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Summary 

The classic asymptotic properties of the maximum likelihood estimator and generalized 

likelihood ratio statistic do not hold when the true parameter is on the boundary of the parameter 

space. An inferential procedure based on an enlarged parameter space is shown to have the classical 

asymptotic properties. Some other competing procedures are also examined. 

1. Introduction 

The purpose of this article is to derive an inferential procedure using maximum likelihood 

estimation and the generalized likelihood ratio statistic under the classic Cramer assumptions but 

allowing the true parameter value to be on the boundary of the parameter space. The results 

presented include the existence of a consistent local maxima in the neighborhood of the extended 

parameter space, the large-sample distribution of this maxima, the large-sample distribution of 

likelihood ratio statistics based on this maxima, and the construction of the confidence region 

constructed by what we call the Intersection Method. This method is easy to use and has 

asymptotically correct coverage probability. We illustrate the technique on a normal mixture 

problem. 

1 Ziding Feng was a graduate student in the Biometrics Unit and Statistics Center, Cornell 
University. He is now Assistant Member, Fred Hutchinson Cancer Research Center, Seattle, WA 
98104. 
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Previous work in this area has focused on the .large-sample distribution of the maximum 

likelihood estimator and likelihood ratio statistics. This includes the work by Chernoff (1954), Moran • 

(1971), Chant (1974), and Self and Liang (1987). Self and Liang's paper summarized all the earlier 

work and provided a uniform framework for the large-sample distribution of the above statistics. The 

exact limiting distributions are complicated by the number of unknown parameters, how many of 

them are on the boundary and the correlations between the components of iJ. In some relatively 

simple cases the limiting distributions of the maximum likelihood estimator and likelihood ratio 

statistic are, respectively, mixtures of normals and mixtures of chi-squared distributions, while in the 

more complicated cases they are much more difficult to calculate. Our approach avoids the need for 

the exact limiting distributions of the maximum likelihood estimator and likelihood ratio statistics to 

construct confidence regions. 

2. Asymptotic property of the maxima and the Intersection Method 

Let f(x,O) denote a probability density or mass function of a random variable X with parameter 

0 = (01, 02, ... , Op). 0 E 0 C RP where 0 is the parameter space. Let X= (X1, X2, ••• , Xn) he a • 

random sample of size n from f(x,O). We assume that 00 , the true parameter value, is on the 

n 
boundary of n and denote the log-likelihood function E log f(O;x·) by i(O;x). Eo(.) denotes the 

i = 1 1 

expectation evaulated at 0. 

We first extend the definition of i(O; x) to RP: 

n 
e*(O; x) ~ .E tog[£*(0; xi)1(f"'(O; ~) > 0}] 

•=1 
(2.1} 

where 1(.) is an indicator function and f(O,~) is the extension of f(O,~) to all 0 E RP. 

Lemma 2.1. 

iJ, the value which maximizes i*(O,x) in RP, is also the maximum for i(O,x) in RP. 

Remark: This lemma says that the definition of i*(O,x) is .for mathematical convenience. The 

essence is to maximize l(O,x) over RP instead of over 0 but we need to explicitly define a rule to 

avoid the points where the density function is zero or negative. 

One obvious but very useful fact is that: • 
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t*(O,x) = l(O,x) V 0 E 0 . (2.2) 

This means that all the properties of e*(O,x) we will assume below are the same as the classic 

assumptions for 0 E 0. Assumptions (modified from Lehmann, 1983, p.429) are: 

(a) the parameter space n has finite dimension p, but we allow 0 to be on the boundary of n. 

(b) f*(x,O) = f*(x,O') if and only if 0 = 0' for 0, 0' E 0. 

(c) there exists an open subset w of RP containing 00 such that for almost all x for which f*(O; x) > 

0, f*(O; x) has all three derivatives w.r.t. (with respect to) all 0 E w, and 

for all 0 _ {011 ••• ,OP} E wand f*(x,O) > 0 and mjkl = E00[Mjkl(X)] < oo for all j, k, e. 

(d) E00[0~.log f(x,O)] = 0 for j = 1, ... , p 
J 

I;k(00) ::: Eoo[o~; log f(x,O) at log f(x,o)J = E00[ oO~;Ok log f(x,O)] 

also, I;k( 00 ) < oo and I( 00 ) is positive definite. 

