
MACHINE LEARNING FROM HUMAN
PREFERENCES AND CHOICES

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Karthik Raman

August 2015

c© 2015 Karthik Raman

ALL RIGHTS RESERVED

MACHINE LEARNING FROM HUMAN PREFERENCES AND CHOICES

Karthik Raman, Ph.D.

Cornell University 2015

This dissertation focuses on developing new machine learning models and al-

gorithms for the task of learning from data that originates from human-system

interactions i.e., the interactive learning paradigm. A wide array of modern

technologies involve significant interaction between the humans users and the

system. These technologies – which range from everyday applications such as

search engines and retail services, to more disruptive ones such as self-driving

cars and smart homes – can greatly benefit from the world knowledge implicit

in these human interactions. However, as a consequence of interactive learning

data being derived from observed human behavior, standard machine learning

models are a poor fit.

This thesis develops a fundamentally new approach to interactive learning.

The guiding principle in this dissertation is to jointly design the three key com-

ponents of interactive learning: the learning algorithm, the user behavioral

model and the feedback interventions.

The learning algorithms developed in this thesis strive to learn from prefer-

ence data in a robust manner. Furthermore, they come with theoretical perfor-

mance guarantees and are shown to work well in practice.

For sound learning from human interaction data, we need plausible mod-

els of user behavior while interacting with these systems. The approaches dis-

cussed here explicitly account for the different factors that impact the user deci-

sions, such as their motivations, expertise, skills, needs and decision context.

A unique advantage interactive learning systems possess is the ability to in-

tervene and alter the content presented to users so as to maximize learning. This

dissertation covers different examples that illustrate that even small changes can

greatly improve learning in these systems.

The potency of this joint design methodology is illustrated using different

interactive learning examples including: (a) a scholarly text search engine for

arxiv.org, that autonomously, robustly, and cost-effectively improve its per-

formance; (b) web search and recommender systems that can model and facil-

itate complex user tasks; and (c) peergrading.org, a peer-grading service

which collates grades from all the students in a principled manner.

BIOGRAPHICAL SKETCH

Karthik Raman was born in December 1988 in Mumbai in India. He completed

his undergraduate studies in May 2010 from the Indian Institute of Technology,

Bombay where he earned a Bachelor in Technology degree in the field of Com-

puter Science and Engineering. In the Fall of 2010 he began his Ph.D studies

at Cornell University in the Computer Science department under the tutelage

of Professor Thorsten Joachims. He received his Doctor of Philosophy degree

in Computer Science in August 2015, following which he joined Google as a

Research Scientist.

iii

This document is dedicated to all Cornell graduate students.

iv

ACKNOWLEDGEMENTS

First and foremost, I am immensely grateful to my wonderful advisor Dr.

Thorsten Joachims. He has always been there for me, sharing his sage advice on

matters both professional and personal. Starting from writing research papers

to designing good talks, he has always found time to guide me towards be-

coming a better researcher. I can honestly say that I have learned an enormous

amount under his brilliant tutelage. As I get ready to begin my professional ca-

reer, I sincerely hope that his supremely positive personality, bubbling passion

and seemingly endless energy rub off on me. Thank you Thorsten – without

you this would have never been possible!

I have been extremely fortunate to have such brilliant committee members

helping me through my PhD. Thank you very much Paul Bennett, Johannes

Gehrke and Robert Kleinberg for being such wonderful mentors. You have all

been a source of great inspiration for me. Working and collaborating with you

has been a wonderful experience for which I am truly grateful.

I also owe a great deal of thanks to my wonderful collaborators who have

shared ideas with me and engaged me in stimulating discussions. It has been

my privilege to get the opportunity to work with all you, starting from my won-

derful Cornell collaborators Pannaga and Adith, to my brilliant Microsoft and

Google collaborators Krysta, Susan, Chris, Evgeniy, Jeff, Kevin, Kevyn, Rani

and Wei amongst others.

I consider my decision to pick Cornell over other universities, as one of the

best decisions I have ever made. Under the tutelage of brilliant professors like

Claire, Lillian, Bobby, Jon, Peter and others I have gained holistic insights in the

fields of computer science and statistics. I have been highly fortunate to work

with the wonderful team at arXiv led by Paul G, which has helped me gain new

v

research insights and validate my research ideas.

I would also like to thank all my friends here at Cornell, for their wonderful

company throughout my stay at Ithaca. I am especially thankful for my great

friends in the Cornell Machine Learning and NLP Discussion Groups, who have

kept me on my toes and given me an opportunity to discuss my nascent ideas

and provided me honest feedback. I can sincerely say that I’m a wiser man after

all the spirited discussions we have had over the years. I’d like to add a special

shout-out to Adith, Amit, Anshumali, Chenhao, Hema, Jon, Ruben and Vikram

who helped me in numerous data annotation tasks and provided me detailed

feedback on paper drafts, conference presentations and research statements. I’d

also like to thank Nikos and Ainur who took me under their wing and showed

me the ropes around Cornell when I first got here.

I would also like to acknowledge all the institutions that helped support my

work over these past five years and enabled my research. I would specifically

like to thank Google, who graciously supported me via a PhD Fellowship; Ya-

hoo!, who helped get me started with my dissertation via a Key Scientific Chal-

lenge Award; the Cornell-Technion Research Fund and NSF who supported me

via their grant awards IIS-1247696, IIS-1217686, IIS-1142251, IIS-1012593, IIS-

0911036, IIS-0905467, IIS-0812091 and IIS-0713483.

Finally, none of this would have been possible without the love, support

and encouragement of my family, who have stood by me for the past five years

through thick and thin and kept me motivated. Words cannot do justice for the

gratitude I owe to my parents Raman and Bhuvaneshwari, grandparents and

my sister Aditi back home in India. Thank you very very much for everything! I

also am deeply in debt of my uncle Arun and aunt Subha, who have guided and

supported me and helped me re-energize myself over the numerous holidays I

vi

have spent with them at their place.

vii

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgements . v
Table of Contents . viii
List of Tables . xii
List of Figures . xiii

I Overview and Preliminaries 1

1 Introduction 2
1.1 Revealed Preferences: Learning from User Interactions by Intro-

ducing Interventions . 4
1.2 Complex Utilities: Learning Diversified Recommendations 6
1.3 Stated Preferences: Scaling up Student Evaluation 9

2 Background and Related Work 11
2.1 Interactive Learning . 11
2.2 Related Learning Paradigms . 12
2.3 User Behavior on Interactive Learning Systems 15
2.4 Ranking, Recommendation, Retrieval and Search 17

2.4.1 Learning to Rank . 17
2.4.2 Diversity . 18
2.4.3 Rank Aggregation . 21

II Using Feedback Interventions To Improve Learning 23

3 Learning from User Preferences: Coactive Learning 25
3.1 Related learning models . 26
3.2 Coactive Learning model . 28

3.2.1 Alpha Informativeness: A Feedback characterization . . . 29
3.3 The Preference Perceptron . 30
3.4 Case study: A live text search engine 31
3.5 Instability of the Preference Perceptron 33

3.5.1 Instability: Illustrative example 35
3.6 Adding Feedback Interventions: Stabilizing learning 37

3.6.1 Perturbed Preference Perceptron 39
3.6.2 Theoretical Analysis . 39

3.7 Perturbed Preference Perceptron for Ranking: 3PR 42
3.7.1 ArXiv User Study Results 44

3.8 Experiments on Benchmark Data 45

viii

3.8.1 What is the Generalization Performance of the Perturbed
Preference Perceptron? . 47

3.8.2 How does the Perturbed Ranking Compare to the Opti-
mal Prediction? . 49

3.8.3 How much Perturbation is Needed? 50
3.8.4 Can we Automatically Adapt the Perturbation Rate? . . . 50
3.8.5 Effect of Noise on the Perturbed Preference Perceptron . . 51

3.9 Summary . 52

III Modeling Complex User Behavior 53

4 Exploring Intrinsic Diversity in Web Search 55
4.1 Intrinsically Diverse Tasks . 58

4.1.1 Mining intrinsically diverse sessions 59
4.2 Predicting Intrinsically Diverse Task Initiation 63

4.2.1 Experimental Setting . 63
4.2.2 Can we predict ID task initiation? 65
4.2.3 Which features were most important? 66

4.3 Re-ranking for intrinsic diversity 67
4.3.1 Ranking via Submodular Optimization 68

4.4 Reranking Evaluation . 72
4.4.1 Experimental Setup . 72
4.4.2 Results . 75

4.5 Summary . 76

5 Coactively Learning Intrinsic Diversity 77
5.1 Modeling Relevance and Diversity 78
5.2 Coactive Learning Algorithms for Intrinsic Diversity 81

5.2.1 Diversified Perceptron . 82
5.2.2 Exponentiated Algorithm 85

5.3 Empirical Study . 86
5.3.1 Experiment Setup . 87
5.3.2 Can the algorithm learn to diversify? 88
5.3.3 What is the effect of feedback quality? 90
5.3.4 What is the robustness to noise? 91
5.3.5 Learn the desired amount of diversity? 92
5.3.6 Exponentiated algorithm 94
5.3.7 How do the three algorithms compare? 95

5.4 Summary . 95

6 Learning Extrinsic Diversity from User Interactions 96
6.1 Learning Problem and Model . 98

6.1.1 Learning Problem . 99

ix

6.1.2 Submodular Utility Model 101
6.2 Social Learning Algorithms . 103

6.2.1 Social Perceptron for Rankings (SoPer-R) 103
6.2.2 Social Perceptron for Sets (SoPer-S) 106

6.3 Empirical Evaluation . 108
6.3.1 Experiment Setup . 108
6.3.2 Can we learn to diversify for a single query? 110
6.3.3 Can we learn a cross-query model for diversification? . . 111
6.3.4 How robust are the algorithms to misspecification of the

model? . 114
6.3.5 Is the method robust to noise in the feedback? 115

6.4 Summary . 116

7 Adding Interactivity to Rankings: Dynamic Rankings 117
7.1 Two-Level Dynamic Rankings . 119
7.2 Performance Measures for Diversified Retrieval 121

7.2.1 Measures for Static Rankings 122
7.2.2 Measures for Dynamic Rankings 123

7.3 Computing dynamic rankings . 123
7.4 Learning Dynamic Rankings . 125
7.5 Empirical Study . 128

7.5.1 Controlling Diversity and Depth 128
7.5.2 Static vs. Dynamic Ranking 130
7.5.3 Learning Two-level Ranking Functions 132

7.6 Summary . 134

IV Using Stated Preferences to Scale Student Evaluation 136

8 Ordinal Peer Grading 138
8.1 The Peer Grading Problem . 140
8.2 Relation to Prior Work . 143

8.2.1 Prior work on Peer Grading 144
8.3 Ordinal Peer Grading Methods . 145

8.3.1 Mallows Model (MAL and MALBC) 146
8.3.2 Score-Weighted Mallows (MALS) 148
8.3.3 Bradley-Terry Model (BT) 149
8.3.4 Thurstone Model (THUR) 150
8.3.5 Plackett-Luce Model (PL) 151
8.3.6 Grader Reliability Estimation for all Methods 151

8.4 Evaluation . 153
8.4.1 Data Collection in Classroom Experiment 153
8.4.2 Evaluation Metrics . 157

x

8.4.3 How well do Ordinal and Cardinal Peer Grading methods
predict the final grade? . 158

8.4.4 How does Peer Grading Compare to TA Grading? 159
8.4.5 How does Grading Accuracy Scale with the Number of

Peer Reviews? . 163
8.4.6 Can Peer Grading Methods Identify Unreliable Graders? . 164
8.4.7 How Robust are Peer Grading Methods to Lazy Graders? 165
8.4.8 Can Ordinal Grading Methods estimate Cardinal Grades? 166
8.4.9 How Efficient are the Peer Grading Methods? 167
8.4.10 Do Students Value Peer Grading? 168

8.5 Bayesian Ordinal Peer Grading . 170
8.5.1 Mallows MCMC using Metropolis-Hastings 172
8.5.2 Evaluating Bayesian Mallows MCMC 175

8.6 Summary . 180

V Conclusions 182

9 Implications of working with Human Decision Data 183

A Further Details and Proofs 186
A.1 Proofs . 186

A.1.1 Proof of Theorem 3 . 186
A.1.2 Proof of Corollary 4 . 187
A.1.3 Proof of Theorem 5 . 187
A.1.4 Proof of Proposition 6 . 188
A.1.5 Proof of Proposition 7 . 188
A.1.6 Proof of Theorem 9 . 190
A.1.7 Proof of Corollary 10 . 191
A.1.8 Proof of Theorem 11 . 192
A.1.9 Proof of Lemma 13 . 193
A.1.10 Proof of Theorem 15 . 194

A.2 Additional Details of arXiv User Study 196

Bibliography 197

xi

LIST OF TABLES

3.1 NDCG@5 of presented and perturbed rankings after maximum
number of iterations. 49

4.1 Examples of intrinsically diverse search tasks, showing the first
(initiator) query and the following (successor) queries from the
same search session. 55

4.2 Features used for identification of initiator queries along with
cardinality, coverage and information as to whether they were
normalized or log transformed . 64

4.3 The 21 features used to train R(d|q). 73
4.4 Performance of different methods (as a ratio compared to the

Baseline) . 75
4.5 % of sessions for which the metric performance of DynRR differs

from the Baseline DCG@10 by more than a certain threshold. . . 75

5.1 Average Regret for different user and algorithm utility functions. 93

6.1 Summary of key properties of the TREC dataset. 109
6.2 Set and List Utilities (with standard error) when the two sub-

modular functions i.e., of the population (fixed for row) and the
algorithm (fixed for column) are mismatched. 113

6.3 Ranking performance in the presence of feedback noise. 115

7.1 Utility U(d j|ti) of document d j for intent ti. 120
7.2 Performance when optimizing and evaluating using different

performance measures for TREC. 130

8.1 Peer grading notation overview and reference. 142
8.2 Summary of ordinal methods studied which model the grader’s

reliabilities, including the ability to output cardinal scores and if
the resulting objective is convex in these scores. 153

8.3 Statistics for the two datasets (PO=Poster, FR=Report) from the
classroom experiment along with the staff (TAs/Meta/Instructor)
and student grade distributions. 155

8.4 Cardinal error measures indicating how well the peer grading
methods (& TAs) predict the Instructor/Meta grades. 167

8.5 Average runtime (and std. deviation) of different methods (with
and w/o grader reliability estimation) in CPU seconds. 167

8.6 Response categories for survey questions. 169
8.7 Results of the student survey, coded as per Table 8.6. 169

xii

LIST OF FIGURES

2.1 Illustration of the interplay between an interactive learning sys-
tem and the users with a search engine as an example. 12

3.1 Example illustrating the arXiv full-text search engine interface
for a query svm. 33

3.2 Results of the user study showing the ratio of wins versus the
hand-tuned baseline for both the Preference Perceptron algo-
rithm [152] (labeled PrefP[top]) and the 3PR algorithm proposed
in this dissertation (Sec 3.7). 34

3.3 Number of common results in the top 10 for the same query
using two different models that are 100 learning iterations
apart(i.e., wt, wt+100). Results are binned over intervals of size
50 and averaged over 100 random queries. 35

3.4 Average affirmativeness of 3PR in user study. 45
3.5 Learning curves for all algorithms on Websearch (left), RCV1

(middle), and News (right). 47
3.6 NDCG@5 of the 3PR algorithm for different swap probabilities

and the dynamically adapted swap probability on Websearch
(left), RCV1 (middle), and News (right). 49

3.7 Change in average swap probability of the dynamic method
with ∆ = 0 low and high feedback noise. 51

3.8 Performance of PrefP[top], PrefP[pair] and 3PR at the maximum
number of iterations with and w/o feedback noise. 52

4.1 P-R curve for predicting ID task initiation (Left) & Change in
initiator classification performance with feature set (Right) 66

5.1 Comparison between the submodular (MAX) and independent
(LIN) model for users that are purely seeking diversity; top:
RCV-1, bottom: 20NG. 89

5.2 Effect of α on performance of the algorithm for users that are
purely seeking diversity; left: RCV-1, right: 20NG. 90

5.3 Effect of η on performance of the algorithm for users that are
purely seeking diversity (number in bracket indicates the effec-
tive α of the feedback); left: RCV-1, right: 20NG. 91

5.4 Exponentiated algorithm with different rates; left: RCV-1, right:
20NG. 94

5.5 Comparison of the three algorithms; left: RCV-1, right: 20NG. . . 94

6.1 Illustrative example showing different user preferences. 98

xiii

6.2 Performance of different methods for single-query learning to
diversify. Performance is averaged over all queries, separately
considering Set Utility (Left) and List Utility (Right). Standard
error bars are shown in black. 110

6.3 Set (L) and List (R) Utilities for learning to diversify across queries.112

7.1 A user interested in the animal “jaguar” interacts with the first-
level ranking (left) and obtains second-level results (right). 118

7.2 Average number of intents covered (left) & average number of
documents for prevalent intent (right) in the first-level ranking. . 129

7.3 Comparing the retrieval quality of Static vs. Dynamic Rankings
for TREC (Top) and WEB (Bottom). 131

7.4 Performance of learned functions, comparing static & dynamic
rankings for TREC (Top) and WEB (Bottom). 133

8.1 Comparing peer grading methods (w/o grader reliability es-
timation) against Meta and Instructor Grades in terms of EK

(lower is better). 158
8.2 Comparing peer grading methods (w/o grader reliability esti-

mation) against TA Grades in terms of EK , using TA grades as
the target ranking. 160

8.3 Self-consistency of peer-grading methods (w/o grader reliability
estimation) in terms of EK . 162

8.4 Change in EK performance of peer grading methods (using Meta
and Instructor Grades as target ranking) when varying the num-
ber of assignments assigned to each reviewer for Posters (first
from left) & Reports (second), and when varying the number of
peer reviewers for Posters (third), Reports (last). 163

8.5 Percentage of times a grader who randomly scores and orders
assignments is among the 20 least reliable graders. 164

8.6 Change in EK (using Instructor and Meta Grades as target rank-
ing) for (Left) Posters and (Right) Final Reports with the ad-
dition of an increasing number of lazy graders i.e., EK(With
Lazy) − EK(Without Lazy). A negative value indicates that per-
formance improves on adding this noise. 166

8.7 An example of detailed grading information for each assign-
ment, including the posterior marginal distribution over position
in the overall ranking (rank on x-axis, marginal probability on
y-axis) along with statistics such as posterior mean, median &
marginal entropy. 170

8.8 EK performance of peer grading methods using the instructor
grades as the target rankings (lower value is better). 176

xiv

8.9 Average Overlap (solid green bars) of the 50% and 80% Bayesian
credible intervals with the instructor rank distribution, for the
intervals produced by the Mallows MCMC method. The red
striped bars denote the average size (width) of the interval (as
a percentage) of the overall ranking. 178

8.10 EK performance of the Bayesian point estimate rankings vs. ex-
pected performance of the posterior ranking distribution. 179

xv

Part I

Overview and Preliminaries

1

CHAPTER 1

INTRODUCTION

Intelligent user-facing systems have become part and parcel of our every-

day life. These technologies – which range from internet search engines and

online retailers to disruptive applications such as personal robots, online ed-

ucation platforms and self-driving cars – live in a symbiotic relationship with

their users - or at least they should. On the one hand, the human users greatly

benefit from the services provided by the systems as they assist them in their ev-

eryday life. On the other hand, these systems can greatly benefit from the world

knowledge that users communicate implicitly through their interactions with

these systems. These rich user interactions – queries, clicks, purchases,reviews,

answers, demonstrations, etc. – are one of the key sources of “Big Data” which

machine learning methods can leverage to greatly impact these systems in mul-

tiple ways.

First, these interactions providing enormous potential for economically and

autonomously optimizing these systems. Second, this user data carries rich

information about the personal preferences of individual users, which can be

utilized to improve the user experience via personalization. Third, these inter-

actions carry unprecedented amounts of world knowledge that can be used to

solve some of the hardest AI problems.

However, a key challenge in learning from this interaction data is that it does

not typically fit standard machine learning models. More specifically, user inter-

actions usually cannot directly be used as a substitute for ground truth labels, as

they are simply the observed result of complex decisions made by humans. Fur-

thermore, conventional learning techniques are unable to exploit the additional

2

experimentation and learning made possible dynamically via the interactive na-

ture of these systems.

This dissertation aims to provide solutions to this problem of learning from

human interaction data by introducing new machine learning models and al-

gorithms. The fundamental insight guiding this work is a new approach to the

interactive learning problem. Instead of solely designing just the learning al-

gorithm (as done in conventional machine learning), we will jointly design the

three key interactive learning components (the learning triple):

1. Learning algorithm: We need algorithms that can learn robustly from ob-

served preferences.

2. User behavioral model: To extract the user’s true preferences from their

interaction behavior we need to explicitly account for the different factors

that impact the user decisions – such as their motivations, expertise, skills,

needs and decision context.

3. Feedback intervention: A previously underutilized benefit of interactive

systems is the ability to dynamically intervene and make small changes in

what is presented to the user. Such changes can help ensure feedback that

is more conducive for learning as we illustrate in this dissertation.

This joint design approach has been utilized in this thesis to develop algo-

rithms that come with corresponding theoretical performance guarantees on

the learning quality and are practically viable. These ideas have also been

implemented and fielded in human-interactive learning systems – such as the

text search engine for arxiv.org – which autonomously, robustly, and cost-

effectively improve their performance.

3

1.1 Revealed Preferences: Learning from User Interactions by

Introducing Interventions

Traditional machine learning algorithms for information systems have relied on

expert annotated data (e.g., assessors are paid to rate search results on a Likert

scale). However a more economical source of data is the implicit feedback that

users provide through their interactions (e.g., clicks). The advantages of using

such feedback data are clear: this feedback is not only available in abundance,

but also directly indicates the users’ – not the experts’ – preferences. Consider,

for example web search, where such feedback is readily available as users scan

the results page and click on different search results, providing the system with

information about the goal-directed choices users make.

To learn from this weak feedback, Part II of this dissertation discusses Coac-

tive learning algorithms [140, 141] that explicitly incorporate models of how

boundedly rational users make decisions. Coactive learning is an online model

of interaction between a learning system and human user, where the goal is to

maximum user satisfaction. At each step, the system (e.g., search engine) re-

ceives a context (e.g., query) from the user. The system then predicts an object

(e.g., ranking) and presents it to the user. In response, the user’s interaction with

the system (e.g., via clicks) results in feedback about the presented object. This

feedback, however, does not reveal what would have been the optimal object to

present, but only provides an incremental improvement to the presented object.

For example, clicks on the search results B and D for the ranking [A, B,C,D, ...],

can help us infer that the user would have preferred the ranking [B, A,D,C, ...],

but not that it is the best possible ranking. More generally and in contrast to

4

standard machine learning where optimal feedback is required, coactive learn-

ing merely requires feedback that slightly improves on the presented object.

Furthermore, this user feedback can contain noise and be biased by factors such

as the presentation order.

To learn from this weaker form of preference feedback, which is readily

available from user interactions, this dissertation presents new techniques de-

veloped using the triple-based joint design for interactive learning. Chapter 3 il-

lustrates the importance of incorporating feedback interventions, into the learn-

ing system design. The resulting approaches, combine principled learning algo-

rithms with plausible models of user interaction and appropriate feedback in-

terventions. The interplay between these learning systems and boundedly ratio-

nal users leads to autonomous learning on-the-fly along with strong theoretical

guarantees. In particular, this thesis proves that the new algorithms converge

towards the optimal solution at a rate that is proportional to the square root of

the number of learning steps and independent of the dimensionality of the fea-

ture space. This result turns out to be particularly interesting given that these

convergence rates for learning from noisy, biased preferences, are asymptoti-

cally equivalent to the rates achieved by the best algorithms when the optimal

object is provided as feedback.

In addition to these guarantees, this thesis also provides empirical evidence

that establishes that well-designed coactive learning systems perform robustly

and accurately in real-world settings. In particular, results of studies with live

users [140] conducted on the experimental text search engine at arxiv.org (a

scientific repository for e-prints) are discussed. These studies demonstrate that

these algorithms can learn successfully from the interactions with users, opti-

5

mizing retrieval performance quickly and operating completely autonomously

without requiring any maintenance from the system designers.

1.2 Complex Utilities: Learning Diversified Recommendations

Another key component of the interactive learning triple is the user model. Pre-

vious approaches to these learning problems have made simplifying assump-

tions on the user model for the sake of learning. For instance, most search and

recommendation algorithms model the relevance1 of different items to be in-

dependent of other items in the ranking/recommendation list. However, these

simplifying assumptions rarely hold in practice. Part III aims to tackle this is-

sue by studying the use of principled learning algorithms in conjunction with

sophisticated user models that capture realistic behavior observed in users per-

forming complex informational tasks.

Diversified retrieval is one such example of a complex informational task,

where the goal is to provide a comprehensive set of results that are distinct and

cover the different needs of the users. Previous approaches to this problem

have had to make hand-coded choices between two factors: partially satisfying

all the different needs vs. specifically catering to the most common need. This

dissertation introduces methods that learn the right balance between these two

extremes by explicitly modeling the joint utility of a collection of items using

submodular functions.

Intrinsic Diversity is one of the problems for which we apply these joint mod-

eling techniques. In intrinsic diversification, the goal is to cover different aspects

1a commonly used proxy for user utility in search and recommendation problems

6

of the information need of a single user. For example, a user of a personalized

news system would not like to see exclusively articles about the Greek Financial

Crisis on any given day, even if this was the topic she was most interested in.

Instead, a diversified portfolio of news articles that covers all the interests of the

user would maximize the user’s overall utility.

Intrinsic Diversity is particularly prominent in web search, as a large frac-

tion of real-world search tasks are intrinsically diverse [19]. However, since

current research on web search has focused solely on optimizing and evaluat-

ing single queries, these complex tasks currently require significant user effort

via multiple interactions with the search engines. An ideal search engine would

not only retrieve relevant results for a user’s particular query, but also be able

to identify when the user is engaged in a more complex task and aid the user

in completing that task – whole-task relevance. Towards this goal, Chapter 4

details the first study of Intrinsic Diversity in the context of web search and pro-

vides algorithms that optimize for whole-task relevance [134, 135]. In particular

it addresses three key problems for Intrinsic Diversity (ID) retrieval: identifying

authentic instances of ID tasks from post-hoc analysis of behavioral signals in

search logs; learning to identify queries that mark the start of an ID search task;

and given an ID query, improving the search experience by predicting which

content to prefetch and rank using a joint model of the document relevances

and aspect relevance to the underlying task

Intrinsic Diversity can also be learned interactively on-the-fly as demon-

strated in Chapter 5. This thesis provides algorithms that continuously learn

both the relevance of items and the appropriate amount of diversity a user de-

sires. These algorithms learn from set-valued preference data derived from the

7

implicit feedback of user interactions using coactive learning [141]. Theoreti-

cal and empirical analysis of these algorithms again reveal convergence rates

equivalent to optimal feedback conditions, which has led to these algorithms

being deployed for recommending scientific articles.

Another problem that benefits from the joint modeling of the utility of a

set of items is Extrinsic Diversity. This problem arises when different users ex-

press different information needs via the same query, thus resulting in ambigu-

ity about the user intent. Diversification can be used here to provide relevant

results for all the distinct information needs of the users, thereby preventing

the most popular user intent from drowning out all other intents. Chapter 6

introduces coactive learning algorithms that can learn to diversify from user in-

teractions, unlike conventional algorithms that require explicit feedback. While

these algorithms [136] use submodular models similar to those in the case of in-

trinsic diversity, here we are optimizing the ranking for a distribution of utility

functions (as opposed to just a single utility function). In addition to strong the-

oretical bounds, these algorithms also display significantly faster convergence

than existing algorithms for single-query diversification. Furthermore, the algo-

rithms introduced here are the first known algorithms for the task of cross-query

diversification from implicit feedback.

While these extrinsic diversification methods mitigate the problem of com-

pletely missing the user’s intent, they are necessarily a compromise between

the breadth and the depth of coverage of each user intent. To overcome the

constraints of this compromise, Chapter 7 introduces a new dynamic retrieval

model that is not restricted to a single ranking [139]. The proposed model re-

places the single one-size-fits-all ranking with a two-level ranking, where the

8

second order rankings are conditioned on the user’s interactions with the top-

level ranking. Constructing these two-level rankings requires modeling di-

versity (in the top-level ranking) and relevance (in the second-level rankings),

which can be accomplished using a Structural SVM-based learning algorithm.

1.3 Stated Preferences: Scaling up Student Evaluation

Modeling how humans make decisions is essential not only for understanding

the preferences they reveal implicitly through their actions, but also for under-

standing the preferences they state explicitly. Part IV studies as an example of

learning from preferences, the problem of peer grading, where students grade

each other’s work. Peer grading is a promising approach for tackling the prob-

lem of student evaluation at scale, since the number of graders scales with the

number of students. However, students are not trained graders, which moti-

vates grading models that are more robust than asking students to assign letter

grades. To this effect, this dissertation investigates the eliciting of ordinal feed-

back (where the emphasis is on ordering different alternatives) from students as

feedback [137]. Under this feedback model, student graders make ordinal state-

ments (e.g., project X is better than project Y) as opposed to cardinal statements

(e.g., project X is a B-). The use of such ordinal feedback is preferable in such

a scenario as it is easier to provide and more reliable than cardinal feedback.

This dissertation covers different algorithms to aggregate this ordinal feedback

from individual graders to infer an overall grade for each assignment. The pro-

posed algorithms not only model the quality of the assignments, but also the

reliability of the different graders, since graders may have differing skills and

grading expertise. To demonstrate the applicability of these methods, results of

9

a user study conducted in a real university class are provided and discussed. In

particular, these results demonstrate the proposed techniques to be a viable al-

ternate to traditional evaluation techniques (instructor/TA grading). The study

also surveyed students to find that the overall peer-grading process was found

to be a helpful and valuable experience indicating the grading process to have

educational value as well.

To further increase adoption of these techniques, Bayesian tools can be used

to extend the aforementioned approaches to this (ordinal) peer grading prob-

lem [138]. By computing the Bayesian posterior of the ranking distribution,

course instructors receive more information about the uncertainty of each as-

signment’s aggregated grade. This information can be used for better interpret-

ing the resulting grades or for assigning additional graders to assignments with

high posterior entropy. The resulting techniques, which were deployed for use

at peergrading.org, have found use in multiple courses as well as in confer-

ence peer reviewing.

10

CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, we will first understand the interactive learning problem. We

will then understand other closely related learning problems. We will also delve

into work done on understanding user behavior in these interactive learning

systems. Lastly we will conclude with a summary of work on the most popular

well-studied learning applications: search and recommendation.

2.1 Interactive Learning

An interactive learning system is one which is constant constantly interacting

and learning from its’ user(s). Unlike traditional machine learning, the outputs

of an interactive learning system are typically objects that the users can interact

with (typically in a non-trivial manner) to find the information they seek and

complete the task they had in mind. This user interaction behavior also serves

the dual purpose of providing rich feedback to the system from which it can

learn, so as to improve its’ overall performance and efficacy.

This interplay between the interactive learning and the user is illustrated in

Figure 2.1 using the example of a search engine. Every time a search user issues

a query the search engine returns a complex object (in this case a ranking of the

search results), which the user can interact with. This user interaction in turn

provides meaningful feedback (say via what search results were clicked) for the

system to learn from and get better overall.

While prior work has mostly focused on developing improved learning al-

gorithms for these systems, this dissertation introduces a new way of designing

11

SYSTEM
(e.g., Search Engine)

USER(s)

Takes Action (e.g., Present ranking)

Interacts and Provides
Feedback (e.g., clicks on search results)

Figure 2.1: Illustration of the interplay between an interactive learning
system and the users with a search engine as an example.

these systems by jointly consider the user behavioral model and the feedback

interventions along with the learning algorithm. This joint design can lead to

principled learning systems that capture the best attributes of system and user

(while overcoming the shortcomings of the other), namely the system’s strong

computational capabilities and the rich world knowledge available to users.

2.2 Related Learning Paradigms

Supervised learning (or passive learning) is the classical learning paradigm

where given a dataset of expert-labeled examples, the goal of the learning al-

gorithm was to predict the output as accurately as possible. However these

classical algorithms are limited to being able to predict simple objects such as

a binary label (classification [81]), a number – either unconstrained (regression

[122]) or bounded (ordinal regression [54]).

Structured learning (or structured prediction) [84, 159, 162] on the other hand,

allows for learning systems to be able to predict more complex structures such

as lists, trees and arrays. These methods [83, 158] enabled the use of machine

12

learning for a new set of problems, particularly in the Information Retrieval and

Natural Language Processing domains. However these approaches still rely on

the availability of a large amount of detailed expert-labeled data.

To reduce this data dependence, Active Learning approaches were introduced

[49, 55, 90, 151]. Unlike passive supervised learning methods, active learning

techniques identify which data points to label and then proceed to learn using

them. The goal of active learning techniques is to not only learn a good model,

but also use as few labeled examples as possible. These approaches primarily

work by identifying data points with the most label uncertainty. While these

approaches are able to reduce the data dependence, they still are limited by the

requirement of gold-standard labeled data.

A more closely related set of learning problems are the bandit learning prob-

lems. The Multi-Armed Bandit (MAB) problem in particular is a well-studied

problem, that has become immensely popular in sequential decision-making

applications. In this problem at each instance, the learner has to make a choice

between one of k arms (i.e., options). Based on this choice, the learner receives

some reward which is disclosed to them. To tackle this problem – and its’ nu-

merous variants – many different approaches have been employed. One set of

approaches build on the seminal work in Optimal Learning by Gittins and col-

leagues [67], where the MAB problem was decomposed into an array of One-

Armed Bandit problems. An alternate to some of these computationally ex-

pensive approaches, are techniques such as the Upper Confidence Bound [12];

Knowledge-Gradient based methods [62] which essentially perform a one-step

lookahead to determine the best arm; as well as other simpler heuristics such

as Boltzmann-exploration [37]. More recently Bayesian approaches to this prob-

13

lem have been employed, resulting in techniques such as Bayes-UCB [91] and

Thompson-Sampling based methods [5] (which build upon the seminal work of

William Thompson [160]). While there has been some recent study into the issue

of structured output spaces [44], all these different learning approaches (which

can be clubbed under the online learning paradigm [38, 108]) fall short when it

comes to predicting complex objects such as lists and trees where is there a lot of

inherent structure in the outputs. Furthermore they are not suited for learning

from the kind of feedback observed in these interactive learning systems (i.e.,

observed human decisions).

The dueling bandits problem is an exception as is intended for learning from

preferences i.e., when the result of a comparison of two alternatives is made

available to the learner [174, 177]. However unlike the interactive learning set-

ting where the user’s preferred alternative (based on their feedback) may be any

alternative in the space of possibilities, the dueling bandit approaches requires

comparisons between two pre-selected alternatives.

More generally, while problems like partial monitoring [21, 22], reinforce-

ment learning [89, 156] and inverse reinforcement learning (or apprenticeship

learning) [2, 123] can learn from data that originates from human behavior, they

all impose strict restrictions on the kind of feedback that can be successfully

learned from. Furthermore some of these problems cannot be used for (poten-

tially infinite) structured output spaces, whereas the interactive learning algo-

rithms introduced in this dissertation place no such restrictions on the output

space or the user feedback.

Correctable Learning is an alternate paradigm for incorporating humans in the

learning loop [142]. Here, the system receives feedback about examples it has

14

incorrectly learned so that it can look to rectify these mistakes. The system uses

this feedback to rectify these errors and in the process (hopefully) learn a better

model. While such mistakes can be spotted by experts, in interactive learning

we want the system to learn from the natural interactions of regular users.

2.3 User Behavior on Interactive Learning Systems

When interacting with these complex learning systems, the users themselves

display equally complex behavior. Take for instance a search engine, where

users can perform any of the following actions: issue a query, view the search

results, click or skip search results, use a query suggestion, rephrase a query and

reissue it and many other such actions. Each of these actions in turn are affected

by biases the users experience and display.

For example, eye-tracking studies [13, 85, 111] have found that the position

of objects can significantly impact (and bias) the feedback signals observed.

Joachims and colleagues [85] laid the ground-work for position-discounted

models in information retrieval, using eye-tracking studies that demonstrated

the top-to-bottom viewing patterns of users. In particular, they found that regard-

less of the relevance (or an equivalent measure of utility) of an item, the higher

it was placed in the list/ranking, the more attention (i.e., clicks) it received. This

bias, which is termed as the position bias, is one such bias that needs to be ac-

counted for when considering user behavior as feedback on these complex ob-

jects. Another kind of bias is the context bias (or batch effect) [18, 56, 82]. This

bias causes an item to be viewed more favorably (by users) the worse quality

the items around it (in the output object) are. These biases are only further com-

15

pounded by the advent of newer technologies such as touch screens (which now

account for a significant volume of traffic on these systems) [70]. Furthermore,

user’s inherent beliefs and biases also affect their behavior on these learning

systems in addition to biases due to the presentation of the output object [167].

These challenges introduced due to these numerous biases has led to a large

body of work developing user models and understanding user behavior on

these systems [17, 125]. Econometric models [14, 15] have been also been uti-

lized to help understand and characterize user behavior. These resulting mod-

els user behavior, can in turn be used by these systems to improve themselves

(say via the joint design approach proposed in this dissertation).

Among interactive learning applications, search and recommendation sys-

tems have been among the most well-studied due to their prominence across

different domains – such as entertainment, music, retail, dining to name a few.

Understanding complex, multi-stage user behavior on these systems, as they

issue multiple searches to obtain the necessary information, has become a very

active area of research [97, 168]. One such problem of interest is task-based re-

trieval, where tasks are the unit of interest, as opposed to queries or sessions

[73, 74, 106]. Trail-finding is another related problem that also considers the in-

fluence of complex factors (such as relevance, topic coverage, diversity and ex-

pertise) on user search behavior in certain contexts [153, 173]. More detailed

search interfaces and functionalities, such as those in faceted search [95, 96] and

exploratory search [118, 130], add new levels of complexity to user behavior in

these systems.

As we will devote significant attention to the search and recommendation

problems in this dissertation, the next section will continue discussing them in

16

more detail.

2.4 Ranking, Recommendation, Retrieval and Search

2.4.1 Learning to Rank

Most classical algorithms for ranking do not involve any machine learning. The

Probability Ranking Principle [146] popularized by Stephen Robertson, states

that documents should be ranked in order of the probability of relevance or

usefulness. This formed the basis of one of the first Information Retrieval (IR)

systems, the Okapi BM25 system [145, 147] as well as other subsequent ranking

systems [101]. Another popular principle, the Vector Space Model [148], which

uses vector representations for the queries and the documents, was the basis for

another pioneering IR system: SMART [31].

However, researchers realized that machine learning techniques can be em-

ployed to improve over these non-learning baselines (while still utilizing in-

sights from these prior models to design features). The resulting problem of

Learning To Rank (LTR) is focused on producing a ranking of results given a

query, by training models using gold-standard labeled datasets.

LTR approaches fall in one of three categories: point-wise, pair-wise or list-

wise. Point-wise approaches model the relevance of individual documents per

query. These typically involve the use of traditional machine learning tech-

niques such as regression-based approaches [54, 65, 105].

Pair-wise approaches on the other hand, model the preference relation be-

17

tween pairs of documents and target ranking relevant documents above irrel-

evant ones. The techniques that fall under this class are typically adaptations

of conventional classification algorithms such as SVMs [76, 82] or Boosting

[64, 169], with suitable pair-wise loss functions chosen (based on the specific

performance measure being optimized for).

Unlike point-wise and pair-wise approaches, list-wise approaches do not de-

compose the ranked list and instead use the entire ranking as is, within the

learning formulation. These methods tend to be more complex adaptations

of classification algorithms, with non-trivial optimization issues needing to be

tackled to optimize these highly non-convex loss functions [34, 170].

These learning methods have been shown to perform extremely well on

competitions such as the Yahoo Learning to Rank Challenge [40]. In particular,

the LambaMART and LambdaRank techniques [32, 33, 169] (along with their

adaptations) have found use in many practical systems. Furthermore, these

learning techniques have allowed search engines to utilize large datasets and

train sophisticated models. For a more exhaustive survey of the field we would

refer the interested reader to Tie-Yan Liu’s excellent survey report [110]. Learn-

ing to rank has also found use in more specific ranking problems, such as the

approaches discussed next.

