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This article provides a general methodology for determining and 

evaluating a decision rule for hotel site location. Given (a) an 

indicator of hotel success, (b) an ideal decision rule based on this 

indicator if it were known without error, and (c) a model for 

predicting the value of the success indicator at a proposed site, we 

propose a procedure for finding the optimal model based decision 

rule for any specified optimality criterion and for evaluating the 

worth of the rule. The methodology is based on the statistical 

technique called bootstrapping. This method reduces the bias of 

conventional methods of estimation that have been applied in the 

context of sitelocation modeling. The methodology is illustrated 

using data from a large hotel chain in the United States and 

evaluated using an independent evaluation sample. 

Keywords: Cross-validation; Discriminant analysis; Prediction error; 

 Service management. 
 

 

The motivation for this article arose from our work with a national hotel chain to develop an objective 

decision process for identifying sites for their new hotels. The firm’s approach to hotel site location had 

previously not taken advantage of the extensive bank of information on their existing hotels but rather had 

been based more on the subjective judgment of their location experts. If a statistical model could be 
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developed that could reasonably predict success or failure of a potential site, this prediction could provide 

the experts with additional information on which to formulate a decision to build or not to build a hotel. This 

article describes and illustrates the modeling approach taken to help achieve their objectives. 

The service-location literature indicates an extensive use of modeling for forecasting consumer demand 

of some services, particularly grocery stores, malls, and other shopping locations. For example, consider 

the class of spatial-interaction or gravity models that use the probabilities p i j  to estimate how many of the 

i th  type of customer will select the jth facility to service their demands (Achabal, Gorr, and Mahajan 1984; 

Huff 1962, 1979). For these models, demand is defined as the product of the number of potential 

customers in the market area times p i j .  The models range from simple to complex but generally assume 

that customers will be drawn from the population proximate to a site. Since hotels draw their business from 

areas far removed from their physical site, this class of models is not suitable for hotel site selection. Other 

service-location models [e.g., Applebaum’s (1966) analog model] that were not specifically developed for 

the lodging industry suffer from similar limitations. 

The problem of hotel site location can also be viewed in a general regression-model setting in a way 

that can accommodate additional variables. Furthermore, rather than predicting the probability that a 

consumer will select a service at a particular site, other researchers have tried to predict total sales or 

some related variable at a new location (e.g., see Clawson 1974; Cottrell 1973; Hise, Kelly, Gable, and 

McDonald 1983; Martin 1967; Olsen and Lord 1979). Regression models are attractive for hotel site 

location because they allow us to consider alternative dependent variables, as well as numerous predictor 

variables such as site-specific socioeconomic factors, price, convenience, and degree of competition in 

forming a characterization of a desirable new site. 

Unfortunately, many published location models suffer from methodological problems such as over 

specificity, multicollinearity, and inadequate validation. The models also tend to be firm specific and are 

usually not informative about the industrywide generators of demand for a service [cf. Craig, Ghosh, and 
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McLafferty (1984) for a review of such models]. These problems, combined with the problems of defining 

the hotel “market area” and the difficulty in measuring many location characteristics, have raised serious 

questions about the effectiveness of modeling for general site-location problems. 

The remainder of the article provides the details of our modeling approach, which gave special 

emphasis to dealing with the difficulties apparent in published site-location models. Of central importance 

to our approach is the method of bootstrapping for evaluating the validity of alternative models. The 

bootstrap-validation step is an integral part of our model-building procedure and, as we shall see, provides 

information beyond validation statistics that may be used in the decision process. 

1. THE PROBLEM 

The hotel-location problem may be stated as follows: Given the information on existing hotels and a 

proposed site, we wish to predict y,  some specified measure of performance of a hotel built at the site. For 

example, y may be occupancy rate, total revenue, profit margin, the probability that a traveler chooses the 

hotel, a (0, 1) variable indicating a “good” site (y = 1) or a “bad” site (y = 0), or any other suitable indicator 

of hotel performance. 