Theorem 2.2: Let X1, ... ,Xn be independently identically distributed observations with density f(x,00) 

satisfying assumptions (a)-( d) above but where the unknown 00 is on the boundary of 0. Then with 

probability tending to 1 as n-+oo, there exists a 0 E RP, a local maxima of the e*(O,x) as defined in 

(2.1), which has the property that 

(i) 0-+00 w.p. 1 
1 

and (ii) n2 (0-00 ) ! N[o, I(00t 1] • 

To prove (i), we only need to show that for sufficiently small e > 0, t*(O,x) < t*(00,x) at all points 

0 on the surface of the ball Be(00), which defines a neighborhood centered at 00 with radius e. Given 

e*(O,x), we can choose e small enough such that f*(xi,O) > 0 for V x/s in the sample. This is true 

since (c) implies continuity of f*(O, x) with respect to 0 and f(xi,00) > 0 V x/s. Then, by assumption 

(c), Taylor expansion of e*(O,x) about 00 leads to: 
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(2.3) 

By (2.2), the asterisk can be dropped in each term of the Taylor expansion. The proof then follows 

the classic one (Lehmann, 1983). 

To prove (ii), first observe that t*(O,:x) > -oo; therefore, f(x;,O) > 0 for V x;'s. This is also true 

for t*(00,x). By consistency of 0 and continuity of the likelihood, we can assume that f*(x;,O) > 0 

for V x;'s and for V 0 in the neighborhood of 00 containing 0. Then, by assumption (c), we can 
* . ae (O,x) *'(. ) expand ae. :: t; O,x about 00 and we get 

J 

j=l, .•. ,p 

where O* lies on the line segment connecting 0 and 00• 

For each j, the R.H.S (right-hand side) converges in distribution to N[O, 1;;(00)] by the Central 

Limit Theorem and /i tjk"(00,x) -+ I;k(00 ) with probability one by the Law of Large Numbers. We 

claim that I tjke"'(O*,x) I < oo, so that the second term on the L.H.S (left-hand side) converges to 0 

with probability one. Noticing that t*(O,x) = Sup t*(O,:x) > -oo and t*(00 ,x) > -oo, therefore 
0 

f*(O*;x;) > 0 by the fact that 0 -+ 00 and O* is between them. The claim follows then from 

assumption (c). The asymptotic normality has been proved componentwise and (ii) follows from 

applying Lemma 4.1 of Lehmann (1983, p. 432). D 

Theorem 2.2 says that the value which maximizes t*(O,:x), is OP(n-1/ 2) consistent for 80 and 

more importantly has a limiting normal distribution. 

Theorem 2.3. Let X1, ... ,Xn be iid observations with a density function f(x,00) satisfying assumptions 

(a)-(d) above but where the unknown 00 is on the boundary of 0. Let 0 S s < p, where s is an 

• 

• 

• 
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integer and 0 = (01, 02) where 01 has dimension p-s and 02 has dimension s. Consider testing H0: 01 

• = 001 versus H1: 01 is not specified. Then with probability tending to 1 as n-+oo, there exists a 

0 E RP, a local maxima of e*(O,x) as defined in (2.1), which has the property that: 

• 

• 

-2logA* .! X~s , (2.4) 

i.e., a chi-squared distribution with degree of freedom equal to p-s, where A* = e*[(Oo1' Oo2); X] -

e*(O; x), and 002 is the local maxima under Ho· 

Proof. We only provide the proof for the case where s = 0, i.e., for the simple null hypothesis. The 

general case of composite null hypothesis is a direct extension of the simple case with the proof 

parallel to the classic proof (Cox and Hinkley, 1974, p.321-4). 

By a Taylor expansion of -2log.X* about 0, we get 

-2log.X* = 2{ e*(O;x)- e*(00,x)} 

= 2{t*(O,x) - e*(O,x) + t (0 j- Oo;)lj'(O,x) 
J=1 

1p P~ ~ * *} 2 ?: E (0;- 00;)(8k- 00k)lJ·k"(8 ,x) , 
J=1 k=1 

where(}* lies on the line segment between 0 and 0. We have 

ej'(O,x) = o , 

by Theorem 2.3. and 
p 

_! eot: "(8* x) - _! e* "(8 x) + "' (O* - 8 ) le* "'((}** x) n Jk ' - n jk 01 L.J e 01 n jkl ' 
f=1 

where op(1) means that the remainder tends to 0 with probability 1 and(}** lies between(}* and 90• 

Since (Oi - 901) -+ 0 with probability 1 and l!e;ke('(O**,x) I < oo and using the same 

arguments as in the proof of Theorem 2.2, it is obvious that the remainder goes to zero with 

probability 1. Therefore, 

-2 log.X* = n(O;- 00j)TI(90)(0;- 00j) + OP(1) .! x; , 
90j) .! N[O, I(o0r1J by Theorem 2.2 and the quadratic form has a chi-squared 

distribution (Serfling, 1981, p.153). 0 
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A simulation is presented to support the theoretical results. Figure 1 shows the simulated 

distribution of -2tog~* from 500 generated random samples of size 1000, all with an underlying 

distribution that is standard normal. We are testing B0: f(x,6) = N(O, 1) versus B1: f(x, 6) = 

(1 - 1r)N(1, 1) + 1rN(O, 1). It is clear from Figure 1 that x~ fits the simulated distribution of 

-2tog~* extremely well when n= 1000. We also simulated samples of size n= 100 but the agreement 

was not as good, suggesting that the convergence is slow. 

From Theorems 2.2 and 2.3, it is clear that an asymptotic 1-a confidence interval or region, 

'!R.a about 6, can be easily constructed from iJ, the maxima for t*(O;x), and I(ir1• We state the 

following procedure, which will be called the Intersection Method: 

Step 1: Maximize t*(O,x) without restricting it to 0. Call the maximizing value iJ, and calculate 1(0), 

the Fisher information at 0. 

Step 2: Calculate a confidence region based on the asymptotic chi-square distribution of Theorem 2.3: 

'!R.~ = { 9: -2 fog~* s x2 p,l-o} . (2.5) 

Step 3: 

Intersect the confidence region from Step 2 with the parameter space 

'!R.a = c:R.~ n 0 . (2.6) 

Theorem 2.4. Under assumptions (a)-(d) the confidence region '!R.a, constructed by the above 

procedure, has asymptotic 1-a coverage probability. 

The proof is a simple consequence of Theorem 2.2 and 2.3. The asymptotic distribution 

property in Theorem 2.2 and 2.3 says that -2tog~* is an asymptotic pivotal quantity, i.e., its 

distribution does not depend on 90• This provides a device to construct a confidence region and 

hypothesis test about 90• 

A simulation to evaluate the coverage probability for the Intersection Method is presented in 

Table 2.1. 500 random samples of size 1000 are drawn from a N(0,1) and .7N(0,1) + .3N(1,1), 

respectively. The assumed model is 81N(0,1) + 92N(-1,1) + (1 - 61 - 92)N(1,1), where 90 = (601, 

• 

• 

902) = (1,0) and (.7,0), respectively. The coverage probabilities are excellent compared to nominal • 
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levels . 

3. Comparison of the Intersection Method with other competitors 

One competitor of the Intersection Method is to use x~,t-a to construct a confidence set centered 

at the maximum likelihood estimator, assuming a correct variance structure is used. This will be 

liberal since the asymptotic distribution of the generalized likelihood ratio based on the maximum 

likelihood estimator is always stochastically smaller than x~ when the true parameter is on the 

boundary of the p-dimensional parameter space. This fact is implicitly stated in Chernoff (1954) and 

Self and Liang (1987), since the asymptotic distribution of -2 tog~ can be thought of as projecting a 

x~ random variable onto 0. Therefore, the confidence set constructed by the above approach would 

generally have coverage probability larger than 1-a. This set is always greater in volume than the 

confidence set obtained from the Intersection Method, since all points in the intersection confidence 

set have larger likelihood than all the other points in 0 not included in the intersection confidence set. 

Therefore, the intersection method is better in the sense of exact asymptotic coverage probability and 

containing the points which have the higher likelihood. 

Another competitor is what we called the Truncation Method, which is used by some 

practitioners and some computing software. A number of popular nonlinear estimation routines 

handle the boundary restriction by computing an unrestricted step and truncating the results on the 

appropriate boundary whenever a boundary violation occurs, especially when the Newton-Raphson 

algorithm is used for searching the maximum likelihood estimator (Jennrich and Sampson, 1968). 

Searle (1988) argued that this method can provide the maximum likelihood estimator in some 

variance component estimation settings. We will show that the Truncation Method works when the 

dimension of (J is one but does not provide reliable inferences in general. 

For the !-dimensional case, we can assume without loss of generality that 0 = [0, + oo) and 

90 = 0 is the unknown true parameter. The Truncation Method is defined as follows: Define Ot ::: 

01(0 ~ 0) where 0 is the local maxima. of t*(9;x). Given Ot and I(Oe), the estimated Fisher 

information, a 'natural' confidence interval would be constructed as 

(2.7) 
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where 1 

o-, = { tPt*(O; X) I }2 

{)02 0=0t 

Theorem 3.1. Under assumptions (a)-(d), (2.7) has asymptotic coverage probability 1-~ when 00 = 0 

and asymptotic coverage probability 1-a when 00 > 0. 

Theorem 3.1 indicates that when a one-dimensional parameter is on the boundary of the 

parameter space, the simple Truncation Method leads to a conservative confidence interval due to the 

fact that the truncation is always made in the correct direction (towards the true parameter). We 

will demonstrate that this is no longer true when the dimension is greater than one. 

The Truncation Method is defined for the 2-dimensional case in a similar way: Let 0 £ 

nominal 1-a confidence ellipsoid is constructed by 

where 
~a = { O: Q(9t,o) s x~,1-a} 

Q(Ot,O) = n(Ot-O)TI(Ot)(Ot-6). 

(2.8) 

To examine the asymptotic coverage probability of (2.8), we consider two possible cases where one or 

two components of 00 are on the boundary of 0. Without loss of generality, we may consider the 

following two cases: 
Case 1: 001 = 0, 002 > 0 , 

Theorem 3.2. 'Under assumptions (a)-(d), the nominal 1-a confidence ellipsoid constructed in (2.8) 

using the truncated estimator has asymptotic coverage probability: 

Case 1: If 001 = 0 and 002 > 0 , 

then 
(2.9) 

Case 2: If 001 = 002 = 0 , 

then 
tim P{9 e ~ } = 008- 1(-p) (2-a) + {1 cos-1(-p)) P{ x2 < (1-p2)x2 } 

n-+oo Q 2w- W" 1 - 2,1-Q ' (2.10) 

• 

• 

• 



• 

• 

-9-

where p = asymptotic correlation between 01 and 02 • 

Case 3: If 001 > 0 and 002 > 0, then the asymptotic coverage probability of the truncation method is 

1- <l'. 

Proof: The asymptotic distribution of the likelihood ratio when the true parameter is on the 

boundary of 0 can be thought of as the distribution of the projection of a random variable with a chi-

squared distribution onto 0. Therefore, for any simple configuration of 00 , it is possible to decompose 

the distribution into different regions corresponding to the components of the parameter (Chernoff, 

1954 and Self and Liang, 1987). The aymptotic coverage probabilities can then be calculated from the 

decomposed distribution which is usually a mixture of chi-squared distributions. Some examples of 

the calculations can be found in the above two papers. 

Figure gives a plot of (2.9) and (2.10) versus p using 1-a = .9. For Case 1 (2.9), the 

asymptotic coverage probability is close to or a little higher than 0.9 when the absolute value of 

correlation between 01 and 02 is less than 0.8. However, it performs poorly when this correlation is 

high ( > 0.8 ). For Case 2 (2.10), it shows that from moderate negative correlation ( > -0.7) to high 

correlation between 01 and 02, the asymptotic coverage probability is higher than 0.9. It decreases 

quite rapidly when the correlation is less than -0.8. 

The extension of the calculations to dimensions higher than two is possible but complicated and 

tedious. Analogues of the two-dimensional case will occur and the asymptotic 1-a coverage 

probability will not hold. 

4. Discussion 

The Intersection Method is easy to implement while inferential procedures (testing or confidence 

regions) based on the asymptotic distribution of the maximum likelihood estimator are difficult to use 

since the limiting distributions are complex when incorporating boundary constraints. On the other 

hand, the simple Truncation Method or other variants, which are sometimes used by practitioners, are 

not reliable when the dimension of the parameter is larger than one and correlations between the 

• estimators are high. 
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In finite samples, the Intersection Method might lead to a confidence set which does not contain 

the maximum likelihood estimator or even to an empty set when the confidence set does not intersect • 

0. This can be avoided if the search for maxima out of the parameter space is restricted in the 

neighborhood of the boundary of the parameter space. The definition of the neighborhood can be 

defined in a way that the confidence region by the Intersection Method always includes the maximum 

likelihood estimator. This will always hold asymptotically by our assumptions on the likelihood and 

the property of the maximum likelihood estimator derived by Chernoff (1954) and Self and Liang 

(1987). 

For point estimation, the maximum likelihood estimator should be used instead of the 

unrestricted maxima since it may not have a meaningful interpretation and most probably has a 

larger mean square error. 
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Table 1. Coverage probabilities of confidence regions constructed by the Intersection Method 

for 500 simulations. Model is a mixture of normals with three components where one or two 

of the parame~rs are on the boundary. (Sample sizes are 1000 for each simulation.) 

(1 ,0) 

(.7,0) 

Nominal Coverage Probability 

.8 .85 .90 .95 

.784 

.786 

.846 

.860 

.890 

.906 

.938 

.940 

.99 

.984 

.986 
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Figure 1. Simulated cumulative distribution function of the likelihood ratio statistic and xl and ~ 

distributions in a test of H0: N(O,l) vs. H1: r N{O,l) + {1-r) N(l,l) when llo is true. The likelihood 

ratio statistic is based on the unrestricted maxima. (Sample size 1000, 500 replications) 
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Figure 2. Asymptotic coverage probabilities of confidence regions based· on the Truncation Method 

plotted versus p, the correlation between 01, and 02• Nominal coverage 1-a = .9. 

Figure 1: Asymptotic coverage probabilities using the Truncation Method 
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