2.4.2 Diversity

Classical research on search and retrieval has focused on optimizing and eval-

uating single queries, as discussed in the previous section. However, many

complex tasks such as vacation planning, comparative shopping, literature sur-

18

veys, etc. require multiple queries to complete the task [19, 87]. Consequently,

an increasing fraction of user queries are part of more complex tasks which span

multiple queries across one or more search sessions [97, 109].

One of the classical examples of complex user behavior is that of diversified

retrieval/search (which is the focus of Part III of this dissertation). Thus, pre-

senting a diverse set of results is an important goal in both web-search ranking

as well as recommender systems research. Diversity in search can be of two

kinds: extrinsic and intrinsic [132].

The more well-known problem is that of extrinsic diversity. This is the case

when the intent of the query issued by the user is unclear. For instance the query

jaguar, where it is unclear if the user is referring to the car manufacturer or the

animal (or some other meaning of the phrase). Presenting a diverse set of search

results can help alleviate this problem, as it allows the search engine to address

different possible intents of the query and thus satisfy most users.

In contrast to extrinsically-oriented approaches, which diversify search re-

sults due to ambiguity in user intent, intrinsic diversification requires that re-

sults are both relevant to a single topical intent as well as diverse across aspects,

rather than simply covering additional topical interpretations. In other words,

the diversity is required by the user themselves, say for getting a more holistic

idea of the topic.

Most research in this field has been focused on extrinsic diversity. Among

the methods developed for diversity, most are not based on learning. This in-

cludes popular approaches such as MMR [35], Less is More [43], Essential Pages

[157] amongst others [48, 178]. More recently supervised learning methods have

19

been developed for diversity [99, 149, 176] and found to work well. One of the

first such methods is the SVM-Div approach proposed by Yue and Joachims

[176]. As common among some diversification approaches [133, 157], SVM-Div

works by casting the problem as a specific kind of set coverage instance, where

the goal is to maximize the (weighted) number of intents covered in the rank-

ing. In particular, it relates diversity in word occurrences to diversity in search

intents. This relationship between words and intents is learned using a struc-

tural SVM method, where the discriminant function is formulated as a coverage

problem with intent coverage serving as the loss function.

Unfortunately, supervised learning methods rely on manually judged train-

ing data with multi-topic annotations, which are highly expensive and difficult

to obtain. To avoid this problem, Radlinski et al [133] proposed a multi-armed

bandit based algorithm to tackle the diversification problem. However this ap-

proach learns very slowly in practice and does not couple the arms together

either. Recent work [154] has generalized this by coupling the arms together

using a metric space. However this approach is still limited by a hard-coded

notion of diversity. Furthermore it does not generalize across queries either.

Yue and Guestrin [175] proposed online learning algorithms (for the problem

of intrinsic diversity). Their method works by maximizing submodular utility

functions, and can generalize across queries. However, their model relies on ob-

serving cardinal utilities which are far less reliable than the preference feedback

that can be easily obtained in interactive learning systems, as shown in user

studies [80]. El-Arini and Guestrin [58] also propose submodularity-based tech-

niques to optimize for both diversity and relevance, in the context of scientific

literature discovery. However, their model assumes noise-free feedback, which

is unrealistic for real users in interactive learning settings.

20

Dynamic rankings have also been proposed as a means to tackle this problem

of diversification. Here, users are presented with rankings that adapt on-the-fly

based on the user’s interactions [30]. Adding a level of on-the-fly user interac-

tion to ranking has also been found to helpful for structured and faceted search

problems [128, 179], such as product search.

2.4.3 Rank Aggregation

While learning to rank involves identifying patterns across multiple rankings

of different queries, a related class of problems, broadly termed Rank Aggrega-

tion [110], involve combining information contained in rankings from multiple

sources for a single query. There are different reasons that motivate the use of

such rank aggregation including:

• Aggregating rankings from multiple weaker sources to help come up with

an overall better ranking. The principles behind this are similar to those

behind ensemble machine learning methods, most notably boosting [150].

• Aggregating partial rankings from different sources to come up with a

complete ranking. This can be thought of as a divide-and-conquer like ap-

proach to the ranking problem.

• A risk-minimizing ranking technique when the different sources have dis-

tinct areas of expertise.

Rank aggregation has been a topic of research for nearly a century which has

led to a number of classical models and techniques such as the seminal work by

Thurstone [161], Mallows [116], Bradley & Terry [29], Kemeny [92], Luce [114]

21

and Plackett [127]. Many rank aggregation methods used today [45, 69, 112]

build on these classical techniques.

Search Result Aggregation (also known as Rank Fusion or Metasearch)

is a specific rank aggregation problem where the goal is to merge search re-

sult rankings from different sources1 to produce a single output ranking. Such

aggregation has been widely used in both supervised and unsupervised set-

tings, so as to improve over the ranking performance of any single method

[10, 24, 52, 68, 124, 129, 164].

Another popular variant of rank aggregation is in Social Choice and Voting

Systems, where preferences from a set of individuals stated over competing

items/interests/candidates need to be aggregated. The goal is to identify the

most preferred alternatives given conflicting preferences [9]. Commonly used

aggregation techniques are the Borda count and other Condorcet voting schemes

[10, 57, 113].

In addition to these fundamental applications, rank aggregation has also

seen recent use in other application domains. These range from problems such

as multilabel/multiclass classification (by combining different classifiers) [102]

to learning player skills in a gaming environment [77]. Part IV of this disserta-

tion discusses how classical rank aggregation approaches can be extended for

the problem of educational assessment at scale via peer grading.

1Typically these sources are different search ranking algorithms or systems.

22

Part II

Using Feedback Interventions To

Improve Learning

23

In this part of the dissertation, we shall illustrate the importance of the joint

design approach to interactive learning problem. In particular, we shall see the

difference appropriate feedback interventions can make when introduced into

the learning system. Using a scholarly text search engine as a case study for

interactive learning, we will demonstrate that designing learning algorithms in

conjunction with suitable models of user behavior and well-thought feedback

interventions, results in stable learning systems that learn constantly from user

interactions despite the noisy, bias implicit in them.

The next chapter discusses a learning paradigm called coactive learning.

Coactive Learning is a model of interaction between a learning system (e.g.,

search engine) and its human users, wherein the system learns from (typically

implicit) user feedback during operational use. As is common in interactive

learning systems, user feedback takes the form of preferences. While learn-

ing algorithms have been introduced to learn from this weak feedback, these

algorithms can be unstable and ineffective in real-world settings where biases

and noise in the feedback are significant. The coactive learning algorithms in-

troduced in the next chapter are the first that can learn robustly despite bias

and noise. They utilize suitable feedback interventions, where the output ob-

jects (e.g., rankings) are slightly perturbed before presenting to the user, so as to

stabilize the learning process. In addition to theoretical and empirical results,

the efficacy of these algorithms is also demonstrated via a user study on a live

search engine.

24

CHAPTER 3

LEARNING FROM USER PREFERENCES: COACTIVE LEARNING

A growing number of interactive systems use machine learning to adapt

their models to different environments, different users, or different user popula-

tions. Examples of such systems range from search engines and recommender

systems, to personal assistants and autonomous robots. Conventional learn-

ing algorithms for these systems have relied on expert annotated data. Instead

a more timely and cost-effective source of data is implicit feedback from users,

which is available in abundance. We would ideally like these system to learn

directly from their users in a manner that is unobtrusive, robust, and efficient.

Coactive Learning [152] is a model of learning from such feedback. It works

by combining a boundedly rational model of user behavior with an online learn-

ing model that formalizes the goal of learning. In particular, Coactive Learning

models the interaction between the user and a learner using weaker assump-

tions about the user feedback than in standard supervised learning. At each

step, the learner (e.g., search engine) receives a context (e.g., query) for which

it predicts an object (e.g., a ranking, say [d1, d2, d3, d4, ...]). This object is then

presented to the user. The system then observes the user’s interactions with

this object. If this object is suboptimal, the user’s interaction may provide the

system with a slightly improved object. Note however, that this need not neces-

sarily be the optimal object, as typically assumed in supervised learning. This

means the user merely provides a preference, which can typically be inferred

from implicit feedback (e.g., clicks on d2 and d4 imply that the user would have

preferred the ranking [d2, d4, d1, d3, ...]). The learning goal here is to minimize the

sub-optimality of the predictions over the life of the learning system.

25

Perceptron like algorithms have been proposed for the Coactive Learning

model [152]. They have been theoretically shown to converge towards optimal-

ity in a noise-free and realizable setting. Unfortunately, as we shall demonstrate

later in this chapter (via a live user study), even a small amount of noise can

make these existing algorithms fail catastrophically.

To overcome this problem, we shall employ the joint design principle to in-

teractive learning. In particular, we introduce feedback interventions, in the

form of small perturbations to the predicted output. These interventions, cou-

pled with a linear user utility model and a new learning algorithm – called

the Perturbed Preference Perceptron – are shown to greatly improve performance,

even in an agnostic setting, and increase robustness to noise. The overall ap-

proach leads to greatly improved generalization performance both in simula-

tion experiments, as well as live user study on the search engine. Furthermore,

this approach also allows us to theoretically characterize the performance of the

algorithm, in terms of provable regret bounds, and thus provide explicit guid-

ance for its application in practice, especially for ranking problems in search

and recommendation.

Note that while this chapter uses ranking as the primary interactive learning

example, the coactive learning model and the algorithms presented here are far

more general with applications in machine translation, robotics, etc.

3.1 Related learning models

Here we will cover existing learning models which bear similarities with the

coactive learning model proposed in [152] (which we discuss in the next sec-

26

tion). Feedback in coactive learning lies between the Multi-Armed Bandit prob-

lem [11, 12] (payoff only for selected action) and the Expert-Advice problem

[38, 180] (payoff for all actions). However, the coactive learner never observes

absolute payoffs, but merely a preference between two actions. This aspect of

preference feedback is similar to the dueling bandits problem [174, 175]. How-

ever, in the dueling bandits model the algorithm chooses both actions, while the

user and algorithm chose one action each in the coactive learning model.

Coactive learning also differs from other preference learning problems. For

example, in ordinal regression [54] a training example (x, y) provides an absolute

rank y. Ranking with pairwise preferences [47, 64, 75] is another popular prob-

lem. However, existing approaches to this problem require independent, identi-

cally drawn (IID) samples in a batch setting, while coactive learning works with

no-IID data in an online setting. List-wise approaches to ranking (see [110]) dif-

fer from coactive learning as they require the optimal ranking for a query, not just

a preference between typically suboptimal rankings. Partial monitoring games

[21] also differ from coactive learning, as they require that loss and feedback

matrices are revealed to the learning algorithm. Furthermore, partial monitor-

ing games have no explicit notion of context that is available at the beginning

of each round. Additional details about some of these models as well as other

related learning models is provided in Section 2.2.

One of the key ideas in this chapter is based on perturbing the output of a

predictor for improved feedback, to serve as a feedback intervention. In infor-

mation retrieval, this idea has been proposed for at least two purposes. First,

search results from two retrieval functions are interleaved [41] to elicit unbiased

user preferences. Second, the “FairPairs” perturbation strategy [131] was pro-

27

posed for debiasing click data in search. We use the FairPairs idea, and provide

the first learning algorithm that utilizes this debiasing strategy.

3.2 Coactive Learning model

We detail the coactive learning model in this section, as recently proposed by

Shivaswamy and Joachims [152]. Fundamentally coactive learning is an inter-

active learning model that models the interplay between the (learning) system

(e.g., search engine) and its’ user(s). At each iteration t of the user-system inter-

actions, the user states a context xt (e.g., query). In response to this the learning

algorithm makes a prediction yt ∈ Y (e.g., ranking). The user draws some util-

ity U(x, y) from this prediction. In the process the user also interacts with this

predicted object and thus (potentially implicitly) conveys an improved predic-

tion ȳt ∈ Y as feedback to the system. Fundamentally, coactive learning utilizes

these (weak) preferences over objects as the feedback for learning. It essentially

requires that the feedback object ȳt is (mostly) an improvement (in terms of user

utility) over the object presented to the user yt:

U(xt, ȳt) ≥α U(xt, yt).

The ≥α notations refers to the α-informativeness feedback characterization, which

is described formally in Equation 3.2 in the next section.

The goal of a coactive learning algorithm is to minimize regret, where the

(average) regret of a coactive algorithm after T iterations is defined as:

REGT =
1
T

T∑
t=1

(
U(xt, y∗t) − U(xt, yt)

)
. (3.1)

where the optimal prediction for iteration t is denoted as y∗t = argmaxy∈YU(xt, y).

28

As discussed in Chapter 1, one of the three keys of interactive learning (as

proposed in this dissertation) is the user behavior model. While users of inter-

active learning systems can at times display complex behavior (as discussed in

Section 2.3), to simplify the learning problem we will use a simple but potent

user model. In particular, the rest of this chapter1 will assume a linear model

for the user utility i.e., U(x, y) = w>∗ φ(x, y), where w∗ ∈ RN is an unknown vec-

tor. Here, φ(x, y) ∈ RN represents the joint feature vector of context x and object

y. We assume that this vector is bounded, i.e., ∀x, y; ‖φ(x, y)‖`2 ≤ R. Note that

true utility U and weight vector w∗ are never revealed to the learning algorithm.

We simply assume that users behave as per this utility function (i.e., preferring

higher utility objects), and only use it in our evaluation.

3.2.1 Alpha Informativeness: A Feedback characterization

To be able to state any meaningful theoretical results regarding the performance

of a coactive learning algorithm, we need to be able to characterize what kind

of improvement the feedback object ȳt provides over the presented object yt.

Towards this, we shall try to capture the behavior of a boundedly rational user

using the α-informativeness characterization:

Definition 1 User feedback is said to be α-informative in expectation if:

Eȳt[U(xt, ȳt)] ≥ U(xt, yt) + α(U(xt, y∗t) − U(xt, yt)) − ξt. (3.2)

In the above definition, the expectation is under Pxt[ȳt|yt] (i.e., uncertainty in

user behavior). The definition characterizes by how much the feedback pro-

1Part III tackles the issue of more complex user behavior.

29

Algorithm 1: Preference Perceptron.

Initialize w1 ← 0

for t = 1 to T do

Observe xt

Present yt ← argmaxy∈Yw>t φ(xt, y)

Obtain feedback ȳt

Update: wt+1 ← wt + φ(xt, ȳt) − φ(xt, yt)

vided, in expectation, is an α-factor improvement over the presented object rel-

ative to the maximum possible improvement U(xt, y∗t)−U(xt, yt), while allowing

for some slack ξt. Characterizing the feedback from boundedly rational users

through Eq. (3.2) is sensible: a boundedly rational user2 may be satisfied and

not search the full spaceY for the optimal y∗ (captured by α), while also making

imperfect assessments of utility (captured by ξt). We should note here that α-

informativeness is not an assumption but simply a characterization. In fact any

user behavior can be characterized by appropriate setting of α and ξt values.

3.3 The Preference Perceptron

The Preference Perceptron [152] is a simple algorithm for coactive learning that

is adapted from the traditional perceptron algorithm for supervised learning

[27]. It (Algorithm 1) works by maintaining a weight vector wt, that represents

the algorithm’s current estimate at iteration t of w∗. To start with, the weight

vector is typically initialized to 0. At each time step t, the algorithm observes

2A boundedly rational user is one who makes rational decisions (i.e., trying to improve their
utility) under the information bounds/constraints placed on her/him (say by the interactive
learning system’s interface or available functionalities).

30

the context xt and presents an object yt that maximizes w>t φ(xt, y) over y ∈ Y

(i.e., the maximizer of the algorithm’s current estimate of the utility function).

The algorithm then observes the user feedback ȳt and updates the weight vector

wt in the direction φ(xt, ȳt) − φ(xt, yt) (as opposed to the conventional perceptron

algorithm which updates using the optimal object y∗t). Note that the α parameter

does not appear in these algorithms; it is simply used for the theoretical analysis.

Despite its’ apparent simplicity, the preference perceptron has been shown

to have tight regret bounds when the user feedback has no noise.

Theorem 2 (Originally presented in [152]) The expected average regret of the prefer-

ence perceptron can be upper bounded, for any α ∈ (0, 1] and any w∗ as

E[REGT] ≤
1
αT

T∑
t=1

ξt +
2R‖w∗‖
α
√

T
. (3.3)

The above bound is tight in the noise-free case and does not make any assump-

tions, as any user behavior can be characterized via α informativeness. How-

ever, we will show in the next section that this seemingly perfect algorithm can

fail catastrophically in noisy environments.

3.4 Case study: A live text search engine

To test how these (coactive) learning algorithms would do in practice, we con-

ducted a user study on a live scholarly text based search engine at arxiv.org.

ArXiv is a repository for e-prints of scientific articles from different domains in-

cluding physics, astrophysics, statistics and computer science amongst others.

With over a million technical articles, effective search engines are critical to help

users find the documents of interest to them. Learning in this real-world envi-

ronment is a challenging task for multiple reasons. First, users typically only

31

review the first page of search results (at most 10 documents per query) and

second, the noise experienced in such a productive system exhibits less regu-

larities. Thus learning a good ranking function from user interactions is as a

perfect acid test for an interactive learning algorithm.

We thus implemented the Preference Perceptron algorithm on the full-text

search engine of arxiv.org with the goal of learning a good document rank-

ing function. Details of the implementation follow. We used a query-document

feature vector φ(x, d) of length 1000, which included various query-dependent

features (e.g., query-title match) and query-independent features (i.e., the age of

a document). We constructed feature vectors for rankings y ∈ Y as a weighted

sum φ(x, y) =
∑n

i=1 γiφ(x, y(i)) of feature vectors of documents in the ranking

φ(x, d), where y(i) is the i-th document in the ranking. The γi are decreasing po-

sition discounts, such that sorting by document utility U(x, d) = w>φ(x, d) pro-

vides a ranking of maximum U(x, y) for a given w. To construct the feedback

rankings ȳt for the Preference Perceptron, we used the move-to-top feedback,

where documents clicked by the user were moved to the top of the ranking.

The search engine interface was relatively standard with up to 10 search re-

sults per page (as seen in Fig 3.1). Users coming to the search engine were ran-

domly assigned one of two groups with equal probability. For users assigned to

the learning group, we used the clicked documents of their query to construct

the feedback rankings as described above. For users assigned to the evalua-

tion group, the ranking induced by the current weight vector was compared to

a baseline ranking that was generated with manually tuned weights. We em-

ployed Balanced Interleaving [41, 82], which is a paired, blind test for eliciting

a preference between two rankings, for this comparison We record how often

32

Figure 3.1: Example illustrating the arXiv full-text search engine interface
for a query svm.

a user prefers a learned ranking over the baseline (i.e., wins a pairwise com-

parison). Higher the user’s preference for the learned ranking (as measured by

the win ratio) the better the algorithm relative to the baseline. The Perceptron

algorithms was initialized to start with the weights of the baseline ranker.

3.5 Instability of the Preference Perceptron

We ran the Preference Perceptron algorithm on the full-text search engine of

arxiv.org for over a month. The results of the experiment are shown in Fig-

ure 3.2, which plots the win ratio3 against a hand-tuned baseline using Inter-

leaving [41]. As we see from the figure, the Preference Perceptron fails to learn

a good ranking function in this online experiment. In particular, the Prefer-

ence Perceptron (i.e., the black line labeled PrefP[top] in the Figure) only barely

improves over the baseline (a value of 1 would indicate equivalence to the base-

line).
3This measures the ratio of the number of queries for which results of one system (here the

learning system) are preferred over the other (here the baseline).

33

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 4000 8000 12000 16000 20000

W
in

 R
at

io

Number Of Iterations

3PR

PrefP[top]

Figure 3.2: Results of the user study showing the ratio of wins versus the
hand-tuned baseline for both the Preference Perceptron algo-
rithm [152] (labeled PrefP[top]) and the 3PR algorithm pro-
posed in this dissertation (Sec 3.7).

Figure 3.3 gives some insight into why the Preference Perceptron performs

poorly. It shows that the learned rankings for the Preference Perceptron do not

stabilize and that the learning process oscillates. In particular, even after thou-

sands of updates, the top 10 documents of the same query before and after 100

update steps only overlap by 4 documents on average.

On the other hand, the algorithm shown in red in Figures 3.2 and 3.3 – the

Perturbed Preference Perceptron for Ranking (3PR) which we introduce in this the-

sis (Sec 3.7)– achieves substantial improvements over the baseline and does not

oscillate.

Before we delve into this proposed algorithm, we will first try to concretely

explore why the Preference Perceptron fared so poorly in the online study.

34

 0

 5

 10

 0 1000 2000 3000 4000 5000

A
v
g
.
S

et
 O

v
er

la
p

Number of Iterations

3PR

PrefP[top]

Figure 3.3: Number of common results in the top 10 for the same query
using two different models that are 100 learning iterations
apart(i.e., wt, wt+100). Results are binned over intervals of size
50 and averaged over 100 random queries.

3.5.1 Instability: Illustrative example

Why did the Preference Perceptron oscillate? Consider the following toy prob-

lem, where the goal is to learn rankings (using the position weighted feature

vector construction described in the previous section). In this toy example,

document utility is independent of the context x and only document d1 has

utility U(x, d1) = 1 (i.e., is relevant), all other documents d2 . . . dn have utility

−1. Feature vectors φ(x, d) have 2 binary features that exactly reflect utility (i.e.,

φ(x, d1) = [1, 0] while ∀i ∈ [2, n] : φ(x, di) = [0, 1]). Now let us consider the fol-

lowing simple user model of interaction: Each iteration, users view the current

yt (i.e., documents ranked by w>t φ(xt, d)). They examine each document of the

ranking y(i) in order, click the first document they deem to have utility 1, and

then stop. However, users being an imperfect judge of utility, make each +1/−1

utility judgment with only 80% accuracy.

35

As before, the feedback ranking ȳt is constructed from yt by swapping the

clicked document into rank 1. Let us analyze the behavior of the Preference

Perceptron on this toy example. In fact, let us assume that the algorithm is

initialized with the perfect weight vector w1 = [1,−1], which correctly ranks d1

first. If the user correctly clicks y(1), the Preference Perceptron makes no change

to wt. However, whenever the user selects an incorrect y(i) below (for which

there is a ∼ 20% chance), the weight of the first feature decreases and while that

of the second increases. Eventually, these updates cause the first component to

be negative (and the second positive), which essentially flips the ranking with

d1 moving to the last position. Even if the system eventually recovers from this

catastrophic failure, the same sequence of events will repeat leading to d1 being

placed at the bottom again. Thus, the system oscillates.

The gravity of the problem can be seen in the following simulation results.

For n = 10 documents and DCG discounting for γi (see Section 3.7), the average

rank of d1 within the first 1000 iterations for the Preference Perceptron is 9.36 (1

is best, 10 is worst). In fact, the sole relevant document d1 is in the worst position

for most iterations of the algorithm’s run, since it takes a low-probability event

of 0.29 to correct the ranking, but a high-probability event of 0.2 almost imme-

diately flips it back. Note that “averaging” does not fix this oscillation problem,

since it is not a result of unbiased noise. In fact, an Averaged Perceptron [50]

showed an average rank of 9.37 in the same simulation.

We should note here that this toy feedback model is α-informative, with the

ξs being ≤ 0 for all but the optimal ranking. However, at the optimal, the ξs

become large, thus hurting the algorithm.

A careful reader may still wonder why the preference perceptron failed on

36

the user study, since unlike in the simulation, the weight vector in the live user

study was never really optimal. To understand this, consider a small modifica-

tion to the above toy problem. Instead of just one relevant document, there are k

relevant documents in total. However the number of relevant documents is still

far smaller than the number of irrelevant documents (as is typically the case in

real search engines) i.e., k << n − k. Now instead of simply two features, let us

say we have k + 1 feature where each relevant document di(∀i ∈ [2, n]) has a zero

feature vector except for the ith feature whose value is 1. Similarly all irrelevant

documents have all but the (k + 1)th feature (whose value is 1) set to 0. Using

a similar user interaction model from above (with users clicking on the first k

documents they consider relevant) results in the same instability, though here

the weight vector may never reach optimal. We again observe oscillations back

and forth in the weights of the relevant features.

More generally, the problem is that the feedback used by the preference per-

ceptron is biased and does not fully account for noisy user behavior. This effect

becomes particularly prominent for feature components whose weight is near-

ing the optimal for that feature. The next sections will study how we can remedy

this issue by introducing the notion of feedback interventions.

3.6 Adding Feedback Interventions: Stabilizing learning

How can we prevent these oscillations to ensure convergence and improve re-

gret? The key problem as illustrated in the previous section, is that the feedback

received by the preference perceptron can be biased and noisy, with the algo-

rithm consequently incurring large slacks ξt in Eqn (3.2) – for instance when

d1 is in the top position in the previous toy example, though it is perfectly α-

37

informative without slack in all other cases. In this section, we introduce the

notion of feedback interventions and demonstrate how they can improve learn-

ing. We will develop the Perturbed Preference Perceptron to handle this bias in

the feedback and guarantee stability.

To motivate the algorithm, consider what happens in the previous toy exam-

ple if we run the Preference Perceptron, but present the user a perturbed ranking

where, with 50% probability, we swap the top two documents. Even for the

optimal weight vector w∗, note that feedback on the perturbed ranking is now

expected α-informative without slack (under the user interaction model of the

example). This stabilizes the learning process, since preferences now often re-

inforce w∗ – namely whenever the relevant document d1 is at rank two and the

user clicks on it. Running the simulation from Section 3.5.1 using the perturbed

rankings greatly improves the average rank of d1 from 9.36 to 2.08.

The perturbations introduced above are just one example of a more general

idea, which we term feedback interventions. Given that interactive learning

systems control what is presented to the users, the idea behind feedback inter-

ventions is to present users a slightly modified object (which does not signifi-

cantly impact the user experience) for which feedback received is far more infor-

mative and conducive to good learning. For instance, the above example used

pairwise perturbations to reduce the bias and noise in the feedback. These inter-

ventions can be even more effective in settings where some user interactions are

low-cost i.e., there is more freedom to intervene and make changes without any

impact on the user experience. More generally, the next sections will illustrate

that jointly designing learning algorithms in conjunction with suitable feedback

interventions (and user behavior models) can greatly improve learning and lead

38

Algorithm 2: Perturbed Preference Perceptron.

Require: Perturb(· · ·), GetFeedback(· · ·)

w1 ← 0 . Initialize weight vector

for t = 1 to T do

Observe xt

Compute ŷt ← argmaxy∈Yw>t φ(xt, y)

yt ← Perturb(ŷt) . Perturb Object

Present yt

Obtain feedback ȳt ← GetFeedback(yt)

Update: wt+1 ← wt + φ(xt, ȳt) − φ(xt, yt)

to sound learning systems.

3.6.1 Perturbed Preference Perceptron

Following the idea of using perturbation to combat feedback bias, Algo-

rithm 2 defines the Perturbed Preference Perceptron. It builds off the conventional

Preference Perceptron with two key changes. First, the algorithm accepts a sub-

routine Perturb(ŷt) for perturbing the object ŷt = argmaxy∈Yw>t φ(xt, y). Second,

since a perturbed object yt is presented to the user, the user’s preference feed-

back – and the subsequent update – is relative to yt, not ŷt.

3.6.2 Theoretical Analysis

We now characterize the regret of the Perturbed Preference Perceptron as a

function of the perturbation strategy. This theoretical analysis is fairly general

and applies to any perturbation strategy, both randomized and deterministic.

39

The following theorem bounds the expected regret of the Perturbed Preference

Perceptron in terms of two quantities. First, let us re-characterize expected α-

informativeness of the user feedback analogous to Eq. (3.2),

Eȳt ,yt

[
w>∗ φ(xt, ȳt)

]
− Eyt

[
w>∗ φ(xt, yt)

]
≥ α

(
w>∗ φ(xt, y∗t) − Eyt

[
w>∗ φ(xt, yt)

])
− ξt. (3.4)

Note that the feedback ȳt is relative to the perturbed yt, and that expectation is

taken over perturbations.

Second, let affirmativeness w.r.t. a perturbed yt be given by:

Eȳt ,yt

[
w>t φ(xt, ȳt)

]
− Eyt

[
w>t φ(xt, yt)

]
.

Affirmativeness reflects the relationship between noise in the user feedback and

noise from perturbation relative to the current model wt. Positive affirmative-

ness indicates that the user feedback typically confirms the ordering based on

the current wt, while negative affirmativeness indicates the opposite. Based on

these two quantities, we state the following regret bound.

Theorem 3 The expected average regret of Algorithm 2 for a perturbation strategy

satisfying the following bound on the average affirmativeness,

1
T

T∑
t=1

(
E
[
w>t φ(xt, ȳt)

]
− E

[
w>t φ(xt, yt)

])
≤ ∆, (3.5)

can be upper bounded as

E[REGT] ≤
1
αT

T∑
t=1

ξt +

√
4R2 + 2∆ ‖w∗‖

α
√

T
. (3.6)

The proofs are provided in Appendix A.1. Note that the average affirmativeness

(LHS of Eqn (3.5)) is a quantity that can be estimated by the learning algorithm,

implying a dynamic strategy that determines how to perturb. Note further that

in the bound ∆ is always zero in the absence of perturbation, which recovers

40

the conventional Preference Perceptron and its regret bound as a special case.

The above bound can be substantially tighter than that of the conventional Pref-

erence Perceptron in the noisy feedback situation, since it allows trading-off

between ∆ and
∑
ξt. In the toy example from above, perturbation reduced

∑
ξt

to zero at a modest increase in ∆.

We also state two corollaries that give bounds on the regret w.r.t. an addi-

tive/multiplicative bound on the amount of perturbation.

Corollary 4 Expected average regret of Alg 2 for a perturbation strategy satisfying

1
T

T∑
t=1

(
w>t φ(xt, ŷt) − E

[
w>t φ(xt, yt)

])
≤ Ω, (3.7)

can be upper bounded as

E[REGT] ≤
1
αT

T∑
t=1

ξt +

√
4R2 + 2Ω ‖w∗‖

α
√

T
. (3.8)

Corollary 5 Expected average regret of Alg 2 for a perturbation strategy satisfying

∀t : E
[
w>t φ(xt, yt)

]
≥ (1 − β)w>t φ(xt, ŷt) (3.9)

for 0 ≤ β ≤ 1, can be upper bounded as

E[REGT] ≤
1
αT

T∑
t=1

ξt +
βR‖w∗‖
α

+

√
2(4 − β2)R‖w∗‖

α
√

T
.

Corollary 4 follows immediately from Theorem 3, and Corollary 5 follows

the structure of the proofs in Sec 5.2 for coactive learning with approximate

inference (e.g., Theorem 9). The bounds presented above not only provide a

theoretical sanity check for Algorithm 2 and the concept of perturbations (and

more generally feedback interventions), but also give explicit guidelines for de-

signing effective perturbation strategies that we will exploit in the next section.

41

3.7 Perturbed Preference Perceptron for Ranking: 3PR

Ranking is one of the most common learning tasks for online systems, as it is the

basis for search and recommendation. These systems are ideally suited for coac-

tive learning, since they can easily sense user interactions that provide (noisy)

feedback. We now develop perturbation and feedback strategies for the Per-

turbed Preference Perceptron that ensure stable learning of ranking functions.

For a perturbed ranking y, let ȳ be a feedback ranking that is derived from

interactions (e.g., clicks) in y. Our goal is a perturbation and feedback strategy

such that ȳ fulfills Eq. (3.4) with large α and small ξ. Let us consider some

properties such a strategy should have.

First, it is desirable to perturb uniformly throughout the ranking, so that a

user experiences the same amount of perturbation no matter how deep they

explore. Second, we would like to make only local perturbations to minimally

alter the ranking. Third, the construction of the feedback ranking ȳ should be

robust to noisy clicks, limiting the increase in ξ in Eq. (3.4).

These desiderata naturally lead to the perturbation and feedback strat-

egy in Algorithm 3, which follows the FairPairs method proposed in [131].

The top-scoring ranking ŷ (e.g., ŷ = [d1, d2, d3, d4, d5, d6, ...]) is split into ad-

jacent pairs of documents (e.g., [(d1, d2), (d3, d4), (d5, d6), ...]), and each pair is

swapped with probability p to produce the perturbed ranking y (e.g., , y =

[(d2, d1), (d3, d4), (d6, d5), ...]). Whenever the user clicks on the bottom docu-

ment of a pair, the top and bottom document are swapped to produce the

feedback ranking ȳ (e.g., for clicks on {d1, d4, d6} in y, we construct ȳ =

[(d1, d2), (d4, d3), (d6, d5), ...]). We call Algorithm 2 using the functions from Al-

gorithm 3 the Perturbed Preference Perceptron for Ranking (3PR).

42

Algorithm 3: Perturbation and feedback for the Perturbed Preference Per-
ceptron for Ranking (3PR).

Function FORMPAIRS()

With prob 0.5: return ({1, 2}, {3, 4}, {5, 6} · · ·)

else: return ({1}, {2, 3}, {4, 5}, {6, 7} · · ·)

Function PERTURB(ŷ, p)

y← ŷ . Initialize with top-scoring ranking

Pairs← FORMPAIRS ()

for i = 0 · · · len(Pairs) do

{ j, j + 1} ← Pairs[i] . Get Pair

With prob p:

swap(y[j],y[j + 1]); swap(Pairs[i][0],Pairs[i][1])

return (y, Pairs)

Function GET-FEEDBACK(y, clicks, Pairs)

ȳ← y . Initialize with presented object

for i = 0 · · · len(Pairs) do

{ jupper, jlower} ← Pairs[i] . Get Pair

if y[jlower] ∈ clicks AND y[jupper] < clicks then

swap(ȳ[jupper], ȳ[jlower])

return ȳ

We now establish regret bounds for the 3PR algorithm, using the joint feature

map φ(x, y) for queries x and rankings y described in Section 3.4. In particular,

we use position-discounting factors γi = 1
log2(i+1) as in the DCG metric [117].

Proposition 6 The 3PR with swap probability p has regret:

43

≤

∑T
t=1 ξt

αT
+

p(1 − γ2
γ1

)R‖w∗‖
α

+

√
2(4 − p2(1 − γ2

γ1
)2)R‖w∗‖

α
√

T
.

The proof is provided in Appendix A.1 along with proofs for the other theorems.

On the one hand, the 3PR algorithm provides the first exploration strat-

egy with a regret bound for FairPairs feedback. On the other hand, the re-

gret bound implies that the swapping of pairs does not need to necessarily

be “fair” (i.e., p = 0.5). For example, consider a dynamic swap strategy

that, at iteration t, determines its perturbation based on the cumulative affir-

mativeness Rt =
∑t−1

i=1 w>i φ(xi, ȳi) − w>i φ(xi, yi) and the maximum perturbation

Dt = w>t φ(xt, ŷt) − w>t φ(xt, y′t), where y′t is the ranking obtained by swapping all

pairs in ŷt. Note that Dt is an a priori bound on the maximum affirmativeness

of the user feedback at iteration t. Based on these observable quantities, we pro-

pose the following dynamic adaptation rule for the swap probability with the

following regret bound.

Proposition 7 For ∆ ≥ 0, dynamically setting the swap prob. of 3PR to be pt ≤

max(0, ∆·t−Rt
Dt

) has regret:

≤
1
αT

T∑
t=1

ξt +
‖w∗‖
α
√

T

√
4R2 + 2∆ + (γ1 − γ2)R

√
4R2 + 2∆

T
.

3.7.1 ArXiv User Study Results

To investigate the real-world effectiveness of the 3PR algorithm compared to

the conventional Preference Perceptron (PrefP), we repeated the user study from

Section 3.4) on the full-text search engine of arxiv.org using 3PR instead. Re-

sults were collected in two subsequent runs, one for each method. As done

44

 0

 0.5

 1

 1.5

 2

 0 4000 8000 12000 16000 20000

A
ff
ir
m
a
ti
v
e
n
e
s
s

Number of Iterations

Figure 3.4: Average affirmativeness of 3PR in user study.

for the Preference Perceptron, the learning algorithm was initialized to start

with the weights of the baseline ranker. For the learning iterations, pairs were

swapped with probability 0.5. Paired feedback was constructed as described in

Algorithm 3. Further details of the study are provided in Appendix A.2.

Figure 3.2 shows the results of the experiment, plotting the win ratio of each

learning method over the baseline. While PrefP initially performs well, its win

ratio eventually hovers only slightly above 1. The 3PR method, on the other

hand, converges to a win-ratio of 1.9, which is large (and highly significant ac-

cording to a Binomial Sign Test) compared to the experiments in [41]. Finally,

Figure 3.4 shows the average affirmativeness ∆ from Theorem 3. It shows that

∆ is positive and stabilizes, indicating an appropriate amount of perturbation.

3.8 Experiments on Benchmark Data

To get more detailed insights into the empirical performance of the proposed

methods, we also conducted offline experiments on benchmark datasets.

45

First, we use the Yahoo! learning to rank dataset [40] (abbreviated Websearch),

which consists of roughly 28k queries and 650k documents (i.e., URLs). For each

query-url pair in the dataset, there is a joint feature vector φ(x, d) of 700 features

and an integer relevance rating in the range 0-4. In each iteration, the system

is given a query and presents a ranking. In total, the coactive learning system

were run for 28k iterations. All results presented below are averaged over 20

different runs (by randomizing the query stream order).

Second, we simulate two news recommendation tasks, using the RCV1 [104]

and the 20 Newsgroups datasets (abbreviated News). The RCV1 corpus con-

tains over 800k documents that each belong to one or more of 103 topics, while

the News dataset contains 20k documents that each belong to one of 20 topics.

We used TF-IDF (Term Frequency-Inverse Document Frequency) features as is

standard for these tasks. This leads to feature set totaling 3k size for RCV1 and

1k for News4. In these experiments, we simulated user interests by equating

users with single topics. The user’s goal is to be presented with documents cor-

responding to their topic. The algorithms were run for 50K iterations for RCV

and 10K for News (by cycling through the data), and the results are averaged

over all users (i.e., topics).

We assume the following model of user interaction. The user scans the rank-

ing from the top down to the tenth result and clicks on up to five results. To

study the stability of the different algorithms, clicks are corrupted by noise. For

RCV1 and News, a user goes down the ranking and clicks on relevant docu-

ments, but with η chance of incorrectly assessing the relevance of a document

(η = 0.2). On the search dataset, the user’s relevance assessment are corrupted

by adding independent Gaussian noise (σ = 1) to the true relevance of each

4Feature selection, using the maximum class χ2 metric, was performed similar to [104].

46

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 1 10 100 1000 10000

N
D

C
G

@
5

Number Of Iterations

PrefP[top]

PrefP[pair]

3PR

StructPerc

Random

SVM

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 1 10 100 1000 10000

Number Of Iterations

PrefP[top]

PrefP[pair]

3PR

StructPerc

Random

SVM

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1 10 100 1000 10000

Number Of Iterations

PrefP[top]

PrefP[pair]

3PR

StructPerc

Random

SVM

Figure 3.5: Learning curves for all algorithms on Websearch (left), RCV1
(middle), and News (right).

document; the user then clicks on the 5 documents with highest (corrupted)

relevance in the top 10.

3.8.1 What is the Generalization Performance of the Perturbed

Preference Perceptron?

First, let us compare the 3PR against alternative algorithms, including the con-

ventional Preference Perceptron where clicked documents are moved to the top

of the feedback ranking (PrefP[top]). We also consider a variant of the conven-

tional Preference Perceptron that uses the same paired feedback as 3PR, but has

swap probability zero (PrefP[pair]).

To compare with a regularized batch learner, a ranking SVM with move-to-

top feedback was trained at (10,100,1k,10k,20k) iterations using a setup similar

to [152]. Between training steps, the current predictor is used to present rank-

ings. For this experiment, we retrospectively pick the best C value (per run) and

report the NDCG@5 corresponding to that C (i.e., biasing in favor of the SVM).

As a (rough) upper bound, we consider a Structured Perceptron [50] that is

trained with the optimal y∗ without added noise. This simulates clean and

47

exhaustive expert feedback, which is typically unobtainable in practice. As a

lower bound, we report performance of uniformly random document rankings.

The results are shown in Figure 3.5. It can be seen that the 3PR achieves a

significantly higher NDCG@5 compared to other online algorithms PrefP[top]

and PrefP[pair] at the end of the runs. In fact, PrefP[top] fails catastrophically on

two of the datasets like in the toy example from Section 3.5.1. PrefP[pair] is more

stable, but shows similar deterioration as well. An interesting extension could

be the combination of aggressive move-to-top feedback in early iterations with

more conservative 3PR updates later.