Let n denote the number of existing sites (or a representative sample thereof), and suppose that at each 

site we have the data xi = (ti, y i)  consisting of a k dimensional vector of predictor variables ti and the 

performance indicator yi. Given a new vector of predictors, t0, from a proposed site, we wish to predict the 

corresponding performance indicator y0 .  We assume that x1 . . . , x n  are independent realizations of X = 

(T, Y), a random vector having some distribution F on k + 1 space, and we assume the same for the new 

case (t0, y0). 

The assumption regarding the distribution of a new case (t0, y0)  has important consequences for the 

way by which future sites are identified. Given that the n existing sites were selected using the traditional 

procedures of the site-evaluation experts, any new sites must be selected in the same way if the 

subsequent regression model is to be applied for predicting y . This requirement is consistent with our goal 
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of providing supplementary information to the decision makers and not eliminating the role of the 

evaluation specialists in selecting good candidate sites. 

If y  were known for the proposed site, a decision D(y, C) could be made in which 

  

for some specified constant C. For example, D1  may be “build a hotel” or “investigate the site further,” and 

D2  is “not D 1”  We refer to D(y, C) as the ideal decision rule. (Generalizations to polytomous decision rules 

are straightforward.) 

Given the predictor t0 at a proposed site, denote by π(t0; X), where X = (x1 . . . , xn), the model for 

predicting y0 obtained by some model-fitting technique, perhaps least squares. Thus π(t0; X) is the model 

prediction of y0. Consider the consequences of simply substituting the prediction π(t0; X) for y0  in the 

decision rule D(y, C). Of course, unless the model perfectly predicts y0 ,  we would expect that, due to the 

uncertainty in   0  = π(t0, X), D(y0, C) and D(  0, C) might disagree; that is, D(  0, C) might be the wrong 

decision. We may consider a decision rule D(  0, Cπ), however, in which Cπ is chosen so that the 

probability of agreement between D(  0, Cπ) and D(y0, C) is maximized. Other criteria may also be used 

for choosing the “best” Cπ.  

In general, let 

 

referred to as the error characteristic functions of the decision rule D(  , Cπ) .  Thus the risk of erroneously 
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deciding D1  with the rule D(  , Cπ) is  (Cπ)  and the risk of erroneously deciding D 2  is  (Cπ) .  Any criteria 

for determining the best Cπ will typically be functions of the error characteristic functions (1.2) and (1.3).  

As an example, let Dx  denote “build a hotel” and let D2  denote “do not build a hotel.” Then  (Cπ)  is the 

risk of making a poor “build” decision (referred to as a false positive decision) using decision rule D(  , Cπ) .  

Likewise,  (Cπ)  is the risk of making a poor “do not build” decision (false negative decision). Let the 

expected costs associated with the false positive and false negative decisions be k1  and k 2, respectively; 

then a criterion for choosing the Cπ that minimizes cost is 

 

Unfortunately, it is usually difficult to obtain adequate estimates of k 1  and k2 .  Alternatively, one may 

choose to minimize the probability of making either a false negative or false positive decision. This may be 

accomplished by assuming that k 1  = P(y < C)  and k 2  = P(y  ≥ C) in (1.4). 

Given the potentially high cost of an erroneous “build” decision, the following criterion may be preferred: 

 

for some constant  0; that is, choose Cπ to minimize the risk of a false negative error, while maintaining the 

risk of a false positive error at a predetermined level. Other criteria are also possible. 

In Section 2, we consider the following problems: 

1.  Given the prediction rule π(y; X) and the ideal decision rule D(y, C), find Cπ to satisfy certain 

optimality criteria for the “model-based” rule D(  , Cπ), where    = π(t, X). 

2.  Let C* denote the optimal value of Cπ just obtained. Estimate from the data X the error rates 

 (C*)  and  (C*) associated with the model-based decision rule D(  , C*). 

