IS SOMETIMES EVER BETTER THAN ALWAYS?
by

David Gries+

TR78-343

Department of Computer Science
Cornell University
Ithaca, New York 14853

— i
This research was supported by the National Science Foundation

under Grant MCS76-22360.

IS SOMETIMES EVER BETTER THAN ALWAYS?

by

David Griesf

Cornell University

Abstract

The "intermittent assertion” method for proving programs
correct is explained and compared to the conventional
axiomatic method. Simple axiomatic proofs of iterative
algorithms that compute recursively defined functions,
including Ackermann's function, are given. A critical
examination of the two methods leads to the opinion that

the axiomatic method is preferable.

T T .
'This research was supported by the National Science Foundation
under Grant MCS76-22360.

1. Introduction

The so-called "intermittent assertion” method for proving
programs correct [1] has begun to attract a good deal of atten-
tion, so much that it can no longer be ignored. The purpose of
this paper is to compare the method -- as it is explained in [1)
-- with the more conventional axiomatic method. It is assumed
that the reader is familiar with the axiomatic method [2], toge-
ther with the concept of total correctness -- see e.g. [3]).

The intermittent assertion method is used in [4] to argue
informally about several algorithms. The method involves
associating an assertion with a point in the algérithm with the in-
tention that at some time during execution control will pass
through that point with the assertion true, but that it need not
be true every time control passes that point. Based on the fact
that at some time control will be at that point with the assertion
true, one then argues that control will later resch another point
(e.g. the end of the algorithm) with another assertion true (e.g.
‘the output assertion).

Burstall discusses the idea in [S], while Manna and Waldinger
[1] are responsible for the current wave of interest in the tech~
nique. Topor [6] also uses it to prove correct a version of the
-Schorr-Waite algorithm for marking nodes of a directed graph; an
axiomatic proof appears in [7].

The intermittent assertion method has been mainly used to
rceason- about {terative algorithms that compute recursively defined
funct fonu, and {n this setting it has heen thought to he more
"natural® than the axiomatic mecthod. 1In fact, (1] contains a

challenge to use the axiomatic method on an iterative algorithm

that computes Ackermann's function. Sections 2 and 3 contain proofs
of this algorithm using the two mothods, which the rcader is invited
to compare. Section 4 shows how to transform a particular recursive
dofinition schomoe into an oequivalent itorative algorithm using tho
axiomatic method. The scheme was taken from [l1]. Section 5 gives
arguments that lead to the conclusion that the axiomatic method is

to be preferred.

2. The Intermittent Assertion Method

Ackermann's function A(m,n) is defined for m,n20 by

m=0 + n+l
A(m,n) = m#0,n=0 -+ A(m-1,1)
m#0,n#0 -+ A(m-1, A(m,n-1))

The following algorithm to compute A(m,n) uses a "sequence" var-
iable s. Each element si of sequence s=<sn,...,s2,sl> satisfies siz0,
and n=size(s)20 is the length of the sequence. Numbering the elements
in reverse order, as I have done, simplifies later notation. Element
si of s will be referenced within the algorithm by s(i), while s(..i)
refers to the possibly empty sequence <sn,sn_l,...,si>. Operation
s{x denotes the concatenation of element x to sequence s. For exam-
ple, if size(s)22, then s = s(..3) | 8(2) | s(1). The algorithm
contains labels needed to discuss the "flow of control” in the inter-

mittent assertion method.

start: s:= <m,n>;
do test: size(s) # 1 -

if s(2)=0 + s:= 8(..3) | s(l)+1

0 s(2)#0 and s(1)=0 + s:= s(..3) | s(2)-1 | .1

0 s(2)#0 and 8(1)#0 » s:='s8(..3) | s(2)-1 | s(2) | s(1)-1
£i .
od;
finish: skip

-3-

Remark The above algorithm is a paraphrase of that given in [1]},
which was written in terms of conditional and goto statements and
arrays. The use of guarded commands and sequences, togo;her with
the label test on the guard of the loop, lcads to a clearer algo-

rithmic description and proof. end of remark

The intermittent assertion method allows one to use an assertion

that is true at a point of a program, but only sometimes. A typical

example is contained in the following lemma.

Lemma 2.1. If sometime size(s)22 and 8 = 8|a|b at test,

then sometime s = 8|A(a,b) at test.

Proof. Suppose s = 8|alb at test. The lemma is proved by induction
on the lexicographic ordering 3 on pairs of nonnegative integers,

which is defined as follows:
<a,b> 3 <4,B> if and only if a>8 or (a=4& and b>B).