Due to the biased training data that violates the IID model, the SVM per-

forms poorly. We conjecture that more frequent retraining would improve per-

formance, but be orders of magnitude more computationally expensive (espe-

cially with realistic model selection).

The Structured Perceptron learns faster than 3PR. However, despite receiv-

ing much stronger training data (optimal y∗ without feedback noise), its even-

tual performance is worse than 3PR on two datasets. This may be surprising at

first glance. However, it is known that Perceptron-style algorithms do not al-

ways work well on multiclass/structured problems without good linear fit, and

can even degenerate [42, 103]. Intriguingly, the 3PR seems less affected by this

problem.

48

Table 3.1: NDCG@5 of presented and perturbed rankings after maximum
number of iterations.

Websearch RCV1 News

Presented y .717 ± .002 .286 ± .028 .386 ± .035

Predicted ŷ .723 ± .002 .291 ± .028 .397 ± .035

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 1 10 100 1000 10000

N
D

C
G

@
5

Number Of Iterations

p=0

p=0.1

p=0.25

p=0.5

p=0.75

p=0.9

Dynamic

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 1 10 100 1000 10000

Number Of Iterations

p=0

p=0.1

p=0.25

p=0.5

p=0.75

p=0.9

Dynamic

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1 10 100 1000 10000

Number Of Iterations

p=0

p=0.1

p=0.25

p=0.5

p=0.75

p=0.9

Dynamic

Figure 3.6: NDCG@5 of the 3PR algorithm for different swap probabilities
and the dynamically adapted swap probability on Websearch
(left), RCV1 (middle), and News (right).

3.8.2 How does the Perturbed Ranking Compare to the Opti-

mal Prediction?

In the case of 3PR, the algorithm first computes the argmax ranking ŷ but

then presents the perturbed ranking y. While the previous section showed the

NDCG@5 of the presented rankings y, Table 3.1 shows the NDCG@5 for both

y and ŷ. As expected, the presented rankings are of slightly lower quality than

ŷ due to perturbation. However, this small loss in quality leads to a big gain

in the overall learning process in the long run — as demonstrated by the poor

performance of Pre f P[pair]. An interesting extension would be to present the

perturbed ranking y and learn in only some of the iteration, but exploit by pre-

senting ŷ and not learn in the rest of the iterations.

49

3.8.3 How much Perturbation is Needed?

While complete lack of perturbation leads to divergence, it is unclear whether

a swap probability of 0.5 is always optimal. Intuitively, we expect that with

low noise, smaller perturbations suffice to achieve high performance, while at

higher noise levels, perturbation probabilities need to be higher to overcome the

noise.

Figure 3.6 explores the effect of different perturbation rates p in Algorithm 3

on the performance of the 3PR. It appears that a swap probability of more than

0.5 usually hurts. While 0.5 typically performs reasonably well, 0.25 produces

the best performance on RCV1.

3.8.4 Can we Automatically Adapt the Perturbation Rate?

Ideally, we would like to automatically select an appropriate swap probability.

Note that this does not need to be a single fixed number, but can change over the

learning run. Proposition 7 defined such a perturbation strategy that accounts

for the current affirmativeness and adjusts the swap probability to optimize the

regret bound in Theorem 3. The results of this dynamic strategy using ∆ = 0

are also included in Figure 3.6. As we see from the figure, the method is able to

adjust the swap rates to achieve performance among the best.

Figure 3.7 shows how the swap probability chosen by the dynamic strategy

varies. It can be observed that the swap probability first increases and then

eventually decreases to exploit more often. When changing the noisiness of the

user feedback, we find that the strategy automatically accounts for larger noise

by increasing the swap rate relative to the low noise setting.

50

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 1 10 100 1000 10000

Sw
ap

 R
at

e

Number Of Iterations

Web - High Noise
Web - Low Noise
RCV - High Noise
RCV - Low Noise
News - High Noise
News - Low Noise

Figure 3.7: Change in average swap probability of the dynamic method
with ∆ = 0 low and high feedback noise.

3.8.5 Effect of Noise on the Perturbed Preference Perceptron

Our motivation for the 3PR algorithm was the inability of PrefP[top] to handle

the noise in the feedback it encountered in the user study. Therefore, all bench-

mark experiments we reported included feedback noise as described at the start

of Sec 3.8. But how does the 3PR algorithm perform without added noise?

Figure 3.8 compares the performance of 3PR to that of PrefP[top] and

PrefP[pair] with and without user feedback noise. Even with no feedback noise,

3PR outperforms PrefP[top] and is at least comparable to PrefP[pair]. Further-

more, the performance of 3PR declines much less when noise is introduced, as

compared to the other algorithms.

Note that “no noise” is somewhat of a misnomer. While we did not add any

noise, even the expert provided ratings probably contain some amount of noise.

Moreover, any feedback that cannot be explained by a linear model appears as

noise to the algorithm, which is likely to be a substantial source of noise in any

51

0.61

0.64

0.67

0.7

0.73

No Noise Noise

N
D

C
G

@
5

Websearch

0

0.1

0.2

0.3

0.4

0.5

No Noise Noise

News
PrefP[top]

PrefP[pair]

3PR

0

0.1

0.2

0.3

0.4

No Noise Noise

RCV1

Figure 3.8: Performance of PrefP[top], PrefP[pair] and 3PR at the maximum
number of iterations with and w/o feedback noise.

real-world application. The 3PR algorithm handles this gracefully.

3.9 Summary

This chapter studied an interactive learning model called Coactive Learning. It

presented the Perturbed Preference Perceptron, an online algorithm for learn-

ing from biased and noisy preferences in the coactive learning model. Unlike

existing methods, the presented algorithm was shown to be stable and free of

oscillations. The key idea was the use of controlled perturbations of the pre-

dictions as feedback interventions. Theoretical regret bounds that characterize

the behavior of the new algorithm were also presented. Perturbation strate-

gies were developed focusing on learning to rank. The proposed algorithms

were shown to substantially outperforms existing methods in benchmark ex-

periments. Furthermore, an online live user study on a search engine, exem-

plified the importance of jointly designing learning algorithm, user model and

feedback interventions.

52

Part III

Modeling Complex User Behavior

53

This part of the dissertation will look at one of the three key aspects of in-

teractive learning: the user behavioral model. In particular, it explores a set of

problems where user behavior is highly complex and thus in need of new be-

havior models and learning algorithms. The problems covered in this part of

the dissertation all deal with diversity in search and recommendation tasks.

We will first begin by introducing the problem of intrinsic diversity and un-

derstanding the significance of the problem in the context of web search. We

will also provide ways to identify these complex tasks, both from logged in-

teraction data as well as on-the-fly. Finally we will explore ways to improve

retrieval performance for these complex search tasks.

We will then explore means to interactively learn to diversify for these com-

plex tasks. More specifically, we will describe coactive learning techniques that

learn to diversify from user interaction data. These techniques will be devel-

oped for both kinds of diversified retrieval tasks: intrinsic and extrinsic. The re-

sulting algorithms will not only have provable theoretical guarantees, but also

significantly better empirical performance than existing methods. Along the

way, this dissertation will introduce the first-known algorithms for learning to

extrinsically diversify across queries, from user interaction data.

This part will conclude by briefly describing how interactivity can be intro-

duced on-the-fly into objects such as rankings, and how this can help alleviate

problems in the diversified retrieval field. It will also provide learning algo-

rithms to learn to predict these interactive structures.

54

CHAPTER 4

EXPLORING INTRINSIC DIVERSITY IN WEB SEARCH

The search and information retrieval literature has primarily focused on

improving retrieval for a single query at a time. However, given the ever-

increasing complexity of user search needs, there is an urgent need for search

engines to help users tackle complex search tasks in an efficient manner

[87, 109]. Within the context of this work, we focus on one specific type of in-

formation seeking need that drives interaction with web search engines and of-

ten requires issuing multiple queries – namely intrinsically diverse tasks [132].

Table 4.1 gives examples of two intrinsically diverse tasks observed in a com-

mercial web search engine. Intrinsic diversity (ID), where diversity is a desired

property of the retrieved set of results to satisfy the current user’s immediate

information need, is meant to indicate that diversity is intrinsic to the need it-

self. It requires that results are both relevant to a single topical intent as well as

diverse across aspects, rather than simply covering additional topical interpre-

Initiator query Successor queries

snow leopards

snow leopard pics
where do snow leopards live
snow leopard lifespan
snow leopard population
snow leopards in captivity

remodeling ideas

cost of typical remodel
hardwood flooring
earthquake retrofit
paint colors
kitchen remodel

Table 4.1: Examples of intrinsically diverse search tasks, showing the first
(initiator) query and the following (successor) queries from the
same search session.

55

tations. This is in contrast to extrinsic diversification techniques that provide di-

versity to cope with uncertainty in query intent (e.g., [jaguar]). Unfortunately

extrinsic diversification methods like maximal marginal relevance (MMR) [35]

do not satisfy these requirements well (cf. Sec. 4.4). While most diversifica-

tion research have focused primarily on extrinsic diversity (see Sec 2.4.2), recent

work [19] has indicated that intrinsic diversity (ID) is becoming an increasingly

important issue as many real-world web search tasks are commonly ID and

require significant user effort. Thus, improvements in retrieval quality that ad-

dress intrinsically diverse needs have potential for broad impact.

Intrinsically diverse tasks typically are exploratory, comprehensive, survey-

like, or comparative in nature. ID tasks that are commonly seen in web

search sessions include (along with session statistics such as average number

of queries, total time, and prevalence of such sessions as per [19]): discover-

ing more information about a specific topic (6.8 queries, 13.5 minutes, 14% of

all sessions); comparing products or services (6.8 queries, 24.8 minutes, 12% of

all sessions); finding facts about a person (6.9 queries, 4.8 minutes, 3.5% of all

sessions); and learning how to perform a task (13 queries, 8.5 minutes, 2.5% of

all sessions). Intrinsically diverse tasks typically result from users seeking dif-

ferent opinions on a topic, exploring or discovering aspects of a topic, or trying

to ascertain an overview of a topic [132]. While a single, comprehensive result

on the topic may satisfy the need when available, several or many results may

be required to provide the user with adequate information [132]. As seen in the

example tasks, a user starting with [snow leopards]may be about to engage

in an exploratory task covering many aspects of snow leopards including their

lifespan, geographic dispersion, and appearance. Likewise when investigating

remodeling ideas, a user may wish to explore a variety of aspects including

56

cost, compliance with current codes, and common redecoration options. Note

that the user may in fact discover these aspects through the interaction process

itself, similar to exploratory and faceted search [118, 130]. However, unlike the

more open-ended paradigm provided by exploratory search, we desire a solu-

tion that is shaped by the current user’s information need and is able to dis-

cover and associate relevant aspects for a topic automatically in a data-driven

fashion. For example, for the query [snow leopards], our goal is to enable

deeper user-driven exploration of that topic, by proactively searching for the

relevant information that the user might want during the course of a session on

that topic, thus reducing the time and effort involved in manual reformulations,

aspect discovery, and so on.

To this end, we aim to design a system that addresses two key problems

needed for ID retrieval: detecting the start of an ID task, and computing an op-

timal set of ID documents to return to the user given engagement on an ID task.

For the former, the system must be capable of predicting when a user is likely to

issue multiple queries to accomplish a task, based on seeing their first “initiator

query”. To do this, we first develop a set of heuristic rules to mine examples

of authentic intrinsic diversity tasks from the query logs of a commercial search

engine. The resulting tasks provide a source of weak supervision for training

classification methods that can predict when a query is initiating an intrinsi-

cally diverse task. With these predictive models, we characterize how ID initia-

tors differ from typical queries. We then present our approach to intrinsically

diversify given a query. In particular, rather than simply considering different

intents of a query, we incorporate results related to other important aspects of

the topic by estimating the relevance relationship between the aspect and the

original query. Given the intrinsically diverse sessions identified through log

57

analysis, we demonstrate that our approach to intrinsic diversification is able to

identify more of the relevant material found during a session given less user ef-

fort. We show these methods to be able to proactively retrieve content for future

queries before the user has searched for them. Importantly, these future queries

are neither simple reformulations nor completely unrelated, but are queries on

the particular task that the user has started. Overall, the proposed approach is

able to shown to outperform standard baselines.

4.1 Intrinsically Diverse Tasks

An intrinsically diverse task is one in which the user requires information about

multiple, different aspects of the same topical information need. In practice, a user

most strongly demonstrates this interest by issuing multiple queries about dif-

ferent aspects of the same topic. We are particularly interested in identifying

the common theme of an intrinsically diverse task and when a user initiated the

task. We unify these into the concept of an initiator query where, given a set

of queries on an intrinsically diverse task, the query among them that is most

general and likely to have been the first among these set of queries is called the

initiator query. If multiple such queries exist, then the first among them from

the actual sequence (issued by the user) is considered the initiator. We give im-

portance to the temporal sequence since the goal is to detect the initiation of the

task and provide support for it as soon as possible.

While previous work has defined the concept of intrinsic diversity, there has

been no further understanding of the problem or means to obtain data. We now

identify and analyze authentic instances of intrinsically diverse search behavior,

extracted from large-scale mining and analysis of query logs from a commercial

58

search engine.

4.1.1 Mining intrinsically diverse sessions

Intuitively, intrinsically diverse (ID) tasks are topically coherent but cover many

different aspects. To automatically identify ID tasks in situ where a user is at-

tempting to accomplish the task, we seek to codify this intuition. Furthermore,

rather than trying to cover all types of ID tasks, we focus on extracting with

good precision and accuracy a set of tasks where each task is contained within

a single search session. As a “session” we take the commonly used approach

of demarcating session boundaries by 30 minutes of user inactivity [166]. Once

identified, these mined instances could potentially be used to predict broader

patterns of cross-session intrinsic diversity tasks [3, 97], but we restrict this

study to mining and predicting the initiation of an ID task within a search ses-

sion and performing whole-session retrieval at the point of detection.

To mine intrinsically diverse sessions from a post-hoc analysis of behavioral

interactions signals with the search results, we developed a set of heuristics to

detect when a session is topically coherent but covering many aspects. These

can be summarized as finding sessions that are: (1) longer – the user must dis-

play evidence of exploring multiple aspects; (2) topically coherent – the identi-

fied aspects should be related to the same overall theme rather than disparate

tasks or topics; (3) diverse over aspects – the queries should demonstrate a pat-

tern beyond simple reformulation by showing diversity. Furthermore, since the

user’s interaction with the results will be used in lieu of a contextual relevance

judgment for evaluation, we also desire that we have some “satisfied” or “long-

59

click” results where we define a satisfied (SAT) click similar to other work as

having a dwell of ≥ 30s or terminating the search session [61, 66].

Given these criteria, we propose a simple algorithm to collect intrinsically

diverse user sessions. Our algorithm uses a series of filters, explained in more

detail below. When we refer to “removing” queries, we mean they were treated

as not having occurred for any subsequent analysis steps. For sessions, with

the exception of those we “remove” from further analysis in Step 4, we label

all other sessions as intrinsically diverse or regular (i.e., not ID). We identify the

initiator query as the first query that remains after all query removal steps, and

likewise a successor query is any remaining query that follows the initiator in

the session. More precisely, we use the following steps (in sequence) to filter

sessions:

1. Remove frequent queries: Frequent queries – such as facebook or walmart

– that are often interleaved with more complex tasks can obscure the more

complex task the user is accomplishing. Therefore, we remove the top

100 queries by frequency as well as frequent misspellings related to these

queries.

2. Collapse duplicates: We collapse any duplicate of a query issued later in

the session as representing the same aspect but record all SAT clicks across

the separate impressions.

3. Only preserve manually entered queries: To focus on user-driven explo-

ration and search, we removed queries that were not manually entered,

e.g., those obtained by clicking on a link such as by query suggestion or

searches embedded on a page.

4. Remove sessions with no SAT Document: Since we would like to even-

60

tually measure the quality of re-rankings for these session queries in a per-

sonal and contextual sense, we would like to ensure that there is at least

one long-dwell click to treat as a relevance judgment. While this is not

required for a session being an ID session, we simply require it for ease of

evaluation. Thus, we removed sessions with no SAT clicks.

5. Ensure topical coherence: As ID sessions have a common topic, we re-

moved any successor query that did not share at least one common top

ten result with the initiator query. Note that this need not be the same

result for every aspect. While this restricts the set of interaction patterns

we identify, it enables us to be more precise, while ensuring semantic re-

latedness, and does not rely on the weakness of assuming one fixed static

ontology.

6. Ensure diversity in aspects: Although we desire topical coherence across

the queries, we do not want to identify simple reformulations or spelling

corrections as aspects. Thus we restrict the syntactic similarity with the

initiator query to avoid identifying trivial difference as substantially dif-

ferent aspects. To measure query similarity robust to spelling variations,

we consistently use cosine similarity with character trigrams in this work. In

particular, we remove queries where the similarity was more than 0.5.

7. Remove long queries: We observed a small fraction of sessions matching

the above filters appear to consist of copy/paste homework questions on

a common topic. While potentially interesting, we focus in this paper on

completely user-generated aspects and introduce a constraint on query

length, removing queries of length at least 50 characters.

8. Threshold the number of distinct aspects: Finally, to focus on diversity

and complexity among the aspects, we threshold on the number of dis-

61

tinct successor queries. We identify a query as distinct when its maximum

pairwise (trigram character cosine) similarity with any preceding query in

the session is less than 0.6. Any session with less than three distinct as-

pects (including the initiator) are labeled as regular and those with three

or more aspects are labeled as intrinsically diverse.

Putting everything together, we ran this algorithm on a sample of user ses-

sions from the logs of a commercial search engine from the period April 1–May

31, 2012. We used log entries generated in the English-speaking United States lo-

cale to reduce variability caused by geographical or linguistic variation in search

behavior. Starting with 51.2M sessions comprising 134M queries, applying all

but the SAT-click filter, with the Number of Distinct Aspects threshold at two, led

to more than 497K ID sessions with 7.0M queries. These ID tasks accounted for

1.0% of all search sessions in our sample, and 3.5% of sessions having 3 queries

or more (14.4M sessions)1. Further applying the SAT-click filter reduced the

number to 390K. Finally, focusing on the more complex sessions by setting the

Number of Distinct Aspects filter to three, reduced this to 146K sessions.

Given that ID sessions require multiple queries, we hypothesize that ID ses-

sions account for a disproportionately larger fraction of time spent searching by

all users. To test this, we estimated the time a user spent in a session by the

elapsed time from the first query to the last action (i.e., query or click). Ses-

sions with a single query and no clicks were assigned a constant duration of 5

seconds. Here, the time in session includes the whole session once an ID task

was identified in that session. Our hypothesis was confirmed: while ID sessions

with at least 2 distinct aspects represented 1.0% of all sessions, they accounted

1Because we do not focus on more complex ID information seeking, such as tasks that span
multiple sessions, the true percentage associated with ID tasks is likely to be larger.

62

for 4.3% of total time spent searching, showing the significant role ID sessions

play in overall search activity. For more details on this extraction process as well

as an evaluation of its’ accuracy (using annotated data), we refer the interested

reader to the journal article on this topic [135].

4.2 Predicting Intrinsically Diverse Task Initiation

Given that we may want to alter retrieval depending on whether the user is

seeking intrinsic diversity or not, we ask the question of whether we can iden-

tify the initiator queries for intrinsically diverse tasks. We do so by treating this

as a classification problem. In particular, while we used the behavioral signals

of interaction between the initiator and successor queries of a session to auto-

matically label queries with a (weak) supervised label in the previous section,

here we ask if we can predict what the label would be in the absence of those

interaction signals – a necessary ability if we are to detect the user’s need for

intrinsic diversity in an operational setting. Ultimately our goal is to enable a

search engine to customize the search results for intrinsic diversity only when

appropriate, while providing at least the same level of relevance on tasks pre-

dicted to be regular. Recognizing that in most operative settings, it is likely

important to invoke a specialized method of retrieval only when confident, we

present a precision-recall tradeoff but focus on the high precision portion.

4.2.1 Experimental Setting

Data: We used a sample of initiator queries from the intrinsically diverse ses-

sions described in Sec. 4.1.1 as our positive examples. The first queries (after

63

removing common queries as in Step 1 of Sec. 4.1.1) from regular sessions were

used as negative examples. Note that since the label of a query, e.g., [foo],

comes from the session context, it is possible that [foo] occurs in both positive

and negative contexts. In order to only train to predict queries that were clearly

either ID or regular, we dropped such conflicting queries from the dataset; this

only occurred 1 out of every 5K ID sessions. Also to weigh each task equally

instead of by frequency, we sample by type: i.e., we treat multiple occurrences

of a query in the positive (resp. negative) set as a single occurrence. Finally, we

downsample to obtain a 1:1 ratio from the positive and negative sets to create

a balanced set. The dataset was sampled to contain 61K queries and split into

an 80/5/15 proportion (50000 training, 3000 validation, 8000 test) with no class

bias.

Classification: We used SVMs[81] with linear kernels, unless mentioned oth-

erwise. We varied the regularization parameter (C) over the values: {10−4, 2 ·

10−4, 5 · 10−4, 10−3, . . . , 500, 103}. Model selection was done using the validation

set by selecting the model with the best precision using the default margin score

threshold (i.e., 0).

Feature Set Examples Size Coverage Norm? Log?
Text Unigram Counts 44140 100% No No

Stats # Words, # Characters, # Impres-
sions, Click Count, Click Entropy 10 81% Yes Yes

POS Part-of-Speech Tag Counts 37 100% No No

ODP Five Most Probable ODP Class
Scores from Top Two Levels 219 25% Yes Yes

QLOG
Avg Similarity with co-session
queries, Avg session length, Distri-
bution of occurrences within ses-
sion (start/middle/end)

55 44% Yes No

Table 4.2: Features used for identification of initiator queries along with cardinality, cov-
erage and information as to whether they were normalized or log transformed

64

Features: The features are broadly grouped into 5 classes as shown in Ta-

ble 4.2. Apart from the text and POS tag features, all other features were nor-

malized to zero mean, unit variance. Features with values spanning multiple

orders of magnitude, such as the number of impressions, were first scaled down

via the log function. Due to the large scale of our data, coverage of some fea-

tures is limited. In particular, query classification was done similar to [25] by

selecting the top 9.4M queries by frequency from a year’s query logs previously

in time and then using a click-based weighting on the content-classified docu-

ments receiving clicks2. Likewise Stats and QLOG features were built from four

months’ worth of query logs and have limited coverage as a result. The query

logs chosen to build these features were from prior to April 2012 to ensure a fair

experimental setting with no overlap with the data collection period of the in-

trinsically diverse or regular sessions. We found the coverage of these features

to be roughly the same for both the positive and negative classes.

We also note that the cardinality of some feature sets will depend on the

training set (e.g., vocabulary size of Text grows with more training data); the

values listed in Table 4.2 are for the default training set. Most of our experiments

will use all of the 5 feature sets; the effect of using only a subset of the feature

sets is explored in Sec. 4.2.3.

4.2.2 Can we predict ID task initiation?

To begin with, we would like to know the precision-recall tradeoff that we can

achieve on this problem. Figure 4.1 (Left) shows the precision-recall curve for

a linear SVM trained on 50K examples with all features. The result is a curve
2For greater coverage this could be extended to a rank-weighted back-off as described in that

paper [25].

65

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

o
n

Recall

Precision-Recall Graph

SVM Performance

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

P
re

c
is

io
n

Recall

Effect of Features Used

Text
Stats
POS
ODP

QLOG
Text+Stats

Text+Stats+POS+ODP
All

Figure 4.1: P-R curve for predicting ID task initiation (Left) & Change in
initiator classification performance with feature set (Right)

with clear regions of high precision, indicating that the SVM is able to identify

initiator queries in these regions quite accurately. For example, we can iden-

tify 20% of ID tasks with 80% precision. Furthermore, performance is better

than random (precision of 50% since classes are balanced) along the entire recall

spectrum.

4.2.3 Which features were most important?

We next investigate the effect of using different subsets of the features on perfor-

mance (Fig 4.1 - Right). First, we note that Stats, QLOG and ODP feature sets

help identify only a small fraction of the initiator queries but do so with high

precision. On the other hand, the Text and POS feature sets, which have high

coverage, provide some meaningful signal for all the queries, but cannot lead to

high precision classification. We also find that a combination of features, such

as the Text and Stats features, can help obtain higher precision as well as higher

recall than either alone. In fact, such combinations perform almost as well as

using all features, which is the best out of all feature combinations.

66

Linguistic features of initiator queries To further understand ID initiator

queries, we identified the part-of-speech and text features most strongly asso-

ciated with them, by computing each feature’s log-odds ratio (LOR)3 compared

to regular queries. Looking at the top-ranked features by LOR, we found that

initiator queries are more likely to use question words (LOR=0.41); focus on

proper nouns (0.40) such as places and people; use more ‘filler’ words (par-

ticles) found in natural language (0.27); and when they use general nouns,

these tend to be plural (0.13) instead of singular (−0.052). Predominant text fea-

tures indicated the importance of list-like nouns such as forms, facts, types, ideas

(LOR=1.59, 1.45, 1.25, 0.92); verbs that are commonly used in questions such as

did (1.34); and words indicating a broad need such as information and manual

(1.64, 1.18). Strong negative features tend to encode exceptions – such as the

most negative word lyrics (−2.25) used to find words to specific songs.

4.3 Re-ranking for intrinsic diversity

While the previous section discusses the identification of queries that lead to

ID tasks, in this section we discuss changes that can be made to the search re-

sults page to support queries for ID tasks. Specifically, we propose a re-ranking

scheme that looks to satisfy not only the information need of the issued query,

but also the future queries that the user is likely to issue later in the session on

other aspects of the task. To the best of our knowledge, we are the first to ad-

dress the problem of jointly satisfying the current query as well as future queries

(unlike anticipatory search [107] which focuses solely on the latter).

We will use an interactive ranking-based paradigm here, using an approach

3LOR is a rough approximation to the weight in a single-variable logistic regression.

67

related to the two-level rankings [139] proposed in Chapter 7. Given an issued

query representing the start of an ID task, we consider rankings where each

result can be attributed to some aspect of that task. We represent each aspect

of the ID task by a related query of the issued query. One way this could be

surfaced on a results page for a user is by placing the related query for an as-

pect adjacent to its corresponding search result. In such a setting, clicking on

the related query could lead to results for that query being presented, thus en-

abling the user to explore documents for that aspect. This brings us to the main

question of how we find such a ranking.

4.3.1 Ranking via Submodular Optimization

We first describe precisely what we consider as an interactive ranking. In re-

sponse to an initial query q, an interactive ranking y = (yD, yQ) comprises two

parts: a ranking of documents yD = d1, d2, . . ., which we refer to as the primary

ranking; and a corresponding list of related queries yQ = q1, q2, . . ., which rep-

resent the aspects associated with the documents of the primary ranking. The

ith query in the list, qi, represents the aspect associated with di. Structurally this

can also be thought of as a ranked list of (document, related query) pairs (di, qi).

Given this structure, let us consider four conditions that comprise a good

interactive ranking:

1. Since the documents in the primary ranking were displayed in response

to the issued query q, they should be relevant to q.

2. As document di is associated with the aspect represented by the related

query qi, document di should be relevant to query qi.

3. Aspects should be relevant to the ID task being initiated by the query q.

68

4. At the same time, the aspects should not be repetitive i.e., there should be

diversity in the aspects covered.

We now design a ranking objective function that satisfies these four condi-

tions to jointly optimize the selection of documents and queries (yD, yQ). Sup-

pose we have an existing interactive ranking y(k−1) that has k − 1 (document,

related query) pairs, and our goal is to construct a new ranking y(k) by adding

an optimal (document, related query) pair to y(k−1) – an operation we denote by

y(k) = y(k−1) ⊕ (dk, qk).

Condition 1 above can be met by selecting dk such that R(dk|q) is large, where

R(d|q) denotes the probability of relevance of document d given query q. Con-

dition 2 can be met by selecting dk such that its relevance to the related query

qk, R(dk|qk), is large. Conditions 3 and 4 imply a standard diversification trade-

off, but here we have that the aspects qk should be related to the initial query

q and diverse. If we use a similarity function between queries to estimate

the relevance between queries, Condition 3 implies that the similarity function

S im(q, qk) between qk and q should be large. Condition 4 requires that the diver-

sity should be maximized between qk and all previous queries Q = q1, . . . , qk−1.

Both Condition 3 and 4 can be jointly obtained by optimizing an MMR-like di-

versity function [35], Div(qk,Q), as described below.

Intuitively, we would also like the change in the objective function on adding

document-query pair (dk, qk) to the ranking y to be no smaller than what we

would gain if adding the pair to a larger ranking y ⊕ y′: that is, the objective

function should be monotone and submodular. Submodular objectives are desir-

able because they have the property that they can be optimized using a simple

and efficient greedy algorithm which iteratively computes the next best (d, q) pair

69

to add to the ranking. Using the greedy algorithm ensures that the computed

solution is at least (1 − 1
e) times as good as the optimal.

We now consider the following objective satisfying the above conditions4:

argmax(d1,q1)···(dn,qn)

n∑
i=1

γi · R(di|q) · R(di|qi) · eβDiv(qi,Q)

where Q is shorthand for the set of queries Q = {q1, . . . , qn}, and Div(·) is an

MMR-like diversity function defined as

Div(qi,Q) = λ · S im(qi, S nip(q)) (4.1)

− (1 − λ) max
j<i

S im(S nip(qi), S nip(q j)).

Here, λ ∈ [0, 1] and β > 0 are parameters, where λ controls the tradeoff between

related query aspect relevance and diversity while β controls the rate at which

returns diminish from additional coverage. Finally, γi refers to the discount

factor for position i: we use the common 1
log2(i+1) DCG discounting.

This objective can be interpreted as maximizing an expected utility (the ex-

ponential term) of covering related and diverse aspects where the expectation is

over the maximum joint relevance of a document to both the initial query and

the related query aspect. Furthermore, the joint probability is assumed to be

conditionally independent to factor into the two relevance terms.

In this study, we define S im(x, y) as the cosine similarity between word-TF

representations of x and y, and S nip(q j) is the bag-of-words representation of

caption text from the top-10 search results for q j using relevance score R(d|q j)

alone. The MMR-like term appears within the exponent to ensure the objective

is monotone.
4We omit the proof of submodularity for space reasons and instead refer the reader to the

journal article [135].

70

Algorithm 4: Greedy-DynRR(β, λ, P(·|·), q)

1: (yD, yQ)← φ

2: for all q′ ∈ RelQ(q) do

3: Next(q′)← Document Ranking by R(·|q) · R(·|q′).

4: for i = 1→ n do

5: bestU ← −∞

6: for all q′ ∈ RelQ(q)/ yQ do

7: d′ ← Top(Next(q′)/ yD)

8: v← R(d′|q) · R(d′|q′) · eβ·Div(q′,yQ)

9: if v > bestU then

10: bestU ← v

11: bestQ← q′

12: bestD← d′

13: (yD, yQ)← (yD, yQ) ⊕ (bestD, bestQ)

14: return y

Note that while the final objective optimizes for an interactive ranking, the

primary ranking itself aims to present results from other aspects. We optimize

this using the greedy algorithm presented in Algorithm 4, which we refer to

as the DynRR method. In Alg. 4, the function RelQ(q) denotes a function that

returns related queries for query q, and Top(yD) returns the top element in the

ranking yD.

Theorem 8 The solution returned by Alg 4 is at least e−β(1−λ)

2 as good as the optimal.

As the proof is fairly involved, we refer the interested reader to [135].

71

Also note that while the presented algorithm is fairly simplistic from a learn-

ing perspective, the goal of this chapter is to see if modeling such (intrinsically)

diverse needs can help improve ranking performance or not. The next chapter

(Chapter 5) explores more sophisticated learning for intrinsic diversity.

4.4 Reranking Evaluation

4.4.1 Experimental Setup

Data: To evaluate the efficacy of the proposed reranking method, we used the

data obtained from mining the search logs, as described in Section 4.1. We used

two main datasets: MINED (8888 Training queries and 2219 Test) and MIXED

(4120/1027 Training/Test). To analyze impact when most of the sessions are ID

and more complex, the MINED dataset is obtained directly from the filtering al-

gorithm by setting the threshold on the Number of Distinct Aspects to be 5. To

determine the re-ranking impact when sessions may be a mixture of both ID and

regular sessions, the MIXED dataset was obtained by predicting when a session

was ID using the classifier from Sec. 4.2 over a mixture of the MINED dataset

sessions and a random sample of regular sessions of the same size. More specif-

ically, the combined sessions were split in a 45-10-45 split of training-validation

and test sets. The trained classifier was used to classify the test set sessions

as being ID or not, based on the initiator query. The sessions predicted as ID

formed the MIXED dataset (prediction accuracy of 68.8% over the combined

sessions); for those not predicted to be ID, we assume the standard ranking al-

gorithm would be applied and thus relevance would be the same on those. The

MIXED dataset is a reflection of an operational setting, where the query issued

is used to predict if the resulting session will be an ID session or not, and the

ones predicted to be ID are selected for re-ranking.

72

Query Length
Website Log(PageRank)

Baseline Ranker Reciprocal Rank (if in top 10)

URL

Length, # of Query Terms Covered,
Fraction of Query Covered, TF Cosine similarity,

LM Score(KLD), Jaccard Similarity,
Boolean AND Match, Boolean OR Match

Anchor (Weighted) Same as URL
Anchor (Unweighted) TF-Cosine Sim, KLD Score

Table 4.3: The 21 features used to train R(d|q).

Obtaining Probability of Relevance: For our algorithm, we required the

computation of the conditional relevance of a document given a query i.e.,

R(d|q). Thus, to enable easier reproducibility by others, we learned a model us-

ing Boosted Regression Trees, on a dataset labeled with the relevance-values

for query-document pairs with 20,000 queries using graded relevance judg-

ments (∼60 documents per query). The features used are given in Table 4.3.

Features were all normalized to zero mean, unit variance. To obtain the final

model, we optimized for NDCG@5.

Evaluation metrics: To compare against standard ranking techniques, we

simply evaluate the quality of the primary ranking, i.e., completely ignore the re-

lated query suggestions attributed to documents. Since our goal is whole-session

relevance, documents are considered relevant if and only if they are relevant to

any query in the session. Given this notion of relevance, we compute the Preci-

sion, MAP, DCG and NDCG values.

Baselines: As baselines we used the following methods:

• RelDQ: Ranking obtained by sorting as per R(d|q).

• Baseline: A state-of-the-art commercial search engine ranker (also used to

compute the rank feature for training the R(d|q) model).

We also computed performance of other baselines, such as MMR and

73

relevance-based methods such as BM-25 (using the weighted anchor text), but

found them to perform far worse than RelDQ and Baseline and hence do not

present the results for such other baselines.

Related Queries: We used three different sources for related queries:

• API: We used the publicly available API of a commercial search engine

(which returns 6-10 related queries)

• Click-Graph: Using co-click data, we obtained a set of 10 − 20 related

queries.

• Co-Session Graph: Using data of queries co-occurring in the same ses-

sion, we obtained 10 − 20 related queries.

To ensure fairness, the graphs were constructed using data prior to April 2012.

For some experiments, we only use the second and third (which we distinguish

by the suffix C+S).

Settings: The parameters for DynRR were set by optimizing for a DCG-like

metric on the training data5. All numbers reported here are for the test set. We

considered all SAT-clicked results in the session as relevant documents; since

we compare relative to the baseline search engine, the assumption is that placing

the SAT-clicked documents higher is better, rather than being an indication of

absolute performance. The candidate document set for re-ranking comprises

the union of the top 100 results (from the Baseline method) of the initiator query,

and the top 10 results from each related query.

5We varied the λ parameter from 0 to 1 in increments of 0.1, while the β parameter was varied
across the values {0.1, 0.3, 1, 3, 10}.

74

Set Method Prec MAP DCG NDCG
@1 @3 @10 @1 @3 @10 @1 @3 @10 @1 @3 @10

Mined
RelDQ 1.00 0.94 0.97 1.00 0.97 0.98 1.00 0.97 0.99 1.00 0.97 0.99
DynRR 1.06 1.03 1.02 1.06 1.05 1.04 1.06 1.04 1.04 1.06 1.05 1.05

DynRR C+S 1.10 1.09 1.09 1.10 1.10 1.10 1.10 1.10 1.11 1.09 1.10 1.11

Mixed RelDQ 1.00 0.94 0.99 1.00 0.98 0.98 1.00 0.96 0.98 1.00 0.97 0.98
DynRR 1.03 1.02 1.04 1.03 1.04 1.03 1.03 1.03 1.03 1.03 1.03 1.05

Table 4.4: Performance of different methods (as a ratio compared to the Baseline)

Set Comp. % Gains % Losses
Metric 0.2 0.5 1.0 0.2 0.5 1.0

Mined DCG@10 19.6 5.2 0.3 12.7 3.8 0.3
Mixed DCG@10 17.7 6.0 0.8 12.9 4.0 0.2

Table 4.5: % of sessions for which the metric performance of DynRR dif-
fers from the Baseline DCG@10 by more than a certain threshold.

4.4.2 Results

Reranking Evaluation: We first evaluate the quality of the top-level ranking. As

seen in the results of Table 4.4, the re-ranking leads to improvements across the

different metrics for both datasets. Thus, even without interactivity, the method

is able to outperform the baselines in predicting future results of interest to the

user, while also providing results for the current query. In particular, we found

the DynRR method works best using the C+S related queries (which we return

to later) with 9-11% gains over the baselines at position 10 across the various

metrics with 3-5% relative gains. We also find that the method improves on the

MIXED dataset supporting the question of whether the method can be robustly

used in practical scenarios. Thus we improve an important segment of tasks

while maintaining high levels of performance elsewhere; further improvements

to the initiator classification model will improve the robustness further.

Robustness: A key concern when comparing a new method against a base-

line, is the robustness of the method. In particular, we are interested in the

75

number of queries that are either improved or hurt, when switching from the

Baseline method to the proposed re-ranking method. This is particularly crucial

for the MIXED dataset, as we would want that the performance on non-ID ses-

sions not be severely affected. Table 4.5 displays the % of examples for which the

method either gains or loses above a certain threshold, compared to the Base-

line method. We see that the number of gains far exceeds the number of losses,

especially while comparing the interactive metric. We should also note that for

both datasets and both metrics, the DynRR method is statistically significantly

better than the Baseline method, as measured by a binomial test at the 99.99%

significance level.

4.5 Summary

This chapter studied intrinsically diverse tasks, which are tasks that typically re-

quire multiple user searches on different aspects of the same information need.

It motivated the problem using real-world data and presented an algorithm to

mine data from search logs using behavioral interaction signals within a ses-

sion. It then looked at the problem of identifying the queries that start these

sessions, and treated it as a classification problem, and provided an analysis of

these queries. Finally, a re-ranking approach was proposed so as to alter the

rankings presented to the user. This reranking aimed to provide users with

information on aspects of the task which they were highly likely to search for

in the future. The approach was validated empirically using search log data,

demonstrating significant improvement over competitive baselines.

76

CHAPTER 5

COACTIVELY LEARNING INTRINSIC DIVERSITY

Modeling the dependencies between items in a ranking of results is one of

the most promising directions for improving the quality of retrieval and rec-

ommendation systems. First, consider the example of a search engine and an

ambiguous query such as “jaguar” or “apple”. For such queries, it is impor-

tant to present a diverse set of results since diversity hedges against uncertainty

about the users intent (i.e., extrinsic diversity). Intrinsic diversity [132] on the other

hand, is important to avoid redundancy and provide a set of results that cover

multiple aspects of an information need. The previous chapter (Chapter 4) dis-

cussed the prevalence and importance of intrinsic diversity in web search and

its’ role in improving search performance for complex tasks. Intrinsic Diversity

(ID) is equally important and prominent in recommendation tasks. For exam-

ple, consider a user of a news recommendation service (say NY Times). Of all

the articles in the NY Times on a given day, he/she only has time to read a small

subset. Therefore, even if they are interested in the Greece Debt Crisis, he/she

may not want to read exclusively about this one topic, but rather read one article

on the topic while also covering other topics of interest.