Thus from problem 1 we obtain the “best” decision rule for applying the model π(t ,  X). And from Problem 2 
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we obtain estimates of the probabilities that our model- based decision rule will lead to false positive and 

false negative decisions. 

 

2. A SOLUTION 

From the previous discussion, we see that any practical criteria for optimizing the rule D(    Cπ) will 

typically involve the minimization of some function of the error characteristic functions  (Cπ and  (Cπ) .  

Thus our primary goal is to estimate, on the basis of the data X,  (Cπ)  and  (Cπ) for Cπ in, say, [CL, CU] 

for constants CL  and CU .  We can then apply the optimality criteria to determine C* using the estimated 

error functions. Furthermore, the error rates  (C*)  and  (C*) associated with D(  , C*) are by-products of 

the optimization step. 

So far, little has been said about the model π(t, X) for predicting y. Of course, from a practical 

perspective it is important that the assumptions of the model-fitting technique hold and that π (t, X) provide 

the best predictor of y available from X. These are not necessary conditions of the methodology for 

estimating the error rates associated with the decision rule D(  ,  Cπ) ,  however. All that is assumed is that 

the model-fitting process is replicable. 

As before, let ti denote the observation for the i th site and   i  the prediction of y i  using π(t i , X). Let I (      ) 

indicate the error of the decision D(  I  |Cπ) ;  that is, 

 

Thus 

 

And 
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where expectation is taken over all X = (T, Y)  ~ F for F defined in Section 1. 

The obvious estimators of  (Cπ )  and  (C„) are the apparent error rates 

 

And 

 

where ∑’ (∑") denotes summation over the n1 (n2) sites from the data base such that D(y i ,C) = D1  (D2)  

and n1  + n2  = n (Efron 1983). Thus the apparent error rates are the proportions of observed errors made 

by D(  , Cπ )  on the data from which n(t ,  X) was constructed. As Efron (1983) showed, both   a (Cπ )  and 

  a(Cπ )  tend to be smaller than  (Cπ )  and  (Cπ ) because the same data have been used both to 

construct and to evaluate D(  , Cπ ). Stone (1974), Geisser (1975), and Efron (1983) provided methods for 

estimating the mis- classification error rates associated with dichotomous rules such as D(  , Cπ ) .  Efron 

compared the performance of the commonly used cross-validation or “leave- one-out” approach as in 

“jackknife procedures” (Lachenbruch and Mickey 1968) with an approach based on the bootstrap (Efron 

1979). Efron concluded that cross-validation “gives a nearly unbiased estimate of [the error rate], but often 

with unacceptably high variability, particularly if n  is small” (Efron 1983, p. 328). Bootstrap procedures 

provide estimates with low variability and low bias, the price being paid by the much heavier computational 

load. In this age of inexpensive and fast computers, however, the price is easily affordable for many 

situations and especially for those like hotel site selection in which large construction or lost opportunity 

costs may be involved. 
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Efron and Gong (1983) described a procedure for estimating model-misclassification error in a 

dichotomous prediction model. By bootstrapping the model building and prediction process, the 

model-misspecification error, as well as the sampling error, is included in the estimated error rates. Our 

approach retains this feature of their procedure but extends their work in the following ways: (a) Both false 

positive and false negative error rates are estimated, (b) the error curves  (Cπ )  and  (Cπ )  are estimated 

by systematically varying Cπ ,  and (c) rather than a priori choosing a cutoff for classifying an observation as 

either 0 or 1, the bootstrapping procedure is employed for choosing the cutoff, Cπ ,  that minimizes the 

model-misclassification error. The remainder of this section provides the general methodology. In Section 

3, the methodology is applied to the data of our client firm. 

An alternative approach to bootstrapping regression models was described by Freedman and Peters 

(1984). Their approach was based on a resampling of residuals for a single specification of the model. 

Because of the importance of model misspecification error in site location models, however, the Efron and 

Gong (1983) approach was taken so that misspecification error would be accounted for in the 

model-validation stage. 

Let    denote the empirical probability distribution of the data x1, . . . , xn, putting probability mass 1/n on 

each X/. Let   ( ) denote expectation with respect to random sampling from   ; that is,   ( ) is expectation 

over all nn  possible samples of size n drawn with replacement from   , 

 

Then the bootstrap estimates of  (Cπ )  and  (Cπ )  are given by (2.1) and (2.2), respectively, replacing E( ) 

with   ( ). 

Denote by M the model-building process that was applied to the data X to produce the model π(t; X). 

To compute bootstrap estimates of the functions  (Cπ )  and  (Cπ )  at some value Cπ  = C0, the following 

steps are performed: 
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1. From the population of n sites in the data base, select a sample of n sites using simple random 

sampling with replacement;  that is, repetitions are allowed. This sample will be referred to as the bootstrap 

sample (BSS) for iteration 1 and denoted by s 1 .  

2. Let X* = [X1*, X2*, . . . , xn*]  denote the BSS data base corresponding to the n sites in s1 .  This data 

base contains information on the explanatory variables as well as the dependent variable for all sites in s1  

repeated for each occurrence of each site in s 1 .  Apply the model building process M to the data base X* to 

obtain the model π1( t * ;  X*). 

3. Use the model π1(t*; X*) to predict y1  . . . , y n ,  the performance indicators associated with all sites in 

the original population of n sites, and denote these predictions by   1 i—that is,   1 i  = π1( t i ;  X*)—for i  = 1, . 

. ., n. 

Finally, compute the BSS error rates given by 

 

and 

 

where ∑', ∑", n1 ,  and n2  are as defined for (2.3) and (2.4). Thus   1(C0)  is the proportion of n1  sites 

having correct decision D1  that are misclassified as D2, and   1(C0) is the proportion of n2  sites having 

correct decision D 2  that are misclassified as D 1 .  

Steps 1-3 complete one bootstrap iteration. Let B denote the number of iterations required to obtain a 

desired precision in the estimates of  (C0)  and  (C0) [see Efron (1983) for a discussion on the choice of 

B] .  Then repeat steps 1-3 for a total of B times for independent bootstrap samples s1, . . .  ,sB .  The 
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bootstrap estimators of  (C0 )  and  (C0) are 

 

And 

 

Finally, instead of computing   k( ) and   k( ) for only one value of Cπ  at bootstrap iteration k, the 

procedure can be extended by computing error rates at each iteration for multiple Cπ  values, say CL  = C 1  

< C2  < . . .  < Cm  = C u , so that the functions  (Cπ )  and  (Cπ )can be approximated over the range C L  ≤ 

Cπ  ≤ CU .  Thus, for BSS k (k = 1, . . . , B),  2m error rates   k(C j)  and   k(C j)  ( j  = 1, . . . , m) are 

computed. The average over B BSS’s for each cutoff C j  yields the 2m bootstrap estimates   (C j)  and 

  (C j)  (j= 1, . . . , m) .  With the estimates of  (Cπ )  and  (Cπ ), any of the optimality criteria discussed earlier 

can be applied to the estimated functions to obtain an estimate of the optimal Cπ—that is, C*. 

3. AN EXAMPLE 

As an illustration of the general methodology, we consider the specific situation of our client firm. [For a 

full discussion, see Kimes (1987).] The firm operates approximately 200 inns aimed primarily at frequent 

business travelers. The inns are all in the range of 100150 rooms, are very homogeneous in terms of 

quality of construction, and are nearly all located on major highways. 

3.1 Data Analysis 

Because new inns typically experience initial instability in occupancy, operating costs, and so forth, the 

analysis was confined to mature inns operated by the firm. (A mature inn was defined as one that had 

been in operation for at least three years and that had experienced a leveling off of occupancy rates.) Data 



11 

 

for a sample of 57 mature inns were collected for numerous response and independent variables for the 

years 1983 and 1986. For the purpose of collecting data on variables relating to potential attractiveness of 

a location, we defined an inn’s market area as the four-mile radius surrounding the inn (Tallis 1983). For 

each inn’s market area, we collected data on demographic variables (e.g., population, income, 

unemployment), physical variables (e.g., accessibility, sign visibility, traffic count), competitive variables 

(e.g., amount of competition, competitive room rate), and demand-generator variables (e.g., hospitals, 

office space, colleges, military bases). We experimented with alternative dependent variables including 

total occupancy, occupancy rate, total revenue, operating income, and operating margin. Operating 

margin [defined as operating revenue minus operating costs (not including depreciation and interest 

expense), all divided by operating revenue] exhibited the highest correlations with the independent 

variables and appeared the most stable over time. Furthermore, this was a variable of critical importance 

for which management was readily able to formulate decision rules based on the expected profitability of a 

proposed site. Thus operating margin was chosen for the dependent variable y with ideal decision rule 

 

In words, if it were known that a proposed site would achieve at least a 35% operating margin, the decision 

would be made to build at the site. Otherwise, the site would be rejected. In actuality, our client firm was 

interested in observing the model decisions for several cutoff values, C, not just 35%. We chose 35% here, 

however, to illustrate the methodology. 

Prior to the model-building phase, exploratory data analysis techniques were used to obtain suitable 

transformations of some of the independent variables (Tukey 1977). This resulted in 20 variables, which 

entered into the data base X for the analysis. To obtain the best predictor of operating margin y,  a 

model-building procedure (Efron and Gong 1983) equivalent to the following was used: 
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1. To reduce the number of variables to the more important subset, single variable regressions were 

run for each independent variable. Only those significant at the .05 level were retained. 

2. A forward stepwise regression was run for the retained variables. Only those significant at the .10 

level were allowed to enter the model. 

3. To obtain a more parsimonious model, a second stepwise regression was run for the remaining 

retained variables. All of those significant at the .05 level were retained and constituted the final model. 

Multicollinearity was checked using condition numbers (Belsley, Kuh, and Welsch 1980), and appropriate 

regression diagnostic tests were conducted. The final data matrices were found to be well conditioned with 

no serious outlier or leverage problems. This procedure then constituted the model-building process, M, to 

be replicated for each bootstrap sample, which explains its mechanical nature. In actual practice, the 

process M may only approximate the model-building process actually used for constructing the original 

model. 

3.2 Results 

The outcome of the model-building process for the year 1986 was the model in Table 1 for predicting 

profit margin (R 2  = .46). The model condition number was 2.5, indicating a well-conditioned data 

matrix—that is, no problem with multicollinearity. Since this is a predictive model, no cause-effect 

relationships should be attributed to variables in the model. The model reflects, however, the importance of 

predicting the operating margin of a site of market penetration, room rate (set in relation to the 

competition), and market-area income. 

The negative coefficient associated with income indicates that this chain does better when located in 

moderate income areas.  
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Although this may seem odd, moderate income areas are usually associated with more commercial 

demand generators than higher income areas. The negative coefficient associated with market penetration 

is a function of the way in which the variable was measured. Higher state population per inn (poor market 

penetration) leads to poorer performance. 

The next step was to obtain estimates of the error functions  (Cπ )  and  (Cπ )  associated with the 

model in Table 1 and the model-based decision rule D(  , Cπ )  using the three-step bootstrap procedure 

described in Section 1. The model-building process M for the bootstrap procedure was described in 

Section 3.1. The parameter B was set at 200. 

A graph of the resulting estimates of  (Cπ )  and  (Cπ ) for 0 ≤ Cπ  ≤ 60 appears in Figure 1 (see the 

dashed curves). The corresponding apparent error rate curves for the same range of Cπ  are also shown in 

Figure 1 (see the solid curves). The discrepancy between the curves is an estimate of the bias in the 

apparent error rates. Note that the estimated bias may be either positive or negative but tends to be 

negative in the range of interest—that is, .01 ≤  (Cπ )  ≤ .1. Thus in this range the apparent error rates are 

“too optimistic.” Hence decision makers would be taking a somewhat greater than desired risk in using the 

apparent error rates to choose C*. This point is expounded in Section 3.3. 

Of primary importance to management was the ability to be able to evaluate the risk of building a hotel 

at an unprofitable site. Therefore, Criterion (1.5) was used for selecting the optimal value of Cπ .  For any 

given  0  (i.e., risk of building at an unprofitable site), the corresponding value of Cπ  can be obtained 

directly from Figure 1; C* then is the smallest Cπ  satisfying  {Cπ )  ≤  0 .  Table 2 provides values of C* for 
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alternative levels of risk. Thus, for example, to limit the risk of a false positive decision to 5%, the following 

model-based decision rule would be used with the model for    in Table 1: 

 

From Table 2 we see that the corresponding risk of not  building at a profitable site is .62 for this decision 

rule.  
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It should be emphasized that the error rates associated with the model decision rule (3.2) applies to 

agreement or disagreement with the ideal decision rule (3.1). If some criterion for determining a 

build/no-build decision other than (3.1) is formulated—for example, D(y, 10)—the bootstrap procedure 

would necessarily have to be repeated to obtain the corresponding error characteristic functions. 

3.3 External Validation 

In 1987, the firm operated 151 mature inns. Current data were collected on all inns, including the 57 

inns selected for the original analyses and model development, to test the approach suggested here. 

Eventually, the bootstrap-based decision methodology will be replicated for all 151 inns. For now, 

however, the 1987 data affords an opportunity to evaluate the 1986 decision model on an independent 

sample of 94 inns. In particular, we wish to determine the number of false positive and false negative 

decisions that would be made if the decision model were used to classify the 94 inns as having operating 

margins above 35% (corresponding to a build decision at a proposed site) or less than 35% 

(corresponding to a no-build decision). These results are summarized in Table 3. 

The “Expected” columns are the error rates expected from Figure 1 using a profitability critical value of 

43, which corresponds to a false positive risk of .05. The “Actual” columns report the observed rate of false 

positive ( )  and false negative ( ) error in applying the decision rule D(  , 43) to the data. 

Several factors need to be considered when interpreting the results in Table 3. First, since the model 

was fit to 1986 data and is being evaluated one year later on 1987 data, the effect of “aging” of the model 

is also seen in the error rates. For example, if the firm’s economic condition in 1987 was such that 

operating margins for hotels generally were less than in 1986, this could increase the probability of a false 

positive error. Although the full 1986 data is not available, the available evidence indicates that operating 

margins for the firm tended to be less in 1987 than in 1986. This effect could be alleviated, however, if the 
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decision rule were updated annually using current data. Second, a substantial number of inns “matured” in 

the intervening year. Thus the independent sample has a lower average age than the data-base sample. 

This would also tend to affect the model’s predictive success, since the longevity of an inn is strongly 

correlated with operating margin. In fact, the variable number of years in operation was deliberately 

excluded from the prediction model, since it was uninformative for new-site selection and tended to 

“overwhelm” the other variables in the data base. Again, if the model-building procedure were updated 

perhaps annually, using all currently mature inns, this effect could also be eliminated. Finally, although the 

bootstrap procedure eliminates much of the bias in the estimated error rates, it does not eliminate all of it. 

Further, the estimates of   and   are also subject to sampling variance. 

Despite these limitations, the model’s overall performance was quite acceptable even though the risk of 

a false positive error was somewhat higher than predicted for the total population. The results of this 

analysis serve to emphasize the importance of using the model-based decisions as an objective guide to 

hotel site location, not a substitute for human judgment. 

 

 

 

Finally, consider the decision rule obtained based on apparent error rates; that is, suppose that Cπ  was 

chosen with the same objective as before—that is,  (Cπ )  ≤ .05 and  (Cπ )  is minimized—but now using 

the apparent error-rate curve in Figure 1. From the figure, we see that this corresponds to a 

profitability-critical value of 38%. Applying the rule D(  , 38) to the 151 inns resulted in 22 false positive 
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decisions (37% error rate) and 16 false negative decisions (18% error rate) as opposed to only six false 

positive decisions (10% error rate) and 43 false negative decisions (47% error rate) using the bootstrap 

method. 

A question that might be raised regarding our procedure is this: What happens in the long run as fewer 

unprofitable inns are built and the range of dependent variables is truncated? Will not the model then 

become unstable and biased due to “censoring” of the sample? First, it is unlikely that the client firm will 

have a perfect record in always choosing new sites with profit margins that exceed their desired cutoff 

value C. Second, it is conceivable that as the average profit margin for existing sites increases, so too will 

the firm’s desired cutoff value C increase. Therefore, there should always be sites with values of the 

dependent variable that adequately span the range of interest and thus provide for model predictability. 

Finally, an advantage of our bootstrap method is that model-misspecification error and model instability 

are reflected in the estimates of   and  , the misclassification error rates. Our recommendation to the firm 

is to respecify the model and estimate   and   each year when new data become available, thereby 

monitoring the validity of the model. As long as   and k  are acceptable, the model can provide important 

information to aid the firm in the selection of new hotel sites. 

4. SUMMARY 

A general methodology was developed for obtaining an “optimum” decision rule for building a new hotel 

at a proposed site based on a model prediction of the success of a hotel at the site. The methodology 

incorporates bootstrapping to avoid the short falls of other methodologies for evaluating model prediction 

error such as cross-validation. By bootstrapping the decision rule itself, an improved decision rule is 

obtained that is better calibrated to the maximum acceptable levels of false positive and false negative 

error than decisions relying on apparent misclassification-error rates. The methodology is applicable for 

any ideal decision rule D(y, C) and any criterion for optimizing the model- based decision rule D(  , Cπ), 

which is a function of the error characteristic functions  (Cπ)  and  (Cπ). 
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The methodology was illustrated for a sample of 57 mature inns owned by a national hotel chain. For 

this example, the bias in the use of apparent error rates for optimizing the choice of C* in the model-based 

rule D(  , C*) was demonstrated. 

Finally, the bootstrap decision rule was evaluated on an independent sample of 94 mature inns owned 

by the firm. Furthermore, the bootstrap decision rule was compared with the standard 

regression-forecasting approach (based on apparent error rates). Consistent with the theory, our bootstrap 

procedure outperformed the standard regression procedures. 

In general, applications of this methodology are limited to situations in which the dependent variable 

(i.e., profitability) has not been censored by management decisions to close unprofitable sites. For our 

client’s hotel chain, inns operating below an acceptable profit margin were allowed to continue in 

operation. Thus the parameter estimates for our model are consistent estimates. This is not atypical 

because hotel chains are usually more concerned with long-term profitability than with short-term 

fluctuations in the profitability of a particular inn. In addition, hotel chains may want to provide national or 

regional coverage and may keep some unprofitable properties open in an attempt to maintain this 

coverage. In situations in which truncation of the dependent variable has occurred, however, the estimates 

of the model parameters will not, in general, be consistent, and predictive ability of the model could be 

diminished. 

As explained in Section 3.3, the number of years that an inn is in operation was deliberately excluded 

from our model, since inclusion of this variable eliminated other variables that were more informative and 

useful for selecting new sites. Exclusion of this variable comes with a cost that is reflected in the model 

error rates. In other situations, however, it may be improper to exclude the age of the inn. For example, 

managers may wish to know when, if ever, a new site will be profitable. Therefore, a general 

recommendation for treating the age variable is not possible and will depend on the data set and the 

objectives of the model-building process.
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