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Traditional theories of cognition assume that motor action is executed in an 

all-or-none fashion, and has little importance for understanding cognitive 

representation and processing. A series of experiments and simulations 

presented here challenges this assumption. A relatively higher-order cognitive 

process, categorization, is shown to have graded effects that are reflected in 

manual motor output, measured through streaming x-y coordinates from 

mouse trajectories. Two simulations show that these effects are likely 

generated from a system in which cognition and action interact fluidly. Finally, 

theoretical implications of these experiments are drawn out. Symbolic 

dynamics is introduced, a potential means for reconciling both traditional and 

continuous accounts of cognition. A broad philosophical discussion follows, in 

which an integrative and pluralistic approach to cognition is proposed and 

briefly discussed.
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CHAPTER ONE

Introduction: Body and Mind

Broader Relevance

This dissertation addresses two broad concerns in cognitive science. The first 

is pervasive in debate, the second not so much at all. The first is a key concern 

about how cognitive processes unfold in time. This mostly centers on the 

dispute about the relative discreteness, or continuity, of cognitive states and 

processing. One traditional line of thought sees the cognitive system, in 

achieving some information-processing goal, transition through discrete 

representational states, much like a digital computer. Another, growing out of 

a long but more recently relevant history, sees the cognitive system smoothly 

move through probabilistic representational states, more like the flow of a 

dynamical system. Such a dispute might be described as pursuing the matters 

of fact about cognitive representation and process (as Hume, 1748/1967, 

famously noted about certain classes of knowledge; or, recently, as used by 

Quine, 1960). In other words, the debate seeks to definitively state the nature 

of the cognitive system by figuring out how it actually, in reality, functions. The 

ultimate description resulting from this debate is hoped to be exactly that: the 

ultimate, end-of-discussion, characterization of cognitive processing.

The second concern is arguably more broad, and seeks to compare 

these descriptive schemes in another, wider descriptive framework. The 

concern is thus metatheoretical. By employing some novel concepts from 

dynamical systems mathematics, these descriptive schemes may in fact end up 

being less competing than the first debate recommends. Instead, both discrete 
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and continuous descriptions may serve important functions depending on the 

cognitive phenomena under investigation. Such a pragmatist approach to 

theoretical descriptions relies on the varying units of analysis available in 

cognitive representation and process (as Skinner, 1938, describes in uncovering 

functional units of behavior, or Dewey & Bentley, 1949, on designating 

appropriate units of action; see Palmer, 2003, for a review). In other words, 

depending on the units of “mind/brain” selected for study (for example in 

language: words, sentences, conversation, etc.), discrete descriptions or 

continuous descriptions may serve to better predict and explain systematic 

relationships among the behavioral variables under study. 

In what follows, I trace a selective history of philosophical and scientific 

investigations of cognition, and how strong historical trends have led to the 

first debate. This selective survey lays out the fundamental questions about 

the matters of fact of cognition, the answers to which seek to discover the real 

nature of cognitive representation and process. The first few sections of the 

following discussion set the context for the empirical and computational work 

presented in subsequent chapters. Following this, I offer some brief 

preliminary reflections on the second broad concern. How might conceptual 

advances mitigate or change the nature of this debate? This sets the stage for 

later theoretical chapters, in which such a discussion is engaged directly. 

To begin this historical survey, I consider the relationship between the 

body and the mind. The strongest historical trend in both the philosophy and 

science of the mind is to consider these two entities as quite distinct: Thinking 

is a species different from the body, and both are subject to differing courses of 

study. This historical dichotomy, laid out below by selective survey, has been 

recently challenged in cognitive science. 
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Action and cognition

For at least two decades, there has been a prominent movement in cognitive 

science to broaden the role of the body in theories of cognition (e.g., Ballard, 

Hayhoe, Pook, & Rao, 1997; Barsalou, 1999; Clark, 1997; Dreyfus, 1972, 1992; 

Glenberg & Robertson, 2000; Lakoff & Johnson, 1999; Rizzolatti, Riggio, 

Dascola, & Umilta, 1987; Varela, Thompson, & Rosch, 1992). The movement 

contrasts with the traditional focus in cognitive psychology of studying 

cognitive processing, such as memory, language, and categorization, as in-

principle separable from the perceptual and motor systems associated with 

them (e.g., Carey, 1985; Chomsky, 1966, 2000; Fodor, 1975, 1983, 2000; Marr, 

1982; Pinker, 1997; Putnam, 1960). 

For example, explaining how we process a sentence’s meaning may be 

couched in terms of propositional structures. When the sentence “I swung the 

hammer” is processed, the structures that the cognitive system manipulates 

are thought to be language-like elements themselves, stored, encoded, 

represented, etc. as information structures that have been stripped of their 

perceptual-motor content (e.g., Pylyshyn, 2000). In other words, hearing the 

word “hammer,” once reaching a stage that can be called word processing, 

involves accessing semantic feature lists such as is weighty or is long that are 

encoded as semantic predicates. These predicates, “language of thought” 

descriptors, do not carry the perceptual (the way you might sense the 

weightiness of the object) or motor (the way you might hold or play with it) 

information about the hammer -- they are just encoded feature descriptions 

(e.g., Katz & Fodor, 1963). 
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This traditional perspective is being challenged, and some argue that 

these “amodal” representations do not properly characterize cognitive 

processing. Instead, these information structures might make use of the 

perceptual-motor, “modal,” content that is relevant to the features (e.g., a 

perceptual-symbol system, Barsalou, 1999). In the case of motor information, 

one source of evidence for this challenge has been to investigate how action-

relevant variables modulate cognitive processing. Experiments conducted by 

Tucker and Ellis (1998), for example, show that the recognition of an artifact 

(e.g., a coffee mug) is influenced by responding conditions (e.g., with the right 

hand) when the handle of the mug is compatible with these conditions (i.e., it 

is recognized faster). A similar effect is seen in sentence processing. Glenberg 

and Kaschak (2002) demonstrate that responding conditions (e.g., pulling 

towards or pushing away) can influence judging the sensibility of sentences 

containing compatible descriptions (e.g., close the drawer). These findings 

(along with others reviewed below) support the position that motor 

information is somehow being incorporated into cognitive processing -- if that 

were not the case, the actual characteristics of the required action would have 

no bearing whatsoever on the speed or reliability of the decision. Both of these 

examples reveal how the parameters of action can feedback into the cognitive 

processing relevant to the experimental task. 

Such results are interesting because action is often assumed to be the 

point at which cognition stops. From a traditional perspective, understanding 

the word “hammer” works by amodal information processing, and depending 

on the required task response, executes a particular action the characteristics 

of which will not have any bearing on processing, nor contain anything 

resembling processing itself. For regal cognitive processes such as memory, 
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language, and categorization, action can be seen as relatively irrelevant. The 

movements marshaled by motor processes are just a minor “design issue.” 

Hook up any machinery you want, its functioning will be slave to the 

decisions made by these processes.

Despite the growing evidence adduced by the perceptual-motor 

movement, the reigning attitude is just that: Action is not much relevant to 

cognition. The upshot of this attitude, only a slight caricature of the theoretical 

status quo, is that action phenomena have become a lesser-studied aspect of 

human psychology. Why would decades of theorizing in cognitive psychology 

proceed without regard to output processes? Recently, Rosenbaum (2005) has 

proposed six hypotheses that may account for the relatively low status action 

has in psychology. Two of these hypotheses are particularly apt here. 

The first he dubs the “too-hard-to-study” hypothesis. One possible 

explanation for the lack of attention is that action and motor control are too 

complex and variable to study at any level beyond the barest detail. 

Rosenbaum dismisses this explanation -- the history of psychology reveals 

innumerable cases in which sufficient curiosity drove innovation. This 

innovation opens both technical and conceptual routes to understanding 

phenomena that interest experimentalists. 

The second hypothesis, “think-before-you-act,” is one that Rosenbaum 

feels more successfully accounts for the neglect: All interesting psychological 

phenomena have come and gone by the time action is executed. He notes that 

perception and cognition enjoy a higher status than action because they are 

more often associated with intelligent behavior. Perceptual processes like 

visual object recognition, or cognitive ones like categorization, can presumably 

be studied without any thought of their associated motor accompaniments. 
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While he sees this hypothesis as a more plausible explanation for neglecting 

action, he contends that action has served many important functions in the 

study of both perception and cognition (such as embodied sentence 

processing, described previously). The short shrift is thus undeserved. 

It is likely that both hypotheses explain some of the neglect of action in 

cognitive science. Both are historically tied to two closely related assumptions 

about how we decide on the subject matter of psychology, and the means by 

which it is studied. The basis for “think-before-you-act” is likely born of a very 

long tradition in western philosophy and science about the nature of the 

human faculty for thinking. It has provided entrenched but sometimes 

implicit approaches to specifying the subject matter of psychology. These 

approaches have placed emphasis on behavior that appears irrelevant to its 

precise physical manifestation, and can supposedly be studied independently 

of the body through which this behavior takes place. Problem solving, for 

example, just happens to have a lot more to do with your cranial contents than 

your fingernails -- moreover, the function of cranial contents can be couched in 

a computational vocabulary explaining this behavior without regard to the 

physical instantiation of the cranial contents themselves (more on this below).

The basis for “too-hard-to-study” may be argued to be, at least in the 

emerging sciences of the mind, an implication of “think-before-you-act.” This  

second hypothesis recommends that there are only certain manners in which 

the subject matter can be studied. The approach typically precludes data that 

are inherently related physical properties of action (particularly because such a 

data source is too noisy and multifarious; see below). Rosenbaum notes a few 

cases in which dependent measures drawn from action reveal cognitive 

processes, thus substantiating that action gets a short shrift. Without a detailed 
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consideration of his examples and their implications, however, his point may 

be misinterpreted as trivial: Any behavioral experimentation must involve an 

action-based dependent measure somehow (i.e., the observables). The 

influence of these “too-hard-to-study” and “think-before-you-act” bases is 

rather more specific -- the dynamic or “internal” characteristics of a response 

are considered unimportant to the study of cognition. The subject matter of 

psychology cannot have much to do with detailed dynamic response 

characteristics, because these characteristics cannot reflect the processes 

suggested for study by the “think-before-you-act” hypothesis. Thus, at the 

very point at which action is initiated, thinking is over, and the separate world 

of action has begun.

Below I give a selective historical survey justifying this interpretation of 

the theoretical status quo: The view that what psychologists study -- thinking, 

reasoning, remembering, etc. -- takes place before action is initiated, and can 

proceed even without any action at all. Thus, how psychologists study 

thinking cannot involve action inherently. In other words: Thinking can 

happen without a body. Or at least, the body is trivial, being only an 

encasement of the thinking mind. How did we get here? The next section 

reveals that this attitude emerges from a long and strong intellectual tradition. 

Laying out the tradition might begin with the seemingly simplest question 

about cognitive science’s subject matter: Where does thinking take place?

The “wheres” and wares of thinking

With little hesitation, most people would point to their head if asked “Where 

does thinking happen?” Notwithstanding the occasional humor about 
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individual differences in this location, sincere respondents would supply this 

answer even when they have little familiarity with the relevant sciences. 

Discoveries of brain function are now comfortably tucked into the broader 

public knowledge about cognitive function. Such knowledge is perhaps taken 

for granted, given that thought was once thought to take place in the heart 

(French, 1978; but maybe it has something to do with it, Clark, Naritoku, 

Smith, Browning, & Jensen, 1999), and the brain was once thought to be a 

sophisticated cooling device (e.g., Aristotle’s “radiator theory”; maybe it was, 

Fialkowski, 1986). 

This question about the “wheres” of thought is possibly the easiest of 

all to answer. The “whats, hows, and whys” are considerably more 

complicated. This is not just because locating is a more intuitive or concrete 

task -- the answer also comes from a strong basis in evidence. Paralysis does 

not extinguish thought. When even the senses are drastically diminished, 

there can be normal capacity for thought, or sometimes a seemingly greater 

than normal capacity (e.g., Keller, 1903). We can talk ourselves through a 

problem without seeming to move a muscle. These and many other 

observations naturally motivate the conclusion that the wider body does not 

harbor thinking. Such a conclusion is fairly obvious when intuitive 

assumptions about the (perhaps) more important questions are adopted -- the 

whats and hows and whys of thinking. These more troublesome questions 

have answers that might influence the response to where thinking happens. 

What thinking is, how it happens, and why, seem to have a certain 

epistemological primacy over the wheres of thinking. Once one has some of 

their answers, they may recommend differing emphases on cranial contents, 

and their host body. 

8



Probably the most prominent and so-far successful approach to what 

thinking is derives from the metaphor of a computing machine. Some have 

incorrectly asserted that this idea is unfashionable (e.g., Pinker, 1997). It is in 

fact born of a long and influential intellectual lineage. The notion that a logical 

computing machine characterizes human thinking has, some would argue, 

changed somewhat in form, but mostly in content, since at least Aristotle (e.g., 

Barendregt, 1997; Bochenski, 1951; Lukasiewicz, 1951; Rayside & 

Kontogiannis, 2001). Aristotle’s and other ancient ideas of human reasoning 

look very much like the propositional structures manipulated by an 

information-processing module of recent conception (Fodor, 1983; Pinker, 

1997; Tooby & Cosmides, 1992). Given the Hellenic roots of symbolic logic, 

and the central role of symbolic logic in the emergence of computing, it should 

come as little surprise that such a system as the Aristotelian syllogism is not 

far from production rules employed by symbolic cognitive models (e.g., 

Anderson, 1993; Schank & Abelson, 1977). These ancient systems of logic 

waited for thousands of years until Boole and others (Kneale, 1948) to find an 

explicit formalization. This symbolic logic, with its discrete structures and 

operations, has become perhaps the central focus of information-processing 

approaches to cognitive processes (Anderson, 1980; Anderson & Bower, 1973; 

Bechtel, Abrahamsen, & Graham, 1998; Neisser, 1967, 1976; Newell, Shaw, & 

Simon, 1958). The influence of Aristotle and other ancient logicians thus 

served to frame the nature of human reason. This tradition, ancient and 

robust, thus underlies the current computational approach to the mind.

“Classical” cognitive science was born of this metaphor for thinking. 

Both conceptual and technical innovation in the twentieth-century permitted 

the development of systems whose behavior resembled human reasoning 
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(Newell, Shaw, & Simon, 1958). For example, Newell and Simon (1956) 

developed a famous system that proved logical theorems, sometimes more 

elegantly than humans (Bechtel, et al., 1998). This system would not have been 

possible without the conceptual contributions of Turing and von Neumann 

(Anderson, 1980; Bechtel, et al., 1998), and their subsequent application in 

implemented computing systems. These intelligent computing systems, in a 

very real sense, are the progeny of this ancient conception of human 

reasoning, one that has existed uninterrupted from Aristotle to Chomsky. One 

could argue that it has always been the reigning metaphor, turned into science 

with the advent of computing systems, and cognitive science (see Smith, 1991, 

for a collection of relevant papers). 

This line of thinking about thinking has often accompanied another 

prominent line of thought. Another related historical trend concerns the role of 

the body and environment underlying thinking: They are of limited 

importance. A prominent and again Hellenic example of this is Plato’s theory 

of forms. The central theory of Plato’s holds that the world of perceptual 

objects is changing and illusory -- that some other realm of objects, the realm 

of immutable eternal forms, is the only genuine reality. In fact, we cannot 

perceive these forms in the sensory sense, but only through operation of the 

intellect can we be aware of them. The realm of forms is the unchanging basis 

or “blueprint” for the ephemeral world of things (Edman, 1928; Stokes, 2002). 

As Plato’s famous allegory of the cave illustrates, the realm of forms casts 

shadows into the perceptible world, which are imperfect representations of 

these eternal forms. The eyes are imprisoned by these worldly representations, 

but the intelligent mind can escape them by recollection of forms or ideas. 

Imagine the back of a cave, towards which numerous prisoners are forced to 
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face. Light from a fire, behind the prisoners, is cast onto this cave wall, and 

between it and the prisoners puppeteers act out sequences of events that the 

prisoners can recognize. The prisoners mistake the shadows for the true realm. 

There is a realm representing the actual nature of the shadows, and the 

shadows are mere imperfect projections from this realm onto the cave wall.

This allegory starkly captures some modern intuitions of the role of the 

body and environment in cognitive processing. Consider for example 

Chomsky’s well-known linguistic dichotomy, now referred to as E-language 

and I-language (Chomsky, 1986). E-language refers to language as manifested 

in the world of linguistic experience -- it is messy, filled with false starts, 

grammatical errors, and so on (Chomsky, 1965). I-language, by contrast, is our 

unsullied implicit knowledge of language. I-language starts its life as a 

universal and genetically prescribed device that can sift through the messy 

external language, and descend onto a stable state (which is simply a specified 

variation of the universal initial state, or universal grammar). The relationship 

between Plato and Chomsky is no coincidence. Descartes, another thinker 

who emphasized the same limitations of sensory experience and the role of 

some immutable creator and the mind’s capacity for his (or her) detection, is 

the namesake of one of Chomsky’s well-known volumes (Chomsky, 1966).

Chomsky’s arguments that our language faculty is an independent and 

innate subsystem contributed to a powerful theoretical trend in cognitive 

science. The trend is best illustrated by Fodor’s influential framework for 

cognition (Fodor, 1983), which has served as a powerful theoretical guide for 

the developing years of cognitive science (Applebaum, 1998). The trend in fact 

imports the independence of language (from the world of experience or 

performance) into other cognitive architectures: The whole mind actually 
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consists of distinctly separable subsystems that not only can be studied 

independently, but in fact operate largely independently except for a few 

conveniently designed interfaces. Fodor now notes that there are inherent 

limitations to this perspective, but contends that it remains the most successful 

and hopeful perspective on cognition (Fodor, 2000), and numerous researchers 

have pressed its usefulness (Carey, 1985; Marcus, 2001; Pinker, 1997; Tooby & 

Cosmides, 1992).

There is a strong relationship between these two trends -- thinking as 

computation, and the realm of perceptual-motor experience as ill-suited for it. 

By conceiving of thinking as proceeding through logical computation, systems 

have long been couched in terms of language-like symbols whose origin, such 

as through learning, seems difficult to explain. Some have suggested radical 

nativist proposals about semantics to accommodate this (e.g., Fodor, 1981). 

The realm of perceptual-motor experience seems quite distant from these 

informational structures -- and are relegated to “transductor” and “effector” 

processes that don’t inherently participate in central processing (Fodor, 1983). 

What is thinking, then? The long intellectual tradition surveyed 

selectively here shows a prominent role for discrete, logical computation over 

symbols and their relations. In addition, this nature of thinking recommends a 

lesser role for perceptual-motor processes -- the cognitive “realm of forms” is 

discretely bounded by its input and output, processes that independently sort 

out the messy realm of experience. The brain is now known to be the wheres 

of thinking. It now provides the physical substrate of the cognitive realm of 

forms, housed in a body whose functions are slavishly devoted to this central 

realm. 
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Recasting the “whats” and “hows” of thinking

When distinguished discretely from the bodily input-output machinery, the 

computational procedures underlying cognitive processes give way to the 

property of multiple realizability: Computational procedures are expressed in 

descriptive systems that can be realized in any hardware. This functionalist 

approach to cognition -- conceiving thinking just as the appropriate mediation 

of input and output (Putnam, 1967) -- does not lend itself to concern with the 

precise physical substrate of that input-output mediation. As long as the 

causal relations are preserved between internal cognitive states so as to 

generate reliable input-output relations, it in fact does not matter how they are 

physically realized. As oft-noted, thinking as computation can occur in silicon-

based or carbon-based creatures, or perhaps, even instantiated by entire 

populations of individuals (Block, 1980, who uses this example to argue 

against functionalism), or perhaps exhibited at an excruciatingly long time 

scale by trees and plants (Dennett, 1996). 

Functionalism has been frequently challenged (e.g., Block, 1980; 

Churchland, 1986) -- very often under the guise of debates regarding “symbol 

grounding.” One of the most famous critiques is Searle’s well-known thought 

experiment (Searle, 1984), in which a functionalist conception of intelligence is 

shown to be unintuitive. Another is to note that while multiple realizability of 

may be true of abstract computation generally, it becomes false when we settle 

on a more specific model system (e.g., human cognition, chimp cognition, etc.; 

see also Bitterman, 1960, who argues that such a specific approach is ideal in 

animal learning and behavior). In other words, human cognition is physically 

realized, and information-processing in humans can be identified with 
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particular physical processes (Bechtel & Mundale, 1999). For example, the 

operation of the visual system can be understood in terms of simple and more 

complex feature processing in specific neural hardware.

Another way of accomplishing a critique of functionalism is to recast 

the whats and hows of thinking, placing them not in an abstract 

computational framework that hopes to capture intelligent human behavior as 

we see it fully developed in adulthood, but rather in a framework that 

visualizes the evolution or development of this behavior. An evolutionary 

perspective is perhaps particularly effective in accomplishing this recasting. 

Braitenberg’s (1984) celebrated thought experiment helps with this.

The thought experiment works this way. Imagine designing a very 

simple machine or vehicle, equipped with, to begin, a sensor and a motor. The 

sensor is designed to activate the motor in the presence of some stimulus, such 

as a light. As a consequence, the vehicle will move towards this light source.

Imagine adding two sensors, one on either side of the front of the 

vehicle (much like headlights), and two motors (much like back tires). The left 

sensor is attached to the left motor, and the right sensor and motor are 

attached (one-to-one parallel connections). In the presence of light, the vehicle 

will now move away from the stimulus, since the closest sensor-motor pair to 

the stimulus will cause the vehicle to veer away.

Now imagine making further modifications to the vehicles. For 

example, try moving the left motor to the right side (and the right to the left 

side), while maintaining their original connections (this could be 

accomplished by crossing the connections, instead). This time, the closest 

sensor will cause the opposite motor to activate, bringing the vehicle closer to 

the light.
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Braitenberg continues in this line, making gradual modifications to the 

vehicles to cause them to generate more and more complex behavior. He 

argues that through the law of “downhill design, and uphill analysis,” we 

might start attributing complex internal processes to these creatures. For 

example, the above vehicles exemplify the rudiments of fear and attraction. 

Addition of novel components, such as associative neural hardware, remains 

intrinsically intertwined in the sensory and motor machinery of the vehicles. 

While the internal workings become more complex, the behaviors become 

even more so -- and what can appear a relatively simple modification to the 

inner workings of the vehicles, can suddenly appear ruminative, passionate, 

affectionate, etc. 

The resulting interpretation of uphill analysis is not necessarily a 

mischaracterization. In fact, Braitenberg’s likely original motivation is to 

reveal how our own or other creatures’ complex behavior may be the result of 

only small and simple design modifications (such as through evolution or 

development). This is just what such things as “desire” and “hunger” and 

“affection” might be: “Let the problem of the mind dissolve in your mind.” (p. 

1)

To make the point relevant to current discussion, we can focus on 

Braitenberg’s initial, simplest vehicle. This vehicle, exhibiting the simplest 

kind of attraction to a stimulus, is composed just of perceptual and motor 

components -- and of course a needed external stimulus to generate its 

behavior. The system is closed not by an abstract rule that describes or 

explains the system, but is only fully accounted for by the closed system of 

stimulus-sensor-motor that feed into each other continuously. The “thoughts” 
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of this vehicle are in fact nothing but the interaction between perception and 

motor systems in the context of the external stimulus.

While the vehicles become more complex, one recognizes that 

“thinking” is always the mediation of sensor and motor components, 

producing complicated behavior patterns. Classical computational cognitive 

science recommends employing a computation-based vocabulary to explain 

the behavior of these vehicles. This descriptive system may work. 

Nevertheless, Braitenberg’s experiments show that rules are only descriptively 

employed post hoc -- through the uphill route of analysis -- to subsequent 

vehicles. The matter of fact of subsequent vehicular cognitive processes is 

simply the small but important modifications to the mediation of perceptual-

motor systems. The “thinking” is thus never torn from concern with 

perception and action. Each subsequent addition or modification must 

maintain how the previous instantiations accomplished this mediation.

Mental processing in the most advanced vehicles may in fact look like 

the ruminative behaviors of human beings. Nevertheless, because we 

designed these vehicles, we recognize that “thinking” is only conveniently 

described as a set of rules, when we know that thinking is actually the 

“complexification” of perceptual-motor mediation -- the internal workings 

may become more complex, but they are from the outset designed to 

appropriately generate mediation between the specific perceptual and motor 

systems composing the creatures. 

This example serves to recast what “thinking” is in design terms -- or, if 

you like, in terms of surprisingly small modifications to an organism through 

the course of evolutionary or developmental change. Despite its potential 

intuitive power, it suffers some limitations. First, the notion of design may be a 
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substantial simplification (Gould, 2002; but see Dennett, 1995). Secondly, it 

does not supply a structured argument for maintaining a deep connectivity 

between the body and the central processes of thought. It simply serves to 

“pump the intuition” (Dennett, 1988) about how the systems underlying 

complex behavior are ever intertwined in perceptual-motor processes. Despite 

this, something not unlike it has formed the basis of Brooks’ well-known 

research program for artificial intelligence (Brooks, 1995). The thought 

experiment may therefore carry some strong intuitive force, while not having 

a complete absence of applicability.

Continuity of perceptual-motor processes and thinking: Chapters 2-5

The separation of mind and body can be saved even in this scenario by 

proposing predictions about the evolution of the internal mediating processes. 

The separation predicts that evolutionary changes led to centralized thinking 

processes that become gradually modularized, and independent of input-

output mechanisms. Thus in the Braitenberg thought experiment, one may 

simply say that, through a sufficiently large number of vehicle generations, we 

may obtain a modular architecture, in which the original sensors and motors 

are discretely distinct from central processing. The human cognitive system 

could be such an architecture.

But this recasting of what thinking is, and how it occurs in the real 

world and changes over evolutionary time, suggests another radical 

perspective on information flow from perceptual processes into motor action. 

If one accepts a strong interpretation of Braitenberg’s experiment, the 

vehicular evolution never “severs” perception and action from cognition.  
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Adjustment of the vehicles’ perception-action mediation may develop 

centralized thinking processes that remain inherently tied to information 

about perception and action. Thus, subtle characteristics of the input to a 

vehicle “echo” all the way into motor processes. The idea behind this has been 

called the “continuity of mind” (Spivey, 2006), and is further supported by a 

consideration of the very machinery on which our cognitive system is based: 

The dynamic flow of stimulus energy (e.g., Gibson, 1979), the dynamical and 

fractal nature of neural firing patterns (e.g., Teich, 1989), and the complex 

interplay with continuously changing motor output (Kelso, 1996). Cognition 

might live in this continuity, and the idea that the body’s input and output 

processes are severed from the cognitive processes is a fiction that has so far 

conveniently served explanation, but is of only limited importance as we focus 

on the continuous, temporal, dynamic nature of cognitive processing.

The next four chapters of this work seek to support this radical 

suggestion of the continuity between perceptual-motor processes and 

cognition, even in a relatively complex cognitive process. In other words, even 

in a Braitenberg vehicle that has reached a very high level of sophistication, 

the cognitive process generates motor movements that reflect the internal 

processing itself: Action has not been severed completely from the internal 

states of the cognitive process. The subsequent chapters do this by focusing on 

the flow of information from cognitive processing into action. Chapter 2 

shows that a high-level cognitive process like categorization has this 

characteristic. Animal exemplars of either very high (e.g., cat) or low (e.g., 

whale) typicality are categorized into their superordinate classes (i.e., 

mammals). In previous categorization research (reviewed in Chapters 2 and 

4), atypical animals result in slower, less efficient categorization, while more 
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typical animals are quite readily categorized. This graded nature of 

categorization is explored in a very simple task that tracks manual output 

through mouse movements. Even after the action has been initiated, four 

experiments in Chapter 2 reveal that in both pictures and words of animal 

exemplars, motor output itself is graded in this manner: The typicality-based 

effects of categorization are also exhibited in action processes. 

In Chapter 3, some discussion about the role of models in theories is 

discussed, and provides some theoretical justification for developing a 

computational model of this cognition-action flow of information. Chapter 4 

bears this out, and presents two simulations which seek to articulate what 

kind of relationship between cognition and action can produce such graded 

motor output. A prediction generated by the second simulation is 

substantiated in Chapter 5. Typicality gradients among large classes of animal 

exemplars are also revealed in motor output, showing that the flow of 

information into action exhibits these finer-grained patterns of cognitive 

processing.

The implications of this research address the theoretical discussion 

presented above. Because cognitive processing is being reflected in action 

processes, it seems that some version of the continuity of mind thesis is the 

“matter of fact” of cognition. The separation of mind and body, while so-far 

useful for a variety of processes, cannot be true under deeper scrutiny of the 

temporal dynamics of perception, action, and cognition. 
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Matters of fact and units of analysis: Chapters 6-7

The final two chapters of this work aim to evaluate the nature of this debate 

more broadly. While computational conceptions of cognition, and powerful 

intuitive arguments about continuity, have both been compelling to varying 

numbers of researchers over the decades, the matters of fact of cognition are 

relevant to a very broad range of domains, from memory to language to 

perception. This complexity precludes a final decision about which system 

best captures cognitive matters of fact. The last two chapters consider how 

conciliation or competition between descriptive systems may be better 

explored.

Chapter 6 lays out the area of symbolic dynamics for conceptual 

purposes in cognitive science. While categorization may exhibit this 

gradedness, the discrete and serial theoretical framework continues most 

successfully to address other higher-order cognition processes (e.g., problem 

solving). This chapter showcases the mathematical framework of symbolic 

dynamics as a potential means of reconciling debate between these theoretical 

extremes. This set of tools, used in a variety of physical and mathematical 

sciences, offers a formal terrain that can incorporate both discrete and 

continuous accounts of cognitive processing. This mathematical framework 

may serve to formally adjudicate between them, or indeed reveal that both 

kinds of representation are important for explaining cognitive processes.

Chapter 7 concludes the dissertation with an extensive discussion of the 

philosophical and theoretical implications of both the research presented in 

Chapters 2-5, and the proposals for symbolic dynamics in Chapter 6. I 

consider a few ways in which the “matters of fact” may reach a consensus. 
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Three such possibilities are discussed, guided partly by issues in the 

philosophy of science. First, the matters of fact of cognition will always be 

“underdetermined” given any or all the evidence available. In other words, 

there will always be disputes about how cognition actually, in reality, works. 

We will not enjoy the satisfaction of a consensus. The second possible outcome 

is that cognitive science will be happy with the plurality of models -- both in 

number and kind -- in its various subdomains. This contentment will permit 

matters of fact to simply be relevant to the successful model in a given 

domain. Such a “metaphysical pluralism” urges that matters of fact are 

obtained across a whole range of domains of inquiry. The third draws on 

Chapters 2-5, and argues for continuity based on an “enhanced reductionism.”