Unlike the previous chapter (which focused on the prominence of ID and the

impact simple reranking can have for ID tasks), this chapter will focus on com-

ing up with learning algorithms using the joint design principle of interactive

learning proposed in this dissertation. In particular, it will develop two coactive

learning (Part II) algorithms for learning to intrinsically diversify results from

implicit user feedback. The key to these algorithms is that they learn both rele-

vance (of items) and the desired amount of diversity from set-valued preference

77

data. These algorithms now exploit submodularity and the diminishing returns

property to make it possible to avoid redundancy and increase novelty. This

results in two easy to implement algorithms, that come with theoretical guaran-

tees on the learning quality (despite the fact that submodular models only allow

for approximate inference). Their ability to learn the desired amount of diver-

sity based solely on user feedback, without any a priori knowledge of the user’s

preferences, makes these algorithms particularly attractive for the ID problem.

This is also corroborated in empirical studies, which demonstrate the effective-

ness of the proposed approaches in learning both relevance and diversity.

5.1 Modeling Relevance and Diversity

We will use the coactive learning model (Part II) for the algorithms in this chap-

ter (and the next one). Let us briefly recap the coactive model using an exam-

ple of a personalized news reader that users visit on a daily basis. On day t,

the user visits the news reader and is presented a suggested list of documents

yt = (d1, d2, d3, d4, d5, ...) from a corpus xt ∈ X of candidate news articles. The

user then interacts with yt. We assume that the user acts (boundedly) rationally

according to an unknown (complex) utility function U(xt, yt) that models both

relevance of the articles as well as their dependencies with other documents

in yt (e.g., redundancy). For example, while the user may be interested in the

Greece debt crisis, they may prefer to not read more than one article related

to this issue, even if yt contains 5 relevant articles on the topic. The user’s ac-

tions, say reading articles d2 and d4, can be used to construct a ranking that the

user would have preferred, say using the move-to-top feedback model (where

user feedback ranking ȳt = (d2, d4, d1, d3, d4, ...)) or the pairwise feedback model

(where ȳt = (d2, d1, d3, d4, d5, ...)). This type of preference feedback over multiple

78

rounds t is the input for this sequential learning model. We will thus develop

learning algorithms with the goal of rankings with utility close to that of the

(unknown) optimal ranking y∗t := arg maxy∈Y U(xt, y).

As per the joint design principle1, it is critical that appropriate user models

be developed in conjunction with the learning algorithm. In particular we need

to accurately model the complex behavior displayed by this diversity-seeking

user via their utility U(x, y), which captures both relevance as well as interde-

pendencies between documents and the desired amount of diversity. As this re-

lates to metrics for evaluating retrieval performance for a ranking y for a given

x, we start our design of U(x, y) based on existing retrieval measures.

While traditional IR metrics are oblivious to diversity (e.g., NDCG, Pre-

cision), more recent additions account for diversity in some form (e.g., .

[4, 133, 157, 176]). We define our hypothesis space based on the family of perfor-

mance measures proposed in [139] (and detailed in Sec. 7.2), since it subsumes

many of these existing measures. These measures exhibit a diminishing returns

property (i.e., submodularity), which means that the marginal utility of a docu-

ment is lower if the intents the document is relevant to are already represented

in the ranking.

In particular, we model U(x, y) as a function that is linear in its parameters

w ∈ Rm with w ≥ 0,2 but submodular (and non-linear) in a feature map φ(x, y) ∈

Rm with φ(x, y) ≥ 0:

U(x, y) := w>φ(x, y). (5.1)

1Feedback interventions are the third key component of the interactive learning triple. For
the sake of simplicity, we ignore discussing these in this chapter and the next as the perturbation
based interventions discussed in Part II are equally suitable for the learning algorithms and user
model developed in these chapters.

2Denotes component-wise non-negativity.

79

The parameters w will be learned by the learning algorithm. The feature vector

φ(x, y) describes the ranking, but for simplicity of exposition we will consider

y to be the set consisting of the top k results that were viewed by the user, not

the full ranking3. The function φ(x, y) generates a feature vector describing the

set y = {di1 , di2 , ..., dik} under context x = {d1, d2, ..., d|x|} in the following manner:

We assume that each document d itself is described by a feature vector φ(d).

These feature vectors are aggregated into the feature vector φ(x, y) of y using an

aggregation function F. Let φ j(x, y) be the j-th feature of φ(x, y) and φ j(d) the j-th

feature of φ(d), then

φ j(x, y) = F({φ j(di1), φ
j(di2), ..., φ

j(dik)}). (5.2)

Examples of the per-feature aggregation function F are:

Name F(A) Subsumes

LIN F(A) =
∑

a∈A a Precision, DCG

MAX F(A) = maxa∈A a Coverage

The MAX variant, but not LIN, encourages diversity in the following way.

For example, consider a boolean bag-of-words representation of documents

φ(d). The first document to contain a term t will increase the feature value of

t in φ(x, y) by 1. The second document to contain t, however, will not cause any

increase. This models the redundancy of multiple occurrences of t, as it does

not give any benefit to all but the first occurrence of t. Note that multiple ag-

gregation functions F can be stacked into φ(x, y), which allows the linear model

to select a desired diminishing-returns profile. Note also that our model is not

restricted to the F listed above, and can work with any F that is monotone and
3A ranking can be viewed as a nested structure of top-k sets, and the greedy algorithm we

will later use to compute rankings uniformly optimizes the utility of the sets at any cutoff in the
ranking.

80

Algorithm 5: Greedy-Ranking(w, x)

y← 0

for i = 1 to k do

bestU ← −∞

for all d ∈ x/ y do

if w>(x, y ⊕ d) > bestU then

bestU ← w>φ(x, y ⊕ d)

best ← d

y← y ⊕ best

return y

submodular [139], including less stringent aggregation functions which allows

for some redundancy (like square root).

To compute the ranking that maximizes a utility function, i.e., y :=

arg maxy∈Y w>φ(x, y), one can use the simple and efficient Greedy method (Al-

gorithm 5). At each step, the algorithm greedily chooses the document with the

highest marginal utility to be added to the ranking. Note that y ⊕ d is used to

refer to the operator that appends document d to ranking y. Also note that Al-

gorithm 5 computes the exact utility optimizer yt for the modular measure LIN,

whereas it finds a (1 − 1
e) approximate yt for any submodular and monotone

function F.

5.2 Coactive Learning Algorithms for Intrinsic Diversity

In this section, we present our coactive learning algorithms for intrinsic diver-

sity, including a perceptron style algorithm and a clipped version of it. Sec-

81

Algorithm 6: Diversifying Perceptron.

Initialize w0 ← 0

for t = 0 to T − 1 do

Observe xt

Present yt ← Greedy−Ranking(wt, xt)

Obtain feedback ȳt

Update: wt+1 ← wt + φ(xt, ȳt) − φ(xt, yt)

tion 5.2.2 also provides an exponentiated gradient algorithm. We prove regret

bounds for all the proposed algorithms, where regret is given by:

REGT :=
1
T

T−1∑
t=0

(
U(xt, y∗t) − U(xt, yt)

)
. (5.3)

5.2.1 Diversified Perceptron

The Diversifying Perceptron (DP), shown in Algorithm 6 maintains a weight

vector wt which is initialized to 0. At each time step t, DP presents a ranking yt

from the corpus xt using the current weight vector estimate wt (computed via

Algorithm 5). DP then uses the user feedback ranking ȳt to update the weight

vector wt in the direction of φ(xt, ȳt) − φ(xt, yt). This algorithm bears strong re-

semblance to the Preference Perceptron (Algorithm 1) with one key difference.

Unlike the Preference Perceptron, the Diversifying Perceptron optimizes a so-

phisticated submodular utility function, which captures inter-document depen-

dencies, using a greedy algorithm.

82

Theoretical Analysis

To analyze the learning algorithms in this section, we will use the α-informative

feedback characterization (not an assumption):

U(xt, ȳt) − U(xt, yt) ≥ α
(
U(xt, y∗t) − U(xt, yt)

)
− ξt. (5.4)

Analogous results can be easily proven for the expected α-informative feed-

back characterization (presented in Eqn. 3.2) as well. The following theorem

describes the generalization performance of the Diversified Perceptron:

Theorem 9 The average regret of the diversified perceptron algorithm can be upper

bounded, for any w ∈ Rm
+ that defines the utility in Eq. (5.1), as follows:

REGT ≤
1
αT

T−1∑
t=0

ξt +
βR‖w‖
α

+

√
2
√

4 − β2R‖w‖
α
√

T
. (5.5)

Here 1
β+1 is the approx. factor of the greedy algorithm with β ≤ 2 and ‖φ(x, y)‖`2 ≤ R.

The proof is provided in Appendix A.1 along with the other proofs. Note that

bound on the worst-case regret is independent of the dimensionality of the fea-

ture space, that the regret converges to its asymptote at the rate of 1/
√

T (where

T is equal to the number of examples), and that the informativeness α of the

feedback enters the bound only linearly. The first term of the bound captures

the noise in the feedback.

For the case of modular utility (LIN), β = 0 and the bound resembles the

preference perceptron bound (Thm. 2). For submodular utilities, β = 1/(e + 1)

in the worst case, although it is typically much smaller in practice. When users

provide “clean” feedback according to (5.4), the first term in the bound (5.5)

vanishes.

83

Algorithm 7: Clipped Diversifying Perceptron.

Initialize w0 ← 0

for t = 0 to T − 1 do

Observe xt

Present yt ← Greedy−Ranking(wt, xt)

Obtain feedback ȳt

Update: w̄t+1 ← wt + φ(xt, ȳt) − φ(xt, yt)

Clip: w j
t+1 ← max(w̄ j

t+1, 0) ∀1 ≤ j ≤ m.

While the above theorem holds whenever there is a 1
β+1 -approximation for

finding yt, there is a caveat. In the case of submodular utility, to ensure that

the approximation guarantee holds, all the weights in wt must be positive. This

can be done by an additional clipping step that modifies each weight of wt by

clipping it at zero if it is negative. The clipped version of the algorithm is shown

in Algorithm 7.

For Algorithm 7, assuming that the utility is also defined using a vector w

which has only non-negative components, we can still give a regret bound sim-

ilar to Theorem 9.

Corollary 10 The average regret of the clipped diversified perceptron algorithm can be

upper bounded, for any w ∈ Rm
+ that defines the utility, as follows:

REGT ≤
1
αT

T−1∑
t=0

ξt +
βR‖w‖
α

+

√
2
√

4 − β2R‖w‖
α
√

T
, (5.6)

where 1
β+1 is the greedy algorithm approximation factor (β ≤ 2) and ‖φ(x, y)‖ ≤ R.

We obtained the clipped version of the algorithm to avoid non-negative

weights. In the next sub-section, we provide an elegant exponentiated algo-

84

rithm that naturally maintains non-negative weights.

5.2.2 Exponentiated Algorithm

Our exponentiated algorithm for learning to diversify from implicit feedback is

shown in Algorithm 8. In this algorithm, the weights are initialized uniformly

at the start. There is a rate θ associated with each step. The rate depends on the

maximum `∞ norm of the feature vectors (i.e., ‖φ(·, ·)‖`∞ ≤ S) and time horizon T .

At each step, a context xt is observed and an object yt is presented just like

in the earlier algorithms. However, once the feedback ȳt is obtained, the update

rules are multiplicative as shown in Algorithm 8. The weights are normalized to

one and the steps of the algorithm repeat. Since the updates are multiplicative

and the weights are initially positive, wt is guaranteed to remain positive in this

algorithm.

We now prove the regret bound for Algorithm 8. While the regret bounds

for Algorithms 6 and 7 depended on the `2 norm of the features, and the `2 norm

of w, the bound for the exponentiated algorithm depends on the `∞ norm of the

feature vectors and the `1 norm of w.

Theorem 11 For any w ∈ Rm
+ such that ‖w‖`1 = 1, the average regret of the exponenti-

ated algorithm can be upper bounded as follows:

REGT ≤
1
αT

T−1∑
t=0

ξt +
S β
α

+
2 log(m)S

α
√

T
+

S

2α
√

T
, (5.7)

where 1
β+1 is the approximation factor of the greedy algorithm with β ≤ 2 and

‖φ(x, y)‖`∞ ≤ S .

Like the previous bounds, Theorem 11 also bounds the regret in terms of the

85

Algorithm 8: Exponentiated Diversifying Algorithm.

Initialize wi
0 ←

1
m ∀1 ≤ i ≤ m.

θ ← 1
2S
√

T

for t = 0 to T − 1 do

Observe xt

Present yt ← Greedy − Ranking(wt, xt)

Obtain feedback ȳt

Update: wi
t+1 ← wi

t exp(θ(φi(xt, ȳt) − φi(xt, yt)))/Zt where Zt is such that the

weights add to one.

noise in the feedback (first term), the approximation factor of the inference al-

gorithm (second term), and additional terms which converge to zero at the rate

O(1/
√

T). The key difference to the previous bounds is that the regret bound

of the exponentiated algorithm scales logarithmically with the number of fea-

tures, and with the `1-norm of w, which can be advantageous if the optimal w is

sparse.

5.3 Empirical Study

In this section we empirically study different aspects of our proposed algo-

rithms. In particular, we show how using the submodular utility helps achieve

diversity. Furthermore, we explore the robustness of our learning method un-

der degraded feedback quality and noise. We also explore learning the amount

of diversity a user wants and compare the three algorithms that we proposed in

this paper against each other.

86

5.3.1 Experiment Setup

Since there is no large publicly available real-world corpus containing intrinsic

diversity judgments4, we created two artificial datasets from the RCV-1 [104]

text corpus and from the 20 newsgroups dataset (abbreviated 20NG).

The RCV-1 corpus contains over 800k documents, each of which is annotated

as belonging to one or more of 100+ topics. While the original RCV-1 topics are

arranged hierarchically, to make the problem non-trivial, we considered only

topics from the second level. The 20NG dataset contains about 19k documents

(with duplicates removed) with a single class label for each document. We sim-

ulate users with multiple different interests, by forming super-users with 5 dif-

ferent interests corresponding to 5 different topics/classes. Thus, if a document

is relevant to any of these topics it is relevant to that super-user, else it is not.

We assume that all topics are equally important unless otherwise mentioned.

In addition, for a given super-user we removed documents relevant to multiple

interests. In this manner, producing a diverse set of results would require being

able to truly learn each of the interests separately.

We ran the Diversifying Perceptron algorithm with a fresh set of 1000 doc-

uments for RCV1 (100 for 20NG) in each step as the corpus x and presented a

ranking y from the current corpus. In particular we focus on the top 5 results for

all evaluation measures for brevity, though the trends reported in the following

hold true for other ranking lengths as well. All results we report are averaged

over 50 runs of the algorithm, each for a different super-user. Documents are

represented as TF-IDF vectors. The joint feature map φ(x, y) is an aggregation

4Corpora like the TREC WEB corpus are small and contain relevance judgments only for
extrinsic diversity.

87

of the document vectors using one (or multiple) of the aggregation functions F

described in Section 5.1.

5.3.2 Can the algorithm learn to diversify?

We first evaluate if the proposed DP algorithm is really able to learn a func-

tion that combines relevance and diversity. In particular, we generated users

with 5 different and disjoint interests, and each user wants to read exactly one

document relevant to each interest in every iteration. Note that users of this

type are seeking maximum diversity in their rankings. To illustrate the per-

formance of the algorithm, we report two quantities. First, we computed how

many interests are covered in the top 5 documents of the presented ranking in

each iteration. Second, we considered the median depth the user needs to search

down the ranking to find one document for each of his/her interests.

We ran the DP algorithm with the MAX feature map as defined in Section 5.1.

This is compared against the conventional Preference Perceptron algorithm, that

is effectively utilizing the LIN feature map, as it focuses purely on relevance

and therefore cannot model diversity directly. For simplicity we simulate α = 1

informative feedback. We also compare against a Random baseline, which is

the performance of a random ranking.

Figure 5.1 shows the average and standard error of the results for this experi-

ment on the two datasets. The left column shows the number of intents covered

in the top 5 positions over time. While the LIN method is far better than the

Random method and continues to improve over time, it is outperformed by the

MAX method, which is able to learn better.

88

 0

 1

 2

 3

 4

 5

 1 10 100

N
um

be
r

of
 d

iff
er

en
t i

nt
en

ts
 c

ov
er

ed

Number of Iterations

MAX
LIN

Random

 0

 10

 20

 30

 40

 50

 1 10 100

M
ed

ia
n

S
ea

rc
h

Le
ng

th

Number of Iterations

MAX
LIN

 0

 1

 2

 3

 4

 5

 1 10 100

N
um

be
r

of
 d

iff
er

en
t i

nt
en

ts
 c

ov
er

ed

Number of Iterations

MAX
LIN

Random

 0

 10

 20

 30

 40

 50

 1 10 100

M
ed

ia
n

S
ea

rc
h

Le
ng

th

Number of Iterations

MAX
LIN

Figure 5.1: Comparison between the submodular (MAX) and independent
(LIN) model for users that are purely seeking diversity; top:
RCV-1, bottom: 20NG.

The right pane further illustrates this result, as it shows how the median

search length (required to find at least one document for each intent) starts

at high values, but quickly drops after a few iterations. Both learning meth-

ods clearly outperform the Random baseline (whose median length value is too

large to plot). In all the plots, the standard errors are small implying statistical

significance.

It can be observed that the difference between the MAX and the LIN is much

higher in the case of RCV-1 compared to 20NG dataset. This is due to the fact

that 20NG has only 20 categories, whereas RCV-1 has more than 100 and is thus

much harder to learn for LIN.

89

 0

 1

 2

 3

 4

 5

 1 10 100

N
um

be
r

of
 In

te
nt

s
C

ov
er

ed
 in

 T
op

 5

Number of Iterations

Effect of Alpha on Number of Intents Covered

α=1.0
α=0.8
α=0.6
α=0.4
α=0.2
α=0.1

 0

 1

 2

 3

 4

 5

 1 10 100

N
um

be
r

of
 In

te
nt

s
C

ov
er

ed
 in

 T
op

 5

Number of Iterations

Effect of Alpha on Number of Intents Covered

α=1.0
α=0.8
α=0.6
α=0.4
α=0.2
α=0.1

Figure 5.2: Effect of α on performance of the algorithm for users that are
purely seeking diversity; left: RCV-1, right: 20NG.

5.3.3 What is the effect of feedback quality?

We next study the effect of the quality of feedback (as described by α) on the per-

formance of the DP method. As real-world users are unlikely to provide perfect

feedback, we would like our algorithm to learn even in scenarios where the

user-feedback is far from ideal. We varied the quality of the feedback by chang-

ing the value of α. A change in α is achieved through the following mechanism:

for any intent not covered in the presented ranking, but covered in the optimal

ranking, with probability 1−α, documents covering that intent are absent in the

feedback ranking. This leads to expected α-informative feedback.

Figure 5.2 shows the results for this experiment. Most notably, the perfor-

mance is nearly unchanged for larger values of α. In particular, we find that for

α ≥ 0.6 the performance is very close to that with perfect feedback (α = 1.0). At

low values of α such as 0.2 or 0.1, the method still makes reasonable progress

over time, albeit at a slower rate. We see that for α = 0.2 within 100 iterations

the number of intents covered more than doubles. These results indicate that

the proposed method is still able to learn even when the informativeness of the

user feedback is poor.

90

 0

 1

 2

 3

 4

 5

 1 10 100

N
um

be
r

of
 In

te
nt

s
C

ov
er

ed
 in

 T
op

 5

Number of Iterations

Effect of Noisy Feedback on Number of Intents Covered

η=0
η=0.02 (α = 0.94)
η=0.05 (α = 0.83)

η=0.1 (α = 0.66)
η=0.2 (α = 0.38)
η=0.5 (α = 0.04)

 0

 1

 2

 3

 4

 5

 1 10 100

N
um

be
r

of
 In

te
nt

s
C

ov
er

ed
 in

 T
op

 5

Number of Iterations

Effect of Noisy Feedback on Number of Intents Covered

η=0
η=0.02 (α = 0.93)
η=0.05 (α = 0.83)

η=0.1 (α = 0.68)
η=0.2 (α = 0.42)
η=0.5 (α = 0.06)

Figure 5.3: Effect of η on performance of the algorithm for users that are
purely seeking diversity (number in bracket indicates the ef-
fective α of the feedback); left: RCV-1, right: 20NG.

5.3.4 What is the robustness to noise?

While the experiments in the previous section showed robustness to imperfect

feedback, we now test the robustness of our algorithm to noisy feedback. One

key difference between the two is that with noisy feedback, the user may return

a feedback ranking that is worse than the one he was presented. Such a degra-

dation in the quality of the ranking will be captured by the slack variable seen

in Eq. (5.4). We would particularly like the noise introduced to be reflective of

that expected in the real-world, where users may sometimes be unsure of the

relevance of some documents. Thus we modify the user clicking mechanism

that produces the feedback in the following manner:

• Each irrelevant document encountered in the ranking may be considered

as relevant with probability η.

• Documents relevant to one of the user’s topics may be confused for a dif-

ferent topic with probability η/5.

91

Like α, η affects only the quality of the user feedback and not the learning al-

gorithm itself. Figure 5.3 shows the effect of varying the noise factor η. As seen

in the figure, the algorithm is quite robust to noise. For high values of η, such as

0.2, we find that the algorithm is still able to learn quite well. The figures also

indicate the expected α of the feedback received after adding noise. However,

note that in this scenario, unlike the experiments varying α, the feedback rank-

ing can be significantly worse than the predicted ranking. Thus we see that for

η = 0.2, although α ∼ 0.4 in expectation, the performance is noticeably worse

than for the case of α = 0.4.

5.3.5 Learn the desired amount of diversity?

We next explore whether the algorithm can learn how much diversity the user

wants. Furthermore, it is interesting to know how the algorithm performs in set-

tings where the utility that the user optimizes (to provide feedback) is different

from the one the algorithm uses.

To study this question, we experimented with the MAX and LIN utility func-

tions mentioned earlier. We varied the user’s inherent utility as well as the al-

gorithm’s utility to either of these two values. We also experimented with a

combination method for the DP algorithm, which simply takes the joint feature

vector representations used in the MAX and LIN functions and appends them

to form a single vector. We refer to this method as MAX + LIN. To ensure differ-

ence in feedback between the two user utility functions, we weight the different

intents (as done in [176]), which results in the utility being higher if a more pop-

ular topic is covered instead of a less popular one. We ran the DP algorithm for

100 iterations, where at each iteration the feedback provided by the user is as

92

User-Utility
LIN MAX

RANDOM .862(±.007) .756(±.016)

Algo-Util
LIN .137(±.019) .447(±.005)
MAX .169(±.020) .274(±.011)

LIN + MAX .158(±.021) .310(±.010)

Table 5.1: Average Regret for different user and algorithm utility func-
tions.

per the utility they optimize. We report performance in terms of the the average

regret over these 100 iterations of the user’s utility measure (since that is what

the true w captures), thus lower the better.

Table 5.1 shows the results for RCV15. First, consider the cases where the

algorithm is given the user’s true diversity profile. As expected, the algorithm

performs very well, as seen in the case of the LIN-maximizing algorithm per-

forming best for purely-relevance seeking users (and similarly for the MAX-

maximizing algorithm and diversity-seeking users). However, an important

result of the experiment is that even when the amount of diversity the user

requires is unknown, the combination algorithm is able to learn the amount of

diversity the user wants. It performs nearly as well as the case where the user’s

diversity needs are known, as can be seen in the last row of the table. This shows

that the combination algorithm is able to learn the tradeoff between relevance

and diversity that the user is looking for. This is very encouraging as it allows

for the method to be used in scenarios where there is no a priori information

about the desired amount of diversity. Compared to recent extrinsic diversifi-

cation methods such as [149], our method is an online learning technique that

utilizes much weaker feedback (that is far more plentiful and cost-effective) than

methods in [149] do.
5We observe similar results for 20NG but omitted it due to space limitations

93

 0

 1

 2

 3

 4

 5

 1 10 100

N
um

be
r

of
 In

te
nt

s
C

ov
er

ed
 in

 T
op

 5

Number of Iterations

Rate 1
Rate 10
Rate 20
Rate 50

Rate 100
Rate 500

 0

 1

 2

 3

 4

 5

 1 10 100

N
um

be
r

of
 In

te
nt

s
C

ov
er

ed
 in

 T
op

 5

Number of Iterations

Rate 1
Rate 10
Rate 20
Rate 50

Rate 100
Rate 500

Figure 5.4: Exponentiated algorithm with different rates; left: RCV-1,
right: 20NG.

 0

 1

 2

 3

 4

 5

 1 10 100

N
um

be
r

of
 In

te
nt

s
C

ov
er

ed
 in

 T
op

 5

Number of Iterations

Diversifying Perceptron
Clipped Diversifying Perceptron

Exponentiated-Div-Perc
Random

 0

 1

 2

 3

 4

 5

 1 10 100

N
um

be
r

of
 In

te
nt

s
C

ov
er

ed
 in

 T
op

 5

Number of Iterations

Diversifying Perceptron
Clipped Diversifying Perceptron

Exponentiated-Div-Perc
Random

Figure 5.5: Comparison of the three algorithms; left: RCV-1, right: 20NG.

5.3.6 Exponentiated algorithm

Compared to the other two algorithms, the exponentiated algorithm has a rate

θ associated with it. This rate needs to be set appropriately. In practice, we ob-

served that the performance of the exponentiated algorithm is sensitive to the

value of the rate. In particular, we multiplied the rate θ by a numerical value

and studied how the algorithm behaved. Note that this effectively changes the

radius of the data, but seemed to significantly affect the behavior of the expo-

nentiated algorithm. The results of this experiment is shown in Figure 5.4. The

performance of the algorithm first improves and then deteriorates as the rate

factor increases.

94

5.3.7 How do the three algorithms compare?

We proposed three algorithms to learn diversity from implicit feedback. In this

section, we study whether there is a difference in performance of these three al-

gorithms. The clipped DP (Algorithm 7) was proposed mainly due to theoretical

considerations. To compare the three algorithms, we followed the same setup

as in Section 5.3.2. For the exponentiated algorithm, we considered the best

rate parameter from the previous experiment. The results for this experiment

are shown in Figure 5.5. It can be seen that there is not much of a difference

between the clipped and the non-clipped algorithms in the case of RCV-1. In

the case of 20NG, there is hardly any difference between the three algorithms.

Even though restricting weights to positive values is required for theoretical

purposes, in practice it does not seem to make much of a difference on these

two datasets.

5.4 Summary

This chapter explored the use of coactive learning algorithms for learning di-

versity in rankings. Using the joint design principle, the proposed algorithms

when used in conjunction with a sophisticated submodular diversity-seeking

user model, are able to learn rankings that balance diversity and relevance. The

resulting algorithms learn to optimize the user’s utility, using only the implicit

set-valued preference feedback from users. In addition to theoretically charac-

terizing the performance of the algorithms and their robustness to noise, the

algorithms were found to perform well in empirical studies.

95

CHAPTER 6

LEARNING EXTRINSIC DIVERSITY FROM USER INTERACTIONS

Many information systems serve a diverse population of users who have

conflicting preferences. This poses the challenge of maximizing collective user

satisfaction over a distribution of conflicting needs. A typical example is the

problem of search result diversification (Sec 2.4.2). For an ambiguous query

such as apple, a diversified set of results should ideally provide some relevant

results for each of the different query intents. Similar challenges also arise in an

online store that wants to appeal to a range of customers with different tastes, or

in a movie recommendation system where even a single user may have different

preferences (e.g., moods, viewing companions) on different days. Unlike the

previous two chapters that studied problems where diversity is intrinsic to the

need of the users, the “diversification” problem studied here is extrinsic to any

single user’s need but instead necessary to hedge against uncertainty about the

user’s preferences.

Prior work on this problem has generally found learning based methods

[99, 149, 176] to outperform manually tuned methods [35, 43]. Unfortunately,

the practical use of these learning methods is rather limited, since they all re-

quire non-trivial amounts of expert annotated training data that explicitly lists

all facets of an information need (e.g., the different moods a user can be in).

The use of implicit feedback from user interactions (e.g., clicks) has the po-

tential to overcome this data bottleneck. Not only is it available in abundance,

but it also directly reflects the users’ – not the experts’ – preferences. How-

ever, the challenge here is that the learning algorithm no longer gets (expert

constructed) examples of socially optimal results. Furthermore, unlike the task

96

of intrinsic diversity which was studied in the previous chapter, the users all

behave egoistically. In other words, user interactions are geared towards im-

proving their own utility, which may be a contradictory goal to the one of the

system (i.e., optimize utility for the entire user population). For example, given

the query apple, users may click on results about the company or about the

fruit, but rarely both. Thus, the challenge here for the interactive learning al-

gorithm here is to learn to construct a socially optimal compromise from the

egoistic actions of the users.

This chapter investigates problem of learning socially optimal rankings us-

ing the coactive learning framework discussed in Part II. It provides two new

coactive learning algorithms for the extrinsic diversification problem. Guided

by the joint design principle of interactive learning, these algorithms were de-

signed in conjunction with suitable user utility models. In particular, submod-

ular utility models were used to capture the differing needs of the user popula-

tion, as they naturally lead to diverse result sets.

After characterizing the informativeness and noisiness of the implicit feed-

back, the proposed algorithms are also analyzed theoretically with bounds pro-

vided on the regret of the algorithms in terms of the social utility – which is

the expected utility over the user distribution. These are also accompanied by

empirical studies for single query diversification tasks, which show the result-

ing algorithms to be able to learn rapidly as compared to existing work. More

significantly, experiments on the cross-query diversification task, find the pro-

posed algorithms to be the first-known methods to robustly learn to compose

rankings with an appropriate amount of diversity, using only implicit feedback.

97

6.1 Learning Problem and Model

Let’s start with an example to motivate the formalization of the learning prob-

lem considered in this paper. Suppose we have a search engine that receives

an ambiguous query (e.g., jaguar). Say there are three user populations that

User Type Prob. Relevant docs

1 0.5 a1, a2, a3, . . .

2 0.25 b1, b2, b3, . . .

3 0.25 c1, c2, c3, . . .

Figure 6.1: Illustrative example show-
ing different user preferences.

each have different intents and thus consider

documents differently, with regards to query

relevance (as detailed in Fig 6.1). The user

populations have different sizes, and Fig. 6.1

lists the probability of each type. Note that

the search engine has no way of identifying

which type of user issued the query (i.e., the search engine does not know

whether “jaguar” refers to the cat or the car for any specific user). Suppose

the utility of a ranking R to users of type i is Ui(R) =
√

#of rel docs in top 4 of R.

This means it is beneficial to show at least one relevant document. Furthermore,

the marginal utility of showing additional relevant documents is sub-linear.

Now consider two possible rankings that the search engine could show.

• R1 = (a1, a2, a3, a4): While ideal for the predominant users (i.e., type 1 users

get utility U1 = 2), it provides no value for the other users (utility U2 =

U3 = 0). Thus in expectation, this ranking has expected utility of E[U] = 1.

• R2 = (a1, b1, c1, a2): This ranking provides some relevant documents for

all user types (U1 ∼ 1.4; U2 = 1; U3 = 1), maximizing the collective user

satisfaction with E[U] ∼ 1.2.

Our goal in this chapter is to find rankings of the latter type, which we call

socially optimal since they maximize expected utility (i.e., social utility).

98

To avoid relying on expensive expert-annotated data, we would like to learn

these diverse rankings using the implicit feedback from users. Consider, for ex-

ample, a user of type 1 that chooses to click/read relevant documents a1, a2 from

the presented ranking yt = (b1, c1, b2, a1, c2, a2). These actions reveal information

about the user’s utility functions which we can exploit to construct a feedback

ranking ȳt, say (b1, c1, a1, b2, a2, c2), that has higher utility for that user (or at least

not worse utility) i.e., U1(ȳt) ≥ U1(yt).

The key challenge in learning socially optimal rankings from the feedback

of individual users lies in resolving the contradicting feedback from different

user types. Each user’s feedback reflects only their own utility, not social util-

ity. For example, even if presented with the socially optimal ranking R2, users

may provide feedback indicating a preference for a different ranking (e.g., type

1 users may indicate their preference for R1). Thus, a successful learning algo-

rithm for this problem should be able to reconcile such differences in preference

and display stability despite the egoistic feedback.

6.1.1 Learning Problem

We now define the learning problem and user-interaction model more formally.

We assume there are N types of users, each associated with a probability pi ac-

cording to which individual users accessing the system are sampled. Given a

context xt (e.g., query), the personal utility of an object (e.g., ranking) yt for users

of type i is Ui(xt, yt). The social utility U(xt, yt) is defined as the expected utility

over the user distribution.

U(xt, yt) = E[Ui(xt, yt)] =

N∑
i=1

piUi(xt, yt) (6.1)

The optimal object for context xt and user type i is denoted as

99

y∗,it := arg max
yt∈Y

Ui(xt, yt). (6.2)

The socially optimal object for context xt is denoted as

y∗t := arg max
yt∈Y

U(xt, yt). (6.3)

Users interact with the system like in the standard coactive learning model,

but it is no longer assumed that all users act according to a single utility func-

tion. Specifically, at each timestep t the system receives a context xt and a user

type i is sampled from the user distribution. In response, the system presents

the user with an object yt for which the user draws utility Ui(xt, yt). The algo-

rithm then observes (implicit) feedback from the user (who acts according to

Ui), updates its model, and repeats. The goal of the algorithm is to present ob-

jects as close to the social optimal y∗t i.e., minimize regret of the learning process:

REGT :=
1
T

T−1∑
t=0

(
U(xt, y∗t) − U(xt, yt)

)
. (6.4)

User Feedback Characterization To make meaningful theoretical arguments

about the approaches to this problem, we need a suitable user feedback charac-

terization. However, unlike the coactive learning problems studied in the ear-

lier parts of this dissertation, in this problem the users do not all provide feed-

back from a single global utility function (that directly reflects social utility).

Instead, users valuate and provide feedback according to their own personal

utility. Thus, we use an alternate characterization of the feedback quality:

Definition 12 User feedback is expected αi, δi-informative for a presented object yt

under context xt for a user with personal utility function Ui, if ξ̄t ∈ < is chosen such

that for some given αi ∈ [0, 1] and δi > 0

100

Eȳt[Ui(xt, ȳt)] ≥ (1 + δi)Ui(xt, yt) + αi

(
Ui(xt, y∗,it) − Ui(xt, yt)

)
− ξ̄t.

holds. Note that the expectation is over the user feedback.

The expected αi, δi-informative criterion states that the user’s feedback object

ȳt has better personal utility than the presented object yt on average. More pre-

cisely, the first term on the right-hand side implies that the improvement should

be at least by a factor of (1 + δi). Note, though, that this condition is based only

on the personal utility of the specific user, not the social utility. The second term

on the right-hand side further prescribes that personal utility increases propor-

tional to how far yt is away from the optimal object y∗,it , and the factor αi ∈ [0, 1]

describes the informativeness of the feedback. This second term captures that it

is easier to make large improvements in utility when the presented yt is far from

optimal for this user. Finally, as it would be unreasonable to assume that user

feedback is always strictly αi, δi-informative, ξ̄t captures the amount of violation.

6.1.2 Submodular Utility Model

The following defines the class of utility function we consider for modeling

users. As done in the previous chapters, we will assume that the utility func-

tions Ui(xt, yt) is linear in its parameters vi ∈ Rm.

Ui(xt, yt) = v>i φF(xt, yt) (6.5)

φF(xt, yt) is a feature vector representation of the context-object pair and F is a

submodular function as further elaborated on below. We require that all vi’s and

φF(xt, yt)’s are component-wise non-negative. The linear model implies that one

can write the social utility as

U(xt, yt) = w>∗ φF(xt, yt), where w∗ =

N∑
i=1

pivi. (6.6)

101

We model φF(xt, yt) using a submodular aggregation of its components, as done

similarly in other parts of this thesis for modeling diversity. To simplify the

exposition, we focus on rankings as objects y, but analogous constructions also

work for other types of objects. Given context x, each document in ranking

y = (di1 , di2 , . . . , din) has a feature representation given by φ(x, di j) ∈ Rm. We then

obtain the overall feature vector φF(x, y) as

φ
j
F(x, y) = F(γ1φ

j(x, di1), γ2φ
j(x, di2), , γnφ

j(x, din)) (6.7)

where φ j(x, d) and φ
j
F(x, y) represent the jth feature in the vectors φ(x, d) and

φF(x, y) respectively. The γ1 ≥ . . . ≥ γ j ≥ . . . ≥ γn ≥ 0 represent position-

discounting factors, as they determine how important each position in the rank-

ing is. For instance, the submodular DCG metric proposed in [139] (and detailed

in the next chapter), sets the discount factors to be γi = 1
log2(1+i) . Furthermore,

the choice of aggregation function F determines the diminishing returns pro-

file of the users utility. For example, using a coverage-like aggregation func-

tion F(A) = maxa∈A a, strongly promotes diversity, since a single document can

already maximize utility. On the other extreme lies the additive aggregation

function F(A) =
∑

a∈A a, which leads to a diversity-agnostic (i.e., modular) fea-

ture vector. More generally, any monotone increasing and concave function of∑
a∈A a can be used. As shown in the next chapter, this modeling allows us to

capture a broad class of performance measures, including many common IR

performance metrics (e.g., NDCG, Precision, Coverage).

For a component-wise non-negative vector w, we can compute a ranking that

approximately maximizes the utility function, i.e., y := arg maxy∈Y w>φF(x, y), us-

ing the Greedy-Ranking method (Alg. 5). Despite its simplicity the algorithm,

which works by iteratively adding the document with the highest marginal util-

ity to the ranking, has good approximation properties for this NP-hard problem.

102

Lemma 13 For w ≥ 0 and monotone, concave F : Rn
≥0 → R≥0 that commutes in all

arguments, Algorithm 5 produces a ranking that is a βgr-approximate solution, with

βgr =
(
1 − 1

e

)
if γ1 = · · · = γk or βgr = 1/2 otherwise.

6.2 Social Learning Algorithms

In this section, we present two coactive learning algorithms for predicting rank-

ings that optimize social utility. The first considers rankings with discount fac-

tors for each rank while the second considers the special case of evaluating the

top k results as a set. For both algorithms, we characterize their regret by pro-

viding upper bounds.

6.2.1 Social Perceptron for Rankings (SoPer-R)

Following the utility model introduced in Section 6.1.2, we now present an al-

gorithm for learning rankings y = (di1 , di2 , . . . , din) that aims to optimize social

utility.

The Social Perceptron for Rankings (SoPer-R) is detailed in Algorithm 9. It

applies to any F that satisfies the conditions of Lemma 13. The algorithm main-

tains a weight vector wt, which is an estimate of w∗. For the given context xt,

the algorithm first computes ranking yt using the greedy Algorithm 5, which

is then presented to the user. The user actions (e.g., clicks) are observed and

used to construct the feedback as follows. The ranking is first partitioned into

adjacent pairs by randomly selecting an odd or even grouping. The feedback

ranking ȳt is constructed by swapping the documents whenever the user clicks

on the lower element of the pair. This relates to the idea of FairPairs [131], which

is used to help de-bias click data. Note that feedback is only generated when-

103

Algorithm 9: Social Perceptron for Ranking (SoPer-R)

1: Initialize w0 ← 0

2: for t = 0 to T − 1 do

3: Observe xt

4: Present yt ← GreedyRanking(wt, xt) . Present argmax ranking

5: Observe user clicksD . Get User Feedback

6: Construct feedback ȳt ← ListFeedback(yt,D) . Create Feedback Object

7: Update: w̄t+1 ← wt + φ(xt, ȳt) − φ(xt, yt) . Perceptron Update

8: Clip: w j
t+1 ← max(w̄ j

t+1, 0) ∀1 ≤ j ≤ m.

9:

10: Function ListFeedback(y,D) . y: Presented Ranking;D: User clicks

11: ȳ← y . Initialize with presented object

12: With probability 0.5: PR ← ({1, 2}, {3, 4}, {5, 6} · · ·)

13: else: PR ← ({1}, {2, 3}, {4, 5}, {6, 7} · · ·)

14: for i = 0 · · · len(PR) do

15: { jupper, jlower} ← PR[i] . Get Pair

16: if y[jlower] ∈ D AND y[jupper] < D then

17: Swap(ȳ[jupper], ȳ[jlower]) . Place clicked doc above the other doc

18: return ȳ

ever the lower elements was clicked but not the upper, otherwise ȳt := yt. After

the feedback ȳt is received, the algorithm performs a perceptron-style update to

the weight vector. To ensure that the weight vector contains only non-negative

weights, any negative weights are clipped to zero.