Thus we assume the lemma holds fOﬁény sequence 8 and pair <&,B>
satisfying <a,b> 3<&,B>, and show that it holds for any sequence 8

and <a,b>. The reasoning is based on an informal understanding of how
programs are executed. There are three cases to consider, correspon-

ding to the three guarded commands of the alternative statement of

the loop body.

case a=0: s = 8|0|b at test. Since size(s)#l the loop body is
executed, the first guarded command is executed, s is changed to
s = 8 | b+l, and control returns to test with s = 8|b+l = 8|A(0,b).
case a#0, b=0: s = 8]/aj0 at test: Néte that A(a,0)=A(a-1,1).

Execution of the second guarded command changes s to 8]a-1|1 and

-4-

control returns to test. Since <a,0> 3 <a-1l,1>, by induction control
will at some point reach test with s = 8|A(a-1,1) = 8|A(a,0). Thus
the lemma is established in this case.

case a,b#0: s = slalb' at test. The third guarded command is
executed, s becomes 8&]a-1|a|b-1, and control returns to test. Since
<a,b> 3 <a,b-1>, by induction control will return to test at some
point with s = 8|a-1]|A(a,b-1). Since <a,b> » <a-1,A(a,b-1)>, by in-
duction further execution is guaranteed to cause control to reach test

again, with s = 8|Aa(a-1,A(a,b-1)) = 8|A(a,b). The lemma is established.
This is typical of the reasoning used with intermittent assertions.

Now suppose execution of the algorithm begins with m,n20. Control
reaches test with s=<m,n>. By the lemma, control will reach test
again with s=<A(m,n)>, the loop will terminate because size(s)=1, and

control will reach finish with s(l1) = A(m,n). Thus we have proved:

Theorem 2.2. If some time m,n20 at start, then some time s(l) =

A(m,n) at finish.

This proof is a paraphrase of that in [l]; I have tried to make

the reasoning as concise and clear as possible.

5=

3. The Axiomatic Method

We now givé a proof of correctness of the algorithm using the
axiomatic approach. We first define a relation > on sequences. The
reader will note that p>q if and only if one execution of the loop

body with s=p transforms s into q.

Definition 3.1. The relation }on sequences is defined by

(a) s|olb > s|b+l for b20, any sequence s
(b) slajo > sla-1]1 for a>0, any sequence s
(c) sl|a|b >sl|a-1|a|b-1 for a,b>0, any sequence s

Note that for any sequence p with size(p)>1 there exists exactly one
sequence q such that p) g. For p with size(p)sl there is no such q.

Most of the work in proving correctness is contained in the following

Lemma 3.2. Given a,b20, for any sequence s there exists t20 such
that s|a|b$~ s|A(a,b) (i.e. one gets from s|a|b to s|A(a,b) by
t applications of >~).
Proof. The proof is by induction on the lexicographic ordering of
pairs of nonnegative integers. We assume the lemma true for &,B
satisfying <a,b> 3 <&,B> and prove it true for a,b . “i‘here are
three cases to consider, based on the definition of)

case a=0: s|0|b »s|b+l = s|a(0,b), and t=1.
_ case a#0,b=0: s|a|0 » s|a-1|1. sSince <a,0> 3 <a-1,1>, by induc-
tion there exists tl such that s[a-lllg s|A(a-1,1) = s|A(a,0).
Thus s|a|o0)£ s|A(a,0) with t = t+1,

cave a,bZ0: slalb > usla-1lajb-1. Since <a,b> 3 <a,b-1>, by
induction there is a tl such that s|a-1l|a|b-1 9— s|la-1|A(a,b-1).
Since <a,b> 3 <a-1,A(a,b-1)>, by induction there is a t2 such that
sla-1|a(a,b-1) $2 s|a(a-1,A(a,b-1)) = s|A(a,b). Hence s|a|b 3

s|A(a,b) with t=1+tl+t2. This ends the proof.

-G
For convenience, we give the algorithm again, without the labels.