Instead of embracing any one of these approaches, I will argue that all 

three are not very satisfying. I present a fourth option in which this debate 

regarding matters of fact can be reduced to units of analysis, and the goals of a 

particular analysis over those units. Again drawing on discussion in the 

philosophy of science, I will be somewhat dismissive of matters of fact, and 

propose a pragmatic solution. The goals of cognitive science are not to 

discover matters of fact, but to solve particular problems within particular 

domains. The upshot: Matters of fact don’t matter.
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CHAPTER TWO

Graded Motor Responses in the Time Course of 

Categorizing Atypical Exemplars 

 Introduction

The past few decades have seen a transition from classical set theoretic 

accounts of categorization, wherein cognitive processes and categories are 

seen as discretely bounded with unique membership, into the development of 

nuanced theories of fuzzy categories and their interrelationships. For example, 

Reed (1972), Rosch (1975; 1973), and Rips, Shoben, and Smith (1973) 

challenged the classical conception of category structure early on, revealing 

that more graded semantic-space effects are readily observable, and not easily 

accountable in terms of classical conceptions (e.g., Bruner, Goodnow, & 

Austin, 1956; Collins & Quillian, 1969). The emerging probabilistic prototype 

framework has also faced challenges from alternative accounts. An exemplar-

based theory of categories is often argued to account for a wider set of data 

(Medin & Schaffer, 1978; Nosofsky, 1988, 1992; Medin & Ross, 1989; see 

recently, Storms, 2005; see Smith, 2002, for an opposing perspective). Aspects 

of these similarity-based accounts, both prototype and exemplar, have also 

been suggested to figure into a theory-based theory of category structure in 

our cognitive system (Medin, 1989; Murphy, 2002; Murphy & Medin, 1985; see, 

e.g., Heit, 1994; Burnett, Medin, Ross, & Blok, 2005 and Lynch, Coley, & 

Medin, 2000). Despite this multiple branching of theoretical directions, 

experimental methodologies had remained largely unchanged. The upshot, 

until recently, is that the time course of processing in categorization had been 
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underexplored, compared to the development of theories regarding the static 

representation of category knowledge.  

There is a growing body of research devoting itself to this question. The 

time course of categorization phenomena has begun to receive some attention, 

from perceptual categorization (Ashby, Boynton, & Lee, 1994; Lamberts, 1995, 

2000; Nosofsky & Palmeri, 1997), to categorical perception of speech 

(McMurray & Spivey, 1999; McMurray, Tanenhaus, Aslin, & Spivey, 2003) and 

lexical processing (e.g., Cree, McRae, & McNorgan, 1999). Most of these 

experiments have made use of reaction-time measures.  For example, 

Lamberts (2000) introduces an information-accumulation account of speeded 

classification of objects (see also Ashby et al., 1994; Nosofsky & Palmeri, 1997). 

These investigations of the time course of categorization seek to supplement 

research that has generally placed more emphasis on the outcome of the 

process, rather than its continuous temporal dynamics (Nosofsky & Palmeri, 

1997). Decision models of categorization, like Lamberts’ (2000, 2002) and 

Nosofsky and Palmeri’s (1997), uncover the time course of the process leading 

up to the button-press response.

It is possible, however, that the motor output of the decision process 

itself also exhibits graded effects over time, providing further information 

about the continuous nature of the process. For example, McMurray et al. 

(2003) used eye-movement data to investigate the graded temporal dynamics 

of speech sound classification over the course of several hundred milliseconds. 

Similarly, Nederhouser and Spivey (2004) used eye-movement patterns to 

show competition between alternative taxonomic classifications of atypical 

animals.  When given a toy whale to categorize by dropping it in either the 

“fish” bucket or the “mammal” bucket, participants frequently fixated the 
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“fish” bucket first, before then fixating the “mammal” bucket for guiding the 

hand movement. These kinds of eye movement data represent “micro-

decisions” that are tentative intermediate emissions from a categorization 

process that is extended in time (Richardson, Dale, & Spivey, in press; see also 

Rehder & Hoffman, in press).

Motor responses of this kind epitomize what is often considered 

“output” from cognitive processes, the outcome of a pipeline from perceptual 

processes, through association cortex, into premotor regions, then collapsed 

into individual manual and oculomotor choice behaviors. More recent work 

on manual and oculomotor movements suggests that these manual processes 

are contiguous with cognitive processes (Gold & Shadlen, 2001; Shin & 

Rosenbaum, 2002). The eye-movement patterns themselves offer an unusually 

early glimpse into partially-active “micro-decisions” in motor output (cf. Gold 

& Shadlen, 2000; Magnuson, 2005). Unfortunately, the ballistic quality of most 

saccades prevents them from being able to exhibit truly graded effects of 

partially activated representations. On any given trial, participants either 

fixate the competing object or they don’t.  The eye movement data are usually 

not able to show continuous attraction effects within a trial (but cf. Doyle & 

Walker, 2001). In contrast, non-ballistic arm movements regularly involve 

curvature that reveals continuous attraction effects (Goodale, Pélisson, & 

Prablanc, 1986). In fact, continuous manual motor output has been studied for 

the very purpose of providing a variety of clues about graded underlying 

cognitive processes within individual trials. For example, Abrams and Balota 

(1991; see also Coles, Gratton, Bashore, Eriksen, & Donchin, 1985) used an 

arbitrary manual response task (pulling a handle to the right or left) in a 

lexical decision and recognition memory test. The frequency of lexical items 

24



and strength of recognition memory were strongly associated with a shorter 

time spent pulling the handle to its limit (i.e., greater force and velocity of 

pull), independent of the latency of response onset. The authors recommend 

that anticipation components of response preparation and force and velocity 

parameters of motor execution must figure into our understanding of 

cognitive processing. Similarly, Spivey, Grosjean, and Knoblich (2005) used 

computer-mouse trajectories to study spoken word recognition. In individual 

trials, subjects heard instructions such as “Click the candle,” and selected one 

of two objects in two corners of a computer monitor. Trials in which the two 

objects had similar-sounding names (e.g., a candle and a candy) revealed 

mouse-movement trajectories that exhibited significant attraction toward the 

competing object, compared to control trials (e.g., a candle and a spoon). 

Computer-mouse trajectories thereby revealed continuous dynamic partial 

activation of multiple competing representations during real-time spoken 

word recognition (see also Allopenna, Magnuson, & Tanenhaus, 1998, for 

related eye-movement results).  

The time course of categorization is a suitable model system for 

understanding the interaction among different processes as cognition unfolds 

(e.g., memory and attention; see Lamberts, 2000, for a discussion). For 

example, feature-sampling models of the time course of categorization 

contribute to understanding not simply categorization outcomes, but also 

predictive or explanatory systems accounting for reaction-time measures in 

these studies, and how these measures reflect perceptual information 

accumulation used in categorization (e.g., Lamberts, 2000, 2002). In the present 

case, four experiments reveal that categorization as a cognitive process flows 

into, rather than collapses onto, the effectors responsible for manual action. 
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The goal of the current paper is to demonstrate, via continuous computer-

mouse trajectories, that graded representations of this kind are also involved 

in the real-time taxonomic categorization of animal names and animal 

pictures. It is suggested that the temporal dynamics of matching a category 

exemplar to one of its potential categories exhibits a degree of 

“granularity” (Miller, 1982; Miller & Ulrich, 2003) that may be problematic for 

a discrete representational account of the categorization process. We present 

four experiments tracking continuous manual motor output during lexical and 

perceptual categorization of atypical exemplars. This work adds a new 

methodology to the study of the time course of categorization, and contributes 

to further specifying the processes by which the mind settles onto one 

categorical response versus another. These experiments illustrate how the 

gradual accumulation of evidence for a given category is not solely composed 

of that category’s representation transitioning from zero activation to full 

activation. As in many complex dynamical systems, there is also competition 

from alternative category representations that are partially active at the same 

time. Much like a dynamical system continuously traversing its high-

dimensional semantic space over time, the trajectory of the categorization 

process reveals that multiple categories (attractor basins) are nearly visited as 

the system eventually settles into a unique outcome-based response. 

Experiment 1

Typicality has become one of the most thoroughly studied aspects of 

categories and concepts since the transition from classical perspectives 

(Medin, 1989; Murphy, 2002). The empirical drive towards non-classical 
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accounts of categories was guided by studies of membership and typicality 

judgments and corresponding reaction-time measures (e.g., McCloskey & 

Glucksberg, 1978; Rips et al., 1973; Rosch, 1975). Category members deemed 

more typical are recognized faster (Rips et al., 1973), more consistently 

(McCloskey & Glucksberg, 1978), have many features in common (Rosch & 

Mervis, 1975), and can even result in facilitated language comprehension 

(Garrod & Sanford, 1977; see Murphy, 2002, chapter 2, for a review of these 

and other robust results). Recent research on categories and concepts has 

continued this emphasis (e.g., Burnett et al., 2005; Estes, 2003; Murphy & Ross, 

2005; Op de Beeck and Wagemans, 2002; Smith, 2002; Verbeemen, Storms, & 

Verguts, 2003). For example, Burnett et al. (2005) revealed that typicality 

ratings of various fish species are guided by knowledge-level expectations 

regarding fish, rather than a simple notion of category centrality (see also 

Lynch, et al., 2000).  Smith (2002) recently used expected patterns of typicality 

across category members as a focal point for theoretical debate, such as the 

effectiveness of exemplar-based perspectives. Typicality is thus central to our 

categorizing capacities, but also useful as a crucial measure for comparing 

opposing theories.

In the following 4 experiments, we utilize an animal stimulus set 

(words and pictures) whose elements differ in typicality. We used a small 

stimulus set of well-known animals that are either highly typical members of a 

category (dog as mammal), or those widely regarded as atypical (penguin as 

bird). In this first experiment, we recorded continuous manual responses in a 

categorization task. Participants performed a simple judgment: After seeing an 

animal word, participants clicked on one of two category labels to which the 

animal belongs. Some trials involved animals of an atypical nature – such as a 
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whale, which has several properties that suggest another category label (fish), 

potentially causing competition with the correct label (mammal). Just as in 

Spivey et al. (2005), echoes of a competitive categorization process should be 

reflected in continuous mouse movements. In other words, when categorizing 

whale as mammal, participants’ mouse trajectories should gravitate toward the 

competing category (fish) more so than when categorizing a typical exemplar 

label, such as cat.

Participants

41 undergraduate participants signed up for this experiment for extra credit in 

their psychology classes. All participants in this and subsequent experiments 

used their right hand to perform the task.

Materials

Word stimuli were presented using PsyScope software (Cohen, MacWhinney, 

Flatt, & Provost, 1993). Participants were faced with the task of choosing the 

appropriate category for each animal word, presented in text on the monitor.  

These categories included pairings of the following: mammal, reptile, bird, 

fish, amphibian, and insect.

There were two within-subject conditions. In control trials, the animal 

words were typical category members (e.g., cat as mammal).  In the 

experimental trials, they were atypical category members (e.g., penguin as 

bird), and both the correct category name and the featurally-similar competing 

category name were presented (bird and fish, respectively).  Although we 
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assume that typicality of category membership is a graded parameter, the two-

condition design of these studies required that we keep within-group 

variation among stimulus items to a minimum (particularly in the atypical 

animal condition).  Therefore, only 6 highly atypical animals were used in the 

atypical condition, with other merely moderately atypical animals being 

excluded from the design.  As typical category members are easier to generate, 

13 highly-typical animals were used for the control condition (see Table 2.1).

Procedure

Participants were presented with two different animal category names, 

randomly assigned to one of the upper corners of a computer screen. After 

2000 ms, a moment to see the category options, the text “Click Here” appeared 

in the bottom center of the screen. The participants were instructed to click 

first on that text and wait for an animal word to appear in its place, then to 

click on the upper (left or right) category name that was appropriate for that 

animal. Participants were provided with three practice trials before beginning 

the 19 target trials.  All trials were presented in random order.  

It was predicted that, in the experimental trials, mouse movement 

trajectories would show evidence of competition between the categories.  This 

competition is revealed by analysis of mouse-movement trajectory divergence: 

Atypical animal trials should have movement trajectories that reveal a slight 

bias towards the competing category (e.g., with whale, a slight attraction 

toward the category fish) when compared to control trials. Data for testing this 

prediction were collected by recording x and y coordinates of mouse-

movement trajectories. Due to occasional skipped samples, PsyScope’s 
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sampling rate averages approximately 42 Hz. As a result, each trial collects 

about 40-80 mouse-position data points. 

Data Analysis

Numerous analyses were conducted on these rich trajectory data. First, to 

enable averaging of full trajectories from multiple trials, all trajectories were 

normalized to 101 time steps, and were translated to begin at an x,y coordinate 

of (0, 0). These “time-normalized” trajectories can be compared between 

typical and atypical conditions. Divergence of the two averaged trajectories is 

established by significant differences between the x-coordinates. 

This first analysis provides information regarding the overall shape of 

the trajectories in both trial types. In addition to this time-normalized analysis, 

a “space-normalized” analysis was run in which beginning and end 

coordinates of each trial were normalized to (0, 0) and (1, 1), respectively. Real 

time information was retained by computing x,y coordinates as they travel 

from 0 to 1 in time bins of 0-500, 500-1000, and 1000-1500 ms. This provides a 

window onto the movement in real time from start to finish of a trial, and 

includes enough data in each time bin to permit an additional statistical test of 

the difference between trial conditions by subjecting these bins to a repeated-

measures ANOVA.

Finally, a number of properties of the trajectories were computed and 

compared between conditions: mouse-movement initiation time, movement 

duration, total categorization response time, distance traveled in pixels, and 

direction in degrees of the first pair of mouse movement samples. This last 

measure, initial movement direction in degrees, offers insight into early stages 
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Atypical

Eel (fish; reptile; mammal)

 Whale (mammal; fish; bird)

Sea lion (mammal; fish; reptile)
 Penguin (bird; fish; mammal)

Butterfly (insect; bird; reptile)
 Bat (mammal; bird; reptile)

Typical

Cat (mammal; reptile)
 
 Dog (mammal; insect)

Horse (mammal; bird)
 
 Goldfish (fish; amphibian)

Salmon (fish; mammal)
 
 Alligator (reptile; mammal), 

Rabbit (mammal; reptile)
 
 Lion (mammal; fish)


Hawk (bird; reptile)

 
 Rattlesnake (reptile; amphibian)

Sparrow (bird; mammal)
 
 Shark (fish; mammal)

Chameleon (reptile; insect)

Table 2.1: Atypical and typical animals/words in Experiments. In parentheses 

are the response options given to the participants, with correct categories 

italicized. Bold options in atypical trials indicate non-competing labels used in 

Experiments 2 and 4.



of the trial. For example, it is possible that participants are strategically 

moving the mouse cursor along the vertical on all trials before turning in the 

direction of the target category. Angle information on initial movement will 

reveal whether this is the case. Such a strategy would cause that initial 

movement from (0, 0) not to be significantly different from 0 off the vertical in 

both typical and atypical conditions. 

These final measures were supplemented by two further analyses: a) 

tests of bimodality in the distribution of trajectory curvatures, and b) a time 

series analysis to explore the complexity of the resultant trajectories. As 

discussed in Spivey et al. (2005), any pattern of competition seen in atypical 

trials may in fact be the result of an averaged bimodal distribution. If half of 

the correct trials involved movement straight toward the target, and the other 

half involved movement straight toward the competitor, followed by a 

corrective movement toward the target, the average of all trials could appear 

as a graded curvature toward the competitor – when in fact it would be better 

described as the result of a number of trials with rather discrete errors that 

were corrected mid-flight. To approach this problem, each trial’s area (in 

pixels) was computed between the actual trajectory and a straight line 

connecting the start and end points. A distributional analysis of this area 

should show bimodality if the averaged trajectory’s apparent graded 

curvature is actually due to occasional discrete errors that get sharply 

corrected partway through the movement.  Finally, sample entropy (Richman 

& Moorman, 2000) was used to discern whether atypical trajectories are more 

“complex” than typical trajectories (see Feldman & Crutchfield, 1998, for a 

discussion of complexity measures and their advantages and problems). If the 

competing category in the atypical trials is acting as a substantial second 
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attractor on the dynamics of manual output, then this stress should be evident 

as less smoothness in the trajectories. Atypical trials should show more 

complexity, because two attractor forces are acting on them. Sample entropy 

gives a larger value the more “complex” or irregular a time series. Further 

detail on this measure is presented below.

Results 

Participants categorized atypical exemplars with 90% accuracy, and typical 

exemplars with 95% accuracy, a significant difference (p < .05). Only correct 

trials were used in the following analyses. All incorrect trials were removed 

from analysis in this and subsequent experiments.

Time-normalized analysis

In this analysis, t-tests were conducted to compare the difference between the 

x-coordinate values for typical and atypical trials to zero, at each of 101 

interpolated time-steps throughout the trajectories (see Fig. 2.1A).  Rightward 

and leftward responses were pooled to maximize statistical power.  The 

relevant null hypothesis was that the difference between the atypical and 

typical trajectories’ x-coordinate at any given time step (out of 101) should be 

0.  As a more conservative test, in this and subsequent experiments, a reliable 

divergence was defined as a minimum of 8 consecutive time slices in 

sequence, in which the normalized trajectory differences were significant at a 

criterion of p < .05.  This criterion was established by performing a Bootstrap 

of 10,000 simulated experiments of the same mean and standard deviation (see 

Appendix).  Significant divergence between trajectories is thus observed when 
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there is a substantial sequence of consecutive significant t-tests between 

atypical and typical x-coordinates.  In this experiment, the trajectories 

exhibited significant differences in x-coordinates for 38 consecutive time slices, 

from the 47th to 85th time steps (p’s < .05). 

As an additional statistical test, we computed pooled bins from these 

time-normalized trajectories and conducted a 2 (typical vs. atypical) x 3 (1-33, 

34-67, 68-101 step bins) repeated-measures ANOVA. This test reveals a strong 

effect of trial type (F(1,40) = 21.8, MSe = 1824.8, p < .001), main effect of bin (F

(2,39) = 861.1, MSe = 1916.5, p < .001) and a significant interaction (F(2,39) = 

6.2, MSe = 783.7, p < .01). To reveal what portions of the trajectory are 

exhibiting this divergence, we conducted planned comparisons between trial 

types within each bin. These show a significant difference between trial types 

in the second and third bins (p’s < .001). Thus, by the second and final third of 

the time-normalized trajectories, atypical categorization is exhibiting 

significant divergence in x-coordinate from typical categorization. 

Space-normalized analysis

Fig. 2.1B shows a graph of the trajectories, from leftward and rightward 

movements, in separate conditions in terms of time bins and normalized pixel 

coordinates.  While the previous analysis preserved raw space and normalized 

time into 101 bins, this analysis preserved real time and normalized spatial 

coordinates of the mouse from (0, 0) to (1, 1), and pooled these values into 

three time bins: 0-500, 500-1000, and 1000-1500 ms. Once again, absolute left 

and right values of the x-coordinate were pooled for statistical comparison.  A 

similar 2 (trial type) x 3 (time bin) repeated-measures ANOVA was used.  This 

revealed a strong effect of trial type (F(1,37) = 52.3, MSe = .031, p < .001), time 
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bin (F(2,36) = 168.0, MSe = .041, p < .001), and a significant interaction between 

time bin and trial type (F(2,36) = 5.2, MSe = .030, p < .05).  Once again, planned 

comparisons were run between types at each time bin to detect what portion 

of the trajectories had significant divergence. The difference between the trial 

types was significant at every time bin (p’s < .01). 
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Figure 2.1: A) Mean time-normalized mouse-movement trajectories in 

Experiment 1, separated for left- and right-ward responses to the correct 

target.  Atypical trials (solid lines) indicate an attraction towards the 

competing category on the opposite side of the computer screen in the 

101 time steps. B) Mean mouse-movement trajectories in space-

normalized analyses, with x,y coordinates traveling from (0, 0) to (-1/1, 

1) in time bins: 0-500, 500-1000, and 1000-1500 ms. Atypical trials (solid 

lines) reveal slower movement towards target. 



Additional measures

The movement duration for atypical trials was 1573 ms, compared to 1338 ms 

for typical trials (t(40) = 3.8, p < .001).  Total categorization time (from animal 

word onset to final mouse-click) for atypical animals was greater than for 

typical trials, with 1997 ms and 1807 ms respectively (t(40) = 3.0, p < .01).  Total 

distance traveled also differed significantly (atypical: 894 pixels vs. typical: 831 

pixels, t(40) = 3.0, p < .01). Curiously, movement initiation latency showed an 

opposite pattern, but was only marginally significant (atypical: 424 ms vs. 

typical: 470 ms, t(40) = -1.8, p = .09). An analysis of the initial direction of the 

mouse trajectory, from position (0, 0), extracted a measure in degrees from the 

vertical (from the start-click event).  The typical trials exhibited a significant 

positive angle (toward the target) in a one-sample t-test (null hypothesis that 

degrees are different from 0), with a value of 6.0º, t(40) = 2.6, p < .05.  Atypical 

trials in fact exhibited a slight negative angle (toward the competitor), with -.

99º, but this was not significant. 

Item-based repeated-measures ANOVAs were also run using these 

same measures. Both movement duration and distance were marginally 

significant in the expected direction (F(1,17) = 3.2, 2.0, MSe = 72125.3, 7685.4, p 

= .09, .08, respectively), with means of atypical trajectories slower in time and 

longer in distance to reach their target. Neither movement initiation latency 

nor total response time was significant. These results may be difficult to 

interpret due to the size of the stimulus set. However, the marginal 

significance is suggestive that the effects in the expected direction may be 

significant with a larger set, while the movement initiation latency is not likely 

to be (F(1,17) = .8, p = .38). Initial angle of movement from vertical in fact 

shows a marginal difference between conditions in an item-based analysis (F
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(1,17) = 3.4, MSe = 54.3, p = .08), with the typical trials again showing the only 

significant difference from 0º at 6.6º, t(12) = 3.1, p < .01.

Two additional analyses were used to reveal more characteristics of the 

trajectories. First, as in Spivey et al. (2005), we explored the nature of the 

distribution of curvature across all trajectories. The pattern of divergence 

(from a straight line) in atypical trials could, in principle, have simply been a 

reflection of an averaged bimodal distribution. In contrast, there is no 

theoretical reason to expect such bimodality in the typical trials. The trial data 

used was the area between the actual trajectory and a straight line from (0, 0) 

to the final click (see Spivey et al., 2005). All trials across participants were 

used in order to have sufficient numbers for the statistical test. All area values 

were converted into z-scores, and subjected to distributional analyses. A 

Kolmogorov-Smirnov test for a difference in distribution revealed no 

difference between typical and atypical trajectories (χ2 = 1.9, p = .79; see Fig. 

2.2). In addition, computed bimodality coefficients for both typical and 

atypical trials were in the unimodal range of <.555 (see Spivey et al., 2005). 

While typical (.536) and atypical (.535) were close to this cutoff at which 

concerns about bimodality may arise, the values are in fact almost identical to 

each other. These results indicate that even if bimodality were a concern, it is 

not exclusive to the atypical trials. 

Finally, we explored the complexity of the trajectories using a time series 

analysis giving an entropy-based value. Sample entropy (Richman & 

Moorman, 2000) is computed by comparing windows of size m from a time 

series. A given window is said to be similar to another if their distance is less 

than some value r, known as the tolerance. This is given by the following 
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equation, in which two windows (w1 and w2) of size m have a distance equal to 

the maximal difference between paired elements composing them, with w1(i) 

representing the i-th element of window w1:

Sample entropy is then computed by taking the difference between 

averaged natural logarithms of counted similarities at size m and m+1. If, 

when window size is increased, the average number of similarities is similar, 

this value will be low. Conversely, with a higher difference between counts in 

m and m+1, it is less likely that windows similar to each other with size m will 

again be similar at m+1, indicating more irregularity in the time series. For this 

analysis, we used the time series of a trial’s normalized x-coordinate 

38

 

Figure 2.2: Percentage distribution histogram of z-scores for area in pixels 

in atypical (solid grey distribution) and typical (black outlined distribution) 

superimposed. Distribution analysis reveals no significant difference 

between these distributions.



fluctuations. This time series represents the extent to which horizontal 

movement is fluctuating towards one category label or back to the other. A 

range of window sizes was used (2-10), along with a tolerance of .2 multiplied 

by the standard deviation of all x-coordinate fluctuations (xt+1 - xt) in 

normalized trajectories. Across all values for m, mean sample entropy is 

numerically greater (indicating higher complexity) in atypical trajectories than 

in typical trajectories. These differences are statistically significant or 

marginally significant when m has the values 3 through 6. 

Discussion

Results indicate that the process of categorization exhibited nonlinear time-

course effects in mouse-movement trajectories. Trajectories revealed 

significant attraction toward the competing category name in the atypical-

animal condition, when compared to the typical-animal condition.  

Interestingly, the movement-initiation latency did not generate significant 

differences, though measures based on the manual motion itself revealed 

spatial divergence between atypical and typical trajectories and a difference in 

categorization time.  We therefore conclude that the manual output from the 

categorization process is reflective of a cognitive temporal dynamics wherein 

the mapping of exemplar to category evolves nonlinearly over time (cf. 

Lamberts, 2000). 
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Experiment 2

The same animal names were used in this second experiment.  However, in 

the atypical-animal condition, the alternative (incorrect) response option was 

not the taxonomic class that shares similar properties with the label’s referent.  

To explore whether the graded attraction effect in computer-mouse trajectories 

is in part due to competition between strongly activated categories, or if the 

manual curvature is solely a result of uncertainty in the match between 

atypical animal words and their correct categorization, we altered the 

response options for those trials.  For example, whereas the previous 

experimental trials used the categories fish and mammal for the atypical animal 

whale, the present experiment used an alternative (incorrect) category that did 

not share features with the animal word (e.g., bird and mammal for whale).  If 

the mouse trajectories for the atypical trials show equal curvature toward the 

incorrect response option (as in Experiment 1), this would suggest that the 

curvatures we are observing are merely due to a slow accumulation of 

evidence for the atypical animal being categorized as its correct taxonomic 

class; if this curvature is reduced, it would suggest that the differences in 

Experiment 1 are due in part to a dynamic attraction effect exerted by the 

featurally-similar competing category. 

Participants

41 undergraduate participants in this experiment received extra credit for 

psychology classes.
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Materials and Procedure

This experiment used the same technique and same words as the first, but the 

atypical-animal condition no longer involved competing categories.  Instead, 

the correct category was paired with a non-competing one (e.g., whale = 

mammal or bird).  The control trials were the same as in Experiment 1 (see Table 

2.1).  

Results 

Participants categorized atypical exemplars with 92% accuracy, and typical 

exemplars with 98% accuracy (p < .01). Again, only correct trials were used in 

the analysis.

Time-normalized analysis

Normalized trajectories revealed a single sequence of 8 t-tests (p’s < .05), from 

the 72nd to 79th time step, showing atypical-typical x-coordinate differences 

that were reliably greater than zero (see Fig. 2.3A).  Although significant, this 

brief divergence between atypical and typical trajectories is a substantially 

diminished sequence compared to the previous experiment’s 38 consecutive 

time steps with significant differences. Again, as an additional statistical test, 

pooled bins from these time-normalized trajectories were used in a 2 (typical 

vs. atypical) x 3 (1-33, 34-67, 68-101 time steps) repeated-measures ANOVA. 

There was no significant effect of trial type (F(1,40) = 2.2, MSe = 1341.2, p = .

14), but a significant main effect of bin (F(2,39) = 1147.7, MSe = 1289.0, p < .

001), and a significant interaction (F(2,39) = 4.0, MSe = 617.4, p < .05). While 
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there was no main effect of trial type, comparisons did show a significant 

difference between typical and atypical conditions at the third time bin (p < .

05).

Space-normalized analysis

There was a main effect of time bin (F(2,35) = 340.1, MSe = .035, p < .001), but 

no significant effect of trial type, or interaction between trial type and time bin 

(see Fig. 2.3B).
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Figure 2.3: A) Mean time-normalized mouse-movement trajectories in 

Experiment 2, separated for left- and right-ward responses to the correct 

target.  Atypical trials (solid lines) reveal a diminished attraction towards 

the competing category. B) Space-normalized time bins show no significant 

differences between trial types (atypical in solid lines).



Additional measures

No significant differences were found in movement initiation latency (416 ms 

atypical vs. 403 ms typical, t(40) = .6, p = .6). However, there were significant 

effects of total response time (1840 ms vs. 1718 ms, t(40)=2.5, p < .05), 

movement duration (1424 ms vs. 1315 ms, t(40)=3.8, p < .05), and distance 

traveled (836 pixels  vs. 780 pixels, t(40)=2.3, p < .05).  Initial movement angle 

showed no significant effects. Interestingly, both were positive towards the 

target category (3.1 vs. 2.25 in atypical and typical trials, respectively). In item-

based repeated-measures ANOVAs, only total response time and distance 

traveled were significant (F(1,17) = 4.7, 9.9, MSe =  20023.7, 1990.5, respectively, 

p’s < .05). Neither movement initiation latency nor movement duration was 

significant. There were no significant results in initial angle. 

As before, a Kolmogorov-Smirnov test did not show a significant 

difference in the distribution of trajectory curvatures between typical and 

atypical trials (χ2 = 1.8, p = .80). Bimodality coefficients were again similar, and 

below .555 (.546 and .549). Finally, sample entropy analyses did not show any 

significant or marginally significant differences using window sizes of 2-10. 

The greatly reduced trajectory attraction effects during categorization 

with non-competitive alternative categories suggests that the spatial attraction 

effects in Experiment 1 were not due merely to the inherent atypicality of the 

label’s referent.  The featural similarity between the animal and the (incorrect) 

alternative category – present in Experiment 1 and absent in Experiment 2 – 

played a substantial role in eliciting curvature in the computer-mouse 

trajectory.  When differential divergence between the average time-normalized 

trajectory for atypical animals and the average trajectory for typical animals is 

plotted over time for Experiment 1 and for Experiment 2 (Fig. 2.4), the 
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competitive alternative categories in Experiment 1 clearly show a much 

stronger attraction effect than the non-competitive alternative categories in 

Experiment 2.  These trajectories differ significantly for 19 time slices, from the 

57th to 75th time steps (p’s < .05). In addition, when atypical-animal trials from 

these experiments are compared using space-normalized time bins, there is a 

main effect of experiment (F(1,75) = 5.8, MSe = .096, p < .05) and an interaction 

between experiment and bin (F(2,74) = 3.4, MSe = .039, p < .05). These 

differences suggest that Experiment 1’s effects were strengthened by the 

presence of competitor labels.

44

Figure 2.4: Mean total divergence (atypical trial – typical trial x-coordinates) 

for Experiments 1 and 2.  Experiment 1 (solid line) exhibits significantly 

more divergence.

 



Discussion

Interestingly, and perhaps surprisingly, non-competing alternative category 

labels in Experiment 2 still induced some significant, albeit small, attraction. 

For example, when faced with possible responses mammal and bird for the 

examplar whale, participants’ trajectories in Experiment 2 showed some 

significant attraction toward the putatively non-competing label bird. Why 

should this be?  The answer may lie in the between-category similarity.

In addition to considering the match between an exemplar and a 

potential category, we must also consider the similarity between categories 

themselves (cf. Storms, 2005). Although one may initially assume that the non-

competing alternative categories of Experiment 2 should remove the patterns 

of competition seen in Experiment 1, there actually remains substantial 

between-category similarity among the correct and alternative category 

responses.  For example, in addition to whale being a good match for mammal, 

and a partial match for fish, it also has a moderate amount of fit to bird.  

Whales and birds both move, breathe, and eat. They both have eyes, skin, 

muscles, bones, lungs, a brain, a heart, etc.  Thus, even our “non-competing” 

category labels in Experiment 2 still share a number of similar features with 

the target stimulus, since they are all in the superordinate-level category of 

animals.  Even such minor similarity appears to be sufficient to produce some 

mild attraction effects in the mouse-movement trajectories. Based on the 

combined results of these first two experiments, we suggest that mouse 

movement curvature reflects a competition process wherein partially active 

categories pull the state of the cognitive system toward their respective 

attractor basins.  Dynamic properties of the resulting nonlinear mental 
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trajectory are emitted in the continuous manual output of computer-mouse 

movement. As in many classic categorization studies (e.g., Rosch, 1973; Rips et 

al., 1973), we were able to induce these effects with atypical category members 

presented in lexical form. 

Indeed, the initial process of visual word recognition may also exhibit 

some attractor dynamics of its own (e.g., Hinton & Shallice, 1991; McRae, de 

Sa, & Seidenberg, 1997; Rueckl, 2002). Because initial processing in the trials of 

both Experiments 1 and 2 involve lexical recognition, the competitive process 

following them is attributable to the process of categorization. Some 

additional dynamics therefore take place following this word recognition 

phase, in the time course of mapping lexical processing onto a categorization 

response. These experiments reveal that even the manual output of this 

mapping reflects the partially active representations underlying it. 