The observant reader may recognize the similarities with the 3PR algorithm

104

from Sec. 3.7 in terms of the pairwise updates. Furthermore, the FairPairs in-

spired feedback interventions can be trivially incorporated here (though we ig-

nore this in the rest of the exposition in this chapter for the sake of simplicity).

Before we can provide a regret bound for the SoPer-R algorithm we need one

additional result. Given function g and constant λ define τg(λ) as:

τg(λ) = lim
x→0

g(λ · x, 0, . . . , 0)
g(x, 0, . . . , 0)

(6.8)

Next, we will bound the change in a concave function on scaling its’ arguments.

Lemma 14 For any function g (satisfying the conditions of Lemma 13), constant 0 ≤

λ ≤ 1 and values v1, v2, . . . , vn ≥ 0, we can bound the change in value of g on scaling

the values vi by λ as follows:

g(v1, . . . , vi, . . . , vn) ≥ τg(λ) · g(λ · v1, . . . , λ · vi, . . . , λ · vn) (6.9)

We use this to characterize the sequence of position discounts and their smooth-

ness, which is a key parameter of the main theorem. Thus for a utility measure

with function F and γi discount factors, we define:

ΓF = 1 −min
i
τF(

γi+1

γi
) (6.10)

We can now characterize the regret suffered by the SoPer-R algorithm for

list-based utilities, as shown below in Theorem 15.

Theorem 15 For any w∗ ∈ Rm and ‖φ(x, y)‖`2 ≤ R the average regret of the SoPer-R

algorithm can be upper bounded as:

REGT ≤
1
ηT

T−1∑
t=0

Ei[piξ̄t] +
βR‖w∗‖

η
+

√
2
√

4 − β2R‖w∗‖
η
√

T
. (6.11)

with: δi ≥
(
ΓF ·

1−pi
pi

)
, η = mini piαi and β = (1 − βgr) = 1

2 .

105

Let us analyze this regret bound. The first term on the right-hand side indicates

how far the user feedback violates the desired αi, δi-informative feedback char-

acterization due to model misspecification and bias/noise in the user feedback.

This term implies that the regret does not necessarily converge to zero in such

cases. The second term results from the fact that we can only guarantee a βgr-

approximate solution for the greedy algorithm (Alg 5). In practice, however, the

solutions computed by the greedy algorithm tend to be much better. The third

and final term converges to zero at a rate of
√

T . Note that none of the terms

in the bound depend explicitly on the number of features, but that that it scales

only in terms of margin R||w∗||.

6.2.2 Social Perceptron for Sets (SoPer-S)

While DCG-style position discounts γi that decay smoothly are often appropri-

ate, other models of utility require more discrete changes in the rank discounts.

The coverage metric is an example of such a metric, which measures what frac-

tion of the users will find atleast one document relevant to them in the set of M

documents [133, 154, 176]. We call these metrics set-based, since they consider

the first M documents in a ranking as a set (i.e., position within the top-M posi-

tions does not matter). Clearly, we can model such metrics by setting the γi in

the aggregation step (defined in Eq. 6.7) as

γi =


1 if i ≤ M

0 if i > M.

However, the bound in Theorem 15 can be rather loose for this case, and the

pairwise feedback construction model “wastes” information. In particular, since

utility is invariant to reordering in the top M or below the top M, only pairwise

106

Algorithm 10: Social-Set-Based-Perceptron(C,M, p)

1: Function SetFeedback(y,D)

2: ȳ← y . Initialize with presented object

3: DO ← D/y[1 : M] . Clicks on docs outside top M

4: for i = 1 · · ·min(C, |DO|) do

5: c← DO[i] . Clicked document

6: u← Random (non-clicked) document from y[1 : M] . Non-clicked

document

7: Swap(ȳ[ju], ȳ[jc])

8: return ȳ

feedback between position M and M +1 provides information. To overcome this

problem, we now present an alternate algorithm that is more appropriate for

set-based utility functions.

The Social Perceptron for Sets (SoPer-S), shown in Algorithm 10, uses the same

basic algorithm, but replaces the feedback mechanism. Now, clicked documents

outside the top M are swapped with a random non-clicked document in the

top M. This leads to a feedback set ȳt (of size M), that contains more (or at

least as many) of the user’s preferred documents than the top M elements of the

presented ranking. Note that during the feedback creation, we only consider the

first C clicks outside the top M. This parameter C is used to restrict the difference

between the feedback set and the presented set. We now state a lemma we will

use to bound the regret suffered by the SoPer-S algorithm for set-based utilities.

Lemma 16 For any non-negative, submodular function g and set X with |X| = n, we

107

can lower bound the function value of a random subset of size k as:

EY:Y⊆X,|Y |=k[g(Y)] ≥
k
n

g(X) (6.12)

Theorem 17 For any w∗ ∈ Rm and ‖φ(x, y)‖`2 ≤ R the average regret of the SoPer-S

algorithm can be upper bounded as:

REGT ≤
1
ηT

T−1∑
t=0

Ei[piξ̄t] +
βR‖w∗‖

η
+

√
2
√

4 − β2R‖w∗‖
η
√

T
. (6.13)

with: δi ≥
(

C
M ·

1−pi
pi

)
, η = mini piαi and β = (1 − βgr) = 1

e .

Note that the proposed algorithms are efficient (due to the online updates) and

scalable as the greedy algorithm only requires O(nk) time to find a length k rank-

ing over n documents. This can be further improved using lazy evaluation.

6.3 Empirical Evaluation

In this section, we empirically analyze the proposed learning algorithms for the

task of extrinsic search result diversification. In particular, we (a) explore how

well the algorithms perform compared to existing algorithms that do single-

query learning; (b) compare how close our algorithms get to the performance of

algorithms that require expert annotated examples of socially optimal ranking

for cross-query learning; and (c) explore the robustness of our algorithm to noise

and misspecification of the utility model.

6.3.1 Experiment Setup

We performed experiments using the standard diversification dataset from the

TREC 6-8 Interactive Track. The dataset contains 17 queries, each with binary

108

Table 6.1: Summary of key properties of the TREC dataset.

Statistic Value

Average number of documents per query 46.3

Average number of user types 20.8

Fraction of docs. relevant to > 1 user 0.21

Average number of users a document is relevant for 1.33

Fraction of docs. relevant to most popular user 0.38

Average probability of most popular user 0.29

relevance judgments for 7 to 56 different user types, which we translate into

binary utility values. We consider the probability of a user type to be propor-

tional to the number of documents relevant to that user type. We only consider

documents that are relevant to at least 1 user type to focus the experiments on

learning to diversify, not learning to determine relevance. Table 6.1 summarizes

some key properties of the data.

To simulate user behavior, we use the following model. Users scan the doc-

uments of a ranking in order and click on the first document they consider rele-

vant. Each (binary) decision of relevance is made incorrectly with a small prob-

ability of error. This error probability was set to zero for most experiments but

later varied when studying the effect of user noise.

Unless mentioned otherwise, we used the coverage function (F(x1, . . . , xn) =

maxi xi) to define the submodular function for utility aggregation. We measured

performance of the different methods in terms of the utility being optimized -

i.e., Set Utility (of size 5 sets) for the Set-Based methods and List Utility (up to

rank 5) with DCG discounting factors, for the List-Based methods. Additionally

109

 0.64

 0.68

 0.72

 0.76

 0.8

 0 200 400 600 800 1000

N
o
rm

al
iz

ed
 S

et
 U

ti
li

ty

Number of Iterations Per Query

Random

Ranked Bandit

SoPer-S

Unclipped SoPer-S

 0.56

 0.64

 0.72

 0.8

 0.88

 0 200 400 600 800 1000

N
o
rm

al
iz

ed
 L

is
t

U
ti

li
ty

Number of Iterations Per Query

Random

Ranked Bandit

SoPer-R

Unclipped SoPer-R

Figure 6.2: Performance of different methods for single-query learning to
diversify. Performance is averaged over all queries, separately
considering Set Utility (Left) and List Utility (Right). Standard
error bars are shown in black.

we normalize the maximum scores per query to 1 (i.e., ∀x : U(x, y∗) = 1), so as

to get comparable scores across queries. We report the performance of each

algorithm in terms of its running average of these scores (i.e., 1 − REGT).

6.3.2 Can we learn to diversify for a single query?

We first evaluate our algorithms in the setting of the Ranked Bandits algorithm

[133], which serves as a baseline. The Ranked Bandit algorithm learns a sepa-

rate model for each query and cannot generalize across queries. Furthermore, its

original version was limited to optimizing the coverage function, correspond-

ing to the max aggregation in our framework. We use the UCB1 variant of the

Ranked Bandits algorithm, which was empirically found to be the best variant.

As a second baseline we report randomly ordering the results. Note that

this is a competitive baseline, since (a) all documents are relevant to at least 1

user, and (b) the probability of users is proportional to the number of documents

relevant to them.

110

For the SoPer-R and SoPer-S algorithms, documents were represented as

unit-normalized TF-IDF word vectors. All learning algorithms were run twice

for each of the 17 queries (with different random seeds) and the results are av-

eraged across all 34 runs. As seen from Figure 6.2, the proposed algorithms

perform much better than either of the two baselines. The Ranked Bandits algo-

rithm converges extremely slowly, and is barely better than the random baseline

after 1000 iterations. Both the SoPer-R and SoPer-S algorithm are able to learn

substantially faster. Already within 200 iterations, the SoPer-S method is able to

provide at least 1 relevant document to 80% of the user population, while ran-

dom and Ranked Bandits perform at around 65%. Thus both proposed methods

are clearly able to learn the diversity required in such rankings from individual

user feedback.

We also explore variants of the SoPer-S and SoPer-R algorithms where we

omit the final step of clipping negative weights to 0. While the unclipped ver-

sions of both algorithms still perform better than random, they fall short of the

corresponding clipped versions as seen from Figure 6.2. Thus we can conclude

that ensuring non-negative weights not only guarantees theoretical results, but

also helps improve empirical performance.

6.3.3 Can we learn a cross-query model for diversification?

While the previous experiments indicate that the new algorithms can learn to

diversify for a single query, such single-query learning is restricted to frequent

queries that are issued hundreds of times. Instead, it is more desirable for di-

versification models to be trained across a distribution of queries.

To get a suitable representation that allows cross-query learning, we use the

111

 0.64

 0.66

 0.68

 0.7

 0.72

 0 200 400 600 800 1000

N
o
rm

al
iz

ed
 S

et
 U

ti
li

ty

Number of Iterations

Random

StructPerc

SoPer-S

Unclipped SoPer-S 0.52

 0.56

 0.6

 0.64

 0.68

 0 200 400 600 800 1000

N
o
rm

al
iz

ed
 L

is
t

U
ti

li
ty

Number of Iterations

Random

StructPerc

SoPer-R

Unclipped SoPer-R

Figure 6.3: Set (L) and List (R) Utilities for learning to diversify across
queries.

same word-importance feature vectors that were used in previous work on learn-

ing from expert-annotated feedback [176]. These features capture both the over-

all importance of a word (e.g., “Does the word appears in at least x% of the

documents?”), as well as the importance in the documents of the ranking (e.g.,

“Does the word appear with frequency of atleast y% in the document?”). Using

different such values of x and y along with other similar features, we get a total

of 1197 features.

To produce the following results, all methods were run for 1000 iterations

with 5 random seeds. The values reported are averaged across these 5 runs.

In this cross-query setting, we cannot apply Ranked-Bandits as it only works

for a single query. Thus we again use the Random baseline in this experiment.

Existing supervised learning algorithms for diversification are also not applica-

ble here, as they require explicit training data of socially optimal rankings (i.e.,

knowledge of all document-user relevance labels). However, we would like to

estimate how well our algorithms can learn from (far weaker) implicit feedback

data, in relation to conventional methods trained in such a full information set-

ting. Thus we trained a structural perceptron, which internally uses the greedy

112

User’s F SET
Max Sqrt Lin Rand

Max .699 ±.005 .695 ±.005 .683 ±.005 .646 ±.006
Sqrt .675 ±.006 .686 ±.006 .706 ±.006 .634 ±.006
Lin .509 ±.006 .532 ±.006 .574 ±.007 .492 ±.006

User’s F LIST
Max Sqrt Lin Random

Max .630 ±.007 .620 ±.006 .618 ±.006 .557 ±.006
Sqrt .656 ±.007 .654 ±.007 .684 ±.006 .610 ±.007
Lin .500 ±.006 .504 ±.006 .566 ±.007 .474 ±.007

Table 6.2: Set and List Utilities (with standard error) when the two sub-
modular functions i.e., of the population (fixed for row) and the
algorithm (fixed for column) are mismatched.

algorithm for prediction. This uses the same feature vector representation as

our proposed algorithms, but is provided the social optimal at every iteration.

Figure 6.3 shows the average utility for the SoPer-S and SoPer-R algorithms,

as well as the random baseline and the Structured Perceptron after 1000 itera-

tions. Both SoPer-S and SoPer-R substantially outperform the random baseline,

indicating that the proposed algorithms can learn to diversify for this cross-

query setting. Both methods get close to the performance of the supervised

method despite learning from far weaker feedback. For example, the SoPer-S

method is able to satisfy 70% of the user population, as compared to the 64%

of the baseline and 72% of the Structured Perceptron. We also again evalu-

ate the unclipped versions of the algorithms. For the the unclipped SoPer-R,

performance never rises above random, indicating the practical importance of

maintaining a positive weight vector to ensure good performance of the greedy

algorithm.

113

6.3.4 How robust are the algorithms to misspecification of the

model?

While the previous experiments showed that the algorithms can learn efficiently

when the submodular function of the user population (as used in computing

the personal and social utilities) and the algorithm match, we now study what

happens when there is a mismatch. More specifically, for the cross-query diversifi-

cation setting, we ran the algorithms with three different submodular functions

as defined by the concave function F: a) Max: F(x1, . . . , xn) = maxi xi; b) Lin:

F(x1, . . . , xn) =
∑

i xi; c) Sqrt: F(x1, . . . , xn) =
√∑

i xi. We also varied the popu-

lation utility to each of these three functions, and obtained the average utility

value (after 200 iterations) for all 9 combinations of functions. Note that we still

ensured that SoPer-R was used to optimize the List based utilities, while SoPer-S

was used for set-based ones.

The results (averaged over 5 runs) are shown in Table 6.2. We find that for

both methods and all three population utility functions, the utility value is al-

ways better than the random baseline, regardless of the algorithm and function

used. While the values may be highest when the functions align, we still find

significant improvements over the baselines even when there is a mismatch. In

fact, for some situations we find that the utility is highest when there is a mis-

match: The case of a linear algorithm utility but SQRT population utility is one

such example. We conjecture that is due to the relatively small set/list size of 5.

On short rankings LIN and SQRT do not differ as much as on longer rankings.

Additionally LIN does not suffer any approximation degradation as the greedy

algorithm always provides an optimal solution for LIN.

114

Utility Random No Noise Noise
Set .646 ±.006 .699 ±.005 .694 ±.006
List .557 ±.006 .630 ±.007 .631 ±.007

Table 6.3: Ranking performance in the presence of feedback noise.

6.3.5 Is the method robust to noise in the feedback?

In the real world, users make errors in judging the relevance of documents. To

model this, we simulated users who make an error in each binary relevance

judgment with 0.1 probability. This means that, as users go down the ranking,

they may flip the true relevance label. Users now return as feedback the first

document they perceive as relevant, which contains significant noise. We ran

both our algorithms and measured the average utility after 200 iterations in the

cross-query setting, with matching algorithm and population utilities using the

Max function.

Table 6.3 shows the results (averaged over 5 runs) comparing the perfor-

mance of the algorithms in both the noise-free and noisy settings. We see

that the performance for both SoPer-S and SoPer-R is almost the same, with

the gap to the baseline still being significant. The robustness to noise is also

supported by the theoretical results. In particular, note that the definition of

αi, δi-informative feedback only requires that feedback be informative in expec-

tations, such that the slack terms ξ̄t may be zero even for noisy feedback. In

general, we conclude that the algorithms are robust and applicable in noisy set-

tings.

115

6.4 Summary

We proposed two sequential interactive learning algorithms in the coactive set-

ting for aggregating the conflicting preferences of a diverse user population into

a ranking that aims to optimize social utility. Formalizing the learning problem

and model as learning an aggregate utility function that is submodular in the

elements of the ranking and linear in the parameters, we were able to provide

regret bounds that characterize the worst-case behavior of the algorithm. In an

empirical evaluation, the algorithms learned substantially faster than existing

algorithms for single-query diversification. For learning cross-query diversifi-

cation models, the algorithms are robust and the first known algorithms that

can be trained using implicit feedback.

116

CHAPTER 7

ADDING INTERACTIVITY TO RANKINGS: DYNAMIC RANKINGS

The previous chapter tackled the problem of interactive learning for extrin-

sic diversity i.e., diversifying results to tackle ambiguous queries. While the

algorithms introduced last chapter provide us with theoretically and empiri-

cally sound ways of learning to diversify from user interaction data, they are

still faced with two conflicting goals (as are all other retrieval systems given an

ambiguous query). On the one hand, they should diversify and strive to present

results for as many query intents as possible. On the other hand, they should

provide depth for each intent by displaying more than a single result. Clearly,

there is an inherent trade-off between depth (number of results provided for

an intent) and diversity (number of intents served) in the conventional ranked-

retrieval setting, since increasing one invariably leads to a decrease of the other.

How can we avoid this trade-off and obtain diversity while not compromising

on depth?

We argue that a key to solving the conflict between depth and diversity lies

in the move to dynamic retrieval models [30] that can take advantage of user in-

teractions to optimize user utility. Instead of presenting users with a single one-

size-fits-all ranking, dynamic retrieval models allow users to adapt the ranking

dynamically through interaction. The idea here is to use interactions to adapt

the presented objects on-the-fly.

While Brandt et al [30] provided evidence that even limited dynamism in the

rankings can greatly improve retrieval effectiveness, they did not provide an ef-

ficient algorithm for computing dynamic rankings, nor did they study the prob-

lem of learning dynamic ranking functions. In this chapter, we resolve these

117

 Jaguar Cars Official Website

Wikipedia Page about the
 animal jaguar

Cars.com website for new and
used Jaguar cars.

Jaguar Communications
website

F
I
R
S
T

L
E
V
E
L

R
A
N
K
I
N
G

d
10

:

d
20

:

d
30

:

d
40

:

S
E
C
O
N
D

L
E
V
E
L

Encyclopedia Page about the
animal jaguar

Facts about the animal jaguar

Images about the animal jaguar

 Jaguar Cars Official Websited
10

:

Wikipedia Page about the
 animal jaguar

d
20

:

d
21

 :

d
22

 :

Cars.com website for new and
used Jaguar cars.

d
30

:

d
23

 :

Figure 7.1: A user interested in the animal “jaguar” interacts with the first-
level ranking (left) and obtains second-level results (right).

two open questions. In particular, we propose a new two-level dynamic rank-

ing model. Intuitively, the first level provides a diversified ranking of results on

which the system can sense the user’s interactions. Conditioned on this feed-

back, the system then interactively provides a second-level rankings. A possible

layout is given in Figure 7.1. The left-hand panel shows the first-level ranking

initially presented to the user. The user then chooses to expand the second doc-

ument (e.g., by clicking) and a second-level ranking is inserted as shown in the

right panel. Conceptually, the retrieval system maintains two levels of rank-

ings, where each second-level ranking is conditioned on the head document in

the first-level ranking. This idea relates to relevance feedback [1] where user

feedback is used to update the ranking. These two-level dynamic rankings also

motivated the interactive ranking approach proposed in Chapter 4.3, where as-

pects form the second level ranking to improve intrinsic diversity retrieval.

To operationalize the construction and learning of such two-level rankings in

a rigorous way, we define a new family of submodular performance measure for

diversified retrieval. Many existing retrieval measures (e.g., , Precision@k, DCG,

Intent Coverage) are special cases of this family. We then operationalize the

118

problem of computing an optimal two-level ranking as maximizing the given

performance measure. While this optimization problem is NP-hard, we provide

an algorithm that has an 1 − e−(1− 1
e) approximation guarantee.

Finally, we also propose a new method for learning the (mutually depen-

dent) relevance scores needed for two-level rankings. Following a structural

SVM approach, we learn a discriminant model that resembles the desired per-

formance measure in structure, but learns to approximate unknown intents

based on query and document features.

7.1 Two-Level Dynamic Rankings

Current methods for diversified retrieval, including the ones proposed in Chap-

ter 6, are static in nature i.e., they stay unchanged through a user session. On the

other hand, a dynamic model can adapt the ranking based on interactions with

the user. The primary motivation for using a dynamic model is addressing the

inherent trade-off between depth and diversity in static models.

Consider the example with four (equally likely) user intents {t1, ..., t4} and

documents {d1, ..., d9} with user utilities U(d j|ti) as given in Table 7.1. On the one

hand, a non-diversified static ranking method could present d7 → d8 → d9 as

its top three documents, providing two relevant documents for intents t3 and

t4 but none for intents t1 and t2. On the other hand, a diversified static ranking

d7 → d1 → d4 covers all intents, but this ranking lacks depth since no user gets

more than one relevant document.

As an alternative, consider the following two-level dynamic ranking. The

user is presented with d7 → d1 → d4 as the first-level ranking. Users can now

119

U(d j|ti) d1 d2 d3 d4 d5 d6 d7 d8 d9

t1 1 1 1 0 0 0 0 0 0
t2 0 0 0 1 1 1 0 0 0
t3 0 0 0 0 0 0 1 1 0
t4 0 0 0 0 0 0 1 0 1

Table 7.1: Utility U(d j|ti) of document d j for intent ti.

expand any of the first-level results to view a second-level ranking. Users in-

terested in d7 (and thus having intent t3 or t4) can expand that result and receive

a second-level ranking consisting of d8 and d9. Similarly, users interested in d1

will get d2 and d3; and users interested in d4 will get d5 and d6.

For this dynamic ranking, every user gets at least one relevant result after

scanning at most three documents (i.e., the first-level ranking). Furthermore,

users with intents t3 and t4 receive two relevant results in the top three positions

of their dynamically constructed ranking d7 → d8 → d9 → d1 → d4. Users with

intent t1 also receive two relevant results in the top three positions while those

with intent t2 still receive one relevant result. This illustrates how a dynamic

two-level ranking can simultaneously provide diversity and increased depth.

In the above example, interactive feedback from the user was the key to

achieving both depth and diversity. More generally, we assume the following

model of user behavior, which we denote as policy πd. Users expand a first-

level document if and only if that document is relevant to their intent. When

users skip a document, they continue with the next first-level result. When users

expand a first-level result, they go through the second-level rankings before con-

tinuing from where they left off in the first-level ranking. It is thus possible for

a user to see multiple second-level rankings. Hence we do not allow documents

to appear more than once across all two-level rankings.

Unlike the user model proposed in [30], here user feedback is only assumed

120

only for one level of rankings (i.e., the first-level), whereas [30] requires that

users give feedback many levels deep. Furthermore, unlike in [30], we model

that users return to the top-level ranking. We conjecture that these differences

make the two-level model more natural and appropriate for practical use.

We now define some notation used later in this chapter. The documents

shown in a first-level ranking of length L are called the head documents. The

documents shown in a second-level ranking are called the tail documents. The

number of tail documents is referred to as the width W. A row denotes a head

document and all its tail documents. Static rankings are denoted as θ while two-

level rankings are denoted as Θ = (Θ1,Θ2, ...Θi, ..). Here Θi = (di0, di1,, di j, ...)

refers to the ith row of a two-level ranking, with di0 representing the head docu-

ment of the row and di j denoting the jth tail document of the second-level rank-

ing. We denote the candidate set of documents to rank for a query q by D(q),

the set of possible intents by T (q) and the distribution over an intent t ∈ T (q),

given a query q, by P[t|q].

7.2 Performance Measures for Diversified Retrieval

To define what constitutes a good two-level dynamic ranking, we first define

the measure of retrieval performance we would like to optimize. We first start

with evaluation measures for one-level rankings, and then generalize them to

the two-level case.

121

7.2.1 Measures for Static Rankings

Existing performance measures range from those that do not explicitly consider

multiple intents (e.g., NDCG, Average Precision), to measures that reward diver-

sity. Measures that reward diversity give lower marginal utility to a document,

if the intents the document is relevant to are already well represented in the

ranking. We call this the diminishing returns property. The extreme case is the

“intent coverage” measure (e.g., [157, 176]), which attributes utility only to the

first document relevant for an intent.

We define a family of measures that includes a whole range of diminishing

returns models, and that includes most existing retrieval measures. Let g : R→

R with g(0) = 0 be a concave, non-negative, and non-decreasing function that

models the diminishing returns, then we define the utility of the ranking θ =

(d1, d2, ..., dk) for intent t as

Ug(θ|t) = g
(|θ|∑

i=1

γiU(di|t)
)
. (7.1)

The γ1 ≥ ... ≥ γk ≥ 0 are discount factors and U(d|t) is the relevance rating of

document d for intent t. For a distribution of user intents P[t|q] for query q, the

overall utility of a static ranking θ is the expectation

Ug(θ|q) =
∑

t∈T (q)

P[t|q] Ug(θ|t). (7.2)

Note that many existing retrieval measures are special cases of this defini-

tion. For example, if one chose g to be the identity function, one recovers the

intent-aware measures proposed in [4] and the modular measures defined in

[30]. Further restricting P[t|q] to put all probability mass on a single intent leads

to conventional measures like DCG for appropriately chosen γi. At the other

extreme, choosing g(x) = min(x, 1) leads to the intent coverage measures. Since

122

g can be chosen from a large class of functions, this family of performance mea-

sures covers a wide range of diminishing returns models.

7.2.2 Measures for Dynamic Rankings

We extend this family of performance measures to dynamic rankings. The key

change here is that users interactively adapt which results they view. How users

expand first-level results was defined in the previous section as πd. Under πd,

it is natural to define the utility of a dynamic ranking Θ analogous to Equa-

tion (7.1).

Ug(Θ|t) = g
(|Θ|∑

i=1

(
γiU(di0|t) +

|Θi |∑
j=1

γi jU(di0|t)U(di j|t)
))
. (7.3)

Like for static rankings, γ1 ≥ γ2 ≥ ... and γi1 ≥ γi2 ≥ ... are position-dependent

discount factors. Furthermore, we again take the expectation over multiple user

intents as in Equation (7.2) to obtain Ug(Θ|q).

Note that the utility of a second-level ranking for a given intent is zero unless

the head document in the first-level ranking has non-zero relevance for that in-

tent. This encourages second-level rankings to only contain documents relevant

to the same intents as the head document, thus providing depth. The first-level

ranking, on the other hand, provides diversity as controlled through the choice

of function g. The “steeper” g diminishes returns of additional relevant docu-

ments, the more diverse the first-level ranking gets.

7.3 Computing dynamic rankings

In this section, we provide an efficient algorithm for computing dynamic rank-

ings that maximize the performance measures defined in the previous sec-

123

Algorithm 11: Computing a two-level dynamic ranking.

Input: (q,D(q),T (q),P[t|q] : t ∈ T (q)), g(·), L, W.

Output: A dynamic ranking Θ.

Θ← new two level()

while |Θ| ≤ L do

bestU ← −∞

for all d ∈ D(q) s.t. d < Θ do

row← new row(); row.head ← d

for j = 1 to W do

bestDoc← argmaxd′<Θ∪rowUg(Θ ⊕ (row ⊕ d′)|q)

row← row ⊕ bestDoc

if Ug(Θ ⊕ row|q) > bestU then

bestU ← Ug(Θ ⊕ row|q); bestRow← row

Θ← Θ ⊕ bestRow

tion. In the proposed greedy algorithm (Alg. 11), the operator ⊕ denotes either

adding a document to a row, or adding a row to an existing ranking. This is an

extension to the greedy algorithms we have seen earlier (such as Algorithm 5) to

account for the second level of rankings. In each iteration, considers every docu-

ment in the remaining collection as the head document of a candidate row. For

each candidate row, W documents are greedily added to maximize the utility

Ug(Θ|q) of the resulting partial dynamic ranking Θ. Once rows of length W are

constructed, the row which maximizes the utility is added to the ranking. The

above steps are repeated until the ranking has L rows. Algorithm 11 is efficient,

requiring O(|T |) space and O(|T ||D|2) time.

Our greedy algorithm is closely related to submodular function maximiza-

124

tion. Maximizing monotonic submodular functions is a hard problem, but a

greedily constructed set gives an (1 − 1/e) approximation [121] to the optimal.

Since the definition of our utility in (7.2) involves a concave function, it is not

hard to show that selecting a ranking of rows is a submodular maximization

problem. Moreover, given the head document, finding the best row is also a

submodular maximization problem. Thus, finding a dynamic ranking to maxi-

mize our utility is a nested submodular maximization problem, and we can show

the following approximation guarantee for Algorithm 11.

Lemma 18 Algorithm 11 is (1 − e−(1− 1
e)) approximate.

The proof is similar to the one in [78], although adapted for a more general set

of measures (beyond just intent coverage).

7.4 Learning Dynamic Rankings

In the previous section, we showed that a dynamic ranking can be efficiently

computed when all the intents and relevance judgments for a given query are

known. In this section, we propose a supervised learning algorithm that can

predict dynamic rankings on previously unseen queries.

Our goal here is to learn a mapping from a query q to a dynamic ranking Θ.

We pose this as the problem of learning a weight vector w ∈ RN from which we

can make a prediction as follows:

hw(q) = argmaxΘ w>Ψ(q,Θ). (7.4)

As further explained below, Ψ(q,Θ) ∈ RN is a joint feature-map between query q

and dynamic ranking Θ.

125

Given a set of training examples (qi,Θi)n
i=1, the structural SVM framework

[162] can be use to learn a discriminant function by minimizing the empirical

risk 1
n

∑n
i=1 ∆(Θi, hw(qi)), where ∆ is a loss function. Unfortunately, however, the

Θi are typically not given directly as part of the training data. Instead, we as-

sume that we are given training data of the form (qi,D(qi),T (qi),P[t|q] : t ∈

T (qi))n
i=1, using which we then compute the dynamic rankings Θi by maximiz-

ing the utility Ug (approximately) using Algorithm 11. These Θis will be used as

the training labels henceforth.

A key aspect of structural SVMs is to appropriately define the joint-feature

map Ψ(q,Θ). For our problem, we propose

w>Ψ(q,Θ) :=
∑

v∈VD(q)

w>v φvUg(Θ|v) +
∑

s∈VD(q)×D(q)

w>s φs(Θ), (7.5)

where VD(q) denotes an index set over the words in the candidate set D(q). The

vector φv denotes word-level features (for example, how often a word occurs

in a document) for the word corresponding to index v. The utility Ug(Θ|v) is

analogous to (7.3) but is now over the words in the vocabulary (rather than over

intents). The word-level features are reminiscent of the features used in diverse

subset prediction [176]. The key assumption is that the words in a document are

correlated with the intent since documents relevant to the same intent are likely

to share more words than documents that are relevant to different intents.

The second term in Equation 7.5 captures the similarity between head and

tail documents. In this case, VD(q)×D(q) denotes an index set over all document

pairs in D(q). Consider an index s that corresponds to documents d1 and d2 in

D(q). φs(Θ) is a feature vector describing the similarity between d1 and d2 in Θ

when d1 is a head document in Θ and d2 occurs in the same row as d1 (φs(Θ)

is simply a vector of zeros otherwise). An example of a feature in φs(Θ) that

126

captures the similarity between two documents is their TFIDF cosine.

Using these features, w>Ψ(q,Θ) models the utility of a given dynamic rank-

ing Θ. During learning, w should be selected so that better rankings receive

higher utility than worse rankings. This is achieved by solving the following

structural SVM optimization problem for w:

min
w,ξ≥0

1
2
||w||2 +

C
n

n∑
i=1

ξi (7.6)

s.t.∀i,∀Θ : w>Ψ(qi,Θi) − w>Ψ(qi,Θ) ≥ ∆(Θi,Θ|qi) − ξi

The constraints in the above formulation ensure that the predicted utility for

the target ranking Θi is higher than the predicted utility for any other Θ. The

objective function in (7.6) minimizes the empirical risk while trading it off (via

the parameter C > 0) with the margin. The loss between Θi and Θ is given by

∆(Θi,Θ|qi) := 1− Ug(Θ|qi)
Ug(Θi |qi) which ensures that the loss is zero when Θ = Θi. It is easy

to see that a dynamic ranking Θ has a large loss when its utility is low compared

to the utility of Θi.

Even though Equation (7.6) has an exponential number of constraints, the

corresponding quadratic program can be solved in polynomial time using the

cutting-plane algorithm [162]. In each iteration of the cutting-plane algorithm,

the most violated constraints in (7.6) are added to a working set and the re-

sulting quadratic program is solved. Given a current w, the most violated con-

straints are obtained by solving:

argmaxΘ w>Ψ(qi,Θ) + ∆(Θi,Θ|qi). (7.7)

Algorithm 11 can be used to solve the above problem, even though the for-

mal approximation guarantee does not hold in this case. Once a weight vector w

is obtained, the dynamic ranking for a test query can be obtained from Eq. (7.4).

127

7.5 Empirical Study

Experiments were conducted on the TREC 6-8 Interactive Track (TREC) and

the Diversity Track of TREC 18 using the ClueWeb collection (WEB). The 17

queries in TREC contain between 7 to 56 different manually judged intents. In

the case of WEB, we used 28 queries with 4 or more intents. Similar to the setup

described in Section 6.3.1, probability of an intent was set proportional to the

number of documents relevant to that intent. A key difference between the two

datasets is that the most prevalent intent covers 73.4% of all relevant documents

for the WEB dataset, but only 37.6% for TREC.

The number of documents in the first-level ranking was set to 5. The width

of the second-level rankings was set to 2. For simplicity, we chose all factors

γi and γi j in Equations (7.1) and (7.3) to be 1. Further, we chose U(d|t) = 1 if

document d was relevant to intent t and set U(d|t) = 0 otherwise.

7.5.1 Controlling Diversity and Depth

The key design choice of our family of utility measures is the concave function

g. As Algorithm 11 directly optimizes utility, we explore how the choice of g

affects various properties of the two-level rankings produced by our method.

We experiment with four different concave functions g, each providing a dif-

ferent diminishing-returns model. At one extreme, we have the identity func-

tion g(x) = x which corresponds to modular returns. Using this function in

Eq. (7.1) leads to the intent-aware Precision measure proposed in [4], and it is

the only function considered in [30]. We therefore refer to this function as PREC.

It is not hard to show that Algorithm 11 actually computes the optimal two-

128

(6.33)

(7.65) (7.65)

(9.53)

(2.89) (3.21) (3.32)

(4.5)

2

3

4

5

6

7

8

9

PREC SQRT LOG SAT2

TREC WEB

(3.65)

(3.06) (2.88)

(1.47)

(4.86)
(4.54)

(4.21)

(3.0)

1

2

3

4

5

PREC SQRT LOG SAT2

TREC WEB

Figure 7.2: Average number of intents covered (left) & average number of
documents for prevalent intent (right) in the first-level ranking.

level ranking for this choice of g. On the other end of the spectrum, we study

g(x) = min(x, 2). By remaining constant after two, this function discourages pre-

senting more than two relevant documents for any intent. This measure will be

referred to as SAT2 (short for “satisfied after two”). In between these two ex-

tremes, we study the square root function (SQRT) g(x) =
√

x and the log function

(LOG) g(x) = log(1 + x).

To explore how dynamic rankings can differ, we used Algorithm 11 to com-

pute the two-level rankings (approximately) maximizing the respective mea-

sure. Figure 7.2 shows how g influences diversity. The left-hand plot shows

how many different intents are represented in the top 5 results of the first-level

ranking on average. The graph shows that the stronger the diminishing-returns

model, the more different intents are covered in the first-level ranking. In par-

ticular, the number of intents almost doubles on both datasets when moving

from PREC to SAT2. In contrast, the number of documents on the most preva-

lent intent in the first-level ranking decreases, as shown in the right-hand plot.

This illustrates how the choice of g can be used to control the desired amount of

diversity in the first-level ranking.

Table 7.2 provides further insight into the impact of g, now also including

129

hhhhhhhhhhhhhhhhhhEvaluation
Optimization

PREC SQRT LOG SAT2

PREC 0.315 0.302 0.294 0.164
SQRT 1.612 1.664 1.659 1.333
LOG 1.216 1.267 1.27 1.046
SAT2 1.18 1.335 1.349 1.487

Table 7.2: Performance when optimizing and evaluating using different
performance measures for TREC.

the contributions of the second-level rankings. The rows correspond to differ-

ent choices for g when evaluating expected utility according to Eq. (7.3), while

the columns show which g the two-level ranking was optimized for. Not sur-

prisingly, the diagonal entries of Tables 7.2 show that the best performance for

each measure is obtained when optimizing for it. The off-diagonal entries show

that different g used during optimization lead to substantially different rank-

ings. This is particularly apparent when optimizing the two extreme perfor-

mance measures PREC and SAT2; optimizing one invariably leads to rankings

that have a low value of the other. In contrast, optimizing LOG or SQRT results

in much smoother behavior across all measures, and both seem to provide a

good compromise between depths (for the prevalent intent) and diversity. The

results for WEB are qualitatively similar and are omitted for space reasons.

7.5.2 Static vs. Dynamic Ranking

The ability to simultaneously provide depth and diversity was a key motivation

for our dynamic ranking approach. We now evaluate whether this goal is in-

deed achieved. We compare the two-level rankings produced by Algorithm 11

(denoted Dyn) with several static baselines. These static baselines are also com-

puted by Algorithm 11, but with zero width second-level rankings.

130

0.15

0.2

0.25

0.3

0.35

0.4

0.45
PREC@5

0.8

0.9

1

1.1

1.2

1.3

1.4
Stat-
Div

Stat-
Depth

Stat-
Util

Dyn0.7

0.8

0.9

1

1.1

1.2

SQRT@5 SAT2@5

0.5

0.6

0.7

0.8

0.9

1
LOG@5

0.45

0.55

0.65

0.75

0.85
PREC@5

1.5

1.6

1.7

1.8

1.9

2

Stat-
Div

Stat-
Depth

Stat-
Util

Dyn1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
SQRT@5 SAT2@5

1

1.1

1.2

1.3

1.4

1.5

1.6
LOG@5

Figure 7.3: Comparing the retrieval quality of Static vs. Dynamic Rank-
ings for TREC (Top) and WEB (Bottom).

First, we compare against a diversity-only static ranking that maximizes in-

tent coverage as proposed in [176] (denoted Stat-Div). Second, we compare

against a depth-only static ranking by choosing g to be the identity function (de-

noted Stat-Depth). And, third, we produce static rankings that optimize SQRT,

LOG, and SAT2 (denoted Stat-Util). Note that both Dyn and Stat-Util optimize

the same measure that is used for evaluation.

To make a fair comparison between static and dynamic rankings, we mea-

sure performance in the following way. For static rankings, we compute per-

formance using the expectation of Eq. (7.1) at a depth cutoff of 5. In particular,

we measure PREC@5, SQRT@5, LOG@5 and SAT2@5. For two-level rankings,

the number of results viewed by a user depends on how many results he/she

expands. So, we truncate any user’s path through the two-level ranking after

visiting 5 results and compute PREC@5, SQRT@5, LOG@5 and SAT2@5 for the

truncated path.

Results of these comparisons are shown in Figure 7.3. First, we see that both

131

Dyn and Stat-Util outperform Stat-Div, illustrating that optimizing rankings for

the desired evaluation measure leads to much better performance than using

a proxy measure as in Stat-Div. Note that Stat-Div never tries to present more

than one result for each intent, which explains the extremely low “depth” per-

formance in terms of PREC@5. But Stat-Div is not competitive even for SAT2,

since it never tries to provide a second result. Second, at first glance it may

be surprising that Dyn outperforms Stat-Depth even on PREC@5, despite the

fact that Stat-Depth explicitly (and globally optimally) optimizes depth. To un-

derstand consider the following situation where A is the prevalent intent, and

there are three documents relevant to A and B and three relevant to A and C.

Putting those sets of three documents into the first two rows of the dynamic

ranking provides better PREC@5 than sequentially listing them in the optimal

static ranking.

Overall we find the dynamic ranking method outperforming all static rank-

ing schemes on all the metrics – in many cases with a substantial margin. This

gain is more pronounced for TREC than for WEB. This can be explained by the

fact that WEB queries are less ambiguous, since the single most prevalent intent

accounts for more than 70% of all queries on average.

7.5.3 Learning Two-level Ranking Functions

So far we have evaluated how far Algorithm 11 can construct effective two-

level rankings if the relevance ratings are known. We now explore how far

our learning algorithm can predict two-level rankings for previously unseen

queries. For all experiments in this section, we learn and predict using SQRT as

the choice for g, since it provides a good trade-off between diversity and depth

132

0.15

0.2

0.25

0.3

0.35
PREC@5

0.75

0.8

0.85

0.9

0.95

1

1.05 Stat-Rand

Stat-Div

Dyn-SVM
0.5

0.6

0.7

0.8

0.9

1
SQRT@5 SAT2@5

0.45

0.55

0.65

0.75

LOG@5

0.52

0.56

0.6

0.64

0.68
PREC@5

1.5

1.55

1.6

1.65

1.7

1.75 Stat-Rand

Stat-Div

Dyn-SVM
1.4

1.45

1.5

1.55

1.6

1.65

1.7
SQRT@5 SAT2@5

1.15

1.2

1.25

1.3

1.35

LOG@5

Figure 7.4: Performance of learned functions, comparing static & dynamic
rankings for TREC (Top) and WEB (Bottom).

as shown above.

We performed standard preprocessing such as tokenization, stopword re-

moval and Porter stemming. Since the focus of our work is on diversity and not

on relevance, we rank only those documents that are relevant to at least one in-

tent of a query. This simulates a candidate set that may have been provided by

a conventional retrieval method. This setup is similar to that used in previous

work [176].

Many of our features in φv follow those used in [176]. These features provide

information about the importance of a word in terms of two different aspects. A

first type of feature describes the overall importance of a word. A second type

of feature captures the importance of a word in a document. An example of this

type of feature is whether a word appears with frequency at least y% in the doc-

ument. Finally, we also use features φs that model the relationship between the

documents in the second-level ranking and the corresponding head document

of that row. Examples of this type of feature are binned features representing

TFIDF similarity of document pairs and the number of common words that ap-

pear in both documents with a frequency of at least x%.

133

Dynamic vs. Static: In the first set of experiments, we compare our learning

method (Dyn-SVM) for two-level rankings with two static baselines. The first

static baseline is the learning method from [176] which optimizes diversity (re-

ferred to as Stat-Div). We also consider a random static baseline (referred to as

Stat-Rand), which randomly orders the candidate documents. This is a com-

petent baseline, since all our candidate documents are relevant to at least one

intent.

Figure 7.4 shows the comparison between static and dynamic rankings. For

TREC, Dyn-SVM substantially outperforms both static baselines across all per-

formance metrics, mirroring the results we obtained in Section 7.5.2 where the

relevance judgments were known. This shows that our learning method can ef-

fectively generalize the multi-intent relevance judgments to new queries. On the

less ambiguous WEB dataset the differences between static and dynamic rank-

ings are smaller. While Dyn-SVM substantially outperforms Stat-Rand, Stat-Div

is quite competitive on WEB.

7.6 Summary

This chapter introduced the notion of incorporating interactivity into the pre-

dicted objects so as to improve user utility on-the-fly for the task of extrinsic di-

versification. In particular, it proposed a two-level dynamic ranking approach

that provides both diversity and depth for ambiguous queries by exploiting user

interactivity. We showed that the approach has the following desirable proper-

ties. First, it covers a large family of performance measures, making it easy to se-

lect a diminishing returns model for the application setting at hand. Second, we

134

presented an efficient algorithm for constructing two-level rankings that max-

imizes the given performance measure with provable approximation guaran-

tees. Finally, we provided a structural SVM algorithm for learning two-level

ranking functions, showing that it can effectively generalize to new queries.

135

Part IV

Using Stated Preferences to Scale

Student Evaluation

136

The previous two parts of this dissertation illustrated the importance of de-

signing feedback interventions and the user behavioral model along with the

interactive learning algorithm using examples primarily from the search and

recommendation domains. In this part, we are going to explore the use of learn-

ing for problems from a different domain, namely education. Recently, there

has been an increased interest on the use of technology in education. One such

problem of interest is peer grading, which is a promising approach to scale up

student assessment in large classes (such as online courses).

More specifically, the next chapter proposes the use of ordinal feedback from

students (e.g., project X is better than project Y) as opposed to the cognitively

harder and less-reliable cardinal feedback (e.g., project X is a B-). It covers dif-

ferent algorithms that can reliably aggregate the ordinal student grades to come

up with an overall grade for each assignment. Empirical studies using data

collected in a real-world university classroom, demonstrate these “aggregated”

grades to be on-par with cardinal grading approaches as well as conventional

grading alternatives such as TA and instructor grading. Furthermore, these ag-

gregation approaches can be extended to provide instructors with more detailed

grading information, such as the uncertainty in each assignment’s grade. The

overall ordinal peer grading approach was found to be a valuable learning ex-

perience by students as well as a helpful grading resource by their instructors.

137

CHAPTER 8

ORDINAL PEER GRADING

Massive Online Open Courses (MOOCs) have the potential to revolutionize

higher education with their accessibility and low costs. While they empower

learning across a diverse range of subjects and millions of students [53], they re-

quire instructors to adapt traditional classroom logistics to scale to classes with

upwards of 20000 students [88]. One such key logistic is the evaluation of students

in MOOCs.

While scalable automatic-grading schemes — such as multiple-choice ques-

tions — exist, they are not suitable in all settings [26, 71, 72, 163]. For instance,

liberal-arts courses and research-oriented classes require more open-ended test-

ing such as essays and reports, which are very challenging to evaluate automat-

ically. A lack of reliable assessment techniques for these types of assignments

currently limits the kinds of courses offered as MOOCs.

Peer grading, where students — not instructors or TAs/staff — provide feed-

back on the work of other students in the class, has been proposed as a solution.

Peer grading naturally overcomes the problem of scale [8, 63, 100, 115], since

the number of “graders” matches the number of students. Despite this inher-

ent scalability of peer grading, a key obstacle for peer grading to work is the

fact that the students are not trained graders and are just learning the material

themselves. Hence, to ensure good-quality grades it is imperative that grading

guidelines are easy to communicate and apply, making the feedback process as

easy and unambiguous as possible for the student graders.

Given broad evidence across many different tasks that demonstrates ordi-

138

nal feedback to be easier to provide and more reliable than cardinal feedback

[20, 36, 98, 119, 155], it is therefore desirable to base peer grading on ordinal

feedback (e.g. ”project A is better than project B”). Unfortunately, all existing

methods for aggregating peer grade feedback into an overall assessment require

that students provide cardinal feedback (e.g. ”project A should get 87 out of

100”). Furthermore, the efficacy of simple techniques for aggregating cardinal

feedback, such as averaging, has been questioned [28, 39, 120]. While probabilis-

tic machine learning methods have recently been proposed to improve perfor-

mance [126], they still face the problem that students may be grading on differ-

ent scales. For example, students may have a preconception of what constitutes

a B+ based on the university they come from. Non-linear grading scales also

cause fundamental problems for these cardinal grade based methods, as they

rely on the difference between an A+ and an A being the same as the difference

between a C+ and a C (which is typically not true in practice).

To overcome the problems of cardinal feedback, we introduce the task of

ordinal peer grading in this thesis. By having students give ordinal statements

and not cardinal statements as feedback, we offload the problem of developing

and communicating a precise absolute grading scale onto the peer grading al-

gorithm. The key technical contributions of this work lie in the development of

methods for ordinal peer grading, where the goal is to automatically infer an

overall assessment of a set of assignments from ordinal peer feedback. Further-

more, a secondary goal of the proposed methods is to infer how accurately each

student provides feedback, so that reliable grading can be incentivized (by in-

cluding grading performance as a component of the overall grade for instance).

To this effect, we propose several machine learning methods for ordinal peer

139

grading, which differ by how probability distributions over rankings are mod-

eled. These methods, which extend classical rank-aggregation algorithms, allow

us to jointly infer the assignment grades and grader reliabilities in an efficient

manner. We also design Bayesian alternatives to these methods to provide in-

structors of these courses with more detailed information. More specifically, the

resulting Metropolis-Hastings [46] based Markov Chain Monte-Carlo (MCMC)

methods, allow us to report the uncertainty and confidence interval estimates

for the grade of each assignment.

To study the applicability of the proposed methods in real-world settings,

this thesis details a dataset of peer-assessment grades collected as part of a

university-level course. Using this data, the efficacy of the proposed ordinal

feedback techniques is demonstrated in comparison to the existing cardinal

feedback techniques. Furthermore, the proposed ordinal peer grading meth-

ods were found to be comparable in quality with traditional evaluation tech-

niques, such as course-staff (TAs) based grading, that were used in the course

in parallel. Using this classroom data, other properties of these techniques were

also investigated, including their robustness, data dependence, self-consistency

and quality of uncertainty estimates. Finally, an analysis of responses to a sur-

vey completed by students in the classroom experiment is also provided. The

results of the survey indicated that most students found the peer grading expe-

rience (of receiving and providing peer feedback) helpful and valuable.

8.1 The Peer Grading Problem

We begin by formally defining the peer grading problem, as it presents itself

from a machine learning perspective. We are given a set of |D| assignments

140

D = {d1, ..., d|D|} (e.g., essays, reports) which need to be graded. Grading is done

by a set of |G| graders G = {g1, ..., g|G|} (e.g., student peer graders, reviewers),

where each grader receives a subset Dg ⊂ D to assess. The choice of assign-

ments for each grader can be uniformly random, or can follow a determinis-

tic or sequential design. In either case, the number of assignments that any

grader assesses |Dg| is much smaller than the total number of assignments |D|

(e.g., |Dg| ≈ 5 − 10).

Each grader provides feedback for the set of assignments Dg they were given

(to grade). Ordinal and cardinal peer grading differ in the type of feedback a

grader is expected to provide:

Cardinal Peer Grading (CPG): Here, each grader g provides cardinal-valued

feedback for each item d ∈ Dg. Typically, this is a numeric or categorical

response which we denote as y(g)
d (e.g., Likert scale, letter grade).

Ordinal Peer Grading (OPG): In ordinal peer grading, each grader g returns

an ordering σ(g) (possibly containing ties) of his or her assignments Dg,

indicating relative but not absolute quality. More generally, ordinal feed-

back could also consist of multiple pairwise preferences, but we focus on

the case of a single ordering in this thesis.

Independent of the type of feedback that graders provide, the goal in peer grad-

ing is twofold.

The first goal grade estimation, is the task of estimating the true quality of the

assignments in D from the grader feedback. We distinguish between two types

of grade estimation, which differ by how they express assignment quality. In or-

dinal grade estimation, the goal is to infer a ranking σ̂ of all assignments in D that

141

G, g(∈ G) Set of all graders, Specific grader
D, d(∈ D) Set of all assignments, Specific assignment
Dg(⊂ D) Set of assignments graded by grader g
sd(∈ <) Predicted grade for assignment d (larger is better)
ηg(∈ <+) Predicted reliability of grader g
σ(g) Ranking feedback (with possible ties) from g
r(σ)

d Rank of assignment d in ordering σ (rank 1 is best)
ρ(g) Set of pairwise preference feedback from g

d2�σ d1 d2 is preferred/ranked higher than d1 (in σ)
π(A) Set of all rankings over A ⊆ D

σ1 ∼ σ2 ∃way of resolving ties in σ2 to obtain σ1

σ̂ Estimated ordering of assignments
σ∗ (Latent) True ordering of assignments

Table 8.1: Peer grading notation overview and reference.

most accurately reflects some true ordering (by quality) σ∗. In cardinal grade esti-

mation, the goal is to infer a cardinal grade ŝd for each d ∈ D that most accurately

reflects each true grade s∗d. Note that the type of feedback does not necessar-

ily determine whether the output of grade estimation is ordinal or cardinal. In

particular, we will see that some of our methods can infer cardinal grades even

when only provided with ordinal feedback.

The second goal is grader reliability estimation, which is the task of estimating

how accurate the feedback of a grader is. Estimating grader reliability is im-

portant for at least two reasons. First, identifying unreliable grades allows us

to downweight their feedback for grade estimation. Second, and more impor-

tantly, it allows us to incentivize good and thorough grading by making peer

grading itself part of the overall grade. In the following, we will typically rep-

resent the reliability of a grader as a single number ηg ∈ <+.

Section 8.3 will derive and evaluate methods for grade estimation and grader

reliability estimation in the Ordinal Peer Grading setting. Table 8.1 details all the

notation used in the rest of this chapter.

142

8.2 Relation to Prior Work

The grade estimation problem in Ordinal Peer Grading can be viewed as a spe-

cific type of rank aggregation problem. Rank aggregation (RA), as described in

Section 2.4.3, is a class of problems related to combining information contained

in rankings from multiple sources (i.e., graders in this context). Techniques de-

veloped for the RA problem have found use in many different application do-

mains, including educational assessment. For instance, [16] introduces a graph-

ical model based approach for modeling the difficulty of multiple-choice ques-

tions and estimating the correct answers in a crowdsourced setting. However

these approaches are neither applicable for a peer grading setting nor can they

handle open-ended answers (like essays).

More generally, conventional rank aggregation differs from Ordinal Peer

Grading in several aspects. First, grader reliability estimation is not a goal in

itself in conventional rank aggregation. In fact most existing RA approaches as-

sume all the sources (i.e., graders) to be equally reliable. Second, the success in

most RA problems depends on correctly identifying the top items of the rank-

ing, unlike in grade estimation where the goal is to accurately estimate the full

ranking of assignments. Third, ties and data sparsity are not an issue in many

RA problems (such as search result aggregation), since (at least in principle)

input rankings are total orders over all results.

Crowdsourcing using rank aggregation is perhaps the most closely related

application domain. Here the goal is to merge the feedback obtained from mul-

tiple crowdworkers [23, 79, 171]. Due to the differing quality of these workers,

modeling the worker reliability is essential [45, 143]. The key difference in our

143

Algorithm 12: Normal Cardinal-Score (NCS) Algorithm (called PG1 in
[126]) is used as a baseline in our subsequent experiments.

sd ∼ N(µ0,
1
γ0

) . True Scores

ηg ∼ Gamma(α0, β0) . Grader Reliability

bg ∼ N(0, 1
γ1

) . Grader Bias (Only for NCS+G)

y(g)
d ∼ N(sd + bg,

1
ηg

) . Observed Cardinal Peer Grade

Estimate ŝd, η̂g and b̂g . Using Maximum Likelihood Estimation (MLE)

setting is that the number of items is large and we would like to correctly order

all of them, not just identify the top-few.

8.2.1 Prior work on Peer Grading

With the advent of online courses peer grading has seen increased usage in large

classes with mixed results [28, 39, 120, 165]. Part of the problem has been the use

of simple estimation techniques like averaging cardinal feedback grades/scores.

More recently, probabilistic learning algorithms have been proposed for peer

grade estimation [126]. However, this method requires that students provide

cardinal scores as grades. This in turns requires the precise communication ab-

solute grading scales to all students, which is very challenging. A second limi-

tation of the method introduced in [126], is that it incentivizes grader reliability

by relating it to the grader’s own assignment score. However, such a setup is

inappropriate when there are groups (such as the classroom setting studied in

this dissertation) or where external graders/reviewers are used (e.g., conference

reviewing). In addition, such an indirect incentive is harder to communicate

and justify compared to the direct grader reliability estimates used in the ap-

144

proaches introduced in this dissertation. Lastly their approach requires that

each student grades some assignments that were previously graded by the in-

structor in order to estimate grader reliability. This seems wasteful, given that

students are only able to grade a small number of assignments in total. We em-

pirically compare their cardinal peer grading technique (Algorithm 12, using

Maximum Likelihood Estimation – MLE – instead of Gibbs sampling) with the

ordinal peer grading techniques proposed in this dissertation.

Overall, given the limited amount of attention that the peer grading problem

has received in the machine learning literature so far, there is ample opportunity

to improve on the state-of-the-art and address current shortcomings [144].

8.3 Ordinal Peer Grading Methods

This section introduces ordinal peer grading methods for grade estimation and

then extends these methods to also tackle the problem of grader reliability esti-

mation (Sec 8.3.6). The proposed methods are efficient and simple to implement.

They all begin by taking in as input an i.i.d. sample of orderings

S = (σ(g1), ..., σ(g|G|)), (8.1)

where each ordering sorts a subset of assignments according to the judgment

of grader gi. The proposed grade estimation methods are based on models that

represent probability distributions over rankings. In particular, we extend the

Mallows Model (Sec 8.3.1), the Bradley-Terry model (Sec 8.3.3), the Thurstone

model (Sec 8.3.4), and the Plackett-Luce model (Sec 8.3.5) as appropriate for the

ordinal peer grading problem.

145

8.3.1 Mallows Model (MAL and MALBC)

Mallows model [116] describes a distribution over rankings σ in terms of the

distance δ(σ̄, σ) from a central ranking σ̄, which in our setting is the true ranking

σ∗ of assignments by quality.

P(σ|σ̄) =
e−δ(σ̄,σ)∑
σ′ e−δ(σ̄,σ

′) (8.2)

While maximum likelihood estimation of σ∗ given observed rankings is NP-

hard for many distance functions [57, 129], tractable approximations are known

for special cases. In this work we use the following tractable Kendall-τ distance

[93], which assumes that both rankings are total orderings over all assignments.

Definition 1 We define the Kendall-τ Distance δK between rankings σ1 and σ2 as

δK(σ1, σ2) =
∑

d1�σ1 d2

I[[d2 �σ2 d1]] (8.3)

It measures the number of incorrectly ordered pairs between the two rankings.

In our case, the rankings that students provide can have ties. We interpret these

ties as indifference (i.e., agnostic to either ranking), which leads to the following

model, where the summation in the numerator is over all total orderings σ′

consistent with the weak ordering σ.

P(σ|σ̄) =

∑
σ′∼σ e−δ(σ̄,σ

′)∑
σ′ e−δ(σ̄,σ

′) (8.4)

Note also that the input ranking σ may only sort a subset of assignments. In

such cases, we appropriately restrict the normalization constant in Eqn. 8.4 1.

For the Kendall-τ distance, this normalization constant can be computed very

1While the Mallows model typically involves an additional dispersion parameter that scales
the distance function, for the purpose of simplicity we ignore this for the time being.

146

Algorithm 13: Computing MLE ranking for Mallows Model

1: C ← D . C contains unranked items

2: for i = 1 . . . |D| do

3: for d ∈ C do

4: xd ←
∑

g∈G ηg|d′ ∈ C : d′ �σg d| − |d′ ∈ C : d �σg d′|

5: d∗ ← mind∈C xd . Select highest scoring item

6: r(σ̂)
d∗ ← i . Rank as next item

7: C ← C/d∗ . Remove d∗ from candidate set

8: return σ̂

efficiently, as it only depends on the number of elements in the ranking.

ZM(k) =

k∏
i=1

(
1 + e−1 + · · · + e−(i−1)

)
=

k∏
i=1

1 − e−i

1 − e−1

The numerator can likewise be computed efficiently via a similar trick. Note

that ties in the grader rankings σ(g) do not affect the normalization constant un-

der the interpretation of indifference.

Under this modified Mallows model, the Maximum Likelihood Estimator

(MLE) of the central ranking σ̂ is

σ̂ = argmaxσ

∏
g∈G

∑
σ′∼σ(g) e−δK (σ,σ′)

ZM(|Dg|)

 . (8.5)

Computing the MLE σ̂ as an estimate of the true ranking by quality σ∗ requires

finding the Kemeny-optimal aggregate [172], which is known to be NP-hard [57].

However numerous approximations have been studied in the rank aggregation

literature [6, 7, 57, 59, 60, 94]. In this work we use a simple greedy algorithm as

shown in Algorithm 13.

147

As an alternative algorithm for computing the estimated ranking, we utilize

a Borda count-like approximation for the Mallows model (which we denote as

MALBC), where Line 13 of Algorithm 13 is replaced with:

xd ←
∑
g∈G

r(σ(g))
d .

In other words, this orders as per the average rank of an item (leading to a 5-

approximation for the case of full rankings [59]). We also experimented with

techniques such as Local Kemenization (i.e., adjacent pairs are swapped in a

bubble-sort like manner to increases likelihood [57]), but exclude these results

for brevity.

8.3.2 Score-Weighted Mallows (MALS)

The Mallows model presented above has two shortcomings. First, it does not

output a meaningful cardinal grade for the assignments, which makes it appli-

cable only to ordinal grade estimation. Second, the distance δK does not distin-

guish between misordering assignments that are similar in quality from those

that have a large quality difference.

To address these two shortcomings, we propose an extension which esti-

mates cardinal grades ŝd for all assignments. To this effect, we introduce the

following score-weighted ranking distance, which scales the distance induced

by each misranked pairs by its estimated grade difference.

Definition 2 The score-weighted Kendall-τ distance δS K over rankings σ1, σ2

given cardinal scores sd is

δS K(σ1, σ2|s) =
∑

d1�σ1 d2

(sd1 − sd2)I[[d2 �σ2 d1]]. (8.6)

148

Treating ties in the grader rankings as described above results in a score-

weighted version of the Mallows model (MALS). We use the following maxi-

mum a posteriori estimator to estimate the scores ŝ.

ŝ = argmaxs

Pr(s)
∏
g∈G

∑
σ′∼σ(g) exp (−δS K(σ̂, σ′|s))∑

σ′∈π(Dg)
exp (−δS K(σ̂, σ′|s))

 (8.7)

Note that σ̂ can be obtained by sorting items as per ŝd. Pr(ŝ) =
∏

d∈D Pr(ŝd) is the

prior on the latent item scores. In our experiments we model Pr(ŝd) ∼ N(0, 9).

The same prior is used in all of our methods. While the resulting objective is

not necessarily convex, we use Stochastic Gradient Descent (SGD) for grade

estimation and initialize the grades using a scaled-down Mallows solution.

8.3.3 Bradley-Terry Model (BT)

The above Mallows based models define distributions over rankings as a func-

tion of a ranking distance, and require approximate methods for solving the

maximum likelihood problem. As an alternative, we can utilize rank aggrega-

tion models based on distributions over pairwise preferences, since a ranking of

n items can also be viewed as a set of preferences over the
(

n
2

)
item pairs. Using

pairwise models can further simplify the grader feedback process as it is cog-

nitively less demanding on the students to break their ordinal assessment task

into pairwise comparisons [98], especially if the number of items to assess is

large. The Bradley-Terry model [29] is one such model for pairwise preferences,

and it derives a distribution based on the differences of underlying item scores

sd through a logistic link function.

P(di �ρ(g) d j|s) =
1

1 + e−(sdi−sd j)
(8.8)

149

Since each preference decision is modeled individually, the feedback from the

grader could be a (possibly inconsistent) set of preferences that does not nec-

essarily have to form a consistent ordering. The following is the Maximum a

Posteriori (MAP) estimator used in this paper.

ŝ = argmaxs

Pr(s)
∏
g∈G

∏
di�ρ(g) d j

1

1 + e−(sdi−sd j)

 (8.9)

The resulting objective is (jointly) log-convex in all of the estimated grades ŝd,

with the gradients taking a simple form. Hence SGD can be used to estimate

the global optimal grades efficiently. We treat ties as the absence of a prefer-

ence. One can also extend this model (as well as subsequent pairwise models)

to incorporate ties more explicitly, but we do not discuss this for the sake of

brevity.

8.3.4 Thurstone Model (THUR)

An alternate to the logistic link function of the Bradley-Terry model is to utilize a

normal distribution for the pairwise preferences. Like the Bradley-Terry model,

the resulting model (i.e., the Thurstone model [161]) can be understood as a

random utility model using the following process: For each pair of items di, d j,

the grader samples (latent) values x(g)
di
∼ N(sdi ,

1
2) and x(g)

d j
∼ N(sd j ,

1
2), and then

orders the pair based on the two values. The mean of the normal distribution

of di is the quality sdi . Maximum a posteriori (MAP) estimation of the scores s

requires maximization of the following function:

ŝ = argmaxs

Pr(s)
∏
g∈G

∏
di�ρ(g) d j

F (sdi − sd j)

 (8.10)

150

F is the Cumulative Distribution Function (CDF) of the standard normal distri-

bution. This objective function is log-convex and can be optimized using SGD.

8.3.5 Plackett-Luce Model (PL)

A drawback of the pairwise preference models is that they can be less expressive

than models built on distributions over rankings. An extension to the Bradley-

Terry model (the Plackett-Luce model [127]) allows us to use distributions over

rankings, while still retaining convexity and simplicity of gradient computa-

tion. This model can be best understood as a multi-stage experiment where at

each stage, an item di is drawn (w/o replacement) with probability ∝ esdi . The

resulting probability of observing ranking σ(g) under this process is:

P(σ(g)|s) =
∏
di∈Dg

esdi/
(
esdi +

∑
di�σ(g)d j

esd j
)

The resulting maximum a posteriori (MAP) estimator is:

ŝ = argmaxs

Pr(s)
∏
g∈G

∏
di∈Dg

esdi

esdi +
∑

di�σ(g)d j

esd j

 . (8.11)

8.3.6 Grader Reliability Estimation for all Methods

While the methods discussed above allow us to estimate assignment grades

from ordinal feedback, they still do not give us the means to directly estimate

grader reliabilities η̂g. However, there is a generic way of extending all methods

presented above to incorporate grader reliabilities. Using Mallows model as an

151

Algorithm 14: Alternating SGD-based Minimization

Require: N ≥ 0 (Number of iterations), Likelihood L

1: Ob j← − log L

2: ŝ← S GDS cores(Ob j, η = 1) . Est. scores w/o reliabilities

3: for i = 1 . . .N do

4: η← S GDReliabilities(Ob j, ŝ) . Estimate reliabilities

5: ŝ← S GDS cores(Ob j, η) . Est. scores with reliabilities

6: return ŝ, η

example, we can introduce η̂g as a variability parameter as follows:

Pr(σ|σ̄, ηg) =

∑
σ′∼σ(g)

exp (−ηgδK(σ̄, σ′))

ZM(ηg, |Dg|)
(8.12)

The resulting estimator of both σ̂ and η̂ is

σ̂, η̂ = argmaxσ,η

∏
g∈G

Pr(ηg)
∑
σ′∼σ(g) exp (−ηgδK(σ,σ′))

ZM(ηg, |Dg|)

 , (8.13)

where Pr(η̂g) is the prior on the grader reliability. In this work we use a Gamma

prior η̂g ∼ Gamma(10, 0.1) for all the methods in our experiments.

Similarly, the other objectives can also be extended in this manner as seen

in Table 8.2. While many of the extended objectives, such as the one above in

Eq. (8.13), are convex in the grader reliabilities η̂g (for given σ̂), they unfortu-

nately are not jointly convex in the reliabilities and the estimated grades. We

thus use an iterative alternating-minimization technique, which alternates be-

tween minimizing the log-objective to estimate the assignment grades and min-

imizing the log-objective to estimate the grader reliabilities. This iterative alter-

nating approach using stochastic gradient descent is used for all joint estimation

tasks in this paper. Note that methods which estimate the reliabilities using Al-

152

Method Score? Convex? Estimator
MAL+G No No Pr(η)

∏
g∈G

∑
σ′∼σ(g)

exp (−η̂gδK(σ̂, σ′))/ZM(η̂g, |Dg|)

MALS+G Yes No Pr(ŝ, η)
∏

g∈G
∑

σ′∼σ(g)
exp (−η̂gδS K(σ(g), σ̂, F))/Z(·)

BT+G Yes Yes Pr(ŝ, η)
∏

g∈G
∏

di�ρ(g) d j
1/(1 + e−η̂g(sdi−sd j))

THUR+G Yes Yes Pr(ŝ, η)
∏

g∈G
∏

di�ρ(g) d j
F (

√
η̂g(sdi − sd j))

PL+G Yes Yes Pr(ŝ, η)
∏
g∈G

∏
di∈Dg

1/(1 +
∑

di�ρ(g) d j

e−η̂g(sdi−sd j))

Table 8.2: Summary of ordinal methods studied which model the grader’s
reliabilities, including the ability to output cardinal scores and if
the resulting objective is convex in these scores.

gorithm 14 are denoted by a +G suffix to the method, while those that simply

estimate the assignment grades are represented by the method name alone.

8.4 Evaluation

In the following we present experiments that compare ordinal and cardinal peer

grading methods. We evaluate their ability to predict instructor grades, their

variability, their robustness to bad peer grading, and their ability to identify

bad graders. We also present the results from a qualitative student survey to

evaluate how students perceived the peer grading process.

8.4.1 Data Collection in Classroom Experiment

We collected and used a real dataset consisting of peer feedback, TA grades,

and instructor grades for evaluating the peer grading methods proposed in this

dissertation. This data was collected as part of a senior-undergraduate and

masters-level class with an enrollment of about 170 students. The class was

153

staffed with 9 Teaching Assistants (TAs) that participated in grading, and a sin-

gle Instructor. This size of class is attractive, since it is large enough for col-

lecting a substantial number of peer grades, while at the same time allowing

traditional instructor and TA grading to serve as a baseline. The availability of

instructor grades makes our data different from other peer-grading evaluations

used in the past (e.g., [126]).

The dataset consists of two parts that were graded independently, corre-

sponding to the poster presentation and the final report stages of an 8-week long

course project. Students worked in groups of 3-4 students for the duration of

the project, and there were a total of 44 project groups. While student worked in

groups, peer grading was performed individually via the Microsoft Conference

Management Toolkit (CMT) system. The peer grading process was performed

single-blind for the posters and double-blind for the reports. The reviewer as-

signments were made uniformly at random. Students were given clear direc-

tives and asked to focus on aspects such as novelty and clarity (among others)

while determining their grade. They were also asked to justify their grade by

providing feedback comments. Students were told that a part of their grade

depends on the quality of their peer feedback.

All grading was done on a 10-point (cardinal) Likert scale, where 10 was

labeled “perfect”, 8 “good”, 5 “borderline”, 3 “deficient” and 1 “unsatisfactory”.

This will allow us to compare cardinal and ordinal peer grading methods, where

ordinal methods merely use the ordering (possibly with ties) implied by the

cardinal scores. Note that in a true application of ordinal peer grading, accuracy

could improve since it would allow simplifying the grading instructions and

reduce cognitive overhead if students did not have to worry about the precise

154

Data Statistic PO FR
Number of Assignments 42 44

Number of Peer Reviewers 148 153
Total Peer Reviews 996 586
Total TA Reviews 78 88
Participating TAs 7 9

Per-Item Peer Grade Devn. 1.16 1.03

Set Who? Mean Devn.

PO
Peers 8.16 1.31
TAs 7.46 1.41

Meta 7.55 1.53

FR
Peers 8.20 1.35
TAs 7.59 1.30

Instructor 7.43 1.16

Table 8.3: Statistics for the two datasets (PO=Poster, FR=Report)
from the classroom experiment along with the staff
(TAs/Meta/Instructor) and student grade distributions.

meaning of specific cardinal grades.

The following describes the grading processes used at the two project stages,

and Table 8.3 summarizes some of the key statistics.

Grading Process for Poster Presentations

The poster presentations took place in a two-hour poster session. Two groups

did not present their poster. Students were encouraged to rotate presenting their

poster within their project group members. This likely increased variability of

grades, since different reviewers often saw different presenters. Students and

TAs took notes and entered their reviews via CMT afterwards.

The TA Grades were independent, meaning that the TAs did not see the peer

reviews before entering their review. There were on average 1.85 TA reviews for

each poster.

The Peer Grades totaled on average 23.71 reviews for each poster, with each

peer reviewer reviewing 6.73 posters on average.

The final Meta Grade for each poster was determined as follows. One of

155

the TAs that already provided an independent review was selected as a meta-

reviewer. This TA was asked to aggregate all the arguments brought forward in

the reviews and make a final grade on the same 10-point scale. The instructor

oversaw this process, but intervened only on very few grades.

Grading Process for Final Projects

At the end of the project, groups submitted a report of about 10 pages in length.

The reviewing process was similar to that of the poster presentations, but with

one important difference — namely that all project reports were graded by the

TAs and the instructor without any knowledge of the peer reviews, as detailed

below.

On average each report received 13.32 Peer Grades as the overall score on

each of the peer reviews (students were also asked for component scores like

“clarity”, etc.).

Each report also received two TA Grades, which the TAs submitted without

knowledge of the peer reviews.

Finally, each report received an Instructor Grade, following the traditional

process of project grading in this class. The instructor and head TA each graded

half the projects and determined the grade based on their own reading of the

paper, taking the TA reviews as input. These grades were provided without

viewing the peer reviews. We can therefore view the instructor grades as an

assessment that is entirely independent of the peer grades (in contrast to the

Meta Grades for the posters, which have some dependency).

156

8.4.2 Evaluation Metrics

A commonly used measure for reporting student performance (among many

standardized tests) is the percentile rank relative to all students in the class. Fol-

lowing this practice, we use percentile rank as the grade itself (a letter grade can

easily be derived via curving), and report ranking metrics as our main indica-

tors of performance (we investigate cardinal grading performance in Sec. 8.4.8).

In particular, we use the following variant of Kendall-τ that accounts for ties.

τKT (σ1, σ2) =
∑

d1�σ1 d2

I[[d2 �σ2 d1]] +
1
2
I[[d1 ≈σ2 d2]] (8.14)

Note that this measure is not symmetric, assuming that the first argument is a

target ranking and the second argument is a predicted ranking. It treats ties in

the target ranking as indifference. Ties in the predicted ranking are treated as

a lack of information, incurring a 1
2 error (i.e., equivalent to breaking ties ran-

domly). Such a correction is necessary for evaluation purposes, since otherwise

predicted rankings with all ties (which convey no information) would incur no

error. Normalizing τKT (σ1, σ2) and accounting for the fact that we may have

more than one target ranking2 leads to the following error measure.

Definition 3 Given a set of target rankings S g, we define the Kendall-τ error EK of

predicted ranking σI as:

EK(σI) =
100
|S g|

∑
σt∈S g

τKT (σt, σI)
maxσ∈π(D) τKT (σt, σ)

(8.15)

This error macro-averages the (normalized) τKT errors for each target ranking.

Due to the normalization, they lie between 0 (indicating perfect agreement) and

2We may have more than one target ranking if the ground-truth rankings were only over
subsets of items, as is the case in our case study.

157

20.6

23.3

20.8

31.9

21.8 21.4
20.6

23.7

16.2

29.7

19.8

31.9

19.8

33.0

25.5

30.2

15

20

25

30

35

40

Poster Report

SCAVG

NCS

MAL

MALBC

MALS

BT

THUR

PL

Figure 8.1: Comparing peer grading methods (w/o grader reliability es-
timation) against Meta and Instructor Grades in terms of EK

(lower is better).

100% (indicating reversal with target rankings). A random ranking has expected

EK error of 50%.

8.4.3 How well do Ordinal and Cardinal Peer Grading methods

predict the final grade?

The first question we address is in how far peer grading resembles the grades

given by an instructor. Specifically, we investigate whether ordinal peer grading

methods achieve similar performance as cardinal peer grading methods, even

though ordinal methods receive strictly less information.

For all methods considered in this paper, Figure 8.1 shows the Kendall-τ

error EK compared to the Meta Grades for the Posters, and compared to the

Instructor Grades for the Reports. The errorbars show estimated standard devi-

158

ation using bootstrap-type resampling.

On the posters, none of the methods show significantly worse performance

than another method. In particular, there is no evidence that the cardinal meth-

ods are performing better than the ordinal methods. A similar conclusion also

holds for the reports. However, here the ordinal methods based on Mallows

model perform better than the cardinal NCS method3 [126] (see Algorithm 12),

as well as some of the other ordinal methods. Simply averaging the cardinal

scores of the peer graders, which we call Score Averaging (SCAVG), performs

surprisingly well.

In summary, most methods achieve an EK between 20% and 30% on both

problems, but all have large standard deviations. The EK appears lower for the

posters than for the projects, which can be explained by the fact that the Meta

Grade was influenced by the peer grades. But how good is an EK between 20%

and 30%?

8.4.4 How does Peer Grading Compare to TA Grading?

We now consider how Peer Grading compares to having each assignment

graded by a TA. For medium sized classes, TA grading may still be feasible. It is

therefore interesting to know if TA grading is clearly preferable to Peer Grading

when it is feasible. But more importantly, the inter-judge agreement between

multiple TAs can give us reference points for the accuracy of Peer Grading.

As a first reference point, we estimate how well the TA Grades reflect the
3We tuned the hyperparameters of the NCS model to maximize performance. We also used a

fixed grader reliability parameter in the NCS model, since it provided better performance than
with reliability estimation (NCS+G).

159

23.6

30.0

23.5

31.3

27.5

29.3

25.2

30.7

22.2

34.3

23.9

31.4

24.2

31.5

27.3

31.9

15

20

25

30

35

40

Poster Report

SCAVG

NCS

MAL

MALBC

MALS

BT

THUR

PL

Figure 8.2: Comparing peer grading methods (w/o grader reliability esti-
mation) against TA Grades in terms of EK , using TA grades as
the target ranking.

Meta Grades for the posters and the Instructor Grades for the reports. In partic-

ular, we consider a grading process where each assignment is graded by a single

TA that assigns a cardinal grade. Each TA grades a fraction of the assignments,

and a final ranking of the assignments is then computed by sorting all cardinal

grades. We call this grading process TA Grading.

We can estimate the EK of TA grading with the Meta Grades and the In-

structor Grades, since we have multiple TA grades for most assignments. We

randomly re-sample a TA grade from the available grades for each assignment,

compute the ranking, and then estimate mean and standard deviation of the EK

over 5000 samples. This leads to a mean EK of 22.0 ± 16.0 for the posters and

22.2 ± 6.8 for the reports. Comparing these to the EK of the peer grading meth-

ods in Figure 8.1, we see that they are comparable to the performance of many

peer grading methods — even though the EK of TA grading is favorably biased. Note

that Meta Grades and the Instructor Grades were assigned based on the same TA grades

160

we are evaluating against.

To avoid this bias and provide a fairer comparison with TA grading, we also

investigated how consistent peer grades are with the TA grades, and how con-

sistent TA grades are between different TAs. Figure 8.2 shows the EK of the

peer grading methods when using TA Grades as the target ranking for both

the Posters and the Reports. Variances were again estimated via bootstrap re-

sampling. Note that TA Grades were submitted without knowledge of the Peer

Grades. Overall, the peer grades have an EK with the TA Grades that is similar

to the EK with the respective Final grades considered in the previous subsec-

tion. Again, there is no evidence that the ordinal peer grading methods are less

predictive of the TA Grades than the cardinal peer grading methods.

To estimate EK between different TAs, we use the following resampling pro-

cedure. In a leave-one-out fashion, we treat the grades of a randomly selected

TA as the target ranking and compute the predicted ranking by sampling from

the other TAs grades as described above. Averaging over 5000 repetitions re-

veals that the EK between the TAs is 47.5 ± 21.0 for the posters and 34.0 ± 13.8

for the reports.

These numbers can be compared to the EK of peer grading methods in Fig-

ure 8.2. For the Reports, peer grades are roughly as consistent with the TA

grades as other TA grades are. For the posters the peer grading methods are sub-

stantially more predictive of TA grades than other TA grades. The reason for this

is at least twofold. First, the peer grading methods have access to much more

data, which reduces variability (especially since presentations were not always

given by the same student). Second, the peer grading methods have enough

data to correct for different grading scales, while offsets in grading scales can

161

24.4
25.725.8

31.4

25.8

27.7

19.7

23.9

31.2

26.1

30.7

25.2

31.6
30.2

31.8

24.9

15

20

25

30

35

40

Poster Report

SCAVG

NCS

MAL

MALBC

MALS

BT

THUR

PL

Figure 8.3: Self-consistency of peer-grading methods (w/o grader reliabil-
ity estimation) in terms of EK .

have disastrous consequences in TA grading.

Finally, we also consider the self-consistency of the peer grading methods.

Analogous to the self-consistency of TA grading, we ask how similar are the

grades we get if we repeat the grading procedure with a different sample of

assessments. We randomly partition peer reviewers into two equally sized

datasets. For each peer grading method, we perform grade estimation on both

datasets, which generates two rankings of the assignments. Ties in these rank-

ings are broken randomly to get total orderings. Figure 8.3 shows the EK be-

tween the two rankings (over 20 sampled partitions). For the posters, peer grad-

ing is substantially more self consistent than TA grading, and for the reports all

peer grading methods have lower EK estimates than TA grading as well.

Overall, we conclude that there is no evidence that TA grading would have

led to more accurate grading outcomes than peer grading.

162

15

20

25

30

35

40

25% 50% 75% 100%

SCAVG

NCS

MAL

MALBC

MALS

BT

THUR

PL15

20

25

30

35

40

25% 50% 75% 100%

15

20

25

30

35

40

2 3 4

15

20

25

30

35

40

2 3 4 5 6 7

Figure 8.4: Change in EK performance of peer grading methods (using
Meta and Instructor Grades as target ranking) when vary-
ing the number of assignments assigned to each reviewer for
Posters (first from left) & Reports (second), and when varying
the number of peer reviewers for Posters (third), Reports (last).

8.4.5 How does Grading Accuracy Scale with the Number of

Peer Reviews?

How many reviewers are necessary for accurate peer grading, and how many

reviews does each peer grader need to do? To gauge how performance changes

with the number of peer reviews, we performed two sets of experiments. First,

we created 20 smaller datasets by downsampling the number of peer review-

ers. The results are shown in the two rightmost graphs of Figure 8.4. Overall,

the methods degrade gracefully when the number of reviewers is reduced. Fur-

thermore, we find that most ordinal methods scale as well as cardinal methods,

if not better, on both datasets.

A second way of increasing or reducing the amount of available data lies

in the number of assignments that each student grades. Thus we repeated the

experiment, but instead downsampled the number of assignments per reviewer

(corresponding to a lower workload for each grader). The leftmost two plots of

Figure 8.4 show the results, with performance again degrading gracefully.

163

36.6
40.7

100

72.4

100

80.0

54.6 55.5
51.7

46.9
49.4 48.8

37.6

49.5

15

25

35

45

55

65

75

85

95

Poster Report

NCS+G

MAL+G

MALBC+G

MALS+G

BT+G

THUR+G

PL+G

WITH GRADER RELIABILITY
ESTIMATION

42.4

29.6

42.2

21.1

37.4

24.3

44.2

30.0

39.6

18.8

42.9

20.0

43.0

18.8

42.6

22.8

15

25

35

45

55

65

75

85

95

Poster Report

SCAVG

NCS

MAL

MALBC

MALS

BT

THUR

PL

BASELINE HEURISTIC

Figure 8.5: Percentage of times a grader who randomly scores and orders
assignments is among the 20 least reliable graders.

8.4.6 Can Peer Grading Methods Identify Unreliable Graders?

Peer grading can only work in practice, if graders are sufficiently incentivised to

report an accurate assessment. This can be achieved by giving a grade also for

the quality of the grading. In the following, we investigate whether the grader

reliability estimators proposed in Section 8.3.6 can identify graders that are not

diligent.

For both the posters and the projects, we add 10 “lazy” peer graders that

report random grades drawn from a normal distribution whose mean and vari-

ance matches that of the rest of the graders4. For the ordinal methods, this

results in a random ordering. We then apply the peer grading methods, esti-

mating the reliability parameters ηg for each grader using 10 iterations of the

alternating optimization algorithm. We then rank graders by their estimated ηg.

Figure 8.5 (left) shows the percentage of lazy graders that rank among the 20

graders with the lowest ηg. The error bars show standard error over 50 repeated

runs with different lazy graders sampled. Most ordinal methods significantly

outperform the cardinal NCS method for both the posters and the reports. The

4Otherwise it would be easy to identify these graders.

164

variants of Mallows model perform very well, identifying around 70-80% of

the lazy graders for the reports and all 10 lazy graders for the posters. The

better performance for the posters than for the reports was to be expected, since

students provide 7 instead of 4 grades.

Figure 8.5 (right) shows the results of a heuristic baseline. Here, grade esti-

mation without reliability estimation is performed, and then graders are ranked

by their EK with the estimated ranking σ̂. For almost all methods, this per-

forms worse, clearly indicating that reliability estimation is superior in identify-

ing lazy graders. We find similar results even when there are 100+ lazy graders,

as we investigate robustness in the following experiment.

8.4.7 How Robust are Peer Grading Methods to Lazy Graders?

While Section 8.4.6 showed that reliability estimation in ordinal peer grading

is well-suited for identifying lazy graders, we would also like to know what

effect these lazy graders have on grade estimation performance. We study the

robustness of the peer grading methods by adding an increasing number of lazy

graders. Figure 8.6 shows the change in EK (w.r.t. Instructor/Meta grades) after

adding 10/50/100 lazy graders (compared to the EK with no lazy graders). We

find that in most cases performance does not change much relative to the vari-

ability of the methods. Interestingly, in some cases performance also improves

on adding this noise. A deeper inspection reveals that noise is most beneficial

for methods whose original EK performance was weaker than that of the other

methods. For example, the Thurstone model showed the weakest performance

on the Reports and improves the most.

165

-6

-4

-2

0

2

4

6

8

10 50 100

SCAVG

NCS+G

MAL+G

MALBC+G

MALS+G

BT+G

THUR+G

PL+G-6

-4

-2

0

2

4

6

8

10 50 100

Figure 8.6: Change in EK (using Instructor and Meta Grades as target rank-
ing) for (Left) Posters and (Right) Final Reports with the ad-
dition of an increasing number of lazy graders i.e., EK(With
Lazy)−EK(Without Lazy). A negative value indicates that per-
formance improves on adding this noise.

8.4.8 Can Ordinal Grading Methods estimate Cardinal Grades?

While the previous sections showed that the ordinal peer grading methods are

able to predict the assignment ordering quite well, in this section we explore

how well they do at predicting cardinal grades. We first rescale the grades out-

put by all the different methods (ŝd) to have identical mean and deviation as

the instructor/meta grades to make all the scores comparable. We measure the

Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) for these

rescaled scores, using the instructor/meta grades as labels.

The results are shown in Table 8.4. The results indicate that, despite not

receiving any cardinal feedback, the ordinal techniques are able to predict

meta/instructor grades nearly as well as the cardinal peer grading methods.

Furthermore, when performing the same rescaling and metric computation for

the TA grades, we find that the peer grading methods do comparably to the

166

Method Poster Report
MAE RMSE MAE RMSE

SCAVG 0.60 0.76 0.74 1.00
NCS 0.64 0.78 0.84 1.15

MALS 0.63 0.81 0.89 1.18
BT 0.64 0.78 0.90 1.24

THUR 0.64 0.78 0.92 1.29
PL 0.68 0.83 0.89 1.23

TAs 0.66 0.98 0.73 0.96

Table 8.4: Cardinal error measures indicating how well the peer grading
methods (& TAs) predict the Instructor/Meta grades.

Method Posters Reports
Runtime Runtime (+G) Runtime Runtime (+G)

NCS 0.32 ±0.03 7.0 ±0.55 0.20 ±0.03 4.6 ±0.25
MAL 0.01 ±0.00 6.1 ±0.11 0.01 ±0.00 2.5 ±0.03

MALBC 0.01 ±0.00 5.1 ±0.08 0.01 ±0.00 2.5 ±0.03
MALS 151.4 ±12.39 418.7 ±9.10 2.0 ±0.13 4.2 ±0.16

BT 0.46 ±0.06 5.6 ±0.38 0.21 ±0.02 2.2 ±0.10
THUR 57.9 ±0.76 490.1 ±7.45 12.2 ±0.86 120.8 ±1.03

PL 0.36 ±0.03 4.2 ±0.08 0.18 ±0.01 2.0 ±0.10

Table 8.5: Average runtime (and std. deviation) of different methods (with
and w/o grader reliability estimation) in CPU seconds.

TA performance as well. This only further exemplifies the suitability of these

techniques as a viable alternate to conventional grading techniques.

8.4.9 How Efficient are the Peer Grading Methods?

While prediction accuracy is the prime concern of grade inference, computa-

tional efficiency needs to be sufficient as well. Table 8.5 show the average run-

times and their standard deviations for the posters and the reports. All meth-

ods are tractable and most finish within seconds. The Score-Weighted Mallows

model is less efficient for problems where each grader assesses many assign-

167

ments, since the gradient computations involves computing the normalization

constant (which involves summing over all rankings). However, training scales

linearly with the number of graders. Another method that requires more time

is the Thurstone model. The main bottleneck here is the computation of the

gradient as it involves looking up a CDF value of the normal distribution.

8.4.10 Do Students Value Peer Grading?

A final point that we would like to ascertain is that peer grading is not only

about grade estimation, but also about generating useful feedback. In particular,

the cardinal or ordinal assessments were only a small part of the peer feedback.

Peer graders had to write a justification for their assessment and comment on

the work more generally.

To assess this aspect of peer grading, a survey was conducted at the end of

class as part of the course feedback process. This survey included two questions

about the student’s peer grading experience in the class; more specifically, about

how helpful the feedback they received was, and how valuable the experience of

providing feedback was to them. Both questions were to be answered in free-

form text. Of the 161 students that participated in the project, 120 students re-

sponded to at least one of the questions, with 119 answering the question about

receiving feedback (mean response length in characters: 62.93; stdev: 77.22) and

118 the question about providing feedback (mean: 100.36; stdev: 105.74). Fol-

lowing standard practice from survey analysis, we created five categories for

coding these open-ended responses as show in Table 8.6. While the first four

categories (roughly) follow a decreasing scale of approval, the last serves as a

catch-all (including missing responses).

168

Question A) Was getting peer feed-
back helpful?

Question B) Was providing peer
feedback valuable?

A1 Yes, it was helpful. B1 Yes it was a valuable experience
A2 Helpful, but not as much as instruc-

tor feedback.
B2 Yes, it was valuable, but with

caveats (e.g. took lot of time).
A3 Somewhat helpful (e.g. only few

comments were helpful).
B3 Only little value (e.g. was too diffi-

cult / lacked the grading skills)
A4 No/Not really/Did not help much. B4 Not valuable/Not really valuable.
A5 Other/Missing B5 Other/Missing

Table 8.6: Response categories for survey questions.

% A1 A2 A3 A4 A5 Total
B1 34.58 2.08 5.83 10.00 1.67 54.17
B2 5.42 0.00 5.83 7.08 1.67 20.00
B3 0.42 2.92 2.08 2.50 0.42 8.33
B4 2.92 0.83 5.00 5.42 0.00 14.17
B5 0.00 0.00 0.42 1.67 1.25 3.33

Total 43.33 5.83 19.17 26.67 5.00

Table 8.7: Results of the student survey, coded as per Table 8.6.

All free-text responses were manually assigned to these categories by four

external annotators (who were not involved with the class and had not seen the

comments before). For all the 237 student comments (i.e., responses), the anno-

tators were asked to choose the category that was most appropriate/best describes

the comment. To check inter-annotator agreement we used the Fleiss Kappa mea-

sure. κ values of 0.8389 and 0.6493 for the two questions indicate high annotator

agreement. The final assignment of response to category was done by majority

vote among the four annotators (score of 0.5 each if tied between categories).

Table 8.7 summarizes the results of the survey after coding. Overall, around

68% found it at least somewhat helpful to receive peer feedback, and around

74% found substantial value in providing the peer feedback. Interestingly, of

the 26% of the students who expressed that receiving peer feedback was not

169

0 5 10 15 20 25 30 35 40 45
0.0

0.1

0.2

0.3

0.4 ASSIGNMENT #1:- MEAN RANK:2.53, MEDIAN: 2, ENTROPY: 2.45

0 5 10 15 20 25 30 35 40 45
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14 ASSIGNMENT #2:- MEAN RANK:8.17, MEDIAN: 8, ENTROPY: 3.85

0 5 10 15 20 25 30 35 40 45
0.00

0.02

0.04

0.06

0.08 ASSIGNMENT #3:- MEAN RANK:15.23, MEDIAN: 15, ENTROPY: 4.54

0 5 10 15 20 25 30 35 40 45
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16 ASSIGNMENT #4:- MEAN RANK:36.25, MEDIAN: 37, ENTROPY: 3.53

Figure 8.7: An example of detailed grading information for each assign-
ment, including the posterior marginal distribution over position
in the overall ranking (rank on x-axis, marginal probability on
y-axis) along with statistics such as posterior mean, median &
marginal entropy.

(really) helpful to them, 17% still found it valuable to provide peer feedback.

Overall, we conclude that the vast majority of students found some value in the

peer grading process.

8.5 Bayesian Ordinal Peer Grading

While the ordinal peer grading techniques proposed in Sec 8.3 were shown to

estimate accurate rankings of assignments, they are still limited to outputting a

single ranking. However, such a ranking does not provide instructors with an

estimate of the uncertainty of each assignment’s position in the ranking. Sup-

pose instead, we also provide instructors with uncertainty information in the

form of posterior distributions, indicating where an assignment lies in the over-

170

all ranking. Such detailed information of each assignment’s performance can

be very useful to instructors for determining the final grades. For example,

this could be visualized in a manner similar to Figure 8.7. Most importantly, the

height of the blue bars shows the probability with which each assignment falls at

a specific rank. This information allows instructors to ascertain the algorithm’s

confidence in the grade (i.e., percentile/position in ranking) of each assignment

and discern the uncertainty of the underlying peer grades for each assignment.

For instance, in the above example, while there is a high probability that assign-

ment 1 is the best of the four assignments, it is less certain that assignment 2 is

better than assignment 3. This is because of the high uncertainty in the position

of assignment 3 (as evidenced by its’ high entropy of 4.54). If presented with

such information, instructors could intervene and improve certainty by solicit-

ing additional reviews for specific assignments, or at least by accounting for the

uncertainty when deriving their grades from the ranking.

In this section, we address the problem of uncertainty modeling by employ-

ing Bayesian techniques for the ordinal peer grading problem. In particular we

extend the Mallows model introduced in Sec 8.3.1 using a Metropolis-Hastings

[46] based Markov Chain Monte-Carlo (MCMC) method. The resulting method

will allow us to draw samples from the posterior of a Mallows model [116] in

an efficient manner. In turn, these samples allow us to empirically estimate

the posterior rank distribution of each assignment, allowing us to report confi-

dences and uncertainty information.

171

8.5.1 Mallows MCMC using Metropolis-Hastings

To help provide more detailed information to instructors, we would like to have

access to the posterior distribution of the orderings. In other words, instead of

the data likelihood probability we have in Equation 8.5 (ignoring the grader

reliabilities for now), we would like to know the posterior distribution of the

inferred rankings σ i.e., P(σ|S) where S as defined in Eqn 8.1 is the set of all

orderings i.e., S = {σ(g);∀g}. Using Bayes rule, we get:

P(σ|S) =
P(S |σ)P(σ)∑

σ′∈π(D) P(S |σ′)P(σ′)

=
P(S |σ)∑

σ′∈π(D) P(S |σ′)
. (8.16)

where the second line is due to a uniform prior on all orderings (for academic

fairness). With this posterior distribution in hand, we can derive the desired

marginal rank distributions of each assignment, or we can predict a single rank-

ing that minimizes posterior expected loss.

However, exact computations with this posterior are infeasible given the

combinatorial number of possible orderings of all assignments. To help us dis-

cern information from the posterior, we will employ Markov Chain Monte Carlo

(or MCMC in short) based sampling. MCMC refers to a set of techniques, for

sampling from a distribution by constructing a Markov Chain which converges

to the desired distribution asymptotically. Metropolis-Hastings is a specific

MCMC algorithm that is commonly used when the underlying distribution is

difficult to sample from (as is the case here with the Mallows model).

To estimate properties of the posterior we will design a Markov Chain whose

stationary distribution is the distribution of interest: P(σ|{σ(g);∀g}). The result-

ing algorithm, shown in Algorithm 15, is simple and efficient. It begins by pre-

172

Algorithm 15: Sampling from Mallows Posterior using Metropolis-
Hastings

1: Input: Grader orderings σ(g), Grader reliabilities ηg and MLE ordering σ̂.

2: Pre-compute xi j ←
∑

g∈G ηgI[di �σ(g) d j]−
∑

g∈G ηgI[d j �σ(g) di[

3: σ0 ← σ̂ . Initialize Markov Chain using MLE estimate

4: for t = 1 . . . T do

5: Sample σ′ from (MALLOWS) jumping distribution: JMAL(σ′|σt−1)

6: Compute ratio rt =
P(σ′ |S)

P(σt−1 |S) using Equation 8.17

7: With probability min(rt, 1), σt ← σ′ else σt ← σt−1

8: Add σt to samples (if burn-in and thinning conditions met)

computing statistics regarding the (weighted) number of times each assignment

di is ranked above another assignment d j. The Markov Chain is then initialized

using the MLE estimate (σ̂) of the ordering (as computed by Algorithm 13). At

each timestep, to propose a new sample σ′ given the previous sample σt−1, we

sample from a jumping distribution (Line 5). In particular, we use a Mallows-

based jumping distribution: → JMAL(σ′|σ) ∝ e−δK (σ′,σ).

This is a simple distribution to sample from and can be done efficiently in

|D|log|D| time. Furthermore as this is a symmetric jumping distribution (i.e.,

JMAL(σ′|σ) = JMAL(σ|σ′)), the acceptance ratio computation is simplified.

When it comes to computing the (acceptance) ratio rt (Line 6), we can rely

on the pre-computed statistics to do so efficiently. In particular, we can simplify

the expression for the ratio to:

P(σa|S)
P(σb|S)

=
∏
g∈G

eδK (σ(g),σb)−δK (σ(g),σa)

=
∏

i, j

exi j(I[di�σa d j]−I[di�σb d j]) (8.17)

173

This expression is again simple to compute and can be done in time proportional

to the number of flipped pairs between σa and σb, which in the worst case is

O(|D|2). Overall, the algorithm has a worst-case time complexity of O(T |D|2).

The resulting samples produced by the algorithm can be used to estimate the

posterior distributions including the marginal posterior of the rank of each as-

signment i.e., P(rd|S), as well as statistics such as the entropy of the marginal, the

posterior mean and median etc. Along with the theoretical guarantees regard-

ing estimates quality that accompany MCMC methods, an added advantage of

this algorithm is that we can control the desired estimation accuracy (by select-

ing the number of samples).

In order to further improve the quality of the resulting estimates, we ensure

proper mixing by targeting a moderate acceptance rate and by thinning samples

(in our experiments we thin every 10 iterations). Furthermore we draw samples

once the chain has started converging i.e., we use a burn-in of 10,000 iterations.

We also derive a Metropolis-Hastings based extension of the Mallows model

with grader reliabilities. In addition to sampling the orderings, we also sample

the reliabilities using a Gaussian jumping distribution (also symmetric). How-

ever the acceptance ratio computation is now more involved and hence less

efficient than that for Algorithm 15, but nonetheless can be computed fairly ef-

ficiently. We omit the precise equation and computations for brevity.

174

8.5.2 Evaluating Bayesian Mallows MCMC

Using the dataset described in Sec. 8.4.1, we empirically evaluate the perfor-

mance of the Bayesian Mallows-based peer grading method, in terms of a) the

quality of its predicted rankings; and b) the accuracy of the confidence intervals

and uncertainty information. For this evaluation, the Bayesian Mallows MCMC

method was run till 5000 samples were drawn from the Markov Chain. These

samples were used to estimate the posterior distributions and for obtaining the

statistics in the following experiments.

Are the inferred orderings accurate?

A key benefit of the Bayesian approach is that the posterior distribution of the

orderings provides uncertainty information. But we can also use the posterior

distribution to predict a single ordering of the assignments. How does the accu-

racy of the orderings predicted by the Bayesian model compare to the accuracy

of the orderings estimated via maximum likelihood estimation (MLE)? To ad-

dress this question, we compare the following techniques:

• MLE: Maximum-Likelihood Estimator of the Mallows model(Algorithm

Algorithm 13).

• Mode-MAL: (One of the) Modes of the posterior of the Mallows distribu-

tion. Ties are broken randomly.

• Mode-MAL+G: (One of the) Modes of the posterior of the Mallows distri-

bution with grader reliability estimates. Ties are broken randomly.

175

21.8 21.4

22.7

27.0

18.9

25.3
22.2 21.4

19.7 26.3
0

5

10

15

20

25

POSTER REPORT

MLE

Mode-
MAL

Bayes-
MAL

Mode-
MAL+G

Bayes-
MAL+G

Figure 8.8: EK performance of peer grading methods using the instructor
grades as the target rankings (lower value is better).

• Bayes-MAL: This is the Bayes estimate minimizing posterior expected δK

over the posterior learned by Alg 15. Formally, the predicted ordering is

σ̂ = argminσ
∑
σ′

δK(σ′, σ)P(σ′|D),

where P(σ′|D) represents the estimated posterior distribution (as output

by the Bayesian MCMC method).

• Bayes-MAL+G: The Bayes estimate minimizing posterior expected δK

over the posterior of the Mallows model with grader reliability estimates.

While computing the Bayes-MAL and Bayes-MAL+G predictions is an NP-

hard problem, as it requires computing the Kemeny-optimal aggregate [57], we

can efficiently compute a good approximation to this minimization problem us-

ing the Borda-Count technique, which is known to be a 5-approximation [51].

In this case, the Borda Count technique also carries a nice semantic meaning as

it amounts to simply ordering the assignments by their posterior mean ranks.

176

As before, we measure performance in terms of EK (which can range from 0

to 100 with 50 being random performance). The results are shown in Figure 8.8.

On both datasets, the performance of the proposed Bayesian methods are not

substantially different from that of the MLE. There appears to be no clear trend

that one method is superior to the others, and the differences are probably due

to fact that the instructor grades used as a gold standard are themselves subject

to uncertainty. One issue to note is that the “Mode” techniques tend to have

larger variance, as performance can vary with the mode that was selected (as

the distribution tends to be multi-modal).

Lastly, we also note that the performance does not vary much with adding

grader reliability estimation. This agrees with the observations made in earlier

experiments (for both ordinal and cardinal grading techniques). The most likely

reason for observing this behavior is the explicit incentive in terms of grade

credit that students were given for doing a thorough job with the peer reviews.

Hence the number of truly substandard reviews in the data may be low.

How good are the estimated confidence intervals?

While the previous experiment indicated that the overall quality of the order-

ings tends to be quite good (with regards to instructor grades), it does not tell us

how accurately the Bayesian approach models the uncertainty of the predicted

ranks. To address this question, we now evaluate how good the Bayesian con-

fidence intervals (i.e., credible intervals) of the inferred posterior marginal dis-

tributions (over position in the overall ranking) for individual assignments are.

To evaluate these uncertainty estimates, we again utilize the instructor grades 5.
5Since these also have ties, we treat ties as indifference i.e., a uniform probability distribution

over all valid rank positions.

177

44.3 74.5

17.9

31.1

0

10

20

30

40

50

60

70

80

50% Interval 80% Interval

POSTER

OVERLAP

WIDTH

51.7 86.0

24.4

43.0

0

10

20

30

40

50

60

70

80

50% Interval 80% Interval

REPORT

OVERLAP

WIDTH

Figure 8.9: Average Overlap (solid green bars) of the 50% and 80%
Bayesian credible intervals with the instructor rank distri-
bution, for the intervals produced by the Mallows MCMC
method. The red striped bars denote the average size (width)
of the interval (as a percentage) of the overall ranking.

In particular we evaluate the quality of the 50% and 80% credible intervals.

For each assignment, we first compute the (posterior) marginal distribution

over the ranking positions as shown in Figure 8.7. We then compute the overlap

of the credible intervals of these marginals with the instructor ranking distribu-

tion. Thus, an assignment whose credible interval contains (all) the instructor-

provided ranks has a 100% overlap, whereas an interval with no overlap scores

a 0%. We report this overlap averaged over all assignments. Additionally, we

report the size of these intervals (as a percentage of the overall ranking length).

The results are shown in Figure 8.9. We find that the intervals produced by

the Bayesian MCMC based Mallows technique are well calibrated. In particu-

lar, for both the posters and the reports, the 50% and 80% interval cover roughly

that percentage of the instructor grades as desired (as indicated by the over-

lap values). The observed overlap is far greater than the size of the interval,

which indicates predictive performance that is far better than random. These

results show that the estimated intervals are meaningful and convey accurate

178

18.9 25.3

20.7 20.9

19.7

26.3

21.4

30.2

0

5

10

15

20

25

30

POSTER REPORT

Bayes-
MAL

EXP-
MAL

Bayes-
MAL+G

EXP-
MAL+G

Figure 8.10: EK performance of the Bayesian point estimate rankings vs.
expected performance of the posterior ranking distribution.

uncertainty information. The results when incorporating grader reliability in-

formation are similar and hence left out to avoid redundancy.

How peaked are the posterior distributions?

The above results show that the confidence intervals for the reports have larger

width than those for the posters i.e., there is more uncertainty in the marginals

of the reports than the posters. This suggests that the posterior distributions are

more peaked around the mode for the posters as compared to the reports. To

verify this, we computed the expected δK under the posterior distribution:∑
σ

δK(σ∗, σ)P(σ|D)

where σ∗ refers to the instructor ranking and P(σ|D) is the learned posterior. We

refer to these values as EXP-MAL (without grader reliabilities) and EXP-MAL+G

(with grader reliability estimation). The results are shown in Figure 8.10.

We find that the difference in performance between the Bayes estimate

179

(Bayes) and the expected value (EXP) of the full posterior is typically larger

for the reports than for the posters. For the posters, it appears that the posterior

is so narrow that almost any sample from the posterior is close to the Bayes es-

timate. For the reports, the posterior is less peaked. This may be explained by

the fact that a larger number of reviews were available for the posters.

8.6 Summary

This part of the thesis studied the problem of student evaluation at scale via

peer grading using ordinal feedback. The peer grading problem was cast as a

rank aggregation problem and approached via different probabilistic modeling

techniques. The resulting methods not only produced student grades, but also

estimated the reliability of the peer graders. Using data collected from a real

course, the performance of ordinal peer grading methods was found to be at

least competitive as cardinal methods for grade estimation, even though they

require strictly less information from the graders. For grader reliability esti-

mation, the Mallows model outperformed all other methods, and it showed

consistently good and robust performance for grade estimation as well. Fur-

thermore, the Mallows model could be extended using a Metropolis-Hastings

based MCMC sampler so as to provide instructors with richer information i.e.,

communicate accurate uncertainty estimates in addition to the predicted ordi-

nal grades. In general, we find that ordinal peer grading is robust and scalable,

offering a grading accuracy that is comparable to TA grading in our course.

The methods developed in this chapter have been made publicly available as

software at peergrading.org, where we also provide a web service for peer

grade estimation. This in turn has led to the successful usage of these methods

180

in other large classes (300+ students); and in conference reviewing, as evidenced

in the 2015 KDD conference [86], where it received positive feedback from senior

program committee members.

181

Part V

Conclusions

182

CHAPTER 9

IMPLICATIONS OF WORKING WITH HUMAN DECISION DATA

Intelligent technologies are becoming increasingly critical to our everyday

functioning. A key to the optimal functioning of these technologies, is maintain-

ing a symbiotic relationship with their users. On one hand, users greatly benefit

from the services provided to them by these technologies. Simultaneously, these

systems benefit greatly by learning from the interactions of the users with these

technologies.

Unlike conventional learning problems, this interaction data does not di-

rectly provide the system with expert labels to learn from. Rather, these inter-

actions are the result of (potentially complex) decisions made by these human

users using the rich world knowledge they each have in their minds. Thus,

while still being incredibly rich sources for learning, it is imperative for these

systems to account for the human decision making process and underlying fac-

tors – such as motivation, context, expertise – that affect this decision.

Towards this goal of principled learning from such human decision data, this

thesis introduced a new approach to designing learning techniques for these

systems. In particular, it highlighted the significance of jointly designing the

three fundamental keys to interactive learning – the algorithm, the user model

and the feedback interventions. Using this learning triple philosophy, this dis-

sertation introduced different learning systems that were not only theoretically

sound, but also effective in practice as demonstrated in real user studies.

This triple based interactive learning approach was demonstrated on learn-

ing problems from different domains, including search and ranking (Part II);

183

recommendation and complex task retrieval (Part III); and education (Part IV).

Despite the diversity of the problem domains, certain common themes were

identified in the design of the three key interactive learning components.

In particular, the learning algorithms that worked well with this interaction

data, were those that treated the human decisions as preferences/choices over

different alternatives rather than those that treated them as absolute judgments.

Additionally, learning algorithms that were robust to the noise and biases in the

underlying data, were found to work the best. Similarly, with regards to ac-

counting for the user behavior while interacting with these systems, tools from

behavioral sociology and micro-economics such as rational choice theory pro-

vided valuable insights into reasoning about the user decision making process.

The notion of using feedback interventions for interactive learning was intro-

duced in this thesis, and was found to be particularly effective for these learn-

ing problems given the additional control interactive systems have over what

users are presented with. These interventions were found to improve learning,

as users and the system shared exploration towards finding a better solution.

The insights developed in this dissertation have also opened up new re-

search possibilities and avenues. For instance, while Part II illustrated the effec-

tiveness of introducing appropriate feedback interventions using a live search

engine as an example, the notion of feedback interventions is still very new

and understudied. Determining what the right set of interventions are for a

new learning problem, and rigorously understanding the science and theory

behind them poses intriguing research questions. Exploiting interventions in

other learning paradigms could also be beneficial for improving learning.

Part III of this dissertation made significant inroads into the increasingly,

184

critical problem of assisting users in their complex tasks. However, there is

still significant work that needs to be done in this field before we can provide

users with effective tools to perform highly non-trivial, multi-step tasks such

as planning a business trip. Utilizing proactive technologies to assist users, as

advocated and demonstrated in Chapters 4 and 7, is a particularly promising

option to help users tackle these tasks and improve overall user experience.

While proactively predicting the immediate future needs of a user is far more

challenging than the problems current information systems address (due to the

paucity of context), the insights gained in this dissertation can help build robust

systems to learn to proactively assist using large-scale interaction logs

Intelligent interactive technologies continue to grow in importance as new

disruptive applications constantly surface. Part IV studied the application of

these learning techniques for one such promising domain – educational tech-

nologies. Given the promise of online education platforms, there is ample in-

centive to explore applying the insights from this thesis towards newer technical

challenges in these domains as they arise. For instance, the interactive learning

triple philosophy can help guide the building of adaptive personal tutoring as-

sistants, which can adapt a student’s curriculum based on how quickly the stu-

dent grasps specific concepts, and adjust depth based on student interest, and

customize tests to minimize testing overhead. Furthermore, other disruptive

technologies such as smart homes and self-driving cars, are well suited for the

interactive learning techniques studied in this dissertation, as the user-system

interactions are rich in valuable signals and knowledge that can be used to push

the frontier in these technologies.

185

APPENDIX A

FURTHER DETAILS AND PROOFS

A.1 Proofs

A.1.1 Proof of Theorem 3

First, we bound E[‖wT+1‖
2]:

E[w>T+1wT+1] = E[w>T wT + 2w>Tφ(xT , ȳT)

− 2w>Tφ(xT , yT) + ‖φ(xT , ȳT) − φ(xT , yT)‖2]

≤ w>1w1+2
T∑

t=1

E[w>tφ(xt, ȳt)−w>tφ(xt, yt)] + 4R2T

≤ (4R2 + 2∆)T

The first line utilizes the update rule from algorithm 2. The second line follows

from ‖φ(x, y)‖ ≤ R and repeating the inequality for t = T − 1, · · · , 1. The last

inequality uses the premise on affirmativeness.

Using the update rule again, we get:

E[w>T+1w∗] = E[w>T w∗+(φ(xT , ȳT)−φ(xT , yT))>w∗]

=

T∑
t=1

E[(U(xt, ȳt) − U(xt, yt))]

≥ α

T∑
t=1

(
U(xt, y∗t) − E[U(xt, yt)]

)
−

T∑
t=1

ξt

where the last line uses Eq. (3.4). Using the Cauchy-Schwarz inequality and

concavity of
√

x, we get E[w>T+1w∗] ≤ ‖w∗‖E[‖wT+1‖] ≤ ‖w∗‖
√

E[‖wT+1‖
2] from

which the claimed result follows.

186

A.1.2 Proof of Corollary 4

Note that:

ŷt = argmaxyw>t φ(xt, y)

Therefore:

∀t, ȳt : w>t φ(xt, ȳt) ≤ w>t φ(xt, ŷt)

Hence:

∀t : E
[
w>t φ(xt, ȳt)

]
− E

[
w>t φ(xt, yt)

]
≤ w>t φ(xt, ŷt) − E

[
w>t φ(xt, yt)

]
(A.1)

Given the condition of the corollary, and the above Equation A.1, we get that:

1
T

T∑
t=1

E
[
w>t φ(xt, ȳt)

]
− E

[
w>t φ(xt, yt)

]
≤ Ω

which using Theorem 3 gives us the corresponding regret bound.

A.1.3 Proof of Theorem 5

This proof is very similar to the one given below (Appendix A.1.6) for Thm 9,

though it solves a different problem. In particular since:

∀t : E
[
w>t φ(xt, yt)

]
≥ (1 − β)w>t φ(xt, ŷt)

we have that:

E[w>t (φ(xt, ȳt) − φ(xt, yt))] ≤ βw>t φ(xt, ŷt)

From here on, the proof from [141] can be used, to prove the corresponding

regret bound. Thus in other words, the perturbation can be thought of as a way

to produce an (1 − β)-approximate solution to the argmax problem.

187

A.1.4 Proof of Proposition 6

Consider the case when documents in positions i and i + 1 (call them di and di+1)

are swapped1:

w>t (γi − γi+1)(φ(xt, di) − φ(xt, di+1))

≤
(
1 −

γi+1

γi

)
w>t (γiφ(xt, di) + γi+1φ(xt, di+1))

Note that this factor 1 − γi+1
γi

is largest for i = 1. Thus we can state for every

swapped pair:

w>t (γi − γi+1)(φ(xt, di) − φ(xt, di+1))

≤
(
1 −

γ2

γ1

)
w>t (γiφ(xt, di) + γi+1φ(xt, di+1))

Summing this over all swapped pairs, and using the fact that each pair has some

probability p to be swapped:

w>t (φ(xt, ŷt) − E[φ(xt, yt)])

≤ p
(
1 −

γ2

γ1

)
w>t φ(xt, ŷt)

A.1.5 Proof of Proposition 7

We prove a more general proposition here:

Proposition 19 For ∆≥0, dynamically setting the swap prob. of 3PR to be

pt ≤ max
(
0,min

(
1, c(∆ · t − Rt)

))
, (A.2)

1This holds assuming the inner products with documents are non-negative. Thus algorith-
mically this can be implemented by only ranking documents with non-negative scores.

188

for some positive constant c, has regret

≤
1
αT

T∑
t=1

ξt+
‖w∗‖
α
√

T

√
4R2 + 2∆+(γ1−γ2)R

√
4R2+2∆

T
.

Proof We prove this by using Theorem 3. In particular, we show:

1
T

T∑
t=1

w>t (φ(xt, ȳt)−φ(xt, yt))<∆+Γ

√
4R2+2∆

T
(A.3)

where Γ = (γ1 − γ2)R. We will show this holds by induction on T . Note that this

condition trivially holds for T = 0 (base case). Now assume it holds for T = k−1.

We will show it is true for T = k. Consider the cumulative affirmativeness

Rk =
∑k−1

i=1 w>i φ(xi, ȳi) − w>i φ(xi, yi). There are 2 cases to consider:

• Rk ≥ k∆: If this is the case pk = 0 i.e., no perturbation is performed for it-

eration k and hence yk = ŷk = argmaxyw>k φ(xk, y). Therefore w>k (φ(xk, ȳk)−

φ(xk, yk)) ≤ 0; thus Rk+1 ≤ Rk and hence the induction hypothesis is satis-

fied.

• Rk < k∆: We have ‖wk‖ ≤
√

k(4R2+2∆) as shown in the proof of Thm 3. As

per the perturbation, for all yk we have ‖φ(xk, ŷk)−φ(xk, yk)‖ ≤ Γ2. Next

by Cauchy-Schwarz we get w>k (φ(xk, ŷk)−φ(xk, yk)) ≤ ‖wk‖Γ. Thus Rk+1 ≤

Rk+Γ
√

k(4R2+2∆); hence satisfying the induction hypothesis.

Thus the induction holds for T = k. Since equation (A.3) holds for all yt, ȳt, this

condition is also satisfied under expectation (over yt, ȳt). Hence the condition

for Theorem 3 is satisfied, thus giving us the bound. Note that the second term

on the RHS of Eq. (A.3) asymptotically disappears.

2This assumes that the document feature vectors are component-wise non-negative. If this is
not true, then the bound still holds but with Γ = 2R

189

A.1.6 Proof of Theorem 9

Proof Consider the `2 norm of wT :

‖wT ‖
2 = ‖wT−1‖

2 + 2w>T−1(φ(xT−1, ȳT−1) − φ(xT−1, yT−1))

+ ‖φ(xT−1, ȳT−1) − φ(xT−1, yT−1)‖2

≤ ‖wT−1‖
2 + 2β w>T−1φ(xT−1, yT−1) + 4R2

≤ ‖wT−1‖
2 + 2β‖wT−1‖R + 4R2 (A.4)

The first line comes from the update rule in Algorithm 6. The second line is from

the fact: w>T−1φ(xT−1, ȳT−1) ≤ (β + 1)w>T−1φ(xT−1, yT−1) since the greedy algorithm

produces an 1
β+1 approximation and that ‖φ(·, ·)‖ ≤ R. The third line comes by

using the Cauchy-Schwarz inequality.

Let us inductively assume that ‖wt‖ ≤ c1R(t + c2) for t = {0, ...T − 1} where

the values c1, c2 ≥ 0 will be determined later. The base case is trivially shown as

‖w0‖ = 0. Thus to complete the induction step, we have:

‖wT ‖
2 ≤ ‖wT−1‖

2 + 2β‖wT−1‖R + 4R2

≤ ‖wT−2‖
2 + 2βR(‖wT−1‖ + ‖wT−2‖) + 8R2

≤ ‖w0‖
2 + 2βR

T−1∑
t=0

‖wt‖ + 4R2T

≤ βR2c1(T 2 − T) + 2βR2Tc1c2 + 4R2T

≤ R2
(
βc1T 2 + T (−βc1 + 2βc1c2 + 4)

)

We now choose c1 and c2 such that the induction step holds. This is done

by ensuring that the coefficients of T 2 and T in the above expression are smaller

than the corresponding terms in c2
1T 2 + 2c2

1c2T + c2
1c2

2. First, set c1 = β + ε, which

will ensure the inequality for T 2. Next, we can ensure −βc1+2βc1c2+4 ≤ 2c2
1c2, by

190

setting c2 =
4−β(β+ε)
2ε(ε+β) . We therefore have ‖wT ‖ ≤ (ε + β)TR +

(4−β2)R
2ε −

βR
2 . Minimizing

the above bound over ε, we get ε =

√
4−β2

2T . Substituting this in the upper bound

for ‖wT ‖, we get ‖wT ‖ ≤ (βT +
√

4 − β2
√

2T)R.

Thus using the update rule of Algorithm 6, we have,

w>T w = w>T−1w + U(xT−1, ȳT−1) − U(xT−1, yT−1)

=

T−1∑
t=0

U(xt, ȳt) − U(xt, yt).

We now use the fact that w>T w ≤ ‖w‖‖wT ‖ (Cauchy-Schwarz inequality) which

implies,
T−1∑
t=0

U(xt, ȳt) − U(xt, yt) ≤ (βT +
√

4 − β2
√

2T)R‖w‖.

The above inequality, along with the condition of α-informative feedback gives:

αREGT −
1
T

T−1∑
t=0

ξt ≤

β +
√

4 − β2

√
2
T

 R‖w‖

from which the claimed result follows.

A.1.7 Proof of Corollary 10

Start by observing that, for any t,

‖wt‖
2 ≤ ‖w̄t‖

2 and w>wt ≥ w>w̄t (A.5)

The first inequality holds because the product of any clipped value with itself

is positive. Since all the components of w are positive and since only negative

values in w̄T are set to zero in the clipping step, the second inequality holds.

With these two steps, the remaining steps in the proof of Theorem 10 follow

and we get the corollary.

191

A.1.8 Proof of Theorem 11

Proof We look at how the KL divergence between w and wt evolves,

KL(w||wt) − KL(w||wt+1) =

m∑
i=1

wi log(wi
t+1/w

i
t)

=

m∑
i=1

wi(θ(φi(xt, ȳt) − φi(xt, yt))) − log(Zt)

= θw>(φ(xt, ȳt) − φ(xt, yt)) − log(Zt). (A.6)

On the second line, we pulled out log(Zt) from the sum since
∑m

i=1 wi = 1. Now,

consider the last term in the above equation. Denoting φi(xt, ȳt)−φi(xt, yt) by ∆iφt

for brevity, we have, by definition,

log(Zt) = log

 m∑
i=1

wi
t exp(θ∆iφt)


≤ log

 m∑
i=1

wi
t(1 + θ∆iφt + θ2∆iφt

2)


≤ log

(
1 + θw>t ∆φt + θ2S 2

)
≤ θw>t ∆φt + θ2S 2. (A.7)

On the second line we used the fact that exp(x) ≤ 1 + x + x2 for x ≤ 1. The rate

θ ensures that θ(∆iφ) ≤ 1. On the last line, we used the fact that log(1 + x) ≤ x.

Combing (A.6) and (A.7), we get,

(w − wt)>∆φt ≤
KL(w||wt) − KL(w||wt+1)

θ
+ θS 2.

Adding the above inequalities, we get:
T−1∑
t=0

(w − wt)>(φ(xt, ȳt) − φ(xt, yt))

≤

T−1∑
t=0

KL(w||wt) − KL(w||wt+1)
θ

+

T−1∑
t=0

θS 2.

≤
KL(w||w0)

θ
+ θS 2T. (A.8)

192

Rearranging the above inequality, and substituting the value of θ from Algo-

rithm 8, we get:

T−1∑
t=0

(U(xt, ȳt) − U(xt, yt))

≤

T−1∑
t=0

w>t (φ(xt, ȳt) − φ(xt, yt)) + 2 log(m)S
√

T +
S
√

T
2

≤

T−1∑
t=0

βw>t φ(xt, yt) + 2 log(m)S
√

T +
S
√

T
2

≤βS T + 2 log(m)S
√

T +
S
√

T
2

. (A.9)

In the above, we also used the fact that KL(w||w0) ≤ log(m) since w0 is initialized

uniformly. On line three, we used the fact that the greedy algorithm finds a

1
1+β

approximation. Moreover, from a generalized version of Cauchy-Schwarz

inequality, we obtained

w>t φ(xt, yt) ≤ ‖wt‖`1‖φ(xt, yt)‖`∞ ≤ S .

The above inequality along with α-informative feedback gives the claimed re-

sult.

A.1.9 Proof of Lemma 13

Proof For γ1=. . .=γk this is a straightforward reduction to monotone submodu-

lar maximization with a cardinality constraint for which the greedy algorithm is

(1− 1
e)-approximate [121]. For the more general case we reduce it to submodular

maximization over a partition matroid. Suppose we have documents {d1,. . ., dN}

and want to find a ranking of length k. Let the new ground set A contain k copies

193

di, j: j ∈{1, k} of each document di, one for each position. The matroid only permits

sets containing at most one document per position. Define set function H over

A: For set B(⊆ A), let C ={. . . di j, j. . .}be the set obtained by removing all duplicates

from B (i.e., keep only the highest ranked occurrence of a document). Define

H(B) = F(. . .,γ jφ(x, di j),. . .). The lemma follows from observing that Algorithm 5

is equivalent to the greedy algorithm for maximizing H over A under a matroid

constraint, which is known to provide a 1
2 -approximate solution [121].

A.1.10 Proof of Theorem 15

Proof From Lemma 13, we get that:

w>t φ(xt, yt) ≥ βgrw>t φ(xt, ȳt)

w>t (φ(xt, ȳt) − φ(xt, yt)) ≤ (1 − βgr)w>t φ(xt, ȳt) ≤ βR‖wt‖ (A.10)

Next, we bound the `2 norm of wT :

‖wT ‖
2 = ‖wT−1‖

2 + 2w>T−1(φ(xT−1, ȳT−1) − φ(xT−1, yT−1))

+ ‖φ(xT−1, ȳT−1) − φ(xT−1, yT−1)‖2

≤ ‖wT−1‖
2 + 2β‖wT−1‖R + 4R2

≤ (βT +
√

4 − β2
√

2T)2R2 (A.11)

Eq. (A.10) is used for the second inequality. The last line is obtained using the

inductive argument made in the proof in Appendix A.1.6. Similarly we bound

E[w>T w∗] using Cauchy-Schwartz and concavity:

‖w∗‖E[‖wT+1‖] ≥ E[w>T w∗] =

T−1∑
t=0

E[U(xt, ȳt) − U(xt, yt)] (A.12)

194

Now we use the αi, δi-informativeness condition:

E[Ui(xt, ȳt)−Ui(xt, yt)]≥αi

(
Ui(xt, y∗,it)−Ui(xt, yt)

)
+ δiUi(xt, yt)− ξ̄t

≥
η

pi

(
Ui(xt, y∗,it) − Ui(xt, yt)

)
+ δiUi(xt, yt)− ξ̄t (A.13)

Next we bound the expected difference in the social utility between ȳt and yt

IF a user of type i provided feedback at iteration t:

∆i =E[U(xt, ȳt)−U(xt, yt)]≥−ΓF

∑
j,i

p jU j(xt, yt) + piE[Ui(xt, ȳt)−Ui(xt, yt)]

= −ΓF(U(xt, yt) − piUi(xt, yt)) + piE[Ui(xt, ȳt) − Ui(xt, yt)]

≥−ΓFU(xt, yt)+piΓFUi(xt, yt)+η
(
Ui(xt, y∗,it)−Ui(xt, yt)

)
+piδiUi(xt, yt)−piξ̄t

≥ η
(
Ui(xt, y∗,it) − Ui(xt, yt)

)
+ ΓF

(
Ui(xt, yt) − U(xt, yt)

)
− piξ̄t (A.14)

The first line is obtained by using Lemma 14 and definition of ΓF (Eq. 6.10). The

second line uses the definition of the social utility (Eq. 6.1). The third line uses

Eq. A.13. The fourth step uses the condition on δi and rearranging of terms.

Note that the expectations in the above lines are w.r.t. the user feedback (and

the feedback construction process).

We next consider the expected value of ∆i (over the user distribution):

Ei[∆i] = E[U(xt, ȳt)−U(xt, yt)] ≥ η
(
Ei[Ui(xt, y∗,it)] − U(xt, yt)

)
− Ei[piξ̄t]

≥ η
(
U(xt, y∗t) − U(xt, yt)

)
− Ei[piξ̄t] (A.15)

where the second line uses the fact that Ei[Ui(xt, y∗,it)] ≥ U(xt, y∗t). We can put

together Eqns. A.11, A.12 and A.15 to give us the required bound.

195

A.2 Additional Details of arXiv User Study

The ranking function in the ArXiv search engine used 1000 features which can

be categorized into the following three groups.

• Features the corresponded to rank as per query similarity with different

components of the document (authors, abstract, article etc..). We used

different similarity measures. For each of these document-components

and similarity measures, we had multiple features of the form rank ≤ a,

where a was a value we varied to create multiple features (we used

2, 5, 10, 15, 25, 30, 50, 100, 200).

• Second-order features the represented pairwise combinations of rank (for

the default similarity measure) for 2 different document-components.

• Query-independent features representing the document age and the doc-

ument category (e.g. AI, NLP, ML, Statistics etc..).

Our baseline, was a hand-coded solution using 35 features considered the most

important by us.

196

BIBLIOGRAPHY

[1] IJsbrand Jan Aalbersberg. Incremental relevance feedback. In ACM Con-
ference on Research and Development in Information Retrieval (SIGIR), pages
11–22, 1992.

[2] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse
reinforcement learning. In International Conference on Machine Learning
(ICML), pages 1–, 2004.

[3] E. Agichtein, R.W. White, S.T. Dumais, and P.N. Bennett. Search, In-
terrupted: Understanding and Predicting Search Task Continuation. In
ACM Conference on Research and Development in Information Retrieval (SI-
GIR), pages 315–324, 2012.

[4] Rakesh Agrawal, Sreenivas Gollapudi, Alan Halverson, and Samuel
Ieong. Diversifying search results. In ACM International Conference on
Web Search and Data Mining (WSDM), pages 5–14, 2009.

[5] Shipra Agrawal and Navin Goyal. Analysis of Thompson Sampling for
the multi-armed bandit problem. CoRR, abs/1111.1797, 2011.

[6] Nir Ailon. Aggregation of partial rankings, P-ratings and top-m lists.
In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 415–424,
2007.

[7] Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating incon-
sistent information: Ranking and clustering. J. ACM, 55(5):23:1–23:27,
November 2008.

[8] Russ Allen. http://housedivided.
dickinson.edu/sites/blogdivided/2013/07/22/
the-absent-professor-grading-assignments-for-moocs,
July 2013.

[9] Kenneth J. Arrow. Social Choice and Individual Values. Yale University Press,
2nd edition, September 1970.

[10] Javed A. Aslam and Mark Montague. Models for Metasearch. In ACM
Conference on Research and Development in Information Retrieval (SIGIR),
pages 276–284, 2001.

197

[11] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. Schapire. The non-stochastic
multi-armed bandit problem. SIAM Journal on Computing, 32(1):48–77,
2002.

[12] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of
the multiarmed bandit problem. Mach. Learn., 47(2-3):235–256, May 2002.

[13] Anne Aula, Päivi Majaranta, and Kari-Jouko Räihä. Eye-tracking re-
veals the personal styles for search result evaluation. In Human-Computer
Interaction-INTERACT 2005, pages 1058–1061. Springer, 2005.

[14] Leif Azzopardi. The economics in interactive information retrieval. In
ACM Conference on Research and Development in Information Retrieval (SI-
GIR), pages 15–24, 2011.

[15] Leif Azzopardi. Modelling interaction with economic models of search.
In ACM Conference on Research and Development in Information Retrieval (SI-
GIR), pages 3–12, 2014.

[16] Yoram Bachrach, Thore Graepel, Tom Minka, and John Guiver. How to
grade a test without knowing the answers - a bayesian graphical model
for adaptive crowdsourcing and aptitude testing. In International Confer-
ence on Machine Learning (ICML), 2012.

[17] Ricardo Baeza-yates, Carlos Hurtado, Marcelo Mendoza, and Georges
Dupret. Modeling user search behavior. In In LA-WEB 05: Proceedings
of the Third Latin American Web Congress, page 242. IEEE Computer Soci-
ety, 2005.

[18] Antonio Bahamonde, Gustavo F Bayón, Jorge Dı́ez, José Ramón Quevedo,
Oscar Luaces, Juan José Del Coz, Jaime Alonso, and Félix Goyache. Fea-
ture subset selection for learning preferences: a case study. In International
Conference on Machine Learning (ICML), page 7, 2004.

[19] Peter Bailey et al. User task understanding: a web search
engine perspective. http://research.microsoft.com/apps/-
pubs/default.aspx?id=180594, 2012.

[20] William Barnett. The modern theory of consumer behavior: Ordinal or
cardinal? The Quarterly Journal of Austrian Economics, 6(1):41–65, 2003.

[21] Gábor Bartók, Dávid Pál, and Csaba Szepesvári. Toward a classification

198

of finite partial-monitoring games. In Algorithmic learning theory, pages
224–238, 2010.

[22] Gábor Bartók, Navid Zolghadr, and Csaba Szepesvári. An adaptive algo-
rithm for finite stochastic partial monitoring. In International Conference on
Machine Learning (ICML), 2012.

[23] Maryam Bashir, Jesse Anderton, Jie Wu, Peter B. Golbus, Virgil Pavlu, and
Javed A. Aslam. A document rating system for preference judgements. In
ACM Conference on Research and Development in Information Retrieval (SI-
GIR), pages 909–912, 2013.

[24] N. J. Belkin, P. Kantor, C. Cool, and R. Quatrain. Combining evidence
for information retrieval. In In D. Harman (Ed.), TREC-2, Proceedings of the
Second Text Retrieval Conference, pages 35–44, 1994.

[25] Paul N. Bennett, K. Svore, and S. Dumais. Classification-Enhanced Rank-
ing. In World Wide Web Conference (WWW), pages 111–120, 2010.

[26] Menucha Birenbaum and Kikumi K. Tatsuoka. Open-ended versus
multiple-choice response formatsit does make a difference for diagnostic
purposes. Applied Psychological Measurement, 11(4):385–395, 1987.

[27] Christopher M Bishop. Pattern recognition and machine learning. springer,
2006.

[28] L’hadi Bouzidi and Alain Jaillet. Can online peer assessment be trusted?
Educational Technology & Society, 12(4):257–268, 2009.

[29] Ralph Allan Bradley and Milton E. Terry. Rank analysis of incom-
plete block designs: I. the method of paired comparisons. Biometrika,
39(3/4):pp. 324–345, 1952.

[30] Christina Brandt, Thorsten Joachims, Yisong Yue, and Jacob Bank. Dy-
namic ranked retrieval. In ACM International Conference on Web Search and
Data Mining (WSDM), pages 247–256, 2011.

[31] Chris Buckley. Implementation of the smart information retrieval system.
Technical report, Cornell University, 1985.

[32] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole

199

Hamilton, and Greg Hullender. Learning to rank using gradient descent.
In International Conference on Machine Learning (ICML), pages 89–96, 2005.

[33] Christopher JC Burges, Krysta Marie Svore, Paul N Bennett, Andrzej Pas-
tusiak, and Qiang Wu. Learning to rank using an ensemble of lambda-
gradient models. In Yahoo! Learning to Rank Challenge, pages 25–35, 2011.

[34] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning
to rank: from pairwise approach to listwise approach. In International
Conference on Machine Learning (ICML), pages 129–136, 2007.

[35] Jaime Carbonell and Jade Goldstein. The use of mmr, diversity-based
reranking for reordering documents and producing summaries. In ACM
Conference on Research and Development in Information Retrieval (SIGIR),
pages 335–336, 1998.

[36] Ben Carterette, Paul N. Bennett, David Maxwell Chickering, and Susan T.
Dumais. Here or there: Preference judgments for relevance. In European
Conference on Information Retrieval (ECIR), pages 16–27, 2008.

[37] Nicolò Cesa-Bianchi and Paul Fischer. Finite-time regret bounds for the
multiarmed bandit problem. In International Conference on Machine Learn-
ing (ICML), pages 100–108, 1998.

[38] Nicolò Cesa-Bianchi and Gabor Lugosi. Prediction, Learning, and Games.
Cambridge University Press, 2006.

[39] Chi-Cheng Chang, Kuo-Hung Tseng, Pao-Nan Chou, and Yi-Hui Chen.
Reliability and validity of web-based portfolio peer assessment: A case
study for a senior high school’s students taking computer course. Comput.
Educ., 57(1):1306–1316, August 2011.

[40] Olivier Chapelle and Yi Chang. Yahoo! learning to rank challenge
overview. In Yahoo! Learning to Rank Challenge, pages 1–24, 2011.

[41] Oliviier Chapelle, Thorsten Joachims, Filip Radlinski, and Yisong Yue.
Large-scale validation and analysis of interleaved search evaluation. ACM
Transactions on Information Systems (TOIS), 30(1):6:1–6:41, 2012.

[42] D. Chen and D. Xiang. The consistency of multicategory support vector
machines. Adv. Comput. Math, 24(1-4):155–169, 2006.

200

[43] Harr Chen and David R. Karger. Less is more: probabilistic models for
retrieving fewer relevant documents. In ACM Conference on Research and
Development in Information Retrieval (SIGIR), pages 429–436, 2006.

[44] Wei Chen, Yajun Wang, and Yang Yuan. Combinatorial multi-armed ban-
dit: General framework and applications. In International Conference on
Machine Learning (ICML), pages 151–159, 2013.

[45] Xi Chen, Paul N. Bennett, Kevyn Collins-Thompson, and Eric Horvitz.
Pairwise ranking aggregation in a crowdsourced setting. In ACM Interna-
tional Conference on Web Search and Data Mining (WSDM), pages 193–202,
2013.

[46] Siddhartha Chib and Edward Greenberg. Understanding the Metropolis-
Hastings Algorithm. The American Statistician, 49(4):327–335, 1995.

[47] W. Chu and Z. Ghahramani. Preference learning with gaussian processes.
In ICML, 2005.

[48] Charles L.A. Clarke, Maheedhar Kolla, Gordon V. Cormack, Olga Vech-
tomova, Azin Ashkan, Stefan Büttcher, and Ian MacKinnon. Novelty
and diversity in information retrieval evaluation. In ACM Conference on
Research and Development in Information Retrieval (SIGIR), pages 659–666,
2008.

[49] David A Cohn, Zoubin Ghahramani, and Michael I Jordan. Active learn-
ing with statistical models. Journal of artificial intelligence research, 1996.

[50] M. Collins. Discriminative training methods for hidden markov models:
theory and experiments with perceptron algorithms. In Empirical Methods
in Natural Language Processing (EMNLP), pages 1–8, 2002.

[51] Don Coppersmith, Lisa K. Fleischer, and Atri Rurda. Ordering by
weighted number of wins gives a good ranking for weighted tourna-
ments. ACM Trans. Algorithms, 6(3):55:1–55:13, July 2010.

[52] Gordon V. Cormack, Charles L A Clarke, and Stefan Buettcher. Reciprocal
rank fusion outperforms condorcet and individual rank learning meth-
ods. In ACM Conference on Research and Development in Information Retrieval
(SIGIR), pages 758–759, 2009.

[53] Coursera. http://blog.coursera.org/post/64907189712/

201

a-triple-milestone-107-partners-532-courses-5-2, Octo-
ber 2013.

[54] Kolby Crammer and Yoram Singer. Pranking with ranking. In Advances
in Neural Information Processing Systems (NIPS), pages 641–647, 2001.

[55] S. Dasgupta and J. Langford. Tutorial summary: Active learning. In Inter-
national Conference on Machine Learning (ICML), page 178, 2009.

[56] Jorge Dıez, Gustavo F Bayón, José R Quevedo, Juan José Del Coz, Oscar
Luaces, Jaime Alonso, and Antonio Bahamonde. Discovering relevancies
in very difficult regression problems: applications to sensory data anal-
ysis. In European conference on artificial intelligence (ECAI), pages 993–994,
2004.

[57] Cynthia Dwork, Ravi Kumar, Moni Naor, and D. Sivakumar. Rank aggre-
gation methods for the web. In World Wide Web Conference (WWW), pages
613–622, 2001.

[58] Khalid El-Arini and Carlos Guestrin. Beyond keyword search: discover-
ing relevant scientific literature. In ACM Conference on Knowledge Discovery
and Data Mining (KDD), pages 439–447, 2011.

[59] Ronald Fagin, Ravi Kumar, Mohammad Mahdian, D. Sivakumar, and Erik
Vee. Comparing partial rankings. SIAM Journal on Discrete Mathematics,
20:47–58, 2004.

[60] Ronald Fagin, Ravi Kumar, and D. Sivakumar. Comparing top k lists. In
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 28–36, 2003.

[61] S. Fox, K. Kulddep, M. Mydland, S. Dumais, and T. White. Evaluating
implicit measures to improve web search. ACM TOIS, 23(2):147–168, 2005.

[62] Peter Frazier. Knowledge-Gradient Methods for Statistical Learning. PhD the-
sis, 2009.

[63] Scott Freeman and John W. Parks. How accurate is peer grading? CBE-Life
Sciences Education, 9(4):482–488, 2010.

[64] Yoav Freund, Raj Iyer, Robert E Schapire, and Yoram Singer. An efficient
boosting algorithm for combining preferences. The Journal of machine learn-
ing research, 4:933–969, 2003.

202

[65] Jerome H Friedman. Greedy function approximation: a gradient boosting
machine. Annals of statistics, pages 1189–1232, 2001.

[66] J. Gao, W. Yuan, X. Li, K. Deng, and J-Y. Nie. Smoothing clickthrough data
for web search ranking. In ACM Conference on Research and Development in
Information Retrieval (SIGIR), pages 355–362, 2009.

[67] John Gittins, Kevin Glazebrook, and Richard Weber. Multi-armed Bandit
Allocation Indices. Wiley, 2 edition, March 2011.

[68] David F. Gleich and Lek-heng Lim. Rank aggregation via nuclear norm
minimization. In ACM Conference on Knowledge Discovery and Data Mining
(KDD), pages 60–68, 2011.

[69] John Guiver and Edward Snelson. Bayesian inference for plackett-luce
ranking models. In International Conference on Machine Learning (ICML),
pages 377–384, 2009.

[70] Qi Guo, Haojian Jin, Dmitry Lagun, Shuai Yuan, and Eugene Agichtein.
Mining touch interaction data on mobile devices to predict web search
result relevance. In ACM Conference on Research and Development in Infor-
mation Retrieval (SIGIR), pages 153–162, 2013.

[71] Jonathon Haber. http://degreeoffreedom.org/
between-two-worlds-moocs-and-assessment.

[72] Jonathon Haber. http://degreeoffreedom.org/
mooc-assignments-screwing/, October 2013.

[73] Ahmed Hassan, Yang Song, and Li-wei He. A task level metric for mea-
suring web search satisfaction and its application on improving relevance
estimation. In ACM Conference on Information and Knowledge Management
(CIKM), pages 125–134, 2011.

[74] Ahmed Hassan and Ryen W. White. Task tours: helping users tackle com-
plex search tasks. In ACM Conference on Information and Knowledge Man-
agement (CIKM), pages 1885–1889, 2012.

[75] R. Herbrich, T. Graepel, and K. Obermayer. Large margin rank boundaries
for ordinal regression. pages 115–132, 1999.

203

[76] Ralf Herbrich, Thore Graepel, and Klaus Obermayer. Support vector
learning for ordinal regression. 1999.

[77] Ralf Herbrich, Tom Minka, and Thore Graepel. Trueskilltm: A bayesian
skill rating system. In Advances in Neural Information Processing Systems
(NIPS), pages 569–576, 2007.

[78] D. S. Hochbaum and A. Pathria. Analysis of the greedy approach in prob-
lems of maximum k-coverage. Naval Research Logistics (NRL), 45:615–627,
1998.

[79] Panagiotis G. Ipeirotis and Praveen K. Paritosh. Managing crowdsourced
human computation: a tutorial. In World Wide Web Conference (WWW),
pages 287–288, 2011.

[80] T. Joachims, L. Granka, Bing Pan, H. Hembrooke, F. Radlinski, and G. Gay.
Evaluating the accuracy of implicit feedback from clicks and query refor-
mulations in web search. ACM Transactions on Information Science (TOIS),
25(2), April 2007.

[81] Thorsten Joachims. Making large scale svm learning practical. Technical
report, Universität Dortmund, 1999.

[82] Thorsten Joachims. Optimizing search engines using clickthrough data.
In ACM Conference on Knowledge Discovery and Data Mining (KDD), pages
133–142, 2002.

[83] Thorsten Joachims. A support vector method for multivariate perfor-
mance measures. In International Conference on Machine Learning (ICML),
pages 377–384, 2005.

[84] Thorsten Joachims, Thomas Finley, and Chun-Nam John Yu. Cutting-
plane training of structural svms. Machine Learning, 77(1):27–59, 2009.

[85] Thorsten Joachims, Laura Granka, Bing Pan, Helene Hembrooke, and
Geri Gay. Accurately interpreting clickthrough data as implicit feedback.
In ACM Conference on Research and Development in Information Retrieval (SI-
GIR), pages 154–161, 2005.

[86] Thorsten Joachims and Karthik Raman. Bayesian Ordinal Aggregation of
Peer Assessments: A Case Study on KDD 2015.

204

[87] Rosie Jones and Kristina Lisa Klinkner. Beyond the session timeout: au-
tomatic hierarchical segmentation of search topics in query logs. In ACM
Conference on Information and Knowledge Management (CIKM), pages 699–
708, 2008.

[88] Katy Jordan. http://www.katyjordan.com/MOOCproject.html,
February 2013.

[89] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Rein-
forcement learning: A survey. Journal of artificial intelligence research, pages
237–285, 1996.

[90] Ashish Kapoor, Kristen Grauman, Raquel Urtasun, and Trevor Darrell.
Active learning with gaussian processes for object categorization. In In-
ternational Conference on Computer Vision (ICCV), pages 1–8, 2007.

[91] Emilie Kaufmann, Olivier Capp, and Aurlien Garivier. On bayesian upper
confidence bounds for bandit problems. In Conference on Artificial Intelli-
gence and Statistics (AISTATS), pages 592–600, 2012.

[92] John G. Kemeny. Mathematics without numbers. Daedalus, 88(4):pp. 577–
591, 1959.

[93] Maurice G. Kendall. Rank correlation methods. Griffin, London, 1948.

[94] Claire Kenyon-Mathieu and Warren Schudy. How to rank with few errors.
In STOC, pages 95–103, 2007.

[95] Christian Kohlschutter, Paul-Alexandru Chirita, and Wolfgang Nejdl. Us-
ing link analysis to identify aspects in faceted web search. In SIGIR Faceted
Search Workshop, pages 55–59, 2006.

[96] Weize Kong and James Allan. Extracting query facets from search results.
In ACM Conference on Research and Development in Information Retrieval (SI-
GIR), pages 93–102, 2013.

[97] Alexander Kotov, Paul N. Bennett, Ryen W. White, Susan T. Dumais, and
Jaime Teevan. Modeling and analysis of cross-session search tasks. In
ACM Conference on Research and Development in Information Retrieval (SI-
GIR), pages 5–14, 2011.

205

[98] Jon A. Krosnick. Survey research. Annual Review of Psychology, 50(1):537–
567, 1999. PMID: 15012463.

[99] Alex Kulesza and Ben Taskar. Learning determinantal point processes.
2011.

[100] Chinmay Kulkarni, Koh Pang Wei, Huy Le, Daniel Chia, Kathryn Pa-
padopoulos, Justin Cheng, Daphne Koller, and Scott Klemmer. Peer and
self assessment in massive online classes. ACM Trans. Comput.-Hum. In-
teract., 20(6):33:1–33:31, December 2013.

[101] Victor Lavrenko and W Bruce Croft. Relevance based language models.
In ACM Conference on Research and Development in Information Retrieval (SI-
GIR), pages 120–127, 2001.

[102] Guy Lebanon and John D. Lafferty. Cranking: Combining rankings using
conditional probability models on permutations. In International Confer-
ence on Machine Learning (ICML), pages 363–370, 2002.

[103] Yoonkyung Lee, Yi Lin, and Grace Wahba. Multicategory support vec-
tor machines. Journal of the American Statistical Association, 99(465):67–81,
2004.

[104] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. RCV1: A new benchmark
collection for text categorization research. JMLR, 5:361–397, 2004.

[105] Ping Li, Qiang Wu, and Christopher J Burges. Mcrank: Learning to rank
using multiple classification and gradient boosting. In Advances in Neural
Information Processing Systems (NIPS), pages 897–904, 2007.

[106] Zhen Liao, Yang Song, Li-wei He, and Yalou Huang. Evaluating the effec-
tiveness of search task trails. In World Wide Web Conference (WWW), pages
489–498, 2012.

[107] Daniel J. Liebling, Paul N. Bennett, and Ryen W. White. Anticipatory
search: using context to initiate search. In ACM Conference on Research and
Development in Information Retrieval (SIGIR), pages 1035–1036, 2012.

[108] N. Littlestone. Learning quickly when irrelevant attributes abound: A
new linear-threshold algorithm. Mach. Learn., 2:285–318, April 1988.

[109] Jingjing Liu and Nicholas J. Belkin. Personalizing information retrieval

206

for multi-session tasks: the roles of task stage and task type. In ACM Con-
ference on Research and Development in Information Retrieval (SIGIR), pages
26–33, 2010.

[110] Tie-Yan Liu. Learning to rank for information retrieval. Found. Trends Inf.
Retr., 3(3):225–331, March 2009.

[111] Lori Lorigo, Maya Haridasan, Hrönn Brynjarsdóttir, Ling Xia, Thorsten
Joachims, Geri Gay, Laura Granka, Fabio Pellacini, and Bing Pan. Eye
tracking and online search: Lessons learned and challenges ahead. Journal
of the American Society for Information Science and Technology, 59(7):1041–
1052, 2008.

[112] Tyler Lu and Craig Boutilier. In International Conference on Machine Learn-
ing (ICML), pages 145–152, 2011.

[113] Tyler Lu and Craig E. Boutilier. The unavailable candidate model: A
decision-theoretic view of social choice. In European Commerce (EC), pages
263–274, 2010.

[114] R. Duncan Luce. Individual Choice Behavior: A theoretical analysis. Wiley,
1959.

[115] Heng Luo. http://sloanconsortium.org/conference/2014/
et4online/peer-grading-valid-assessment-method-massive-open-online-courses-moocs,
April 2014.

[116] C. L. Mallows. Non-null ranking models. Biometrika, 44(1/2):pp. 114–130,
1957.

[117] C. Manning, P. Raghavan, and H. Schütze. Introduction to Information Re-
trieval. Cambridge University Press, 2008.

[118] Gary Marchionini. Exploratory search: from finding to understanding.
Commun. ACM, 49(4):41–46, April 2006.

[119] George A. Miller. The magical number seven, plus or minus two: Some
limits on our capacity for processing information. The Psychological Re-
view, 63(2):81–97, March 1956.

[120] Markus Mostert and Jen D. Snowball. Where angels fear to tread: on-

207

line peer-assessment in a large first-year class. Assessment & Evaluation in
Higher Education, 38(6):674–686, 2013.

[121] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approxi-
mations for maximizing submodular set functions. Mathematical Program-
ming, 14:265–294, 1978.

[122] John Neter, Michael H Kutner, Christopher J Nachtsheim, and William
Wasserman. Applied linear statistical models, volume 4. Irwin Chicago,
1996.

[123] Andrew Y Ng, Stuart J Russell, et al. Algorithms for inverse reinforcement
learning. In International Conference on Machine Learning (ICML), pages
663–670, 2000.

[124] Shuzi Niu, Yanyan Lan, Jiafeng Guo, and Xueqi Cheng. Stochastic rank
aggregation. CoRR, abs/1309.6852, 2013.

[125] Maeve O’Brien and Mark T. Keane. Modeling user behavior using a
search-engine. In International Conference on Intelligent User Interfaces (IUI),
pages 357–360, 2007.

[126] Chris Piech, Jonathan Huang, Zhenghao Chen, Chuong Do, Andrew Ng,
and Daphne Koller. Tuned models of peer assessment in MOOCs. In
EDM, 2013.

[127] R. L. Plackett. The analysis of permutations. Journal of the Royal Statistical
Society. Series C (Applied Statistics), 24(2):193–202, 1975.

[128] Jeffrey Pound, Stelios Paparizos, and Panayiotis Tsaparas. Facet discov-
ery for structured web search: a query-log mining approach. In ACM
International Conference on Management of data (SIGMOD), pages 169–180,
2011.

[129] Tao Qin, Xiubo Geng, and Tie-Yan Liu. A new probabilistic model for rank
aggregation. In Advances in Neural Information Processing Systems (NIPS),
pages 1948–1956, 2010.

[130] Pernilla Qvarfordt, Gene Golovchinsky, Tony Dunnigan, and Elena
Agapie. Looking ahead: query preview in exploratory search. In ACM
Conference on Research and Development in Information Retrieval (SIGIR),
pages 243–252, 2013.

208

[131] F. Radlinski and T. Joachims. Minimally invasive randomization for col-
lecting unbiased preferences from clickthrough logs. In National Confer-
ence on Artificial Intelligence (AAAI), pages 1406–1412, 2006.

[132] Filip Radlinski, Paul N. Bennett, Ben Carterette, and Thorsten Joachims.
Redundancy, diversity and interdependent document relevance. SIGIR
Forum, 43(2):46–52, December 2009.

[133] Filip Radlinski, Robert Kleinberg, and Thorsten Joachims. Learning di-
verse rankings with multi-armed bandits. In International Conference on
Machine Learning (ICML), pages 784–791, 2008.

[134] Karthik Raman, Paul N. Bennett, and Kevyn Collins-Thompson. Toward
whole-session relevance: exploring intrinsic diversity in web search. In
ACM Conference on Research and Development in Information Retrieval (SI-
GIR), pages 463–472, 2013.

[135] Karthik Raman, Paul N. Bennett, and Kevyn Collins-Thompson. Under-
standing intrinsic diversity in web search: Improving whole-session rele-
vance. ACM Trans. Inf. Syst., 32(4):20:1–20:45, October 2014.

[136] Karthik Raman and Thorsten Joachims. Learning Socially Optimal Infor-
mation Systems from Egoistic Users. In European Conference on Machine
Learning (ECML), pages 128–144, 2013.

[137] Karthik Raman and Thorsten Joachims. Methods for ordinal peer grading.
In ACM Conference on Knowledge Discovery and Data Mining (KDD), pages
1037–1046, 2014.

[138] Karthik Raman and Thorsten Joachims. Bayesian ordinal peer grading. In
ACM Learning at Scale Conference (LAS), pages 149–156, 2015.

[139] Karthik Raman, Thorsten Joachims, and Pannaga Shivaswamy. Struc-
tured learning of two-level dynamic rankings. In ACM Conference on In-
formation and Knowledge Management (CIKM), pages 291–296, 2011.

[140] Karthik Raman, Thorsten Joachims, Pannaga Shivaswamy, and Tobias
Schnabel. Stable Coactive Learning via Perturbation. In International Con-
ference on Machine Learning (ICML), pages 837–845, 2013.

[141] Karthik Raman, Pannaga Shivaswamy, and Thorsten Joachims. Online

209

learning to diversify from implicit feedback. In ACM Conference on Knowl-
edge Discovery and Data Mining (KDD), pages 705–713, 2012.

[142] Karthik Raman, Krysta M. Svore, Ran Gilad-Bachrach, and Chris J. C.
Burges. Learning from mistakes: towards a correctable learning al-
gorithm. In ACM Conference on Information and Knowledge Management
(CIKM), pages 1930–1934, 2012.

[143] Vikas C. Raykar, Shipeng Yu, Linda H. Zhao, Gerardo Hermosillo
Valadez, Charles Florin, Luca Bogoni, and Linda Moy. Learning from
crowds. Journal of Machine Learning Research (JMLR), 11:1297–1322, Au-
gust 2010.

[144] Jonathon Rees. http://www.insidehighered.com/views/2013/
03/05/essays-flaws-peer-grading-moocs, March 2013.

[145] Stephen Robertson and Hugo Zaragoza. The probabilistic relevance frame-
work: BM25 and beyond. Now Publishers Inc, 2009.

[146] Stephen E Robertson. The probability ranking principle in ir. Journal of
documentation, 33(4):294–304, 1977.

[147] Stephen E Robertson, Steve Walker, Susan Jones, Micheline M Hancock-
Beaulieu, Mike Gatford, et al. Okapi at trec-3. NIST SPECIAL PUBLICA-
TION SP, pages 109–109, 1995.

[148] Gerard Salton, Anita Wong, and Chung-Shu Yang. A vector space model
for automatic indexing. Communications of the ACM, 18(11):613–620, 1975.

[149] Rodrygo L.T. Santos, Craig Macdonald, and Iadh Ounis. Selectively diver-
sifying web search results. In ACM Conference on Information and Knowl-
edge Management (CIKM), pages 1179–1188, 2010.

[150] Robert E. Schapire and Yoav Freund. Boosting: Foundations and Algorithms.
The MIT Press, 2012.

[151] Burr Settles. Active learning literature survey. University of Wisconsin,
Madison, 52(55-66):11, 2010.

[152] Pannaga Shivaswamy and Thorsten Joachims. Online structured predic-
tion via coactive learning. In International Conference on Machine Learning
(ICML), 2012.

210

[153] Adish Singla, Ryen White, and Jeff Huang. Studying trailfinding algo-
rithms for enhanced web search. In ACM Conference on Research and De-
velopment in Information Retrieval (SIGIR), pages 443–450, 2010.

[154] Aleksandrs Slivkins, Filip Radlinski, and Sreenivas Gollapudi. Ranked
bandits in metric spaces: learning diverse rankings over large document
collections. The Journal of Machine Learning Research, 14(1):399–436, 2013.

[155] Neil Stewart, Gordon D. A. Brown, and Nick Chater. Absolute identifica-
tion by relative judgment. Psychological Review, 112:881–911, 2005.

[156] Richard S Sutton and Andrew G Barto. Reinforcement learning: An intro-
duction, volume 1. MIT press Cambridge, 1998.

[157] Ashwin Swamintahan, Cherian Metthew, and Darko Kirovski. Essential
pages. In Technical Report, MSR-TR-2008-15, Microsoft Research, 2008.

[158] Ben Taskar, Vassil Chatalbashev, Daphne Koller, and Carlos Guestrin.
Learning structured prediction models: A large margin approach. In In-
ternational Conference on Machine Learning (ICML), pages 896–903, 2005.

[159] Ben Taskar, Carlos Guestrin, and Daphne Koller. Max-margin markov
networks. 2004.

[160] William R. Thompson. On the likelihood that one unknown probabil-
ity exceeds another in view of the evidence of two samples. Biometrika,
25(3/4):pp. 285–294, 1933.

[161] L. L. Thurstone. The method of paired comparisons for social values.
Journal of Abnormal and Social Psychology, 27:384–400, 1927.

[162] Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, and
Yasemin Altun. Large margin methods for structured and interdependent
output variables. pages 1453–1484, 2005.

[163] J. J. Veloski, H. K. Rabinowitz, M. R. Robeson, and P. R. Young. Pa-
tients don’t present with five choices: an alternative to multiple-choice
tests in assessing physicians’ competence. ACADEMIC MEDICINE-
PHILADELPHIA-, 74(5):539–546, 1999.

[164] Maksims N. Volkovs and Richard S. Zemel. A flexible generative model

211

for preference aggregation. In World Wide Web Conference (WWW), pages
479–488, 2012.

[165] Andrii Vozniuk, Adrian Christian Holzer, and Denis Gillet. Peer Assess-
ment Based on Ratings in a Social Media Course. In LAK, 2014.

[166] R.W. White and S.M. Drucker. Investigating behavioral variability in web
search. In World Wide Web Conference (WWW), pages 21–30, 2007.

[167] Ryen White. Beliefs and biases in web search. In ACM Conference on Re-
search and Development in Information Retrieval (SIGIR), pages 3–12, 2013.

[168] Ryen W. White, Paul N. Bennett, and Susan T. Dumais. Predicting short-
term interests using activity-based search context. In ACM Conference on
Information and Knowledge Management (CIKM), pages 1009–1018, 2010.

[169] Qiang Wu, Christopher JC Burges, Krysta M Svore, and Jianfeng Gao.
Adapting boosting for information retrieval measures. Information Re-
trieval, 13(3):254–270, 2010.

[170] Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and Hang Li. List-
wise approach to learning to rank: theory and algorithm. In International
Conference on Machine Learning (ICML), pages 1192–1199, 2008.

[171] Peng Ye and David Doerman. Combining preference and absolute judge-
ments in a crowd-sourced setting, June 2013. ICML’13 workshop: Ma-
chine Learning Meets Crowdsourcing.

[172] H. Peyton Young. Condorcet’s Theory of Voting. The American Political
Science Review, 82:1231–1244, 1988.

[173] Xiaojun Yuan and Ryen White. Building the trail best traveled: effects of
domain knowledge on web search trailblazing. In Conference on Human
Factors in Computing Systems (CHI), pages 1795–1804, 2012.

[174] Yisong Yue, Josef Broder, Robert Kleinberg, and Thorsten Joachims. The
k-armed dueling bandits problem. Journal of Computer and System Sciences,
78(5):1538–1556, 2012.

[175] Yisong Yue and Carlos Guestrin. Linear submodular bandits and their
application to diversified retrieval. In Advances in Neural Information Pro-
cessing Systems (NIPS), pages 2483–2491, 2012.

212

[176] Yisong Yue and Thorsten Joachims. Predicting diverse subsets using
structural svms. In International Conference on Machine Learning (ICML),
2008.

[177] Yisong Yue and Thorsten Joachims. Interactively optimizing information
retrieval systems as a dueling bandits problem. In International Conference
on Machine Learning (ICML), pages 1201–1208, 2009.

[178] Cheng Xiang Zhai, William W. Cohen, and John Lafferty. Beyond inde-
pendent relevance: methods and evaluation metrics for subtopic retrieval.
In ACM Conference on Research and Development in Information Retrieval (SI-
GIR), pages 10–17, 2003.

[179] Lanbo Zhang and Yi Zhang. Interactive retrieval based on faceted feed-
back. In ACM Conference on Research and Development in Information Re-
trieval (SIGIR), pages 363–370, 2010.

[180] M. Zinkevich. Online convex programming and generalized infinitesimal
gradient ascent. In International Conference on Machine Learning (ICML),
2003.

213

