 000 4000 6000 8000 10000

flowfcfs) flovqcfs)

Figure 17 k=3 for Chief Joseph unit type 1 Head=170, y = 63, SE=0.0280, R2=1 --Upper left: the
original generation versus flow G(q) shown as circles and the fitted least-square spline with specified
end condition. Upper right: the second derivative of spline generation function G”(q). Lower left: the
first derivative G’(q) and average generation G(q)/q of the spline. Lower right: the error for the fitted
function
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approximation generalion function x10%  second derivative
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Figure 18 k=7 for Chief Joseph unit type 1 Head=170, y = 63, SE=0.0253, R2=1 --Upper left: the
original generation versus flow G(q) shown as circles and the fitted least-square spline with specified
end condition. Upper right: the second derivative of spline generation function G”(q). Lower left: the
first derivative G’(q) and average generation G(q)/q of the spline. Lower right: the error for the fitted
function
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approximation generation function x10®  second derivative
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Figure 19 k=21 for Chief Joseph unit type 1 Head=170, y = 63, SE=0.0265, R2=1 --Upper left: the
original generation versus flow G(q) shown as circles and the fitted least-square spline with specified
end condition. Upper right: the second derivative of spline generation function G”(q). Lower left: the
first derivative G’(q) and average generation G(q)/q of the spline. Lower right: the error for the fitted
function

From Figure 17-19 we could see, it is disappointing that cubic spline fit doesn’t
improve much, the fluctuations in the second derivative are still there. This may due
to noise in the data. To verify, we tried using 12 spline intervals to see clear the
trend of the data. The result (figure 20) were very similar to those using 6 intervals
which proves that the wiggle is in the original data. Fewer number of intervals is
preferable to obtain smooth function. Thus to get a more consistent fit we tried 4
intervals, meaning the spline has 5 knots with 4 intervals (earlier examples had 6
intervals). This makes the spline somewhat smoother. See the results in figure 21.
With 4 intervals we got a good fit that smoothed out small variations in the data. The
problem is in part that the turbine generation curves are very close to linear with a

second derivative close to zero. Thus a little noise in the original data results in a
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second derivative function that fluctuates around zero. This would cause havoc with

an optimization algorithm, and does not correspond to anything but a little noise

around an almost straight line. By providing a smooth approximation, we improve

the ability of our operations optimizer to find a reasonable solution and to provide

stable results (not sensitive to small perturbations of the data or initial conditions).

We could see from figure 17, 20 and 21 that even though SE for using 4 intervals, 6

intervals and 12 intervals are 0.2226, 0.0280 and 0.0012, the R2 for them are all

very close to zero. It confirms us that by using 4 intervals, we only give up a little

precision with a lot progress in second derivative.
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Figure 20 12 intervals cubic spline for Chief Joseph unit type 1 Head=170, y = 63, SE=0.0012, R2=1 --
Upper left: the original generation versus flow G(q) shown as circles and the fitted least-square
spline with specified end condition. Upper right: the second derivative of spline generation function
G”(q). Lower left: the first derivative G’(q) and average generation G(q)/q of the spline. Lower right:
the error for the fitted function
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Figure 21 4 intervals cubic spline for Chief Joseph unit type 1 Head=170, y = 63, SE=0.2226,
R2=0.9998--Upper left: the original generation versus flow G(q) shown as circles and the fitted least-
square spline with specified end condition. Upper right: the second derivative of spline generation
function G”(q). Lower left: the first derivative G’(q) and average generation G(q)/q of the spline.
Lower right: the error for the fitted function

In this research, Least-squares spline functions with non-zero second derivatives at
the end point will be fit to the turbine data for all turbine types at all ten federal
dams in the Columbia-Snake system. In some cases larger intervals will be adopted
to smooth the original generation data and to yield convex turbine generation
curves over the relevant turbine operating range. Those spline curves will serve as
the basis of powerhouse functions used in the Cornell SHOA short-term scheduling
model. In particular they will provide Expected Average Operating Points for the
turbine units, and the marginal generation functions needed to construct

powerhouse functions.

We also recommend that BPA consider using these improved turbine powerhouse

functions in other models of system operations.
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Using the same method to determine the optimal numbers of intervals we should
use for least-square cubic spline. The following two figures (Figure 23 and 24) are

for Chief Joseph type 2 and type 3 and they use 6 and 4 intervals respectively.

- approximation generation function 5% 1w0* second derivative
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——first derivative
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Figure 22 6 intervals cubic spline for Chief Joseph unit type 2 Head=170, y = 60.25, SE=0.0035,
R2=0.9998--Upper left: the original generation versus flow G(q) shown as circles and the fitted least-
square spline with specified end condition. Upper right: the second derivative of spline generation
function G”(q). Lower left: the first derivative G’(q) and average generation G(q)/q of the spline.
Lower right: the error for the fitted function
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approximation generation function x10® second derivalive
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Figure 23 4 intervals cubic spline for Chief Joseph unit type 3 Head=170, y = 70.75, SE=0.1647,
R2=0.9999--Upper left: the original generation versus flow G(q) shown as circles and the fitted least-
square spline with specified end condition. Upper right: the second derivative of spline generation
function G”(q). Lower left: the first derivative G’(q) and average generation G(q)/q of the spline.
Lower right: the error for the fitted function

3.2.3 Lower Monumental STS

Lower Monumental has 2 different turbine types. The following table summaries the

unit characteristics of different turbines.

Table 6 Lower Monumental STS turbine generation characteristics

Unit 1-3 | Unit 4-6
(TYPE1) | (TYPE?2)

Maximum Generation (MW) | 160.5 160.5

Minimum Generation (MW) | 55.5 63.5
Maximum Flow (cfs) 25191 25686
Minimum Flow (cfs) 9604 11528
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To approximation the generation function for Lower Monumental STS, 6 equally
spaced intervals were used and specified second derivative was calculated using
first 3 and last 3 points at two ends for the least square cubic spline. The results for

type 1 are shown in Figure 24 (take head=95ft for example).

approximation generation function % 10“’ second derivative

200 2

150 1
g 0
= 100 o
g 3 -
2 gp o
g oz
L=

0 3
_5%.5 1 1.5 2 2.5 ‘}J.S 1 15 2 2.5
flow{cfs) x10? flow{cfs) x10?
first derivative and average generation residual
04 100
first derivative
0.3 ‘ average generation 50
0.2 G 0
H
0.1 £ -50
0 -100
45 1 5 2 2.5 05 1 15 2 2.5
flow{cfs) x10? flowfcfs) x10?