{m,n20}
s8i™ <m,n>)
do size(s)#1 =
if a(2)=0 + mi= a(..3) | a(l)4l
g 8(2)70 and s(1)=0 =~ s:= 8(..3) | s8(2)-1 | 1
D 8(2)#0 and s(1)¢#0 =+ s:= s5(..3) | 8(2)-1 | 8(2) | s(1)-1
i

od

?: = <A(m,n)>}

One way to derive a useful loop invariant is to weaken the result
assertion (i.e. s=<A(m,n)>) to include the initial condition (i.e.
s=<m,n>). To do this we make use of relation}». Note that there is
a t20 such that <m,n> ﬁi <A(m,n)>. Furthermore, t is unique, since
for any sequence p there is at most one q such that s)>q, and there is
no q such that <A(m,n)>§q. Hence, for any sequence p such that

d
<m,n> :>- p there is a unique F(p), 7T(p)20, an integer function of p,

such that <m,n>:;- P ?;B) <A(m,n)>. We therefore take as our loop

invariant P:

P: <m,n>$— s %ﬁ) <A(m,n)>,

P is initially true with s=<m,n> and P(s)=Ji<m,n>); upon termina-
tion (P and size(s)=1) implies the desired result. That P remains
true is almost trivial to show, since >—was expressly defined so that
execution of the loop body with variable s containing a value p would
change s to the unique value q satisfying p)bq. For a termination
function we take 7(s) that was just defined, which is decremented by

1 each time the loop body is executed.

-7-

Remark 1. The invariant P was not as easy to derive as the above

description indicates, although it should have been. end of remark 1.

Recmark 2. Reference (1) says that the axiomatic approach requires
two ecparate proofs to oatablish total corroctnonm, one to show
partial correctness and the other to show termination. While this is
true, the example indicates that a proper choice of invariant can

make the proof of termination almost trivial. end of remark 2.

Remark 3.° The formalization of the method for proving termination
has previously been done in two ways, which we summarize here. (1)
Derive an integer function t(X) of the program variables X; show
that t20 whenever the loop’ is still executing; and show that each
execution of the loop body decreases t by at least 1. For a loop

do B + S od this means proving that

(P and B) => t20 and
{P and B and t=c} S {tsc-1} for all c.

(2) Choose a "well-founded" set (W,») -- i.e. » is a partial order-
ing with the property that for any w in W there is no infinite chain
wy»wl)w2 »... . Then choose a function f£(X) of the program

variables ® and prove that
{P and B and f(X)=w} S {w > f(X)} for any w in W.

The two methods are equivalent. The first induces A function f(x)
=t (x) and a well-founded ordering) defined by f£(X) % f(y) if

(P and B) implies t(x) > t(y) 2 0. Given a proof by the second
method, under the reasonable assumption tﬂat nondeterminism is
bounded (see [3]}), choosing t(X) to be the length of the longest

sequence £tX)Ywld ... yields a proof by the second method.

In this situation, I prefer the first method to the second; it
is easier to state, just as easy to use, and makes more sense to

the majority of programmers. end of remark 3

4. A Transformation Scheme

In [1]) it ;s proved using intermittent assertions that a recur-

sive definition (or algorithm) of the form

p(x) + £(x)
F(x) =
not p(x) + h(F(gl(x)), F(g2(x)))

under the assumptions

(1) p, £, g1, g2 and h are total functions;
(2) h is associative: h(u,h(v,w)) = h(h(u,v),w) for all u,v,w;
(3) e is the left identity of h: h{(e,u) = u for all u

is equivalent to the following iterative algorithm. The algorithm

uses a sequence variable s and a simple variable z.

{FP(x) well defined}
8,z:= <x>,e;

do s# <> »

i{ p(s(l)) + s,z:= s(..2), h(z,£f(s(1)))
D not p(s(1)) + s:= s(..2) | 92(s(1)) | gl(s(1))
fi
od

{z=F(x)}
We want to prove the samo thing using the axiomatic method. It is
tempting to apply the techrique used to prove the Ackermann alqgorithm
correct, and indeed it works like a charm,

We first noce that there must be a well-founded ordering $

Anfinnr ke

~-9-

(F(x) well defined and mot p(x)) implies
(x 5 gl(x) and x 5 g2(x)).

This means that there is no infinite chain x S x1 $... 1if P(x) is
well defined, and that we can use the ordering 5 to prove something
by induction, the way 3 was used in Section 3.

In attempting to define an ordering on sequences as in Section 3,
we find that we must also take into account the value of simple var-
iable z. So we define instead a relation)> on pairs (s;z), where s

is a sequence and z a value.

Definition 4.1. Relation }-is defined for any sequence s and values

x and z as follows:

(a) if p(x), then (s|x; z) % (s; h(z,£(x)))
(b) if not p(x), then (s|x; z) > (s|g2(x)|ql(x); z)

Lemma 4.2, Given x for which F(x) is well defined, for any sequence

s and value z there exists a t20 such that

(slx; 2) 5 (s: n(z,F0x0)).

