MAIZE GENETICS COOPERATION
 NEWS LETTER

12

March 6, 1938

The data presented here are not to be used in publications without the consent of the authors.

November 17, 1937

To Maize Geneticists :-
Contributions of material for the annual Moize Genetics Cooperation news letter is hereby requested. Any new linkage data, methods, hypotheses, suggestions, or anything else thet you think may be of interest to other maize workers will be incorporated in this news letter. Since it is desirable to have the information presented in a somewhat uniform system, it is suggested that you refer to some of the previous Co-op News Letters for ideas concerning the nature of your write-up. In order to be included in this News Letter your material must be received by the Co-op not later than January 15, 1938.

Several years ago when a number of maize geneticists found that they were unable to get their linkage data published in some of the leading journals, they conceived the idea of combining their rolatively small papers into one larger paper and publishing collectively. This suggestion was approved by the Editor of Genetics, and the Secretary of the Maize Genetics Cooperation signified his willingness to collect the individual papers by the coop. Pion. But to date only one paper has been received maize workers has been due to some misunderstand of response from With this possibility in mind some misunderstanding of the plan. a recent letter to Dr. Dunn, Editor of GENETICS:
"The Haize Genetics Cooperation circular letter does not constitute publication and none of the material in it may be quoted except by permission of the author. Much of the material in this Co-op News Letter is not complete, but rather is merely some ideas and indications which the men have obtained in their studies and are willing to pass on to other workers in this field to speed up progross with maize. Some of the material, however, is more complete and should be published so that it will be more readily avail ble to other geneticists. This latter type of material will be incluica in the Co-op New/s Letter in the same form as in previous circuler letters. But it will also be written up in a different manner to be included in the collective publication.

Abstract

"The details of the method of handing the material in the proposed collective publication of linkage studies in maize will, of course, have to be worked out cooperatively between the publisher and the Maize Genetics Cooperation. During the severs l years the this ices of colloctive publictimon has been discussed among maize workers, the following plan has been formulate. Each cooperator who has linkage data which he considers useful and of permanent value to other geneticists, shall write a. short paper in the same manner as he would if he were to publish independently. Then each of these papers will be sent to the Secretary of the Maize Genetics Cooperation, who will group them into one larger paper with in introduction, etc., and will serve as author of the collective paper. The importent point is that each short paper will be an indvidunl and separate unit within this larger piper, With the name and address of the author affized to it. The Secretary of the Maize Genetics Cooperation shell be responsible for the organization and composition of the whole collective paper, but the respecfive authors of the 'unit papers' shell be responsible for their data. This moans that any citation from the collective publication must include the nome of the maize worker who furnished the particular data."

Dr. Dunn hos written:

> ".......there is nothing in the policy of GENEIICS to interfere with publication of maize linkrge datin the form you suggest. Our numbers early in the year are likely to be the heaviest so May or July publication would fit our schedule best. Submission of the first paper in February would be most convenient for us."

It is suggested the you write your contribution to the News Letter first; then excerpt certain linkage data from it and write a separate pepers(s) to be included in the collective publication. The particular date which you select for publication will appear in both the News Letter and the group publication. For further inform ion concerning the general fora of a linkage paper, see the Coop News Letter of inch 4, 1936, page 2; or March 23,1937 , page 15.

Sincerely yours,

D. I. Langham
 D. G. Langhan,
 Secretary

January 22, 1938

To Maize Geneticists :-
A number of maize geneticists have already sent in their items for the annual Coop News Letter, and many of you probably have your contributions in the mail now. The final date for the receipt of material for this 1938 Letter is January 3lst.

In the circular letter of November 17, 1937, I discussed the proposed collective publication of linkage data in such detail that the cardinal points were apparently lost in the shuffle. In brief, the plan is that linkage papers, any one of which in itself would not be sufficient for separate publication, will be sent to the Secretary of the Maize Genetics Cooperation who will group them in much the same manner as in BIOLOGICAL ABSTRACTS and send them to the Editor of GENETICS for publication. Each unit paper must be written as if it were to be published independently. No alterations or additions will be made by the Secretary of the Coop.

In order to be included in this collective publication, your paper must be received by the coop not later than March 31, 1938.

Sincerely yours,
D. I. Jangham
D. G. Langham

To Maize Geneticists:-
The material in this letter was obtained from many sources, and has been organized under the following heads:
I. General News Items.
II. Seed Stocks Grown in 1937.
III. Seed Stocks Received For Propagation in 1938.
IV. Miscellaneous Coop Items.
V. Gene Index of all the Coop letters.
VI. Chromosome Maps of Maize.
A. Regular map: few genes, loci fairly definite.
B. Working map: many genes, loci not well established.

Most of the information in this letter is given as it was received by the coop, but a few changes were made in some of the tables to conform to the accepted system of arrangement.

I. General News Items

University of Minnesota, St. Paul, Minn. -
l. Zebra seedling, $\underline{Z b}_{4}$, has been located in chromosome 1 by the following studies.

| Genes | Phase | XI | XI | $\underline{X Y}$ | $\underline{X Y}$ | Total | \% Recomb. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{Zb}_{4} \mathrm{Br}$ | RS | 448 | 142 | 152 | 12 | 754 | 31.1 |
| $\mathrm{Zb}_{4} \mathrm{~F}_{1}$ | RS | 455 | 135 | 158 | 9 | 757 | 28.0 |
| $\mathrm{Zb}_{4} \mathrm{Bm}_{2}$ | RS | 487 | 103 | 144 | 23 | 757 | 46.0 |
| $\mathrm{Zb}_{4} \mathrm{P}$ | CS | 266 | 24 | 5 | 64 | 359 | 6.9 |

Progeny of 1 ear indicated that the P parent was heterozygous giving the following segregation:

CS	63	30	2	24	199	6.7

2. A culture of $\underline{r a}_{2}$ received from Dr. Brink at Wisconsin proves to be similar to the one I have studied for many years. There is some variability in type of ear, some cultures showing rudimentary male flowers on the tips of some ears, irregularity of rows on the cob but no division of the cob as in ra l. Other cultures have a divided cob on the tip of the ear but a solid cob at the base. Ra_{1} can be separated from $\underline{\mathrm{ra}}_{2}$ in the F_{2} of a cross.
3. Virescent seedling. A virescent seedling in Minn. \#l3 corn was found to be linked with japonica and given the symbol V_{21}. Rhoades (Co-op News Letter, March 23, 1937) has found \mathbb{V}_{16} and \mathbb{V}_{21} to be allelic after trisomic tests had placed V_{16} also in chromosome 8. Further linkage data of $\underline{j}_{1}, \underline{m g}$ and \underline{v}_{16} are as follows:

Genes	Phase	XY	$\underline{X y}$	XY	xy	Total	\% Recomb.
$\mathrm{J}_{1} \nabla_{16}$	RB	82	565	542	71	1260	12.1
$\mathrm{J}_{1} \mathrm{~V}_{16}$	RS	354	149	154	4	661	16.9
$\mathrm{J}_{1} \mathrm{Ms} \mathrm{g}_{8}$	CS	464	39	23	135	661	9.5
$\mathrm{Ms} \mathrm{g}_{8} \mathrm{~V}_{16}$	RS	337	150	171	3	661	13.9

The order of the genes appears to be $j_{1}-\mathrm{ms}_{\mathrm{g}}-\mathrm{v}_{16}$.
4. Zebra striped. Emerson et al list five cases of zebra striping that have been reported. There are two types, one that is expressed in the seedling stage and which may completely disappear in partly grown plants. The type reported here was obtained from an inbred line of Del Maiz sweet corn furnished by J. D. Barnard of the Minnesota Valley Canning Company. The season in 1936 was very hot and dry. Germination of sugary seeds was much lower than normal. Zebra striping could not be classified until late summer when the weather was cooler. Classification was difficult in some cultures. The results given in the summary indicate $\underline{z b}_{6}$ is located in group 4.

Cenes	Phase	$\underline{X Y}$	$\underline{X Y}$	$\underline{X Y}$	$\underline{X y}$	$\underline{\text { Total }}$	$\%$ Recomb.	
$\mathrm{Zb}_{6} \mathrm{Tu}$	CS		410	64	64	90	628	23.3
$\mathrm{Zb}_{6} \mathrm{Gl}_{3}$	RS	326	148	135	19	628	33.9	
$\mathrm{Tu} \mathrm{Gl}_{3}$	RS	314	160	147	7	628	20.5	
$\mathrm{Zb}_{6} \mathrm{Su}_{1}$	CS	4227	259	175	361	5022	13.3	

The order of the genes appears to be $\mathrm{Su}_{1}-\mathrm{zb}_{6}-\mathrm{Tu}-\mathrm{gl}_{3}$. H. K. Hayes and M. S. Chang

University of Missouri, Columbia, Missouri -

1. Of the unknown glossies grown in 1937, tests were completed on one which was found to be different from the other ten and has been assigned the symbol $\mathrm{gl}_{\mathrm{II}}$. This was an X -ray induced mutant. One of the ultra-violet induced glossies proved upon test to be gl_{2}. Tests on three others have not been completed.

In a previous report it was stated that sonewhere along the line gl_{6} and gl 8 had been confused and the present stocks of these are identical. Since the symbol $g l g$ has been used in print for the glossy on the 5th chrornosome, this designation has been retained and a new glossy assigned the symbol gl6.
2. Glossy 7 has been tested with $j_{1} \mathrm{~ms} g$ with no indication of linkage:

Genes	Phase	XY	XY	XY	XY	Total	O Recomb.
$\mathrm{Gl}_{7} \mathrm{~J}_{1}$	CS	159	22	40	9	230	43
$\mathrm{Gl}_{7} \mathrm{Ms} \%$	CS	148	23	51	8	230	50

3. The inheritance of yellow endosperm color is more complex than has been generally believed. Evidence is available for the presence of at least one gene in addition to \underline{Y}_{I} and \underline{Y}_{3} which is concerned with the presence or absence of yellow endosperm pigment. Ratios of $3: 1,9: 7,15: 1,45: 19$ and others possibly more complex have been obtained.

The yellow scutellum gene sy is able to produce its effect in the presence of $X_{1} \underline{Y}_{1}$, but in the presence of other recessive whites
the development of pigment (carotin) is completely suppressed. The factor or factors involved have not been completely identified.

> G. F. Sprague

John Innes Horticultural Institution, London, England -

1. Experiments on the inheritance of quantitative characters commenced by Dr. Brieger wore continued during the summers of 1936 and 1937. The ultimate aim is to produce varieties of sweet corn which are early enough for the English climate and yet satisfactory in yield. In a comparison of F_{I} families and their parents it was found that the application of a pseudo-factorial method of analysis (Yates, 1936) is not warranted for field trials with maize. The efficiency of the experiment when treated as a $3 \times 3 \times 3$ pseudofactorial arrangement was about 60% of that when treated as a simple randornised block lay-out.

C. D. R. Dawson

Connecticut Agricultural Experiment Station, New Haven, Conn. -

1. The evidence so far obtained indicates that mosaics in maize are due to losses or rearrangements of chromosome fragments rather than to somatic crossing over as Stern finds for Drosephila. Paired mosaics involving different chromosomes have been found for nearly all of the easily identificd ondosperm characters. In seeds heterozygous for \underline{C} and $\underline{P r}$ the following results have been obtained:

White Spots Red Spots Red and White Paired Spots

Number
Ratio

227
1061
29

These figures indicate a more or less randon exchange between the 60 chromosome arms in this triploid tissue.

The secondary paired mosaics (twin spots within the dark part of primary twin spots) can not be accounted for by somatic crossing over but are understandable on the basis of translocation followed by further breaking at other places. Variegated waxy tissue in areas that have previously lost the \underline{C} gene show an unstable condition that would not be expected from somatic crossing over. Similar variegation has been found involving $\underline{C}, \underline{P r}$, and Su.

In seeds resulting from the palination of \mathbb{C} wx by $\mathbb{C} \mathbb{N x}$ light and dark aleurone twin spots were found indicating a shift of one C allele. If this resulted from an exchange of homologous segments the endosperm underlying the dark part of the twin spot should be waxy. In many such twin spots examined no waxy areas were found.

D. F. Jones

Agricultural Experiment Station, College Station, Texas -

1. The most important development in Texas during the past year is the discovery that the essential differences betmeen Zea. and Euchlaena are not due to numerous genes scattered at random over all the chromosomes as we first thought, but are due to four chromosome segments which are transmitted in inheritance in almost the same manner as single genes. The fact that these segments all carry genes similar to those possessed by Tripsecum, and the simultaneous discovery that short segments of the chromatin are interchanged between Zea and Tripsacum in hybrids of these two genera, has led us to the conclusion that teosinto is nothing more than maize with several translocation segments from Tripsacum suporimposed upon the maize germplasm; the product of a natural hybrid between Zoa and Tripsacun.

Two of these translocation segments have been located by linkage studies. They occur at opposite ends of chromosome 4 and both show linkage with Su and Tu. These translocation segments from Tripsacum are probably the cause of the unpaired terminal segrents which Longley has observed in his cytological studies of the hybrid of maize and teosinte. We have verified his observations on the occurrence of these segments but we are not yet certain that they occur in every case on the chromosomes which he has designated.

The differences between the various kinds of teosinte which have been collected in Guatemala and Mexico may be attributed partly to the differences in the maize to which these translocations segments have been added, and partly to a loss of portions of one or more segments as the result of repeated hybridization with maize.

These new facts reopen the entire question of the origin of
maize. With teosinte as a recent development out of the picture, it is reasonable to assume that maize originated from pod corn, which in the homozygous condition is frequently a perfect flowered plant similar to the Andropogonae, and which has the essential characteristics of a plant adapted to survival in the wild. The place of origin was probably in South America, either in Peru or Bolivia.

We suspect that the crossing of South American types of maize with Tripsacum to produce the new genus Euchlaena, has also resulted in some new types of maize previously not in existence, such as the pointed pop corns and the long slender flint and flour corns, neither of which are known in Peru or Bolivia. If this is the case most of our North American maize varieties, with the possible exception of the Southern Gourd-seed types, carry Tripsacum genes in their germplasm. It is possible that the knobs which many of our North American corn exhibit on the chromosomes have been received from Tripsacum via Euchlaena, in which case wc are quite likely to find sore South American varicties which are lacking in knobs.

These hypotheses suggest a number of genetic and cytological tests which will keep us well occupied for a number of years. We are having some difficulty in locating viable scod of Bolivian and Peruvian maize and if any of the readers of this letter have such seed available we should appreciate recoiving some of it.
P. C. Mangelsdori and R. G. Reeves

Iowa State College, Anes, Iowa -

1. The following linkage data were obtained from the backcross:

$$
\frac{+\quad+\frac{K n}{b r} f_{1}+\mathrm{bra}_{2}}{\mathrm{f}_{2}} \times \mathrm{br} \mathrm{f}_{1} \mathrm{kn} \mathrm{bm}_{2}
$$

0	1	2	-	1,2	1,3	2,3	1,2,3
$\begin{gathered} 165 \\ 347^{182} \end{gathered}$	14.48	$50 \quad 50$ 100	5,	$7 \quad 10$	3.	632	68
	2.8\%	15.6\%	15.5\%	2.7\%	. 5%	7.5\%	1.3\%

Recombination percentages: $\mathrm{br}-\mathrm{f}_{1} 7.2$, $\mathrm{br}-\mathrm{Kn} 26.1$, $\mathrm{br}-\mathrm{bm}_{2} 35.2$, $\mathrm{f}_{1}-\mathrm{Kn} 27.0, \mathrm{Kn}^{-\mathrm{bm}_{2}} 24.1$.
These data do not agree completely with the present accepted location of br and f_{I}. On the basis of these data Kn is located closer to $\underline{b r}$ than to f_{1} but it rust be between \underline{f}_{1} and $\underline{b r m}_{2}$. After more extensive tests in 1937 the writer is doubtful that homozygous knotted plants can be distinguished from the heterozygous plants,
2. A tall late type of plant with about 50 per cent more nodes than the normal was discovered among the plants from an F_{2} selfed
ear from the Krug variety. Plants of this type were crossed with several normal stocks in 1936 and the F_{I} progenies were grown in 1937. All of the F_{7} plants were normal. A similar type was found in 1936 among the plants from another F_{2} selfed ear from the Krug variety.

> A. A. Bryan

California Institute of Technology, Pasadena, Calif. -
Con Correlation between cytology and map position in chrom. 1.

Cytological
Position
T1-2c
T1-9c
T1-2b
T1-6c
T1-3a
T1-9a
T1-5b
T1-5c
T1-6b
T1-6a
11-3d
T1-7c
T1-7a
T1-10a
T1-7b
T1-9b
T1-2a
T1-5a
T1-
T1-7d

L. 25
L. 2
$\begin{array}{ll}I & \cdot 3 \\ L & .4 \\ L & .4 \\ L & .6 \\ L & .6\end{array}$
L. 8

Linkage Map
Position
near sr
near P
$P \pm 1.5$
$\mathrm{P}-7.6-\mathrm{T}-\mathrm{br}$
$\mathrm{P}-17.3-\mathrm{T}-\mathrm{br}$
$P-20.0-T-34-b r$
$P-25.6-T-32.4-b r$
$P-24.2-T-27.8-b r$
$P-39.0-T-3.8-b r$
$\mathrm{br}-13.4-\mathrm{T}$
near br
near br (± 2.7)
near br
near br
near br
$b r \pm 7.0$
near ad and an
br $-9.7-T-39 .-b m_{2}$
$b r-20 .-T-45 .-b m_{2}$
$\mathrm{br}-34 \cdot 7-\mathrm{T}-18 \cdot-\mathrm{bm} 2$
2. Chocolate. In the distal part of long arm of chrom. 2. Homozygous long inversion gave the linkage order:
$\lg _{1}-44-v_{4}-32-B-25-\mathrm{Ch}$
As the inversion includes about $4 / 5$ th of the long arm, Ch must be very near the end.

> E. G. Anderson
3. Ms_{20}. Backcross tests with the following chromosome alterations show no obvious linkage:

$$
\begin{aligned}
& \text { Inversion of chrom. } 2 \text { (near } B \text { and beyond } V 4 \text {) } \\
& T 2-4 b \text { (} 2 \text { near } v 4,4 \text { beyond } g I 3 \text {) } \\
& T 2-3 c \text { (} 2 \text { near sk, } 3 \text { near } d_{1} \text {) } \\
& T 4-8 a \text { (} 4 \text { near su, } 8 \text { near spindle attachment) }
\end{aligned}
$$

4. Correlation between cytology and map position in chromosome 2 .

Cytological Position	Linkage Map Position

$\begin{aligned} & T 2-3 a \\ & T 2-6 b \\ & T 2-9 a \\ & T 2-2 b \\ & T 1-2-3 c \\ & T 2-3 \\ & T 2-3 d \\ & T 2-4 d \\ & T 2-9 b \\ & T 2-5 a \\ & T 2-7 b \\ & T 2-10 \\ & T 2-6 a \\ & T 2-6 c \\ & T 2-7 a \\ & T 2-4 a \\ & T 2-7 c \\ & T 2-5 b \\ & T 2-4 b \\ & T 2-4 c \end{aligned}$	$\begin{aligned} & \text { S } .75 \\ & \text { S : } 65 \\ & \text { S } .6(?) \\ & \\ & \text { S } .1 \\ & \text { L : }: 1 \\ & \text { L }: 25 \\ & \text { L }: 2 \\ & \text { L }: 3 \\ & \text { L }: 3 \\ & \text { L }: 3+ \\ & \text { L } .3 \\ & \text { L } .6+ \end{aligned}$	near lg

I. M. Clokey and E. G. Anderson
5. Linkage of sb. Slit blade is probably not on chromosome 6 where first reported:

Cenes	Phase	XY	XY	XY	XY	Total	\% Recomb.
${S b} }$	RS	930	249	306	84	1569	50
PI Sb	RS	478	135	154	49	816	48
$\mathrm{Su}_{2} \mathrm{Sb}$	RS	896	265	340	68	1569	43
Py Sb	RS	1165	328	352	68	1913	50

The \underline{Y} was not certainly, but probably, \underline{Y}_{1}. In any case, $\underline{s b}$ is not between \underline{Y}_{1} and $p y$.
6. Sb is not on chromosome 2 .

Genes	Phase	XY	Xy	XY	xy	Total 1	\% Recomb.
$\mathrm{Lg}_{1} \mathrm{Sb}$	RS	288	95	76	35	494	50
$\mathrm{Cl}_{2} \mathrm{Sb}$	RS	288	92	78	36	494	50

	$\frac{\mathrm{Sb}}{6}$	$\frac{\text { sb }}{3}$
Culture 1	6	63
Culture 2	187	6
Culture 3	$\frac{126}{319}$	$\frac{20}{86}$

If sb were on chromosome 2 there should be about 30 sb plants; if on some other chromosome, about 100.

Notes: Sb is generally readily classifiable, though quite variable. Many of the plants are fully fertile. Usually the ratio is about as expected, though in two of my cultures the ratio was about $\delta: 1$ (F p seed). This was not due to lethalness of sb, for nearly all of the seeds grew. In A B P1 plants the slitting of the blades seemed less developed than in green plants.
J. Shafer

University of Wisconsin, Madison, Wisconsin -

1. Linkage of raz

Genes	$\frac{\text { Phase }}{\mathrm{Cr}_{1} \mathrm{Ra}_{2}} \quad \frac{X Y}{\mathrm{RB}}$	$\frac{X Y}{14}$	$\frac{X Y}{26}$	$\frac{X Y}{22}$	$\frac{\text { Total }}{3}$	$\frac{\text { \% Recomb. }}{65}$
26.1						

This is further evidence indicating that the raz locus may be near that of \underline{d}_{1}.
R. A. Brink

Arlington Experiment Farm, Arlington, Virginia -

1. The dominant Dt gene has been reported (1936) to produce dots of aleurone color on a_{1}-tester seeds. The nature of the interaction between $D t$ and $\frac{a}{1}$ was unknown at that time. It has now been established that $D \bar{t}^{1}$ causes a_{1} to become unstable and to mutate at a rate thousands of times greater than normal. Mutations of a_{1} in the presence of $D t$ can be detected in aleurone, husks, and leaves i.e. plant color, and pericarp tissue. Recessive a_{1} mutates to the \underline{A}_{1} allele a thousand times as frequently as to the a_{1}^{p} allele. There is no chromosome abnormality presont in the Dt line. The \underline{a}_{1} gene is in chromosome 3 while Dt may belong to chromosome 9. Mutations of \underline{a}_{1} to A_{1} or a_{1}^{p} occur late in development in all tissues. It is not possible, at lcast by the writer, to reconcile these data with any of the hypothesos advanced by Schultz, Stern or Patterson to explain varicgation. They seem, however, to agrec with Demerec's conception of increased mutability being caused by a chenical or physiological condition produced in the cell. Recessive al is highly stable in the presence of dt. The Dt gene is specific in its effect on a_{1}. No other recessive locus including $\underline{a}_{2}, \frac{c}{r}, \underline{I g}_{1}, \underline{W X}$ and su is affected. A dominant modifying gene reducing the frequency or rate of mutation has been isolated. Thero is some evidence of a recessive gene affecting the time of mutation.
2. The following data on the location of WS_{3} show the order to be as follows:

ws_{3}	lg_{1}	gl_{2}	B
0	11	30	49

These four genes are all located in the short arm of chromosome 2 and if the $\underline{R g}^{5}$ or \underline{r}^{8} alleles are used with \underline{B} all of them can be classified in the seedling stage.
$\frac{\mathrm{ws}^{1} \mathrm{~g}_{1}+}{}$ selfed

$$
\text { Total }=2241
$$

$$
\mathrm{ws}_{3}-1 g_{1}=11 \% \quad \mathrm{ws}_{3}-\mathrm{gI}_{2}=27 \% \quad 1 g_{1}-g I_{2}=19 \%
$$

3. Trisomic tests show $\frac{\mathrm{V}}{10}$ is in chromosome 6 . Since V_{10} gave 43% recombination with \bar{Y}_{1}^{10} it will fall near the end of either the long or short arm. Tests with by will be made this spring.
4. Preliminary results indicate that the pollen tube is not parasitic but is dependent for its growth in the silk upon the starch stored in the pollen grain.
5. There is a highly significant increase in crossing over in the $A_{2}-B t$ and $B_{1}-P r$ regions of chromosome 5 in microsporocytes as compare \bar{d} with megasporocytes. In a "low" line there was 7.6% recombination between A - Bt in the female gametes contrasted with 12.2% in the male gametes. Similar differences between the irequency of crossing over in the two sexes is the explanation of the inexplicable difference found by the writer (1935) in crossing over for the Bm_{1}-Pr region in plants hyperploid for the short arm of chromosome 5 as compared with diploid sibs. The hyperploid individuals had been used as the male parent while the diploid sibs had been used as the female.

M. M. Rhoades

Cornell University, Ithaca, Now York -

1. In the News Letter of March 23, 1937, pp. 1, 2, it was shown by means of threc-point tests involving tho genes $s r, P$, and br and the translocations T1-5a and T1-5c, that the order of the genes is sr - $\underline{P}-\underline{b r}$ with the translocation breaks between P and br. Backcross data from 476 individuals were also presented auggesting that $\underline{t s}_{2}$ is between \underline{P} and what was then called Tl-10b but now designated T1-2c.

Records of the past summer presented below show that T1-2c is to the left of P very near sr, that $\underline{t s}_{2}$ is to the left of P with ms_{17} presumably to the left of $\underline{t s}_{2}$, and that $T 1-3 \mathrm{a}$ and $\mathrm{Tl}-9 \mathrm{c}$ are probably to the right of \underline{P}. The data are as follows:

Genes	Phase	XI	$\underline{X y}$	$\underline{X Y}$	XI	Total	\% Recomb.
Sr T1-2c	CB	151	1	1	144	297	0.7

Two of the cultures reported above involving Tl-2c with B of chromosome 2 and \underline{P} and $\frac{t_{5}}{T}$ of chromosome 1, gave the following data from $\frac{B T 1-2 \bar{C}+\frac{P}{P}}{+}+\mathrm{ts}_{2}+$
$011 \quad 1 \quad 3 \quad 1,2 \quad 1,3 \quad \underline{2} 3 \quad 1,2,3$ Total $\begin{array}{lllllllllllllll}122 & 111 & 27 & 34 & 30 & 21 & 2 & 0 & 8 & 21 & 1 & 0 & 0 & 0 & 0\end{array} 0$

$$
\begin{array}{lccccccc}
233 & 61 & 51 & 2 & 29 & 1 & 0 & 0 \\
& 16.2 \% & 13.5 \% & 0.5 \% & 7.7 \% & 0.3 \% & 0 & 0
\end{array}
$$

One of these cultures also segregated $\underline{l g}_{1}$ as in F_{2}. Using only $l_{g 1}$ plants, the records for $\frac{1 g_{1} B T 1-2 c+\frac{1}{+}+++s}{+}$ are:

0	1	-2	$\frac{3}{12}$	$\frac{4}{1,2}$	1,3	$\frac{2,3}{1,2,3}$	Total		
28	15	12	10	0	6	3	1	4	79
	19.0%	15.2%	12.7%	-	7.6%	3.8%	1.3%	5.1%	79

One of the cultures reported above to show close linkage between Tl-2c and sr also involved B of chromosome 2 but no marker other than $\underline{s r}$ of chromosome 1. The data are:

FI genotype	\bigcirc	1		$\underline{2}$			Total
B TI-2C +	$63 \quad 44$	$28 \quad 9$	0		0		
$\dagger+\mathrm{sr}$	107	25.7%		0			144

Since no crossover between $T 1-2 c$ and sr appeared in this culture, the orientation of these two markers with respect to the rest of chromosome 1 cannot be told.
2. Among $2052 \mathrm{~F}_{2}$ plants of crosses of ad_{1} with an_{1}, no double recessive appeared, but F_{3} cultures from $220 \mathrm{~F}_{2} \mathrm{an}_{1}$ and ad plants indicated a crossover value of 4.1% (Linkage Summary, 1935, p. 32). Backcross cultures of last summer gave the following results:

Genes	Phase	XY	Xy	XY	xy	Total	\% Recomb.
$\mathrm{Ad}_{1} \mathrm{An}_{1}$	CB	247	7	10	199	463	
$\mathrm{Ad}_{1} \mathrm{An}_{1}$	RB	4	36	31	1	$\frac{72}{535}$	4.1

R. A. Emerson

3. Chromosome 7.

A number of seedlings in the latter cross were destroyed by mice in early stages. Counts are not dependable for distances but they are consistent with the order in the first cross.
4. Doubling the number of chromosomes in yellow corn increased the carotinoid content 43 per cent as determined by chemical analysis of 2 N and 4 N stocks having a common origin. The volume of the endosperm cells of the tetraploid was more than 3.5 times as great as that of the diploid. Thus the individual endosperm cells of the tetraploid contained more than 5 times as much carotinoid as did those of the diploid and in terms of gene concentration within the endosperm tissue the amount of carotinoid was increased 2.5 times as a result of chromosome doubling. Chemical analyses by D. B. Hand.
5. The following results have been obtained to date on haploid frequencies in seedling progenies from untreated and x-rayed (1500 r-units) pollen:

	$\frac{N}{N}$		$\frac{2 N}{}$	$\frac{N}{53} 1000$
From untreated pollen	66		126,308	$53 / 1000$
From X-rayed pollen	31	24,619	$1.25 / 1000$	

The haploids were identified with the aid of recessive seedling genes, stomate examination and root-tip chromosome counts.
L. F. Randolph
6. The following characters have appeared in inbred lines: co-Corrugated leaf. Raised striations of tissue in seedling and mature leaves. Classification good. Viability normal. bk_{x} - Brittle stalk. Similar to brittle stalk-1. Classification good. Viability normal.
de_{a} - Defective endosperm. Seed similar to de_{1}.
de_{b}-Defective endosperm. Seed similar to de ${ }_{1}$.
de_{C}-Defective endosperm. May be a new sugary. Classification good. Viability good in germinator, but hasn't been tested under field conditions.
f_{x}-Fine stripe. Plant striped in seedling stage and throughout dêvelopment. Classification good. Viability normal.
Pu_{x}-Purple plumule. Similar to Pu_{1}.
w_{X} - White seedling. Similar to w_{1}.
${ }_{W} \mathrm{~S}_{\mathrm{x}}$-White sheath. Similar to Ws_{3}.

R. G. Wiggans

7. White seedling-1 (w_{1}) has been known to be loosely linked with the \underline{Y}_{1} gene of the sixth chromosome (Linkage Summary, 1935). To place \mathbb{W}_{1} more accurately in the chromosome seedling counts were made of the F_{2} cross between W_{1} and pigmy (py). Seeds were taken from the Coop stocks. The results indicate a very close linkage between py and \underline{W}_{1}.

Genes	Phase	$\underline{X Y}$	$\underline{X Y}$	XY	XY	Total	\% Recomb.
Py W_{1}	RS	867	416	443	0	1726	4.8 (if one $x y$)

G. A. Lebedeff

8. Segregation in autotetraploid maize. To determine the nature of segregation of some genes in autotetraploid maize, backcrosses were made involving the genes B (plant color booster) and Su(sugary endosperm).

Cross

BBbb x bbbb

437
b

135

No, of Plants

572

Ratio
\qquad
$3.25: 1$

Some difficulty was encountered in classifying the progeny of the backcross, sun red (BBbb) x green (bbbb), since there was a great deal of variation in degree of coloration. Some plants were distinctly sun red, others resembled dilute sun red, while still others showed a tinge of color on and around the ligules. Undoubtedly errors were made in classification, there being an excess of green plants. However, the backcross ratio approaches 3.67 : 1. Since the type of segregation is a function of cross over distance between the gene locus and the spindle fiber attachment region, this would indicate that the gene \underline{B} is located fifty or more units from the spindle fiber attachment region and that chromatid segregation had occurred.

Cross	Su	su	No. of plants	Ratio
Su su su x su su su su	2877	645	3522	$4.46: 1$
su su su x Su Su su su	$\frac{369}{3246}$	$\frac{87}{732}$	$\frac{456}{3978}$	$\begin{aligned} & 4.24: 1 \\ & 4.43: 1 \end{aligned}$

There was no difficulty in classifying sugary segregates in a backcross of autotetraploids. The ratio of $4.43 \mathrm{Su}: 1 \mathrm{su}$ indicates that this gene has segregated on a basis intermediate between the random distribution of four chromosomes and random distribution of eight chromatids, and suggests that the gene Su is located about 20 cross over units from the spindle fiber attachment region.

> H. E. Fischer
9. It has been observed by many investigators that the F_{I} ears of maize-teosinte hybrids are 4 rowed (paired spikelets, two-ranked). This indicates that the paired spikelet condition
of the maize ear is dominant to the single spikelets of teosinte. Collins and Kempton, 1920, showed that in an F_{2} population, paired and single spikelets segregated 3:1. Data obtained by the writer in the summer of 1937 have confirmed their findings.

It has not been pointed out, however, that the two-ranked condition of teosinte, which appears in the F_{I} of maize-teosinte hybrids, segregates as a unit character in the F_{2} population. The combined 3:1 segregation of the dominant two-ranked condition of teosinte (as contrasted with the many-ranked condition of maize) and the $3: 1$ segregation of paired vs single spikelets, gave a $9: 3: 3: 1$ ratio, indicating that these two genes are independent of each other. This independence makes possible the combination of the recessive many-ranked condition of maize with the recessive single spikelets of teosinte, giving two kinds of ears: some with an even number of rows and others with an odd number of rows. Thus, 3-, 4-, and 5-rowed ears with single spikelets have been found. With paired spikelets these would presumably have been 6-, \%, and 10-rowed ears, respectively.
10. Preliminary F_{2} and reciprocal backcross data on maizeteosinte hybrids indicate that response to short-day may be due to one, or a few, genetic factors.
11. New characters.
gc_{2} - Glucostacious-2. Seedlings pale green in very early stages. Then brown blotches appear and the plants die. Chrom. unknown.
$c z_{x}$ - Cuzcoid. Plant too late to shed pollen under field conditions at Ithaca.
$l a_{t}$ - Lazy teosinte. Similar to $l a_{1}$ in maize. Has not been tested for allelism.

D. G. Langham

II. Seed Stocks Grown, 1937

1. Testers.

Chromosome 1:
p ad A_{1} seg. an_{1}
($\mathrm{pad} \times \mathrm{pad} \mathrm{an}_{1}$) self
$\mathrm{P} /+\mathrm{f}_{1} \mathrm{bm}_{2} \operatorname{seg} \cdot \mathrm{br}$
sr an bm_{2}
br $f_{1} \quad \mathrm{bm}_{2} \times\left(\mathrm{Kn} \times \mathrm{br} \mathrm{f}_{1} \mathrm{bm}_{2}\right)$
Chromosome 2:
$\lg _{1} \mathrm{gl}_{2} \mathrm{~B}^{\mathrm{ts}} \mathrm{s}_{1} \mathrm{v}_{4} \mathrm{~A} P \mathrm{Pl} \times \mathrm{g}_{1}+/ \mathrm{gl}_{2} \mathrm{~B}+/ \mathrm{ts}_{1} \mathrm{v}_{4} \mathrm{~A}$ Pl
$\mathrm{lg}_{1} \mathrm{~b} \mathrm{gs}_{2} \mathrm{~V}_{4} /$? $\mathrm{Gl}_{2} /$? x Inbred II
$\mathrm{Ig}_{1} \mathrm{Gl}_{2} / ? \mathrm{~b}_{4} \mathrm{gs}_{2} \times$ Inbred I

Chromosome 2 (con't):

$$
\text { Inbred } \times \lg _{1} g_{2} \text { b } v_{4} \mathrm{~A} \mathrm{pl} \quad \text { b } g_{2} l_{g_{1}}
$$

$$
\lg _{1} \mathrm{gl}_{2} \mathrm{~b} \mathrm{v}_{4} \mathrm{~A}_{1} Y \quad \text { trisome } \# 2
$$

Chromosome 3:

$$
\begin{aligned}
& \text { al } \lg _{2} \mathrm{Dt} / \text { ? } \\
& a_{1} D t / \text { ? } \\
& \mathrm{a}_{1} \text { na or } \mathrm{gl}_{1} \mathrm{~V}_{5} \mathrm{Y} \\
& a_{1} \mathrm{Dt} / \text { ? seg. } 1 \mathrm{~g}_{2} \\
& a_{1}+/ n a+/ \lg _{2}+/ \operatorname{ts}_{4} \times a_{1} n a+/ \lg _{2}+/ t s_{2} \\
& a_{1} \lg _{2} d_{1} \times A_{1} \lg _{2} d_{1} t s_{4} \\
& A_{1} l_{2}+/ d_{1} \times A_{1} \lg _{2}{t s_{4}} d_{1} \\
& \mathrm{a}_{1} \mathrm{lg}_{2} \mathrm{ra}_{2} \\
& a_{1} y t \mathrm{seg} \text {. na } \\
& a_{1} \lg _{2} D t / \text { ? } y_{1} \text { seg. na } \\
& \text { na } \mathrm{ts}_{4} \times \mathrm{xa}+/ \mathrm{ts}_{4} \\
& \mathrm{a}_{1} \mathrm{ts}_{4}+/ \mathrm{na} D t / \text { ? } \times \mathrm{a}_{1}+/ \mathrm{ts}_{4} \text { na Dt/? Trisome \#3 }
\end{aligned}
$$

Chromosome 4:

$$
\begin{aligned}
& \left(\mathrm{su}_{1} \times \mathrm{d}_{\mathrm{H}}\right) \times\left(\mathrm{Tu} \mathrm{su}_{1} \times \mathrm{d}_{\mathrm{H}}\right) \quad\left(\mathrm{gl}_{3} \times \mathrm{x} u_{I} \mathrm{j}_{2}\right) \text { self } \\
& \text { suam } d u \\
& \left(+/ w_{4}+/ s u_{1}\right) \text { self } \\
& \left(\mathrm{Ts}_{5} \mathrm{su}_{1} \times \mathrm{wl}\right) \text { self } \\
& \left(\mathrm{Ts}_{5} \mathrm{su}_{1} \times \mathrm{la}\right) \times \mathrm{la} \mathrm{su}_{1}
\end{aligned}
$$

Chromosome 5:
Homo. $\mathrm{A}_{1} \mathrm{CR} \mathrm{a}_{2} \mathrm{bt} \mathrm{bv}_{\mathrm{pr}}^{1}$
$\mathrm{v}_{2} \mathrm{a}_{2} \mathrm{~A}_{1}$ CR b pl
Trisome \#5
Chromosome 6:
Pl sm +/py A b x Pl py A b
Pl sm x pb ${ }^{\text {(Lebedeff) }}$
Y_{1} Pl sm seg. py
Chromosome 7:

$$
\begin{aligned}
& \text { Inbred } \times \mathrm{ra}_{1} \mathrm{g1}_{1} \text { ij } \mathrm{bl}_{\mathrm{x}} \\
& \mathrm{ra}_{1} \mathrm{gl}_{1} \text { ij } \times \mathrm{gl}_{1} \text { ij } \mathrm{fr}_{1}+/ \mathrm{fr}_{2} \\
& \mathrm{v}_{5} \mathrm{gl}_{1} \mathrm{Tp} \operatorname{seg} \cdot \mathrm{ra} \mathrm{I}_{1} \mathrm{tp} \\
& \mathrm{ra} \mathrm{gl}_{1} \mathrm{v}_{5} \times \mathrm{Tp} \mathrm{gl}_{1} \mathrm{v}_{5}
\end{aligned}
$$

Chromosome 8:
$\mathrm{v}_{16} \mathrm{~ms} \mathrm{~m}_{1} \times\left(\mathrm{ms} \mathrm{j}_{1} \mathrm{j}_{1} \mathrm{x} \mathrm{v}_{16}\right)$ msg x msg/ +
Chromosome 9:
Inbred I x $\mathrm{g}_{4} \mathrm{wX}$
gl $\mathrm{wx} \times\left(\mathrm{gl}_{4} \times \mathrm{yg}_{2} \mathrm{c} \operatorname{sh} \mathrm{wx}\right)$
$a u_{1} \mathrm{au}_{2} \mathrm{sh}$
wi da ar sal
Trisome \#9
Chromosome 10:
r $\mathrm{zb}_{5} \mathrm{seg}, \mathrm{nl}_{1}$
$0 \mathrm{~g} /+\mathrm{Y} \mathrm{P}^{\mathrm{Wr}}$
Inbred \times gog
r $\mathrm{A}_{1} \mathrm{C} \mathrm{y}_{1} \mathrm{seg}$. g_{1}
2. Miscellaneous
U. S. 204 (Inbred I)

Inbred $I \times \mathrm{br}_{3}$
$A_{1} \subset R P l B Y_{1} a_{2}$
$g_{2} A_{1} b P 1$
meg. v_{12}
v_{13}
$\mathrm{va}_{2} \times \mathrm{va} /+$
wa x wa/+
$\mathrm{ms}_{5} \times \mathrm{ms} 5 /+$
$\mathrm{ms}_{6} \times \mathrm{ms}_{6} /+$
ms 7 $\times \mathrm{ms} 7 /+$
$\mathrm{ms}_{9} \times \mathrm{ms}{ }_{9} /+$
$\mathrm{ms}_{10} \times \mathrm{ms}_{10} /+$
$\mathrm{ms}_{12} \times \mathrm{ms}_{12} /+$
msg $j_{I} \times \mathrm{ms} /{ }_{\mathrm{g}} /+j_{1}$
Trisome \#\%

Inbred I x ar wa
c sh wa bp
$\mathrm{ms}_{2} \mathrm{x} \mathrm{ms}_{2} /+$
$\left(\mathrm{gl}_{4} \times \mathrm{yg}_{2} \mathrm{c}\right.$ sh wx$)$ self
1_{1} neg. w_{1}
Og Og
meg. I_{1}
Trisome \#10

West Branch (Inbred II)
neg. hf
$\mathrm{Kn} \mathrm{A}_{1}+/ \mathrm{bPl} \times \mathrm{A}_{1}+/ \mathrm{bPl}$
$\mathrm{A}_{1} \subset \mathrm{R} \mathrm{A}_{2} \mathrm{Pr}_{1}$
$\left(\mathrm{bm}_{3} \times \mathrm{yg}_{3}\right)$ self
$A_{1} \subset R A_{2} p r_{1}$ i
$\mathrm{Vg} /+\mathrm{x} \mathrm{vg}$
$\mathrm{an}_{2} \times$ Inbred
$+/ \mathrm{na}_{2} \times n \mathrm{na}_{2}$
$\mathrm{r}_{\mathrm{pr}}^{1} \times \mathrm{A}_{1} \subset \mathrm{R}^{\mathrm{st}} B$
$\mathrm{A}_{1} \mathrm{~B} \mathrm{pl} \mathrm{R}^{\mathrm{st}} \times \mathrm{x} \mathrm{pr}_{1}$
$+/ \mathrm{bk}_{1} \times \mathrm{bk}_{2}$
$\left(+/ \mathrm{bk}_{1}\right)$ self
$+/ \mathrm{de}+/ \mathrm{mi} \mathrm{x}$ de mi

```
\(\mathrm{ms}_{13} \times \mathrm{ms}_{13} /+\)
\(+/ a n_{2} x+/ a n_{2}\)
\(\mathrm{ms}_{14} \times \mathrm{ms}_{14} /+\)
\(\mathrm{ms}_{37} \times \mathrm{ms}_{37} /+\)
\(\mathrm{ms}_{39} \times \mathrm{ms}_{39} /+\)
\(\mathrm{ms}_{42} \times \mathrm{ms}_{42} /+\)
\(\mathrm{v}_{12} \times \mathrm{v}_{12} \mathrm{pr}_{1}\)
seg. \(\mathrm{gl}_{10}\)
\(\left(\mathrm{sb} \times \mathrm{A}_{1} \quad \mathrm{~b} \quad \mathrm{pl}+/ \mathrm{y}_{1} \quad \mathrm{su} u_{2}\right)\) sib
\(y_{1} \mathrm{su}_{2} \operatorname{seg} \mathrm{sb}\)
\(\mathrm{pb}_{4}\)
\(S_{X}\)
sy
\(P_{X}\)
\(\mathrm{Ch} /\) ? seg. \(\mathrm{gl}_{1}\)
\(\mathrm{Ts}_{3} /+\mathrm{V}_{4} /+\times \mathrm{xg} /+\)
\(\mathrm{Ts}_{3} /+\mathrm{v}_{4} /+\quad \mathrm{XR} \mathrm{g}_{1} \mathrm{C}\) sh wx
```

Inbred x mi
Wc Y_{1}
f_{X} (Wiggans)
de_{a} :
$\mathrm{de}_{\mathrm{b}} \quad$ "
de_{c} "
co "
$W_{X} \quad$ "
Chlorophyll typesYellowish green rather It. green medium to lt. green dark green nl_{2}
gC_{2}

Seed stocks from Australia grown by Shafer in Calif. for the Co-op:

3 different stocks of yellow-striped seedling.
5 different stocks of virescent seedling.
crinkly.
3. Stocks too late to mature at Ithaca.

From Krug:
brown pericarp
branched ear
seg. dwarf
oily spots
seg. mealy
variegated pericarp ragged
seg. zebra seedling crinkly
From Mangelsdorf mottled dwarf

```
black pericarp
seg. tassel seed
bract in tassel
seg. defective endosperm
rolled leaf
semi-dwarf
striped leaves
ms x ms/+
    zebra leaves
```

$\operatorname{seg} \cdot V p_{X}$
4. No germination.
sr $\mathrm{an}_{1} \mathrm{bm}_{2}$
$J_{33 a} \times A \subset R$ sh wx B PI
da $a u_{1} a u_{2} s h$
$+/ v_{15} x+/ v_{15}$
$\mathrm{ms}_{4} \times \mathrm{ms}_{4} /+$
$\mathrm{ms}_{27} \times \mathrm{ms}{ }_{27} /+$
$\mathrm{ms}_{15} \times \mathrm{ms}_{15} /+$
III. Seed Stocks Received For Propagation in 1938

1. J. Shafer, Ithaca, N. Y.:-
v_{19}
T $1-2 b \times T 1-2 b$
T $2-4 b$
2. R. A. Brink, Madison, Wisconsin:-
($\mathrm{pm} \times \mathrm{lg}_{2} \mathrm{~d}_{1}$) sib
(A_{1} pra $\times a_{1} l_{2}$) sib
3. J. H. Kempton, Washington, D. C.:fs
4. A. Tavcar, Zagreb, Jugoslavia:Hs
5. M. M. Rhoades, Arlington, Virginia:-
(ws $3 \mathrm{lg}_{1} B A_{1} \mathrm{pl} \times \mathrm{gl}_{2}$) $\mathrm{x}\left(\mathrm{ws}_{3} \lg _{1}\right.$ b $\left.A_{1} \mathrm{pl} \times \mathrm{gl}_{2}\right)$
6. W. R. Singleton, New Haven, Connecticut:-
ra_{2} ?
$z_{x} f x y s$
$s u_{1} x+/ 10$
v_{5} ?
$+/ b a_{x}$
$\mathrm{gl}_{3} \mathrm{v}_{4} \times \mathrm{l}_{81} \mathrm{gl}_{2}$ b $\mathrm{v}_{4} \mathrm{r}^{\mathrm{G} A C Y S u}$
yellow x yellow
$y s_{x}$ (7 cultures)
7. R. G. Wiggans, Ithaca, N. Y.:de_{c} Pu_{x} f_{x}

IV. Miscellaneous Co-op Items

1. Seed stock inventory. In March, 1937, an inventory of the genetic seed stocks in the Co-op collection showed that 148 of the genes reported in the Linkage Summary, 1935, were not in the seed trays here. A list of those 148 genes was included in the News Letter, March 23, 137, and several maize geneticists responded by sending in 16 genetic stocks.

In January, 1938, personal requests were sent to each of the 25 geneticists who, collectively, had first reported the remaining 132 stocks. We have learned that about 75% of those genes have been lost due to inviability of seed stocks.
2. Assignment of linkage groups. One of the topics discussed at a special meeting of maize geneticists at the A A A S meetings in Indianapolis, was the problem of linking workable genes and developing more desirable tester stocks. This is an important question because there are more than 50 suitable genes that haven't been linked and some of the chromosomes are poorly narked.

The plan previously outlined for linking new genes has not been fundamentally changed, but it may well be reviewed here. Each of the ten linkage groups in maize has been assigned to one, or more, cooperator who is charged with testing unplaced characters with his particular chromosome and building up suitable tester stocks. The following assignments have been made:

Chromosome	E
Chromosome	Rhoades and Clokey.
Chromosome	Brink and Woodworth.
Chromosome	Singleton and Brunson.
Chromosome	Burnham.
Chromosome	Stadler and Lebedeff.
Chromosome	Jenkins and Fraser.
Chromosome	Sprague and Perry.
Chromosome	Eyster and Shafer.
Chromosome	Lindstrom, Wentz, and Bryan

When a new gene is found, a few seeds involving it should be sent to the secretary of the Maize Genetics Cooperation who will grow them in an increase blook and obtain a liberal supply of seed for the central repository. Then the secretary will send a few seeds to each of the above geneticists who will test for linkage in his particular chromosome.

This system has been devised not to limit the number of morkers who are trying to link new genes, but rather to insure the linkage of every workable gene.
3. More vigorous genetic stocks. During the summers of 1935 and 1936, a number of maize geneticists tested a group of inbred strains for disease resistance and general desirability. The two inbreds, U.S. \#204 and West Branch Sweepstakes, seemed best suited to Ithaca conditions and have been selected for use in the co-op. They have been designated as Inbred I and Inbred II, respectively, and are being used in crosses with weak genetic stocks to increase vigor and, by repeated backcrossing of the segregates to the
inbreds, to obtain a more nearly homozygous chromosome complement. later, the segregates from each inbred line may be crossed to get hybrid vigor.

Last summer 17 genetic stocks were crossed with both Inbred I and Inbred II.
4. Linkage maps. The linkage maps attached to this Letter were prepared from the data in the Linkage Summary and the data which appeared in the Coop News Letters since the Linkage Summary was published.

$$
\begin{aligned}
& \text { Sincerely yours, } \\
& \text { D. \&. Langham } \\
& \text { D. G. Langham } \\
& \text { Secretary }
\end{aligned}
$$

V. Gene Index of Coop News Letters

This gene index of the Coop News Letters was made so that the information in the Letters which might be of value in connedtion with linkage studies could be more readily found. It includes mainly those genes about which some statement of linkage has been made in the Letters, and does not include those that are merely mentioned without any supplementary information. John Shafer.
a. 1 :

$$
\begin{aligned}
& 12-18-33, \mathrm{p} \cdot 5 \\
& 1-25-34, \mathrm{p} \cdot 6^{2} \\
& 11-24-34, \mathrm{pp} \cdot 2,14 \\
& 1-23-33, \mathrm{p} \cdot 6 \\
& 3-4-36, \mathrm{pp} \cdot 7,17 \\
& 3-6-38, \mathrm{pp} \cdot 9,15
\end{aligned}
$$

az:

$$
11-24-34, p \cdot 10
$$

$\operatorname{ad}_{1}:$

$$
\begin{aligned}
& 1-23-33, \mathrm{p} \cdot 6 \\
& 1-25-34, \mathrm{p} \cdot 4 \\
& 3-6-35, \mathrm{pp} \cdot 3,15 \\
& 3-4-36, \mathrm{p} \cdot 9 \\
& 3-6-38, \mathrm{pp} \cdot 6,11,14
\end{aligned}
$$

$a d_{2}\left(=a d_{1}\right):$

$$
3-6-35, p \cdot 3
$$

ad_{2} (first called ad ${ }_{3}$:

$$
3-6-35, \mathrm{pp} \cdot 3,15
$$

ad_{3} (now ad_{2})
$3-6-35, \mathrm{p} \cdot 3$
ag (=if):

$$
\begin{aligned}
& 12-18-33, p \cdot 6 \\
& 9-13-34, p \cdot 8 \\
& 1-23-33, p \cdot 6
\end{aligned}
$$

al:

$$
\begin{aligned}
& 12-18-33, \mathrm{pp} \cdot 3,{ }^{5} \\
& 1-23-33, \mathrm{pp} \cdot 3,6^{3} \\
& 3-6-35, \mathrm{pp} \cdot 3,5 \\
& 3-4-36, \mathrm{pp} \cdot 16,16 \\
& 3-23-37, \mathrm{pp} \cdot \delta, 15
\end{aligned}
$$

an:
$1-25-34, p .4$ $11-24-34, p \cdot 5$ $1-23-33, p \cdot 1$ $3-36-38$, pp.6, 11, 14
ar_{a} :
$9-13-34, p .2$
ar:

$$
\begin{aligned}
& 12-18-33, \mathrm{p} \cdot \mathbf{2}^{2} \\
& 1-25-34, \mathrm{p}: 8^{2} \\
& 1-23-33, \mathrm{p} \cdot 1 \\
& 3-6-38, \mathrm{p} \cdot 16
\end{aligned}
$$

as:

$$
1-23-33, \mathrm{p}, 6
$$

$\mathrm{an}_{1}:$
$12-18-33, p .2$
$1-25-34, p .8$
$1-23-33, p \cdot 3$
$3-6-38$, p. 16
$\mathrm{an}_{2}:$

$$
\begin{aligned}
& 1-25-34, p .8 \\
& 3-6-38, p, 16
\end{aligned}
$$

B:

$$
\begin{aligned}
& 12-18-33, \mathrm{p} \cdot 6^{6} \\
& 1-25-34, \mathrm{p} \cdot 4^{2} \\
& 11-24-34, \mathrm{p} \cdot 5 \\
& 1-23-33, \mathrm{pp} \cdot 3,6 \\
& 3-6-35, \mathrm{pp} \cdot 1,3,4 \\
& 3-4-36, \mathrm{pp} \cdot 11,15 \\
& 3-23-37, \mathrm{pp} \cdot 14,15 \\
& 3-6-38, \mathrm{pp} \cdot 6,7,8,10,11,13,14
\end{aligned}
$$

ba_{1} :

$$
\begin{aligned}
& 1-25-34, p \cdot 5 \\
& 11-24-34, p \cdot{ }^{13} \\
& 1-23-33, p \cdot 3
\end{aligned}
$$

$\mathrm{ba}_{2}:$

$$
\begin{aligned}
& 1-25-34, p .4 \\
& 1-23-33, p, 6 \\
& 3-23-37, p, 1
\end{aligned}
$$

bd:
$9-13-34, \mathrm{pp} .6,8$ $11-24-34$, p. 10
$3-4-36, \mathrm{pp} .7,16$
3-23-37, pp. 1, 9 3-6-38, p. 15
be ($=\mathrm{bd}$):
$9-13-34, p .8$
Bh :

$$
\begin{aligned}
& 1-25-34, \\
& 1-23-33,
\end{aligned}, 6,6
$$

bk_{1} :
$3-23-37, p .1$
$\mathrm{bra}_{1}:$

$$
\begin{aligned}
& 12-18-33, p p \cdot 2,5 \\
& 1-25-34, p \cdot 6 \\
& 11-24-34, p p \cdot 2,4,5,6,7 \\
& 1-23-33, \mathrm{pp} \cdot 3,6
\end{aligned}
$$

bm_{1} (con't.):
3-6-35, pp. 1, 4, 9, 10, 11 $3-4-36, p p \cdot 3,7$
bm_{2} :

$$
\begin{aligned}
& 1-25-34, \mathrm{p} \cdot 4 \\
& 11-24-34, \mathrm{p} \cdot 5 \\
& 1-23-33, \mathrm{pp} \cdot 3,6 \\
& 3-6-35, \mathrm{pp} \cdot 1,3 \\
& 3-4-36, \mathrm{p} \cdot 10 \\
& 3-23-37, \mathrm{pp} \cdot 3,5 \\
& 3-6-38, \mathrm{pp} \cdot 1,5,6,14
\end{aligned}
$$

$\mathrm{bm}_{3}:$

$$
\begin{aligned}
& 12-18-33, \\
& 11 \cdot 24-34, \\
& \hline 1.5
\end{aligned}
$$

$B n_{1}:$

$$
\begin{aligned}
& 1-25-34, \mathrm{p} \cdot 7 \\
& 11-24-34, \mathrm{pp} \cdot 6,7 \\
& 1-23-33, \mathrm{pp} \cdot 3,7 \\
& 3-4 \cdot 36, \mathrm{p} \cdot 7
\end{aligned}
$$

bn_{2} :
$9-13-34, p .8$
bp:

$$
\begin{aligned}
& 1-25-34, p \cdot 8 \\
& 1-23-33, p \cdot 7 \\
& 3-6-38, p, 16
\end{aligned}
$$

br:

$$
\begin{aligned}
& 1-25-34, \text { n. } 4 \\
& 11-24-34, \mathrm{p} \cdot 5 \\
& 1-23-33, \mathrm{pp} \cdot 3,7 \\
& 3-6-35, \mathrm{p} \cdot 3 \\
& 3-4-36, \mathrm{p} \cdot 10 \\
& 3-23-37, \mathrm{pp} \cdot 1,2,5 \\
& 3-6-38, \mathrm{pp} \cdot 1,5,6,9,14
\end{aligned}
$$

bt_{1} :
$12-18-33, p p .3,5$
$1-25-34, p .6$ $11-24-34, \mathrm{pp} .2,4,4,6$ $1-23-33, p .7$
$3-6-35, p .3$
bt_{1} (cont):
$3-4-36$, pp. 7,14
$3-23-37, p .10$
$3-6-38, p p \cdot 9,15$
$b t_{4}\left(=b t_{1}\right):$ $3-6-35, p .3$
by:

$$
\begin{aligned}
& 12-18-33, p \cdot{ }_{l}^{5} \\
& 1-25-34, p \cdot 6^{2} \\
& 11-24-34, p \cdot{ }^{2} \\
& 1-23-33, p \cdot 7^{2}-6-38, p .15
\end{aligned}
$$

c:

$$
\begin{aligned}
& 12-18-33, \mathrm{pp} \cdot 2,6 \\
& 1-25-34, \mathrm{p} \cdot \dot{8} \\
& 9-13-34, \mathrm{p} \cdot \mathrm{~g} \\
& 1-23-33, \mathrm{pp} \cdot 1,7 \\
& 3-6-35, \mathrm{pp} \cdot 12,14 \\
& 3-4-36, \mathrm{pp} \cdot 11,15 \\
& 3-6-38, \mathrm{p} \cdot 16
\end{aligned}
$$

cb:

$$
1-23-33, p .7
$$

Ch:

co:
$3-6-35, \mathrm{p} .15$
cr_{1} :

$$
\begin{aligned}
& 1-25-34, p \cdot 5 \\
& 1-23-33, p p \cdot 3,7 \\
& 3-4-36, p \cdot ; \\
& 3-23-37, p \cdot 14 \\
& 3-6-38, \mathrm{pp} \cdot 8,15
\end{aligned}
$$

cr_{2} :

$$
1-23-33, p, 7
$$

d_{2} :
$9-13-34, p .2$
d_{b} :
$9-13-34, \mathrm{p} \cdot 2$
d_{H} :
$3-6-38, p \cdot 15$
$\alpha_{p}:$

$$
3-23-37
$$

d_{1} :
$1-25-34, p \cdot 5$
$11-24-34$, p. 12 $1-23-33, p .7$ $3-6-35$,
$3-4 \cdot 36$,
3 $\cdot 9$
$3-23-37, \mathrm{pp} .5,14$ 3-6-38, pp. 6, 8, 15
d_{2} :

$$
\begin{aligned}
& 12-18-33, p \cdot 1 \\
& 1-25-34, p \cdot 5^{1}
\end{aligned}
$$

$\mathrm{d}_{3}:$

$$
\begin{aligned}
& 1-25-34, p .8 \\
& 1-23-33, p \cdot 7
\end{aligned}
$$

$d_{5}:$

$$
1-23-33, \mathrm{p} .7
$$

d_{6} :

$$
1-23-33, \mathrm{p} \cdot 7
$$

d_{7} :
$12-18-33, p .1$
d_{7} (con't.) :
$1-25-34, p .8$
$9-13-34$, $3-23-37, p p .8,9$
$\mathrm{da}_{1}:$
$1-25-34, p .8$ $\frac{1-23-33, p \cdot 7}{7}-6-35, p, 12$ $3-6-35, p .12$
$3-6-38, p .16$
$\mathrm{Da}_{2}:$

$$
\begin{aligned}
& 12-18-33, p \cdot 6^{6} \\
& 9-13-34, p \cdot{ }^{2}
\end{aligned}
$$

de?:

$$
3-6-35, \mathrm{p} \cdot 12
$$

de_{f} :

$$
1-23-33, p .8
$$

de_{1} :

$$
1-23-33, \mathrm{p} \cdot 7
$$

de $_{15}$:
$1-23-33, p .8$
de_{16} :
$1-23-33, p .8$
dl:
$12-18-33$, p. 4
Dt:

du:

$$
11-24-34
$$

du (con't.):

$$
\begin{aligned}
& 3-23-37, p, 13 \\
& 3-6-38,0,15
\end{aligned}
$$

et:

$$
3-6-35, p \cdot 5
$$

f_{1} :
$1-25-34$, p. 4
$11-24-34, \mathrm{pp} .5,18$
$1-23-33, \mathrm{pp} \cdot 3,8$
$3-6-35, \mathrm{p} .1$
3-23-37, рр. 3, 9
3-6-38, pp. 1, 5, 14
${ }^{\circ}$:

$$
1-23-33, \mathrm{p} .8
$$

$\mathrm{f}_{3}:$
$1-23-33, p, 8$
$3-6-35, p p, 9,13$
fi_{a} :
$9-13-34, p \cdot 3$
fi:
$1-23-33, p, 8$
$\mathrm{fl}_{1}:$

$$
\begin{aligned}
& 1-25-34, p .4 \\
& 1-23-33, p .8 \\
& 3-4-36, p .7
\end{aligned}
$$

fr_{1} :
$1-25-34, p .7$
$1-23-33, p: 8$
$3-6-38, p, 15$
Ir_{2} :
$1-25-34, p \cdot 7$
$1-23-33, p: 8$
$3-6-38, p .15$
g_{1} :
$1-25-34, p .8$ 11-24-34, pp. 5, 10 ${ }_{3}^{1-23-33}-6-35, \mathrm{pp} .3,8$ $3-6-35, p .4$ $3-23-36, \mathrm{pp} .8,9,11,16$ $\underset{3-6-38}{3-23-37, p p .6,8,9}$
$\mathrm{g}_{2}:$

$$
\begin{aligned}
& 12-12-33, p \cdot 5 \\
& 11-24-34, p, 6 \\
& 3-23-37, p \cdot 14
\end{aligned}
$$

g3:

$$
1-23-33, p, 8
$$

g4:
$1-23-33, p .8$
$1-25-34, p .8$
$3-6-38, p .16$
Ga_{1} :
$1-23-33$, p.
$3-6-38, p .15$
$\mathrm{ga}_{2}:$
$3-4-36$, p. 14
gl_{b} :

$$
9-13-34, p .3
$$

gl_{C} :
9-13-34, p. 3
gl_{d} :

$$
9-13-34, p .3
$$

gl_{1} :

$$
\begin{aligned}
& 1-23-33, \mathrm{pp} \cdot 3,9 \\
& 12-18-33, \mathrm{pp}, 2,5 \\
& 1-25-34, \mathrm{p} \cdot 7
\end{aligned}
$$

$\mathrm{gl}_{1}\left(\operatorname{con}^{1} \mathrm{t}_{0}\right)$:
11-24-34, pp. 5, 7, 14 $3-6-35, p .1$
$3-4-36$, pp. $3,9,16$
$3-23-37, \mathrm{pp} .4,9$
$3-6-38, \mathrm{pp} .11,15$
$\mathrm{gl}_{2}:$
$1-23-33, \mathrm{pp} \cdot 3,9$
$1-25-34, \mathrm{p} \cdot 4^{3}$
$3-6-35, \mathrm{p} \cdot 1$
$3-4-36, \mathrm{p} \cdot 15$
$3-23-37, \mathrm{p} \cdot 8$
$3-6-38, \mathrm{pp} \cdot 7,8,9,14$
$\mathrm{gl}_{3}:$

$$
\begin{aligned}
& 1-23-33, p p \cdot 3,9 \\
& 12-18-33, \mathrm{p} \cdot 5 \\
& 1-25-34, \mathrm{p} \cdot 10 \\
& 3-6-35, \mathrm{p}, 1 \\
& 3-23-37, \mathrm{pp} \cdot 6,10 \\
& 3-6-38, \mathrm{pp} \cdot 2,6,15
\end{aligned}
$$

gl_{4} :

$$
\begin{aligned}
& 12-18-33, p \cdot{ }_{l}^{6} \\
& 1-23-33, p:{ }^{2} \\
& 3-23-37, p \cdot 10 \\
& 3-6-38, p \cdot 16
\end{aligned}
$$

$\mathrm{gl}_{6}(=$ old glg):
$\frac{3-23-37, p p}{3-6-38, p .3} \cdot 10$
gl6 (new)
$3-6-38$, p. 3
gl_{7}

$$
3-6-38, p \cdot 3
$$

glg:
$3-6-35, p \cdot 2^{2}$
$3-23-37, p \cdot 3^{9}$
$3-6-38, p \cdot 3^{2}$
$\mathrm{gl}_{10}\left(=\mathrm{g}_{1}\right):$
12-18-33, p. 1
1-25-34, p. 4
$9-13-34, p .8$
11-24-34, p. 18 3-4-36, p. 3
g1 1_{10} (new):
3-23-37, p. 10
gl_{11} :
$3-6-38, p .2$
gm_{a} :
$3-6-35$, p. 6
gm_{e} :
1-23-33, p. 9
gm_{2} :
1-23-33, p. 9
$\mathrm{gm}_{2 ?}$:
$3-6-35, \mathrm{p} .13$
gm_{3} ?
$3-6-35, p .13$
gm_{4} :
1-23-33, p. 9
gs ?
$12-18-33, \mathrm{p} .5$
gl_{1} :
$\begin{array}{lll}1-23-33, & p & 9 \\ 1-25-34, & p & 4 \\ 3-23-37, & p & 6\end{array}$
gs_{2} :
$12-18-33, p \cdot 6$
gs 2 (con't.):
$\frac{11-24-34, p \cdot 5}{9-13-34, p \cdot 8}$
$3-6-38$, p. 14
h:
$11-24-34, p .8$
I:
$1-23-33, p \cdot 9$
$1-25-34, p \cdot 8$
$3-463, p: 15$
$3-6-38, p .16$
ij:
$1-23-33, p .9$ $12-18-33, p .6$ $1-25-34$, p. 7 $11-24-34, p p .5,6,7,10,14$ $3-6-35, \mathrm{p} .1$ $\frac{3-4-36, p p .3,7,9,16}{3-23-37, p p .4,9}$ $3-6-38$, pp. 11, 15
in:
$1-23-33, p \cdot 9$
$12-18-33, p \cdot{ }^{2}$
$1-25-34, p \cdot{ }^{2}$
$3-4-36, p .16$
$3-6-38, p$.
it:
3-4-36, p. 9
j_{1} :

j_{2} :

$$
\begin{aligned}
& 12-18-33, p \cdot 1 \\
& 1-25-34, p \cdot{ }^{1} \\
& 9-13-34, p \cdot 8
\end{aligned}
$$

j_{2} (con't.):

$$
\begin{aligned}
& 3-6-35, p \cdot 2 \\
& 3-6-38, p \cdot 15
\end{aligned}
$$

Kn :
$3-23-37, p \cdot 9$
$3-6-38, p p \cdot 5,14$
$I_{p}:$
$3-6-35$, p. 14
1_{1} :
$\frac{1-23-33, p}{2-6-38, ~}{ }^{10}$
1_{2} :
$\begin{array}{ll}1-25-34, & \mathrm{p} . \\ 1-23-33, & 8 \\ \mathrm{p} . & 10\end{array}$
1_{4} :

$$
\begin{aligned}
& 1-23-33, p \\
& 1-25-34,
\end{aligned}, \frac{10}{8}
$$

1_{5} :
$1-23-33, p \cdot 10$
16 :
1-23-33, p. 10
1_{7} :

$$
1-23-33, p, 10
$$

$I_{\gamma}:$

$$
\begin{aligned}
& 11-24-34, p \cdot{ }^{2} \\
& 3-4-36, p \cdot 8 \\
& 3-23-37, p \cdot 8
\end{aligned}
$$

la_{1} :

$$
\begin{aligned}
& 12-18-33, p p \cdot 3,5,6 \\
& 1-25-34, \mathrm{pp} \cdot 5 \\
& 11-24-34, \mathrm{p} \cdot 10 \\
& 3-23-37, \mathrm{p} \cdot 6 \\
& 3-6-38, \mathrm{p} \cdot 15
\end{aligned}
$$

le:

$$
\begin{aligned}
& 9-13-34, p \cdot 8 \\
& 3-6-35, p \cdot 14
\end{aligned}
$$

$\mathrm{lg}_{1}:$

$$
\begin{aligned}
& 1-23-33, \mathrm{pp} \cdot 3,10 \\
& 12-18-33, \mathrm{p} \cdot 6 \\
& 1-25-34, \mathrm{p} \cdot{ }^{2} \\
& 11-24-34, \mathrm{p} \cdot 5 \\
& 3-6-35, \mathrm{pp} \cdot 1,2,4 \\
& 3-4-36, \mathrm{pp} \cdot 15,16 \\
& 3-23-37, \mathrm{pp} \cdot 7,8,14 \\
& 3-6-38, \mathrm{pp} \cdot 7,8,9,10,14
\end{aligned}
$$

Ig_{2} :

$$
\begin{aligned}
& 1-23-33, p \cdot 10 \\
& 1-25-34, p \cdot 5 \\
& 11-24-34, p \cdot 12 \\
& 3-23-37, p \cdot 14 \\
& 3-6-38, p \cdot 15
\end{aligned}
$$

1i:

$\left.\begin{array}{ll}1-23-33, & p \cdot 10 \\ 1-25-34, & p \cdot 8 \\ 3-23-37, & p p\end{array}\right) 8,9$
$10{ }_{1}$:
$12-18-33, p \cdot 4$ $1-25-34, p \cdot 5$
$\frac{9-13-34, p .8}{2-6-35, p}$ 3-6-35, p. 1
10_{2} :
3-6-35, p. 11
1p:

$$
1-23-33, p, 10
$$

me:

$$
\begin{array}{ll}
12-18-33, & p .
\end{array} \frac{4}{11-24-34,}, p .8
$$

Mi:
ms_{1} :

$$
1-23-33, p \cdot 10
$$

ms_{2} :
$1-23-33, p \cdot 10$
$1-25-34, p: 8$
$3-6-35, p, 12$
$3-6-38, p, 16$
ms 3 :
$1-23-33, p \cdot 10$
$1-25-34$,
p
ms :
1-23-33, pp. 3, 11
$1-25-34, ~ p . ~$
$3-23-37, ~ p . ~$
$3-6-38, \mathrm{pp} .2,3,16$
ms_{17} :

$$
\begin{aligned}
& 1-23-33, p, 11 \\
& 11-24-34, p, i 0^{3} \\
& 3-6-38, p,
\end{aligned}
$$

ms_{18} :
1-23-33, p. 11
ms_{20} :
$\frac{1-23-33, p}{3-6-38, p .} 6^{11}$
Mt:
1-23-33, p. 11
nal:
1-23-33, pp. 3, 11
$1-25-34, p .5$
11-24-34, pp. 11, 12
3-6-35, p. 3
$\frac{3-4-36, p p .7}{3-6-38, ~ p . ~} 15$, 10
nl_{1} :
1-23-33, pp. 3, 11
nl_{1} (con't.):
$\frac{1-25-34, ~ p . ~}{3-6-38, ~ p} 16$
$\mathrm{nl}_{2}:$
$12-18-33, p \cdot 2$
$11-24-34, p \cdot 18$
${ }^{\circ}$:
$12-18-33, p \cdot$
$11-24-34, p$
$3-4-36$
O_{2} :
$12-18-33, p \cdot 4$
$11-24-34, p: 8$
$3-4-36, p, 9$
$3-23-37, p \cdot 4$
$0_{3}\left(=0_{1}\right):$
$12-18-33, p \cdot{ }^{6}$
$2-13-34, p \cdot 8^{2}$
$3-4-36, p \cdot 9$
Og :
$11-24-34, p \cdot 10$
$3-23-37, p: 6^{3}$
$3-6-38, p: 16$
oy:

$$
\begin{aligned}
& 1-23-33, p \cdot 11 \\
& 3-6-35, p \cdot 10
\end{aligned}
$$

P:

pb :
$3-23-37, p$,
$3-6-38, p$${ }^{2}$
Pe_{2} :
$11-24-34, p \cdot 5$
pg_{a} :
$9-13-34$, p. 3
pg_{p} :
$9-13-34, \mathrm{p} \cdot 3$
$3-6-35, \mathrm{pp} \cdot 12,13$
$3-23-37, \mathrm{p} \cdot 7$
pg_{1} :

$$
\begin{aligned}
& 1-23-33, p, 12 \\
& 1-25-34, p, 8
\end{aligned}
$$

pg_{2} :

$$
\begin{aligned}
& 1-23-33, p \cdot 12 \\
& 1-25-34, p
\end{aligned}
$$

$\mathrm{pg}_{3}:$
1-23-33, p. 12
pg_{6} :

$$
1-23-33, p, 12
$$

pg_{7} :

$$
1-23-33, p \cdot 12
$$

pk:

$$
\begin{array}{ll}
1-23-33, & p \\
1-25-34, & p
\end{array} \frac{12}{8}
$$

P1:

$$
\begin{aligned}
& 1-23-33, \mathrm{p} \cdot 3 \\
& 1-25-34, \mathrm{p} \cdot 6 \\
& 9-1334, \mathrm{p} \cdot 8 \\
& 11-24-34, \mathrm{pp} \cdot 10,14 \\
& 3-6-35, \mathrm{pp} \cdot 4,5 \\
& 3-2-33, \mathrm{pn}, 24
\end{aligned}
$$

$$
\frac{3-23-37, p p . ~}{3-23,14,15}
$$

$$
3-6-38, \mathrm{pp} \cdot 7,15
$$

pm:

$$
\begin{aligned}
& 12-18-33, p \cdot 5 \\
& 9-13-34, p \cdot s^{2} \\
& 11-24-34, p \cdot 12
\end{aligned}
$$

po:

$$
\begin{aligned}
& 1-23-33, p \\
& 1-25-34,
\end{aligned}, \frac{12}{6}
$$

pr_{1} :

$$
\begin{aligned}
& 1-23-33, p p \cdot 3,12 \\
& 12-18-33, p \cdot 5 \\
& 1-25-34, p \cdot 6 \\
& 11-24-34, p p \cdot 2,4,5,6,7 \\
& 3-6-35, \mathrm{pp} \cdot 1,2,4,10,11 \\
& 3-4-36, \mathrm{pp} \cdot 1,11,14 \\
& 3-23-37, \mathrm{p} \cdot 10 \\
& 3-6-38, \mathrm{pp} \cdot 9,15
\end{aligned}
$$

Pr_{2} :

$$
3-6-35, \mathrm{p} \cdot 12
$$

pyl:

$$
\begin{aligned}
& 1-23-33, \mathrm{pp} \cdot 3,12 \\
& 1-25-34, \mathrm{p} \cdot 6^{3} \\
& 11-24-34, \mathrm{p}, 14 \\
& 3-6-35, \mathrm{p} \cdot 4 \\
& 3-4-36, \mathrm{p} \cdot 7 \\
& 3-6-38, \mathrm{pp} \cdot 12,13,15
\end{aligned}
$$

py_{2} :

$$
12-18-33, \text { p. } 1
$$

R:

$$
\begin{aligned}
& 1-23-33, p p \cdot 3,12 \\
& 12-18-33, \mathrm{pp} \cdot 1,5 \\
& 1-25-34, \mathrm{p} \cdot 8 \\
& 11-24-34, \mathrm{pp} \cdot 5,10,3 \\
& 3-6-35, \mathrm{pp} \cdot 3,4,9 \\
& 3-4-35, \mathrm{pp} \cdot 8,11,14,16 \\
& 3-23-37, \mathrm{pp} .6,8,9 \\
& 3-6-38, \mathrm{p} .16
\end{aligned}
$$

rap:
3-4-36, p. 7
ra_{1} :
1-23-33, pp. 3, 12
$12-18-33, \mathrm{pp} .2,3,5$
$1-25-34$, p. 7
$11-24-34$, pp. $5,6,7,8,10,14$
$3-6-35, \mathrm{pp} .1,4$
$3-4-36, \mathrm{pp} .7,9,16$
$-23-37$, p.
$-6-38$, p. 15
ra_{2} :
$12-18-33, p .5$
$11-24-34, p, 13$
$3-4-36, p .7$
3-23-37, p. 14
3-6-38, pp. 1, 8, 15
re? :
$3-6-35, \mathrm{p} .13$
re_{1} :
$9-13-34, \mathrm{p} .8$
re_{2} :
$9-13-34, p$
$3-6-35, p$${ }^{9}$
$\mathrm{re}_{3}:$
3-6-35, pp. 13, 14
re4:
$9-13-34$, p. 9
$\mathrm{Rg}_{1}:$
1-23-33, p. 12
12-18-33, pp. 3, 5
$1-25-34$, p. 5
$11-24-34, \mathrm{pp} .10,11,12,13$
$\frac{3-4-36, p .}{3-23-37, ~ p . ~} 14$
Rg_{2} ?:
12-18-33, pp. 3, 4
Rp:
$\begin{aligned} & 3-6-35, \\ & 3-4-35, \\ & 3\end{aligned}, \quad 17$
3-23-37, pp. 8, 9
rt:

$$
11-24-34, p, 10
$$

$S_{1}:$

$$
1-23-33, p, 13
$$

sa_{1} :

$$
\begin{aligned}
& 1-23-33, p \cdot 13 \\
& 3-6-38, p: 16
\end{aligned}
$$

saz:

$$
1-23-33, p \cdot 13
$$

sb:

3-6-38
sc_{a} :
$3-6-35, p \cdot 5$
sc_{b} :
$3-6-35$, p. 5
SC_{C} :
$3-6-35, p .5$
sc_{1} :

$$
1-23-33, p, 13
$$

Sc_{2} :
$12-18-33$, p. 6
sf:
$3-6-35, \mathrm{p} .11$
sh:
$1-23-33, p p .3,13$ $12-18-33, \mathrm{pp} .2,6$ $1-25-34, p .8$ 3-6-35, pp. 12, 13 $3-23-37, p \cdot 7$
$3-6-38, p \cdot 16$
si:

$$
\begin{array}{ll}
1-25-34, & p . \\
1-23-33, & 6 \\
13
\end{array}
$$

sk:

sl:
$\begin{array}{ll}1-23-33, & p .13 \\ 1-25-34, & p .7\end{array}$
sm:
$1-23-33, p$
$1-25-34$,
$p$$\frac{13}{}$ 11-24-34, p. 14 $\begin{aligned} & 3-6-35 \\ & 3-4-36\end{aligned}, p . p$ 3-6-38, p. 15
$\mathrm{so}_{1}:$
$12-18-33, p .6$
sp_{1} :

sp_{2} :
sp_{2} (con't.)

$$
\begin{aligned}
& 3-4-36, p \cdot 8 \\
& 3-23-37, p \cdot 8
\end{aligned}
$$

sr:
1-25-34, p. 4
1-23-33, p. 13
3-4-36, p. 10
$3-23-37, \mathrm{pp} .1,2,3,5$
$3-6-38, \mathrm{pp} .6,9,10,11,14$
stp:
$3-6-35, p \cdot 12$
st:
$\begin{aligned} & 1-23-33, \\ & 1-25-34, p\end{aligned}, 53$
$\mathrm{su}_{1}:$
$1-23-33, p p .3,13$
$12-18-33, \mathrm{pp} .3,4,5,6$
$1-25-34$, p. 5 . $11-24-34$, pp. 9 , 10
9-13-34, p. 9
$3-6-35, \mathrm{pp} .1,2,3,11$
$3-23-37, \mathrm{pp} .5,6,13,14$
3-6-38, pp. 2, 4, 6, 13,15
$s u_{2}$:
$12-18-33, p .6$
$3-6-35, p .11$
$3-23-37, p .15$
$3-6-38, p .7$
$s_{3}:$
$3-6-35, p p .11,12$
sy:

$$
\begin{aligned}
& 3-6-38, p \cdot 3 \\
& \operatorname{th}(=s x):
\end{aligned}
$$

$$
\frac{12-18-33, p \cdot{ }_{3}^{4}}{3-23-37, p}
$$

tn:

$$
\begin{aligned}
& 1-23-33, p \cdot 13 \\
& 3-6-35, p \cdot 10
\end{aligned}
$$

Tp:

$$
\begin{aligned}
& 11-24-34, p \cdot 10 \\
& 1-23-33, p \cdot 14 \\
& 3-4-36, p \cdot 16 \\
& 3-38, p \cdot 15
\end{aligned}
$$

T1-2a:

$$
3-6-38, \text { p. } 6
$$

T1-2b:

$$
\begin{aligned}
& 3-6-35, \mathrm{p} \cdot 3 \\
& 3-4-36, \mathrm{pp} \cdot 10,11 \\
& 3-6-38, \mathrm{pp} \cdot 6,7
\end{aligned}
$$

T1-2c (see 1-10b): $3-6-38, \mathrm{pp} .6,9,10,11$

T1-3a:

$$
\begin{aligned}
& 3-6-35, \mathrm{p} \cdot 3 \\
& 3-4-36, \mathrm{p} \cdot 10 \\
& 3-6-38, \mathrm{pp} .6,7,10
\end{aligned}
$$

T1-3b:

$$
3-6-35, p \cdot 3
$$

T1-3d:

T1-5a:
$3-6-35, p \cdot 3$
$3-4-36, p .10$
$3-6 \cdot 38$,
T1-5b:
$3-6-35, p p .3,4$
$3-4-36, p, 10$
$3-4-36, p \cdot 10$
$3-23-37, p \cdot 1$
$3-6-38, p p \cdot 6,10$

T1-5c:
$3-6-35, p .4$
$3-4-36, \mathrm{p} .10$
$\begin{aligned} & 3-23-37, p p . \\ & 3-6-38,\end{aligned}, 2$
T1-6a:
$3-6-38, p, 6$
T1-6b:
$3-6-38$, p. 6
T1-5c:
$3-6-38, p .6$
T1-7a:
$3-6-38, p .6$
T1-7b:
$3-6-35, \mathrm{pp} \cdot 3,4$
$3-4-36, \mathrm{p} \cdot 10^{3}$
$3-6-38, \mathrm{p} \cdot 6$
T1-7c:
$3-6-35, p \cdot 3$
$3-4-36, p: 10$
$3-6-38, p, 6$
T1-7d:
$3-6-35, p, 3$
$3-4-36, p, 10$
$3-6-38, p, 6$
T1-9a:
$3-6-35, \mathrm{pp} \cdot 3,4$
$3-4-36, \mathrm{p} \cdot 10^{2}$
$3-23-37, \mathrm{p} \cdot 2$
$3-6-38, \mathrm{p} \cdot 6^{2}$
T1-9b:
$3-6-35, \mathrm{pp} \cdot 3,4$
$3-4-36, \mathrm{p} \cdot 10$
$3-6-38, \mathrm{p}, 6$

T1-9c:
$3-6-35, \mathrm{p} \cdot 3$
$3-4-36, \mathrm{p}, 10$
$3-23-37, \mathrm{p} \cdot 2$
$3-6-38, \mathrm{pp} \cdot 6,9,10$
T1-10a:
$3-6-35, \mathrm{pp} .3,4$
$\frac{3-4-36, p p .10,11}{3-6-38, ~ p . ~} 6^{3}$
T1-10b (see 1-2c): $3-6-35, p \cdot{ }^{3}$
$3-23-37, p$
$3-6-38, p .9$

T2-3a:
3-6-38, p. 7
T2-3b:
3-4-36, p. 10
T2-3c:
$3-6-35, \mathrm{p} \cdot{ }^{3}-4-35, \mathrm{pp} .10,11$ $3-23-37, p .5$
$3-6-38, p p .6,7$

T2-3d:
$3-4-36, \mathrm{pp} .10,11$
, p.
T2-4a:

$$
\begin{aligned}
& 3-4-36, p, 11 \\
& 3-6-38, p .7
\end{aligned}
$$

T2-4b:

T2-40:
$\begin{aligned} & 3-6-35, \\ & 3-4-36 \\ & 3-6-38\end{aligned}, p .11$
3

T2-4d:
$3-6-35, p \cdot 3$
$3-4-36, p: 11$
$3-23-37, p \cdot 6$
$3-6-38, p: 7$
T2-5a:

$$
3-6-38, p \cdot 7
$$

T2-5b:
$3-6-35, p .4$
$3-4-36, p, 11$
$3-6-38, p$.
т2-6b:
$3-4-36, ~ p . ~$
$3-6-38, p .7$
T2-6c:
$3-6-38, p .7$
T2-6d:
$3-6.35, \mathrm{p} .4$
T2-7a:
$3-6-35, p, 4$
$3-4-36, p, 11$
$3-6-38$,
T2-7b:
$3-6-35, p: 4$
$3-4-36, p: 11$
$3-6-38, p .7$
T2-7c:
$3-6-35, p \cdot 4$
$3-4-36, p: 11$
$3-6-38, p, 7$
T2-9a:
$\frac{3-4-36}{3-5-38, p p} \cdot 7^{10,} 11$
T2-9b:
$\underset{3-6-38, ~ p p}{3-4-36}, 10,11$

T3-5b:

$\mathrm{T} 3-5 \mathrm{c}$:
$3-6-35, p \cdot 3$
$3-4-36, p$,
10
T3-6a:

$$
3-6-35, p .4
$$

T3-7a:
$3-6-35, \mathrm{p} .4$
$3-4-36, \mathrm{pp} .10,16$
T3-7b:
$3-6-35, \mathrm{pp} \cdot 3,4$
$3-4-36, \mathrm{p} \cdot 10$
$3-23-37, \mathrm{p} \cdot 5$
T3-8a:

$$
\begin{aligned}
& 3-6-35, p \cdot 4 \\
& 3-4-36, p, 10 \\
& 3-23-37, p \cdot 6
\end{aligned}
$$

T3-8b:
$\underset{3-23-37}{3-6-35}$, p. 4
T3-9a:

$$
\begin{aligned}
& 3-6-35, \mathrm{pp} \cdot 3,4 \\
& 3-4-35, \mathrm{p} \cdot 10
\end{aligned}
$$

T3-9b:
$3-6-35, \mathrm{p} .3$
T3-10a:
$3-6-35, p p .3,4$
$3-4-36, ~ p p .10,11$
T3-10b:
$3-6-35, p .4$
$3-4-36, ~ p p .10,11$

T3-10c:

$$
\begin{aligned}
& 3-6-35, \quad \text { p. } \\
& 3-4-36,0 \\
& 0.11
\end{aligned}
$$

T4-5a:
11-24-34, pp. 6, 7
T4-5d:
3-6-35, pp. 3, 4
T4-6a:
$3-6-35$, pp. 3, 4
T4-6b:

$$
\begin{aligned}
& 3-6-35, p p \\
& 3-23-37, p
\end{aligned}, 6,4
$$

T4-6c:

$$
3-6-35, p \cdot 3
$$

T4-9a:
$\underset{3-6-35}{3-6-35}, \mathrm{pp} \cdot 10,4$
T4-9b:

$$
\begin{aligned}
& 3-4-36, p \cdot 10 \\
& 3-23-37, p \cdot 6
\end{aligned}
$$

T4-10a:

$$
3-6-35, p \cdot 3
$$

T4-10b:

$$
\begin{aligned}
& 3-6-35, \mathrm{pp} .3,4 \\
& 3-4-35, \mathrm{p}, 11
\end{aligned}
$$

$$
T 5-7 a:
$$

$$
11-24-34, \text { pp. } 6,7
$$

$$
T 5-7 c:
$$

$$
3-4-36, p, 17
$$

16-9a:

$$
\begin{aligned}
& 3-6-35, p \cdot 4 \\
& 3-4-36, p .
\end{aligned}
$$

T6-9b:

$$
\begin{aligned}
& 3-6-35, p .4 \\
& 3-4-35, p, 10
\end{aligned}
$$

T8-9b:

$$
\begin{aligned}
& 3-4-36, \text { p. } \\
& 3-23-37, \\
& \hline
\end{aligned}
$$

T8-10a:
$3-6-35, p$
$3-4-36, p$$\frac{4}{11}$
T8-10b:

$$
\begin{array}{ll}
3-6-35, & p .4 \\
3-4-36, & p
\end{array} 11
$$

T8-10c:

$$
\begin{aligned}
& 3-6-35, \mathrm{p} .4 \\
& 3-45,35, \mathrm{p}, 11 \\
& 3-23-37, \mathrm{p} .6
\end{aligned}
$$

T8-10d:
$3-6-35, p .4$
ts_{1} :

$t_{2}:$

$$
\begin{aligned}
& 1-23-33, \mathrm{p} \cdot 14 \\
& 1-25-34, \mathrm{p}, 4 \\
& 11-24-34, \mathrm{pp} \cdot 3,5 \\
& 3-6-35, \mathrm{p} \cdot 1 \\
& 3-23-37, \mathrm{pp} \cdot 1,2,3,9 \\
& 3-6-38, \mathrm{pp} \cdot 9,10
\end{aligned}
$$

ts4:
t_{4} (con't.):

$$
\begin{aligned}
& 1-25-34, p \cdot 5 \\
& 11-24-34, p \cdot 11 \\
& 3-6-35, p, 3 \\
& 3-4-36, p, 10 \\
& 3-6-38, p, 15
\end{aligned}
$$

Ts_{5} :

$$
\begin{aligned}
& 1-23-33, p \cdot 14 \\
& 1-25-34, p: 5 \\
& 11-24-34, p \cdot 8 \\
& 3-6-35, p \cdot i \\
& 3-23-37, p \cdot 6 \\
& 3-6-38, p \cdot 15
\end{aligned}
$$

Ts6:

$$
3-23-37, p, 6
$$

Tu:

$$
\begin{aligned}
& 1-23-33, p p, 3,14 \\
& \text { 12-18-33, pp. 5, } 6 \\
& 1-25-34, p .5 \\
& \text { 11-24-34, pp. 8, } 10 \\
& \frac{3-6-35, p p .1,2,3}{3-23-37, ~} 3 \\
& \text { 3-23-37, p. } 14 \\
& \text { 3-6-38, pp. 2, 4, 15 }
\end{aligned}
$$

v_{a} :
$9-13-34, p \cdot 3$
v_{1} :

$$
\begin{aligned}
& 1-23-33, p \cdot 14 \\
& 12-18-33, p p \cdot 2,6 \\
& 1-25-34, p \cdot 8 \\
& 3-4-36, p \cdot 3
\end{aligned}
$$

v_{2} :

$$
\begin{aligned}
& 1-23-33, \mathrm{pp} \cdot 3,14 \\
& 12-12-33, \mathrm{p} \cdot 5 \\
& 1-25-34, \mathrm{p} \cdot 6^{2} \\
& 11-24-34, \mathrm{pp} \cdot 2,6,7 \\
& 3-6-35, \mathrm{p} \cdot 1 \\
& 3-4-36, \mathrm{p} \cdot 7 \\
& 3-6-38, \mathrm{p} \cdot 15
\end{aligned}
$$

$\nabla_{3}:$
$1-23-33, p, 14$
$1-25-34, p, 6$
$11-24-34, p, 4$
$3-4-36, p$.

V4:

${ }^{*} 5$:
$1-23-33, \mathrm{pp} \cdot 3,14$
$12-18-33, \mathrm{pp} \cdot 2,5$
$1-25-34,7,7$
$11-24-34, \mathrm{pp} \cdot 7,18$
$3-6-35, \mathrm{p} .1$
$3-436, \mathrm{pp} .9,16$
$3-23-37, \mathrm{p} \cdot 4$
$3-6-38, \mathrm{p} \cdot 15$
v_{6} :

$$
\begin{aligned}
& 1-23-33, p \\
& 1-25-34, \\
& p
\end{aligned} \cdot 6^{14}
$$

${ }^{7} 7$:

$$
\begin{aligned}
& 1-23-33, p \cdot 14 \\
& 1-25-34, p, 6
\end{aligned}
$$

v_{g} :

$$
1-23-33, p, 14
$$

v_{10} :

$$
\begin{aligned}
& 3-23-37, p \cdot{ }^{7} \\
& 3-6-38, p \cdot 9^{7}
\end{aligned}
$$

v_{12} :

$$
\begin{aligned}
& 1-23-33, p \cdot 14 \\
& 1-25-34, p \cdot{ }^{1}-25 \\
& 3-4-35, p \cdot 7 \\
& 3-23-37, p \cdot 10
\end{aligned}
$$

V_{14} ($=\mathrm{yg}_{2}$):

$$
1-23-33, p .14
$$

${ }^{\mathrm{V}} 15$:

$$
\begin{aligned}
& 1-23-33, \\
& 1-25-34,
\end{aligned}, \frac{14}{8}: 8
$$

${ }^{\mathrm{v}} 16$:

$$
\begin{aligned}
& 3-23-37, p \cdot 7 \\
& 3-6-38, p p \cdot 2,15
\end{aligned}
$$

v_{18} :

$$
1-23-33, p \cdot 15
$$

${ }^{\mathrm{V}} 20$:

$$
1-23-33, p \cdot 15
$$

$v_{21}\left(=v_{16}\right):$

$$
\begin{aligned}
& 3-4-36, \\
& 3-23-37,
\end{aligned}, \quad 17
$$

$\mathrm{va}_{1}:$

$$
\begin{aligned}
& 1-23-33, p \cdot 15 \\
& 1-25-34, p \cdot 7
\end{aligned}
$$

vp_{1} :

$$
1-23-33, p \cdot 15
$$

vp_{2} :

$$
\begin{aligned}
& 1-23-33, \mathrm{p} \cdot 15 \\
& 11-24-34, \mathrm{pp} \cdot 6,7 \\
& 3-6-35, \mathrm{p} .10
\end{aligned}
$$

$\mathrm{vp}_{3}:$

$$
1-25-34, p \cdot 5
$$

vp4:

$$
\frac{1-23-33, p \cdot}{3-6-35, p} \cdot 13^{15}
$$

w_{1} :

$$
\begin{aligned}
& 1-23-33, p \cdot 15 \\
& 3-6-38, p p .12,13
\end{aligned}
$$

w_{2} :

$$
1-23-33, p \cdot 15
$$

$w_{4}\left(=w_{12 ?}\right):$

$$
\begin{aligned}
& \frac{11-24-34, p}{3-4-36, p} 30 \\
& 3-23-37, p p \cdot 6,15
\end{aligned}
$$

${ }^{5} 5$:

$$
1-23-33, p, 15
$$

W6:

$$
1-23-33, \text { p. } 15
$$

${ }^{W} 11$:

$$
\frac{1-23-33}{1-25-34, p}, \frac{15}{8}
$$

W_{12} :

$$
9-13-34, p \cdot 9
$$

Wh:

$$
\begin{aligned}
& 1-23-33, p \\
& 1-25-34, p
\end{aligned} \frac{15}{7}
$$

w1:
$1-23-33, p \cdot 15$
$1-25-34, p \cdot 5$
$11-24-34, p, 8$
$3-6-35, p .1$
$3-6-38, p, 15$
wSz:

wx:

yg_{3} :

$$
12-18-33, p \cdot 5
$$

ys_{1} :
$1-23-33, p p \cdot 3,16$
$12-18-33, p \cdot 5$
$1-25-34, p .6$
11-24-34, pp. 2, 6, 7 $3-4-36, \mathrm{p} .7$

ys ${ }_{2}$:

$$
1-23-33, p, 16
$$

yt:
$1-23-33, p \cdot 16$
$3-6-38, p \cdot 15$
zb_{4} :
zb_{6} :
$3-6-38, p \cdot 2$
z $\left(=\mathrm{zg}_{1}\right)$:
$1-23-33, p \cdot 16$
$3-6-35, p p .3,12$
$z_{g_{1}}\left(=z_{g_{2}}\right):$

$$
\begin{aligned}
& 1-23-33, \mathrm{p} \cdot 16 \\
& 3-6-35, \mathrm{pp} \cdot 3,12 ?
\end{aligned}
$$

$$
\begin{aligned}
& 3-6-38, p \cdot 1 \\
& z_{5}: \\
& \frac{11-24-34, p}{3-6-38, p} \cdot 16
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{zg}_{2}\left(=\mathrm{zg}_{3}\right): \\
& 11-24-34, \mathrm{p} \cdot{ }^{1} \\
& 9-13-34, \quad,
\end{aligned}
$$

$$
\mathrm{zg}_{3}:
$$

$$
3-6-35, \mathrm{p} \cdot 3
$$

z1:
$1-23-33, p \cdot 16$

Sinkage mage of the ten chromosomes of zea mays showing the loci of those genes whose position can be determined with reasonable certainty.

Linkage map of the ten chromosomes of zea mays showing the approximate loci of many genes. (Working map. More 3-point tests needed to establish exact loci of genes).

'sinkage mage of the ten chromosomes of zea mays showing the loci of those genes whose position can be determined with reasonable certainty.