Figure 24 6 intervals cubic spline for Lower Monumental STS unit type 1 Head=95, y = 110.25,
SE=34.247, R2=0.4194--Upper left: the original generation versus flow G(q) shown as circles and the
fitted least-square spline with specified end condition. Upper right: the second derivative of spline
generation function G”(q). Lower left: the first derivative G’(q) and average generation G(q)/q of the
spline. Lower right: the error for the fitted function

In figure 24, the approximation generation function of Lower Monumental STS
head=95ft type 1 has many wiggles. The wiggles were unlikely to exist when using
least square cubic spline method. As discussed in Section 3.5, the second step in
least-square cubic spline with specified second derivative is to construct specialized
spline function for first and last intervals. The wiggles in the generation plot of
figure 4-13 is most likely due to the constructed cubic function at two. To confirm

this assumption, [ plot the original generation data minus the constructed
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generation function which is shown in Figure 25. The below table 7 shows the

parameters of the constructed function:

G = ax(q — q¢)* + bx(q — qo)* + cx(q — qo) +d

Because there is no constrain on the value of the first point when constructing the
cubic function, it turned out to be -1883 MW of the first point which is much bigger

than the average generation 100MW.
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Figure 25 the original generation data minus the constructed generation function for the first and last
intervals of Lower Monumental STS head=95 ft unit type 1

Table 7 the parameters of the constructed generation function for the first interval

a b C d

1.732*10-8 -2.48%104 1.1836 -1883

Since this situation only happens for a few times in all the reservoirs, I guess that it
is due to the data itself. In the below figure, I plot the original data we get from BPA.
It shows clearly that the trend of the first few points has big difference with that of
the rest points. To better visualize the trend of the data, I plot only the first 50

points.
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Figure 26 Original Generation-Flow data of Lower Monumental STS head= 95 ft unit type 1
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Figure 27 Original Generation-Flow data of Lower Monumental STS head= 95 ft unit type 1(first 50
points)

When [ construct the cubic function for the two ends, I use the first 3 points which
cannot represent the rest points. So I try to delete the first 15 points and run the
program again. The following figure shows the new result using 6 intervals.
Compare figure 24 with figure 28, we could see the second derivative of the first
point change from -4*104 to -10*10-5, only % of the former value. Also the
approximation function is much better. Even though in the first interval, the first
derivative has a wired wiggle which causes the second derivative changes from

negative to positive, the max second derivative is much less than 10-5> which is
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negligible. So the approximation generation function for Lower Monumental STS

type 1 could be seen as a concave shape.
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Figure 28 Lower Monumental STS unit type 1 Head=95, y = 115.25, SE=0.0806, R2=0.9999 (delete
first 15 points)--Upper left: the original generation versus flow G(q) shown as circles and the fitted
least-square spline with specified end condition. Upper right: the second derivative of spline
generation function G”(q). Lower left: the first derivative G’(q) and average generation G(q)/q of the
spline. Lower right: the error for the fitted function

The figure 29 is for Lower Monumental STS type 2 with 3 intervals to get rid of the

noise in the original data.
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Figure 29 Lower Monumental STS unit type 2 Head=95, y = 117, SE=1.7427, R2=0.9952 (S-shape)--
Upper left: the original generation versus flow G(q) shown as circles and the fitted least-square
spline with specified end condition. Upper right: the second derivative of spline generation function
G”(q). Lower left: the first derivative G’(q) and average generation G(q)/q of the spline. Lower right:
the error for the fitted function

3.24 Bonneville STS

Bonneville STS has 3 different turbine types. The following table summaries the unit

characteristics of different turbines.

Table 8 Bonneville STS turbine generation characteristics

Unit9 | Unit1-8,10 | Unit 11-18
(TYPE1) | (TYPE2) | (TYPE3)

Maximum Generation (MW) | 62.5 63 80
Minimum Generation (MW) | 8 13.5 24
Maximum Flow (cfs) 17392 13814 22893
Minimum Flow (cfs) 3056 5011 10335

52



To approximation the generation function for Bonneville STS, 4 equally spaced
intervals were used and specified second derivative was calculated using first 3 and
last 3 points at two ends for the least square cubic spline. The results for 3 different

types are shown in Figure 30, 31 and 32 (take head=50ft for example).
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Figure 30 Bonneville STS unit type 1 Head=50, y = 34, SE=0.0565, R2=0.9999 (Concave)--Upper left:
the original generation versus flow G(q) shown as circles and the fitted least-square spline with
specified end condition. Upper right: the second derivative of spline generation function G”(q). Lower
left: the first derivative G’(q) and average generation G(q)/q of the spline. Lower right: the error for
the fitted function

For Bonneville STS type 2 and 3, the slope of the first few points is quite different
from the rest points, just like the case for Lower Monumental STS described in
Section 3.2.3. To approximate the generation function of these two types, first 8
points were deleted just like the way dealing with Lower Monumental STS. The

following figure 31 and 32 are for type 2 and 3 respectively.
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Figure 31 Bonneville STS unit type 2 Head=50, y = 35, SE=0.0690, R2=0.9999 (Concave)(delete first
8 points)--Upper left: the original generation versus flow G(q) shown as circles and the fitted least-
square spline with specified end condition. Upper right: the second derivative of spline generation

function G”(q). Lower left: the first derivative G’(q) and average generation G(q)/q of the spline.
Lower right: the error for the fitted function
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Figure 32 Bonneville STS unit type 3 Head=50, y = 60.25, SE=0.0973, R2=0.9999 (Concave)(delete
first 8 points)--Upper left: the original generation versus flow G(q) shown as circles and the fitted
least-square spline with specified end condition. Upper right: the second derivative of spline
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generation function G”(q). Lower left: the first derivative G’(q) and average generation G(q)/q of the
spline. Lower right: the error for the fitted function

Notice that, for these 3 types, a range of flow for each of them with the second
derivative close to 0 exists. Also the second derivative of the whole flow range is no
bigger than 10 to the minus 6. It means that the slope is almost constant in the
whole range. It also shows in the average generation plot for each type, it is almost a
straight line, which means the efficiency doesn’t change a lot in the whole range. It

adds difficulty for us to find EAOP and the same time makes the result less accurate.

3.3 Comparison between cubic splines and quadratic splines

Take Chief Joseph type 1 head = 170ft for example and set the interval numbers to
be six. Figure 33 and 34 are the results of least square curve fitting using cubic and

quadratic splines respectively.
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Figure 33 Cubic spline approximation for Chief Joseph unit type 1 head = 170ft. Upper left:
approximation function and original data points. Upper right: second derivative of approximation
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generation function. Lower left: the first derivative and average generation. Lower right: the error for
the fitted function. Lower right: the error for the fitted function.
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Figure 34 Quadratic spline approximation for Chief Joseph unit type 1 head = 170ft. Upper left:
approximation function and original data points. Upper right: the error for the fitted function. Lower:
the first derivative and average generation.

As we could see, the fitted function using quadratic spline goes away from the
original data at the end part, also the magnitude for residual using quadratic spline
is much larger than that using cubic spline, so it is clear that the error for cubic
spline is smaller than that of quadratic spline, in this aspect we could conclude that
cubic spline is a ‘better’ fit for the data. However, as the data itself has some strange
wiggles which accounts for the negative to positive jump in the second derivative of
the cubic spline approximation function. That is to say that cubic spline takes into
consideration too much unimportant information in the given raw data. On the
contrary, the first derivative of the quadratic spline approximation function

decreases from 0.017 to 0.006 without unnecessary fluctuations. In this aspect, we
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could conclude that quadratic spline is a ‘better’ fit which seizes the principal trend

and identifies its primary and secondary aspect.

Also, for Chief Joseph type 1, head from 155 ft to 185 ft, the efficient average

operating point plot as a function of head using both methods are shown in Figure

35 and 36.
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Figure 35 Generation as a function of flow for head from 155 ft to 185 ft and EAOP plot using cubic
spline approximation for Chief Joseph unit type 1.
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Figure 36 Efficient average operating point plot using quadratic spline approximation for Chief
Joseph unit type 1.

As we could see, EAOP plot is another way to prove that quadratic spline

approximation is much more helpful in getting rid of useless wiggle.

In order to see clearly the trend of the original data, empirical first derivative,
average generation and EAOP are calculated and shown in the following figure.
When comparing figure 37 and 38 with figure 33 to 36, it is surprising to see that
figure 37 is very similar with the upper left part in figure 33 and figure 38 is very

similar with the right part in figure 35. On the whole, we could conclude that cubic

spline is much better.
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Figure 37 Empirical first derivative and average generation for Chief Joseph unit type 1 head = 170ft.
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Figure 38 Empirical EAOP plot for Chief Joseph unit type 1.
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3.4 Powerhouse generation function
3.4.1 Economic Dispatch Algorithm Using Polynomial Generation Function
Generation function:
Assume the generation function for a unit is of S shape, which is:
G(q) = axq*x(qo — q)

We also assume there are 3 different turbine type and each type has 4 different

units, also the efficiency at EAOP is ordered from big to small, 1>2>3.

Generation A\ |

o

A B C D E F Flow

Figure 39 powerhouse curve example: number in the figure refer to part, character refer to total flow
of certain point
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Powerhouse function:

As for the case with three different turbine types, the powerhouse function will have
6 different parts, three constant slope parts with two transition parts between the

first two and the last two and a final part (Figure 37).

In part 1 and 2, only type 1 units are operating, but only in part 1 they are operating

at its EAOP4, so A is 4 times EAOP.

Part 1: when the flow is less than EAOP4, only one unit of type 1 is operating a
fraction of time at its EAOP;. When the flow is between EAOP; and 2 times
EAOP1, one unit of type 1 is operating full time and another unit of type 1 is
operating a fraction of time both at their EAOP;...Things go on till 4 units

operate full time at their EAOP1.

Part 2: this is the transition part from type 1 to type 2. In this part, type 1 will

operate over its EAOP;, till ¢, [, which is

, G(EAOP,)
Gl (ql [2]) = TOPZ

as shown in the below figure. So all the units of type 1 will operate full time
with flow increasing from EAOP; to q;/?!. And the powerhouse curve will

follow the generation function of turbine type 1.
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Figure 40 first derivative and average generation in one plot for type 1 and 2

Part 3: all the units of type 1 will operate full time at g, 2. When the flow is less than
ki times g;?! plus EAOP>, only one unit of type 2 is operating a fraction of time
at its EAOP,. When the flow is between ki times g, 2] plus EAOP and k; times
q.'?! plus 2 times EAOP;, one unit of type 2 is operating full time and another
unit of type 2 is operating a fraction of time both at their EAOP;...Things go on

till nz units of type 2 operate full time at their EAOP:.

Part 4: this is the transition part from type 2 to type 3. In this part, both type 1 and

type 2 will operate over its EAOP, till g, 3! and g,3, respectively, which is

) ) G(EAOP,)
61 () = G5(q,P®) = WP;

as shown in the below figure. So all the units of type 1 and 2 will operate full
time with flow increasing from q;/?! to ¢;[3!, EAOP, to q,!3!. And the
powerhouse curve will follow:

Max:4%xG1(q,) + 4%XG,(q5)
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s.t.4Xq, + 4Xq, = current flow

here, q: is the flow through one unit of type 1 and q is the flow through one

unit of type 2.

G EAopl)/EAoplA A

G G(EAOP,)/EAOP;

Jx

JQy

> >

Type 1 Type 2 Type 3

Figure 41 first derivative and average generation in one plot for type 1, 2 and 3

Part 5: all the units of type 1 and 2 will operate full time at g2 and g3, respectively.

When the flow is less than

4xq, 3 + 4xq,13 + EAOP,

only one unit of type 3 is operating a fraction of time at its EAOP3. When the

flow is between

4xq,131 + 4xq,3 + EAOP; and 4xq,13] + 4xq,3! + 2xEAOP,

one unit of type 3 is operating full time and another unit of type 3 is operating
a fraction of time both at their EAOP3...Things go on till 4 units of type 3

operate full time at their EAOP3.

Part 6: all the units of the three types will operate over its EAOP till all of them reach

their capacity.
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Calculation:

The following table summarizes EAOP for each turbine type:

Table 9 summary of EAOP for each turbine type

Type 1(4) | Type 2(4) | Type 3(4)

EAOP(cfs) 13000 9000 7000

Max flow(cfs) | 17000 12000 10000

We assumes their generation function are:
G;(q) = 0.03%xg*%x(26000 — q)/10°
G,(q) = 0.05%@?%x(18000 — q)/10°

Gs(q) = 0.07xq2Xx (14000 — q)/10°

Generation plot of three types
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Figure 42 generation plot for the three different types

If only Type 1 is operating
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Generation for one unit = 0.03x13000%x (26000 — 13000)/10°= 65.91 MW.

So,a=(4x13000,4%65.91) should be on power function curve.

The Switch Point (SP) of unit 1 to unit 2 should be:

2x0.03xq%x26000 — 3x0.03%xg>
10°

= (0.05x180002)/(4x10%)

Using excel Solver, get answer for the above equation, g, (% = 14154 cfs.

The corresponding power should be:

0.03x14154%%(26000 — 14154)/10°= 71.20 MW.

So, b =(4%x14154,4x71.20) should be on power function curve.

Between a and b, the curve follows the Generation function

G = 4XG; = 4x0.03xq2X(26000 — q)/10°

In which, q equal to current flow divided by 4.

After Type 2 is brought on line

Generation for one unit = 0.05x90002x (18000 — 9000)/10°= 36.45 MW.

So, ¢ = (xp +4%9000, y, + 4x36.45) should be on power function curve.

The SP of unit 2 to unit 3 should be:
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G’—G’—G3
2 1 q

2x0.05xq,x18000 — 3x0.05xq5  2x0.03Xq;%26000 — 3x0.03Xq}

10° 10°

= (0.07x140002)/(4x10%)

Using excel Solver, get answer for the above equation, which is g,[3 = 9624 cfs,

q.131=14749 cfs.

The corresponding power should be:
0.03x14749%2x (26000 — 14749)/10°= 73.42 MW.
0.05X96242x (18000 — 9624)/10° = 38.79 MW.

So, d = (4X14749 + 4X9624,4x73.42 + 4x38.79) should be on power

function curve.
Between c and d, the curve maximizes the Generation function
Max: G =4XG,; + 4XG,q

18000 — q

oo+ 0.03Xq§x (26000 — g;)/10°

= 4x0.05Xq5 X

in which, 4Xq, + 4Xq, equal to the current flow.
After Type 3 is brought on line

Generation for one unit = 0.07x70002x (14000 — 7000)/10°= 24.01 MW.
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So,e = (x4 +4%x7000,y,; + 4%x24.01) should be on power function curve.

So, the power function curve should look like that in figure 41:
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Figure 43 powerhouse function of this simple numeric example

The transitions are very short. For practical purposes, we could almost use linear
line connectors and solve the short-term scheduling problem with an Linear

Programming.

3.4.2 Powerhouse Generation Functions for Grand Coulee and Chief Joseph

In this section, two examples using economic dispatch algorithm are displayed.

For Grand Coulee, there are 4 different turbine types, 2 big ones and 2 small ones.
The following table summarizes EAOP and efficiency for each type (take 250ft for

examples).
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Table 10 EAOP and efficiency at EAOP of each type for Grand Coulee head=250 ft (the number in the
bracket is unit number)

Type 1(9) | Type 2(9) | Type 3(3) | Type 4(3)

EAOP(cfs) | 3585.23 | 3491.95 | 25954.93 | 27700.89

efficiency | 0.9094 0.9335 0.9191 0.9076

Since there are 4 turbine types, it should have 8 parts in the powerhouse function
plot as shown in Figure 42. The 8 parts contain 4 straight parts and 3 transition
parts and a final part. The slope of each straight part should be proportion to related
efficiency. As shown in the table, the turbine was ordered according to efficiency, so
type 2 should be operated first at its EAOP (first part in the figure). After the flow
reaches EAOP times unit number of type 2, type 2 units will operate full time with
flow over its EAOP and the powerhouse curve will follow the generation function of
turbine type 2(second part in the firgure). Then type 3 units begin to operate since
the efficiency of type 3 is the second highest. It first operates at its EAOP which is
third part in the figure then the flow through both type 2 and type 3 will increase
before the next turbine type is brought on line(the second transition part). Type 1
goes after type 3 then is type 4. After all the turbine types are operated, the flow will

increase to the sum of capacity of all the units(final part in the figure).

We could see that the second and fourth straight parts are longer than the other
two, it is because these two parts are for two bigger unit types. Also the three
transition parts are all very small, it is due to the small difference of efficiency

between every two adjacent types, never up to 1.5%.
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This powerhouse function is smooth and the first derivative of it is non-increasing.

It is convenience using this optimization function to do further calculation.
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Figure 44 Powerhouse function of Grand Coulee Head= 250 ft (Blue ‘o’ is the transfer parts and red
line is the straight part)

For Chief Joseph, there are 3 different turbine types and all of then do not have too
much difference in their sizes. The following table summarizes EAOP and efficiency

for each type. (take 170ft for examples).

Table 11 EAOP and efficiency at EAOP of each type for Chief Joseph head=170 ft (the number in the
bracket is unit number)

Type 1(6) | Type 2(10) | Type 3(11)
EAOP(cfs) | 5895.90 | 5544.35 6680.16
efficiency | 0.8764 0.8692 0.9170

Same as Grand Coulee, the powerhouse function for Chief Joseph also has straight

parts, transition parts and a final part. The obvious difference between these two
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powerhouse functions is that the transition part for Chief Joseph is much longer. It is
because that the difference of efficiency between type 1 and type 3 is 4%, much
bigger than 1.5% for Grand Coulee. So in order to make the first derivative of
powerhouse function smooth, when switching turbine type from one to another, the
first derivative of the generation function of the first type should drop to that of the

second type at its EAOP. 4% is a relatively long way to go compared to 1.5%.
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Figure 45 Powerhouse function of Chief Joseph Head= 170 ft (Blue ‘0’ is the transfer parts and red
line is the straight part)

3.4.3 Powerhouse Generation Functions with Fish Dispatch

For Bonneville, most of the time, the turbines are operating according to Table BON-
14 PH2(Powerhouse2)-Priority (give PH-2 with units 11-18 priority; the PH-1 with

units 1-10) so the order is[Fish passage plan, 2012]:

11,18,12,17,13,14,15,16,1,10,3,6,2,4,5,8,7, 9.
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However, when adult and jack salmonid counts equal or exceed 30,000 fish per day
before August 31 or when adult and jack salmonid counts equal or exceed 25,000
fish per day after August 31, then the operating order is (Operate first 1 & 10 from

PH-1, then use PH-2 units, and finally use the remaining PH-1 units):

1,10,11,18,12,17,13,14,15,16,3,6,2,4,5,8,7, 9.

Also, if there is special instruction about PH1 priority (use first PH-1, and then PH-

2), so the operating order is:

1,10,3,6,2,4,5,8,7,9,11,18,12,17,13, 14, 15, 16.

From April 1 and October 31, we always need to use the +/- 1% efficiency rule.

So the economic dispatch needs to be modified to adjust the fish dispatch.
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CHAPTER 4 CONCLUSION

The methodology discussed in this paper provides two piecewise local curve fitting
with global continuity constraint methods, both of them can be easily programmed
in numerical calculation. Using piecewise least square approximation separately on
each interval is a much better fit for the trend of the actual data. For the Modified
Least Square Cubic Splines, adding the constraint of specified end conditions doesn’t
change the standard error very much. However, it provides a much better second
derivative model because it doesn’t have big jumps at the end. For the Quadratic
Splines, it has easy calculation formula. Also it neglects unimportant information in
the given raw data and seizes the principal trend. The performance of these two
approximation methods were evaluated and compared in this paper and Cubic
Splines fit the data much better. It is important to note that the user of this
methodology is not limited to approximate hydropower generation unit discussed

here.

Moreover, the paper, dealing with individual plant optimization issues,
implemented economic dispatch algorithm for ordering the dispatch of water to
different type of units with the goal of obtaining the most power for a given amount
of water dispatched and generated the powerhouse function for one reservoir. This
powerhouse function is smooth, continuous and the first derivative of it is non-
increasing. It is convenience using this optimization function to do further
calculation. So when it is used in further multi-reservoir optimization, it could

prevent termination at local optimized results.
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Further studies on this topic are warranted. This paper neglects fish dispatch which
is discussed in Fish Passage Plan. The Fish Passage Plan describes year-round
operation and maintenance activities at Corps mainstem hydroelectric projects in
the Federal Columbia River Power System that are coordinated through the Corps’
Fish Passage Operations and Maintenance so as to protect and enhance anadromous
and resident fish species listed as endangered or threatened under the Endangered
Species Act, as well as other resident and migratory fish species. Considering this,
the economic dispatch needs to be modified. Even though ordering the dispatch of

water is changed, the idea of power target discussed in this paper could still be used.

Further investigation into the economic dispatch algorithm used in this paper can be
expended upon. In this paper, we assume flexibility in operation is allowed which
means generation unit could operate for part of the time, based on what gives the
most efficient operation. However, if flexibility in operation is not allowed, if we
must consider shut down and start up problems of the turbine, we will certainly get
gaps within which the total flow cannot be passed through the units. How to deal
with this issue and how to generate powerhouse function based on this new

assumption needs to be studied.

With the ever increasing complexity of hydropower models, the demand for fast and
accurate approximation of unit generation function and optimization of powerhouse
function for one reservoir will surely increase. The methodology provided in this

paper will be a valuable tool not only in optimizing the hydropower plant
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considered in isolation but also in providing useful input in multi-reservoir, multi-

time optimization problems.
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APPENDIX

Matlab Code:

$command file

clear;

clc;

inputfile=xlsread( 'input file.xlsx');
[row,column]=size(inputfile);
[reservoir,n,index]=get_restype(inputfile);
data=xlsread('Unit Characteristics v3 Matlab.xlsx',reservoir);

%3%delete the row with NaN
[R,C]=size(data);
datanew=data(1l,:);
r=2;
while r<=R
c=1;
while isnan(data(r,c))==1 && c<C
c=c+1;
end
if c<C
datanew=[datanew;data(r,:)];
end
r=r+1;
end

typeno=(row-4)/2;%%type number
parange=zeros(inputfile(2,1)*(n+2),4);%%parametert+range+SE+R2+ybar
headno=zeros(1,typeno);%%head number

eaop=zeros(3*typeno,C-1);

for num=1l:typeno%%loop through all type
%%choose type
type=inputfile(5+(num-1)*2,1);

find the head for the indicated type in row r and end in row rl
datanew(:,1);
=length(datanew(:,1));
r=1;t=0;
while isnan(G(r))==0 || t<type-1
if isnan(G(r))==
r=r+1l;
else if isnan(G(r))==1
t=t+1l;r=r+1;
end
end
end
rl=r+1;
while rl<=R && isnan(G(rl))==
rl=rl+1;
end
rl=rl-1;
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H=datanew(r,2:C);
generation=datanew(r+l:rl,1);
F=datanew(r+1l:rl1,2:C);

%%delete NaN

head=H(1);

for h=2:C-1
if isnan(H(h))==

head=[head,H(h)];

end

end

h=length(head);

flow=F(:,1:h);

$%output: characteristic plot + EAOP(ans)
EAOP=char eaopplot(head, flow,generation,n,index,reservoir);

headpara=inputfile(6+(num-1)*2,:);%%read in head for certain type

headno(num)=1;% initialize number of head for each turbine type

while headno(num)<=column && isnan(headpara(headno(num)))==
headno(num)=headno(num)+1;

end

headno(num)=headno(num)-1;

[r,c]=size(EAOP);

eaop((num-1)*3+1:(num-1)*3+3,1:c)=EAQOP;

for I=1:headno(num)
Head=inputfile(6+(num-1)*2,T);

[range,ybar,SE,R2,para]=para_ fourplot(head,Head,generation,flow,index,n
)i
if num==
caseno=headno(1l)+headno(2)+headno(3)+I;
else if num==
caseno=headno(1l)+headno(2)+I;
else if num==
caseno=headno(1l)+I;
else if num==
caseno=I;
end
end
end
end
parange(caseno*(n+2)-1,1)=range(1l);
parange(caseno*(n+2)-1,2)=range(2);
parange(caseno*(n+2),1)=ybar;
parange(caseno*(n+2),2)=SE;
parange(caseno*(n+2),3)=R2;
for j=1:n
for k=1:4
parange( (caseno-1)*(n+2)+j,k)=para(j,k);
end
end
end
end
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xlswrite( 'EAOP.xlsx',eaop);
xlswrite( 'parameter+range.xlsx',6 parange);
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553553353353 35%3%%33%%333%3%%3%%%%%5%%%5%%%%
function [reservoir,n,index]=get restype(inputfile)

$%choose reservoir, interval from input file

$%reservoir is in string, n is the number of interval, index is for
interval equally spaced or small interval at two ends

$%choose reservoir

reservoirindex=inputfile(1l,1);

reservoir_array =
char('GrandCoulee', 'ChiefJoseph', 'LowerGraniteSTS', 'LowerGraniteNS', 'Li
ttleGooseSTS', 'LittleGooseNS', 'LowerMonumentalSTS', 'LowerMonumentalNS',
'IceHarborSTS', 'IceHarborNS', 'McNaryESBS', 'McNaryNS', 'JohnDaySTS', 'John
DayNS', 'TheDallesNS', 'BonnevilleSTS', 'BonnevilleNS');

reservoir = deblank(reservoir array(reservoirindex,:));

5855855335535 35%535%35%3%%3%%5%%%%%%5%3%5%35%35%333%3%%3%%53%%%%%5%%%5%%%
3855855835535 35%535%35%3%%35%53%%5%%%5%3%5%35%3%%333%33%53%%53%%5%%%5%%%5%%%
function EAOP=char eaopplot(head,flow,generation,n,index,reservoir)
$%input: reservoir name + unit type + interval number + interval
equally spaced or not

$%output: characteristic plot + EAOP(EAOP)

figure;

subplot(1,2,1);

$% characteristic plot

h=length(head);

for i=1:5:h
[1,j]=delete_nan(flow(:,i),generation);
plot(flow(1l+1l:j,i),generation(1l+1l:j), 'linewidth', 0.5)
hold on;

end

xlabel('flow(cfs) ')

ylabel('generation(MwW) ')

tit=strcat('characteristic plot for ',' ', reservoir);

title(tit)

$% calculate second derivative at two end, GO first point, Gl last

point
GO0=zeros(1l,h);
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Gl=zeros(1l,h);
for i=1:h
[1,j]=delete_nan(flow(:,i),generation);
$%G0 calculates left end, Gl calculate right using finite
difference
[GO(1i),G1l(1i)]=secondderi(flow(l+1l:j,1i),generation(l+1l:3j));
end

%% calculat EAOP

if index==
%% l.equally spaced
maxflow=zeros(1l,h);
e=zeros(1l,h);
eff=zeros(1l,h);
for i=1:h % for each of the head values for the turbine type

% read flow and generation data
[1,j]=delete_nan(flow(:,i),generation);

[maxflow(i),e(i),eff(i),para,ybar,SE,R2,residual ]=eaop indexl(generatio
n(l+l:j),flow(l+1l:j,i),head(h),G0(i),Gl(i),n);

end

EAOP=[head;maxflow;eff];

subplot(1,2,2);

plot(head,maxflow)

xlabel( 'head(ft)")

ylabel( 'EAOP(cfs) ')

tit=strcat('efficient average operating point');

title(tit)

$%2.small interval at two ends
else if index==
maxflow=zeros(1l,h);
e=zeros(1l,h);
eff=zeros(1l,h);
for i=1:h
[1,j]=delete_nan(flow(:,i),generation);

[maxflow(i),e(i),eff(i),para,ybar,SE,R2,residual ]=eaop index2(generatio
n(l+l:j),flow(l+1l:j,i),head(h),G0(i),Gl(i),n);
end
EAOP=[head;maxflow;eff];
subplot(1,2,2);
plot(head,maxflow)
xlabel( 'head(ft) ")
ylabel( 'EAOP(cfs) ')
tit=strcat('efficient average operating point');
title(tit)
end
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function [1,j]=delete_nan(flow,generation)
$delete the first and last few flow with no value
1=0;
while isnan(flow(1l+1l))==
1=1+1;
end
j=1;
while j<length(generation)&&isnan(flow(j+1l))==
J=j+1;
end

20000000000000000000000000000000000000000000 290000000
222229
20000000000000000000000000000000000

22222222 oo o009

222229

function [G0,Gl]=secondderi(Flow,Generation)

¢calculate second derivate at two ends

j=length(Flow);

G0=2*Generation(l)/((Flow(l)-Flow(2))*(Flow(l)-
Flow(3)))+2*Generation(2)/((Flow(2)-Flow(1l))* (Flow(2)-
Flow(3)))+2*Generation(3)/((Flow(3)-Flow(l))*(Flow(3)-Flow(2)));
Gl=2*Generation(j-2)/((Flow(j-2)-Flow(j-1))*(Flow(j-2)-
Flow(j)))+2*Generation(j-1)/((Flow(j-1)-Flow(j-2))*(Flow(Jj-1)-
Flow(j)))+2*Generation(j)/((Flow(j)-Flow(j-2))*(Flow(Jj)-Flow(j-1)));

9000900000000 0000
222229
20000000000000000000000000000000000

9000900000000 0000

222229
°

function
[maxflow,e,eff,para,ybar,SE,R2,residual ]=eaop_indexl(Generation,Flow, He
ad,G0,G1l,n)
$calculate EAOP for equally spaced interval
j=length(Flow) ;
ybar=0;
SSE=0;
SST=0;
residual=zeros(1l,j);
for r=1:j

ybar=ybar+Generation(r)/j;
end
Gnew=Generation;
interval=(Flow(j)-Flow(1l))/n;
b=[Flow(l):interval:Flow(Jj)];
para=zeros(n,4);
$%solve for the formula between the first two points
Flowl=Flow(l)+interval;
ml=1;
while Flow(ml)<Flowl

ml=ml+1;
end
g=zeros(ml,1);
A=[0,2,0,0;
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6*(Flow(ml)-Flow(1l)),2,0,0;
3*(Flow(ml)-Flow(1l))"2,2*(Flow(ml)-Flow(1l)),1,0;
(Flow(ml)-Flow(1l))"3, (Flow(ml)-Flow(l))"2, (Flow(ml)-Flow(l)),1];
B=[G0;0;0;0];
paral=A\B;
for r=1:ml
g(r)=paral(l)*(Flow(r)-Flow(l))"3+paral(2)*(Flow(r)-
Flow(1l))"2+paral(3)*(Flow(r)-Flow(1l))+paral(4);
Gnew(r)=Generation(r)-g(r);
end

$%solve for the formula between the last two points
Flow2=Flow(j)-interval;

m2=3j;

while Flow(m2)>=Flow2
m2=m2-1;

end

f=zeros(j-m2+1,1);
A=[6*(Flow(j)-Flow(m2)),2,0,0;
0,2,0,0;
0,0,1,0;
0,0,0,1];
B=[G1;0;0;07];
para2=A\B;
for r=1:j-m2+1
f(r)=para2(l)*(Flow(r+m2-1)-Flow(m2))"3+para2(2)*(Flow(r+m2-1)-
Flow(m2))"2+para2(3)*(Flow(r+m2-1)-Flow(m2))+para2(4);
Gnew(r+m2-1)=Generation(r+m2-1)-£f(r);
end

s = csape(b, ...
Gnew'/fnval(csape(b,eye(length(b)), 'var'),Flow'), 'var');

msl=zeros(1l,n);
mf=zeros(1l,n);

for k=1:n %k is the interval index

x=b(k):0.1:b(k+1);
N=length(b(k):0.1:b(k+1));
if k==
for i=1:4
para(k,i)=s.coefs(k,i)+paral(i);
end
else if k==
for i=1:4
para(k,i)=s.coefs(k,i)+para2(i);
end
else
for i=1:4
para(k,i)=s.coefs(k,1i);
end
end
end
for m=1:N
eval=evaluation(x(m),b(k),para(k,:));
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sl(m)=eval/x(m);
end
[msl(k),indexl]=max(sl);
mf (k)=x(indexl);
sl=zeros(1l,length(sl));
end

sl=zeros(1l,length(sl));
[e,index2]=max(msl);
maxflow=mf (index2);
eff=11.81*1000*e/Head;

for i=1:ml
[eval(i)]=evaluation(Flow(i),b(1l),para(l,:));
residual(i)=eval(i)-Generation(i);
SSE=SSE+(eval(i)-Generation(i))"2;
SST=SST+(eval(i)-ybar)"2;

end

for i=ml+l:m2-1
residual(i)=fnval(s,Flow(i))-Generation(i);
SSE=SSE+(fnval(s,Flow(i))-Generation(i))"2;
SST=SST+(fnval(s,Flow(i))-ybar)"2;

end

for i=m2:j
eval(i)=evaluation(Flow(i),b(n),para(n,:));
residual(i)=eval(i)-Generation(i);
SSE=SSE+(eval(i)-Generation(i))"2;
SST=SST+(eval(i)-ybar)"2;

end

SE=sqrt(SSE/Jj);
R2=1-SSE/SST;

200000000000000000000000000000000000000000000000000000000000000003000000
222229
200000000000000000000000000000000000000000000000000000000000000003000000

222229
°

function
[maxflow,e,eff,para,ybar,SE,R2,residual ]=eaop_index2(Generation,Flow, He
ad,G0,G1l,n)
%calculate EAOP for small interval at two ends
j=length(Flow) ;
ybar=0;
SSE=0;
SST=0;
residual=zeros(1l,j);
for r=1:j
ybar=ybar+Generation(r)/j;
end

Gnew=Generation;
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interval=(Flow(j-1)-Flow(2))/(n-2);
b=[Flow(l),Flow(2):interval:Flow(j-1),Flow(]j)];

$%solve for the formula between the first two points
g=zeros(2,1);
A=[0,2,0,0;
6*(Flow(2)-Flow(1l)),2,0,0;
3*(Flow(2)-Flow(1l))"2,2*(Flow(2)-Flow(1l)),1,0;
(Flow(2)-Flow(1l))"3, (Flow(2)-Flow(1l))"2, (Flow(2)-Flow(l)),1]1;
B=[G0;0;0;0];
paral=A\B;
for r=1:2
g(r)=paral(l)*(Flow(r)-Flow(l))"3+paral(2)*(Flow(r)-
Flow(1l))"2+paral(3)*(Flow(r)-Flow(1l))+paral(4);
Gnew(r)=Generation(r)-g(r);
end

¢solve for the formula between the last two points
=zeros(2,1);
A=[6*(Flow(]j)-Flow(j-1)),2,0,0;
0,2,0,0;
0,0,1,0;
0,0,0,1];
B=[G1;0;0;0];
para2=A\B;
for r=1:2
f(r)=para2(l)*(Flow(r+j-2)-Flow(j-1))"3+para2(2)*(Flow(r+j-2)-
Flow(j-1))"2+para2(3)*(Flow(r+j-2)-Flow(j-1))+para2(4);
Gnew(r+j-2)=Generation(r+j-2)-f(r);
end

s = csape(b,
Gnew'/fnval(csape(b,eye(length(b)), 'var'),Flow'), 'var');

msl=zeros(1l,n);
mf=zeros(1l,n);

sl=zeros(1l,round(1l0*interval));

for k=1:n %k is the interval index
x=b(k):0.1:b(k+1);
N=length(b(k):0.1l:b(k+1));
if k==
para(k,:)=s.coefs(k,:)+paral;
else if k==
para(k,:)=s.coefs(k,:)+para2;
else para(k,:)=s.coefs(k,:);
end
end
for m=1:N
[eval(m) ]=evaluation(x(m),b(k),parameter);
sl(m)=eval(m)/x(m);
end
[msl(k),indexl]=max(sl);
mf (k)=x(indexl);
sl=zeros(1l,length(sl));
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end

sl=zeros(1l,length(sl));
[e,index2 ]=max(msl);
maxflow=mf (index2);
eff=11.81*1000*e/Head;

for i=1:2
[eval(i)]=evaluation(Flow(i),b(1l),para(l,:));
residual(i)=eval(i)-Generation(i);
SSE=SSE+(eval(i)-Generation(i))"2;
SST=SST+(eval(i)-ybar)"2;

end

for i=3:j-2
residual(i)=fnval(s,Flow(i))-Generation(i);
SSE=SSE+(fnval(s,Flow(i))-Generation(i))"2;
SST=SST+(fnval(s,Flow(i))-ybar)"2;

end

for i=j-1:j
[eval(i) ]=evaluation(Flow(i),b(n),para(n,:));
residual(i)=eval(i)-Generation(i);
SSE=SSE+(eval(i)-Generation(i))"2;
SST=SST+(eval(i)-ybar)"2;

end

SE=sqrt(SSE/Jj);
R2=1-SSE/SST;

AR R A AR EEE A A AR EEE A AL R EEE A AL EEE R AR AR EEE R AL EEE R AL EEE R LA EEEE ARttt t
333%%%
AR R A AR EE R A A AR EEE A AL R EEE A AL EEE R A AL R EEE A AL EEE A AR EEE A LA EEE LAttt
33%%%%

function eval=evaluation(x,x0,parameter)

¢evaluate cubic function value
eval=parameter(1l)*(x-x0)"3+parameter(2)*(x-x0)"2+parameter(3)*(x-
x0)+parameter(4);

%5550 03%%%%%5550%%%%%555533%%%%55553%%%%%%5593%%%%%%%9%9%%%%%%%%
$3%%%%

%5550 03%%%%%5550%%%%%%555%%%%%%%5553%%%%%%55%%%%%%%%%9%9%%%%%%%%
$3%%%%

function

[range,ybar,SE,R2,para]=para_ fourplot(head,Head,generation,flow,index,n
)

$%input: reservoir name + unit type + head + interval number + interval
equally spaced or not

¢%output: plot of G(q) + G'(g) + G"(g) + G/g, parameter for cubic
spline in each interval(para), EAOP(ans) and 1% efficiency
point(range).

$%find flow for indicated head and corresponding generation

&3



h=length(head);

hl=1;

while head(hl)~=Head && hl<h
hl=h1+1;

end

i=h1l;

[1,j]=delete nan(flow(:,i),generation);
Flow=flow(l+1l:j,1i);
Generation=generation(l+1l:j);

$%calculate second derivative at two end, GO first point, Gl last point
j=length(Generation);

ybar=0;
SSE=0;
SST=0;
residual=zeros(1l,j);
for r=1:j
ybar=ybar+Generation(r)/j;
end
[GO,Gl]=secondderi(Flow,Generation);

%l.equally spaced
if index==

[maxflow,eff,e,para,SE,R2,ybar,residual ]=eaop_indexl(Generation,Flow, He
ad,G0,G1l,n);
interval=(Flow(j)-Flow(1l))/n;
b=[Flow(l):interval:Flow(Jj)];
no=0;
for i=1:n
x=b(1i):0.1:b(i+1)-0.1;
N=length(x);
for j=1:N
or(j+no)=para(i,1)*(x(j)-b(i))"3+para(i,2)*(x(Jj)-
b(i))"2+para(i,3)*(x(j)-b(i))+para(i, 4);
fd(j+no)=3*para(i,l)*(x(j)-b(i))"2+2*para(i,2)*(x(]J)-
b(i))+para(i,3);
sd(j+no)=6*para(i,l)*(x(j)-b(i))+2*para(i,2);
avegen(j+no)=(para(i,1)*(x(j)-b(i))"3+para(i, 2)*(x(j)-
b(i))"2+para(i,3)*(x(j)-b(i))+para(i,4))/x(3);
end
no=no+N;
end
x=b(1l):0.1:b(1l)+(no-1)*0.1;

figure;

subplot(2,2,1);

plot(x,or)

xlabel('flow(cfs) ')

ylabel( 'generation(MwW) ')
tit=strcat('approximation generation function');
title(tit)

hold on;

plot(Flow,Generation, 'or')

hold off;
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subplot(2,2,3);

plot(x, £fd)

xlabel('flow(cfs) ')

tit=strcat('first derivative and average generation');
title(tit)

hold on;

plot(x,avegen, 'r')

hold off;

legend( 'first derivative', 'average generation')

subplot(2,2,2);

plot(x,sd)

xlabel('flow(cfs) ')
ylabel('d2G/dg2")
tit=strcat('second derivative');
title(tit)

subplot(2,2,4);
plot(Flow,residual)
xlabel('flow(cfs) ')
ylabel('f(flow)-G")
tit=strcat('residual');
title(tit)

$%find 1% point
[range]=point 1(e,maxflow,Flow,avegen,b,no);

ans=[Head;maxflow;eff];

%$%2.small interval at two ends
else if index==

[maxflow,eff,e,para,ybar,SE,R2,residual ]=eaop_index2(Generation,Flow, He
ad,G0,G1l,n);
interval=(Flow(j-1)-Flow(2))/(n-2);
b=[Flow(l),Flow(2):interval:Flow(j-1),Flow(]j)];
ans=[Head;maxflow;eff];

no=0;
i=1;
y=b(i):0.1:b(i+1)-0.1;
N=length(y);
for j=1:N
or(j+no)=para(i,1)*(y(j)-b(i))" 3+para(i,2)*(y(j)-
b(i))"2+para(i,3)*(y(j)-b(i))+para(i,4);
£d(j+no)=3*para(i,1)*(y(3)-b(i))"2+2*para(i,2)*(y(j)-
b(i))+para(i,3);
sd(j+no)=6*para(i,1)*(y(j)-b(i))+2*para(i,2);
avegen (j+no)=(para(i,1)*(y(j)-b(i))" 3+para(i,2)*(y(j)-
b(i))"2+para(i,3)*(y(3)-b(i))+para(i,4))/y(3);
end
no=no+N;
for i=2:n-1
x=b(1i):0.1:b(i+1)-0.1;
N=length(x);
for j=1:N
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or(j+no)=para(i,l)*(x(j)-b(i))"3+para(i,2)*(x(Jj)-
b(i))"2+para(i,3)*(x(Jj)-b(i))+para(i,4);
fd(j+no)=3*para(i,l)*(x(j)-b(i))"2+2*para(i,2)*(x(]J)-
b(i))+para(i,3);
sd(j+no)=6*para(i,l)*(x(j)-b(i))+2*para(i,2);
avegen(j+tno)=(para(i,l)*(x(j)-b(i)) " "3+para(i,2)*(x(]j)-
b(i))"2+para(i,3)*(x(Jj)-b(i))+para(i,4))/x(J);
end
no=no+N;
end
i=n;
z=b(1i):0.1l:b(i+1)-0.1;
N=length(z);
for j=1:N
or(j+no)=para(i,1)*(z(j)-b(i))" 3+para(i,2)*(z(j)-
b(i))"2+para(i,3)*(z(j)-b(i))+para(i, 4);
fd(j+no)=3*para(i,l)*(z(j)-b(i))"2+2*para(i,2)*(z(]j)-
b(i))+para(i,3);
sd(j+no)=6*para(i,l)*(z(j)-b(i))+2*para(i,2);
avegen(j+no)=(para(i,1)*(z(j)-b(i))"3+para(i,2)*(z(j)-
b(i))"2+para(i,3)*(z(j)-b(i))+para(i,4))/z(J);
end
no=no+N;
x=b(1):0.1:b(1l)+(no-1)*0.1;

figure;

subplot(2,2,1);

plot(x,or)

xlabel('flow(cfs) ')

ylabel( 'generation(MwW) ')
tit=strcat('approximation generation function');
title(tit)

hold on;

plot(Flow,Generation, 'or')

hold off;

subplot(2,2,3);

plot(x, £fd)

xlabel('flow(cfs)"')

tit=strcat('first derivative and average generation');
title(tit)

hold on;

plot(x,avegen, 'r')

hold off;

legend( 'first derivative', 'average generation')

subplot(2,2,2);

plot(x,sd)

xlabel('flow(cfs) ')
ylabel('d2G/dg2"')
tit=strcat('second derivative');
title(tit)

subplot(2,2,4);

plot(Flow,residual)
xlabel('flow(cfs) ')
ylabel('f(flow)-G")
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tit=strcat('residual');
title(tit)

$%find 1% point
[range]=point 1(e,maxflow,Flow,avegen,b,no);

20000000000000000000000000000000000000 0 9900000000000 00300 0

222229

222229

$powerhouse function of economic dispatch

clear;

clc;

inputfile=xlsread('PH input file.xlsx');
[reservoir,n,index]=get_restype(inputfile);

[unit no]=get unitno(inputfile);

Head=inputfile(2,1);

data=xlsread('Unit_Characteristics_v3_ Matlab.xlsx',reservoir);

%3%delete the row with NaN
[R,C]=size(data);
datanew=data(1l,:);
r=2;
while r<=R
c=1;
while isnan(data(r,c))==1 && c<C
c=c+1;
end
if c<C
datanew=[datanew;data(r,:)];
end
r=r+1l;
end

type_no=type no(datanew);

$result store all the useful parameters(EAOP,eff,para,b)
result=zeros(type_no*(n+2),5);

efficiency=zeros(1l,type no);

for type=l:type_no%%loop through all type

ind the head for the indicated type in row r and end in row rl

%

$3f
G=datanew(:,1);
R=length(datanew(:,1));
r=1;t=0;
while isnan(G(r))==0 || t<type-1
if isnan(G(r))==
r=r+1l;

else if isnan(G(r))==1
t=t+1l;r=r+1;
end
end
end
rl=r+1;
while rl<=R && isnan(G(rl))==
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rl=rl+1;
end
rl=rl-1;

H=datanew(r,2:C);
generation=datanew(r+l:rl,1);
F=datanew(r+1l:rl1,2:C);

%%delete NaN

head=H(1);

for h=2:C-1
if isnan(H(h))==

head=[head,H(h)];

end

end

h=length(head);

flow=F(:,1:h);

$%find flow for indicated head and corresponding generation

hl=1;

while head(hl)~=Head && hl<h
hl=h1l+1;

end

i=h1l;

[1,j]=delete_nan(flow(:,1),generation);
Flow=flow(l+1l:j,1i);
Generation=generation(l+1l:j);

$%calculate second derivative at two end, GO first point, Gl last
point

[GO,Gl]=secondderi(Flow,Generation);

$%EAQOP

%%1l.equally spaced

if index==

[maxflow,e,eff,para,SE,R2,ybar,residual ]=eaop_indexl(Generation,Flow, He
ad,G0,Gl,n);
interval=(Flow(j-1)-Flow(1l))/n;
b=[Flow(l):interval:Flow(j-1)1;
%%2.small interval at two ends
else if index==

[maxflow,e,eff,para,ybar,SE,R2,residual ]=eaop_index2(Generation,Flow, He
ad,G0,G1l,n);
interval=(Flow(j-1-1)-Flow(2))/(n-2);
b=[Flow(l),Flow(2):interval:Flow(j-1-1),Flow(j-1)1;
end
end
result((n+2)*type,1l)=type;
result((n+2)*type,2)=maxflow;
result((n+2)*type,3)=eff;
result((n+2)*type, 4)=e;
result((n+2)*(type-1)+1l:(n+2)*(type-1)+n+l,1)=b';
result((n+2)*(type-1)+1l:(n+2)*(type-1)+n,2:5)=para;
efficiency(type)=eff;
end
% operating order of different type
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order=zeros(1l,type_no);
[effnew,o0]=sort(efficiency);
for i=l:type_no
order(i)=o(type_no+l-i);
end
$switch point
SP_no=0;
if type no~=1
for i=l:type no-1
SP_no=SP_no+i;
end
SP=zeros(1,SP_no);
for SP_index=1:SP_no
if SP_index==
resultl=result((order(l)-1)*(n+2)+l:order(l)*(n+2),
result2=result((order(2)-1)*(n+2)+l:order(2)*(n+2),
elseif SP_index<=3
resultl=result((order(SP_index-1)-
1)*(n+2)+1l:order(SP_index-1)*(n+2),:);
result2=result((order(3)-1)*(n+2)+1l:order(3)*(n+2),:);
elseif SP_index<=6
resultl=result((order(SP_index-3)-
1)*(n+2)+1l:order(SP_index-3)*(n+2),:);
result2=result((order(4)-1)*(n+2)+l:order(4)*(n+2),:);

1)
2);

end
SP(SP_index)=switchpoint(resultl,result2,n);
end
end
$powerhouse function
PH_part=2*type_no;

gpart 1
resultl=result((order(l)-1)*(n+2)+l:order(l)*(n+2),:);
[x1,yl]=straigut_ part(1l,resultl,order,unit no,n);

gpart 2
if type no==
[x2,y2]=part_2noSP(resultl,order,unit no,n);
x=[x1,x2];
y=[yl,y2];
plot(xl,yl,'r")
hold on;
plot(x2,y2, 'bo")
xlabel('flow(cfs) ')
ylabel( 'generation(MwW) ')
tit=strcat('powerhouse function');
hold off;
else
[x2,y2]=part_2(SP,resultl,order,unit no,n);
gpart 3
result2=result((order(2)-1)*(n+2)+l:order(2)*(n+2),:);
[x3,y3]=straigut_part(3,result2,order,unit no,n);

gpart 4

if type no==
[x4,y4]=part_4end(SP,resultl,result2,order,unit no,n);
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[X3new,y3new]=change_xy(x2,y2,x3,y3);
plot(xl,yl,'r")
hold on;
plot(x2,y2, 'bo")
plot(x3new,y3new, 'r')
plot(x4,y4, 'bo")
xlabel('flow(cfs) ')
ylabel( 'generation(MwW) ')
tit=strcat('powerhouse function');
hold off;
x=[x1,x2,x3new,x4];
y=[yl,y2,y3new,y4];
else
result3=result((order(3)-1)*(n+2)+1l:order(3)*(n+2),:);
[x4,y4]=part_4(SP,resultl,result2,result3,order,unit _no,n);
%part 5

[x5,y5]=straigut part(5,result3,order,unit no,n);
gpart 6
if type no==

[x6,y6]=part_6end(SP,resultl,result2,result3,order,unit no,n);
[X3new,y3new]=change_xy(x2,y2,x3,yY3);
[X5new,y5new]=change_xy(x4,y4,x5,y5);
plot(xl,yl,'r")
hold on;
plot(x2,y2, 'bo")
plot(x3new,y3new, 'r')
plot(x4,y4, 'bo")
plot(x5new,y5new, 'r')
plot(x6,y6, 'bo")
xlabel('flow(cfs)"')
ylabel('generation(MwW) ')
tit=strcat('powerhouse function');
hold off;
x=[x1,x2,x3new,x4,x5new,x6];
y=[yl,y2,y3new,y4,y5new,y6];

else
resultd=result((order(4)-1)*(n+2)+l:order(4)*(n+2),:);

[x6,y6]=part_6(SP,resultl,result2,result3,resultd4,order,unit no,n);
part 7
[x7,y7]=straigut_part(7,result4,order,unit no,n);
gpart 8

[x8,y8]=part_8end(SP,resultl,result2,result3,resultd4,order,unit no,n);
[X3new,y3new]=change_xy(x2,y2,x3,yY3);
[X5new,y5new]=change_xy(x4,y4,x5,y5);
[X7new,y7new]=change_xy(x6,y6,x7,yY7);
plot(xl,yl,'r")
hold on;
plot(x2,y2, 'bo")
plot(x3new,y3new, 'r')
plot(x4,y4, 'bo")
plot(x5new,y5new, 'r')
plot(x6,y6, 'bo")
plot(x7new,y7new, 'r')
plot(x8,y8, 'bo")
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xlabel('flow(cfs) ')
ylabel('generation(MwW) ')
tit=strcat('powerhouse function');
hold off;
x=[x1,x2,x3new,x4,x5new,x6,x7new,x8];
y=[yl,y2,y3new,y4,y5new,y6,y7new,y8];
end
end

end

figure;

plot(x,y)

xlabel('flow(cfs) ')

ylabel('generation(MwW) ')

tit=strcat('powerhouse function');
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