Proof. The proof is by induction on the ordering 5 described above.
There are two cases, corresponding to the cases in definition 4.1:

case p(x): (s|x; z) > (s; h(z,£(x))) = (s; h(z,F(x))), and t=1,

case not p(x): We have:

(s|x; z)

> (s|g2(x) gl (x); z) by definition

£7 (8]g2(x); h(z,F(g1(x)))) by induction, since x 5 ql(x)
(s; h(h(z,F(gl(x))),F(g2(x)))) by induction, since x § q2(x)

=l bz, W91 (%)), 1 (92(x))))) by assoclativity of h

= (s; h(z,F(x))) by definition of F.

-10~

Thus (s|x; z) > (55 h(z,F(x))) with t = l+tl +t2. This
completes the proof of Lemma 4.2,

Now note that Lemma 4.2 implies the existence of a t20 such that
(<x>;e) > (>3 hle,F(x))) = (<>; F(x)),

we define a functiongas in Section 3, and use the loop invariant
P: (<x>; e) E; {s:2) jééfifl) (<>; F(x)).

We leave -the simple proof that P is indeed the desired invariant to
the reader; the necessary termination function is ‘}~ of the invar-
iant P. To the reader we also leave the proof that if F(x) is not

well defined then the algorithm does not terminate.

5. Discussion of the Methods

Reference [1] said that all known proofs of the Ackermann al-
gorithm using conventional methods were extremely complicated. The
proof in Section 3 is offered to support my conjecture that axiomatic
proofs need be no more complicated than intermittent assertion proofs.
The material in Section 4 offers hope that iterative algorithms that
compute recursively defined functions -- a major stronghold of the
intermittent assertion method -- will quietly succumb to the axiomatic
method. It is simply a matter of learning the necessary techniques.
The authors of [1] quite rightly imply that a proof method should be
fayaral’, but ‘naturalnessin any field of endeavor must be learned.

The reader should note that the intermittent assertion method
has not yet been formalized. The major reference on the subject,

[11, ekplains the method by example only, and the examples are based
only upon an informal understanding of how programs are executed.

This is not a criticism; it takes time and thought tg make progress

-11-

in research. But it does mean that one should regard claims made
about the mcthod as only onthusiastic opinion. For examplo, in [1])
it is proven that any axiomatic proof can be mechanically translatod
into an intormittont assortion proof, but it is claimed without
proof that goiny the other way is impossible. It is also maintained
that the intermittent assertion method is sttictly-more powerful
than the axiomatic method. To argue against these statements is
pointless until the intermittent assertion method has been properly
defined.

Let us now compare the two methods, where our knowledge of the
intermittent assertion method is based solely on the examples given
in [1]. We can begin by cémparing the two proofs of the Ackermann
algorithm. Here one notices a strong similarity. Lemmas 2.1 and 3.2
lie at the heart of the proofs, and both are proved by induction
over the ordering 5. Each proof breaks down into 3 similar cases.
The main difference is that one proof requires a detailed analysis of
an algorithm, while the other requires an analysis only of a simple
relation that took 4 lines to define. And herein lies what I would
call a major drawback to the intermittent assertion method, which I
will now try to explain.

Any algorithm is based on certain properties of the objects it
manipulates, and it seems to me desirable to keep a clear distinc-
tion between these properties and the algorithm thag works on the
objects. Thus, in the axiomatic proof of Section 3, Definition 3.1
and Lemma 3.2 define, describe, and prove properties of sequences in
a completely mathematical setting. Then the proof of the algorithm
follows easily by considering the algorithm together with these
properties. A change in the algorithm does not destroy the neat

mathematical pfoperties, but only perhaps how they are used in the

-12-

proof. In addition, one can work with mathematical ‘properties that
have been proven by others, without having to understand their proof.

The principle of separation of concerns is being adhered to clearly

in the axiomatic approach.

The intermittent assertion method on the other hand, as explained
in current proofs, seems to encourage confusion of properties of the
objects and the algorithm itself. Thus, in Section# the fact that
there is a nice ordering of sequences is hopelessly entangled in the
proof of algorithmic correctness. It should be noted that the proof
given in Section 2 is a paraphrase of that given in [1], and it is
designed to clarify and not obscure the method. This proof seems to
be typical of intermittent assertion proofs.

It is true that an axiomatic proof may have more parts to it.

For example, once the mathematical properties were stated and provéd
in Section 3, it was necessary to relate them to the algorithm
itself, using & loop invariant and termination function. I gladly
accept this "extra" work, for in return I gain a better understanding
and have a proof that is clearly structured into its component

parts.