Experiment 3

In the next two experiments, participants categorized pictures of our animal 

set, rather than lexical items. Numerous studies have considered the 

distinction between processing pictures and words, and the relationship 

between this processing and a proposed core conceptual representation 

underlying them. Early on, for example, Snodgrass (1984) argued that pictorial 

and verbal codes have separate functions and distinct neurophysiological 

realization, rather than being mere surface forms for a central underlying 

concept representation (see also Paivio, 1991). More recently, numerous 

studies have explored the efficiency with which picture vs. word stimuli are 

categorized, with most showing a small but significant advantage for pictorial 
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stimuli (e.g., Job, Rumiati, & Lotto, 1992; Snodgrass & McCullough, 1986; 

Viswanathan & Childers, 2003). For example, Viswanathan and Childers 

(2003) demonstrated a processing advantage for pictorial stimuli in a task 

where participants judged whether two stimuli were members of the same 

category. The authors suggest that visual stimuli induce simultaneous 

processing of category-relevant visual features and of their categories or 

concepts. Thus, the accumulation of featural-match information may be faster 

and more robust with pictures than with lexical presentation alone, which 

relies only on conceptual information acquired through orthographic input.

This discussion suggests a few predictions for Experiments 3 and 4, 

using visual stimuli. First, typical-animal picture trials will likely be 

categorized faster and more efficiently than typical-animal lexical trials. 

Previous research suggests this processing advantage for visual examplars. In 

addition, because visual stimulus features simultaneously act with conceptual 

activation, there may in fact be more competition for atypical picture trials 

(Experiment 3) than there was for atypical word trials (Experiment 1). Visual 

features of atypical animals often provide some partial match to competing 

categories. For example, whale images offer visual information that greatly 

resembles fish. The atypical functional features of the concept whale, along 

with potentially misleading perceptual information, could increase the 

attraction exhibited in mouse-movement trajectories (Experiment 3 compared 

to Experiment 1). Finally, this prediction regarding atypical competitive trials 

using pictures, and the previous discussion of moderate similarity even 

between non-competitive categories and exemplars, suggests that substantial 

competition should be seen in conditions with non-competitive category 

alternatives when pictorial stimuli are used (Experiment 4 compared to 
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Experiment 2). If misleading visual features cause more equivocal information 

to be partially active on atypical-animal trials, even when the category label is 

supposedly non-competing, it should take more time for the correct category 

to reach maximal activation. 

Participants

45 Cornell undergraduates participated in this experiment to receive extra 

credit for their psychology classes.

Materials and Procedure

The picture stimuli were color images of approximately equal size, collected 

from the Internet.  Images were chosen to be easily identifiable. For example, 

goldfish (and whale) images were from a side-angle view. All atypical photos 

were whole-body images of the animals. None of the animal pictures were 

miscategorized persistently in Experiments 3 and 4. Besides employing 

pictures rather than words, the following two experiments use the same 

materials and procedures as the previous two.

Results 
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Accuracy rate for atypical animals was 96%, and for typical animals was 99% 

(p = .078). Once again, all incorrect trials were discarded before analysis.

Time-normalized analysis

As seen in Fig. 2.5A, the atypical-animal trials elicited substantially more 

curved computer-mouse trajectories than did the typical-animal trials. 

Collapsed across leftward and rightward trajectories, t-tests revealed atypical-

typical x-coordinate differences that were significantly greater than zero (p < .

05) across 61 consecutive time steps, from the 26th to 87th slices. This is 

considerably larger than the 38 from Experiment 1. In the repeated-measures 

ANOVA with binned time steps, there was a significant main effect of trial 

type (F(1,44) = 34.5, MSe = 2012.5, p < .001), bin (F(2,43) = 1773.6, MSe = 1475.3, 

p < .001), and interaction (F(2,43) = 14.7, MSe = 1007.6, p < .001). Planned 

comparisons show that, in all three normalized time bins, atypical trials 

diverged in the x-coordinate from typical trials (p’s < .05), exhibiting attraction 

to the competing response category.

Space-normalized analysis

By normalizing coordinates to travel from origin (0,0) to (1,1), the three real-

time bins reveal a robust main effect of trial type (F(1,43) = 45.6, MSe = .056, p 

< .001), time bin (F(2,42) = 289.1, MSe = .028, p < .001), and an interaction 

between trial type and time bin (F(2,42) = 8.1, MSe = .034, p = .001). Planned 

comparisons show that all three time bins (0-500, 500-1000, and 1000-1500 ms) 

contain significantly different mean x-coordinates for the atypical- and typical-

animal trials (p’s < .001).
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Additional measures

The difference between movement initiation latencies was significant and in 

the expected direction (440 ms for atypical animals vs. 383 ms for typical 

animals, t(44) = 2.5, p < .05).  There was also a significant difference between 

the two conditions in the total time taken to perform the categorization (2150 

ms vs. 1560 ms, t(44) = 5.2, p < .001).  Movement duration differed significantly 

(1710 ms vs. 1177 ms, t(44) = 7.7, p < .001), and total distance traveled differed 

significantly as well (1017 pixels vs. 830 pixels, t(44) = 5.4, p < .001). Item 

analyses for all measures revealed significant differences between typical and 
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Figure 2.5: A) Mean time-normalized mouse-movement trajectories in 

Experiment 3, separated for left- and right-ward responses to the correct 

target.  Atypical picture trials (solid lines) indicate strong divergence 

towards the competing category. B) Space-normalized time bins show a 

strong attraction, and slower progress towards target for atypical trials 

(solid lines).



atypical stimuli (p’s < .01).  In contrast to Experiment 1, every dependent 

measure showed a strong reliable difference between atypical and typical 

conditions.

Analysis of initial direction in degrees shows a significant difference 

between atypical and typical trials (t(44) = 2.1, p < .05), with atypical trials in 

fact showing a negative angle (towards competitor; -2.98) and typical trials 

showing a significant positive angle of 4.5 towards the correct category (t(44) = 

2.1, p < .05). The negative angle of atypical trials was not significantly different 

from 0 (t(44) = -.94, p = .35). 

Distribution analysis with the Kolmogorov-Smirnov test again shows 

that curvatures for atypical and typical trajectories did not have different 

distributions (χ2 = .94, p = .97). Bimodality coefficients were similar and 

below .555 (.503 and .457, for atypical and typical, respectively). Sample 

entropy measures showed much stronger effects than Experiment 1 and 2. 

Again using window sizes of 2-10, and .2 times the standard deviation of all x-

coordinate fluctuations across trials as the tolerance, atypical trials consistently 

showed reliably higher sample entropy in all window sizes (p’s < .05).

Discussion

Results indicate that the process of categorizing pictures of animals exhibited 

temporally dynamic spatial attraction effects in the mouse-movement 

trajectories.  In fact, the perceptual ambiguity of the atypical animals seemed 

to induce greater competition effects, in both trajectory and time measures, 

than did the lexical stimuli, as predicted above.  In Experiment 1 (with animal 

words), the spatial divergence between atypical-animal trajectories and typical-
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animal trajectories was significant for 38 consecutive normalized time slices, 

whereas in the present experiment (with animal pictures), the spatial 

divergence was significant for 61 consecutive normalized time slices.  

Moreover, the atypicałtypical differences in total response time, movement 

duration, and movement distance were also greater in the present experiment 

than they were in Experiment 1. 

Experiment 4

Just as Experiment 1 (with animal words) had its control comparison in 

Experiment 2, using less-competitive alternative response options, Experiment 

3 (with animal pictures) has its control comparison in the present experiment.  

In Experiment 4, the taxonomic class response options were the same as in 

Experiment 2, e.g., mammal and bird for the exemplar whale, but the exemplar 

was presented as a picture instead of a word.  Thus, the alternative (incorrect) 

category in the atypical-animal condition here (e.g., bird) had less featural 

match to the exemplar (e.g., whale) than the one in Experiment 3 had (e.g., 

fish). However, the poor match between the salient visual properties of the 

picture and the correct category response (e.g., whales do not look much like 

mammals) may cause the correct category to be somewhat less competitive in 

the categorization process than it is when exemplars are presented as words.  

With closer relative competitiveness of the two categories, the alternative 

(incorrect) category response may be able to exert a more substantial spatial 

attraction effect than was seen in Experiment 2.
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Participants

39 undergraduate participants signed up for this experiment for extra credit in 

their psychology classes.

Materials and Procedure

This experiment used the same technique and same pictures as Experiment 3, 

but the experimental (atypical-animal) condition involved less competitive 

categories.  The same non-competing response options from Experiment 2 (see 

Table 2.1) were employed here. 

Results 

Accuracy rate for atypical animals was 94%, and for typical animals was 97% 

(p = .58). Once again, all incorrect trials were discarded before analysis.

Time-normalized analysis

Analysis of mean trajectories in combined left and right trajectories again 

showed  differences in x-coordinates that were significantly greater than zero 

across 66 consecutive time steps, from the 28th to the 94th slices (p’s < .05; see 

Fig. 2.6A). A binned repeated-measures ANOVA as in previous experiments 

showed a highly significant main effect of trial type (F(1,38) = 17.0, MSe = 

1538.6, p < .001), bin (F(2,37) = 2401.5, MSe = 1134.8, p < .001), and an 
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interaction with time step bin (F(2,37) = 7.8, MSe = 589.6, p < .001). Planned 

comparisons show significant differences between trial types in the second 

and third normalized time bins (p’s < .01).

Space-normalized analysis

Fig. 2.6B shows space-normalized trajectories in the three real time bins. A 

repeated-measures ANOVA included a significant effect of trial type (F(1,36) = 

28.7, MSe = .047, p < .001), time bin (F(2,35) = 739.0, MSe = .016, p < .001), and 
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Figure 2.6: A) Mean time-normalized mouse-movement trajectories in 

Experiment 4.  Atypical picture trials (solid lines) also reveal a significant 

attraction towards the competing category. B) Space-normalized time bins 

again show a strong but diminished attraction, and slower progress 

towards target for atypical trials (solid lines).



an interaction between trial type and bin (F(2,35) = 9.1, MSe = .017, p = .001). 

All three bins show a significant difference between trial types (p’s < .05). 

Additional measures

There was no significant difference in initiation latencies between the two 

condition (392 ms atypical vs. 349 ms typical, t(38) = 1.6, p = .12).  As in 

Experiment 3, there was a significant difference between the two conditions in 

the total time taken to perform the categorization (1813 ms vs. 1461 ms, t(38) = 

5.2, p < .001).  Both movement duration (1421 ms vs. 1112 ms, t(38) = 4.8, p <. 

001), and total distance traveled were significantly greater in atypical trials 

(806 pixels vs. 747 pixels, t(38) = 3.3, p < .01). Initial angle from (0, 0) for typical 

trials was at 4.9, significantly greater than 0 (t(38) = 2.1, p < .05), while atypical 

trials were again slightly negative (-1.7), but not significant. Item-based 

analyses showed the same patterns of significance (p’s < .05), though 

movement initiation latency showed a marginal significance (t(17) = 8.7, p = .

07). Finally, a Kolmogorov-Smirnov test showed no significant difference 

between typical and atypical curvature distributions (χ2 = 1.1, p = 1.0). 

Interestingly, bimodality coefficients were both near but greater than .555 (.584 

and .597 for atypical and typical, respectively). The value for typical trials, 

however, is greater than for atypical trials.  Thus, if each of these distributions 

was genuinely the result of two independent classes of motor-movement 

trajectories (those that started out correct, and those that were sharply 

corrected in mid-flight), this bimodality cannot be attributed solely to the 

atypicality of the whale, seal, penguin, etc. – even the typical animal pictures 

elicited this pattern.  Finally, just as in Experiment 2, sample entropy showed 

no significant differences between atypical and typical trials. As Experiments 1 
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and 3 showed reliably greater sample entropy for atypical trials compared to 

typical trials, this measure may be a critical indicator of  the difference 

between competitive and non-competitive category trials.  When both 

category response options are substantially competitive (Experiments 1 and 3), 

the mouse-movement trajectories exhibit a conspicuous complexity that may 

be due to the nonlinear dynamics inherent in an attractor landscape that has 

multiple strong attractor basins. 

Discussion

Using visual images of exemplars, a non-competitive alternative category still 

induced considerable curvature in the mouse-movement trajectory. When 

divergence between the average trajectory for atypical animals and the 

average trajectory for typical animals is plotted over time for Experiment 3 

and for Experiment 4 together (see Fig. 2.7), the competitive alternative 

categories in Experiment 3 show a numerically stronger attraction effect than 

the non-competitive alternative categories in Experiment 4.  However, the two 

atypical-animal trajectories from Experiment 3 and 4 do not exhibit a 

significant difference for more than 8 consecutive normalized time steps. 

Nevertheless, when doing independent samples t-tests of the outcome-based 

dependent measures of the experimental trials from Experiments 3 and 4, total 

response time (t(82)=2.6, p < .05), total time in motion (t(82)=2.5, p < .05), and 

distance traveled (t(82)=4.8, p < .001) all indicated that when the incorrect 

alternative category was competitive (e.g,. fish for the whale picture), mouse-

movement was slower and more extensive than when the incorrect alternative 

category was non-competitive (e.g., bird for the whale picture). Item-based 
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comparisons between atypical trials between Experiments 3 and 4 also show a 

significant difference for distance in the expected direction (t(5) = 6.2, p < .01).

Thus, although not quite as much as in Experiment 3, images of 

atypical animals in Experiment 4 did induce computer-mouse trajectories that 

exhibited spatial attraction toward an incorrect category label more so than 

trajectories for typical animals. When words were used with this non-

competitive arrangement instead of images, in Experiment 2, a much 

diminished trajectory curvature was observed, as was compared to its 

corresponding competing-label scenario in Experiment 1. As one simple 

explanation for this strengthened attraction in the non-competing labels in 

Experiment 4 (as compared to Experiment 3), the divergence between 

trajectories may be the result of a reduced featural match of the correct 
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Figure 2.7: Mean total divergence (atypical trial – typical trial x-coordinates) 

for Experiments 3 and 4.  Experiment 3 (solid line) exhibits greater 

divergence, though not significant for 8 time steps (see text for details).

 



category with the visual properties of the atypical exemplar, rendering the 

alternative category’s meager competitiveness relatively more substantial. 

When one then compares Experiment 4 with Experiment 3, the exceptionally 

long mouse movements (in time and space) for atypical-animal trials in 

Experiment 3 can be seen as due to that same reduced competitiveness of the 

correct category combined with a considerable competitiveness of the 

alternative category, resulting in a particularly lasting and laborious 

competition between the categories.

General Discussion

The lexical stimuli in Experiment 1 revealed that categories in competition 

lead to a dynamic spatial attraction of the resultant mouse trajectories. This 

competition diminishes, but does not go away, when the featurally-similar 

alternative category is replaced by a less-competitive alternative category in 

Experiment 2. Interestingly, this pattern changes when using image-based 

stimuli in Experiments 3 and 4. Images of atypical exemplars produce robust 

mouse-trajectory attraction toward both highly-competitive alternative 

categories and less-competitive categories alike. These results offer further 

insight into the nature of categorization. As mentioned in the introduction, the 

time course of categorization has only recently been rigorously explored (e.g., 

Nosofsky & Palmeri, 1997; Lamberts, 2000).  Like Abrams and Balota’s (1991) 

results with lexical decision and recall memory, these results further suggest 

that manual responses themselves may be reflective of a continuous, dynamic 

process of categorization underlying participant performance in these 

experiments. 

58



Importantly, these findings may extend the information-accumulation 

theory of Lamberts (2000) and the exemplar random-walk model of Nosofsky 

and Palmeri (1997). These theories may in fact predict the above results. For 

example, the Nosofsky and Palmeri random-walk model involves a race 

among exemplars governed by their similarity to a test item. In our case, right 

vs. left response boxes (competing categories) attract the continuous manual 

movement in accord with the extent to which they fit the exemplar presented. 

Depending on how its representations are mapped onto motor output, this 

race could result in a substantial pull toward highly competitive alternative 

categories (as in Experiments 1 and 3), and somewhat less of a pull with less-

competitive alternative categories. This basic finding that continuous, graded 

processing of the exemplars during categorization flows into the effectors can 

be seen as an extension of an iterative sequential-sampling, information-

accumulation perspective. While the perspective of both Lamberts (2000) and 

Nosofsky and Palmeri (1997) is applied largely to the process leading up to a 

discrete categorization response, our results suggest that the response is itself 

a component of this continuous, probabilistic processing. A full synthesis may 

accompany future experiments that overcome some limitations of the current 

ones. For example, it must be acknowledged that the current research employs 

a small stimulus set. Future experiments may further bridge the various levels 

of the categorization process (from perception to response preparation and 

production) through more extensive stimulus sets. While the current 

experiments serve as an initial demonstration of these patterns using a small 

set of commonly known animals, there remain numerous issues to explore. 

These might include the resolution of item-by-item typicality, frequency, and 

other variables and their concomitant effects on continuous output. Despite 
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the present limitations, these experiments demonstrate a potentially fruitful 

avenue for eventually mapping out an uninterrupted explanatory landscape 

from perceptual input to motor output.

Classical perspectives on cognitive processing as organized into 

discrete serial stages would likely predict that only noise would account for 

graded output patterns in tasks such as taxonomic categorizing – and that 

mean trajectories should in fact simply indicate the target response. While the 

current results are particularly strong for recommending against this purely 

serial perspective on the process of categorization, we would argue that they 

also have broader theoretical significance regarding representational issues in 

cognitive theories. Throughout the cognitive sciences, debate continues over 

the nature of conceptual representation.  A central dichotomy in this debate is 

the format of representation, and related processing-flow issues, that underlie 

cognition.  On one side of this debate, representations are largely characterized 

as discrete and symbolic, and undergo computational or algorithmic 

manipulation akin to a Turing machine (e.g., Fodor, 2000; Dietrich & 

Markman, 2003; Marcus, 2001; Pinker, 1997).  On another side, there are a 

variety of proposals that see representational states as probabilistic, graded 

informational states that either undergo computational manipulation 

(Massaro, 1989, 1998), or are part and parcel of a system that blends content 

and process in its operation (Elman, Bates, Johnson, Karmiloff-Smith, Parisis, 

& Plunkett, 1996; Port & Van Gelder, 1995; Rumelhart & McClelland, 1986; 

Spivey & Dale, 2004).  This dichotomy only approximates the rich spectrum of 

opinion in cognitive science (cf. hybrid systems such as those by Young & 

Lewis, 1999; Sun, 1997). Nevertheless, debate tends to focus on the extent to 
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which each format of representation contributes most to our understanding of 

cognition. 

A range of behavioral data is typically adduced to support one and 

challenge the other. A classic example of phenomena interpreted as supporting 

the existence of discrete-symbolic representations is the very act of 

categorization itself: “It follows…that if a system categorizes, then it has 

discrete representations” (Dietrich & Markman, 2003, p. 102). For example, 

early research on categorical perception of speech sounds not only fit perfectly 

into the traditional perspective on symbolic computation, but also led to 

proposals that there exist specialized processes of this sort for speech (see 

Massaro, 1998 for a review). Categorization is but one property of several 

behaviors that animals exhibit that have been proposed to support the 

centrality (or at least existence) of discrete-symbolic representations in 

cognition (for other properties, see Dietrich & Markman, 2003; Marcus, 2001). 

It has, however, been of central importance for understanding our cognitive 

architecture.

Related to recent research (e.g., McMurray et al., 2003; Nederhouser & 

Spivey, 2004), lexical and perceptual categorization in the present experiments 

revealed graded response patterns in participants’ mouse trajectories (see also 

Spivey et al., 2005).  As in Abrams and Balota (1991), it seems that the time 

course of categorization is reflected in the manual output from the process. In 

particular, given our results that competing category labels generate greater 

trajectory curvature, slower time measures, and longer trajectory excursions, 

this temporally sensitive deviation in motor output suggests partially active 

states underlying the time course of categorization. The upshot for cognitive 

representation is subtle, but important.  If discrete representational states 
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underlie cognition at some point following perceptual processing, then there 

must still exist some “granularity” of information, in Miller’s (1982) sense, by 

the time this process is being converted into motor output. If this is granted, 

then there is a limit on the discreteness imputed to the representational states 

underlying categorization. Discrete representational perspectives may indeed 

account for these kinds of results by allowing differing levels of granularity in 

representational discreteness. Indeed, further pursuing the line of research in 

Miller (1982; see also Miller & Ulrich, 2003) may reconcile these theoretical 

perspectives by finding a common ground between purely continuous and 

purely discrete representations (cf. Dale & Spivey, in press). This would 

involve specifying how refined the granularity is at various stages of 

processing. 

These studies demonstrate that echoes of continuous (non-discrete) 

informational states can be observed in the dynamic properties of resultant 

motoric responses – granularity evident even in the manual output. Any 

postulated discrete representational states mediating sensors and effectors 

must carry at least some relevant information from early graded states in 

order for the motor output to mimic the continuity of the sensory input. In 

other words, while reaction times and accuracy measures may reveal 

information about the decision process during discrete, algorithmic 

processing, the graded manual output from the system observed here 

indicates that even when these discrete decision processes collapse onto the 

effectors, there remains some granularity. 
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Appendix

In order to establish a basis for our criterion used in the multiple t-tests on 

time-normalized trajectories, we conducted simulations akin to the Bootstrap 

method (Efron & Tibshirani, 1993). The mean and standard deviation of each 

of 101 time steps in atypical and typical trajectories in Experiment 1 were 

recorded. Next, 10,000 simulated “experiments” were computed using the 

same mean and standard deviation. In other words, in each of these 

simulations, we constructed 41 model participants (N in Experiment 1) by 

constructing atypical and typical trajectories from these time-step means and 

standard deviations. Within each trial type, each time step (out of 101) was 

sampled from a normal distribution with the mean and standard deviation 

from the time steps of the actual mean trajectories, thus preserving the non-

independence between time steps. We then ran t-tests within each of the 

10,000 simulations for each time step (101 time steps, and N = 41). Of these 

10,000, we recorded the frequency with which sequences of significant 

differences occurred. Simulations revealed significantly different  sequences of 

6, 7, and 8 time steps with a percentage of 3%, 1%, and .5%, respectively (see 

Table 2.2). A sequence of 8 consecutive significant t-tests is thus produced by 

chance in these simulations with less than .01 probability, and was selected as 

a conservative measure. This simulation therefore recommends a criterion of 8 

consecutive significantly different timesteps for discerning whether the 

interdependent time steps in our experiments have sequences that exceed 

what would occur by chance alone. This criterion was also used in 

Experiments 2-4.
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Table 2.2: Frequency (in percentage) of sequences discovered in the 10,000 

simulated experiments
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CHAPTER THREE

On Resilience and Versatility: 

The Theory-Model Distinction and Connectionism

Introduction: Of Ideals and Details

Political and social ideals swirl into the world, vanish just as easily, and 

routinely reappear in novel forms under different historical circumstances.  

The way these ideals are applied can differ widely within and across 

generations.  Whatever the success of these applications, the ideals are often 

resiliently held by those who adopt them, largely because the practical details 

of ideals manifest themselves in versatile ways.  

In some respects, a scientific theoretical framework has the properties of 

political and social ideals.  A set of theoretical ideals in any discipline may fall 

out of favor, only to reappear with the advent of new conceptual, 

mathematical, or technical tools.  In some cases, these ideals may simply 

reappear by a kind of reinvention of the theoretical wheel.  When the details of 

theoretical ideals are worked out, a theorist is resilient in the face of 

drawbacks or preliminary failures, because the details can be elaborated with 

considerable versatility.

In what follows, we argue that scientists generally, and cognitive 

scientists in particular, harbor two personalities.  The resilient theorist is one 

who sticks by her theoretical ideals, encouraging the interpretation of worldly 

phenomena in terms of a particular set of constructs and operations among 

them.  The versatile modeler uses these ideals and models aspects of the world 

after them.  The versatility with which these ideals are applied encourages the 
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theorist’s resilience, and indeed the reverse is true.  These personalities are 

close kin, and both may inhabit a single scientist.  Though very similar 

observations were a focus of the latter-half of last-century’s philosophy of 

science, we aim to flesh out the consequences of these personalities and apply 

them, as an important conceptual basis, to debates in cognitive science.1

In the first part of this paper, we provide intuitive and historical 

support for the distinction between theories and models.  The distinction as 

drawn is not trivial, and we describe certain consequences that importantly 

underlie the pursuits of resilient theorists and versatile modelers.  

In the second part, we show how disregard for the theory-model 

distinction can lead to misdirected criticism of robust cognitive scientific 

frameworks. We assail arguments against connectionism in an attempt to 

show that ignoring the distinction and its consequences leads to some unfair 

assessments of connectionist theory.  Finally, we describe the ways in which 

connectionist modelers have encoded semantic representations in models, and 

how this illustrates the distinction, its consequences, and the way 

connectionism satisfies a number of conceptual constraints.
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reaction to the Received View (Bechtel, 1988) of scientific explanation and 

change.  Many philosophers of science have noted the steadfastness of 

theorists, and the latitude with which the theorists may approach data (to 

name a few, Kuhn, 1963; Quine & Ullian, 1970; Lakatos, 1978).



Resilient Theorists, Versatile Modelers

The term “theory” is indeed vague.  From a Greek word roughly translated “a 

looking at” or “viewing,” it has been used in a variety of ways since at least 

1674, when it appears in Dryden’s line “Your theories are here to practice 

brought, As in mechanic operations wrought.”  This usage of the word, as a 

system of ideas or methods, is now its sole import in modern English.  

“Theory” in this sense appears, for example, in popular scientific press when 

Darwinian evolution is labeled “just a theory” by creationists (or, “intelligent 

design” theorists), or more peculiarly, when a friend claims to have developed 

a “theory” about how cats exert their telepathic powers over humans.  It is 

crucial to point out that beyond these casual and cursory notes, we will not 

consider the assorted colloquial uses of “theory” and “model.”  Instead, we 

wish to compare theories and models as explanatory entities both intuitively 

and with respect to the history of psychology.  More importantly, the goal of 

this section is not to offer a definition for the terms “theory” and “model,” but 

to elaborate the objects of concern for resilient theorists and versatile 

modelers, the difference between these objects, and their respective properties 

(e.g., Gould, 2002, urges a curious reification or “objectification” of these 

explanatory objects).

To begin, consider the observation, made by a number of philosophers 

of science (e.g., Kuhn, 1963; Lakatos, 1978), that all scientific research is 

conducted in the context of a particular theoretical framework -- otherwise 

known as the property of “theory-ladenness.”  For example, for Lakatos 

(1978), this framework is a research programme, in which broad principles and 

problem-solving machinery are combined to engender active and resilient 
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scientific research.  This and other descriptions of underlying theoretical 

frameworks are not necessarily equivalent, but overlap considerably in the 

way they characterize motivational forces in scientific research, and are 

commonly supported by providing numerous examples from the history of 

science.

One purpose of a framework’s broad principles is to guide specific 

research questions.  There exist, and can be observed readily in the history of 

science, specific research projects or goals within any particular theoretical 

framework.  The notion that these projects occur within a framework simply 

means that they incorporate the framework’s principles to explore a more 

detailed range of phenomena.  This observation is important in the history of 

science.  Even recently, specific research pursuits may make discoveries about 

the details that can cause change in the general principles (as some seek for 

evolutionary theory, for example).  Also, because details can be worked out in 

a variety of ways, there can be multiple projects consistent with a framework 

but which compete to account for overlapping phenomena (discussed  further 

below).  These considerations suggest that general principles cannot alone 

characterize an entire body of scientific research.  Broad theoretical principles 

constrain research pursuits, but these pursuits seek to press the principles into 

service for approaching more detailed phenomena.

Such notions as a paradigm, research programme, and theoretical 

framework evidently form a more abstract class of explanatory entity than the 

specific projects they bring about.  These explanatory entities, or theories, are a 

collection of broad and common principles that guide and define a research 

community.  But such broader explanatory entities should not be confused 

with the detailed investigations they underlie.  The more specific and detailed 
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accounts of phenomena they motivate are explanatory models, designed to 

instantiate theoretical principles, and elucidate their involvement in the 

subject matter under investigation (e.g., Cartwright, 1999, discusses myth and 

model in scientific explanation -- akin to theory and model, discussed here).2

This distinction is borne out when we consider the various theories that 

have shaped the history of psychology.  For example, Freudian psychoanalysis 

is characterized by a general set of theoretical principles.  However, the ways 

in which these are instantiated and applied to specific psychological 

phenomena can be considerably more complex.  For example, Freudian 

principles could be used to explain why women fiddle with their purse, or the 

existence of arms proliferation (in the amusing manner one would expect; 

Leahey, 2001).  Interestingly, given Popper’s famous arguments against it, 

psychoanalysis may offer such lax guidance that many Freudian models, 

mutually incompatible with one another, could be easily concocted to explain 

the same behavior.  

Another major trend in the history of psychology, the experimental 

analysis of behavior (known commonly by its moniker “radical behaviorism”), 

included a robust and small set of theoretical principles that formed the 

dominant framework in North America for over 20 years.  Within this 

framework, there exist individual models for a wide range of phenomena, 

such as the emergence of object words in child language (Horne & Lowe, 1996 

and Hayes, Barnes-Holmes, & Roche, 2001 present competing accounts).  
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distinction as expressed will serve later discussion concerning cognitive 

science.  In this way, Freudian stories, animal learning models, and 

computational models are all ``models’’ that instantiate theoretical ideals.



As for the cognitive sciences, for example, Newell, Shaw, and Simon 

(1958) articulated a set of principles for cognition long ago that are instantiated 

relatively faithfully by a wide range of individual explanatory models.  

Even a cursory glance at the history of psychology suggests that the 

distinction between these explanatory entities, though perhaps itself 

somewhat vague upon closer examination, can be exemplified clearly by 

major theoretical and historical trends.  In fact, within each example, there 

continue to exist resilient theorists who lobby for their ideals.  Freudian 

psychoanalysis not only persists in popular culture, but continues to be 

applied clinically despite its apparent drawbacks.  Also, the progeny of 

Skinner’s behaviorism still conducts research in bastions throughout the US 

and Europe.  Finally, and relevant to the focus of this paper, the symbolic 

approach to cognitive science emerged as a majority party after the decline of 

behaviorism, and is engaged in extended debate with a new set of ideals that 

re-emerged two decades ago: connectionism.

 

Consequences of the Distinction

 

The distinction between theory and model so far discussed may appear rather 

obvious, and one may wonder whether there is justification for elucidating it.  

In trying to convince the reader otherwise, we argue that the distinction is not 

a trivial semantic quibble, but that it has a number of important consequences.  

These consequences provide conceptual support for the resilient theorist, and 

justify the versatility of modeling.  And as we later illustrate, recognizing this 

distinction and its consequences may provide a valuable conceptual basis to 
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help clarify confusions or misgivings in theoretical debates in the cognitive 

sciences.

 

Underdetermination of the Details

The underdetermination of scientific theory by empirical data has been 

recognized for decades (Bechtel, 1988).  But there is a kind underdetermination 

that goes in the opposite direction.  There may exist mutually incompatible 

models for a single set of phenomena, yet be entirely consonant with broad 

theoretical principles.  The distinction implies this underdetermination 

because theories guide research concerns, but models work out the details in 

considerably more versatile ways.  This is particularly true of theories whose 

principles lack complete mathematical formalization (such as Freudian 

psychology; see Meehl, 1998, for a discussion).  

Evidential Relationship

The underdetermination of model by theory suggests another crucial 

consequence of the distinction:  The evidential relationship between theory 

and model is more complex than sometimes assumed.  As we contend below, 

discussion in cognitive science can too easily assume that a prominent and 

widely applied theoretical framework is especially disadvantaged by a small 

set of inadequate models.

Theories lacking mathematical formalization bear a relationship to their 

models much as they would to the experiments conducted within them.3  
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providing a window onto the interaction of variables in the real world in 

terms of the theoretical principles that motivate it.



Parallel to the demise of the “critical experiment” notion in the history and 

philosophy of science (Kuhn, 1963; Putnam, 1973), it is also true of modeling: 

An inadequate model can be remedied by a suitable reorganizing of premises 

or auxiliary hypotheses.  In short, models can be revamped and improved.  

According to many thinkers, this is a characteristic of all theories and is not a 

“flaw,” because in some cases resilience to anomalies is a natural trait of 

productive scientific theories (Lakatos, 1978).

Constrained Versatility

Another consequence of the distinction is the nature of constraints on models.  

The obvious constraint is the set of broad theoretical principles the model is 

presumed to instantiate.  These theoretical constraints provide the overarching 

direction for the nature of modeling questions and methodologies.  However, 

a model is also constrained by the phenomena under study.  These veridicality 

constraints govern the way in which some of a model’s parameters are 

included, manipulated, and interpreted.4   A variety of perspectives in the 

philosophy of science lend support to such a source of constraints.  For 

example, van Fraassen (1980) argues that the role of scientific theory and 

modeling as a whole is to ``save the phenomena,’’ meaning a model should 

capture established aspects of the observable world.

Because models are about worldly details, they are naturally 

constrained by experimental data.  Along with broad principles motivating 

72

4 These veridicality constraints would subsume all the criteria suggested by 

Christiansen and Chater (2001) to evaluate connectionist models: data contact, 

task veridicality, and input representativeness.  Each criterion involves the 

extent to which the model faithfully captures properties of the world.



them, they are pressed by two sets of forces.  In this sense, a model is much 

like a mapping between theoretical principles and the experimental data. But 

theoretical and veridicality constraints interact along multiple dimensions, so 

even theory and data together underdetermine mappings or models.

In addition, these constraints suggest a way of describing the 

parameters incorporated into modeling.  On one hand, there is a complex 

parametric space that underlies the methodology suggested by theoretical 

constraints.  On the other, you have a set of parameters that satisfy the 

veridicality constraints: They are representative of the variables observed or 

inferred in behavioral data.  Although this further distinction between 

veridical and non-veridical (not constrained by data) parameters may seem 

elusive or abstruse, we exemplify this discussion in the next section by 

considering connectionist theory and modeling.

Though we will not outline the ideals of connectionist theory 

conclusively, there are a few criteria that stand out in the history of the 

approach.  We paraphrase Smolensky’s recent list (2001, p. 320), as a rather 

lucid and historically motivated version of connectionist theoretical principles: 

mental representation as distributed patterns of activity, mental processes as 

parallel transformation of these patterns, and knowledge as interaction of 

innate learning rules, architectural features, and modification of connection 

strengths.  These principles motivate and constrain individual models 

developed for specific phenomena.  Though models do not always meet these 

particular criteria, these ideals provide the primary theoretical shape of 

connectionism, and the models it motivates.

In the  next section, we consider criticisms of connectionist theory, and 

discuss how some of these criticisms fail to heed the distinction between 
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connectionist theory and its models, sometimes resulting in unfounded 

criticism of connectionist theory itself.  Following that, we present an example 

of progress in connectionist modeling that illustrates the nature of constraints 

on models.

Connectionist Theory and Models

A number of critics fail to notice the crucial distinction between resilient 

theorist and versatile modeler, attitudes that likely motivate most 

theoretically-minded cognitive scientists.  Even more pronounced, their 

consequences can go unheeded in important theoretical debates about 

connectionist theory.  In this section we consider just a few recent examples of 

this oversight.

Criticism of Connectionism

Failure to Heed the Distinction

There are a number of recent direct and indirect criticisms of connectionist 

theory that fail to observe the distinction between theory and model.  For 

example, Green (1998) argues that connectionist models cannot be theories of 

cognition.  Given our discussion above, individual connectionist models 

clearly are not theories of cognition.  His more recent arguments (Green, 2001) 

attack the nature of parameters available to connectionist modelers.  He 

argues that, because the parameters are interpretable neither as higher-order 

cognitive states nor brain states, they cannot be adequate models of cognitive 

processes.  However, the constraints on models discussed above indicate that 
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his criticism is misdirected.  Modelers are not realistically committed to all 

parameters of their models.  In fact, the notion of veridicality constraints 

suggests that most important to simulated phenomena are those parameters 

that represent some feature of the behavioral data that can be meaningfully 

manipulated or observed as a dependent variable in a simulation.  Besides, the 

interpretability of elements of connectionist models (e.g., the function of 

hidden layer activity) is perfectly amenable to a variety of analyses providing 

clues about function (Clark, 1990; Bishop, 1995).  Connectionist models are not 

black boxes, because with clever technical analyses, their operation is being 

illuminated more clearly.

Roberts and Pashler (2000) also confound theories and models.  In 

indirect criticism of some models, they use the terms “theory” and “model” 

interchangeably, and do not pay regard to the two levels of explanation 

prominent in the history of psychology.  Roberts and Pashler argue that data-

fitting practices in computational or mathematical models are poorly 

represented and largely uninfluential in the history and philosophy of 

science.5  However, it is important to point out that recognizing the distinction 

between theory and model indicates that bad modeling practice does not 

reflect on theory.  Our discussion suggests that theory can motivate good 

modeling practices, in which veridicality constraints are met with a variety of 

meaningful parameters, whose manipulation is perfectly reasonable.6
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6 An excellent example of justified data-fitting with parameters can be seen in 

Dell and colleagues’ work (Dell, Lawler, Harris & Gordon, 2004).



Roberts and Pashler do offer some important methodological points 

about parameter manipulation to meet veridicality constraints.  However, 

although they do not level criticism against connectionism directly, or 

computational models per se, there are recent cases in which the distinction 

and all three consequences are not made clear, and result in an unfair critique 

of connectionist theory.  Marcus (2001) offers a long examination of 

connectionist theory and models, with the bold goal of integrating promising 

features of connectionism into a classical cognitive science.  Despite this 

seemingly productive goal, he neglects the distinction between theory and 

model, thereby overlooking their evidential relationship, and concludes that a 

whole class of connectionist model is inadequate for explaining cognition.  

Moreover, Marcus fails to notice the unique veridicality constraints to which  

each model is subjected.  Some of his attacks on individual models are based 

on subjecting them to tasks at which they were not designed to succeed.    If 

some behavioral task is not included in the model’s intended constraints, it is 

unreasonable to expect the model to perform them, let alone to conclude from 

a handful of such demonstrations that the class of model is inadequate 

altogether for any purpose.

To summarize, a number of criticisms of connectionist models fail to 

make the distinction between theory and model, thereby overlooking the 

important consequences of this distinction.  This has resulted in a number of 

unfair appraisals of connectionist theory, and we think that the conceptual 

basis offered in the first section may help focus further debate.  In the 

following section, we illustrate that connectionism satisfies aspects of this 

conceptual basis through the various ways in which its versatile modelers 

encode semantic representations.
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Connectionist Semantics

Psycholinguistics is an active area of research in which connectionist theory 

has exerted significant impact.  As a final discussion, we will consider this 

development with respect to semantics, considered an essential aspect of 

language by philosophers and psychologists for centuries.  The notion that 

semantics can be ignored in linguistic analyses is in obsolescence.  For 

example, even recent formal syntactic theories rely to some extent on semantic 

verb categorization principles for sentence structure (Lasnik, 2002).  

Connectionist psycholinguistic models often incorporate semantic 

representations to some extent.  In this section, we consider the ways in which 

theoretical and veridicality constraints have impinged upon these 

representations.

We illustrate here that connectionist models using semantic 

representations range from drastic idealizations faithful to theoretical 

constraints, to scaled-up systems permitting the satisfaction of more complex 

veridicality constraints.  This would satisfy what Steedman (2001) calls a 

“project for a scientific psycholinguistics,” in which the explanation of 

learning language would start earlier in initial perceptuo-motor learning.  In 

fact, semantics, he claims, is grasped so poorly because the primitives of 

language are “grounded in very obscure ways in our physical, social, and 

intellectual interactions with the real world.” (p. 364)  Connectionist models 

are vastly improving their approach to these veridicality constraints, while 

still maintaining connectionist ideals.  We first discuss some clear 

idealizations, then move on to the improvements.
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A very simple example of encoding lexical semantics is offered by 

Oliphant (2002).  In his simulation, a population of Hebbian networks 

reconcile an atomic semantic meaning with a set of available signals.  Indeed, 

this is even an idealization upon the principle of distributed representations 

described by Smolensky earlier.  However, this idealization permits Oliphant 

to speculate on the emerging learnability of communication systems, rather 

than their becoming more innately circumscribed.  But this approach by no 

means approaches Steedman’s semantic desiderata.

Another method of encoding lexical semantics is by groups of features.  

Plaut and Gonnerman (2000) illustrate this by using randomly generated 

features.  Their model is an excellent application of this idealization: Their 

representational system is well-controlled and can effectively test the products 

of different kinds of morphological systems.  Other modelers handpick their 

features (e.g., Hinton & Shallice, 1991).  This method permits control over 

lexical semantics, but lacks further veridicality: The features are at the whim of 

the modelers’ semantic intuitions.  An improvement over this approach is 

achieved by McRae, de Sa, and Seidenberg (1997), in which they canvas 

hundreds of study participants for features of lexical items.  The result is a list 

of 9,618 features composing unique semantic vectors for 190 words.  This 

approach permits modelers to use the intuition of native speakers to generate 

feature lists, but fails to approach the specific perceptuo-motor issues 

Steedman addresses.

Most recently, Plaut (2002) has offered a promising model that 

incorporates many of the features of Steedman’s project, meets the broad 

theoretical ideals of connectionism, and involves expansive satisfaction of 

veridicality constraints.  In his model, semantic representations, rather than 
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being amodal or entirely hand-coded, emerge as the consequence of 

interacting sensory information that converges on a cross-modal layer of units.  

The network has a total of 28,000 connections, primarily in the cross-modal 

``semantic’’ layer.  The integration of sensory information at the semantic layer 

obeys a kind of sensory topography: Different regions of the semantic nodes 

are devoted more or less strongly to one specific source of sensory 

information.  Tactile and visual information were processed by this network 

while it learned to associate a lexical item (encoding in terms of phonological 

features) or a particular action (gesturing).  Even at the level of detail 

described here, it is clear that this model advances the state of the art 

considerably by moving beyond previous attempts at encoding semantics and 

taking seriously the kind of constraints Steedman suggests.

In summary, connectionist modeling illustrates well the notion of 

competing theoretical and veridicality constraints.  Existence proofs, much like 

Oliphant’s above, can be seen as models whose purpose is to loosely satisfy 

veridicality constraints, but demonstrate the success of theoretical constraints 

and ideals to capture a broad pattern of data.  More substantive models, such 

as Plaut’s, aim to apply theoretical ideals to difficult details (in his case optic 

aphasia), and in due course, satisfy veridicality constraints more broadly than 

any competing theory’s models have yet offered (e.g., modular-computational 

theory of mind; Fodor, 1983, 2000).

 

 Conclusion

 

We have presented a conceptual basis for considering theories and their 

instantiations, and exemplified them through connectionism. The 
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consequences of this conceptual basis have been ignored by some critics, and 

they sometimes level unfounded criticism against connectionist theory.  

Despite this, connectionism exhibits all the hallmarks of a good scientific 

framework.  Its theorists are resilient, and its methods allow for versatile 

modeling.  It meets both broad and explanatory theoretical constraints, while 

actual practice within the approach continually scales-up to meet complex 

veridicality constraints.

It is important, however, to remark that, as in any scientific discipline, 

there is always progress to be made.  Not all areas of connectionist 

psycholinguistics, or other areas in which models are adopted, involve this 

important interplay of existence proofs and substantive modeling, through 

which theoretical and veridicality constraints are satisfied.  It is crucial always 

to remain vigilant of limitations on the ideals and details of any scientific 

research, lest we overlook ways to improve its ideals or learn how to better 

apply them (a mistake made recently by Marcus, 2001, who criticizes 

connectionism, but omits any reflection on the limitations of opposing 

approaches to which he subscribes).  We only hope that the proposed 

conceptual basis may encourage modelers, connectionist or otherwise, 

towards this goal. 

The next chapter explicitly seeks a model that satisfies the theoretical 

constraints on the perspective discussed in the introductory chapter: Cognitive 

processes flow into action continuously. The next section presents a simple 

connectionist model that captures basic aspects of categorization, along with 

exhibiting the important theoretical constraint of continuous processing 

through time. 
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CHAPTER FOUR

The Relationship Between Decision and Action: Simulating Dynamic 

Properties of Responses in Categorization

Introduction

Cognition is often thought to happen in places between the sensors and 

effectors, with sharp delineations at these boundaries (e.g., Fodor, 1983; 

Pylyshyn, 2000; see Rosenbaum, 2005, for relevant discussion on motor 

control). This common account envisages cognition collapse its decisions onto 

the effectors, directing various motor systems in an all-or-none fashion. For 

example, numerous theories of attention posit central processing separate 

from systems responsible for guiding action (e.g., Posner, 1980; Posner & 

Petersen, 1990). In rapid, frequent, and metabolically cheap motor output, 

such as the ballistic saccades of the eyes, this perspective seems most apt. 

When the eyes are drawn by an external stimulus, such as a sound source, the 

processing that has led to the saccade is programmed over a couple hundred 

milliseconds, and once it reaches premotor regions responsible for saccadic 

movement, fires off a motor instruction that may differ from moment to 

moment only because of noise. In other words, once the command has been 

issued, and the eyes instructed on their movement, a ballistic, linear motion to 

the target should be observed (e.g., Becker, 1991). 

Recently, a growing body of research has revealed that motor systems 

in fact interact more richly with cognitive processes. Even in the case of 

saccadic movements, Doyle and Walker (2001) demonstrate that these rapid 

eye movements may reflect underlying attentional processing of visual cues. 
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They show that the eye-movement trajectory in a saccade to a given location 

actually curves depending on distractor or cue stimuli (see also Sheliga, Riggio, 

& Rizzolatti, 1994; Gold & Shadlen, 2000; Gaveau, Martin, Prablanc, Pelisson, 

Urquizar, & Desmurget, 2003). Rather than a direct, linear motion, the eyes 

reflect underlying processing in the graded nature even of saccades. This 

occurs after the cognitive processing has given way to them, and may thus be 

described as a “post-decision” dynamic property of a saccade trajectory, where 

the purported “decision” event is defined as the point at which motor 

movement is initiated. Moreover, when multiple fixations of the eye are 

tracked during an experimental task, they reveal what may be described as a 

dynamically changing probability distribution over graded representational 

states (e.g., Allopenna, Magnuson, & Tanenhaus, 1998; McMurray, Tanenhaus, 

Aslin, & Spivey, 2003). In both individual saccades and semi-continuous 

tracking of multiple eye-movements, dynamic properties of motor output 

reflect underlying cognitive processing.

Perhaps more compelling is evidence that manual responses exhibit a 

range of dynamic post-decision characteristics that reveal processing. For 

example, force and velocity of responses after initiation vary concomitantly 

with frequency in a lexical decision task (Abrams & Balota, 1991; Balota & 

Abrams, 1995), and response and stimulus probability in simple reaction-time 

tasks (Mattes, Ulrich, & Miller, 2002; Ulrich, Mattes, & Miller, 1999; see also 

Balota, Boland, & Shields, 1989; Osman, Kornblum, & Meyer, 1986; Tipper, 

Howard, & Jackson, 1997). More recently, Spivey, Grosjean, and Knoblich 

(2005) used computer-mouse trajectories to study spoken word recognition. 

These trajectories show continuous dynamic activation of multiple competing 

representations during spoken word recognition (see also Allopenna, et al., 
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1998, for related eye-movement results). In a similar series of experiments, 

Dale, Kehoe, and Spivey (in press) show that computer-mouse trajectories 

indicate competition between categories when classifying atypical animal 

exemplars. The dynamic characteristics of the response, in the form of mouse 

trajectories, revealed an attraction towards a featurally-similar category label 

(e.g., fish) for atypical exemplars (e.g., whale) compared to control trials (e.g., 

cat).

 Numerous studies have suggested that properties of motor output 

itself shed light on their originating cognitive processes. Perhaps more 

importantly, these studies show that processing flows in systematic ways into 

motor behavior, rather than simply collapsing onto them to generate a 

categorical response. They may indeed recommend a “cascadic flow” 

perspective on cognition that sees information flow continuously from sensors 

to effectors (McClelland, 1979; Balota & Abrams, 1995; Spivey et al., 2005), 

permitting the emergence of these post-decision response dynamics. This 

perspective changes the way in which we understand how cognition becomes 

action, their relationship, and possibly their interaction. 

While a simplistic perspective on their relationship -- envisioning 

cognition collapsing onto action -- may have motivated some to neglect the 

important psychological relevance of action (Rosenbaum, 2005), these 

discoveries of dynamic response characteristics suggest numerous lines of 

inquiry. One such question, and the focus of the present paper, is the 

following: What kind of interaction between cognition and action gives way to 

dynamic post-decision characteristics of responses?

In this paper, we employ a neural network model of categorization to 

explore this question. We aim to further elaborate the possible relationship 
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and interaction between cognition and action using a localist attractor network 

that categorizes animal exemplars. While the model is simple, it provides an 

explicit terrain for exploring dynamic post-decision response patterns, and 

what they might tell us about the cognitive system. 

In what follows, we briefly review research on categorization and the 

role typicality plays in common accounts of categorization. We then present 

two neural network simulations. The chosen network architecture permits 

comparison of different relationships between internal processing of animal 

exemplars, and an output component that models an explicit motor response. 

In the first simulation, we explore this by investigating a parameter space that 

specifies the network’s decision-action relationship. Network conditions that 

vary this relationship are compared in how well they fit with human 

experiments that show dynamic characteristics of motor responses that 

illuminate cognitive processing. In the second simulation, we generate a 

prediction about how response dynamics should reflect finer category 

structure: Graded typicality results in graded response dynamics.

Categorization and Typicality

Theories of categorization have grown in sophisticated ways over several 

decades, from classical set theoretic approaches, to rich knowledge-based 

accounts of categorization (see Medin, 1989, and Murphy, 2002 for reviews). In 

the current study, we make use of the graded nature of category structure: 

Categories, whatever their origin, have members that lie along typicality 

gradients. For example, an animal can be more or less typical as a member of 

an animal category, such as of mammals. The members of the mammal 
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category thus reveal a typicality gradient, with cats being typical, and whales 

being considerably less typical. This results in a variety of experimental 

effects. Typical members are recognized faster (Rips, Shoben, & Smith, 1973), 

more consistently (McCloskey & Glucksberg, 1978), have many features in 

common (Rosch & Mervis, 1975), and can facilitate language comprehension 

(Garrod & Sanford, 1977). 

 Dale et al. (in press) make use of this property of category structure to 

uncover post-decision response dynamics in human participants. Computer-

mouse trajectories were recorded during a simple categorization task. 

Participants categorized an animal exemplar by clicking the mouse on one of 

two category choices. Mouse-movement trajectories consisted of a movement 

from the center-bottom of the screen, to the correct target on the left or right 

(beside which was a competing category label). Target trials used atypical 

animals (e.g., whale) and included an incorrect competitor category that had 

considerable overlap in terms of semantic and visual features (e.g., fish). 

Though participants responded by clicking the appropriate category (e.g., 

mammal), mouse-movement trajectories exhibited substantial attraction 

toward the competitor category. Competing activation of the incorrect 

category in these trials was evident even in the properties of the resultant 

motor output, and not simply in the decision processes leading up to it.

 Categorization may be a particularly good cognitive process to 

continue exploring these properties of motor output. Numerous studies have 

employed fairly simple experimental methodologies, such as cued fixation 

(e.g., Doyle & Walker, 2001) or cued reaching (e.g., Tipper et al., 1997), and 

traditional reaction-time tasks (e.g., Ulrich, Mattes, & Miller, 1999). 

Categorization is a relatively “higher-order” process, involving more 
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processing of exemplars prior to the manual response. In addition, while 

lexical decision tasks also serve as good indicators (e.g., Balota & Abrams, 

1995; Spivey et al., 2005), research on category structure avails itself of a broad 

range of stimuli, both of real and artificial exemplars, permitting a wide range 

of parameters to be explored (e.g., Murphy, 1991). More importantly for the 

present paper, theories of category structure have often made use of feature-

based explanations. With very few exceptions, theories of categorization have 

proposed evaluation of object features, and in some manner comparing these 

features to prototypes or exemplars in memory -- perhaps in the context of a 

knowledge domain (see Medin, 1989). This aspect of categorization theories 

makes this cognitive process amenable to constraint-based neural network 

architectures. In the following section, we present a simulation that processes 

features of categories in parallel, and can model the time course of 

categorization of typical and atypical animal exemplars.

Before setting forth the current simulations, it is important to note that 

there exist a number of quantitative models for categorization, including basic 

retrieval and recognition mechanisms (e.g., Nosofsky, 1987), category learning 

and organization (e.g., Love, Medin, & Gureckis, 2004), and even typicality 

(e.g., Hirahara & Nagano, 2003; Smith, 2002) and the time course of 

categorization (Nosofsky & Palmeri, 1997; Lamberts, 2000). These and related 

models have been applied in many domains relevant to concepts and 

categorization (e.g., Collins & Loftus, 1975; McRae, de Sa, & Seidenberg, 1997; 

Medin & Shaffer, 1984; Nosofsky, 1987, 1988, 1991; Rehder & Murphy, 2003; 

McClelland & Rogers, 2003). Despite such a broad range of models and their 

application, none makes a distinction between the decision mechanism and a 

component that implements the overt response. For example, Nosofsky and 
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Palmeri (1997) and Lamberts (2000) offer prominent models for the time 

course of the decision leading up to the response, but not the dynamics of the 

response itself. As described above, the dynamics of motor output has a 

character that systematically reflects underlying cognitive processing. We 

make use of a relatively transparent neural network model that facilitates the 

inclusion of a motor-response component -- the response dynamics of the 

model discussed below is a natural extension of the architecture of the system 

itself. The model therefore includes decision and response components that 

are very similar in their operation, and the network lends itself to a 

straightforward manipulation of parameters to explore the relationship 

between the categorization process, and the response dynamics it generates.

A second important point about the model is that it finesses some 

debate about the nature of categorization. In particular, exemplar-based and 

prototype-based theories of categorization have been attacked and defended 

with little abatement for the past 20 years (e.g., recently, Smith & Minda, 2000; 

Nosofsky & Zaki, 2002). We do not address these broad debates, but for 

simplification assume a basic prototype for each animal category used: 

Mammals, fish, etc., are assumed to have ideal, familiar, frequent, etc. features 

that define a prototypical exemplar. While this simplifies the presentation of 

the model here, it would not be difficult to implement a learning mechanism 

in the model in which certain features are weighted by exposure to exemplars, 

thus influencing the model by specific category exemplars. Moreover, the way 

in which we integrate a response component in the model may be extended to 

the models discussed in the previous paragraph. We discuss a few such 

examples following the simulations, in general discussion.
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Simulation 1

Network Architecture

We use normalized-recurrence to simulate the time course of categorization. 

This localist attractor architecture has been used to model a range of cognitive 

processes, including phoneme perception (Spivey & Dale, 2004), spoken-word 

recognition (Spivey et al., 2005), online sentence processing (Spivey & 

Tanenhaus, 1998; McRae, Spivey-Knowlton, & Tanenhaus, 1998; Tanenhaus, 

Spivey-Knowlton, & Hanna, 2000), and in modeling the time course of visual 

search (Spivey & Dale, 2004; Spivey-Knowlton, 1996). The architecture is 

localist because individual units stand for specific features of the animal 

exemplars. For example, when having the network categorize cat, one unit in 

the network might be active to represent the feature representing the animal’s 

habitat, <land>. The architecture is an attractor network because iterated 

updates of its unit activations lead the network towards a stable state. By 

applying a set of activation-update rules, the activations of the network’s units 

are expected to asymptote on particular values, usually with one unit 

obtaining maximal activation, and competing units approaching minimal 

activation.

The network functions according to two basic computational principles. 

First, multiple feature units simultaneously constrain the network’s behavior. 

Second, this parallel feature processing is integrated in a layer of units 

representing alternative outcomes of the model, in which one unit achieves 

maximal activation over time. Fig. 4.1 presents the current model. It consists of 

an array of feature layers, in which each unit represents a particular property 
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of animal exemplars. These layers feed into an integration layer, in which the 

outcome of categorization is assessed by iterated parallel processing of the 

constraints (see Table 4.1).

To further illustrate how the model captures the time course of 

categorization, we can present an exemplar to the model by setting the 
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Figure 4.1: Visual depiction of the model, with interconnected layers. The 

motor layer (M) has one-to-one connections from integration nodes (e.g., 

reptile to “r”; and mammal to “m”).
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appropriate features in the layers to an activation of 1, and all those not 

relevant to 0. For example, when setting features representing the exemplar 

whale, the values for LIMBS features would have 1 for <fins>, and 0 for all 

other units. The activity of all these layers serves as input at the integration 

layer by taking a sum over all relevant nodes. For the processing of whale 

features, the net input to the mammal node would be the sum of the activation 

levels of the units representing mammalian features – in this case, 0 for <legs>, 

but 1 for <air> as source of oxygen, and so on. When processing whale, the fish 

node will thus receive some net input from the <fins> feature unit.

 The integration layer is then updated by normalization: The units are 

made to sum to 1 all together by dividing these net input values by the total 

net input to the integration layer across all units. This normalized activation 

then feeds back into the feature layers, these are then normalized, and the 

cycle is continued until the integration layer becomes stable. Fig. 4.2 

represents such a simulation run for whale, in which repeated iteration results 

in stable and maximal activation of the unit for mammal in the integration 

layer.1

 Formal presentation of this models’ functioning is straightforward. Net 

activation into the i-th integration unit is the total sum of its relevant feature 

units across all the feature layers (the i-th unit in each layer). From this net 

input, the output from this integration unit is obtained by dividing this input 
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1  In this example and all simulations, to increase the “task 

veridicality” (Chriatiansen & Chater, 2001), and make similar its trials to those 

of human participants, the model was permitted to “see” the category labels 

for 5 iterations prior to having the exemplar presented. This served to lend 

some small activation to the features relevant to these potential categories.



activation by the total sum of activation into all integration units. With Fk 

representing the k-th feature layer in the set of layers F, and I the integration 

layer, 

€ 

netI,i,t = aFk ,i,t−1
F

k

∑
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Table 4.1: Categories and their prototypical features used in the model

Category

Feature Fish Mammal Bird Reptile Insect

OXYGEN water air air air air

BIRTHING eggs live eggs eggs eggs

HABITAT water land sky land sky

BLOOD cold warm warm cold cold

SKIN scales fur feathers scales exo-

LIMBS fins legs wings legs wings



€ 

aI,i,t = netI,i,t / netI, j,t
I

j

∑

where net.,i,t and a.,i,t represent net input and activation of the i-th unit of the 

given layer at time step t. The value netI,2,t  is the net input to the second unit of 

the integration layer, receiving input from the second feature unit of all 6 

layers of F. The subsequent activation of a feature unit is determined by the 

sum of its previous activation and that activation multiplied by the 
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Figure 4.2: An example run of the network over multiple iterations for the 

exemplar whale. At first, categories (integration unit activations) are 

relatively similar, and gradually the unit representing mammal gains 

maximal activation, and incorrect categories approach 0. Due to featural 

overlap between whale and the category fish, this unit more successfully 

competes with mammal than the others.
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corresponding input from the integration layer. Each feature layer then 

outputs a normalized activation, as in the integration layer. This process 

continues until one unit in the integration layer (or motor layer) reaches 

criterion activation (see below).

€ 

netFk ,i,t = aFk ,i,t−1 + aI,i,t • aFk ,i,t−1

€ 

aFk ,i,t = netFk ,i,t / netFk , j,t
Fk

j

∑

There are a number of benefits to this simple architecture. First, its inner-

workings are directly scrutable. While it is important to seek scaled-up 

systems that fit data from categorization (e.g., Love et al., 2004) or other 

processes (e.g., language processes, Rohde, 2002; Plaut, 2002), simple models 

that capture core theoretical principles may serve as explicit and transparent 

accounts for basic patterns of behavioral or neurophysiological data. One such 

core theoretical principle, a second benefit of this model, is conceiving 

cognitive processes as subject to simultaneous informational constraints. This 

constraint-based approach to the time-course of categorization fits with 

perspectives on related cognitive phenomena (e.g., Simon & Holyoak, 2002), 

particularly psycholinguistic processes (e.g., Bates & MacWhinney, 1989; 

MacDonald, 1994; Seidenberg & MacDonald, 1999), and other feature-based 

approaches to semantic knowledge (see McRae, 2004, for a review). Finally, 

this transparency and theoretical property are implemented in a simple 

system that operates through iterated updates of its activations. This makes 

normalized-recurrence particularly suitable for capturing temporal properties 
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of cognition, an important goal for models of a cognitive process such as 

categorization (Nosofsky & Palmeri, 1997).

 As shown above, this model permits tracking of competing category 

nodes, and exhibits a time course showing one winning over the others. In 

order to map this categorization model onto a simulated response, we 

supplement it with an additional bank of nodes that receives input from the 

integration layer. This “motor” bank of units, denoted M, represents the 

outcome response, and also exhibits a time course over iterations of the model 

(see Fig. 4.1). Just as the integration layer approaches a stable decision through 

input from feature layers, the motor layer does so through input from the 

integration layer. At a given time tα, some number of time steps over which 

integration and feature layers have interacted, these M units begin to receive 

activation from the integration layer in a manner similar to how the feature 

layers receive integration activation. 

€ 

netM,i,t = aM,i,t−1 + aI,i,tα + t−1 • aM,i,t

The activation of the i-th unit aM,i,t is then similarly normalized. The parameter 

tα may be varied, allowing M to receive input from the categorization decision 

at different points in time. We choose to vary this parameter by observing the 

“confidence” of the categorization decision -- the maximal activation found in 

the integration layer, denoted here as α. The integration and feature layers 

may therefore be permitted to interact for a period of time (up to iteration tα) 

before M receives input from the integration layer when the maximal 

activation in the integration layer is α or higher.
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 As outlined further below, this allows a number of parameters 

specifying the interaction between I and M to be modified. First, a 

“collapsing” of the integration layer’s information before it outputs to M can 

be implemented. This has the effect of producing a serial transfer of 

information from the categorization process into the generation of a response. 

Second, the point in time at which M begins to receive input from I, and 

begins to update its activation towards a stable output response, can be 

modified. Finally, M may be included in the set of layers F that feed into the 

integration layer. This allows the process of categorization to be influenced by 

available responses in the task.

Procedure

In the following simulation, we compared three different initial network 

conditions. An atypical-competitive condition involved initializing a non-

prototypical exemplar (e.g., whale), and a featurally-similar competing 

response possibility (e.g., fish). An atypical-noncompetitive condition was 

different only in activating a less saliently competing response unit (e.g., bird). 

Finally, in a typical condition, (proto)typical feature values were activated, 

with a randomly selected competing response option. Table 4.2 presents the 

basic outline of simulation runs. Each trial in the conditions was selected to 

have some overlap with Dale et al. (in press), in which human participants 

were subjected to similar trial types.

The beginning of a simulation run involved setting feature layer units 

to their relevant values, and turning the two relevant response units to .5 to 

have equibiased initial response options. According to the equations above, 
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Table 4.2: Initial network conditions: Exemplars and response options

Condition Exemplar Correct / Incorrect category

atyp-competitive whale mammal / fish

penguin bird / fish

bat mammal / bird

atyp-noncompetitive whale mammał /reptile, bird, insect

penguin bird / reptile, bird, insect

bat mammał / reptile, fish, insect

typical prototype mammal / (4 others)

prototype bird / (4 others)
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activation then feeds into the integration layer, and back, until the motor layer 

reached criterion activation (.95). 

As mentioned above, the parameters of this attractor network may be 

modified so as to vary the relationship between the categorization units in I 

and the output units M. Three separate sets of runs using these network 

conditions were conducted to explore this relationship. In the first, we merely 

demonstrate that the model captures the intuition regarding serial output to 

motor processes: Categorical output to motor units produces a categorical 

time course of responding. In a second and third set of runs we reveal that the 

graded response dynamics exhibited in the time course of M is influenced by 

two factors. First, how much pre-decision processing occurs before I comes to 

generate a response in the motor layer. And secondly, how interaction between 

motor and integration layers contributes to graded effects observed in human 

experiments. Each of these conditions is outlined individually below.

Collapsing Information Before Output. This condition is a simple 

demonstration of the absence of graded patterns the model’s “motor output.” 

This occurs when the integration layer I collapses its information once a 

criterion activation has been reached. For this simulation, we choose a 

threshold of .5, while any value will work. Once aI,i,t for some unit i achieves a 

value of .5 (and all others will thus be .5 or less), aI,i,t is set to 1, and all other 

categories to 0. This loses the graded information contained in I, and then 

propagates to M to generate a response. The parameter tα is thus set to that 

particular iteration’s time step when there is .5-activation in one unit of the 

integration layer (α = .5). 

Varying α. The point in time at which activation flows from I to M can 

also be varied. This can be accomplished by varying the confidence threshold 
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(α) at which the integration layer begins to influence the motor layer. As 

mentioned, tα is defined as the point at which one integration layer unit has 

activation of α or greater in each subsequent iteration:

€ 

tα = ′ t  ,   

€ 

where  max(aI, ′ t ) ≥α  and   

€ 

max(aI, ′ t −ε ) <α,  ε =1, ...,  ′ t −1

We do this while maintaining the non-integral activation values in layer I. We 

chose three levels of threshold α that span a reasonable range of possible 

activation of the integration units: 0, .4, and .8. This parameter will reveal in 

the model the amount of processing that may lead to or diminish dynamic 

post-decision dynamics in the activation of M. We hold the interaction 

parameter (β; see next section) constant at 1 while modifying tα.

Varying Interaction between I and M. Finally, we examine whether 

interaction between integration and motor layers contributes to graded output 

in the model, and as observed in human experiments. To do this, we add a 

term to the net input to unit i in I:

€ 

netI,i,t = aFk ,i,t−1
F

k

∑ + β • aM,i,t−1

This permits activation in M, set at the beginning of the simulation run, to 

impinge on the time course of the categorization decision -- activation in I. The 

interaction parameter β permits variable interaction from M to I, and we use a 

broad range of values again: 0, .5, and 1. We hold tα constant across these 

parameters using a threshold of α = 0.
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Results

Collapsing Information Before Output. Fig. 4.3 presents mean motor activation of 

networks when information is collapsed for the winning category unit (e.g., 

mammal for whale). All run conditions were normalized into 10 time steps so 

they could be overlaid (Spivey et al., 2005; Dale et al., in press). The figure 

presents the iteration after competing response units are set at .5, showing the 

subsequent 9 normalized time steps before the motor units reach criterion of .

95 or greater. All conditions, whether atypical or typical, exhibit the same time 

course of output. This perhaps trivial result merely serves to illustrate that 

adopting the all-or-none assumption in the current architecture naturally leads 

to identical motor responses once the categorization decision has been 

established.

Varying α. Fig. 4.4 presents the effect of increasing or decreasing the 

threshold at which I begins to feed into M. The normalized time course of 

correct category units becomes more similar across conditions as threshold 

increases. The earlier the integration layer feeds into motor, the greater the 

competition effect seen in the atypical-competitive activation change. As an 

additional check of this pattern, we ran two further parameter values having 

tα established at integration thresholds 0, .2, .4, .6, and .8. The average 

difference between atypical-competitive and typical trajectories in the three 

middle time steps diminishes significantly as this parameter is increased (r = -.

97, p < .005).

Varying Interaction between I and M. Fig. 4.5 shows that feedback from M 

into I is not required to generate the graded patterns in the atypical-

competitive condition. However, increasing feedback from M generates a 
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slight competition in the atypical-noncompetitive runs. Again, we ran another 

two parameter values (β = .25 and .75), and tracked the average difference 

between the middle three time steps for atypical-noncompetitive and typical 

conditions. This difference increases significantly with β (r = .98, p < .005). In 

other words, there emerges a disparity in the output dynamics of typical and 

atypical-noncompetitive runs when one allows motor and integration layers to 

more fluidly interact.

Mapping to Human Data.  To investigate the relationship between the 

simulation and human data, we analyzed x-coordinates in manual trajectories 

drawn from Dale et al. (in press). A number of measures may be used, such as 

y-coordinate and Euclidean distance to target. However, the x-coordinate 

more closely represents proximity to correct or incorrect target (since, in the 
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Figure 4.3: No matter the initial condition of the network, the time 

course of the motor response is precisely the same (cross = atypical-

competitive; triangle = atypical-noncompetitive; circle = typical).
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Figure 4.4: As the confidence threshold decreases, differences between 

conditions become more marked. The sooner the integration layer inputs to 

response units, the more extensive the effect of typicality (cross = atypical-

competitive; triangle = atypical-noncompetitive; circle = typical).
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Figure 4.5: As the interaction parameter for M and I increases, differences 

between typical and atypical-noncompetitive become more marked. The 

more the integration layer receives feedback from available response 

options, the more extensive the effect of typicality even if the response 

options are not obviously competing (cross = atypical-competitive; 

triangle = atypical-noncompetitive; circle = typical).



experiment, y-coordinates are the same for each category response label). In 

addition, differences in x-coordinates have served as the basis for comparing 

response dynamics in previous work (Spivey et al., 2005; Dale et al., in press). 

Data from the lexical categorization tasks in Dale et al. (in press) are 

shown in Fig. 4.6. This graph depicts similarly normalized time courses of the 

same trial types in human experiments as the manual response’s x-coordinate 

reaches its target. The figure bears resemblance to network conditions that 

involve interaction between integration and motor layers in both directions. In 

fact, in both perceptual (i.e., pictures) and lexical categorization, Dale et al. (in 

press) observed curved motor trajectories in trials akin to atypical-

noncompetitive network conditions here, along with the more intuitive effect 
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Figure 4.6: Normalized x-coordinate location, giving proportion of x-

coordinate within a trial completed, grouped into  the same number of time 

bins used in the simulation (cross = atypical-competitive; triangle = 

atypical-noncompetitive; circle = typical).



of atypical-competitive conditions. In a correlation of corresponding time 

steps, these normalized x-coordinate proportions show a strong relationship 

with M activation in the high interaction (β = 1) and early motor input 

condition (α = 0; r = .99, p < .0001). When conducting the same regression 

analysis over the other parameter values, one obtains increases in fit in the 

expected directions (see Fig. 4.7). The best fit with human data is obtained 

when interaction between integration and motor layers is maximized: When β 

is large (high interaction between I and M), and α is small (early input to M).
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Figure 4.7: As the interaction parameter β  (dotted line) is increased, a 

better fit is achieved with normalized human data. As the confidence 

threshold α (solid line) is increased, the opposite holds. 



Discussion

Results of this simulation suggest that a model of categorization which 

involves interaction between decision-making and response-generation 

components fits best with data from human participants. In addition, when 

the model involves early activation of the response component by the decision 

component, the pattern of competition seen in the simulation conditions again 

matches human data. Put simply, the data observed in human experiments are 

modeled by a system in which decision and action fluidly interact.

It is important to note a few caveats before generating a prediction from 

the model. First, as noted in the introduction to the normalized-recurrence 

architecture, this simulation is not intended to capture categorization in full 

detail. Instead, the architecture instantiates parallel feature processing that, 

through iteration, leads to a stable network state. The specific configurations 

employed in the current simulation resemble a simplified semantic feature 

space for animal categories and their exemplars. Second, the parameter range 

explored is not intended to map directly onto any neurophysiological 

variables. The fact that the best match the human data are the parameters’ 

extreme values by itself makes it inappropriate to pursue this -- in fact, given 

the simplicity of the model, seeking such a correspondence may be setting it 

too great a task. A related concern is the exact nature of the neural processes 

governing manual output. It may be possible that multiple independent motor 

programs generate the response dynamics in such experiments as Spivey et al. 

(2005) and Dale et al. (in press). The model cannot currently address this issue.

Therefore, rather than capturing categorization and its underlying 

neural substrate, the model provides a simplified computational system that 
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explores the effects of two interacting systems. One system acts through 

constraints imposed by features to decide on a relevant category node; another 

acts through this decision component at a given later time to mediate between 

only two possible stable states (the correct vs. incorrect node). Results suggest 

that, in such a context, fluid interaction between these components generates 

dynamic output patterns resembling human data.

Simulation 2: Typicality Gradients in Output

If this architecture is to serve as a basis for comparing the role of decision and 

action components, then it should generate predictions in different stimulus 

contexts. One explored here is a natural consequence of the feature-based 

processing of the network. As in numerous experiments in categorization 

(discussed in the introduction), the model should exhibit patterns of responses 

whose characteristics lie along typicality gradients: Response dynamics for cat 

should reveal less competition than that for whale, with graded results 

between these typical and atypical extremes.

Procedure

We selected mammals as the category whose typicality gradient will be 

explored in this simulation. Exemplars of this category were generated by the 

following procedure. Starting from a prototypical feature arrangement, we 

selected one or two feature layers, and randomly changed their value to 

correspond to that expected by another category. For example, we might 

change the prototypical mammal pattern by choosing LIMBS, and changing 
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the initial network condition to begin with <fins> rather than <legs>. This 

generates approximately 50 atypical (sometimes hypothetical) exemplars. The 

response options activated with .5 at the beginning of a simulation run were 

the correct category (mammal), and a randomly selected incorrect category.

 While the previous simulation used three groups of network condition, 

the current simulation involves a gradient of typicality. Rather than grouping 

the various generated exemplars, we seek to establish a relationship between 

typicality values (semantic distance; see below), and dependent measures 

drawn from a network’s behavior when processing these exemplars. We 

investigated a network’s response dynamics using two measures drawn from 

the behavior of M over multiple iterations of a run. The first is the total 

amount of time required for the motor units to achieve a maximum value of .

95. This output measure corresponds to the amount of time the motor 

response is “in motion” before completion, as in human experiments in Spivey 

et al. (2005) and Dale et al. (in press). The second measure is the amount of 

activation achieved by the fifth time step. This value was chosen to sample, on 

average, network progress at approximately 40-50% of its total response. This 

serves as a crude measure of the “velocity” of the output dynamics, used 

similarly in Spivey et al. (2005) in human participants. Interaction and 

threshold components were at their maximum value (β  = 1; α = 0).

The response dynamics of the network is sensitive to typicality 

gradients if we observe a significant relationship between the similarity (or 

dissimilarity) of the modified exemplar to the prototypical mammalian feature 

pattern, and our output measures. A “dissimilarity” or distance measure was 

obtained using the Euclidean distance in feature space: Once the atypical 

vector was generated by one or two modifications, the Euclidean distance 
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between it and the original prototypical mammalian vector was computed. 

After all network runs were completed, we conducted regression analyses 

between output measures, and exemplar distance from prototype.

Results

Regression results show a significant relationship between distance in feature 

space and both output measures. Total response time was positively related to 

typicality: The more typical an animal (shorter semantic distance), the less 

time required for the motor response to be generated (r = .30, p < .001). In 

addition, the activation of the network by the fifth time step was significantly 

related to distance from the prototype. Animal exemplars at a greater distance 

from the prototype had lower activation (r = -.29, p < .001).

We ran this same typicality-gradient simulation over parameter values 

that ranged from highly interactive between decision and action. The highest, 

used in the first regression analysis, has the M to I parameter (β) at a high 

value (1), and decision threshold (α), at a low level. We varied these values by 

jointly decreasing β and increasing α, and with each variation conducting 

regression analyses to test for typicality gradient effects. Results are presented 

in Fig. 4.8. As interactivity between decision and action components 

diminishes, typicality gradient effects substantially diminish.

Discussion

If response dynamics flows systematically from their cognitive processes, the 

current simulation predicts that typicality gradients should be exhibited in 

108



measures drawn from output. These gradients do not hold when the model 

has little interaction between decision and action components. Like research 

on lexical decision and frequency (e.g., Abrams & Balota, 1990), this suggests 

that similar correlations between output and typicality measures will obtain in 

human experiments on categorization. 
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Figure 4.8: Time required for response (solid line), and motor 

activation of correct option (dotted line) correlated with Euclidean 

distance of generated exemplar as interaction (β) and decision 

threshold (α) vary. Significant typicality gradients are achieved as 

interaction grows (high interaction, low threshold for response). Note: 

r in the motor activation is a negative relationship -- i.e., higher the 

motor activation, the lower the distance to mammalian prototype.  

Solid horizontal line indicates cutoff for significant r given N.
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General Discussion

Normalized-recurrence provides a simple yet ideal arena for exploring the 

interaction among constraints that underlie taxonomic categorization. These 

constraints involve the parallel processing of features, and an accumulation of 

information that guides the categorization decision and resultant response. 

This model indeed resembles several recent simulations that also seek to 

characterize the time course of categorization (e.g., Lamberts, 2000). While the 

current model is simple, it offers some explicit insight into the possible 

relationship between the categorization decision, and the resultant response 

itself. In the model, patterns of competition observed in human data are 

obtained when both the decision process and the motor output concurrently 

and continuously interact. The kind of approach used here may suggest ways 

in which existing models (e.g., Nosofsky & Palmeri, 1997; Lamberts, 1995, 

2000) might integrate action parameters, thereby providing a fuller picture of 

the cognitive process: Accounting for not just the hypothesized internal 

processes, but information accumulation all the way into the observable 

response behavior and its time course. For example, the Nosofsky and Palmeri 

model involves a random-walk process where exemplars race each other to 

help categorize a test exemplar. Including a motor component may simply 

involve integrating a second random-walk process in which possible category 

responses race each other for selection. Interactive parameters could then be 

similarly explored. 

One possible promissory note about such models is a synthesis of “pre-

decision” process models, and the experimentally observed relationship 

between process and response characteristics. Growing research on the 
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embodiment of cognition (e.g., Barsalou, 1999; Clark, 1977) shows that 

parameters of action can impinge on the cognitive processing eventually 

leading into it (e.g., Glenberg & Kaschak, 2002; Tucker & Ellis, 1998). The 

current model provides some simple means by which computational 

mechanisms of these effects can be devised.

 The current model has some obvious limitations. Firstly, it is extremely 

simple. The model simply embodies basic computational principles regarding 

constraint-based feature processing, and the continuous integration of this 

information. However, it is perhaps surprising that such simple assumption 

can succeed in generating the kind of response patterns observed in the 

human experiments: Both competitive and noncompetitive trials and their 

graded response characteristics can be captured in this system. 

 Secondly, as discussed earlier, the model does not seek to resolve 

current debate regarding opposing theories of the categorization process. 

While the model may prima facie have difficulty fitting knowledge-based 

results of categorization, its properties serve as an exploration of the time 

course of categorization given certain conditions. Those assumed here at least 

sufficient to model basic categorization tasks. While this is promising, others 

seek to scale up computational models of categorization and category learning 

(Love et al., 2004). The current model may again provide some motivation for 

integrating output-based dynamics to model responses. 

In conclusion, these simulations aim to further the argument that the 

process of categorization does not serially project into the effectors. Rather, 

manual output responses may receive continuous information flow from the 

categorization process as it unfolds. Moreover, these action parameters 

themselves may serve as further constraints on the categorization process -- 

111



thereby suggesting that cognition and action are not bounded by strict 

demarcation, but interact fluidly and systematically.
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CHAPTER FIVE

Typicality Gradients in Lexical Categorization 

Revealed by Graded Manual Responses

Introduction

An increasing amount of research reveals that dynamic characteristics of 

motor output reflect underlying cognitive processing, rather than simply 

reflecting the discrete decision resulting from that processing. For example, 

when the cognitive system directs manual output amidst an array of graspable 

objects, the arm’s movement does not always proceed in ballistic fashion 

toward a single selected object, but may reveal subtle dynamic characteristics 

depending on the nature of underlying processing. Both manual output and 

oculomotor responses demonstrate these dynamic characteristics intrinsic to 

the temporal extent of a response, not just the final outcome of the response. 

For example, Doyle and Walker (2001) demonstrate that saccadic eye 

movements reflect attentional processing of visual cues in a simple fixation 

experiment. Saccade trajectories to the same location exhibit very subtle 

differential curvature depending on the position of distractor or cue stimuli 

(see also Sheliga, Riggio, & Rizzolatti, 1995). Additionally, considerable 

research over the past 10 years has shown that eye movements offer a semi-

continuous measure of ongoing cognitive processing (Ballard, Hayhoe, & Pelz, 

1995; Tanenhaus, Spivey-Knowlton, Eberhard, & Sedivy, 1995; Underwood, 

2005). Aggregate data from eye movements often indicate a graded nature 

inherent to cognition in general.  
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Similar findings demonstrate that manual motor output can reveal 

graded representations. The force and velocity of manual responses vary 

concomitantly with frequency in a lexical decision task (Abrams & Balota, 

1991; Balota & Abrams, 1995), and response and stimulus probability in simple 

reaction-time tasks (Mattes, Ulrich, & Miller, 2002; Ulrich, Mattes, & Miller, 

1999; see also Osman, Kornblum, & Meyer, 1986; Balota, Boland, & Shields, 

1989). And in experimental work similar to the saccade trajectory experiments 

described above, Tipper, Howard, and Jackson (1997) have shown that arm 

trajectories can curve depending on the visual distractor context in which 

reaching motions are made (see also Tipper et al., 1992; Sheliga et al., 1997). 

More recently, Spivey, Grosjean, and Knoblich (2005) and Dale, Kehoe, and 

Spivey (in press) used computer-mouse trajectories to show that graded 

manual output reveals temporal continuity in the underlying cognitive 

processes in spoken word recognition and categorization. 

In the latter two studies, manual trajectories were measured through 

streaming x-y coordinates of computer mouse movement, and revealed 

attraction to other response choices in the visual display. For example, in Dale 

et al. (in press), mouse trajectories were recorded during lexical and 

perceptual categorization of animal exemplars. Participants categorized an 

animal by clicking the mouse on one of two category choices. Mouse-

movement trajectories consisted of a movement from the bottom center of the 

screen, to the correct target on the upper left- or right-hand corner of the 

screen (beside which was a competing category label). Target trials used 

atypical animals (e.g., whale) with an incorrect competitor category that had 

considerable overlap in terms of semantic and visual features (e.g., fish). 

Though participants responded by clicking the appropriate category (e.g., 
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mammal), mouse-movement trajectories exhibited substantial attraction 

toward the competitor category. Competing activation of the incorrect 

category in these trials was evident even in the properties of the resultant 

motor output, and not simply in the decision processes leading up to it. 

Information flows from the sensors into the categorization process and does 

not “discretize” before issuing motor output to the effectors. Instead, the 

effectors themselves seem to reflect some of this processing given the 

typicality of the exemplar (e.g., rabbit vs. whale), and the featural overlap with 

the competing category (e.g., fish).

This literature most often explores movement dynamics in simple 

experimental manipulations. For example, in both the saccade (e.g., Doyle & 

Walker, 2001) and manual response research (e.g., Tipper et al., 1997), motor 

trajectory curvature occurs in simple contexts containing visual distractors. An 

important outstanding concern is the extent to which properties of motor 

dynamics reflect finer-grained aspects of the underlying processing task. To 

make this point clearer, consider the categorization experiments in Dale et al. 

(in press) just described. While these experiments relied on two groups of 

animal exemplars, highly typical (e.g., rabbit) and highly atypical (e.g., whale), 

they did not explore whether typicality gradients between these extremes are 

evident in mouse trajectories. Similar research on lexical decision suggests that 

there should be a relationship between such stimulus parameters and motor 

output (e.g., Abrams & Balota, 1991). 

Given the extensive influence of typicality in categorization (see 

Murphy, 2002), and that motor output may reflect cognitive processing, one 

should also expect that motor output would reveal gradedness as a function of 

typicality in a similar categorization task. Even further details regarding the 
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underlying factors contributing to graded motor output can be acquired by 

exploring what specific semantic features define the typicality gradients along 

which output varies. For example, when categorizing animal exemplar names 

(lexical items), one might expect that certain semantic features constraining 

that process would exert more of an influence than others. For example, 

perhaps static visual features, such as shape or color, exert more of an 

influence if animal exemplars were presented in picture form. 

The following experiment aims to supply some insight into these 

issues. A large set of animal lexical items is categorized in the same task as Dale 

et al. (in press), but the competing, incorrect category is randomly selected 

from 4 possible alternatives. Motor output is again measured in terms of 

mouse trajectories. The subsequent analysis provides clues about finer-grained 

processing exhibited by motor output. Firstly, typicality-gradient effects 

should be revealed in the motor output. Secondly, because lexical items are 

being processed, we use multiple typicality measures to reveal that specific 

feature sets are related to the typicality gradient along which motor output 

varies. Results demonstrate that the effectors exhibit cognitive processing in 

systematic ways: Effects found in research on categorization decisions are also 

revealed in their motor output. In addition, motor output can uncover the 

semantic features of the stimuli that underlie the lexical categorization task.

Experiment

Participants 

31 Cornell University undergraduates participated in the study for extra credit 

in psychology courses. All participants were right-handed.
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Materials 

Basic-level animal names were selected from the concept-name set of McRae et 

al.’s (1997) study in which participants listed features of various animals and 

objects. For the present study, we used 125 of McRae et al.’s animal names. 

Each animal corresponded with a superordinate category of mammal, fish, 

reptile, bird, or insect. The experiment was programmed using RealBasic, and 

presented on an Apple eMac computer. A standard one-button Apple mouse 

was sampled using RealBasic’s Timer control at a rate of approximately 40 Hz.

Procedure 

At the start of each experimental trial, participants were presented with two 

superordinate animal categories, one category name in the upper right-hand 

corner of the computer screen and one category name in the upper left-hand 

corner (with approximately 16 degrees of visual angle between categories). 

After 2000 ms, a 1 cm2 square appeared at the bottom center of the screen 

(approximately 13 degrees of visual angle from either category name). When 

participants clicked on this square with the computer mouse, the square was 

replaced by a basic-level animal name that corresponded with one of the two 

superordinate animal categories already at the top of the screen. Participants’ 

task was to click on the superordinate category corresponding with the animal 

name for that trial. Before the 125 experimental trials, each participant 

completed three practice trials. The animal name presentation order and each 

trial’s incorrect category were randomized. Likewise, the presentation side of 

the category names (left vs. right) was also random. Streaming x-y coordinates 
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were recorded between participants’ click on the square, and their final 

categorization choice (see Fig. 5.1A).

Typicality/Similarity Measures 

Three different typicality measures were explored. These measures were 

aimed at quantifying the proximity of each animal to the incorrect categories 

in semantic feature space using a distance metric. Typicality here refers to the 

proximity in semantic space of animals to categories of which they are not 

members (e.g., in semantic feature space, a whale is more typical of the 

category fish than of the category cat). Typicality here is then (dis)similarity, 

expressed through semantic distance, between the animal exemplar and the 

central featural properties of the incorrect, competing label which is assumed 

to draw the manual trajectories towards it.

Each of the 125 animal names can be represented as a sparse semantic 

vector in a 205-dimension feature space drawn from McRae et al.’s (1997) 

concept-name set. These semantic features were organized into three 

groupings: visual-dynamic, visual-static, and category features. Visual-

dynamic features (109 total) depicted specific animal behaviors, e.g., “swims” 

and “eats seeds.” Visual-static features (74) depicted specific appearance 

characteristics, e.g., “has a long tail” and “is furry.” Category terms (22) 

included non-visual labels often used to classify animals, e.g., “is domestic” 

and “is endangered.” These groupings defined three typicality measures: 

Proximity in semantic space using dynamic features, static features, and the 

full 205 feature set.

The 125 animals can be mapped in a semantic space with 

dimensionality of the number of relevant features (dynamic, static, or full). 
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Figure 5.1B: Depiction of dependent measures.

Figure 5.1A: What participants saw, along with a hypothetical mouse 

trajectory to the correct category.

 



Each category’s central tendency point was determined by averaging the 

coordinates of its constituent animals. In the resulting space, the most typical 

animal exemplars of each category clustered around their category’s central 

tendency point. On the other hand, atypical animal exemplars (e.g., whale) of 

each category were positioned much further away, often nearer to the central 

tendency point of an entirely different animal category (e.g., fish).

Output Measures and Analyses

Streaming x-y coordinates were sampled from the presentation of the lexical 

item, to the final categorization click, and only correct trials were subjected to 

analysis. Four properties of manual output were extracted from these mouse-

movement data (see Fig. 5.1B). First, the movement initiation time was 

computed by measuring the number of samples before mouse movement was 

detected (i.e., while the cursor was motionless after the start of a trial). From 

the remaining trajectory representing output motion, we calculated the 

number of time steps required to finish the categorization (movement time), 

the total area occupied by the trajectory compared to an assumed straight line 

to the correct category (area), and the closest point in the trajectory to the 

competing category (proximity to incorrect category). All measures were 

based on raw Timer control samples extracted in RealBasic, rather than an 

approximated temporal measure.

Analyses aimed to detect the extent to which each feature set predicted 

these dependent measures. In other words, if an animal’s feature vector is 

close to a competing category’s vector, one would predict that output 

measures would represent attraction towards that category label. Therefore, 

proximity to the incorrect category label should be smaller (closer to label) if 
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the distance between the animal and incorrect category in semantic space is 

small. To test this, we performed a two-part analysis. Both tests make use of 

item-based observations. Each animal is paired with 4 randomly selected non-

targets. With 125 animals, we therefore have 500 item types supplied by the 

experiment. The subsequent analyses are based on these 500 item-category 

pairs. Each pair has observations averaged across participants who 

encountered it in a trial during the experiment. These data were used in the 

two-part analysis.

In the first part, we separated animals along typicality gradients by 

using one standard deviation (SD) of the mean distance from animals to a 

given category (i.e., all animals to bird). This produced two groups of animals 

for each category. The first group (N ≅ 60 in the three feature sets), one SD 

below the mean distance, represents those animals close in semantic space to the 

competing category. The second group (N ≅ 60), one SD above, is particularly 

distant from the central tendency of the category (see Table 5.1 for examples). 

We conducted t-tests between these groups for each measure.

In a second test, we sought to confirm that significant relationships 

between typicality and the measures held across the entire group of animals. 

To do this, we computed a regression coefficient between the typicality 

measures and the output measures. Proximity to incorrect category, for 

example, should reveal a positive relationship with typicality (measured here 

in distance): Closer semantic distance measures should significantly predict 

closer spatial proximity measures in the mouse movements.
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Table 5.1: Some examples of close and distant animals in dynamic semantic 

space

Close animals (one SD below mean of distance for given category)

animal category distance

seal fish .30

dove insect .31

walrus fish .34

Distant animals (one SD above mean of distance for given category)

animal category distance

skunk insect 1.09

moth fish 1.08

bull bird 1.06



Results

Participants erred on 2.45% of experimental trials. These trials were not 

included in statistical tests.

In comparing the groups of above/below one SD to the mean distance 

in dynamic feature space, animals close to competing categories exhibited 

larger trajectory area (69386.7 vs. 64671.4 pixels2, t(122) = 2.0, p < .05), longer 

time in motion (26.3 vs. 23.3 samples, t(122) = 2.6, p < .05), and significantly 

closer proximity to the competing category label (340.7 vs. 368.1 pixels, t(122) 

= 2.6, p < .05). Neither visual nor full 205-dimensional feature space exhibited 

any significant or marginally significant differences.

Regression analyses revealed the same pattern. Only dynamic feature 

space again revealed significant relationships between output measures and 

distance. These are presented in Table 5.2, along with the results for static and 

full space regressions.

123

Table 5.2: Regressions across sets and output measures

r

Measure Dynamic Static Full

Area -.13** -.01 -.03

In motion -.15*** .04 .00

Proximity .13** .04 .04



Discussion

Results further support that dynamic properties of motor output reflect 

cognitive processing. The output measures significantly relate to typicality 

gradients for categories and animals that are not their members: The closer the 

proximity in semantic space between animal and incorrect category, the 

greater the attraction of the manual response towards that category label. In 

addition, by separating the feature space in terms of different semantic content 

(function vs. visual features), we find that the dynamic feature set predicts 

attraction to the non-target label, while static visual features do not. Although 

there are a number of caveats regarding the immediate implications of these 

semantic spaces (see below), this at least suggests that motor output is 

reflecting finer-grained featural semantics that underlie lexical categorization 

in the task. 

An additional analysis that may test this claim is to conduct similar 

tests using Latent Semantic Analysis (LSA; Landauer & Dumais, 1997), a 

semantic representation scheme based on co-occurrence of lexical items in text. 

If motor output reflects the processing of lexical items specifically, then we 

should also observe significant results when computing typicality gradients in 

terms of LSA measures.

LSA Analysis

LSA measures computed semantic similarity (rather than distance or 

dissimilarity) between animal names and the 4 alternative categories to which 

they do not belong. We should therefore expect the reverse pattern of results 

for our dependent measures.
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Exactly the same strategy was used to separate two groups of differing 

distance from mean typicality. These did not produce significant results. 

However, unlike the regression results above for visual, but similarly for the 

function feature space, LSA significantly predicted all dependent measures: 

area, r = .14, p < .01, movement time, r = .11, p < .05, and proximity, r = -.10, p 

< .05. While the SD separation of animal-category pairs did not attain 

significance, the regression results reveal that typicality gradient effects hold 

with LSA measures.

Movement Initiation Time

We present a final analysis that tests a prediction made by the perspective that 

processing flows into the effectors. If cognition indeed does not discretize 

information prior to initiating motor output during categorization, then there 

is likely an important temporal component to the process. If a participant 

allows a relatively large amount of time to pass during a trial before initiating 

their response, then one would not expect there to be significant dynamical 

competition in output: By spending more time evaluating the animal name 

and category labels before moving, the decision process may reach a higher 

level of certainty. The upshot may be a more reliably linear, ballistic movement 

to the correct category label. 

We looked at the relationship between movement initiation time and 

the output measures. One measure exhibits a significant relationship. 

Proximity to competitor is positively related (r = .15, p < .001). In other words, 

the longer the amount of time spent before initiating motor movement, the 

less spatial attraction exerted by the competing category.

125



General Discussion

In everyday life, our arms move continuously during such tasks as gesturing 

in conversation, organizing objects on a table, or managing cooking 

ingredients. Their neural substrate is a fairly slow system (relying heavily on 

prediction; e.g., Flanagan & Lolley, 2001), not firing off movements in staccato 

fashion (much like saccades), but often changing course mid-path, or issuing 

graded movements as it directs the arms to their target. This intuition about 

everyday movement is demonstrated in the foregoing results, and in the array 

of motor-dynamics findings reviewed above. Even in a relatively “higher-

order” cognitive process such as categorization, manual output has internal 

characteristics that likely reflect the categorization process itself. In the above 

results, mouse trajectories vary concomitantly with typicality gradients, and 

these gradients may lie along semantic dimensions relevant to the processing 

task (lexical categorization).

Nevertheless, a number of important limitations should be noted. First, 

the results, while robust, are thus far fairly weak. There may be a number of 

reasons for this. Firstly, Dale et al. discovered that lexical stimuli generate 

weaker competition effects in mouse trajectories -- if picture stimuli were 

used, stronger effects of typicality may be observed, along with the potential 

importance of static visual features.

Secondly, previous findings with saccadic trajectories show an effect of 

location of distractors relative to targets, resulting in varying strengths of 

trajectory curvature (see Godijn & Theeuwes, 2002, for a review). In the kinds 
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of experiments reported here, it is uncertain where or whether there are effects 

of relative location. Further studies may explore different locations of 

competing category labels, and whether this weak result is inherent to the 

nature of interaction between cognition and action, or perhaps the design 

presented here involved response choices situated too close or too far to reveal 

more marked trajectory effects.  

Thirdly, little was done to transform the semantic feature space 

afforded by McRae et al.’s (1997) concept set (e.g., multidimensional scaling, 

row/column normalization, similarity-metric transformation). Also, these 

feature sets were not intended to define categories – so raw feature values in 

Euclidean space were used to infer category clusters. Moreover, we did not 

make use of typicality scores for correct categories. We feel that this is in fact a 

more conservative test of the predictions made above, because raw Euclidean 

distance between animal and incorrect category relates to motor measures, 

without adding the additional information regarding proximity to correct 

category semantics. Further detailed analysis of McRae et al.’s (1997) semantic 

feature space may thus strengthen these results.

Despite these limitations, the proximity of correct and incorrect 

category labels did produce dynamic motor movement effects that reliably 

correlate with raw semantic feature space. The results further contribute to a 

wide literature on processing distinctions between mode of stimulus 

presentation: Categorization of lexical items may rely on semantic information 

that is distinct from that centrally involved in categorizing pictures of animal 

exemplars (e.g., Snodgrass, 1984; Viswanathan & Childers, 2003). Although it 

is possible that the limitations may have rendered detection of visual static 

effects undetectable, further exploration may seek to explore the contribution 
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of visual (or other perceptual) information in both decision- and output-based 

measures in lexical categorization (see, e.g., Pulvermüller, 1999). One approach 

is to make use of picture stimuli of the 125 animal names (e.g., Dale et al., in 

press). Another, as mentioned, is to subject the semantic feature space used 

here to more detailed analyses, perhaps revealing the relevance of other visual 

or other perceptual semantic features in more sensitive tests. 

The findings reported here challenge the common intuition that the 

properties of motor output are uninformative of cognition. Perhaps more 

importantly, they suggest that processing flows in systematic ways into motor 

behaviors, rather than simply being collapsed onto them to generate a 

categorical response (cf. Gold & Shadlen, 2000). They may recommend a 

“cascadic flow” perspective on cognition that sees information flow 

continuously from sensors to effectors (McClelland, 1979; Balota & Abrams, 

1995; Spivey et al., 2005). These results lend support to this perspective, which 

challenges the discrete perspective on the way in which a central cognitive 

process, such as categorization, becomes action. 
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CHAPTER SIX

From Apples and Oranges to Symbolic Dynamics:

A Framework for Conciliating Notions of Cognitive Representation

1. Introduction 

Since its inception, cognitive science has offered up a wide array of 

hypothetical constructs, intervening somewhere between our sensors and our 

effectors, to explain our observable behavior.  Many of these constructs can be 

filed under the umbrella term “representation.”  Representations might “stand 

for” things in the world (Bloom & Markson, 1998), be asymmetrically 

dependent with worldly objects (Fodor, 1987), they might get stored or 

processed or recalled (Atkinson & Shiffrin, 1968), and they surely change 

somehow during development and learning (Danovitch & Keil, 2004).  This 

generic construct has appeared and reappeared in a variety of forms, labeled 

variously with the terms “traces” (e.g., Rosen, 1975), “schemata” (e.g., Bartlett, 

1932; Neisser, 1976), “categories” (e.g., Rosch, 1975), “concepts” (e.g., Medin, 

1989), “object files” (e.g., Feigenson & Carey, 2003), and so on – perhaps 

describable as different forms of representation. 

There is no single agreed upon theory or definition of representation 

among cognitive scientists (Dietrich & Markman, 2003).  The details about any 

particular brand of representation are mostly specific to the theory in which it 

plays a role – but each brand can be characterized in terms of some basic 

features.  Nonetheless, even these most fundamental properties of 

representation are the subject of continuing debate in cognitive science.  One 

such property concerns the temporal and spatial extent of representational 
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states.  There are two basic sides to the traditional version of this debate. One 

family of theories may be described as “discrete-symbolic,” because they claim 

that internal representational states involve discrete computational 

information structures that are manipulated in logical algorithmic processes.  

Here, “computational” can be understood intuitively as structures that take 

the form of something a digital computer would process – content that is 

discrete in space and time.  A competing family of theories may be described 

as “continuous-distributed,” because they instead invoke representational 

states that are spread out in space, and extended in time.  These states are 

graded, statistical, and probabilistic – they cannot be individuated discretely 

in time, or uniquely in their informational content.  Continuous-distributed 

representations contain probabilistic informational patterns that might blend 

into other such representations, whereas discrete-symbolic representations are 

by definition independent uniquely identifiable states that are each separate 

from, yet used in conjunction with, other discrete representations (Dietrich & 

Markman, 2003).

Debate continues about which composition is the most appropriate 

foundation for cognitive explanation.  Recently, Dietrich and Markman (2003; 

Markman & Dietrich, 2000) have offered persuasive arguments about the 

crucial role of symbolic representation in higher-order cognition, such as 

conceptual organization, problem solving, and language (see also Marcus, 

2001; Pinker, 1997).  Meanwhile, Spivey and Dale (2004) argue that a 

continuous composition is extensively evidenced throughout even complex 

cognition, offering examples from real-time language processing and visual 

cognition (see also Elman, Bates, Johnson, Karmiloff-Smith, Parisi & Plunkett, 

1996; Port & Van Gelder, 1995).  In this article, we provide a review and 
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discussion of a mathematical terrain in which these two representational 

formats can be directly compared and evaluated.  We suggest that a kind of 

“mathematization” of the problem space, in terms of nonlinear dynamical 

systems and symbolic dynamics, can aid in a variety of ways.  The descriptive 

power of dynamical systems, and the computational power of symbolic 

dynamics based on them, can reveal an epistemological synthesis of this 

debate, and offer an illuminating framework for exploring such conceptual 

conciliation.  For reasons that we describe later, we do not expect the 

framework of symbolic dynamics to make moot the debate between discrete 

and continuous descriptions of mental activity, but rather may pose as the 

level playing field on which the debate may actually achieve a consensual 

resolution. 

A case may be made for mathematization of scientific domains as a 

course toward resolving theoretical disputes, clarifying conceptual confusions, 

and making potential decisions concerning the greater validity of one 

verbalized scientific description over another (e.g., for a discussion of this in 

psychology, see Meehl, 1998).  What early calculus did for Newtonian 

mechanics, tensor calculus for general relativity, symbolic logic for computer 

science, among other possible examples, is to provide a formal framework for 

exploring the relationships among observables, thereby making explicit 

predictions that can be tested empirically.  A common mathematical 

framework, within which different theories compete, permits more rigorous 

evaluation of hypotheses that otherwise would be couched merely in a 

verbalized form. For example, despite the growing popularity of quantitative 

models, it is not difficult to find theories in cognitive psychology whose 

existence enjoys only verbal description.  This certainly does not invalidate the 
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potential contribution of these theories – observers should always be 

reminded of the youth of cognitive science.  The bigger problem is that 

multiple competing theories in verbal form may be conducive to debate with 

little chance of resolution.  For one thing, without a common formal 

framework, it may be difficult to tell if two competing theoretical schemes are 

in fact mutually exclusive, or perhaps even extensionally equivalent.  In other 

words, without explicit formulation of the relationship among theoretical 

entities, in more or less formal terms, it may be difficult to determine whether 

two competing entities are two distinct incommensurable accounts, two 

different aspects of one process, or merely two different descriptions of the 

same process.  Secondly, theorists of differing persuasions may be talking past 

one another, preventing a Hegelian “thesis-antithesis-synthesis” resolution 

that may be revealed by a common framework permitting conciliation of 

competing notions. 

There are pursuits in cognitive science that benefit from aspects of 

formalization at present.  For example, connectionist models have been used 

as a common information-processing framework for evaluating competing 

theoretical accounts of cognitive processes involved in language. McRae, 

Spivey-Knowlton, & Tanenhaus (1998) used a localist attractor network to 

compare directly the immediate information-integration predictions from the 

constraint-based theory of sentence processing (MacDonald, Pearlmutter, & 

Seidenberg, 1994) to the architecturally delayed integration predictions from 

the Garden-Path theory (Frazier, 1995).  Drawing from work by Elman (1990) 

and Schütze (1994), Spivey-Knowlton and Saffran (1995) used a connectionist-

like framework to directly compare the advantages of incremental prediction 

and explicit negative evidence in learning a simple language structure.  Also, 
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particularly relevant to our concerns here, homogeneous versus hybrid 

simulations using connectionist principles have recently been developed to 

compare dual- vs. single-route models of reading (Harm & Seidenberg, 1999; 

Coltheart, Rastle, Perry, Langdon & Ziegler, 2001).  Other formal frameworks, 

such as Bayesian modeling (Tenenbaum & Griffiths, 2001), genetic algorithms 

(Chater, Christiansen & Reali, 2004), and statistical models of sentence 

processing (Chater & Redington, 1996) have been manipulated in ways that 

allow comparison of competing theories.  

The overarching theoretical concern, however, is that many of these 

models involve too many degrees of freedom to make them a sufficiently 

agreed-upon common ground for comparing theoretical constructs whose 

properties are highly disparate.  Comparing individual models of particular 

processes is surely valuable and inevitable, yet fundamental theoretical 

differences in cognitive science cannot be contacted through manipulating 

already-existing architectures.1  The debate over representation is particularly 

illustrative in this respect.  Those who propose symbolic rules and 

representations have often urged core qualitative differences between these 

133

1 This is not to say that theoretical debate cannot proceed by comparing 

distinct architectures and their ability to capture the data – because this is 

already an area of productive debate in cognitive science (e.g., Pitt, Myung, & 

Zhang, 2002; Roberts & Pashler, 2000).  We are instead recommending the use 

of a single formal framework that permits comparison of different theoretical 

constructs that could exist within that framework. The relative contribution of 

these different constructs for fitting experimental data, within the same set of 

agreed mathematical or formal principles, would then adjudicate between the 
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kinds of states and the probabilistic distributed states that are the hallmark of 

statistical models, such as connectionist simulations.  For this reason, choosing 

a formalization that has a pre-existing affiliation with a particular theoretical 

framework, such as a production system or a connectionist model, biases the 

enterprise toward the theory from which the model originated.  A common 

ground should instead derive from a formalization that can already 

adequately incorporate and implement both sides of the theoretical debate.  A 

mathematization or formalization of the debate over representation needs a 

common framework for directly comparing symbolic states and dynamic 

processes within the same explanatory arena.

 In this article, we propose that a branch of dynamical systems theory may 

serve as this common ground.  Symbolic dynamics has both complemented 

understanding of the continuous-time nature of systems, along with providing 

groundbreaking insight into the computational power inherent in dynamical 

systems (e.g., Crutchfield, 1994).  A few proposals concerning symbolic 

dynamics have already been offered from contributors outside of cognitive 

science.  Below we introduce symbolic dynamics for the cognitive scientist, 

and review some of these proposals. Before describing this framework, we 

first offer discussion supporting the position that some portion of our 

perceptuałcognitive processes is already awash in continuity: That the best 

physical description of the mind/brain must invariably invoke, at some level, 

continuous (or discretely-approximated continuous) bases for understanding 

the substrate of cognition. A theory of cognition is superimposed on this 

continuity in two broad ways historically: Discrete-symbolic or continuous-

distributed representational states and processes as the theoretical basis for 

cognitive explanation.  We then introduce symbolic dynamics as a framework 
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that can incorporate (and, in certain special cases, show the equivalence of) 

both kinds of explanation.  We finally offer our own consideration of symbolic 

dynamics, with its potential contribution to and limitations in cognitive 

science.

2. Continuity

A key point Dietrich and Markman (2003) use to support discrete 

representations is our cognitive system’s ability to form categories for objects 

in our world: “If a system categorizes environmental inputs then it has 

discrete representations” (p. 101).  Moreover, they argue, continuous accounts 

of categorization would miss the mark, since categorization by definition 

involves consistent responses to completely distinct elements in our 

environment – it makes no room for continuity (historically this may be 

arguable, cf. Rips, Shoben & Smith, 1973; Rosch, 1975).  Although Dietrich and 

Markman offer extensive discussion to forestall possible replies, there remains 

a problem with this perspective.  What the authors dub “enduring classes of 

sameness” (p. 101), in an environment that our system must categorize, 

involve discrete internal representations whose primary evidence comes from 

what might be called time-course irrelevant responses during a cognitive task.  

An outcome-based response measure, such as a forced-choice categorization 

task, is time-course irrelevant because the temporal dynamics of 

representational activations leading up to the forced choice go undetected by 

the response measure.  Such response measures may artificially exaggerate the 

degree to which the enduring classes exhibit their sameness. For example, 

even the cognitive literature’s darling of discrete mental events, categorical 
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speech perception (e.g., Harnad, 1987; Liberman, Harris, Hoffman, & Griffith, 

1957), exhibits some graded sensitivity to continuous phonetic feature 

information when its temporal dynamics is measured with reaction times and 

eye movements (McMurray, Tanenhaus, Aslin, & Spivey, 2003; Pisoni & Tash, 

1974; see section 2.2 below).  In this article, we consider two realms, visual 

cognition and language comprehension, in which an unmistakable continuity 

is observed even in seemingly discrete, categorical tasks (see Spivey & Dale, 

2004, for further review). 

2.1 Vision

Vision research is replete with examples of continuity in real-time perception.  

The gradual settling of a population code of neurons, over the course of 

hundreds of milliseconds, is a typical way to think about how the visual 

system recognizes objects and faces. Compelling visualizations of the 

continuous manner in which sensory input gradually produces a percept can 

easily be found in visual neuroscience. We briefly consider three cases: Object 

and face recognition, visual search, and perceptual decisions.  

Rolls and Tovee (1995) recorded from neurons in macaque 

inferotemporal cortex, and found that it takes a few hundred milliseconds for 

a responsive population of cells to achieve their appropriate firing rates 

indicating full identification of a fixated object or face. The cumulative 

information (in bits) provided by an inferotemporal neuron in the service of 

recognizing a face or object accrues continuously (though nonlinearly) over 

the course of about 350 milliseconds until asymptote. Perrett, Oram, and 

Ashbridge (1998) demonstrate similar patterns of gradual accumulation of 
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neuronal evidence during face recognition.  When an object or face is partly 

rotated away from the frontal view, recognition or matching will generally 

take longer as a function of how far it is rotated (e.g., Cooper & Shepard, 1973; 

Jolicoeur, 1985; Shepard & Metzler, 1971; see also Georgopoulos, Lurito, 

Petrides, Schwartz, & Massey, 1989).  Perrett et al. (1998) describe recordings 

from cells in the monkey temporal cortex during viewing of frontal, three-

quarter profile, profile, and quarter profile schematic faces.  When the 

accumulated action potentials are plotted over time, these curves gradually 

rise to asymptote over the course of several hundred milliseconds, but at 

different rates as a function of how canonical the face orientation is.

The same kind of gradual accumulation of perceptual evidence can be 

observed when multiple objects are competing for attention during visual 

search. Although a serial-processing account has argued that the observer 

allocates attentional resources wholly and discretely to individual objects, one 

at a time (e.g., Treisman & Gelade, 1980; Treisman, 1988; see also Wolfe, 1992), 

a parallel-processing account is recently being developed in which attention is 

best characterized as involving partially-active representations of objects 

simultaneously competing for probabilistic mappings onto motor output (e.g., 

Desimone & Duncan, 1995; Reynolds & Desimone, 2001). In fact, a wide range 

of studies have been suggesting that the traditional distinction between 

putatively “serial” and “parallel” search functions is best revised as a 

continuum of search efficiency rather than two separate mechanisms of visual 

search (Duncan & Humphreys, 1989; Nakayama & Joseph, 1998; Olds, Cowan, 

Joliceur, 2000; Wolfe, 1998; see also Spivey, Tyler, Eberhard, & Tanenhaus, 

2001).
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Finally, Gold and Shadlen (2000) examined decision processes in 

macaque visual perception.  A common task in visual psychophysics involves 

presenting a display of quasi-randomly moving dots.  As the experimenter 

increases the proportion of dots that move in a roughly consistent direction, 

the perception of a coherent direction of flow amidst the dots becomes more 

apparent (Britten, Shadlen, Newsome, & Movshon 1992). Monkeys were 

trained to indicate the perceived direction of dot flow, upon offset of the 

stimulus, by making an eye movement to one peripheral location or an 

opposite one.  After identifying a relevant frontal-eye field (FEF) region, 

electrical microstimulation evoked an involuntary saccade that was 

perpendicular to the two voluntary response saccades.  On some of the 

direction-of-flow judgment trials, this region was microstimulated 

immediately after the moving dot display disappeared, i.e., exactly when the 

monkey was supposed to produce a voluntary eye movement that would 

indicate his response regarding the perceived direction of flow of the dots. By 

incrementally increasing viewing time of the stimulus before this 

microstimulation, the experimenters were able to observe the gradual increase 

in “strength” or “confidence” of the perceptual decision over time, as 

indicated by the degree to which that voluntary saccade “leaked into” the 

execution of FEF-microstimulated evoked saccade. Thus, the population of 

FEF cells that produced the evoked saccade were already somewhere in the 

process of settling toward a pattern of activation that would produce the 

voluntary response saccade.  If the microstimulation took place early on in this 

decision process, rather little effect of the voluntary response would be 

apparent in the direction of the evoked saccade, but if the miscrostimulation 

took place later on in the decision process, a significant amount of the 
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voluntary response would be apparent in the direction of the evoked saccade.  

This finding suggests that decision processes themselves may be coextensive 

with the gradual settling of partially-active and competing neural 

representations in oculomotor areas of cortex (Gold & Shadlen, 2001; Schall, 

2000; see also Georgopoulos, 1995).

2.2 Language

Much like visual perception, language comprehension also exhibits a form of 

temporal dynamics that reveals underlying continuous-distributed formats of 

representation.  There is considerable evidence that the multiple levels of 

linguistic complexity – comprehension of speech sounds, words, and 

sentences – are driven by graded, partially active representations.  At the level 

of speech sounds, the phenomenon of categorical perception was long 

adduced as evidence for discrete representational states (Liberman, 1982).  

Lately it has been subject to extensive empirical investigation, and made 

consistent with more temporally dynamic approaches to categorization 

(Damper & Harnad, 2000; see also Anderson, Silverstein, Ritz, & Jones, 1977).  

For example, McMurray and Spivey (1999) tracked participants’ eye 

movements while they performed the standard categorical identification task.  

This task involves categorizing sounds that lie on a voice-onset-time 

continuum between “bah” and “pah,” by clicking a relevant icon on one or the 

other side of the computer screen. Thus, in addition to recording the 

participants’ explicit choice, there was also a semi-continuous record of how 

the eyes tended toward one or the other response icon during categorization.  

With “pah” or “bah” sounds near the categorical boundary, eye movements 
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exhibited conspicuous vacillation between categories before the overt mouse-

click response was made. Despite the apparent categorical nature of the 

eventual choice, eye movements revealed a more continuous decision process 

that is sensitive to some of the graded acoustic-phonetic variation in the 

stimulus. These temporary phonemic ambiguities exhibit their effects not just 

in phoneme categorization tasks but also in spoken word recognition tasks 

(McMurray, Tanenhaus, & Aslin, 2002; McMurray et al., 2003).  

At the level of word recognition, Spivey-Knowlton, Sedivy, Eberhard, & 

Tanenhaus (1994) demonstrated cohort effects in eye-movement patterns by 

having subjects follow instructions to manipulate real objects on a table.  

Participants sat in front of a table containing a central fixation cross and 

various objects around it (e.g., a fork, a mug, a candle).  In some trials, objects 

whose names had similar initial phonemes were present on the table, available 

for manipulation (e.g., a bag of candy and a candle). Even before the spoken 

word was completed, eye-movements to both objects were often observed, 

such as briefly fixating the candle when instructed to “Pick up the candy.”  

This phonologically similar object conspicuously attracting eye movements is 

indicative of the competing lexical representation being partially active 

during, and perhaps shortly after, delivery of the spoken word.   Headband-

mounted eye-tracking studies like this have demonstrated this real-time 

lexical competition using computer-displayed objects (Allopenna, Magnuson, 

& Tanenhaus, 1998), using artificial lexicons (Magnuson, Tanenhaus, Aslin, & 

Dahan, 2003), with young children (Fernald, Swingley, & Pinto, 2001), and 

even across two languages in bilingual participants (Marian & Spivey, 2003; 

Spivey & Marian, 1999).
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Finally, in sentence processing, eye movements can again reveal the 

continuous intake and use of information during comprehension of a spoken 

utterance. For example, when presented with a real 3-D display containing an 

apple on a towel, another towel, and an empty box, and then instructed to 

“Put the apple on the towel in the box,” participants often look briefly at the 

irrelevant lone towel near the end of the spoken instruction before returning 

their gaze to the apple, grasping it, and then placing it inside the box (Spivey, 

Tanenhaus, Eberhard, & Sedivy, 2002; Tanenhaus, Spivey-Knowlton, Eberhard, 

& Sedivy, 1995). In this case, the syntax is ambiguous as to whether the 

prepositional phrase “on the towel” is attached to the verb “put” (as a 

movement destination) or to the noun “apple” (as a modifier).  Given the 

actions afforded by the display, the latter syntactic structure is the correct one. 

However, the brief fixation of the irrelevant lone towel indicates a temporary 

partially-activated incorrect parse of the sentence.  To demonstrate the 

influence of visual context on this syntactic ambiguity resolution process, the 

display was slightly altered to include a second apple (resting on a napkin).  In 

this case, the visual co-presence (in Herb Clark’s, 1992, terms) of the two 

potential referents for the phrase “the apple” should encourage the listener to 

interpret the ambiguous prepositional phrase “on the towel” as a modifier (in 

order to determine which apple is being referred to) rather than as a 

movement destination (cf. Altmann & Steedman, 1988; Crain & Steedman, 

1985; Spivey & Tanenhaus, 1998).  And, indeed, with this two-referent display, 

participants rarely fixated the irrelevant lone towel, indicating that visual 

context had exerted an immediate influence on the incremental syntactic 

parsing of the spoken sentence (Spivey et al., 2002; Tanenhaus et al., 1995; see 

also Knoeferle, Crocker, Scheepers, & Pickering, 2003).
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The current state of affairs in the field of sentence processing is at a 

consensus with regard to the continuity of information flow, and has been 

gradually approaching consensus with regard to the rapid integration of 

syntax, semantics, and pragmatic context (Trueswell & Tanenhaus, 2004).  Just 

as the processing of speech sounds, at the scale of tens of milliseconds, 

appears to be characterized by multiple partially active phonemic 

representations competing over time (McMurray et al., 2002, 2003), and the 

comprehension of spoken words, at the scale of hundreds of milliseconds, 

appears to be characterized by multiple partially active lexical representations 

competing over time (Allopenna et al., 1998; Marslen-Wilson, 1987; 

McClelland & Elman, 1986), so does the resolution of syntactic ambiguity, at 

the scale of seconds, appear to be characterized by multiple partially active 

syntactic representations competing over time (MacDonald et al., 1994; Spivey 

& Tanenhaus, 1998; Stevenson, 1994; Tabor & Tanenhaus, 1999).

2.3 Summary

From perception, such as visual processing, to cognition, such as the various 

levels of linguistic processing, there seems to be extensive evidence for 

continuous-distributed representation (see Spivey & Dale, 2004, for further 

discussion and examples).  There nevertheless remains considerable debate 

about the nature of representation in other areas of cognition.  In particular, in 

“high-level” cognitive processes such as reasoning and problem solving, there 

seems to be markedly slower success with continuous-distributed 

frameworks.  This situation is exacerbated further by the comparatively rapid 

rise, and longer history, of discrete-symbolic accounts of reasoning and 

142



problem solving (e.g., Weizenbaum, 1966; Winograd, 1970; Newell & Simon, 

1976).  

If it can be granted that perception is largely driven by continuous 

change in processing states, then for the discrete-symbolic perspective to be 

right about cognition, there must be a “discretization” that happens 

somewhere in between perception and motor output.  The debate can then be 

placed in the following terms: How early in the system do our theories need to 

postulate this discretization, thus invoking a language of discrete symbols generated 

through causal influences of continuous processes?  A purely continuous-

distributed account of cognition might place this discretization at the extreme 

end, only in between the motor action itself and its effects on the problem-

solving environment.  For example, although you may be trying to decide 

between moving your rook four squares up or three squares up in a game of 

chess, and this vacillation may even be visible in the continuous motor 

movement, in the end, only one of those alternatives actually happens.  In 

contrast, the discrete-symbolic account of cognition urges an earlier 

discretization, recommending theories to work with symbolic states and 

algorithmic state-transition rules not long after perceptual processing.  In such 

a case, the decision to move one’s rook three squares or four squares would be 

discretely made in an internal cognitive stage, and any vacillation observed in 

the motor movement would be best interpreted as a vestigial or 

epiphenomenal echo of the earlier temporary cognitive uncertainty.

If this formulation of the question is agreeable to both sides of the 

debate, then there exists a “common format of explication” that future 

research in high-level cognition might fruitfully use in order to consensually 

adjudicate between theories that propose an internal discretization of the 
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brain’s continuous dynamics and theories that propose only an external 

discretization of them.  The mathematical arena of symbolic dynamics (e.g., 

Crutchfield, 1994; Devaney, 2003; Goertzel, 1998; Shalizi & Albers, submitted; 

see also Cleeremans, Servan-Schreiber & McClelland, 1989; Tabor, 2002, for 

related discussions) has exactly the ingredients for building systems that 

implement continuous temporal dynamics in a high-dimensional state space 

(of perception and of action) and can convert that continuous trajectory into an 

emitted string of formal logical symbols for describing external action-effects 

in a problem-solving environment, and also for describing internal cognitive 

states.2  We next offer a very simple introduction to symbolic dynamics, and 

then discuss a number of issues relevant to its application in cognitive science.

3. Symbolic Dynamics 

A continuous-distributed perspective on representation in perceptual and 

cognitive processes is often couched in model systems that change in time (be 

it continuous-time or discrete-time): dynamical systems.  A dynamical systems 

framework provides a rich set of conceptual tools for cognitive science.  The 

geometric entities in the study of dynamical systems can serve as an intuitive, 

and potentially mathematically rigorous, vocabulary for visualizing state 

changes within and between perception and cognition.  As already mentioned, 

this strategy is widely used in many areas of cognitive science, and is often 
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considered its own framework for the study of cognition (Port & Van Gelder, 

1995; Thelen & Smith, 1994; Ward, 2002; Kelso, 1995).  In order to lay out this 

descriptive vocabulary, we briefly consider a simple iterative dynamical 

system, surely familiar to many readers, that illustrates a number of these 

geometric metaphors.  Consider a function F(x) that maps real numbers onto 

real numbers by iteration: F2(x) is given by F(F(x)), and F3(x) by F(F(F(x))), etc. 

The logistic map is given by the equation

F(x) = μ x (1 – x).

The time dimension is here represented by progressive iteration of the real 

value x into the function F, scaled by μ.  The iterative process in this simple 

equation illustrates both stability, meta-stability, and transition into chaotic 

behavior.  For example, when μ  is between 0 and about 3.5, iteration of F(x) 

from any starting point of x will settle into stable attractor states – namely, the 

value of Fn(x), as n becomes very large, stabilizes on one or more particular 

precisely-repeated values.  These values are termed attractors in the logistic 

map’s dynamics.  As μ approaches about 3.6 or so, the logistic map exhibits 

chaotic behavior, where there is no stable attractor state, and its series of 

values can superficially appear random.  One way of representing the 

transitions in state space of this system is through a phase plot, shown in Fig. 

6.1. By tracking the value of x at each iteration, we can visualize the trajectory 

of the system from some random initial x into its attractor states (Fig. 6.2).  

The logistic map is used extensively in textbooks on dynamical 

systems.  Its curiosity lies in the rich complexity that emerges from iterating 

such a simple equation.  In fact, the same issues considered for discerning the 
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nature of the logistic map are a concern for innumerable systems of practical 

and theoretical interest.  A wide variety of pure and applied mathematical 

techniques can be used to study these systems.  Nevertheless, it is not 

uncommon that these methods can be outstripped by a system’s complexity.  

A specific technique available to overcome such limitations, around for 

decades and gaining much attention of late, is termed symbolic dynamics, and 

offers a means of simplifying analysis (e.g., early on, Morse & Hedlund, 1938; 

see Devaney, 2003 and Williams, 2002 for review).  A system’s dynamics can be 

rendered symbolic by carving partitions or regions into its phase space, and 

assigning a unique numeric state or label to that partition.  As the dynamical 

system’s state changes in time, this trajectory is transformed into a sequence of 

emitted symbols corresponding to partitions in the space.  Take, for example, 

the logistic map.  We can represent its phase space as in Fig. 6.3, and divide the 

plot into two intervals, I0 = [0, ½] and I1 = (½, 1].  When iterations of the 

system enter the first interval, the symbol “0” is output, and likewise “1” for 

the second.  The dynamics of the logistic map may therefore be represented by 

a sequence of 1’s and 0’s, indicating its approximate position in these 

partitions at each iteration.

At μ  = 2.9, the system quickly descends onto a particular stable 

attractor state at approximately x = 0.65.  The symbol sequence generated by 

this system is extremely simple – “1111…”.  The system in fact never leaves 

this interval, never passing the threshold into the other, and therefore emits 

the symbol “1” for any subsequent iteration once Fn(x) reaches its attractor.  

However, when μ = 3.55, for example, the map fluctuates for a bit and then 

reaches eight distinct and perfectly repeated attractors.  Once it reaches this 

meta-stable state, while tracing the transitions across intervals I1 and I0, this 
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trajectory generates the sequence “011101110…”. This may be simplified using 

the notation (01110111)n or even (0111)n.  Contained in this simple sequence 

rule is the original dynamics: Transitions between eight separate attractor 

states. 

The above example is deliberately simplified for the sake of introducing 

rudimentary dynamical systems and symbolic dynamics. The logistic map 

affords this simplification.  The strategy of employing symbolic dynamics, 
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 Figure 6.1: A phase-plot for the logistic map.  Provided  is above 0 

and below 4, the system lives within the interval of [0, 1].  In other 

words, given its current value of x at time t, its subsequent iteration, 

time t + 1, will be on this line (here with μ  = 3.9).



however, is somewhat more complex in most contexts. Symbolic dynamics 

rapidly served to help explore chaotic dynamical systems in more theoretical 

contexts (see Williams, 2002, for a review).  In a further simplified example, we 

can straightforwardly introduce what this application entails.  Consider an 

alphabet of N symbols that we might use in our partition of a system’s phase 
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x0 = 0.65

Fn = 0.76

Fn = 0.56

Figure 6.2: In this “phase flow” diagram, the logistic map moves 

into two stable attractors with μ  = 3.1.  The system starts at x0 = .

65. As the x is iterated through F, it settles into two attractor states, 

approximately .56 and .76, between which it will alternate 

indefinitely.



space, A = {0, …, N-1}, and the space of all possible sequences constructed 

from this alphabet:

Σ2 = {S | S = s0s1s2…, and si ∈ A}
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I0 I1

“0” “1”

Figure 6.3: The phase space of the logistic map can be carved into 

two intervals.  Each time the system enters the interval, it outputs 

the symbol corresponding to that region (“0” or “1”). Here  μ = 3.9 

again.  



Here, s0 is the first symbol emitted by the dynamical system, and the sequence 

continues ad infinitum.  The set Σ2 is the space of all such possible sequences.  

A particular system’s dynamics can be captured by shifting its infinite 

sequence, S ∈ Σ2, to the left, so that s0s1s2… → s1s2s3…, and the new sequence 

begins at the next emitted symbol, s1. This shift operation captures the 

progression in time of emitted symbols, and is often represented by σ, so that 

S′ = σS, where s′i = si+1.  This shift operation can act as a mapping on a 

continuous space, σ : Σ2 → Σ2, by specifying a distance measure or metric 

between sequences, d(S, S′). In other words, the trajectory of a system can be 

represented in terms of an ordered set of infinite symbol sequences, formed by 

progressive shifting.  

From here, a means of exploring dynamical systems involves 

demonstrating that the space of symbols Σ2 and its shift map σ have a certain 

geometrical equivalence to a dynamical system’s own continuous mapping 

and the set of states which it visits.  The famous Smale horseshoe can be 

studied through partitions of its phase space – and through its symbolic 

dynamics, it can be shown to have particular dynamical features (e.g., chaos; 

Medio & Lines, 2001).  The logistic map has also been explored through its 

symbolic dynamics.  Consider the case where the control parameter μ in F is 

larger than 4.  It is easy to see that most initial states will have Fn approaching 

–∞ as n gets larger.  Specifically, since x = .5 grants the product x(1 – x) its 

largest value (.25), any value for μ that is greater than 4 will take F outside the 

interval [0, 1], and thus at the next iteration, on a path towards infinity.  

However, inspection of the phase plot for the logistic map in Fig. 6.4 reveals 

the simple observation that not all values of x take F out of [0, 1].  The set C of 

all values that avoid this escape, along with the function F, can be shown to 
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have this kind of equivalence with Σ2 and σ, and allow certain conclusions 

about the properties of this set: Once again, the map F on C is chaotic 

(Devaney, 2003). 

These textbook examples of the theoretical and mathematical benefits of 

symbolic dynamics merely scratch the surface of its recent role in the study of 

dynamical systems. Recent excitement has instead been concerned with the 

extent to which symbolic dynamics is informative about more complex 

systems through statistical analysis of its output. Symbolic dynamics is thus 

intriguing because it offers structures of sequences that can be subjected to a 

wide variety of “tricks for predicting discrete stochastic processes” (Shalizi, 

2004a). Such statistical analysis has offered insight into complex dynamic 

processes in a wide variety of fields, including astronomy, biology, chemistry, 

and computational linguistics (see Daw, Finney & Tracy, 2003, for a review).  

The past two decades have also seen symbolic dynamics make explicit 

connections between the study of digital computation and that of continuous 

dynamical systems (Crutchfield, 1994).  

Symbolic dynamics also has the interesting property of sometimes 

exhibiting equivalence with the continuous system from which it originates.  

As long as a partition is adequately selected, analysis of the symbol sequences 

can actually be used to reconstruct the continuous dynamics of the original 

system.  A specific kind of partition, termed generating partition, can in fact 

yield “approximately complete and precise descriptions of the system” (beim 

Graben, 2004, p. 47).  Perfect definition of a generating partition requires 

knowledge of the original dynamical system, but there exist techniques for 

approximating these demarcations (e.g., Davidchack, Lai, Bollt, & Dhamala, 

1999; Kennel & Buhl, 2003).  Such generating partitions allow the symbolic 
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dynamics to be topologically equivalent to the original continuous dynamics 

(beim Graben, 2004; Kitchens, 1998; Shalizi & Albers, in press).  However, 

finding generating partitions is very difficult in systems consisting of more 

than two dimensions (Kennel & Buhl, 2003), and they only work for 
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F(x)

F2(x)

Figure 6.4: The logistic map phase plot with μ = 4.1.  A portion of the 

phase space is outside the interval [0, 1], and points leaving will tend to -∞ 

through F iteration.  However, a set of points does not leave this interval, 

illustrated with one iteration of some value x (dotted lines).  The initial 

value x becomes F(x), and remains in the [0, 1] interval.  Symbolic 

dynamics allows investigation into the nature of these iterations that do 

not escape (see text for more detail).



deterministic dynamical systems (Crutchfield & Packard, 1982).  Therefore, 

much of the practical applicability of symbolic dynamics may lie in iteratively 

refined approximations of generating partitions, rather than true generating 

partitions.  For example, non-generating partitions in symbolic dynamics have 

been used for describing the phase-space of bimanual rhythmic coordination 

(Engbert, Scheffczyk, Krampe, Kurths, & Kliegl, 1998) and of heart rate 

variability (Kurths, Voss, Saparin, Witt, Kleiner & Wessel, 1995).  However, 

with even slightly misplaced partitions, the threshold-crossing method for 

emitting symbol strings from continuous trajectories can very easily introduce 

severe compounded misrepresentations of the original continuous dynamics, 

i.e., grammatical errors in the symbol sequences (Bollt, Stanford, Lai, 

Zyczkowski, 2000, 2001). Symbolic sequences from more complex systems 

have therefore often been subject to more experimental or empirical styles of 

analysis (Daw et al., 2002).  

To summarize, there have been two broad areas in which symbolic 

dynamics have made a clear impact.  In the first, and ultimately its origin, it is 

explored extensively in pure theoretical contexts in mathematics to study 

tractable systems.  In another, it has played a role in simplified descriptions 

and statistical analyses of more complex iterated mathematical processes, and 

even in application to dynamics of complex physical systems.  It may, we 

argue, offer something to cognitive science theory as well.  In the debate on 

representational format, symbolic dynamics could make headway toward 

formalizing theoretical debate. Current discussion on symbolic dynamics 

raises a number of important questions in this respect. We next consider these, 

and then introduce some reflections on future directions for symbolic 

dynamics in cognitive science. 
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4. Symbolic Dynamics and Cognitive Science

Dietrich and Markman (2003) actually describe something very close to 

symbolic dynamics in a short segment of their paper supporting discrete 

representations.  They offer a number of properties that cognition must have, 

which only discrete representations endow.  One of these properties is 

compositionality: Representations best explaining many cognitive processes 

must have component parts that are combined (see also Fodor & Pylyshyn, 

1988; Marcus, 2001).  They argue that any representational subsystem, if 

continuous, can only have parts if there is some other system that discretely 

interprets its regions, and takes in discrete representations as input.  This is in 

fact a description of symbolic dynamics, though there are details to be worked 

out.  For one, the resultant symbols, if not time-course irrelevant, might 

encode the original dynamics of the system, as mentioned in the way of 

generating partitions above.  This would mean an equivalence relation holds 

between the two systems, at least in the sense that the symbols carry some of 

the continuous information in the original dynamic subsystem.  Secondly, it 

has been demonstrated recently that dynamical systems actually do have 

considerably surprising computational powers.  In fact, a number of these 

properties often considered hallmarks of discrete-symbolic algorithmic 

processing can be approached with symbolic dynamics.

For example, one such property, discrimination, is easy to achieve 

through translation into symbol sequences.  Multi-stable one-dimensional 

dynamical systems can emit symbols pertaining to any stable point (and a 
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given interval around it) in its phase space – as a matter of discrete, symbolic 

output from that system.  This scenario may indeed be superior to verbalized 

discrete theories since symbolic output from an iterated map retains some 

information about time.  For example, a meta-stable system that drifts slowly 

will produce symbol sequences with long strings of identical symbols, 

indicating its inhabiting of some categorical state.  The output is therefore 

discretely representational, but also reveals patterns of change in time.  

Perceptual state-space is of course not a matter of collapsing over a single 

dimension – the situation becomes very complex when we consider the 

number of categories (symbols) that need to be represented, and the fact that 

our visual system, for example, is translation invariant, so whatever partition 

can define the symbolic output from visual to cognitive processes must exist in 

a very large number of dimensions.  A second problem concerns delineating 

the stages at which such collapsing from continuous mappings to discrete 

symbol strings occurs.  As mentioned, to account for continuous perceptual 

states moving into something akin to sets of sameness, there must be one or 

more stages of “analog-to-digital” (A-to-D) conversion.

Probably the most studied and established property that dynamical 

systems exhibit through their symbolic dynamics is their digital computation – 

that a description of dynamical systems can take the form of explicating its 

information-processing capacities via symbol sequences.  This feature 

approaches the well-known issue of systematicity, a property that many have 

argued cognitive systems must have (especially human ones; e.g., Fodor & 

Pylyshyn, 1988; Hadley, 1994; Marcus, 2001).  This discussion fits into the 

scope of symbolic dynamics in three ways.  First, it is possible to characterize 

the dynamics of a system through computational descriptive schemes.  For 
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example, the classic paper by Crutchfield and Young (1989) introduced an 

approach to nonlinear dynamical systems that quantifies their computational 

qualities.  Subsequent research has pursued the extraction of such intrinsic 

computation from nonlinear dynamical systems, among other systems (see 

Andrews, 2002; Crutchfield, 1994, for reviews).  Sought after qualities of 

systematic computation urged by Hadley (1994) and Fodor and Pylyshyn 

(1988) may very well be encoded in the edge-of-chaos dynamics of even 

simple systems (Crutchfield & Young, 1990).

The second way systematicity can fit into symbolic dynamics is through 

exploring the ability of dynamic systems to acquire formal languages.  The 

system that learns the language may again be characterized in terms of 

symbolic dynamics.  For example, the well-known simulations in Pollack 

(1991) demonstrated that a neural network can learn context-free languages 

and classify novel sentences from such grammars via a decision process akin 

to symbolic dynamics (see also Cleeremans et al., 1989 for related examples).  

More recently, Rodriguez, Wiles and Elman (1999) investigated a very simple 

recurrent network in its ability to learn deterministic context-free grammars.  

Networks that learned successfully performed a form of “counting” in their 

phase space.  This allows successful learning of the context-free grammar 

without explicitly implementing a pushdown automaton.  Also, Tabor (2001) 

recently used a neural network model trained to predict sequences of symbols 

from four languages of differing levels of complexity (see also Tabor, 2000).  

Networks trained on context-free languages, as opposed to the regular 

languages, exhibited edge-of-chaos effects (or intermittency), revealing the 

kind of intrinsic computational qualities outlined in other nonlinear 

dynamical systems by Crutchfield and colleagues (Crutchfield & Young, 1989).
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Finally, one may simply take the symbols for granted at some level.  In 

this case, though the solution appears simplistic, the difficulty is in delimiting 

and discovering the nature of the interface between continuous perceptual 

states and the resultant discrete cognitive informational states that undergo 

algorithmic manipulation.  Resorting to this idealization, and thereby taking 

for granted straightforward algorithmic parlance about representations, 

requires explication of A-to-D conversions between high-dimensional 

continuous perceptual states and their entryway into cognitive processing. 

Although the above review suggests the continuous dynamics of simple 

systems can already exhibit surprising computational qualities, it may be in 

the domain of this symbolic demarcation that debate between formats is best 

mitigated.  Following our discussion here of theoretical issues in the use of 

symbolic dynamics, we offer some sketches of the ways in which this 

mitigation might take place in computational models.

There are numerous issues with both symbolic dynamic theory and 

application that are relevant to theoretical frameworks in cognitive science.  

We introduce three of these issues here, and elaborate further in the 

subsequent sections of this article.  The first issue concerns the consequences 

of generating partitions.  Some have argued that the equivalence between 

symbolic dynamics (from a generating partition) and the continuous mapping 

from which it originated, renders moot the debate between continuous and 

discrete states in the mind (Crutchfield, 1998; Shalizi, 2004b).  Though 

compelling at first pass, the argument is based on simple, low-dimensional 

systems – ones whose consequences cannot be handily generalized to noisy, 

high-dimensional (and likely highly non-stationary) dynamics in neural 

systems at the level of cognitive processing.  As a second issue, we consider 
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the implications of recent discussion concerning the epistemic problems of 

finding appropriate partitions for meaningful symbolic dynamics (beim 

Graben, 2004).  This has direct relevance to conceptualization of “error” in 

competence and performance, and the nature of language comprehension and 

production, among other cognitive processes.  The final issue concerns how 

continuous and symbolic dynamical systems function in tandem during 

perception and cognition.  Presumably, if discrete-symbolic descriptions are 

most suitable for “higher” cognition, then there must be some stage at which 

continuous dynamics of perceptual or “lower” cognition gets transmogrified 

into interpretable symbolic states.  

4.1 Continuous-Symbolic Equivalence

As discussed above, there are many reasons to study continuous dynamic 

maps via symbol sequences.  An interesting fact for many such maps is that 

there exist generating partitions that emit symbol sequences exactly reflecting 

the original dynamics of the system.  This has led some to argue that the 

debate concerning discrete-symbolic and continuous-distributed 

representations is ill-posed (e.g., Shalizi, 2004b).  Since a dynamical system can 

be seen as identical with some symbolic dynamics, it might be inappropriate 

to suppose that two formats of representation are at odds when they are 

mathematically equivalent. As already mentioned, Crutchfield and 

collaborators (Crutchfield, 1994) conceive of dynamics as inherently 

computational, and offer numerous techniques for generating computational 

machinery from symbolic sampling of continuous states (e.g., ε-machines; 

Crutchfield, 1994).  Elsewhere, Crutchfield has argued that supposing 
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dynamics can replace discrete computation (e.g., Van Gelder, 1998) neglects 

the intrinsic computational nature of dynamical systems themselves 

(Crutchfield, 1998).

Early in Crutchfield’s seminal paper (1994), he distinguishes between 

two concepts of computation.  The first, “useful” computation, refers to 

specific instantiations of input-output mappings in some computational 

architecture.  The second, “intrinsic” computation, concerns the basic 

capacities and limitations of a computational system, dynamical or otherwise.  

This involves exploration or specification of information-processing capacities 

of a system, without reference to any specific “useful” input-output 

accomplishment.  This perspective has led to extremely fruitful research on 

discovering the underlying computational aspects of nonlinear dynamical 

systems.  For example, early work by Crutchfield and Young (1989) sought to 

specify and measure the complexity of minimal stochastic automata whose 

state transitions (emitting symbols) embody the logistic map’s dynamics at 

differing values of μ (see also Crutchfield & Young, 1990). 

There are, however, reasons for remaining cautious about the direct 

implications in our understanding of complex cognitive states.  An in-

principle statement concerning the equivalence of continuous and symbolic 

dynamics in systems is not sufficient on its own to alleviate debate.  There are 

at least two related reasons for this.  First, relying on such equivalence neglects 

the very crucial and substantial details that debate on representational format 

carries. A rather straightforward one is the kind of characterization that 

symbolic and distributed formats receive.  For example, Andy Clark (2001) 

characterizes much symbolic cognitive theory as resting on representations 

whose contents are semantically transparent.  A classical computational theory 
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of language deals in representations of words, their meanings, and the 

structures that they compose.  These representational formats are highly 

“scrutable,” their significance in a system’s computation immediately 

accessible.  However, systems relying on probabilistic and distributed 

representations or states, such as connectionist systems, often rely on formats 

that are semantically opaque. For example, establishing the function of a hidden-

unit manifold often involves detailed statistical analysis of the hidden-unit 

activations under varying circumstances.  The resultant function may be very 

nonlinear and complex, and not easily describable through commonsensical or 

folk-psychological labels.  

For this reason, simply saying that the two kinds of descriptive 

machinery, continuous and symbolic, both serve the same functions actually 

skirts some substantive issues.  The debate concerns explanation in terms of 

specific kinds of computational mechanics – concretely identifiable words in 

our “language of thought” (Fodor, 1983), or some other more or less 

semantically transparent discrete states.  These are pitted against models 

accounting for behavior in terms of distributed representations whose 

interpretations are less obvious, or perhaps “subsymbolic” (Smolensky, 1988).  

In fact, cognitive science has already had a number of battles concerning 

whether these two systems are equivalent, or the second being just a special 

case of the first, and so on (e.g., Fodor & Pylyshyn, 1988; Lachter & Bever, 

1988).

The second reason to be cautious about the lesson from symbolic-

dynamic equivalence is that “useful” computation has been considerably less 

explored than “intrinsic” dynamics in the study of computational mechanics.  

Although the current accomplishments can only be described as some of the 
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most exciting and relevant to cognitive science, they have yet to delve into 

systems whose complexity can match a level of description needed for 

understanding cognitive processes.  Van Gelder (1998) replies in this manner, 

remarking that when “it comes time to model the complexities of real 

cognition—to publish in Psychological Review rather than Physica D—they 

may find that the dynamics drops out of the picture, and the relevant story is 

cast entirely at the level of the emergent computation. Alternatively, they may 

find (as have many dynamicists) that the computational aspects play second 

fiddle to the dynamics” (p. 13).  This seems to misunderstand what is 

accomplished in symbolic analyses of dynamical systems: The descriptions are 

two sides of the same computational coin.  A more direct concern at present is 

whether meaningful partitions can be established.  As we approach a level of 

complexity that matches what is accomplished in a neural substrate, or 

proposed cognitive processes of multiple dimensions, the likelihood of finding 

generating partitions drops radically (see next section).  

So, whether or not we embrace the equivalence of symbolic and 

continuous dynamics through generating partitions, we are still left with some 

confusion.  Are the discrete symbolic states of our cognitive system available 

for scientific scrutiny, and the dynamics more complex (yet equivalent)? Or are 

discrete symbolic states of our cognitive system inadequate explanatory 

constructs, and we should reach for continuous dynamic descriptions of our 

mind/brain?  Churchland (1992) offers discussion relevant to these more 

substantive issues in the domain of neural networks, and considers partitions 

of their hidden-unit state space that can reflect conceptual structure in human 

cognition.  Adopting a set of partitions, Churchland argues, “may suffice for 

the accurate short-term prediction of its behavior, but that knowledge is 
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inadequate to predict or explain the evolution of those partitions over the 

course of time” (p. 178).  We argue that, in the domain of higher levels of 

cognitive processing, this position has considerable merit, but is very much 

without consensus in the field.  It is thus through these substantive issues that 

the two formats of representation stake their respective claims.

4.2 Epistemic Issues

Similar to Andy Clark’s (2001) distinction between transparent symbols and 

opaque distributed representations, Atmanspacher (2000) makes a distinction 

between epistemic and ontic types of description of chaotic systems.  An ontic 

description is exhaustive concerning the dynamical system – it 

comprehensively encapsulates the composition of the dynamics.  An epistemic 

description is framed in terms of knowledge or ignorance of an observer 

evaluating these ontic “states.”  Epistemic descriptions are achieved by 

evaluation of an observed or measured dynamical system, through statistical 

quantification or characterization of it.  This terminology of ontic and epistemic 

can be used to frame the previous section’s discussion of equivalence through 

a generating partition.  The pure equivalence between a symbolic dynamics 

and its origin map can involve only ontic descriptions for any system of 

sufficient complexity.  That is, urging the equivalence of some symbolic 

dynamics and the original system implies a kind of ontic state that is 

inaccessible to us as observers.  Instead, we are confined to epistemic 

descriptions for complex cognitive systems.  In order for a chosen symbolic 

dynamics to adequately explain or represent the cognitive process under 

study, it must be chosen appropriately.  This is not a trivial matter.  We 
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consider two problems of these epistemic issues relating to finding a good 

partition for a continuous map.

First, beim Graben (2004; beim Graben & Altmanspacher, 2004) argues 

that incompatible, but equally accurate, symbolic epistemic descriptions are 

possible with multiple non-generating partitions.  This means that two sets of 

different symbolic dynamics may be equally adequate as formal descriptions 

of the original dynamics, yet mutually incompatible with one another (cf. 

Quinean indeterminacy: Quine, 1960).  beim Graben (2004) provides an 

example of a Hopfield network as a multi-stable dynamical system living in a 

space of many dimensions (Balkenius & Gärdenfors, 1991).  There is no 

generating partition for this space, and indeed multiple descriptions via 

symbolic dynamics can be mutually incompatible, while remaining equally 

good (or bad) partitions of the underlying dynamical system.  As a 

consequence, non-generating partitions can provide “conceptual” descriptions 

of the continuous system, and there may indeed be many such descriptions. 

While all of them may serve as formal descriptions at a symbolic-discrete 

level, they can be mutually incompatible with each other. Quine (1960) early 

on made very similar points concerning the study of linguistic meaning by 

indicating that many equally good (or bad) rule sets can exist for translation 

from one language to another; yet these equivalent translation strategies may 

be mutually incompatible when compared directly (see also Moore, 1956, for a 

related classic theorem; Gauker, 2003).  It is crucial to point out that this is not 

merely a fact of further exploring the ontic description of the given system in 

order to select the better of these incompatible symbolic accounts.  In fact, 

Quine, and beim Graben and colleagues in symbolic dynamics, reveal that 

even given the full set of ontic states themselves, there are still mutually 
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incompatible, yet thoroughly equally good, symbolic descriptions.  In short, 

they cannot be reliably adjudicated among.

A second issue concerns the kinds of errors that result from 

inappropriate partitions. Bollt et al. (2001) analyze the tent map, whose 

generating partition is known, and measure the topological entropy resulting 

from shifts of that partition to varying degrees.  The effects of shifted 

partitions are quite drastic, with topological entropy being affected 

immediately, and in an irregular (non-monotonic) fashion.  The upshot, 

according to the authors, is that arbitrary partitions (e.g., Kurths et al., 1995) 

can result in “severe under-representation of a dynamical system” (p. 281).  It 

is important to point out that these results were based on a well-known 

deterministic and simple dynamical system.  The effects of noise (Crutchfield 

& Packard, 1982) and increasing complexity (Kennel & Buhl, 2003) in 

degrading the fidelity of the emitted symbolics are also well documented.

 The foregoing remarks on epistemic limitations on symbolic dynamics have 

two implications for current discussion.  First, they serve to underscore the 

points made in the previous section on equivalence.  The possibility of the 

existence of a generating partition is not sufficient to dissolve debate on 

symbolic versus continuous representation.  Instead, the epistemological 

limitations on more complex, noisy dynamical systems suggests that there is 

considerable room for debate concerning the adequacy of either continuous or 

symbolic accounts for some cognitive process.  Indeed, in most cases (if not 

all), we do not have sufficient knowledge of the ontic conditions of some 

cognitive process.  The upshot for cognitive science is that continuous or 

symbolic accounts are 1) highly unlikely to be resolved by mere recognition of 

equivalence, and 2) are likely to offer differing amounts of coverage of the 
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human data regarding these ontic states – about which the field has much to 

discover.

4.3 A-to-D Conversions

Despite these limitations, we argue that the promise of symbolic dynamics lies 

in articulating the transition from dynamical, continuous descriptions of 

perception, into the theoretical language of discrete, algorithmic processes for 

high-level cognition.  Whatever the ontic states underlying cognition, our 

epistemic descriptions and theories ought to be couched in structures or 

processes that bear causal relationships to others, and ultimately, to our 

observable behavior.  If it is the case that some are discrete and symbolic, there 

must occur a transition into them from a continuous state-space of perceptual 

or early-cognitive processing.  These A-to-D conversions consist of collapsing 

the continuous-distributed representations onto discrete-symbolic ones that 

cause inherent information loss about the perceptual states feeding into them.  

However, this loss may be merely “lossy,” as in image compression 

algorithms, where the resulting compact representations still carry 

information appropriate for cognitive processing.

The question is then not merely when this transmogrification occurs, but 

also what kind of information from continuous states do these discrete states 

need in order to account fully for observable behavior.  For example, in 

information-processing accounts of cognition, Miller’s (1982) exploration of 

the concept of information “grain” provided an early challenge to discover 

what kind of discrete representations there are: What level of “granularity” do 

discrete representations need to have to account for cognition.  For example, 
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along with Miller’s work on the “response preparation effect,” Abrams and 

Balota (1991) and Spivey, Grosjean, and Knoblich (2005) demonstrate that 

dynamic response measures (e.g., force and velocity measures from a response 

bar or continuously recorded computer-mouse movements) exhibit graded 

properties depending on the continuous strength or reliability of the 

information that produced the motor output.  In addition, a wide variety of 

eye-movement research (reviewed above) suggests that metabolically cheap 

movements such as saccades reveal a decision process that does not appear 

perfectly discrete.  These studies demonstrate that “echoes” of continuous 

information states can be observed in the dynamic properties of resultant 

responses. The discrete states that may have mediated the transitions from 

sensors to effectors must carry at least some relevant information from early 

graded states.  In other words, while reaction time may reveal information 

about the decision process during discrete, algorithmic processing, the 

concomitantly graded manual output from the system indicates that even 

when these discrete decision processes collapse onto the effectors, there 

remains some fine granularity.   

We can frame the situation simply by defining an idealized “problem 

space” for some cognitive process.  The space may be maximally simple, from 

an idealized or simulated continuous perceptual space into one or two 

symbolic processes.  Here, A-to-D conversion performs a useful computation in 

the Crutchfield sense, described above.  Whatever the intrinsic computational 

properties of the initial continuous perceptual space, the system of continuous 

representation feeding into discrete symbolic processing has an informational 

function in a problem space of, say, evolutionary relevance (for some such 

thing as reproduction, or running away from something that might eat you).  
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A simple example is perceptual categorization.  An idealized continuous space 

of perceptual information can be manipulated so as to output symbols feeding 

into some discrete process.  This idealized scheme may be suited for existence 

proofs of granularity of the A-to-D conversion to adequately account for such 

graded effects outlined above (see Churchland, 1992, for some early possible 

examples).

Symbolic dynamics offers a playground in which this conceptual 

problem can be formally explored.  Given a dynamical system living in a state 

space of m dimensions, a set of stable or meta-stable attractors can be explored 

via simulation.  Like perceptual processes, this dynamical system can feed into 

a separate system, described in a variety of ways (e.g., a Turing machine, or 

finite-state machine), that receives symbolic input via threshold-crossing in a 

partition carving that state space.  This collapse involves maximal loss: From 

m dimensions into 1 dimension of Q possible states defining the partition.  Of 

course, for simple systems such as the logistic map (where m = 1), this collapse 

can still carry the original dynamics, and entail some interesting 

computational properties.  As for higher-dimensional state spaces, there seem 

to be two ways that models of this kind might begin to approach existence 

proofs for symbolization of a perceptual space.  On the simplest side, one 

might explore resultant algorithmic processing on symbolic output of just one 

dimension with Q regions of one partitioning.  These states may be numerous, 

or refined, enough to carry some echoes of the original space.  Another 

possibility is to consider collapsing the state space of m dimensions into more 

than one partition.  The m-dimensional system may be collapsed onto an n-

tuple of symbols, each element of which is the output from some separate 

partition that uniquely carves the state space.  Exploration of this system 
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would involve subsequent A-to-D/D-to-D conversions, permitting sequenced 

levels of granularity in the various stages of perceptual-cognitive processing 

(that is, without considering feedback projections). 

There exist a number of “useful” computational models performing 

symbolization of this sort.  For example, the decision processes of Pollack’s 

(1990) dynamical recognizer and the Hopfield network of Balkenius and 

Gärdenfors (1991) that implements non-monotonic logics are two relatively 

early models.  Recently, Tabor has specifically addressed the learning and 

processing of formal languages by such systems (Tabor, 2000, 2001), along 

with beim Graben and colleagues’ sophisticated analyses (beim Graben, 

Jurish, Saddy, & Frisch, 2004).  These are just a few of the enticing invitations 

to employing symbolic dynamics in a way we recommend here: Devising 

existence proofs relating the stages of continuous-discrete transitions in a 

simplified problem space akin to cognitive processes and their output.  

Though only promissory at this point, symbolic dynamics may make it 

possible to reconcile both the dynamic and discrete descriptions of the states 

and processes underlying cognition.

5. Conclusion

We do not have full privileges in our access to the ontic states of our mind/

brain.  An inevitable fact about higher-order cognitive theories is that they are 

descriptive at a very coarse level – it is currently an intractable problem to 

specify, even partially, the dynamics underlying neural computation in a 

cognitive task of any nontrivial complexity (e.g., Uttal, 2001).  Nevertheless, 

for the majority of cognitive scientists, this daunting state of affairs does not 
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invalidate proposals for structures and processes of our cognitive system.  In 

this article, we have limned the surface of a framework within which 

competing theoretical accounts of representational structures and processes 

may have equal opportunity to contribute to our understanding of cognition.  

Symbolic dynamic investigations of idealized problem spaces may provide a 

common arena for exploring the interplay between continuous-distributed 

and discrete-symbolic representational accounts.  Moreover, as a framework 

for further discussion, it may help both representational formats overcome the 

limitations of time-course irrelevant descriptions of cognition.  Given a set of 

input information and informational goals, symbolic dynamics offers both 

informational and temporal insight into the transition from continuous 

perceptual trajectories into more or less fine-grained discretized states for 

higher cognitive processes.  There will, of course, be some conceptual and 

technical obstacles in the way ahead, and we have considered a number of 

these above.  

Given the deep epistemic problems experienced by all theories of 

cognition, and the complexity of the brain onto which they are imposed, it 

seems we might forever be confined to epistemic descriptions of the ontic 

states of our cognitive system.  Regarding the state of the art in cognitive 

science, the dispute between two such families of description, discrete-

symbolic and distributed-continuous, thus seems just as likely to be evenly 

conciliated than for one or the other to win permanent prominence.  This 

article offers some further considerations of symbolic dynamics to contribute 

to ongoing debate (see also, e.g., beim Graben, 2004; Goertzel, 1998).  

Mathematization of simplified problem spaces, such as perceptual 

categorization or computation in “chaotic itinerancy” (Tsuda, 2001), may be 
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the route to a formal terrain permitting cohabitation of both kinds of 

theoretical constructs – or, at least, a mutually supportive arena in which they 

can have a fair fight.

It is perhaps a striking illusion, at the physical level, that there exist 

discrete states of the mind/brain.  This at least seems to be the case if you 

grant that the substrate is in constant motion, like Heraclitus’s river.  The 

illusion is nevertheless difficult to overcome, because our phenomenology 

seems to be in an inescapable embrace with experiences that have strict 

boundaries.  At the epistemic level, rather than the phenomenological level, it 

may be inevitable that boundaries need to be placed around 

neurophysiological complexity to construct sufficiently explanatory, and 

tractable, theories of cognitive processes.  This becomes evermore troublesome 

when one considers functional redundancy and feedback loops within the 

substrate, as well as between it and its environment.  So while theoretical 

debate may continue concerning whether the mind is a system that imposes 

boundaries on a continuous information flow, symbolic dynamics may offer a 

mathematical terrain in which these boundaries can be rigorously explored.
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CHAPTER SEVEN

Discussion: Matters of Fact and Units of Analysis

Resummary

Chapter 1 presented the history of the preponderance of the symbolic 

computing metaphor in theories of cognition. This metaphor provided 

justification for separating cognition from action, thus relegating response 

dynamics to a lesser role in understanding intelligent behavior. The 

evolutionary thought experiment of Braitenberg recommended a different 

position on this issue: Thinking of cognition as increasingly complicated, but 

inherent, perception-action mediation. This strong interpretation of the 

thought experiment suggests that response dynamics should reveal “echoes” 

of cognitive processing. The prediction was made that even in a higher-order 

process such as categorization, response dynamics might reveal aspects of 

cognitive processing.

Chapters 2 to 5 substantiate this prediction. Chapter 2 revealed that in 

both lexical and perceptual modes, animals of high atypicality drew the 

manual responses towards a competing category, particularly if that category 

had overlapping features. Chapter 3 motivated the modeling endeavors in 

Chapter 4, which demonstrated that the response dynamics observed in 

Chapter 2 could be generated by a system in which processing and responding 

interact bidirectionally. A second simulation predicted finer-grained effects 

observed in Chapter 5. Typicality gradients are reflected in response dynamics, 

and in fact, feature processing specific to lexical categorization was reflected in 

motor output.
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Chapter 6 urged a mathematization of representation that is 

independent of specific models and architecture currently under dispute. It 

was argued that symbolic dynamics can serve as an arena in which the 

frameworks of the discrete computer and continuous dynamical metaphors 

might be more evenly compared. Extensive discussion in that chapter argued 

that substantive issues in cognitive science could be interestingly explored 

using such a common descriptive system as symbolic dynamics.

The current, and concluding, chapter addresses what may come of this 

kind of theoretical debate from a more general philosophical perspective. The 

symbolic dynamics approach seeks to adjudicate between theories vying for 

the matters of fact of cognition. As discussed in the Chapter 1, frameworks in 

cognitive science aim to account for representation and processing as it is in 

reality -- the “end-of-discussion” characterization of our mental inner-

workings. The next section discusses the potential outcome of such an aim. 

Are cognitive matters of fact attainable, and of what sort? The final section of 

this chapter presents a perspective on explanatory frameworks that is 

plurastic and pragmatic in nature. It is contended that the goals of cognitive 

explanation are in fact not to detail the matter-of-fact nature of the cognitive 

system -- but rather, to solve specific problems within particular substantive 

domains. The upshot: Explanatory frameworks of varying natures have 

varying forces of explanation and prediction. Those specific research problems 

are amenable to these forces of explanation on a case-by-case basis. When we 

have successfully solved numerous problems, then it becomes interesting to 

bridge these explanatory frameworks. It is here that such metatheoretical 

approaches like symbolic dynamics might not just “mitigate,” but integrate.
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Matters of Fact

Chapter 6 argues for the use of a neutral mathematization like symbolic 

dynamics to discern the value of discrete versus continuous explanatory 

frameworks. Symbolic dynamics, and other systems permitting comparison of 

one kind of representation versus another (e.g., hybrid systems; e.g., Sun, 

1997), are necessary given the inevitable limitations in the epistemic access to 

the ontic states of the cognitive system (see Chapter 6). 

Over time, “in the limit,” use of such descriptive machinery as symbolic 

dynamics may give way to a few possible theoretical outcomes. The simplest 

is that one framework will exhibit comprehensively superior accounts for the 

data. For example, the continuous-distributed framework may become the 

most comprehensive framework within the competing arena of symbolic 

dynamics. Such an outcome is a naively hopeful one. First, “in the limit” 

above must inevitably mean “after a very long period of empirical research,” 

because the current available data, in the various subdomains of cognitive 

scientific inquiry, recommend only a tempered prediction about which 

framework might become comprehensive. As mentioned in Chapter 6, these 

two broad frameworks enjoy differing levels of success, depending on the 

subdomain you consider. This will become particularly relevant below.

Another problem with such a simple theoretical outcome is the 

extremely hopeful assumption that “in the limit” cannot mean “after an 

infinite period of empirical research” -- that all evidential eras will involve 

competition between two competing frameworks. It is an assumption that a 

particular (and likely lengthy) period of time will pass after which 

comprehensive data coverage will be achieved. The history and philosophy of 
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science suggest this not to be the case, though there is more detail to this point, 

further considered below.

Sorting out the matters of fact about the cognitive system will likely 

remain an active debate for some time, and investing in the one-winner 

outcome is merely hopeful at present. Nevertheless, if one were pressed to 

decide on matters of fact, given the current (or any future) evidential situation, 

there seem to be three prominent possibilities. These three philosophical 

positions in deciding matters of fact, the correct “cognitive ontology,” are 

presented below. The first, a kind of Quinean confusion, is that matters of fact, 

given any set of data, will never be determined successfully. The second, 

through Cartwright’s reality toolbox, is that matters of fact are decided within 

each self-contained subdomain of cognitive science. The final option is that 

consideration of low-level processes (upon which higher levels are based) 

motivates the selection of one framework over another, particularly in view of 

the kind of evidence presented in Chapters 2-5 -- Spivey’s echoes.

Matter of fact #1: Quinean confusion

Imagine you could survey the set of all behavioral data accounted for by 

cognitive frameworks. These data would include facts about memory 

performance, recognizing words versus non-words, how attention is focused 

in experimental contexts, and so on. Each datum ought to be predicted and 

explained by a successful framework (perhaps in the way that either 

mechanism- or process-based explanations work; see Bechtel, 1998). Multiple 

frameworks in opposition offer different sets of interrelated theoretical 

structures and operations that generate predictions about behavioral data. For 
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example, the symbolic-discrete framework often offers up discrete rules and 

representations that frame the cognitive system in terms of a digital computer 

metaphor discussed extensively in the introduction. In this sense, the 

theoretical framework is giving us a “translation” of the behavioral 

observations into deeper theoretical commitments. These commitments 

organize the observations, and generate expectations about future ones. 

Imagine this set of behavioral data is expressed purely in terms of 

observables. For example, one datum may be, “Participants respond 

significantly faster to words that have higher frequency.”1  The symbolic-

discrete translation of these data may look something like the following: 

“Memory for words is organized as a list of discrete lexical entries, ordered by 

frequency. The mind accesses this list by order when recognizing a word,” or 

something of that sort. “Memory” and “mind” and “access” provide the 

language of theoretical constructs and processes into which the prosaic 

descriptions of the data will be translated.

There are two important perspectives from the philosophy of science 

that apply to this situation. The first, a near consensus, is referred to as 

underdetermination of theory by evidence. The second, more controversial 

and from Quine (1960, 1970), is dubbed indeterminacy of translation. 

Underdetermination of theory is the perspective that, given any 

amount of data, there will always be one or more other (possibly 

incompatible) theories that also satisfy these data. This does not entail that 
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there is no matter of fact about which of the theories is correct; it is an 

epistemological problem, in that the structure of scientific theories and the 

limitations of evidence give way to a continuous refinement and flexibility of 

individual theories to fit that evidence. Theories have very comfortable wiggle 

room to account for potentially confuting findings. This may be particularly 

true of theories that do not enjoy full mathematization (Meehl, 1998). 

Given our set of behavioral data, and some tentatively adopted 

theoretical translation, there will be one or more further cognitive frameworks 

that account for the same data, but offer constructs and processes that are not 

mutually compatible. Often, certain theoretical virtues or constraints are 

thought to apply to these frameworks, such as simplicity, comprehensiveness, 

novelty of predictions, and so forth. For example, van Gelder and Port (1995) 

feel that, all things being equal, dynamical theories serve us better than 

connectionist or symbolic accounts because they involve a continuous-time 

process, thus being more intuitive, and often use fewer degrees of freedom, 

thus being simpler. Intuitiveness and simplicity are two such virtues or 

constraints on theory selection. The way these constraints apply turns out not 

to be very obvious -- for example, a fairly ornate, complex theory will be 

selected over others if it admits of the most intuitive means of translating 

behavioral data. These virtues are not a guaranteed guide to overcome these 

problems (Putnam, 1973).

Indeterminacy, on the other hand, is a much stronger point about this 

theoretical translation of behavioral data. If one accepts the view that cognitive 

theories offer a theoretical language into which behavioral observations are 

translated, then this situation invites application of Quine’s so-called 

“argument from above” for the indeterminacy of translation (Quine, 1970). 
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This argument leads to indeterminacy rather than underdetermination, a 

much stronger thesis: Not only is there underdetermination of scientific theory 

in our scenario, but in fact, there is no matter of fact about which of the 

competing frameworks is correct -- given any and all possible behavioral data, 

one cannot adjudicate between competing theories because, even though they 

are not mutually compatible, they are “empirically equivalent.” Indeterminacy 

is thus the stronger statement that one cannot decide on which explanatory 

framework is the correct one, given any and all evidential scenarios. 

The “argument from above” works like this. Imagine translating a 

foreign physicist’s theory into your own physical theory expressed in English. 

Both theories are underdetermined by available physical evidence -- but this 

underdetermination is compounded by the flexibility of translating one 

language to another. In other words, the underdetermination is exacerbated by 

a secondary underdetermination of translating the foreign language into 

English (see Quine, 1970; Miller, 1998, for an elaboration and some issues with 

the argument). In other words, we have the first case that the foreign 

physicist’s theory may be translated into, say, M other possible accounts for 

the set of data (underdetermination #1), but it cannot be certain when 

translating this theory into another language such as English that the theory 

translates into the same original account out of those accounts available 

(underdetermination #2). 

In our case, most philosophers would not see our cognitive framework 

translation as anything more than the standard underdetermination problem 

(e.g., Chomsky, 1968; Miller, 1998). However, details in Chapter 6 may be 

echoed here. There may be an in-principle equivalence between computation-

based and dynamics-based epistemic accounts for an ontic system. Given any 
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and all data obtained through measurement of this ontic system, which of 

these two explanatory frameworks is “correct” is irrelevant at best, or a false 

question at worst: There is no “correctness” attached to one over the other, 

because both capture the data adequately. However, while the systems are 

mathematically equivalent at root, their peripheral ontological commitments 

give “intuitively incompatible” systems. In other words, carving a state space 

into discrete partitions may motivate labelable regions that are not obvious if 

we maintained the continuous, dynamical descriptions. If we accept this 

possibility, then the situation is in fact not just underdetermined, but 

indeterminate. 

This indeterminacy argument is less compelling than straightforward 

underdetermination. But in either case, the situation regarding matters of 

cognitive fact are troublesome: Given all our behavioral data, there will likely 

always be theoretical dispute. There may be a matter of fact, a “correct 

cognitive ontology,” but it will not obtain.

Matter(s) of fact #2: Cartwright’s reality toolbox

Quinean confusion assumes that the matters of fact of nature are obtained by 

adopting one explanatory framework. Only when one theory reigns over the 

competition can it be said that we have discerned the way nature in fact is. 

There is a surprising, but strong, motivation to reject this fundamentalist 

assumption. One prominent example is Cartwright (1999), who presents 

arguments that the nature of the universe is multifarious -- given to a variety 

of “natures” and “capacities” that are not confined to one theoretical system, 

but in fact many, and those many natures and capacities are discovered in 
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varying contexts and subject matter. Each such system has rightful claim over 

the matters of fact of its relevant domain.

Cartwright (1999) contends that science gives us a patchwork of 

theories and laws that uncover the natures of the universe. Her detailed 

position is based on some analysis of current theories in physics and 

economics, and a novel conceptual contribution to philosophy of science. First, 

she notes that even the most successful fundamental physical theories cannot 

help us in situations whose conditions are drastically detached from those 

which commonly support those fundamental theories. For example, consider 

letting a dollar bill get taken by the wind in an open area. Fundamental laws 

of mechanics cannot predict this complex scenario -- it is of “limited 

serviceability” (p. 27). Rather, the problem may get shunted into the realm of 

fluid dynamics, which may “provide a practicable model.” (p. 27)

Cartwright offers some novel conceptual devices for understanding 

how science works. She sees science’s ontological toolbox as scientific 

experimentation -- physical models which arrange for measurement or other 

observation. According to Cartwright, scientific experimentation rigidly 

arranges parts of the world, and the natures of these parts are discoverable 

through these arrangements. Cartwright gives the name nomological machine to 

this perennial setup, and “all things being equal,” it is a system for reliably 

generating certain outcomes given its conditions. Laws, and other regularities, 

are discovered through nomological machines. Nomological machines are 

thus the practice of designing rigidly controlled worldly circumstances, and 

accounting for the regularity seen therein. 

The nature of the universe is thus not unitary. Natures, plural, are what it 

instead exhibits. Cartwright shares two different fables of God and Saint Peter 
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to describe how a “metaphysical pluralist” might conceive of God’s role in 

creating our universe:

In the first story, God is very interested in physics. He carefully writes out all 

of its laws and lays down the initial positions and velocities of all the atoms in 

the universe. He then leaves to Saint Peter the tedious but intellectually trivial 

job of calculating all future happenings, including what, if any, macroscopic 

properties and macroscopic laws will emerge. That is the story of 

reductionism. Metaphysical pluralism supposes that God is instead very 

concerned about laws, and so he writes down each and every regularity that 

his universe will display. In this case Saint Peter is left with the gargantuan 

task of arranging the initial properties in the universe in some way that will 

allow all God’s laws to be true together. The advantage to reductionism is that 

it makes Saint Peter’s job easier. God may nevertheless have chosen to be a 

metaphysical pluralist. (p. 33)

Cartwright’s position is an explicitly metaphysical one (see also Harré, 1993). 

A similar view of scientific matters of fact can be achieved through historical 

and sociocultural reflection (e.g., Dupré, 1993; Giere, 1999). A not-altogether 

unrelated debate in other realms of the philosophy of science is the extent to 

which theoretical constructs can be reified (e.g., van Fraassen, 1980; Hacking, 

1983; Churchland & Hooker, 1985). This debate motivates reflection on which 

constructs are the real matters of fact of our mind/brain -- what cognitive 

structures and processes will be ascribed neurophysiological or some other 

genuine reality (in the history of psychology and linguistics, this has 
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sometimes been termed the issue of “psychological reality”; e.g., Edelman, 

2003; Fodor & Bever, 1965; Sapir, 1949). 

Cartwright’s reality toolbox is equally applicable in the case of the 

cognitive system. While many of these theses are intended to apply to science 

wholly, and often to physics specifically (e.g., Cartwright, 1999), cognitive 

scientific theories make a wonderful test case for this kind of philosophical 

position. It has become a hackneyed expression that the brain is “the most 

complex entity in the universe” -- and whatever that might mean, it certainly 

implies that theories of differing subject matter, admitting of distinctive 

nomological machines, are readily available in cognitive science.

The creation of nomological machines in psychological science is 

dependent entirely on the units of analysis selected for investigation. I offer a 

more detailed definition of unit of analysis below. But for now, a unit of 

analysis can be considered, as it is traditionally, a categorical or continuous 

scale of measurement of behavior -- from neuronal firing patterns, to Likert-

scale ratings in a survey study. The unit of analysis is simply the set of 

attended behavioral events that satisfy the chosen system of measurement. 

Consider a nomological machine using a unit of analysis whose 

measured behaviors are relatively complex (i.e., if considered in terms of 

underlying brain function): When a human participant rates the value of 

commodities when that participant has a status of owner or buyer (e.g., 

Loewenstein, 1996; Van Boven, Dunning, & Loewenstein, 2000). The 

experimental scenario generates regularities in relative value ratings as high or 

low depending on certain carefully established conditions. The unit of analysis 

here is judgment, and it comes to exhibit varying properties depending on 

complex socially relevant circumstances (i.e., owners rate the value of their 
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property as greater than those seeking to purchase it). This social 

psychological nomological machine results in observations that give way to 

theories of “empathy gaps” that predict future patterns of social behavior in 

certain experimentally arranged settings. Moreover, as in Cartwright’s wind-

taken dollar bill scenario, it is in fact of long-standing concern whether or not 

such social behavioral regularities observed in laboratory settings are 

generalizable to broader real-world contexts (e.g., Mischel, 1968; Bem & 

Funder, 1978; and more recently Banaji & Crowder, 1989; Conway, 1991). This 

is unsurprisingly similar to the situation described above with physics and 

fluid dynamics: Are the fundamental regularities of social nomological 

machines applicable in contexts that violate their basic conditions -- such as in 

the complex sphere of real-world social behavior?

This same situation may be demonstrated across many units of analysis 

in psychological science. For example, the sometimes fascinating findings 

from neuro-imaging work (e.g., Haxby, Gobbini, Furey, Ishai, Schouten, & 

Pietrini, 2001) and whether they apply in broader theoretical and real-world 

contexts (e.g., Bub, 2000; Hassan, Nir, Levy, Fuhrmann, & Malach, 2004), or 

local sentence-processing effects (e.g., Frazier, 1987) and whether they hold in 

rich visual-world contexts (e.g., Tanenhaus, Spivey-Knowlton, Eberhard & 

Sedivy, 1995). Nomological machines are thus continually refined and 

expanded. At each stage, they offer regularities that reveal the multifarious 

nature of the psychological universe -- yet are reliant upon the conveniently 

established conditions at any stage of refinement or expansion.

Cartwright’s reality toolbox recommends that these models reveal the 

natures of the human cognitive system. The “nature” of the cognitive system 

is not inherently tied to one particular nomological machine. Our cognitive 
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system instead reveals numerous different capacities, depending on the unit of 

analysis selected. All these are valid models of the functioning of our mind/

brain.

Matter of fact #3: Spivey’s echoes

It would be of little dispute to say that our behavior is guided by nervous 

system functioning, interacting with the surrounding stimulus energy. As 

Spivey and Dale (2004; see also Chapter 6) point out, both components of this 

closed system -- the interplay between brain-environment -- have strictly 

continuous characteristics. For example, the structure and function of neurons 

have a fractal structure, indicating self-similarity at any given temporal or 

spatial scale (Pellionisz, 1989; Teich, 1989). In addition, the nature of stimulus 

energies impinging on the cognitive system have a continuous character 

(Gibson, 1979). 

Stopping at those observations offers only a simple reductionist 

solution to the matters of fact of cognition. Spivey and Dale (2004) go further 

in showing that continuity of this kind occurs even in higher-order cognitive 

processes, such as language. The topic of Chapters 2-5 was to reveal that there 

is some kind of continuity between categorization and response dynamics. 

This suggests that the matters of fact of the cognitive system involve some 

kind of continuous, dynamic representation and process. Such a process as 

categorization thus reveals “echoes” of continuity, simply by focusing on the 

dynamic properties in the task, such as response dynamics. As in the fractal 

patterns of neural structure and firing, fractal patterns in higher-order 

processes also reveal “echoes” in time-series analysis of reaction-time 
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distributions (e.g., van Orden et al., 2001; Gilden, 2001). So the continuous-

distributed framework is supported also by the character of higher-order 

cognitive processes.

A promising approach to showing that the matters of fact of cognition 

lie in continuity is to use the continuous interplay between processing and 

action as a litmus test, as exemplified in Chapters 2-5. This has been illustrated 

with categorization (Dale et al., in press), spoken-word recognition (Spivey et 

al., 2005), and sentence processing (Farmer, Cargill, Hindy, Dale, & Spivey, 

2006). A straightforward problem with this approach is that it has not yet 

gathered extensive evidence -- but work in this direction has even begun to 

show echoes of continuity in the processing of logical and moral assessment of 

sentences (McKinstry, Dale, & Spivey, in preparation). 

A second problem is deeper, and holds even if this reflection of 

continuity were evidenced through all cognitive processes. While continuity 

may hold between the process and its output in situations where competing 

responses are available, it may be that dynamical models that capture the 

proposed continuous process itself are unavailable. This presents a very 

important problem. A full account of a cognitive process would explain the 

variety of data on which it is based. For example, categorization behavior is 

guided by numerous constraints, such as prior knowledge or cultural domains 

(e.g., Burnett, Medin, Ross, & Blok, 2005; Medin, Ross, Atran, Cox, Coley, 

Proffitt, & Blok, 2005), or category-structure constraints (e.g., Murphy & 

Medin, 1985). A full account of this cognitive process would thus account also 

for its various inner-workings. While a distributed-continuous account may 

not be far off for categorization (e.g., the scaled-up system of Love et al., 2004), 

models for such processes as problem solving, moral reasoning, or social 
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cognitive processes are not thoroughly attested (see, e.g., Balcetis & Dunning, 

2005, for some ideas of how these models might proceed). 

Nevertheless, the litmus test reveals an echo of continuous cognitive 

processing. Unfortunately, it cannot guarantee that continuous accounts for 

the process subjected to that litmus test will be comprehensive or even 

available. But if one accepts that the echoes may reveal underlying matters of 

fact, then it follows that there exists a sufficient and comprehensive dynamical 

account, somehow.

Summary reflections

None of these outlooks on cognitive matters of fact have full acceptance. 

Which do you espouse? Quinean confusion suggests that we should continue 

to strive for matters of fact, and push theory selection continuously as our 

theories come closer to reality (but perhaps never reach it). Cartwright’s reality 

toolbox argues against the fundamentalist assumption that one theoretical 

framework is to be striven for: Each theory or model has its own unique 

contribution regarding matters of fact. Finally, Spivey’s echoes serve as an 

enhanced kind of reductionism -- the low-level continuity of the nervous 

system along with evident continuity at higher levels suggests already that the 

continuous-distributed framework ought to be accepted as the cognitive 

matter of fact.

Quinean confusion and Cartwright’s toolbox are not actually 

incompatible with Spivey’s echoes. One might argue that underdetermination 

does not preclude rejection of whole families of theories. In that case, 

continuous-distributed theorists may argue that the underdetermination now 
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applies only to competing continuous models, with the whole family of 

discrete ones rejected as unsuccessful. We can say the same in the case of 

Cartwright’s metaphysical pluralism: For example, continuous-distributed 

theorists may make the metatheoretical (but also empirical) prediction that 

those natures or capacities will come to exhibit continuous and dynamic 

properties, rather than discrete-symbolic ones. Nevertheless, some argue that 

even ancient systems rejected long ago could be revamped to fit modern data, 

and appear more respectable to modern eyes, such as non-Copernican 

schemes for the solar system (Paul Thompson, personal communication, 

University of Toronto, 2000; see also Quine & Ullian, 1978; for a relevant yet 

far more interesting illustration of such an epistemological process, see 

Rokeach, 1964). Perhaps a compelling example from cognitive science is the 

perennial theoretical adjustment to generative grammar (Chomsky, 1965, 1986, 

2000). In this theoretical evolution, not only are the details of the system 

reworked so as to preserve core theoretical principles while capturing novel 

data -- the framework has come to occasionally “shield” itself from other 

psychological data by concocting convenient dichotomies or conceptual 

schemes (e.g., as described above with I- and E-language). 

Another important point is that Cartwright’s perspective on models 

does not result in outright rejection of older ones that were successful in now 

“obsolete” nomological machines: “But that does not stop you from admitting 

that a crowbar is rigid, and, being rigid, is rightly described by Newton’s laws; 

or that the solar system is composed of a small number of compact masses, 

and, being so composed, it too is subjected to Newton’s laws.” (p. 48)

Each recommendation for matters of fact is fairly radical in its broad 

assumption that the goal of science is to uncover the nature(s) of the universe, 
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and that scientific success is measured by access to that nature or natures. 

Consider a fourth approach to cognitive matters of fact, one that at first pass 

might seem naive and obscurantist, but can be formulated into a thorough and 

perhaps enlightening perspective: Matters of fact don’t matter. The next 

section limns the surface of such a metatheoretical approach.

Units of Analysis: Integrative Pluralism

John Dewey is described by Hilary Putnam (2006) as a prime mover of a 

potential pragmatic “third enlightenment.” The first, says Putnam, was the 

Socratic and Platonic questioning of the nature of ethics and knowledge and 

its basis in Hellenic deities: “How do you know whether X is good because 

Zeus urges it, or that Zeus urges X because it is good?” The second, called the 

Enlightenment commonly, is the 17th century movement for scientific, ethical, 

and social “Reason.” The third is what Putnam describes as a “critique of 

criticisms.” The third enlightenment urges an endless stepping back from the 

systems and solutions to all problems (a set whose members include both 

“factual” and “ethical” problems), and “intelligently” critiquing them. As a 

“meta-critical” framework, this approach recommends a constant questioning 

of our systems of knowledge, in the hope of continuously modifying and 

advancing them. 

In the realm of scientific knowledge, Dewey and Bentley (1948) lay out 

a broad epistemological framework for identifying observable variables, 

rendering them with labels or names, and specifying the interrelationships 

among them in scientific explanation. As we choose these labels and concoct 
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explanations, paired with this hope for epistemological progress, they argue for 

some strong desiderata:

The status of observation and the use of reports upon it are to be tentative, 

postulational, hypothetical. This condition excludes all purported materials 

and all alleged fixed principles that are offered as providing original and 

necessary “foundations”...The aim of observation and naming adopted is to 

promote further observation and naming which in turn will advance and 

improve. This condition excludes all namings that are asserted to give, or that 

claim to be, finished reports on “reality.” (p. 113)

This perspective on scientific knowledge is directly related to cognitive 

explanation. In fact, Dewey and Bentley spend considerable time mulling over 

the observables, names, and systems of psychology. Their overall 

epistemology holds that a transactional understanding of systems is the fullest 

kind, and what science strives for. Transaction is distinguished from two other 

forms of understanding exemplified in the history of western scientific 

thinking: self-action and inter-action. The former seeks understanding of how 

our observables are self-guided -- that worldly entities from rocks to rock stars 

are self-moving, guided by their own independent underlying rules. The latter 

sees these entities as still independent, but importantly interacting in a system. 

Newtonian mechanics is such an example of how entities and their 

interrelationships can be explained. Transaction takes this further. The entities 

and their relationships cannot be considered real, separate things unto 

themselves, but are rather inherently intertwined in our understanding. This 

includes the entailment that the scientist, the knower herself, is part of this 
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system: “One can easily ‘think of’ a world without a knower, or perhaps even 

of a knower without a world to belong to, and to know...[but a] ‘real world’ 

that has no knower to know it, has, so far as human inquiry is concerned...just 

about the same ‘reality’ that has the palace that in Xanadu Kubla Khan 

decreed.’ (p. 142)

A defense of this epistemological system will not be made here. Instead, 

it can be argued that an application of this self-reflective system can cast a 

critique on how we talk about cognitive processes with a foundationalist’s 

fervor. Dewey’s and Putnam’s (2006) pragmatic approach to science and ethics 

frames these epistemological systems in terms of problems of knowing, and they 

forcefully argue that progress in these problems is possible. This can be true 

without even beginning to concern ourselves with the supposed overall 

character of cognition -- which, it could be argued, is not ever part of the 

problems anyway. 

For one, cognition is not a “natural kind.” What we refer to as 

“cognition” is a complex assemblage of neuro-behavioral units of analysis, 

and the conditions under which they are studied. There are many ways of 

specifying units of measure for the behavior I am engaged in right now as I 

type this. For example, you might attach an electromyogram to my arm and 

digits and continuously track my movements from key to key.  Instead, you 

might install some software on this computer to capture each explicit 

keystroke -- including the sequence of backspaces (there have been many). 

You might record the final product of these keystrokes -- this electronic 

document is such a data set. Through this final product, you might 

characterize the sentence structures by analysis, or the character of entire 

paragraphs. The units thereby become larger, in both space and time.
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You could also describe the conditions in which this behavior occurs at 

varying levels of space and time. You could track the previous keystroke as a 

condition for the next, a relatively transient condition. You could measure my 

caffeine intake, my level of hunger, or other physiologically-relevant persistent 

conditions. Even more persistent conditions are my history and skill with 

keystrokes, or even further, my parents’ proclivity for keystroking and 

whether there is any relevant heritability in their motor contributions to me. 

Such conditions can be considered for each unit of measure we choose. 

Complexity in space and time in the units we measure is compounded by the 

range of conditions we specify and relate to those units. And here we are just 

discussing keystroking. I engage in all kinds of behavior you might measure, 

in which this range of units and conditions holds.

The study of cognition starts here. Both the history, and the future, of 

cognitive science frames the selection of units and conditions. For example, 

Ebbinghaus’ memory research supplied a vast and still-evolving framework 

for memory research. Identifying cognition, as a whole, with universal 

characterizations, “natural kind” descriptions, such as computation or 

information-processing (e.g., Dietrich, 1990; Fodor, 1993; Pylyshyn, 1984) is not 

where the questions and concerns of cognitive science lift off, nor necessarily 

get solved. For example, Fodor’s (1983) characteristically cloudy conceptions 

of “mental states” are relevant only to a small range of phenomena. He offers 

intricately structured arguments out of fairly unusable notions of mentality -- 

a beautiful Ferrari made of paper: great on paper, but not on the road. 

The branches of psychology, or cognitive science, pursue problems 

relevant to differing assortments of units and conditions. These problems are 

begot as much by a branch’s history as by principled assessment of the 
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composition of cognition. Each subfield of psychology has its own unique 

intellectual history. Any subfield, such as psycholinguistics or memory, is 

historically “bound,” or “enmeshed,” in an array of goals and questions 

regarding certain units of analysis and conditions. As mentioned above, 

Ebbinghaus shaped an early science of memory, framing the problems of 

memory in terms of certain behavioral units of measure (“recall” and 

“recognition”) in the context of particular experimental conditions 

(memorization stages and the nature of their stimulus items). Subsequent 

refinement of this problem seeks new ways of organizing the sources of recall 

and recognition (specific biographical events -- episodic memory; or errors of 

memory in thematic recall -- false memory research). Research questions about 

memory, enmeshed still in the behavioral units identified by Ebbinghaus, have 

been extended into real-world investigation of memory behavior -- ecological 

memory (e.g., Neisser & Winograd, 1995). As discussed further below, modern 

brain technologies permit these novel labels and proposed processes to be 

identified with particular regions of our brain. Each subsequent modification 

to the problems, still in some ways very much shaped by Ebbinghaus’ original 

formulations, has this historical fingerprint.

Similarly, the science of linguistics serves as an almost perfect example 

of this historical underpinning, with step-wise modification of questions and 

problems. Chomsky provided strong normative remarks on the goals of 

linguistic science. This normativity ensnares methods and any relevant 

evidence got from them. For example, Chomsky urged and still does an 

understanding of language acquisition from the perspective of an idealized 

and full-fledged adult speaker-hearer, largely on a basis of grammatical 

intuitions. The science of linguistics continues in this vein, while questions 
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and problems of psycholinguistics have framed them differently -- questions 

of process and not just structure have led to a new history, and a new set of 

problems. 

One could assert from these observations that matters of fact or 

“natures” play second-flute in the actual practice of psychological scientists. 

Solutions to problems better describe how psychological science progresses. 

Given the flexibility of behavioral unit selection, the sheer complexity of the 

human brain, and the vastly important role for a complex environment, 

solutions to these problems come in a variety of forms -- we should expect a 

plurality of explanatory schemes, rather than adopting a fundamentalist 

assumption regarding cognitive matters of fact. 

However, within any given problem set (based on particular units of 

analysis, e.g., reaction time in the problem of sentence processing), there will 

inevitably be substantive debate. But this debate unfolds in these problem 

spaces. The very large and multifarious set of problems psychology addresses 

cannot be recast wholesale in terms of one or another such scheme.  Yet these 

problem spaces do overlap. In other words, diverse psychological units of 

analysis and their conditions define problems that bear important 

relationships. This has invited extensive debate within cognitive science, but 

not enough integration. Chapter 6 has she some light on how seemingly 

disparate descriptive or explanatory schemes might be integrated through 

novel conceptual or technical advances.

What problem set was considered in Chapters 2-5? The unit of analysis 

selected was continuously measured motor output, and the problem was the 

time course of one possible process (the categorization process) and its 

relationship to this response dynamics. In this particular sphere, it seems that 
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the continuous perspective offers the correct solution to this problem. That is, 

when we have selected a continuous temporal measure, the best 

characterization of the resultant behavior is one that sees a continuous flow of 

influence from cognition into action. But this does not solve any problems 

about how categories are formed, or how they are mulled over before issuing 

action. Chapters 2 to 5 have discussed some examples of theories that seek a 

solution to this, different, problem. The theory best accounting for this may be 

one that bears a strong theoretical relationship to the kind of continuity urged 

for here. But it might not -- and after a period of time in which another theory, 

of a seemingly distinct quality, holds reign, we may wish to seek another kind 

of dialectic to integrate understanding within broader domains. Pugilism can 

become unproductive. Instead, this dialectic would be based instead on this 

“pragmatic enlightenment”: We can stand back, and with such tools as those 

presented in Chapter 6, consider ways in which continuous and non-

continuous theories can relate.

Nevertheless, when we pay close attention to the time course of 

behavior, it seems that the eyes and the limbs show concomitant variation 

much like the underlying processes that guide them.  With this unit of 

analysis, in this particular problem space, “cognition” and “action” seem 

intricately  intertwined.
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