Through programming, we hope to learn to cope with complexity
(and to teach others how to cope) using principles like abstraction

and separation of concerns. The axiomatic method encourages the use

of and gives insight into these principles; the intermittent assertion
method seems by its very nature to discourage their use, and thus
scems to be a step backward.

A symptom of this backward step is the reintroduction of time.
The becauty and clegance of loare's axiomatic method was that it
taught us to understand an algorithm as a mathematical entity instead

of a program to be executed by a computer, and we can now bring to

-13- -

bear on the programming task all our mathematical training. The
reintroduction of time confuses £he issue and appears to be a ékep
backward.

It has been asserted that time must be introduced in order to
formally prove concurrent nonterminating programs correct. Refer-
ence [l] goes so far as to say that "the sténdard tools for proving
correctness of terminating programs, input-output specifications,
and invariant assertions, are not appropriate for continuously
operating programs.” Having myself participated in extending the
axiomatic techniques to this class of programs (see e.g. [8]) 1
fail to see how the authors can make this claim.

Let us briefly discuss possible formalization of the intermittent
assertion method. One way to do this would be to give "axiomatic"
proof rules for the various constructs -- an attempt in this diree-
tion has already been made [9]. My opinion (not a claim) is that this
will likely lead to complex, unmanageable proof rules. This opinion
is based on the complexity of the argument used in the proof in Sec-
tion 2. The argument had to include not only the normal kind of
iﬁduction typical for loops, but also two successive induction steps
based on the ordering ». A proof rule to formalize the me;hod as
explained in this example is going to be more complex than in the
axiomatic approach. Another way to formalize is to introduce
“dynamic logic;" I fear this will be too complex for the gain it
achieves,

Again, the beauty of the axiomatic approach is partly in the
simplicity of the proof rules, although much mathematical manipula-
tion may be necesmary in order to simplify aussertions, etc. For

cxample, the proof rule for the simple loop do B+ S od is

-14-

{p and B} s {p} P: loop invariant
(P and B) = t20 t: tormination function
(P and B} Ti=t;8 {t<T=1) Tt oxtra varlable

{P) do B » 5 0d (P and not B)

Finally, let me comment on the difficult of deriving useful
loop invariants. It is true that deriving the invariant for the
Ackermann algorithm was not as easy as might be inferred from the
discussion, and I am grateful to Manna and Waldinger for challenging
me to find it. However, finding loop invariants is becoming easier
and easier to those who practice the method. More and more comp-
licated algorithms are succumbing to the approach. It is simply a
matter of experience, as illustrated by the steady progress being made.

For me, the loop invariant is a crisp, clear way of under-
standing a loop, and for me finding an invariant is the prime way
to develop or understand a loop. I believe that all good programmers
use loop invariants, in that they look at the "general picture" or
state of affairs before each loop iteration. All we are requiring
when asking for an invariant is a precise definition of what the
programmer has up till now been doing in a vague, imprecise way.

To conclude, all the arguments seem to me to be on the side of
that axiomatic method, and it remains the method that I will teach

and practice, until other arguments convince me otherwise.

Acknowledgements. I wish to thank Bob Constable and Gary Levin for

discussions that led to the invariant used in the Ackermann algorithm.
‘I am indebted to Jim Donahue, Gary Levin and John Williams for

critically reading drafts of this paper.

-15-

Roforoncon

(1}

(2]

(3]

(4]

[s]

(el

(7]

(8]

(91

Manna, %. and R. Waldinger. 1a "somotime® romotimos bottor
than “always"? CACM 21 (Feb 78), 159-171.

Hoare, C.A.R. An axiomatic basis for computer programming.
CACM 12 (Oct 69), 576-580, 583.

Dijkstra, E.W. A Discipline of Programming, Prentice Hall,
1976.

Knuth, D.E. The Art of Computer Programmin ,» Vol. I,
Addison-Wesley, Reading, MASS. 1968.
Burstall, R.M. Program proving as hand simulation with a

little induction. Proc. IFIP Congress 1974, Amsterdam.
(308-312).

Topor, R.W. A simple proof of the Schorr-Waite garbage
collection algorithm, to appear in Acta Informatica?

Gries, D. The Schorr-wWaite graph marking algorithm.
Computer Science, Cornell University, 1977. Submitted
to Acta Informatica.

Gries, D. An exercise in proving parallel programs correct.
CACM 20 (Dec 77), 921-930.

Soundararajan, N. Axiomatic proofs of total correctness
of programs. NCSDCT, Tata Inst. of Fundamental Research,
Bombay, India, 1978.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif

