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A web-based decision support system (DSS) for potato and tomato late blight 

management has been developed which links several models into a system that 

enables prediction of disease dynamics based on weather conditions, crop information, 

and management tactics. Growers identify the location of their production unit of 

interest (latitude and longitude of field), and the system automatically obtains 

observed weather data from the nearest available weather station, and location-specific 

forecast weather data. The BlightPro DSS uses these weather data along with crop and 

management information to drive disease forecasting systems and a validated 

mechanistic model of the disease to generate location-specific management 

recommendations for fungicide application. 

To evaluate the utility of the BlightPro DSS across a range of environments, a 

combination of computer simulation and field experiments was conducted. Three 

fungicide schedules were evaluated i) calendar-based (weekly) applications, ii) 

applications according to the DSS, or iii) no fungicide. Simulation experiments 

utilized 14 years of weather data from 59 locations in potato producing states. In 

situations with unfavorable weather for late blight, the DSS recommended fewer 

fungicide applications with no loss of disease suppression, and in situations of very 

favorable weather for late blight, the DSS recommended more fungicide applications 

but with improved disease suppression. Field evaluation was conducted in 2010, 2011, 



 	

2012, and 2013. All experiments involved at least two cultivars with different levels of 

resistance. DSS-guided and weekly scheduled fungicide treatments were successful at 

protecting against late blight in all field experiments. As expected, DSS-guided 

schedules were influenced by prevailing weather (observed and forecast) and host 

resistance and resulted in schedules that maintained or improved disease suppression 

and average fungicide use efficiency, relative to calendar-based applications. 

A preliminary dispersal-risk model for late blight was developed using data 

obtained experimentally and from the published literature. The model relates 

availability of sporangia of Phytophthora infestans produced from lesions in a crop 

canopy to relative numbers of sporangia in the air above the crop (dispersal-risk). The 

model uses field-based estimates of disease severity coupled with functions that 

describe the effect of meteorological elements on production of sporangia, release of 

sporangia from sporangiophores, and escape of sporangia from a potato canopy. For 

each potential risk period the estimated disease severity at the source is coupled with 

predictors for sporangia availability, release of sporangia, and escape of sporangia. 

These predictors are then integrated in the form of a linear model to predict the 

relative number of sporangia h-1 that will escape the potato canopy and become 

available for dispersal. With field-based estimates of disease severity at a known 

source of late blight, variation in numbers of sporangia above the crop canopy was 

well described (P < 0.0001) by the dispersal-risk model (R2 = 0.91; RMSE = 2.86 

sporangia h-1). The model is intended for use within the context of the BlightPro DSS. 

Knowledge of upcoming “high risk” periods for dispersal could be used to enhance the 

efficiency of disease management practices. 
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CHAPTER 1. 

DEVELOPMENT AND IMPLEMENTATION OF THE BLIGHTPRO 

DECISION SUPPORT SYSTEM FOR POTATO AND TOMATO LATE 

BLIGHT MANAGEMENT* 

ABSTRACT 

A web-based decision support system (DSS) for potato and tomato late blight 

management has been developed which links several models into a system that 

enables prediction of disease dynamics based on weather conditions, crop information, 

and management tactics. Growers identify the location of their production unit of 

interest (latitude and longitude of field) and the system automatically obtains observed 

weather data from the nearest available weather station, and location-specific forecast 

weather data from the National Weather Service – National Digital Forecast Database. 

The DSS uses these weather data along with crop and management information to 

drive disease forecasting systems and a validated mechanistic model of the disease to 

generate location-specific management recommendations for fungicide application. 

An integrated alert system allows users to receive notification of upcoming critical 

thresholds via e-mail or text message. This system provides producers, consultants, 

researchers, and educators with a tool to obtain management recommendations, 

evaluate disease management scenarios, explore comparative epidemiology, or 

function as a teaching aid. In field and computer simulation experiments, DSS-guided 

schedules were influenced by prevailing weather and host resistance and resulted in 
																																																																		
* Ian M. Small (ims56@cornell.edu), Laura Joseph and William E. Fry; Department of Plant Pathology 
and Plant-Microbe Biology, Cornell University, New York, USA. This manuscript has been accepted 
for publication in Computers and Electronics in Agriculture. The manuscript will undergo copyediting, 
typesetting, and review of the resulting proof before it is published in its final form. Please note that 
during the production process errors may be discovered which could affect the content, and all 
disclaimers that apply to the journal apply to this manuscript. A definitive version was subsequently 
published in Computers and Electronics in Agriculture, 
http://dx.doi.org//10.1016/j.compag.2015.05.010 
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schedules that improved the efficiency of fungicide use and also reduced variance in 

disease suppression when compared to a weekly spray schedule. In situations with 

unfavourable weather, the DSS recommended fewer fungicide applications with no 

loss of disease suppression. In situations of very favourable weather, the DSS 

recommended more fungicide applications but with improved disease suppression. 

The DSS provides an interactive system that helps users maximize the efficiency of 

their crop protection strategy by enabling well-informed decisions. 

Additional keywords: plant disease management, decision support system, late 

blight, plant disease epidemiology, crop management, forecasting, potato, tomato 

1. INTRODUCTION 

Late blight, the plant disease caused by Phytophthora infestans (Mont.) de Bary, is a 

major constraint to potato and tomato production worldwide. A conservative estimate 

of the total global cost of the disease to potato production is 6.7 billion USD per year 

in yield losses and costs of late blight control measures (Haverkort et al., 2008). 

Unexpected late blight epidemics have resulted in major economic losses to growers 

for whom potatoes or tomatoes are the major income source (Fry et al., 2013; Fry and 

Goodwin, 1997). Although the disease is more problematic in rain fed agriculture such 

as in the northeastern USA, sporadically it can also be serious in drier production areas 

such as the Pacific Northwest (largest potato production area in the USA) (Johnson et 

al., 2000). For example the cost of managing a potato late blight epidemic in the 

Pacific Northwest in 1995 was estimated at 30 million USD (Johnson et al., 2000). 

The disease can be equally devastating to tomato producers. The most recent example 

occurred in 2009 when infected tomato transplants were distributed via national large 

retail stores who obtained transplants from a national supplier (Fry et al., 2013). The 

ensuing pandemic in the mid-Atlantic and Northeast regions of the U.S. devastated 
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tomato crops for many organic farms and in many, many home gardens (Fry et al., 

2013). 

Management of late blight typically involves cultural procedures designed to 

reduce the introduction, survival, or infection rate of P. infestans, and the use of 

fungicides. When developing a late blight management strategy, there are several 

factors that must be considered including the influence of prevailing weather on the 

pathogen lifecycle and fungicide residue on the crop, late blight resistance of the 

cultivar being grown, and pathogen characteristics, such as resistance to highly 

effective fungicides. The complexity of the interactions between these factors makes 

rational disease management decision-making difficult, leading to implementation of 

either inadequate or excessive management measures. The application of disease 

management measures when they are not necessary is at the very least inefficient, as 

unnecessary applications entail costs to growers, consumers, and the environment 

(Fry, 1982). Effective management is achieved by integrating a variety of control 

measures that may differ in efficacy, duration of effectiveness, and cost (Shtienberg, 

2000). This complexity creates an opportunity for a decision support system (DSS) to 

be used to provide science-based information to assist with this decision making. 

Decision Support Systems integrate and organize available information on the 

pathogen, the influence of observed and forecast weather on the disease, cultivar 

resistance, as well as fungicide characteristics and efficacy, required to make decisions 

concerning the management of late blight. Computer-based DSSs can integrate these 

factors to deliver either general or site-specific information to the users via extension 

personnel, telephone, fax, e-mail, SMS, PC and websites on the Internet (Cooke et al., 

2011). Forecasters such as BLITECAST (Krause et al., 1975), FAST (Madden et al., 

1978), and the apple scab predictive system (Jones et al., 1980), are examples of early 

tools that were designed to assist farmers with decisions relating to management of 
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potato late blight, early blight, and apple scab, respectively (Shtienberg, 2013). Since 

the 1990s, DSSs have been developed in many countries to assist with the 

management of plant diseases such as potato late blight, apple scab, cereal leaf 

diseases, strawberry diseases, and grape downy mildew (Pavan et al., 2011; 

Shtienberg, 2013). In Europe, several DSSs for late blight have been developed using 

various disease forecasting systems and models (Cooke et al., 2011). A list of these 

DSSs can be found on the Euroblight website (a potato late blight network for Europe) 

(http://www.euroblight.net/EuroBlight.asp). In certain European countries, such as 

The Netherlands, it has been reported that up to 36% of potato growers use the 

recommendations of commercially available DSSs to assist with their management of 

late blight (Cooke et al., 2011). 

Under experimental settings, use of DSSs has been shown to improve disease 

suppression, reduce risk of crop damage, and under many circumstances reduce the 

quantities of active ingredients used, relative to typical spraying practices (Shtienberg, 

2000). The objectives for this study were to develop and implement a web-based DSS 

for late blight capable of utilizing location-specific weather data to drive disease 

forecasters and a mechanistic model of the late blight disease, in order to provide real-

time (in-season) support for late blight management in the USA. 

2. SYSTEM DEVELOPMENT 

The BlightPro DSS for potato and tomato late blight management 

(http://blight.eas.cornell.edu/blight/) was developed to integrate pathogen information 

(mefenoxam sensitivity and host preference), the effects of weather, host resistance 

and fungicide on disease progress in order to improve in-season disease management. 

A secondary design objective was to develop a version of the system that could be 

used with archived weather data to explore disease management scenarios, for 

comparative epidemiology, or function as a teaching aid. 
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2.1 Weather data 

Each user defines the location of his/her management unit of interest (field) via an 

interactive geographic information system in the form of a Google Maps API. This 

provides an easy method to obtain the necessary latitude and longitude information 

required for the DSS (Figure 1.1).  

 

Figure 1.1. Interface for definition of new locations. A google API interface allows 
users to identify their location with the aid of a map. The latitude and longitude of the 
location is obtained automatically. 

The system then automatically identifies the nearest five weather stations to the 

grower’s location, with the closest station serving as the default source for observed 

weather data, and utilizes the grower location to obtain the weather forecast. The 

weather station may be a privately owned station (connected to a meteorological 

network) on the grower’s farm, or a publicly accessible station e.g. an airport station. 

If the user intends to use a private station, the station must be capable of uploading 

data to a meteorological network such as NEWA (Network for Environment and 
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Weather Applications) in the Northeastern USA http://www.newa.cornell.edu/, or 

FAWN (Florida Automated Weather Network) in Florida http://fawn.ifas.ufl.edu/. 

Data from these networks can be accessed by the Northeast Regional Climate Center 

(NRCC) http://www.nrcc.cornell.edu/. 

The NRCC works cooperatively with the National Climatic Data Center, the 

National Weather Service, state climate offices, and interested scientists in the 

Northeast to acquire and disseminate accurate, up-to-date climate data and 

information. Regional Climate Centers (RCCs) are a federal-state cooperative effort 

(DeGaetano et al., 2010). The National Oceanic and Atmospheric Administration 

(NOAA) – National Climatic Data Center (NCDC) manages the RCC Program. The 

six centers that comprise the RCC Program are engaged in the production and delivery 

of climate data, information, and knowledge for decision makers and other users at the 

local, state, regional, and national levels. Weather data are accessed via the Applied 

Climate Information System (ACIS) developed by the NOAA – RCCs (DeGaetano et 

al., 2015). A number of weather variables including temperature, relative humidity, 

precipitation, wind speed and direction are monitored and archived in real time. 

The observed data are combined with high-resolution forecast data (2.5 square 

km grid) for the location of interest, obtained from the National Weather Service – 

National Digital Forecast Database (NWS-NDFD) using access routines provided by 

the NRCC. The NWS-NDFD short-term weather forecasts are provided in a grid 

format and include sensible weather elements (e.g., temperature, relative humidity, sky 

cover). The NDFD contains a seamless mosaic of digital forecasts from NWS field 

offices working in collaboration with the National Centers for Environmental 

Prediction (NCEP). The weather data and forecasts are updated 8 times per day. The 

frequency of updates depends on the rate at which new forecasts are generated by the 
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NWS and processed by the NRCC. As weather forecasts are updated, the outputs of 

the DSS will change to reflect the most recent weather data. 

2.2. Cultivar resistance database 

A database providing information on late blight resistance in potato and tomato 

cultivars was generated for the DSS using a combination of published literature and 

field experiments. Information on potato cultivar resistance to late blight was obtained 

from published plant disease management reports and field experiments (Forbes et al., 

2005; Fry, 1998; Fry and Apple, 1986; Inglis et al., 1996; Jenkins and Jones, 2003; 

Parker et al., 1992; Stevenson et al., 2007). Field experiments to investigate potato 

cultivar resistance to late blight were conducted at the Homer C. Thompson Vegetable 

Research Farm in Freeville NY in 2011, 2012 and 2013 (Small et al., 2013). The 

system was initially developed for late blight of potato but extension of the system is 

underway to enable its use for late blight of tomato. Information on tomato cultivar 

resistance to late blight was obtained from published plant disease management 

reports (McGrath et al., 2013) and field trials (Hansen et al., 2014). A list of cultivars 

evaluated is available on the DSS. Currently (May 2015), there are more than 60 

potato cultivars and more than 50 tomato cultivars that have been classified for their 

resistance to late blight. These numbers will increase as experimental data is obtained. 

2.3. Disease forecasting tools 

The DSS provides a platform to run late blight forecasting systems. Two systems are 

currently implemented: Blitecast, which is a forecast system developed to predict the 

initial occurrence of late blight in northern temperate climates, as well as the 

subsequent spread of late blight (Krause et al., 1975); and Simcast, which is a 

forecasting system that integrates the effect of host resistance with the effects of 

prevailing weather on late blight progress and the effect of prevailing weather on 
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fungicide weathering (Fry et al., 1983). Simcast does not predict the initial occurrence 

of late blight (the need for a first fungicide application), but may be used to schedule 

subsequent applications. A user might schedule his/her initial fungicide application 

based on the accumulation of 18 Blitecast severity values, or a particular growth stage, 

and then use Simcast to schedule subsequent applications. Critical thresholds for 

Simcast were originally validated in field experiments using chlorothalonil as a 

fungicide. In order to accommodate for the variety of fungicides used by producers, 

thresholds were established for several of the most commonly used fungicide active 

ingredients e.g. copper hydroxide, cyazofamid, cymoxanil, mancozeb, 

mandipropamide, mefenoxam, propamocarb hydrochloride, and others. Thresholds for 

fungicide active ingredients (and combinations of active ingredients) were established 

based on field experiments, published fungicide efficacy data, and expert opinion. 

2.4. Late blight disease simulator 

A mechanistic model of the late blight disease on potato (Andrade-Piedra et al., 2005) 

is available on the system and can be used in real-time with the observed and forecast 

weather to predict disease dynamics and fungicide weathering and loss. The model 

was validated for late blight on potato and fungicide weathering on a potato canopy. 

Validation of the model for its ability to predict late blight of tomato and fungicide 

residue on tomato canopy is yet to be accomplished. The simulator may be used to 

evaluate disease management scenarios, or to quantify the effects of host resistance 

and/or fungicide. The fungicide sub-model is based on chlorothalonil, a widely used 

protectant fungicide (Bruhn and Fry, 1982a; Bruhn and Fry, 1982b). 

2.5. System output 

The DSS generates several reports, including reports on prevailing weather, disease 

forecast information, and late blight simulator outputs. The weather data report 
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includes graphs illustrating 7 days of observed and 7 days of forecast weather (hourly 

relative humidity, hourly temperature, six-hourly precipitation). The disease forecast 

reports include information from: 1) Blitecast – observed and forecast daily severity 

values; and 2) Simcast – observed and forecast daily blight units and fungicide units. 

Blitecast severity values indicate the favorability of the prevailing weather for late 

blight progress and represent specific relationships between duration of relative 

humidity periods ≥ 90 % and average temperature during those periods, and their 

impact on late blight (Krause et al., 1975). Similarly, Simcast blight units represent the 

favourability of the prevailing weather for late blight progress and are also calculated 

based on the relationships between duration of relative humidity periods ≥ 90 % and 

average temperature during those periods. However, in Simcast, the calculation of 

blight units is influenced by the cultivar resistance to late blight with different 

thresholds for cultivars of different resistances. Simcast fungicide units represent the 

impact of prevailing weather (including precipitation) on fungicide weathering. 

Critical thresholds for both blight units and fungicide units are determined according 

to cultivar resistance (Fry et al., 1983). The reports generated by the late blight 

simulator are based on observed and forecast weather data and include information on: 

1) simulated disease progress data; and 2) simulated fungicide residue on crop. 

2.5.1. Weather data 

A weather report provides users with the ability to inspect recent observed weather 

and forecast weather. The report contains graphs of hourly temperature and relative 

humidity and six-hourly precipitation, for 7 days of recent observed and 7 days of 

forecast weather data (Figure 1.2).  
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Figure 1.2. Examples of weather reports. A. Hourly temperature data for a defined 
location. B. Hourly relative humidity data for a defined location. Seven days of 
observed (green series) and 7 days of forecast (red series) weather data are represented 
on each report. 

Decision-makers might find this information useful to verify that weather data are 

accurate for their location and to understand the association between prevailing 

weather and favorability of the weather for late blight. In addition to the detailed 

weather data, the system conducts an automatic check for missing weather data and a 

summary table indicating the number of hours of missing data for any of the relevant 

weather variables is presented. Since the reliability of the outputs from the disease 
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forecasts and disease model are dependent on accurate and complete input weather 

data, the system has a missing-weather backup feature. If more than 6 hours of 

missing temperature or relative humidity data occur, the system substitutes missing 

data with archived forecast information for that specific location. The archived 

weather data consists of the first 24 hr of forecast weather, which are saved daily. For 

missing precipitation data, the system substitutes missing data with high resolution 

precipitation data generated by the NRCC. Alternatively, the user has the option to 

select one of the other four nearest stations as a source for the observed data. 

2.5.2. Disease forecast reports 

The system generates a detailed report for each disease forecasting system, Blitecast 

and Simcast. The detailed Blitecast report provides daily information about wet period 

duration and average temperature during each wet period (Figure 1.3). This 

information is used to calculate a daily severity value, the cumulative severity value 

since last fungicide application, as well as the seasonal cumulative severity value 

(based on the Blitecast system). The detailed Simcast report provides daily 

information on wet period duration and average temperature during each wet period, 

as well as daily precipitation/irrigation (Figure 1.4). This information is used to 

calculate daily blight units and daily fungicide units. Blight units indicate the 

favorability of the prevailing/forecast weather for late blight and fungicide units 

represent the influence of prevailing/forecast weather, or irrigation, on fungicide 

weathering. For blight units and fungicide units the daily value is presented along with 

the cumulative value since last fungicide application and seasonal cumulative value. A 

colour coding system distinguishes information based on forecast weather data from 

observed weather data (Figure 1.4). Critical thresholds for fungicide application are 

automatically indicated on the reports. 
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Figure 1.3. Detailed Blitecast report. Daily severity values are calculated based on 
wet period duration and average temperature during each wet period. Information 
based on observed weather data has a white background and information based on 
forecast weather data has an orange background. When the cumulative daily severity 
value has exceeded a critical threshold, this is indicated by red font colour. 
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Figure 1.4. Detailed Simcast report for a defined location. The Simcast report 
provides daily information on wet period duration and average temperature during 
each wet period, as well as daily precipitation/irrigation. This information is used to 
calculate daily blight units and daily fungicide units. The report is divided into three 
sections based on background colour: white background is observed weather data used 
for calculations; orange background is forecast temperature, relative humidity, and 
precipitation; and yellow background is forecast temperature and relative humidity. 
Longer term precipitation forecast (beyond three days) is excluded due to high 
variability. 

In addition to the detailed reports, a simple summary graphic is presented 

which clearly indicates whether or not a critical threshold is expected to occur within 

the upcoming 7 days, based on forecast weather (Figure 1.5). 
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Figure 1.5. Seven-day forecast summary. A summary graphic is generated which 
presents key forecast information for the upcoming 7 days. Daily information is 
represented as columns with rows showing the accumulated blight/fungicide units. 
Background colour of each cell indicates whether a critical threshold has been 
exceeded. A key shows the applicable critical thresholds accompanied by their 
respective background colour. 

2.5.3. Simulator reports 

Three outputs are generated by the simulator: 1) a graph indicating simulated disease 

progress based on observed and forecast weather, cultivar resistance, and fungicide 

use (Figure 1.6); 2) a graph indicating simulated average fungicide residue on the 

potato canopy, based on observed and forecast weather and fungicide application 

information (Figure 1.7); and 3) a table containing a detailed numerical listing of 

several model outputs calculated for each day, such as disease severity and fungicide 

residue (Figure 1.8). 
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Figure 1.6. Graph showing simulated disease progress on potato. A validated 
mechanistic model can be used to simulate daily disease severity based on observed 
(green series) and forecast (red series) weather data, presence and severity of observed 
disease, cultivar resistance, and fungicide use. 
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Figure 1.7. Simulated fungicide residue on potato. The predicted average fungicide 
residue on the plant canopy can be simulated using a validated mechanistic model for 
the protectant fungicide chlorothalonil on potato. Fungicide residue predictions are 
based on observed (green series) and forecast (red series) weather data, as well as 
information about fungicide applications made. 
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Figure 1.8. Example listing of model (LB 2004) outputs. A numerical listing of 
several model outputs is provided in a report. Information about pathogen lifecycle 
stages, disease severity, and fungicide residue is provided for each day of the season. 
The report is divided into three sections based on background colour. The white 
background is observed weather data used for calculations. The beige background is 
forecast temperature, relative humidity, and precipitation The yellow background is 
forecast temperature and relative humidity. 

2.6. Alert system 

Optional automated alerts about upcoming critical thresholds for intervention are 

available to users via sms (short messaging system) text message or e-mail. An initial 

alert is sent out when a critical threshold is exceeded within the first 72 hr of forecast. 

Messages for all locations with upcoming critical thresholds are compiled into text 

and/or e-mail form and sent once a day to avoid multiple messages. SMS technology 

has been successfully used in other disease alert systems such as the Strawberry 

Advisory System (Pavan et al., 2011). The alert systems have been tested since 2012 



 

18 

to evaluate their value to the user and received positive feedback from extension 

personnel and producers. 

2.7. Teaching tool 

A training/teaching version of the system was developed that provides access to 

archived weather data (observed and forecast) from multiple locations and has a 

function that allows the user to navigate through the season by changing the ‘current’ 

date to any date in the season, enabling the user to explore the system outputs under 

different scenarios, or to use it to teach epidemiological principles. This provides 

producers, consultants, researchers and educators with a tool to evaluate disease 

management scenarios, explore comparative epidemiology, develop forecasting 

models, or function as a teaching aid. 

2.8. Information technology 

The system was developed using a multilayered programming approach. The layers 

consist of a web-based interface for the user, with programs and databases in the 

background. The overall system runs on a server hosted by the NRCC at Cornell 

University that has Quixote and CORBA installed. Password protected account 

information is stored in databases consisting of SQL Light tables. Disease forecasting 

tools, written in Python, and a mechanistic model of the disease, written in SAS, 

utilize input information stored in the database to generate outputs. Outputs are 

presented via a web interface, in HTML format, and are also generated in portable 

document format (pdf) using a program written in SAS. The web interface was 

generated using JQuery and Javascript. A tab-based interface was developed to 

separate sections of the DSS, such as inputs, simulator, alert setup, and irrigation 

input. This tab-based approach is intended to simplify the addition of other forecasts 

and models and to enable personalization of access to specific tabs for certain groups 
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(basic user/consultant/extension educator/researcher). Access to certain tabs can be 

user-specific, as set by the administrator. An example of a reason to provide user-

specific access might be based on geographic location (state), allowing the system to 

provide the most appropriate disease forecasting tools and models for that region. 

Python programs are used to obtain observed and forecast weather data. These 

programs are automatically processed by Unix scripts, called “cronjobs” and executed 

several times a day. Complete weather records of observed and forecast weather are 

generated for each location (field) defined on DSS. These records are utilized by the 

DSS disease forecasting tools and the disease simulation model. 

Disease forecasts are executed on a daily basis, or upon user request, to 

provide users with rapid access to results and to identify any upcoming critical 

thresholds that might trigger recommendations for management intervention. If a 

critical threshold is forecast (up to 72 hr into the future) then an automated alert will 

be sent to the user (if alerts have been requested). 

2.9. Evaluation of the system recommendations 

A preliminary version of the system has been available to extension educators and 

producers in NY since the 2010 cropping season. The system was evaluated by 

researchers in field experiments conducted each year from 2010 -2014 (Small et al., 

2013) and in computer simulation experiments, as well as by extension personnel, 

crop consultants and commercial farms (potato and tomato). Field experiments have 

been conducted for both potato and tomato. In multiple field experiments, the average 

number of fungicide applications per season recommended for a susceptible cultivar 

was equivalent to a calendar-based (7-day) schedule (range: -36% to +12%, relative to 

a 7-day schedule). For moderately susceptible cultivars, an average reduction of 25% 

(range: -28% to -10%) fungicide application was achieved, relative to a 7-day 

schedule. For moderately resistant cultivars, an average reduction of 40% (range: -
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50% to -37%) fungicide application was achieved, relative to a 7-day schedule (Small 

et al., 2013). These experiments demonstrated that fungicide usage can be reduced by 

up to 50% through the use of the DSS when conditions are not favourable for late 

blight, while maintaining successful disease suppression. Under favourable conditions 

for the disease, the DSS recommended up to 12% increase in fungicide applications, 

relative to a 7-day schedule (Small et al., 2013). 

In order to test the system under diverse environmental conditions, field 

experiments were simulated using historic observed weather (2000 – 2013) from 59 

potato/tomato growing locations. The computer model of the late blight disease was 

used to run 6912 simulations for the equivalent of 768 field experiments. Management 

recommendations given by the DSS were compared with calendar-based approaches 

to fungicide scheduling in these simulated field experiments. The average number of 

fungicide applications per season recommended by the DSS for susceptible cultivars 

was 24 % higher than a calendar-based (seven-day) schedule (range: -91 % to +91 %). 

For moderately susceptible cultivars, an average reduction of 15 % (range: -91 % to 

+36 %) fungicide application was achieved, relative to a 7-day schedule. For 

moderately resistant cultivars, an average reduction of 35 % (range: -91 % to 0 %) 

fungicide application was achieved, relative to a 7-day schedule. Simulation 

experiments demonstrated the potential of the system to reduce fungicide usage by up 

to 91% (when conditions are not favourable for late blight), while maintaining 

successful disease suppression. Under favourable conditions for the disease, the DSS 

has the potential to recommend up to 91% increase in fungicide applications on 

susceptible cultivars, relative to a 7-day schedule. 

3. DISCUSSION 

The late blight DSS provides an interactive system that helps users maximize the 

efficiency of their crop protection strategy by enabling well-informed decisions. In 
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situations with unfavourable weather, the DSS recommended fewer fungicide 

applications with no loss of disease suppression and, in situations of very favourable 

weather, the DSS recommended more fungicide applications but with improved 

disease suppression. The benefit of using this system will be consistent disease control 

while enabling reduction of fungicide use under conditions that are not favourable for 

late blight. In addition, the system provides scientifically-based recommendations for 

reduced fungicide use on partially resistant cultivars. The outputs of the system are 

meant to aid decisions by the grower or the consultant. The system is not intended to 

replace grower or consultant decisions. 

A large national initiative to combat late blight, USAblight 

(http://usablight.org/), was established in the USA to reduce losses to potato and 

tomato late blight by monitoring pathogen populations, developing additional resistant 

cultivars, and enhancing education and extension. The BlightPro DSS is a key 

component of this late blight community initiative. Development of an internet-based 

late blight DSS within the late blight research community in the USA is intended to 

facilitate implementation of this late blight DSS across the USA and enable future 

development of the late blight DSS applications by allowing exchange of components 

and information between partner research groups and institutions. Overall, the current 

system can be viewed as consisting of core components of an internet-based late blight 

DSS. As improved, or regionally-specific, forecasting tools become available these 

can be integrated into this system. A similar collaborative approach, Web-blight, was 

established in Nordic countries, Baltic countries, and Poland in 1998 (Cooke et al., 

2011). 

In response to requests for user accounts, the system has been expanded to 

enable its use in 19 US states. In New York alone, thirteen farms and two consultants 

working with one vegetable extension specialist, Carol MacNeil, as well as several 
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farmers working independently, successfully used the BlightPro DSS in 2012 and 

2013 to more effectively and efficiently control late blight, and time fungicide sprays, 

on over 4,000 acres of potatoes and tomatoes. 

A key aspect of the development of the DSS is that it was constructed in 

consultation with end users, primarily extension personnel and producers. This 

ensured that the information provided by the system was relevant to users and that the 

language and formats used for the interface and outputs were intuitive and appropriate. 

Development of the system has been ongoing with feedback from users and new 

developments driving modifications to the system. 

The accuracy of the outputs of this system is limited by the availability of 

accurate and representative weather data. Ideally, weather stations used for a particular 

location will be located in the crop canopy or close to the production unit of interest, 

with minimal infield variability. The microclimate within a canopy is likely to play an 

important part in the variability in performance as would other factors such as damp 

hollows in fields, tree shading, and differential rates of foliage growth. These all 

influence the in-field variability of the microclimate. In addition, the forecast 

information should match the meteorological conditions actually observed in order for 

accurate advanced decision making. 

4. FUTURE RESEARCH AND DEVELOPMENT 

Future research plans include the addition of existing forecasting tools for other 

important diseases of potatoes and tomatoes, such as early blight. This will provide a 

tool that will assist decision-makers with the task of understanding the complex 

interactions between prevailing weather, cultivar resistance to the diseases, fungicide 

effects and will help integrate this information into management recommendations 

that are appropriate for both early blight and late blight. 
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The current system provides recommendations for variable interval fungicide 

application. In certain production systems there is limited flexibility around 

application intervals, such as prescheduled aerial applications. To accommodate for 

systems with limited flexibility around application intervals, research is underway to 

provide recommendations for variable fungicide dose and/or type of fungicide. 

The current version of the simulator is limited to a sub-model of the protectant 

fungicide chlorothalonil. Plans are underway to include a validated sub-model for the 

systemic fungicide mefenoxam (metalaxyl-m). 

Information regarding the presence/absence and quantity of late blight 

inoculum is not an integral part of the current system. A planned expansion of the 

current system involves a new tool to identify the risk of infection for a known source 

of late blight. The USAblight pathogen monitoring database will be connected with 

the DSS to provide information regarding pathogen occurrence to drive a new tool that 

will provide infection risk alerts to users. 
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CHAPTER 2. 

EVALUATION OF THE BLIGHTPRO DECISION SUPPORT SYSTEM FOR 

MANAGEMENT OF POTATO LATE BLIGHT USING COMPUTER 

SIMULATION AND FIELD VALIDATION* 

ABSTRACT 

The objective of this study was to evaluate the utility of the BlightPro decision support 

system (DSS) for late blight management using computer simulation and field tests. 

Three fungicide schedules were evaluated i) calendar-based (weekly) applications, ii) 

applications according to the DSS, or iii) no fungicide. Simulation experiments 

utilized 14 years of weather data from 59 locations in potato producing states. In 

situations with unfavourable weather for late blight, the DSS recommended fewer 

fungicide applications with no loss of disease suppression and in situations of very 

favourable weather for late blight, the DSS recommended more fungicide applications 

but with improved disease suppression. Field evaluation was conducted in 2010, 2011, 

2012, and 2013. All experiments involved at least two cultivars with different levels of 

resistance. DSS-guided and weekly scheduled fungicide treatments were successful at 

protecting against late blight in all field experiments. As expected, DSS-guided 

schedules were influenced by prevailing weather (observed and forecast) and host 

resistance and resulted in schedules that maintained or improved disease suppression 

and average fungicide use efficiency, relative to calendar-based applications. The DSS 

provides an interactive system that helps users maximize the efficiency of their crop 

protection strategy by enabling well-informed decisions. 

																																																																		
* Ian M. Small, Laura Joseph and William E. Fry; Department of Plant Pathology and Plant-Microbe 
Biology, Cornell University, Ithaca, NY 14850. Corresponding author: I. M. Small; E-mail address: 
ims56@cornell.edu. Reproduced from Small, I. M., Joseph, L., and Fry, W. E. 2015. Evaluation of the 
BlightPro decision support system for management of potato late blight using computer simulation and 
field validation. Phytopathology 105:1545-1554. http://dx.doi.org/10.1094/PHYTO-05-15-0117-R 
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1. INTRODUCTION 

The late blight disease of potatoes and tomatoes, caused by Phytophthora infestans 

(Mont.) de Bary, is a major concern for producers of these crops. Unexpected 

epidemics can result in significant crop losses and lead to economic failure to growers 

for whom potatoes or tomatoes are the major income source (Fry et al., 2013; Fry and 

Goodwin, 1997). Additionally, the costs of management can be very large. A 

conservative global estimate of these costs/losses is at least $6 billion annually 

(Haverkort et al., 2008). Although the disease is more problematic in rain fed 

agriculture such as in the northeastern USA, sporadically it can also be serious in drier 

production areas such as the Columbia Basin of central Washington and northcentral 

Oregon regions of the Pacific Northwest (largest production area in the USA) (Fry and 

Goodwin, 1997). For example the cost of managing a late blight epidemic in the 

Pacific Northwest in 1995 was estimated at $30 million (Johnson et al., 1997). On 

tomatoes, the disease can be and has been equally devastating. The most recent 

example occurred in 2009 when infected tomato transplants were distributed via 

national large retail stores who obtained transplants from a national supplier (Fry et 

al., 2013). The pandemic that followed in the mid-Atlantic and Northeast regions 

eliminated tomato plants in many organic farms and in many, many home gardens 

(Fry et al., 2013). 

Management of late blight can be quite complex involving several factors. 

These factors include the influence of prevailing weather on the pathogen lifecycle, 

late blight resistance of the cultivar being grown, fungicide residue on the crop, and 

pathogen characteristics, such as resistance to fungicides. Management tactics involve 

the use of fungicides and cultural procedures. Cultural procedures are practices 

designed to reduce the introduction, survival, or infection rate of P. infestans. The 

complexity of the interactions among these factors makes rational disease 
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management decision-making difficult. This complexity creates an opportunity for a 

decision support system (DSS) to be used to provide science-based information to 

assist with this decision making.  

A DSS can be defined as an interactive computer-based system that helps 

decision makers utilize data and models to solve unstructured problems under complex 

and uncertain conditions (Gorry and Morton, 1971). Decision support systems for late 

blight integrate and organize available information on the pathogen. They also include 

the influence of observed and forecast weather on the disease, the effects of cultivar 

resistance on disease and the effects of fungicide characteristics and efficacy on the 

disease. All of these factors are required to make decisions concerning the 

management of late blight (Cooke et al., 2011). 

Successful late blight management requires operational decision-making 

throughout the crop growing season. It is possible to make decisions in the absence of 

information, although they may be poor decisions. In order to make the best possible 

decision it is necessary to be able to both understand and have access to all relevant 

information (Knight, 1997). Due to the significant diversity among growers, 

communicating relevant information to them and educating them is a challenge. 

Growers may be conventional or organic; they may have large or small farms; they 

may be independent or part of community supported agriculture; or they may be 

individual home gardeners. While most growers have access to a plethora of education 

and extension resources (internet, email, smart phones, etc.), the information is often 

scattered or incomplete. A DSS can focus relevant information and tools, curated by 

experts, to provide a diverse audience with key information to support rational 

decision-making. For example, the association of pathogen phenotypes with particular 

genotypes and the availability of rapid genotypic analyses enables in-season disease 

management to be adjusted based on the results of rapid genotypic analyses. This 
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information could be immediately conveyed to growers via a DSS. If such a system 

had been in place during the 2009 late blight pandemic, important information 

regarding the sensitivity of the lineages to a highly effective fungicide, mefenoxam, 

could have been quickly and directly disseminated to growers (Danies et al., 2013).  

Precision agriculture, or ‘smart farming’, aims to optimize the yield per unit of 

farm land by using the most modern means in a continuously sustainable way, to 

achieve best in terms of quality, quantity and financial return 

(http://www.beechamresearch.com/download.aspx?id=40). Technologies such as 

decision support systems are a key component of the smart farming approach. Disease 

forecasting tools developed in the 20th century were the precursors to plant disease 

management DSSs (Shtienberg, 2013). Forecasters such as BLITECAST (Krause et 

al., 1975) and Simcast (Fry et al., 1983), FAST (Madden et al., 1978), and the apple 

scab predictive system (Jones et al., 1980), are examples of tools that were designed to 

assist farmers with decisions relating to management of potato late blight, early blight, 

and apple scab, respectively (Shtienberg, 2013).  

Late blight is a disease that has received much attention in terms of disease 

forecasting (Hardwick, 2006). In the USA, several forecasting systems have been 

developed (Hyre, 1954; Krause et al., 1975; Wallin, 1962). A common characteristic 

of the potato late blight forecasts is that they identify a time in the season before which 

fungicide sprays are needed (Hyre, 1954; Wallin, 1962). For example with Blitecast, 

this interval is identified via 18 Severity Values (Krause et al., 1975). Following the 

development of Blitecast, a more comprehensive late blight forecast – Simcast (Fry et 

al., 1983), which integrates the effects of host resistance and fungicide as well as 

weather, was developed. Since the 1990s, DSSs have been developed in many 

countries to assist with the management of plant diseases such as potato late blight, 

apple scab, cereal leaf diseases, and grape downy mildew (Shtienberg, 2013). In 
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Europe, several DSSs for late blight have been developed using various disease 

forecasting systems and models. A list of these DSSs can be found on the Euroblight 

website (a potato late blight network for Europe) 

(http://www.euroblight.net/EuroBlight.asp). In North America, the BlightPro DSS was 

developed to integrate the effects of weather, host resistance and fungicide on disease 

progress in order to improve in-season late blight management. The BlightPro DSS 

has been available through several sources including via www.USAblight.org. The 

BlightPro DSS (http://blight.eas.cornell.edu/blight/) is an internet-based platform and 

is made up of several components. Growers identify the location of their production 

unit (latitude and longitude of field) and the system automatically obtains observed 

weather data from the nearest available weather station, and location-specific (2.5 

square km grid) forecast weather data from the National Weather Service – National 

Digital Forecast Database. These weather data along with crop and management 

information are used to drive disease forecasting tools, Blitecast and Simcast (Fry et 

al., 1983; Krause et al., 1975), as well as a mechanistic late blight disease simulator 

LATEBLIGHT 2004 (LB2004) (Andrade-Piedra et al., 2005b). To inform their 

decision-making process, decision-makers can: utilize the cultivar late blight 

resistance database on the system, use the forecast information from Blitecast and/or 

Simcast, run in-season simulations with LATEBLIGHT 2004, and obtain up-to-date 

information about the sensitivity of pathogen lineages to mefenoxam. In addition, the 

system includes an integrated alert system, which enables the user to receive 

notifications about upcoming critical thresholds for intervention (fungicide 

application) via e-mail and/or text message. For a comprehensive description of the 

development and implementation of BlightPro see Small, Joseph, and Fry (2015). The 

objective of this study was to evaluate the utility of the BlightPro DSS using computer 

simulation experiments and field experiments. Utility was defined as the ability of the 
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decision support system to enable the suppression of late blight while increasing the 

efficiency of fungicide use. 

2. MATERIALS AND METHODS 

Evaluation by computer simulation. Simulation analyses were carried out following 

the approach used by Shteinberg et al. (Shtienberg et al., 1989; Shtienberg and Fry, 

1990). The LATEBLIGHT 2004 disease model integrated with fungicide sub-models 

(Andrade-Piedra et al., 2005b) was used to evaluate fungicide scheduling methods. 

The LATEBLIGHT 2004 model describes pathogen development as a function of 

weather, fungicide, and host resistance; fungicide dynamics are described as a function 

of weather and time since the last application. This disease model was developed and 

validated in small field plots (Andrade-Piedra et al., 2005a).  

Simulation experiments used 14 yr of meteorological data (2000-2013), 

recorded from locations in Maine, Massachusetts, New York, North Carolina, North 

Dakota, and Wisconsin. Weather data were obtained from the Northeast Regional 

Climate Center. Only locations and years for which there was less than 2% missing 

weather data between the date of emergence and vine kill were used. This criterion 

resulted in 768 environments with suitable weather data. The following common 

parameters were used for each season: the length of the season (from the date of 

planting to vine kill) was 110 days; median emergence occurred on the 18th day after 

planting; and the initial level of late blight was 0.001% disease severity (one lesion per 

10 plants). The protectant fungicide chlorothalonil was applied at a rate of 1.34 kg 

a.i./ha. Simulations were conducted using susceptible, moderately susceptible, and 

moderately resistant cultivars for each disease scenario.  

Two scenarios for initial appearance of disease were investigated for each 

location in each season. First, the initial appearance of late blight was set to occur six 

days after the accumulation of 18 Blitecast severity values, because this was found to 
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be the observed mean time of late blight appearance in field experiments where 

inoculated potato tubers were planted (Doster et al., 1989; Shtienberg and Fry, 1990). 

Second, the initial appearance of late blight was a random date between 18 Blitecast 

severity values and the end of the season – this scenario was included to represent the 

variability in initial late blight occurrence due to differences in inoculum source. We 

have limited our study to environments with temperate climates in which the cold 

winter eliminates susceptible host plants between growing seasons, requiring the 

disease to be initiated each growing season. The use of 18 Blitecast severity values to 

predict initiation of disease is appropriate in such climates. In environments where 

there is susceptible host tissue available year-round it is possible that the disease might 

be initiated at any time after emergence. This simulation study does not address the 

scenario where there is susceptible host tissue available year-round. 

The efficacy of three spray-scheduling methods in suppressing late blight were 

evaluated: 

i) Calendar-based strategy. Weekly sprays were initiated 35 days after 

planting and continued until the end of the season. 

ii) DSS strategy. The DSS was used to obtain location-specific spray 

recommendations based on forecast programs, Blitecast and Simcast, which are 

integrated within the DSS. Sprays were initiated when 18 Blitecast severity values had 

accumulated since median emergence. Subsequent applications were timed according 

to the effect of weather on the pathogen (accumulation of blight units) and on 

fungicide weathering (accumulation of fungicide units), as obtained from Simcast 

reports within the DSS (Fry et al., 1983). Although DSS users could potentially also 

utilize information from the LATEBLIGHT 2004 model when deciding whether or not 

to spray, the model was not used to schedule sprays for the simulation analyses. This 

was avoided because the same model was utilized to conduct the simulation analyses. 
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iii) Unsprayed. No fungicides were applied throughout the season. 

Schedules for fungicide applications were determined separately for each 

spray-scheduling method and were then simulated with the pathogen model. In total, 

2,478 different simulations (59 locations ൈ 14 yr ൈ three susceptibility groups) were 

conducted for each of the following spray-scheduling methods: i) conventional, ii) 

DSS strategy, and iii) unsprayed. 

After elimination of environments with missing weather, spray-scheduling by 

the DSS was compared with calendar-based approaches to fungicide scheduling in 

6912 simulations (equivalent to 768 field experiments). Comparisons were made for i) 

the number of fungicide applications scheduled, ii) area under disease progress curve, 

iii) disease suppression relative to the unsprayed control, and iv) efficiency of 

fungicide use. Fungicide use efficiency (E) was defined as the percent disease control 

per application and was calculated following the approach used by Shteinberg and Fry 

(Shtienberg and Fry, 1990). Equation 1 is corrected from that described in 1990 as per 

personal correspondence with the author: 

ሻܧሺ	ݕ݂݂ܿ݊݁݅ܿ݅݁	݁ݏݑ	݁݀݅ܿ݅݃݊ݑܨ ൌ 	 ሼሾሺݑܣ െ 	100	ܰሽ	ሿ/ݑܣ/ሻ݉ܣ (1)	

in which Am = simulated area under disease progress curve (AUDPC) for a spray 

scheduling method, Au = simulated AUDPC for untreated crop, and N = number of 

applications scheduled by a method. 

Field validation. The BlightPro decision support system was evaluated in field 

trials over four years, on susceptible ‘Yukon gold’ (2011, 2012, 2013), moderately 

susceptible ‘Katahdin’ (2010), and moderately resistant ‘Kennebec’ (2010-2013) 

potato cultivars at the Homer C. Thompson Vegetable Research Farm, Freeville, NY. 

All experiments involved at least two cultivars with different levels of resistance. 

Potatoes were planted on 6 July 2010, 30 June 2011, 9 July 2012, and 8 July 2013. 

Field experiments were planted at a later date than would be typical for the area, to 
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ensure healthy foliage late in the season. This was done to allow inoculation at a later 

date in the season to avoid generating a source of inoculum for growers in the area. 

The experimental design was a randomized complete block design with four blocks. 

Plots were six rows (0.86 m spacing between rows) and 3.68 m long with 0.23 m 

(2010, 2011) or 0.30 m (2012, 2013) seed piece spacing. The resultant plot size was 

3.68 m by 4.3 m. The soil type was a Howard gravelly loam. Fertilization was 1290 kg 

ha-1 of 13-13-13 (N-P-K) banded in-the-row at planting. Fungicide treatment programs 

were compared to an untreated control for each potato cultivar (Table 2.1). Two 

fungicides were utilized in the experiments, chlorothalonil 720 g L-1 (Bravo WS) at a 

rate of 1.75 l ha-1 (2010, `11, `12, `13), and mefenoxam 39.5g L-1 in combination with 

chlorothalonil 400 g L-1 (Ridomil Gold Bravo) at a rate of 2.92 l ha-1 (2012). 

Fungicide treatments were applied based on either a calendar or DSS-based schedule. 

Fungicide treatments were applied with an Air Tec side boom sprayer. The Air Tec 

sprayer is an air assist sprayer which improves coverage by decreasing droplet size, 

while also increasing penetration into dense plant canopies. The sprayer output was 

187 l ha-1 at 40 psi, using a diaphragm pump. Sprayer speed was 4.83 km h-1. The 

boom was 6.70 m long with nozzles spaced 0.41 m apart. Hollow cone nozzles (TX-

VS12), with low pressure check valves to eliminate drip, were used. 
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Table 2.1. Field evaluation of fungicide scheduling strategies on potato cultivars with different levels of resistance to late 
blight. 

Year and Cultivar 
Late blight  
resistance w  Schedule x  Fungicide  No. sprays  AUDPC y 

Fungicide use  
efficiency (E) z 

2010     
Katahdin  MS  DSS  C  6  0.02  a  16.7 
   Calendar‐based  C  8  0.02  a  12.5 
   Unsprayed  none  0  194.5  c   
Kennebec  MR  DSS  C  5  0.02  a  20.0 
   Calendar‐based  C  8  0.26  a  12.3 
   Unsprayed  none  0  36.1  b   

2011   
Yukon Gold  S  DSS  C  9  0.68  a  11.1 
   Calendar‐based  C  8  0.10  a  12.5 
   Unsprayed  none  0  821.4  c   
Kennebec  MR  DSS  C  5  0.63  a  20.0 
   Calendar‐based  C  8  0.14  a  12.5 
   Unsprayed  none  0  504.9  b   

w Late blight resistance of the cultivar: susceptible (S); moderately susceptible (MS); moderately resistant (MR) 
x Schedule: method used to schedule fungicide applications. DSS – Simcast schedule for C (chlorothalonil) or M + C (mefenoxam + chlorothalonil); Calendar 
- 7 day interval for C, or 14 day interval for M + C. Based on label recommendations, chlorothalonil was applied 7 days after each M + C application for the 
calendar schedule, or when Simcast fungicide unit threshold was reached for DSS schedule. 
y Area under disease progress curve (AUDPC) - All values are the mean of four replicates. Means followed by the same letter within each experiment (year) 
are not significantly different, Tukey Kramer honestly significant difference (P < 0.05). 
z Fungicide use efficiency (E) refers to the average percent disease control achieved per fungicide application. 
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Table 2.1. (Continued) 

Year and Cultivar 
Late blight  
resistance w  Schedule x  Fungicide  No. sprays  AUDPC y 

Fungicide use  
efficiency (E) z 

2012   
Yukon Gold  S  DSS  C  6  0.00  a  16.7 
   Calendar‐based  C  6  0.00  a  16.7 

     DSS 
M + C  2 

0.00  a  20.0 
 

C  3 

     Calendar  M + C  3  0.00  a  16.7 C  3 
   Unsprayed  none  0  174.3  b   
Kennebec  MR  DSS  C  3  0.01  a  33.3 
   Calendar‐based  C  6  0.00  a  16.7 

     DSS 
M + C  2 

0.00  a  25.0 
 

C  2 

     Calendar‐based 
M + C  3 

0.01  a  16.7 
 

C  3 
   Unsprayed  none  0  170.3  b   

2013   
Yukon Gold  S  DSS  C  5  0.00  a  20.0 
   Calendar‐based  C  5  0.00  a  20.0 
   Unsprayed  none  0  573.8  b   
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In all field experiments, weather conditions were conducive for late blight, 

with 18 Blitecast severity values being accumulated on the following dates 4 August 

2010, 7 August 2011, 30 July 2012, and 14 June 2013. Sprays for the DSS schedule 

were initiated using chlorothalonil when the Blitecast severity values had accumulated 

to 18 and plants had reached at least 15-20 cm in height. Due to the late planting date, 

18 severity values were reached before plants were 15-20 cm in height for all 

experimental years, so sprays were delayed until plants were approximately 15-20 cm. 

Sprays for the conventional treatment were initiated using chlorothalonil when plants 

were approximately 15-20 cm in height. In the 2012 field experiment, treatments 

including systemic fungicide (mefenoxam + chlorothalonil) were incorporated. The 

change from contact (chlorothalonil) to systemic fungicide sprays in the 2012 

experiment was initiated for both the DSS treatment and the conventional treatment 

when late blight lesions were first observed in the nearby untreated experimental plots 

(inoculum source). 

The DSS evaluation field experiments relied on natural infections from 

infected plants in experimental plots (artificially inoculated) at 0.5-0.8 km distance in 

each year. Genotypes of P. infestans identified in DSS evaluation experiments were 

determined by microsatellite analysis using an established protocol (Lees et al., 2006). 

Disease ratings were determined by visually assessing each plot for the percentage of 

diseased foliage caused by late blight using a method described by Fry (1977). Disease 

severity was rated every 3 – 10 days with more frequent assessments occurring during 

rapid epidemic development. 

Statistical analyses. Simulation analyses. Spray-scheduling methods were 

compared based on the number of fungicide applications scheduled, AUDPC, disease 

suppression, and efficiency of fungicide use. Fungicide treatment, scheduled either by 

the DSS or calendar-based, significantly suppressed disease relative to the unsprayed 
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treatment (see results section). For this reason the focus of the statistical analysis was 

to investigate differences between DSS and calendar-based fungicide schedules for 

their disease suppression. 

To compare the efficacy of DSS-recommended treatment schedules with 

calendar-based treatment schedules, the disease suppression due to the treatment was 

calculated. Disease suppression (T) was defined as follows: the reduction in AUDPC 

due to the treatment (AUDPCUnsprayed - AUDPCTreatment), converted to a proportion of 

the unsprayed control at that location and for the appropriate year. This proportion (T) 

is the reduction in disease due to the treatment (disease suppression) Eq (2). 

ሺܶሻ	݊݋݅ݏݏ݁ݎ݌݌ݑݏ	݁ݏܽ݁ݏ݅ܦ ൌ 	
஺௎஽௉஼ೆ೙ೞ೛ೝೌ೤೐೏ି	஺௎஽௉஼೅ೝ೐ೌ೟೘೐೙೟

஺௎஽௉஼ೆ೙ೞ೛ೝೌ೤೐೏
		 (Eq.	2)	

A general linear model was used (JMP® Pro, Version 11.2.0. SAS Institute 

Inc., Cary, NC), where the response was logit-transformed disease suppression (T). 

The transformation was conducted to satisfy statistical assumptions for the statistical 

model. Environments (year x at location y) where simulated disease severity 

(AUDPC) for the unsprayed treatment < 100 were excluded, which retained 673 

environments. We set this minimum threshold for disease in the untreated plots to 

ensure that the two fungicide treatment schedules were compared for their disease 

suppression in environments in which there was at least some disease. Fungicide 

treatment schedules, cultivar late blight resistance, location year, and the interaction 

between fungicide treatment schedule and cultivar resistance were considered fixed 

effects. Least squares means (LS means) were compared using a Tukey Honestly 

Significant Difference post-hoc test (P = 0.05). Results were presented as percentage 

disease suppression by back transforming LS means to proportions and then 

multiplying by 100 to obtain a percentage. We used the result for a weekly schedule 

on susceptible cultivars as a baseline for adequate disease suppression. This is because 
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we know that a weekly schedule on more resistant cultivars obviously increases 

disease suppression, but is also likely to use excessive fungicide.  

To investigate the fungicide use efficiency of different treatments, a 

nonparametric test was conducted on the means for each combination of treatment and 

cultivar resistance (e.g. DSS schedule on susceptible cultivar). A nonparametric test 

was conducted because assumptions of normality were not satisfied. The response was 

fungicide use efficiency (E). A nonparametric comparison for each pair of treatment 

means was conducted using the Wilcoxon each pair test (Hsu, 1996). 

Field experiments. Spray-scheduling methods (treatments) were compared 

based on the number of fungicide applications scheduled, mean area under disease 

progress curve (AUDPC), and fungicide use efficiency (E) for each treatment. A 

general linear mixed model was used (JMP® Pro, Version 11.2.0. SAS Institute Inc., 

Cary, NC), where the response was arcsine square root transformed AUDPC. 

Fungicide treatment schedule, cultivar late blight resistance, and the interaction 

between fungicide treatment schedule and cultivar resistance were considered fixed 

effects. The effect of block in each experiment was treated as a random effect. Each 

experiment (year) was analyzed separately. The restricted maximum likelihood 

method (REML) was used for the mixed model. Least squares means were compared 

using a Tukey Honestly Significant Difference post-hoc test (P = 0.05).  

3. RESULTS 

Comparison of spray-scheduling methods via computer simulation. Number of 

fungicide applications scheduled. In some cases, the DSS recommended more 

fungicide applications, and in other cases the DSS recommended fewer applications 

than the calendar-based schedule (Figure 2.1/Table 2.2). For susceptible cultivars the 

DSS recommended 24 % more fungicide applications (median of 14 sprays) than the 

weekly schedule (11 sprays). The range was -91 % to +91 %. For moderately 
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susceptible cultivars the DSS recommended 15 % fewer applications (median of 10 

sprays) relative to a seven-day schedule (11 sprays). The range was -91 % to +36 %. 

For moderately resistant cultivars the DSS recommended a reduction in fungicide 

application of 36 % (median of 7 sprays), relative to a seven-day schedule (11 sprays). 

The range was -91 % to 0 %. In addition to the effect of cultivar resistance on numbers 

of recommended sprays, the favorability of prevailing weather for late blight 

influenced the number of recommended applications (Figure 2.2). Higher numbers of 

applications were recommended when conditions were favorable for disease 

development. In the DSS-treated experiments, the median spray intervals were 6 days 

between sprays for susceptible cultivars, 9 days for moderately susceptible cultivars, 

and 12 days for moderately resistant cultivars (Figure 2.1).  
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Figure 2.1. Frequency distributions. A. the number of fungicide applications 
scheduled using the DSS per growing season for 59 locations over 14 years (2000 – 
2013). Distributions are shown separately for each cultivar resistance category. The x-
axis represents the number of fungicide applications made using BlightPro from crop 
emergence to harvest (108 days) in a particular year at a specific location. The 
reference line (R) represents the number of sprays scheduled according to a calendar-
based schedule (11 sprays). B. fungicide application intervals for DSS schedules. 
Distributions are shown separately for each cultivar resistance category. Each 
distribution represents intervals between applications for fungicide schedules 
generated for 59 locations over 14 years (2000 – 2013). Fungicide schedules were 
limited to the period from crop emergence to harvest (108 days) in a particular year at 
a specific location. Median fungicide application interval (days) for i) susceptible 
cultivars = 6 days, ii) moderately susceptible cultivars = 9 days, and moderately 
resistant cultivars = 12 days. N represents the number of fungicide application 
intervals analyzed. The outlier box plots are graphical summaries of the distribution of 
data. The vertical line within the box represents the median sample value. The ends of 
the box represent the 25th and 75th quantiles. The whiskers that extend from the ends 
of the box are computed as 3rd quartile + 1.5*(interquartile range), and 1st quartile - 
1.5*(interquartile range). Points beyond the whiskers are possible outliers. The 
horizontal bracket (    ) defines the shortest half of the data (the densest region). 
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Table 2.2. Simulation results under scenario where late blight was simulated to occur six days after 18 Blitecast severity 
values had accumulated.  

Late blight 
resistance 

Scheduling 
method 

   Average AUDPC  and no. of fungicide applications per season (years 2000 ‐ 2013) x 
  2000  2001  2002  2003  2004  2005  2006  2007  2008  2009  2010  2011  2012  2013  All 

S w  Conventional y  Mean AUDPC  2177  2169  1628  2939  2222  1944  1904  1507  1709  2153  2349  2353  1008  2767  2063 
    Median AUDPC  2290  2075  1412  3108  1792  2028  1127  946  166  1958  1711  2284  102  2812  1729 
    IQ range  3343  2221  2511  4637  2243  2838  2367  2600  3689  3669  4174  2517  1575  2342  3326 
    Std. deviation  1786  1590  1526  2204  1810  1521  2242  1757  2105  1987  2140  1540  1464  1608  1872 
    Sprays  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11 
                                   
S  DSS z  Mean AUDPC  89  418  481  535  129  456  267  278  299  220  380  417  187  317  320 
    Median AUDPC  10  212  124  80  8  163  86  38  5  29  40  68  7  121  49 
    IQ range  49  529  677  815  87  471  487  216  103  300  708  622  71  539  379 
    Std. deviation  209  543  715  814  277  688  350  522  768  366  579  649  423  473  568 
    Sprays  15  14  14  15  16  13  13  12  14  15  14  14  11  15  14 
                                   
S  Unsprayed  Mean AUDPC  5502  5084  4693  5236  5199  4544  4032  4445  3443  5264  4338  4608  3551  5241  4662 
    Median AUDPC  5750  5782  5216  5912  5745  4973  4516  4575  4176  5441  5275  4861  4038  5250  5253 
    IQ range  1112  1931  1605  1167  1339  1978  3493  1645  5641  1050  3030  1511  3844  1040  1968 
    Std. deviation  1426  1360  1805  1940  1557  1757  2248  1498  2649  1091  2190  1467  2105  1005  1867 
    Sprays  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 
                                   
MS   Conventional  Mean AUDPC  1348  1296  888  2532  1387  1110  1353  913  1537  1388  1555  1430  623  1658  1360 
    Median AUDPC  1179  940  462  2537  687  901  402  180  545  962  539  1060  22  1655  760 
    IQ range  2449  1592  1364  3987  1476  1646  2571  1725  3098  2549  2783  1856  995  2114  2242 
    Std. deviation  1282  1324  1079  2115  1632  1026  1870  1259  1838  1560  1684  1301  1027  1271  1532 
    Sprays  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11 
w Late blight resistance of cultivar: susceptible (S); moderately susceptible (MS); moderately resistant (MR) 
x AUDPC and no. of fungicide applications represent the average for 59 weather stations from six states (Maine, Massachusetts, New York, North Carolina, 
North Dakota, and Wisconsin). Only weather stations with < 2 % missing data were included.  
y Calendar-based sprays were initated 35 days after emergence and continued on a weekly schedule until the end of the season 
z DSS treatment -Fungicide sprays were initiated when 18 Blitecast severity values had accumulated since median emergence and subsequent applications 
were timed according to Simcast 
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Table 2.2. (Continued)  

Late blight 
resistance 

Scheduling 
method 

   Average AUDPC  and no. of fungicide applications per season (years 2000 ‐ 2013) x 
  2000  2001  2002  2003  2004  2005  2006  2007  2008  2009  2010  2011  2012  2013  All 

MS   DSS  Mean AUDPC  577  1252  1140  1225  609  1222  962  798  784  803  1064  963  548  1002  927 
    Median AUDPC  292  1207  971  720  303  1025  736  371  111  562  765  819  199  735  569 
    IQ range  950  1936  1479  2057  981  1793  1567  1451  1552  1280  1949  1094  747  1066  1439 
    Std. deviation  727  1001  1037  1168  671  1057  1036  898  1196  881  1052  942  838  831  984 
    Sprays  10  9  10  11  11  9  9  8  10  10  10  10  8  10  10 
                                   
MS   Unsprayed  Mean AUDPC  5142  4622  4287  5332  4916  4244  3755  4026  3640  4936  3892  4078  3283  4802  4359 
    Median AUDPC  5557  5278  4682  5613  5416  4634  4145  4018  4439  5122  4810  4239  3825  4895  4898 
    IQ range  1064  2103  2091  1049  1640  2148  3369  2046  4881  1132  3595  1873  3959  950  2092 
    Std. deviation  1430  1403  1696  1460  1445  1575  2157  1465  2507  1186  2168  1511  2043  1009  1779 
    Sprays  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 
                                   
MR  Conventional  Mean AUDPC  35  26  18  399  105  21  132  20  157  95  80  83  9  74  89 
    Median AUDPC  8  4  2  61  6  4  1  1  12  4  4  6  1  10  4 
    IQ range  37  19  7  548  27  19  27  11  77  51  45  33  7  38  29 
    Std. deviation  57  53  50  630  304  44  330  53  401  226  191  251  22  185  275 
    Sprays  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11 
                                   
MR  DSS  Mean AUDPC  94  138  176  233  117  177  125  98  204  186  151  171  33  105  144 
    Median AUDPC  18  42  26  52  14  38  15  17  13  42  21  48  5  31  23 
    IQ range  104  166  107  443  62  197  133  50  215  284  118  213  20  69  146 
    Std. deviation  161  205  357  321  267  317  232  218  392  286  302  274  78  193  273 
    Sprays  8  7  7  8  8  7  7  6  7  7  8  7  6  8  7 
                                   
MR  Unsprayed  Mean AUDPC  3375  2249  2139  3541  2976  2136  1717  1918  2490  3099  2027  2156  1388  2720  2428 
    Median AUDPC  3680  2537  2141  3921  3766  2130  1325  1922  3105  3454  2156  2346  836  2935  2683 
    IQ range  1960  2303  2287  1676  3220  2523  2312  2767  3993  2485  3422  2962  2828  1849  2934 
    Std. deviation  1437  1305  1447  1426  1699  1492  1609  1362  1897  1545  1663  1509  1448  1224  1620 
      Sprays  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 
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Figure 2.2. Illustration of the responsiveness/sensitivity of the DSS to the 
suitability of weather conditions for Phytophthora infestans.  The suitability of 
weather conditions to P. infestans was estimated by the intensity of simulated 
epidemics in untreated plots and the sensitivity of the DSS by the number of scheduled 
sprays. In simulations the epidemic was initiated six days after 18 severity values had 
accumulated. Each point represents the final AUDPC in untreated plots for one year at 
a particular location. The line in each panel represents the best fit line to the data and 
is simply presented to highlight the relationship between no. of sprays scheduled by 
the DSS and the AUDPC in untreated plots. 

Experiments when disease was initiated after the accumulation of 18 

severity values (Scenario 1). AUPDC. The wide range of weather conditions in the 

768 individual simulation experiments had a large effect on the simulated severity of 

late blight. Due to the non-normal distribution of the raw AUDPC data, medians and 

interquartile ranges are presented as descriptive statistics (Figure 2.3).  
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Figure 2.3. Summary of simulated disease severity (area under disease progress 
curve - AUDPC) for 59 locations over 14 years (2000 – 2013) (Scenario 1). Three 
fungicide scheduling methods were evaluated for their ability to suppress late blight 
(calendar-based schedule, Decision Support System-informed schedule, and 
unsprayed). Each scheduling method was evaluated for three categories of cultivar 
resistance to late blight. Late blight was simulated to occur six days after 18 Blitecast 
severity values had accumulated. Each point represents the final AUDPC for a 
schedule in one year at a particular location. The box plots overlaying the points are a 
graphical summary of the distribution of data. The vertical line within the box 
represents the median sample value. The ends of the box represent the 25th and 75th 
quantiles. The whiskers that extend from the ends of the box are computed as 3rd 
quartile + 1.5*(interquartile range), and 1st quartile - 1.5*(interquartile range). 

The yearly median AUDPC for the unsprayed control ranged from 4038 in the year 

2012, to 5912 in the year 2003 (Table 2.2). The median AUDPC for the unsprayed 

strategy was 5253 (interquartile range (IQR) = 1968) for susceptible, 4898 (IQR = 

2092) for moderately susceptible, and 2683 (IQR = 2934) for moderately resistant 

cultivars. As expected, fungicide applications reduced these numbers dramatically. 

The median AUDPCs for the DSS strategy were 49 (IQR = 379) for the susceptible, 

569 (IQR = 1439) for the moderately susceptible, and 22.5 (IQR = 146) for the 
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moderately resistant cultivars, respectively (Table 2.2). This can be compared with the 

average AUDPC values for the calendar-based strategy of 1729 (IQR = 3326) for the 

susceptible, 760 (IQR = 2242) for the moderately susceptible, and 4.2 (IQR = 29) 

moderately resistant cultivars, respectively (Table 2.2).  

Fungicide treatment, either DSS or calendar-based, dramatically reduced 

disease relative to the unsprayed treatment. This was supported by the fact that the 95 

% confidence interval around the mean of the unsprayed treatment, for each resistance 

category, did not overlap with the 95 % confidence interval around the mean of either 

of the fungicide schedules. For this reason the statistical analysis was focused on the 

difference between fungicide schedules.  

Disease suppression. The disease suppression for the DSS treatment, for each 

category of resistance, was compared to a baseline of disease suppression achieved 

with weekly sprays on a susceptible cultivar. The DSS-recommended spray schedules 

suppressed late blight to lower levels on susceptible cultivars (99.7 % disease 

suppression) than did the weekly schedule on susceptible cultivars (98.6 % disease 

suppression) (P < 0.0001). The DSS-recommended schedule for moderately 

susceptible cultivars (97.7 % disease suppression) differed significantly from the 

calendar-based schedule for susceptible cultivars (98.6 % disease suppression) (P < 

0.0001). No significant difference in disease suppression was observed between the 

DSS strategy for the moderately resistant cultivars (99.1 % disease suppression) and 

the calendar-based schedule for susceptible cultivars (98.6% disease suppression) (P = 

0.12).  

Fungicide use efficiency. For all cultivar resistance categories, sprays 

scheduled according to the DSS strategy had a significantly higher average fungicide 

use efficiency (E) (P < 0.0001) than the calendar-based strategy (Figure 2.4). For 

susceptible cultivars, average disease control per application was 5.7 % for the 
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calendar-based schedule and 7.7 % for the DSS-recommended schedule (35 % 

difference in fungicide use efficiency). For moderately susceptible cultivars, average 

disease control per application was 6.8 % for the calendar-based schedule and 9.7 % 

for the DSS-recommended schedule (43 % difference in fungicide use efficiency). For 

moderately resistant cultivars, average disease control per application was 8.8 % for 

the calendar-based schedule and 14.2 % for the DSS-recommended schedule (61 % 

difference in fungicide use efficiency).  

Experiments with disease initiation at a random date after accumulation 

of 18 severity values (Scenario 2). Obviously, the fungicide application scheduling 

was independent of the initiation of the disease in the simulation experiments, so the 

fungicide schedules for the random initiation scenario were the same as the schedules 

for the ‘six days after 18 severity values’ scenario. 

AUDPC. When the appearance of disease in simulations was set to occur at a 

random date after the accumulation of 18 severity values (SV), instead of being fixed 

at six days after accumulation of 18 SV, the AUDPC was reduced for all treatments 

(>60% reduction in average AUDPC) (Figure 2.5). The median AUDPC values for the 

unsprayed strategy were 1065 (IQR = 3428) for susceptible, 689 (IQR = 2998) for 

moderately susceptible, and 17 (IQR = 1169) for moderately resistant cultivars (Table 

2.3). The median AUDPC values for the DSS strategy were 0.5 (IQR = 17) for 

susceptible, 1.8 (IQR = 115) for moderately susceptible, and 0.3 (IQR = 6) for 

moderately resistant cultivars (Table 2.3). The median AUDPC values for the 

calendar-based strategy were 0.9 (IQR = 120) for susceptible, 0.4 (IQR = 20) for 

moderately susceptible, and 0.1 (IQR = 0.4) for moderately resistant cultivars (Table 

2.3).  
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Figure 2.4. Fungicide use efficiency (reduction in area under disease progress curve per spray) of Decision Support System 
strategy and calendar-based (7 day) strategy, under two disease initiation scenarios. Scenario 1. late blight was simulated to 
occur six days after 18 Blitecast severity values had accumulated. Scenario 2. late blight was simulated to occur at a random date 
between six days after 18 Blitecast severity values had accumulated and the end of the season.  Fungicide use efficiency was 
calculated for both strategies on three categories of cultivar resistance to late blight. Each error bar is constructed using 1 standard 
error from the mean. Asterisk indicates statistically significant difference in efficiency between DSS and calendar-based strategy (P 
≤ 0.05), within resistance category. Statistics are based on nonparametric comparison for each pair of treatment means conducted 
using a Wilcoxon each pair test (Hsu, 1996). 
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Figure 2.5. Summary of simulated disease severity (area under disease progress 
curve - AUDPC) for 59 locations over 14 years (2000 – 2013) (Scenario 2). Three 
fungicide scheduling methods were evaluated for their ability to suppress late blight 
(calendar-based schedule, Decision Support System-informed schedule, and 
unsprayed). Each scheduling method was evaluated for three categories of cultivar 
resistance to late blight. Late blight was simulated to occur at a random date between 
six days after 18 Blitecast severity values had accumulated and the end of the season. 
Each point represents the final AUDPC for a schedule in one year at a particular 
location. The box plots overlaying the points are a graphical summary of the 
distribution of data. The vertical line within the box represents the median sample 
value. The ends of the box represent the 25th and 75th quantiles. The whiskers that 
extend from the ends of the box are computed as 3rd quartile + 1.5*(interquartile 
range), and 1st quartile - 1.5*(interquartile range). 
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Table 2.3. Simulation results under scenario where late blight was simulated to occur at a random date between six days 
after 18 Blitecast severity values had accumulated and the end of the season. 

Late blight 
resistance 

Scheduling 
method 

   Average AUDPC  and no. of fungicide applications per season (years 2000 ‐ 2013) x 
  2000  2001  2002  2003  2004  2005  2006  2007  2008  2009  2010  2011  2012  2013  All 

S w  Conventional y  Mean AUDPC  461  353  339  594  441  595  311  315  579  283  759  497  157  703  458 
    Median AUDPC  0.37  1.68  3.80  2.13  0.69  4.32  0.64  1.01  0.71  0.68  0.23  1.57  0.07  4.06  0.89 
    IQ range  114  77  143  312  110  82  19  232  69  32  625  323  2  610  120 
    Std. deviation  1278  921  821  1380  1090  1356  865  694  1297  854  1567  995  655  1441  1128 
    Sprays  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11 
                                   
S  DSS z  Mean AUDPC  48  104  116  133  51  153  27  91  73  26  127  65  17  74  80 
    Median AUDPC  0.36  1.84  6.43  0.63  0.22  1.72  0.33  0.55  0.32  0.30  0.19  0.34  0.08  2.98  0.49 
    IQ range  4  87  73  17  7  54  9  28  12  2  13  39  1  24  17 
    Std. deviation  178  218  347  472  160  435  71  268  354  108  372  171  57  183  276 
    Sprays  15  13  13  15  15  13  13  12  13  14  14  14  11  15  14 
                                   
S  Unsprayed  Mean AUDPC  2133  1730  2169  1982  2003  1934  1360  1911  1826  1864  1881  1691  951  2505  1859 
    Median AUDPC  1599  1298  2031  883  1009  1448  664  1068  773  1702  64  979  78  2705  1065 
    IQ range  3823  3119  3346  4257  3454  3690  2289  4134  3257  3330  4395  3146  1607  4381  3428 
    Std. deviation  2177  1747  1890  2216  2227  2089  1727  2049  2078  1917  2339  1892  1500  2142  2028 
    Sprays  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 
w Late blight resistance of cultivar: susceptible (S); moderately susceptible (MS); moderately resistant (MR) 
x AUDPC and no. of fungicide applications represent the average for 59 weather stations from six states (Maine, Massachusetts, New York, North Carolina, 
North Dakota, and Wisconsin). Only weather stations with < 2 % missing data were included.  
y Calendar-based sprays were initated 35 days after emergence and continued on a weekly schedule until the end of the season 
z DSS treatment -Fungicide sprays were initiated when 18 Blitecast severity values had accumulated since median emergence and subsequent applications 
were timed according to Simcast 
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Table 2.3. (Continued) 

Late blight 
resistance 

Scheduling 
method 

   Average AUDPC  and no. of fungicide applications per season (years 2000 ‐ 2013) x 
  2000  2001  2002  2003  2004  2005  2006  2007  2008  2009  2010  2011  2012  2013  All 

MS   Conventional  Mean AUDPC  267  174  163  363  359  336  172  131  356  143  450  271  71  433  265 
    Median AUDPC  0.17  0.69  0.97  0.81  0.42  1.01  0.37  0.32  0.29  0.23  0.14  0.63  0.06  1.46  0.40 
    IQ range  29  13  31  63  28  21  5  46  13  9  151  73  1  138  20 
    Std. deviation  912  569  495  975  1139  908  594  354  885  473  1127  641  377  1052  801 
    Sprays  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11 
                                   
MS   DSS  Mean AUDPC  163  304  363  286  220  410  193  298  175  101  344  241  75  251  246 
    Median AUDPC  1.45  5.41  23.67  1.67  1.19  11.30  0.69  4.97  1.14  1.77  0.13  1.50  0.15  15.91  1.77 
    IQ range  77  490  553  120  133  208  43  125  27  30  370  227  4  225  115 
    Std. deviation  452  523  692  681  523  858  436  659  552  281  702  449  234  545  570 
    Sprays  10  9  9  10  10  9  9  8  9  10  10  10  7  10  9 
                                   
MS   Unsprayed  Mean AUDPC  1908  1447  1836  1782  1917  1674  1161  1644  1581  1638  1659  1430  791  2226  1627 
    Median AUDPC  1122  993  1403  436  805  657  424  552  466  1376  23  738  26  2094  689 
    IQ range  3537  2725  3163  3987  3767  3049  1900  3714  3009  2816  3445  2708  993  4080  2998 
    Std. deviation  2094  1584  1797  2092  2178  1958  1590  1869  1981  1804  2148  1706  1373  2011  1901 
    Sprays  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 
                                   
MR  Conventional  Mean AUDPC  16  2  4  36  37  17  4  1  12  4  30  5  3  31  14 
    Median AUDPC  0.06  0.09  0.09  0.08  0.08  0.11  0.06  0.07  0.07  0.06  0.04  0.08  0.03  0.15  0.07 
    IQ range  0.46  0.27  0.42  0.66  0.44  0.46  0.19  0.52  0.22  0.24  0.44  0.73  0.11  0.95  0.40 
    Std. deviation  90  13  28  210  164  86  21  2  50  16  184  24  17  145  102 
    Sprays  11  11  11  11  11  11  11  11  11  11  11  11  11  11  11 
                                   
MR  DSS  Mean AUDPC  19  16  61  47  55  85  12  24  37  13  57  36  4  32  36 
    Median AUDPC  0.44  0.84  1.19  0.27  0.32  0.52  0.15  0.12  0.23  0.33  0.10  0.30  0.10  1.01  0.34 
    IQ range  6.49  7.40  15.65  6.87  5.37  13.17  3.77  3.76  1.90  4.81  14.78  11.02  1.44  8.45  6.25 
    Std. deviation  59  37  225  130  190  304  29  64  130  48  210  92  9  130  146 
    Sprays  8  7  7  8  8  7  7  6  7  8  7  7  6  8  7 
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Table 2.3. (Continued) 

Late blight 
resistance 

Scheduling 
method 

   Average AUDPC  and no. of fungicide applications per season (years 2000 ‐ 2013) x 
  2000  2001  2002  2003  2004  2005  2006  2007  2008  2009  2010  2011  2012  2013  All 

MR  Unsprayed  Mean AUDPC  1083  479  788  899  1097  743  465  628  827  806  796  563  308  1064  756 
    Median AUDPC  28.8  38.0  66.5  7.9  40.2  13.9  12.6  11.9  9.7  66.8  1.0  17.4  0.8  227.5  16.7 
    IQ range  2135  824  1593  1606  2325  1424  194  1008  1128  1347  1185  629  59  2049  1169 
    Std. deviation  1489  817  1113  1305  1566  1210  977  981  1401  1283  1318  1005  824  1424  1231 
      Sprays  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 
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Disease suppression. Again, fungicide applications effectively reduced disease 

severity for all resistance categories. The DSS-recommended spray schedules 

suppressed late blight to lower levels on susceptible cultivars (99.8 % disease 

suppression) than did the weekly schedule (98.8 % disease suppression) (P < 0.0001). 

The DSS-recommended schedule for moderately susceptible cultivars (98.4 % disease 

suppression) however, resulted in higher disease levels than did the calendar-based 

schedule for susceptible cultivars (98.8 % disease suppression) (P < 0.0001). For 

moderately resistant cultivars, the DSS-recommended spray schedules suppressed late 

blight to lower levels (99.6 % disease suppression) than did the weekly schedule on 

susceptible cultivars (98.8 % disease suppression) (P < 0.0001).  

Fungicide use efficiency. Under the random inoculation date scenario, 

fungicide use efficiency for the DSS-recommended schedule was higher for the 

moderately susceptible and moderately resistant cultivars, but not susceptible 

cultivars, relative to the calendar-based schedule (Figure 2.4). For susceptible 

cultivars, average disease control per application was 7.8 % for the calendar-based 

schedule and 7.3 % for the DSS-recommended schedule (7 % difference in fungicide 

use efficiency). For moderately susceptible cultivars, average disease control per 

application was 8.3 % for the calendar-based schedule and 9.7 % for the DSS-

recommended schedule (17 % difference in fungicide use efficiency). For moderately 

resistant cultivars, average disease control per application was 9.0 % for the calendar-

based schedule and 12.8 % for the DSS-recommended schedule (42 % difference in 

fungicide use efficiency). 

Field validation. Late blight was first observed in the unsprayed plots on 15 

September 2010, 12 September 2011, 2 September 2012, and 1 September 2013. In all 

of these experiments, favorable weather conditions for late blight resulted in rapid 

development of the disease in the untreated plots. In all experiments, both fungicide 
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treatments (DSS strategy or calendar-based schedule) significantly (P < 0.05) 

suppressed late blight (Table 2.1). No significant difference in disease suppression was 

observed between the DSS strategy and the calendar-based schedule for all three 

categories of cultivar resistance (P < 0.05).  

In experiments where chlorothalonil alone was used on a susceptible cultivar 

(Yukon Gold), the DSS strategy scheduled the same number (2012 and 2013 

experiments) or slightly more applications (one additional spray in 2011 experiment) 

than did the calendar-based approach (Table 2.1). For the moderately susceptible 

cultivar (Katahdin), the DSS strategy scheduled fewer applications (six sprays) when 

compared to the calendar-based approach (eight sprays) (Table 2.1). For the 

moderately resistant cultivar (Kennebec), the DSS strategy scheduled fewer 

applications (five, five, and three sprays in 2010, 2011, 2012, respectively) when 

compared to the calendar-based approach (eight, eight, and six sprays in 2010, 2011, 

and 2012, respectively) (Table 2.1). 

In the 2012 experiment a fungicide mixture (mefenoxam + cholorothalonil) 

alternated with chlorothalonil was used. Severity of late blight was significantly 

reduced in plots treated with fungicide (P < 0.05) relative to the unsprayed plots 

(Table 2.1). No significant difference in disease suppression was observed between the 

DSS strategies and the calendar-based strategies on either category of cultivar 

resistance (P < 0.05) (Table 2.1). However, in this experiment disease progress on 

cultivar Yukon Gold was limited by plant senescence which accounted for the lack of 

significant difference in disease severity between untreated plots of Yukon Gold (S) 

and untreated Kennebec (MR). For Yukon Gold, the DSS scheduled three 

chlorothalonil and two mefenoxam + chlorothalonil applications (Table 2.1). For 

Kennebec, the DSS strategy scheduled two sprays of chlorothalonil and two sprays of 

mefenoxam + chlorothalonil applications (two sprays). For the calendar-based 
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schedule, both Yukon Gold and Kennebec received three sprays of chlorothalonil and 

three sprays of mefenoxam + chlorothalonil. 

4. DISCUSSION 

The purpose of this study was to evaluate the utility of the BlightPro decision support 

system for in-season late blight management. To evaluate the recommendations of the 

DSS under an extended set of environmental conditions, simulation analysis was 

conducted using weather data from locations in six potato producing states over 14 

years producing 768 environments. As expected, host resistance and weather 

influenced the number of fungicide applications recommended by the DSS.  

In situations with favourable weather for late blight and when a susceptible 

cultivar is selected, the DSS recommended more fungicide applications than a weekly 

schedule, but with improved disease suppression. On average, the DSS recommended 

fewer fungicide applications on moderately susceptible cultivars than did the calendar 

schedule. For moderately susceptible cultivars, the average resultant disease 

suppression for the DSS schedule was 97.7 %, compared with the disease suppression 

achieved by weekly applications on susceptible cultivars (baseline) which was slightly 

higher (98.6%). Although this difference is not large (1.4% disease compared to 2.3% 

disease) it is important because we have set a goal of achieving disease suppression at 

least as effective as a calendar-based approach on susceptible cultivars. The effect of 

moderate resistance translated to significant reduction in average number of fungicide 

applications recommended by the DSS (35% reduction), with disease suppression 

equivalent to the baseline weekly schedule on susceptible cultivars. The results of this 

evaluation are consistent with previous studies that investigated the ability of the 

forecasting systems, Blitecast and Simcast, to manage late blight of potato (Fry et al., 

1983; Shtienberg and Fry, 1990; Spadafora et al., 1984).  
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The efficacy of individual sprays in late blight disease suppression varies 

depending on the timing of the application relative to the date of inoculation/infection 

(Shtienberg et al., 1989). However, fungicide use efficiency (E) may be used for 

overall comparison of fungicide-scheduling methods since it expresses an average 

figure for each spray’s efficiency at suppressing disease (Shtienberg and Fry, 1990). 

The return (in percent disease control terms) of sprays scheduled according to the 

DSS-recommended strategy was higher than that for the calendar-based method, for 

all categories of late blight resistance. In addition, fungicide use efficiency increased 

when fungicide use was combined with higher levels of late blight resistance of the 

cultivar. 

Two scenarios for initial appearance of disease in each season were 

investigated in simulation analyses. First, the initial appearance of late blight was set 

to occur six days after the accumulation of 18 Blitecast severity values. Second, the 

initial appearance of late blight was a random date between accumulation of 18 

Blitecast severity values and the end of the season (random inoculation date scenario) 

– this scenario was included to represent the variability in initial late blight occurrence 

due to differences in inoculum source. We were interested to determine whether the 

DSS recommendations maintained their additional benefit over the calendar-based 

strategy under conditions where the disease might not appear from primary inoculum 

in the immediate area.  

Under the scenario where late blight was initiated six days after 18 severity 

values had accumulated, the DSS demonstrated significant improvement in fungicide 

use efficiency relative to the calendar-based schedule for all resistance categories. As 

would be expected, fungicide use efficiency declined under the random inoculation 

date scenario, since initiation of fungicide schedules occurred independently of the 

appearance of the disease and, therefore, sprays prior to disease appearance did not 
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always contribute to disease control. The DSS schedule was less efficient than the 

calendar-based schedule for the susceptible category, but was more efficient for 

moderately susceptible and moderately resistant categories. This suggests the 

importance of identifying the appropriate time to begin spraying. If sprays are initiated 

earlier than necessary, this can reduce fungicide use efficiency. Mechanisms to further 

refine the identification of high risk inoculation events could improve fungicide use 

efficiency.  

It should be noted that although the fungicide use efficiency for susceptible 

cultivars was reduced under the variable inoculation date scenario, disease suppression 

with the DSS schedule was significantly improved relative to the calendar-based 

approach. Due to the threat of potato tuber blight, potato producers in the Northeast 

region of the US strive to prevent even low levels of disease in order to reduce the 

possibility of tuber blight infections. Therefore, even relatively small reductions in 

foliar disease severity would likely be preferred by growers. In the current study, tuber 

blight was not evaluated in field experiments or simulation analyses. 

In field experiments, both DSS and calendar-based fungicide scheduling 

methods suppressed late blight effectively with no significant differences in final 

disease levels. The scheduling methods differed in the number of sprays 

recommended. The DSS schedule was influenced by prevailing weather and cultivar 

resistance and resulted in fewer fungicide sprays on cultivars with moderate 

susceptibility/resistance to late blight, or when weather conditions were less 

favourable for late blight. In seasons with weather favourable for late blight, the DSS 

recommended the same number or more sprays on susceptible cultivars, relative to the 

calendar-based scheduling method.These results were in agreement with results from 

the simulation analyses. 
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This decision support system is the first to integrate real-time location-specific 

observed and forecast weather (National Digital Forecast) to drive these forecasting 

systems, as well as the LATEBLIGHT simulator (LB2004 version with fungicide sub-

models), to enable informed in-season decision making. A previous study by Raposo 

et al (1993) determined that there was a benefit to incorporating forecast weather 

information into the disease forecasting systems. However, the improvement in 

disease management (reduction in AUDPC) realized depended on the accuracy of the 

weather forecast and ranged from 5% reduction in disease severity for weather 

forecasts available in 1993, up to 10% reduction if perfect knowledge of future 

weather 1 and 2 days in advance was available (Raposo et al., 1993). Additionally, 

weather forecasts provided an increased benefit in environments that were less 

favourable for late blight development (Raposo et al., 1993). It should be noted that 

observed and forecast weather information were utilized to provide DSS-

recommended schedules for field experiments, but DSS-recommended schedules for 

simulation analyses were created using only historic records of observed weather. In 

the simulation experiments, actual weather forecasts were not available. Historic 

records of observed weather data could not be used to generate forecasts, because the 

historic observed weather data is equivalent to perfect knowledge of future weather 

and therefore does not include the inherent variability due to in accurate weather 

forecasts. 

The model we used simulates the effects of environment and cultivar resistance 

on the development of P. infestans, and includes a sub-model for the initial deposition 

of the fungicide chlorothalonil and its subsequent weathering, redistribution, loss, and 

efficiency. The models used for simulation of the disease have been developed and 

improved over the past four decades (Andrade-Piedra et al., 2005b; Bruhn and Fry, 

1981; Doster et al., 1990). The models predict disease development in small plots of 



	

60 

potatoes and all tests of predictions have been done in small plots. Evaluation of the 

model predictions have been compared to observed epidemics in small plots over 100 

times, under diverse environmental conditions (Andrade-Piedra et al., 2005a; 

Andrade-Piedra et al., 2005c; Shtienberg and Fry, 1990). The models are useful tools 

to compare the effects of treatments applied in small plots (Shtienberg and Fry, 1990). 

Thus, the model should be a good predictor of results from small field plots, and is 

appropriately used when a large number of field experiments is prohibitively 

expensive and time consuming (Raposo et al., 1993). It should be noted that 

limitations of small-plot field experiments will apply equally to the conclusions from 

simulation analyses.  

In simulation analyses, disease suppression for DSS schedules with moderately 

susceptible cultivars did not meet our criterion of disease suppression at least 

equivalent to the average for a weekly schedule on a susceptible cultivar. The DSS 

forecasting systems have since been adjusted to improve disease suppression for the 

moderately susceptible category by modifying the critical thresholds (Blight Units and 

Fungicide Units) for this resistance category based on simulation results. Optimization 

of DSS forecasting systems is underway to maximize fungicide use efficiency for all 

categories of cultivar resistance while maintaining disease suppression. 

The current system provides recommendations for variable interval fungicide 

application. In certain production systems there can be limited flexibility around 

application intervals; to accommodate these situations, we are currently investigating 

mechanisms to include variable dose rather than variable time of fungicide 

application.  

The Simcast forecasting system was initially developed for late blight of potato 

but extension of the system is underway to enable its use for late blight of tomato. 
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Preliminary field testing of the system for tomato late blight management has 

demonstrated that the DSS recommendations can be used successfully. 

Future research will include the addition of existing forecasting tools for other 

important foliar disease of potato and tomato, such as early blight.  

Many decision support systems have been developed for plant diseases, and 

experimental testing has demonstrated their ability to improve disease suppression and 

lower risk of crop damage, yet some of these systems have been used widely and 

others have not (Shtienberg, 2013). In the case of intensive crops and disease systems, 

such as late blight of potato and tomato, farm managers attempt to minimize the risk 

of performing a false-negative action (not spraying when spraying was necessary) 

(Shtienberg, 2013). As stated by Shtienberg, “The farmer’s main concern is not only 

to minimize the average cost of the control strategy, but also to avoid extremely large 

variation” (Shtienberg, 2013). The results from this study have demonstrated that the 

use of disease forecast driven recommendations can deliver improved disease 

management and reduce variability in disease suppression, relative to a seven-day 

calendar-based management strategy. A secondary benefit is that fungicide use can be 

reduced when conditions are not favorable for late blight, and/or when partially 

resistant varieties are grown. Furthermore, the risk calculations of managers of 

intensive crops are likely to change as a result of changing regulatory pressures and 

public perceptions of pesticide use, which will accelerate the adoption and use of 

DSSs in these crops (Shtienberg, 2013).  

Technologies such as decision support systems are key components of the 

precision agriculture/smart farming approach. The outputs of this DSS are meant to 

aid decisions by the grower or the consultant. Rather than replace farmer expertise and 

gut feeling, decision support systems such as the BlightPro DSS can help users 
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maximize the efficiency of their crop protection strategy by enabling well-informed 

decisions. The system is not intended to replace grower or consultant decisions. 



	

63 

LITERATURE CITED 

Andrade-Piedra, J., Forbes, G., Shtienberg, D., Grunwald, N., Chacon, M., Taipe, M., 
Hijmans, R., and Fry, W. 2005a. Qualification of a plant disease simulation 
model: Performance of the LATEBLIGHT model across a broad range of 
environments. Phytopathology. 95:1412-1422 

Andrade-Piedra, J., Hijmans, R., Forbes, G., Fry, W., and Nelson, R. 2005b. 
Simulation of potato late blight in the Andes. I: Modification and 
parameterization of the LATEBLIGHT model. Phytopathology. 95:1191-1199 

Andrade-Piedra, J., Hijmans, R., Juarez, H., Forbes, G., Shtienberg, D., and Fry, W. 
2005c. Simulation of potato late blight in the Andes. II: Validation of the 
LATEBLIGHT model. Phytopathology. 95:1200-1208 

Bruhn, J.A. and Fry, W.E. 1981. Analysis of potato late blight epidemiology by 
simulation modeling. Phytopathology. 71:612-616 

Cooke, L.R., Schepers, H.T.A.M., Hermansen, A., Bain, R.A., Bradshaw, N.J., 
Ritchie, F., Shaw, D.S., Evenhuis, A., Kessel, G.J.T., Wander, J.G.N., 
Andersson, B., Hansen, J.G., Hannukkala, A., Naerstad, R., and Nielsen, B.J. 
2011. Epidemiology and Integrated Control of Potato Late Blight in Europe. 
Potato Res. 54:183-222 

Danies, G., Small, I.M., Myers, K., Childers, R., and Fry, W.E. 2013. Phenotypic 
characterization of recent clonal lineages of Phytophthora infestans in the 
United States. Plant Dis. 97:873-881 

Doster, M.A., Sweigard, J.A., and Fry, W.E. 1989. The Influence of host resistance 
and climate on the initial appearance of foliar late blight of potato from 
infected seed tubers. Am Potato J. 66:227-233 

Doster, M.A., Milgroom, M.G., and Fry, W.E. 1990. Quantification of factors 
influencing potato late blight suppression and selection for metalaxyl 
resistance in Phytophthora infestans - a simulation approach. Phytopathology. 
80:1190-1198 

Fry, W.E., Apple, A.E., and Bruhn, J.A. 1983. Evaluation of potato late blight 
forecasts modified to incorporate host-resistance and fungicide weathering. 
Phytopathology. 73:1054-1059 

Fry, W.E. 1977. Integrated control of potato late blight - effects of polygenic 
resistance and techniques of timing fungicide applications. Phytopathology. 
67:415-420 

Fry, W.E., McGrath, M.T., Seaman, A., Zitter, T.A., McLeod, A., Danies, G., Small, 
I.M., Myers, K., Everts, K., Gevens, A.J., Gugino, B.K., Johnson, S.B., 



	

64 

Judelson, H., Ristaino, J., Roberts, R., Secor, G., Seebold, K., Jr., Snover-Clift, 
K., Wyenandt, A., Gruenwald, N.J., and Smart, C.D. 2013. The 2009 late 
blight pandemic in the Eastern United States - causes and results. Plant Dis. 
97:296-306 

Fry, W. and Goodwin, S. 1997. Re-emergence of potato and tomato late blight in the 
United States. Plant Dis. 81:1349-1357 

Gorry, G.A. and Morton, M.S.S. 1971. Framework for Management Information 
Systems. Sloan Manage Rev. 13:55-70 

Hardwick, N.V. 2006. Disease forecasting. :239-267 doi: 10.1007/1-4020-4581-6_9 

Haverkort, A.J., Boonekamp, P.M., Hutten, R., Jacobsen, E., Lotz, L.A.P., Kessel, 
G.J.T., Visser, R.G.F., and van der Vossen, E.A.G. 2008. Societal costs of late 
blight in potato and prospects of durable resistance through cisgenic 
modification. Potato Res. 51:47-57 

Hsu, J.C. 1996. Multiple comparisons: theory and methods. 1st ed. Chapman & Hall, 
London; New York 

Hyre, R.A. 1954. Progress in forecasting late blight of potato and tomato. Plant 
Disease Reporter. 38:245-253 

Johnson, D., Cummings, T., Hamm, P., Rowe, R., Miller, J., Thornton, R., Pelter, G., 
and Sorensen, E. 1997. Potato late blight in the Columbia Basin: An economic 
analysis of the 1995 epidemic. Plant Dis. 81:103-106 

Jones, A.L., Lillevik, S.L., Fisher, P.D., and Stebbins, T.C. 1980. A microcomputer-
based instrument to predict primary apple scab infection periods. Plant Dis. 
64:69-72 

Knight, J.D. 1997. The role of decision support systems in integrated crop protection. 
Agric , Ecosyst Environ. 64:157-163 

Krause, R.A., Massie, L.B., and Hyre, R.A. 1975. Blitecast - computerized forecast of 
potato late blight. Plant Disease Reporter. 59:95-98 

Lees, A., Wattier, R., Shaw, D., Sullivan, L., Williams, N., and Cooke, D. 2006. Novel 
microsatellite markers for the analysis of Phytophthora infestans populations. 
Plant Pathol. 55:311-319 

Madden, L., Pennypacker, S.P., and Macnab, A.A. 1978. FAST, a forecast system for 
Alternaria solani on tomato. Phytopathology. 68:1354-1358 



	

65 

Raposo, R., Wilks, D.S., and Fry, W.E. 1993. Evaluation of potato late blight forecasts 
modified to include weather forecasts: A simulation analysis. Phytopathology. 
83:103-108 

Shtienberg, D. 2013. Will decision-support systems be widely used for the 
management of plant diseases? Annu Rev Phytopathol. 51:1-16 

Shtienberg, D. and Fry, W.E. 1990. Field and computer simulation evaluation of 
spray-scheduling methods for control of early and late blight of potato. 
Phytopathology. 80:772-777 

Shtienberg, D., Doster, M.A., Pelletier, J.R., and Fry, W.E. 1989. Use of simulation 
models to develop a low-risk strategy to suppress early and late blight in potato 
foliage. Phytopathology. 79:590-595 

Small, I.M., Joseph, L., and Fry, W.E. 2015. Development and implementation of the 
BlightPro decision support system for potato and tomato late blight 
management. Comput Electron Agric. 115:57-65 

Spadafora, V.J., Bruhn, J.A., and Fry, W.E. 1984. Influence of selected protectant 
fungicides and host resistance on simple and complex potato late blight 
forecasts. Phytopathology. 74:519-523 

Wallin, J.R. 1962. Summary of recent progress in predicting late blight epidemics in 
the United States and Canada. Am Potato J. 39:306-312 

		



	

66 

CHAPTER 3. 

A SEMI-QUANTITATIVE MODEL FOR PREDICTING THE DISPERSAL OF 

PHYTOPHTHORA INFESTANS SPORANGIA FROM A CROP CANOPY*  

ABSTRACT 

A preliminary dispersal-risk model for potato late blight has been developed using 

data obtained experimentally and from the published literature. The model relates 

availability of sporangia of Phytophthora infestans produced from lesions in a crop 

canopy to relative numbers of sporangia in the air above the crop (dispersal-risk).The 

model uses field-based estimates of disease severity coupled with functions that 

describe the effect of meteorological elements on production of sporangia, release of 

sporangia from sporangiophores, and escape of sporangia from a potato canopy. The 

model requires average hourly temperature, relative humidity, and wind speed. 

Historic (observed) weather data as well as forecast weather data can be used as 

inputs. For each potential risk period the estimated disease severity at the source is 

coupled with predictors for sporangia availability, release of sporangia, and escape of 

sporangia. These predictors are then integrated in the form of a linear model to predict 

the relative number of sporangia h-1 that will escape the potato canopy and become 

available for dispersal. With field-based estimates of disease severity at a known 

source of late blight, variation in numbers of sporangia above the crop canopy was 

well described (P < 0.0001) by the dispersal-risk model (R2 = 0.91; RMSE = 2.86 

sporangia h-1). The model is intended for use within the context of the BlightPro 

decision support system for late blight. Knowledge of upcoming “high risk” periods 

for dispersal could be used to enhance the efficiency of disease management practices.  

																																																																		
* Ian Small, Hilary Mayton, Laura Joseph, and William Fry; Section of Plant Pathology and Plant-
Microbe Biology, Cornell University, 334 Plant Science, Ithaca, NY 14853, USA. 
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1. INTRODUCTION 

Late blight of potato and tomato is devastating because of the very rapid asexual 

reproduction of P. infestans which leads to dramatic population explosions of this 

pathogen. The devastating nature of late blight epidemics is primarily due to the 

capability of the pathogen to be aerially dispersed and its very rapid development after 

establishment in a field. Under favorable conditions, disease cycles can be completed 

within 4-5 days on a susceptible host and without fungicide applications can result in 

complete crop loss within just a couple of weeks. Fear of these crop losses causes 

producers to rely heavily on fungicide applications to manage late blight (Fry 2008).  

Several models and algorithms to predict the occurrence of potato late blight 

have been developed (Hyre 1954; Krause et al. 1975; Wallin 1962). A common 

characteristic of the early potato late blight forecasts is that they identify a time in the 

season before which fungicide sprays are needed (Hyre 1954; Wallin 1962). For 

example with Blitecast (Krause and Massie 1975), the most popular potato late blight 

forecast in the USA, this interval is identified via 18 Severity Values (Krause and 

Massie 1975). (Severity values are units that quantify “development time” of the 

pathogen. Once the initial threshold is reached, subsequent fungicide applications are 

recommended after the accumulation of 5-7 Severity Values.) This is logical in the 

potato agroecosystem in northern temperate zones because the pathogen typically 

overwinters in infected tubers, but these general assumptions (infected tubers as the 

main source of the pathogen) do not fit potato and tomato production systems in 

southern temperate or semi-tropical climates where susceptible host tissue is available 

year-round. 

After fungicide applications have been initiated there are other systems that 

can be used to obtain recommendations for when subsequent fungicide applications 

should take place. Some years ago a more comprehensive late blight forecast – 



	

68 

Simcast (Fry et al. 1983), which integrates the effects of host resistance and fungicide 

as well as weather, was developed. More recently, this forecasting system has been 

made available in “real time” on a web-based Decision Support System (BlightPro 

DSS) (Small et al. 2015a). Growers identify the location of their production unit of 

interest (latitude and longitude of field) and the system automatically obtains observed 

weather data from the nearest available weather station, and location-specific forecast 

weather data from the National Weather Service – National Digital Forecast Database, 

for up to 7 days in the future. The DSS uses these weather data along with crop and 

management information to drive disease forecasting systems and a validated 

mechanistic model of the disease to generate location-specific management 

recommendations for fungicide application. 

A limitation of most forecasts for late blight, including the ones available 

within the DSS described above, is that they do not take spatial aspects of the disease 

cycle into account (beyond the individual plant/field level). Most late blight forecasts 

assume that viable inoculum is present at a location of interest, or that it arrives daily, 

which is not necessarily the case. Because late blight occurrences are now being 

reported on a “real-time” basis in the United States (http://usablight.org/), it is possible 

to know if late blight is in an area, and if it is, one can use knowledge of the source 

and weather to identify a risk of dispersal to another nearby site.  

Long range movement of P. infestans occurs with infected plants (typically 

infected seed tubers or infected transplants). After the pathogen is established, 

environmental conditions play a major role in the development of a late blight 

epidemic. In order for an epidemic to progress the pathogen must be able to reproduce 

and disperse to other healthy and susceptible host plants. Short-range dispersal of P. 

infestans primarily occurs via airborne sporangia, with the majority of airborne 

sporangia likely to be deposited within several meters of the inoculum source 
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(Waggoner 1952). Aerial dispersal over longer distances can take place, possibly over 

distances of several kilometers (Aylor et al. 2011; Skelsey et al. 2009), but survival of 

sporangia is a limiting factor for long-distance dispersal because sporangia are very 

sensitive to solar radiation (Mizubuti et al. 2000). Therefore, short range transport and 

subsequent infection from local sources of the pathogen is very important. 

Infection risk from a local source via aerially dispersed sporangia of P. 

infestans is determined by several factors (Aylor 1986; Skelsey et al. 2009): (1) the 

number of sporangia available for dispersal; (2) the fraction of the available sporangia 

that are released from sporangiophores and escape the canopy; (3) the dilution of 

sporangia by the wind and their removal from the air by deposition processes; (4) the 

survival of sporangia during flight; and (5) the efficiency of deposition of sporangia on 

susceptible tissue and subsequent infection. Thus, a general framework for aerial 

dispersal of P. infestans sporangia exists. However, there are constraints on using 

precise infection risk models based on each of these processes. Some steps are 

remarkably complicated, and others require information not easily acquired. Thus for 

current practical application, simplifications are necessary.    

The objective of this work was to construct a model of dispersal risk that could 

be used in near real-time in a Decision Support System such as “BlightPro”. This 

dispersal risk tool had to be based on information readily available such as weather 

data at specific locations, and reports of late blight occurrence in the vicinity of the 

crop of interest. The model is based on weather data at the site of interest, relations 

between disease intensity and sporangium availability, and functions describing the 

release and escape of sporangia from a crop canopy. The model is fit to precise data 

from an experiment in which disease intensity, numbers of available sporangia, 

weather data at the site, and escape of sporangia were measured (Aylor et al. 2001). 
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2. MATERIALS AND METHODS 

To quantify sporangia production as a function of disease intensity and weather, field 

experiments were conducted in Freeville, NY during the summer of 1999. Detailed 

methods for determining the relationship between disease severity and the quantity of 

sporangia available for release, and for measuring the rate of release and escape of 

sporangia from the canopy have been reported previously (Aylor et al. 2001). The 

summary data for this experiment have been reported (Aylor et al. 2001) but model 

construction requires the detailed individual data, which have not been reported 

previously.  

2.1 Environmental data 

Environmental data were collected as described by Aylor et al. (2001). Meteorological 

elements were monitored continuously near the center of the test site (Figure 3.1). 

Wind speed (u) and direction, air temperature (TH), relative humidity (RH), and solar 

irradiance were recorded (Figure 3.2 – Temp, RH, Wind speed, Solar irradiance). 

Wind speed was measured using cup anemometers located at heights of 0.7, 1.55, and 

3.25 m above the ground in 1999. Temperature and relative humidity were measured 

with a probe that was shielded from the sun and located at a height of 2.2 m. Solar 

insolation was sensed by a pyranometer at a height of 2.4 m. These instruments were 

sampled at 10-sec intervals and averaged for 1 h.  
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Figure 3.1. Field experiment to assess production, release and escape of sporangia 
from a potato crop infected with Phytophthora infestans. Meteorological equipment 
and spore samplers were positioned near the center of the experimental plot. 
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Figure 3.2. Summary illustration of factors contributing to escape of sporangia 
from a potato canopy. Temp - air temperature (°C); RH – relative humidity (%); 
Spore factor – measure of favorability for sporulation. Determined for periods with 
RH ൐ 85% for more than 6 hours. Favorability calculated using temperature for each 
hour of the event. Disease severity assessed visually each day as a percentage of leaf 
area infected with late blight. Source strength – total standing spore crop of sporangia 
(sporangia m-2) was estimated by counting number of lesions (ݔ) in four 0.25 ൈ 0.25 
m2 sampling grids and the average number of sporangia per lesion washed from three 
to five sampled lesions (ݕ). Spore crop was calculated as (ݔ	 ൈ  – Sporangia .(ݕ	
number of sporangia caught by a Burkard sampler above an infected potato canopy. 
Sporangia were counted in 15 min intervals and integrated to provide a total for each 
hour on each day. Wind speed – average hourly wind speed (m s-1) measured at 1.55 
m above the ground. Solar irradiance (MJ m-2) – sensed by a pyranometer at a height 
of 2.4 m.   
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2.2 Model components 

Disease severity. Disease ratings were determined by visually assessing each plot for 

the percentage of diseased foliage caused by late blight using a method described by 

Fry (1977) (Figure 3.2 – Disease severity). 

Sporulation. The first step required for aerial dispersal is the formation of 

sporangia on infected tissue - sporulation. Sporulation is influenced by relative 

humidity and temperature and occurs between approximately 7 – 25°C, with an 

optimum around 15°C (Crosier 1934; Mizubuti and Fry 1998). A sporulation event is 

identified as a period of at least 6 consecutive hours with RH > 85% or 90%, 

depending on the position of the RH sensor. For this study the critical threshold was 

set as 85% since the sensor was positioned above the canopy at a height of 2.2 m. If 

there has been at least 6 h with RH > 85%, temperature for each subsequent hour (with 

RH > 85%) is used in a relative sporulation rate (rSR) function (Eq. 1) to calculate the 

relative favorability of the temperature for sporulation.  

rSR	 ൌ	– 4.796667	 ൅ 	1.021578	 ൈ 	TH	– 	0.056437	 ൈ	THଶ 	൅ 	0.000931	 ൈ	THଷ	

ሺ7	 ൑ 	TH	 ൑ 	25ሻ	 (Eq.	1)	

The relative sporulation rate, rSR, calculated for each hour of the event (after 

the minimum 6 h), is then totaled to provide an estimate of the overall favorability of 

the period for sporulation (TrSR). This total is then input into the following function 

to determine a spore factor (SporeFCT) (Figure 3.2 – Spore factor): 

ܶܥܨ݁ݎ݋݌ܵ ൌ 	 ሺ݉ܽݔ	ሺሺሺܴܶܵݎሻ	/	ሺ24	 െ ,ሻሻݎ݋݌ܵܪܴ݋ܪ	 0ሻ	

	 (Eq.	2)	

where HoRHSpor is the minimum period of high relative humidity (RH > 85%) 

required for sporulation (set as 6 h). This approach is based on a modification of the 
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calculation of sporulation rate (SR) as used in the LB2004 model described by 

Andrade-Piedra et al. (2005). 

Release. After sporulation, the sporangia must be released from 

sporangiophores. Sporangial release is initiated by a drop in relative humidity, which 

results in hygroscopic twisting of the sporangiophore (Leach 1975; Neufeld et al. 

2013; Pinckard 1942). The fraction of released spores released every hour from 

sporangiophores, fr (-), is calculated using the function (Eq. 3) described by Skelsey et 

al. (2009). The calculated fraction released is inversely related to the humidity level 

below 90%.  

௥݂ ൌ ൝
	ܪܴ															0	 ൒ 90
1

ܪܴ െ 91
	ܪܴ			 ൏ 90

	

	 (Eq.	3)	

An additional function was included to account for the effect of rate of change 

in relative humidity on spore release (Eq. 4). The following additional factor was 

implemented: 

ݎ݋ݐ݂ܿܽ	ܪܴ	ܽݐ݈݁݀ ൌ ൝
௧ܪܴ	௧ିଶെܪܴ																																																										0		 	൏ 0

min 	ሺ	1,		
ሺܴܪ௧ିଶെ	ܴܪ௧ሻ

30
	ሻ													ܴܪ௧ିଶെ	ܴܪ௧ 	൐ 0

	

	 (Eq.	4)	

where RHt (%) represents relative humidity at time t and RHt-2 (%) represents the 

relative humidity two hours prior to t. The combination of the function fr (Eq. 3) and 

the delta RH factor (Eq. 4) was used to represent the favorability of environmental 

conditions for release. 

Escape. Spores that have been released must then escape the canopy of the 

crop to become available for long distance dispersal. The structure of the potato 
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canopy and its effect on wind statistics plays an important role in determining spore 

escape (Aylor et al. 2001). The fraction of released spores that escape the canopy, fe, 

was evaluated using two approaches. For the first approach we evaluated the method 

(Eq. 5) used by Skelsey et al. (2009) to calculate the escape fraction (fe): 

௘݂		ೄೖ೐೗ೞ೐೤ ൌ ඨܫܣܮቌെ݌ݔ݁	
ௗݒ
ଶݑߢ

ቍ	

	 (Eq.	5)	

where LAI (-) is the leaf area index, κ is the von Kármán constant (0.40), vs (m s-1) is 

the settling velocity for P. infestans sporangia estimated according to Gregory (1973) 

as 0.0085 m s-1, vd (m s-1) is three times	vs. The wind speed, ݑଶ (m s-1), was calculated 

from wind speeds, ݑଵ (m s-1), measured at ݄ଵ (3.25 m for this study), relative to a 

displacement height, d, using a standard logarithmic wind profile with stability 

correction (Eq. 6) (Arya 2001);  

ଶݑ ൌ ଵݑ	 ∗ ሺሺܰܮሺሺ݄ଶ െ ݀ሻ/ݖ଴ሻ/ሺܰܮሺሺ݄ଵ െ ݀ሻ/ݖ଴ሻሻሻሻ		

	 (Eq.	6)	

where ݄ଶ is the characteristic height at which wind speed is calculated for equation 6 

is assumed to be the canopy top (0.7 m), giving maximum escape. The displacement 

height, d, was set as 0.43 m following the approach used by Skelsey et al. (2009). LN 

is the natural log. The surface roughness length parameter, ݖ଴, was set as 0.1 to 

represent agricultural land with low crops and occasional large obstacles. As noted by 

Skelsey et al. (2009), a standard logarithmic wind profile is not valid for wind speeds 

at and just above the top of the canopy; however, a standard logarithmic wind profile 

is a desirable model simplification. This simplification allows for calculation of escape 

using wind speed transformed from a measurement at another height (e.g. 10 m 

forecast height).  
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For the second approach we used a method (Eq. 7) derived from Aylor (1999) 

to approximate the fraction of sporangia escaping from the top half of the canopy (fe) 

௘݂		ಲ೤೗೚ೝ 	ൌ 	
100

1 ൅ 7 ௫݂ܫܣܮ	 ൈ
௦ݒ
∗ݑ

	

	 (Eq.	7)	

where ݑ∗ represents the friction velocity (m s-1), and fx (-) is the horizontal projection 

of the leaf tissue area. The LAI for the crop was ≈ 5.4 m-2 m-2. As an approximation, 

we took half of the leaf area to be projected horizontally and half to be projected 

vertically, so that the horizontally projected component of the LAI was 2.7 (Aylor et 

al. 2001). The product of ௫݂ܫܣܮ (set equal to 2.7) is the amount of the canopy leaf area 

per ground area projected in the horizontal direction (Aylor et al. 2001). The choice of 

canopy structure (i.e. more erect or more horizontal) has a relatively modest effect on 

escape (Aylor et al. 2001). Friction velocity, ݑ∗,was calculated according to a formula 

derived from Arya (2001) and using parameters described by Aylor et al. (2001). 

It should be noted that spore escape from sources in lower levels of the canopy 

would be reduced relative to sources in the upper canopy. In addition, this simplified 

analysis is not appropriate for conditions where inertial impaction of spores plays a 

prominent role in deposition and where deposition on the ground is important (Aylor 

1999).  

After preliminary analysis of the two approaches, we decided to use the 

Skelsey method since both methods yield similar results (data not shown), but the 

Skelsey method required fewer meteorological inputs. More accurate alternatives 

could be implemented depending on available meteorological data.  

Algorithm implementation. In order to calculate spore factor, spore release, 

and spore escape, an algorithm was developed in the Python programming language. 

The algorithm uses hourly weather data as inputs (temperature (°C), RH (%), wind 
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speed (m sec-1)) as well as an estimate of disease severity at the source (%). The 

algorithm is not restricted to a daily time step or specific window for spore release, 

which enables the identification of potential sporulation events that span multiple 

days. As a first step, the algorithm identifies sporulation events and determines the 

favorability of each event for sporulation (Eq. 2). As a next step, the suitability of the 

conditions for release of sporangia is calculated for each hour using equation 3 and 

equation 4. Finally, the fraction of released sporangia expected to escape the canopy is 

calculated for each hour using equation 5. Inputs required for equation 5 are calculated 

using equation 6.  

Model components. To predict the number of sporangia escaping the canopy 

and becoming available for dispersal, the relationship between number of escaped 

sporangia measured and disease severity, spore factor, release fraction, delta RH 

factor, and escape fraction was first examined graphically for each day during the 

period from 8 August to 13 Aug. Based on the diurnal nature of spore escape (Figure 

3.3), statistical analyses were conducted using hourly spore capture data for the period 

from 8 am to 8 pm for each day (99% of sporangia escaped during this period). One 

outlier was excluded from the analysis (09 00 h observation on 12 August). The data 

point was excluded because sporangia were sampled at a time point when RH was 

recorded as 100%, which makes spore release highly unlikely. Given the 

acknowledged ≈ 30 min time accuracy of the Burkard data, it is entirely feasible that 

the sporangia sampled were actually released just after 10 00 h when RH decreased. 

An alternative explanation is that the RH sensor did not record an accurate reading for 

this hour. 
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Figure 3.3. Diurnal pattern of aerial concentration of Phytophthora infestans 
sporangia above a potato canopy during a late blight epidemic at Freeville, NY. 
Data represents sporangia captured by a Burkard sampler, with an orifice 0.7 m above 
the ground, over the period from 8 August to 13 August. Sporangia were counted in 15 
min intervals and integrated to provide a total for each hour on each day. The box 
plots are a graphical summary of the distribution of data. The horizontal line within 
the box represents the median sample value. The ends of the box represent the 25th 
and 75th quantiles. The whiskers that extend from the ends of the box are computed as 
3rd quartile + 1.5*(interquartile range), and 1st quartile - 1.5*(interquartile range).   

General linear models were used to describe the relationship between the 

number of sporangia and percent disease, spore factor, release fraction, delta RH 
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variance were met. For the spore prediction model, the fixed effects of percent disease, 

spore factor, release fraction, delta RH factor, escape fraction, and all interactions up 

to the 5th degree were tested using F tests based on the ANOVA decomposition. All 

predictors were continuous and were untransformed. For all models evaluated, a lack 

of fit test was conducted and assumptions of normal distribution and equal variance of 

experimental errors for the models were tested using methods described by Ott (2010). 

Briefly, residual values were plotted against observed values and visually assessed for 

any systematic pattern. A continuous normal curve was fit to the residuals distribution 

and goodness of fit tested with Shapiro-Wilk W test. 

The quality of spore model predictions was first assessed through a graphical 

comparison of predicted and observed hourly spore capture. To enable the graphical 

comparison, model results were back transformed by squaring the results from the 

prediction equation. Both summary and difference statistics were used to evaluate 

model performance. Coefficients of multiple determination (R2) were calculated to 

estimate the variability explained by the regression equations and the root mean square 

error, RMSE, was calculated to compare predicted and observed values. The final 

model was chosen based on the inclusion of biologically meaningful predictors and 

their interactions. However, to assist with selection process and to determine the 

simplest meaningful model, Akaike information criterion with a correction for finite 

sample size (AICc) was considered in the selection of the final model. Additionally, to 

guard against overfitting cross-validation was conducted by calculating the K-fold R 

Square (k = 10) for the model. Based on the principle of effect heredity, all of the 

lower-order components of significant higher-order effects were retained. All 

statistical analyses were conducted using JMP® Pro, Version 12.2.0. SAS Institute 

Inc., Cary, NC 
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3. RESULTS 

3.1 Disease severity and standing crop of sporangia 

Disease increased from 1.5 % on 8 August to 42% on 13 August (Figure 3.4 – Disease 

severity). The total standing spore crop (source strength) also generally increased over 

time, ranging from 10.4 ൈ 106 sporangia m-2 on 8 August to 2.9 ൈ 108 sporangia m-2 

on 12 August (Figure 3.4 – Sporangia). This wide range in standing spore crop is due 

to the increasing size of the source (new lesions and larger lesions) and due to the 

effects of different environments on sporulation by P. infestans.   

The height within the canopy was associated with the quantity of available 

sporangia. Numbers of sporangia were consistently higher in the lower canopy than 

the upper canopy (Figure 3.4 – Sporangia). In the lower canopy the mean standing 

spore crop ranged from 7.5 ൈ 106 sporangia m-2 on 8 August to 2.1 ൈ 108 sporangia 

m-2 on 12 August. In the upper canopy the mean standing spore crop ranged from 2.8 

ൈ 106 sporangia m-2 on 8 August to 9.9 ൈ 107 sporangia m-2 on 13 August. The 

difference in available sporangia between lower and upper canopy can be explained by 

the higher number of lesions present in the lower canopy, which was typically double 

or triple the number present in the upper canopy (data not shown). 

The standing spore crop varied among days, and was not always related only to 

disease severity. For example, despite the higher disease severity on 13 August (42%) 

relative to disease severity on 11 August (12%), the numbers of available sporangia 

were quite similar for those two days (Figure 3.4 – Sporangia). Conversely, a slight 

increase in disease (5%) was accompanied by a dramatic increase in total available 

sporangia (1.9 ൈ 108 sporangia m-2) between 10 August and 11 August. As illustrated 

below, these differences were associated with different environmental conditions on 

the different days.  
	  



	

81 

 

Figure 3.4. Disease severity and standing crop of Phytophthora infestans 
sporangia for the assessment period at the field site in Freeville, NY. The solid line 
represents the mean disease severity assessed visually as the percent of the leaf area 
infected on each date when sporangia were collected. Standing spore crop of sporangia 
was evaluated each morning, before dew dried from the plants (usually before 7:30 to 
8:00 am). Standing spore crop of sporangia (sporangia m-2) was estimated by counting 
number of lesions (ݔ) in four 0.25 ൈ 0.25 m2 sampling grids for two strata (lower 
canopy (ݔ௟): 0 to 0.4 m; upper canopy (ݔ௨): > 0.4 m) and the average number of 
sporangia per lesion washed from three to five sampled lesions (ݕ). Spore crop was 
calculated as (ݔ	 ൈ  Bars with blue fill are mean spore crop for lower canopy; bars .(ݕ	
with orange fill are mean spore crop for upper canopy; bars with purple fill are total 
spore crop for lower and upper canopy.        

3.2 Meteorological variables and dynamics of sporangia production, release and 

escape 

Hourly average air temperature, RH, wind speed, and solar irradiance followed a 

diurnal pattern (Figure 3.2). Air temperature increased during the day (06 00h to 18 
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00h) and decreased overnight (18 00 h to 06 00 h). During the study period, recorded 

temperatures ranged from 7.2 to 27.7°C. Often, relative humidity was inversely related 

to air temperature and decreased during the morning to a minimum around 12 00 h, 

increasing again in the late afternoon and early evening (18 00h), except during the 

day on 8, 11, and 13 August where RH did not decrease, or decreased slowly. Relative 

humidity ranged from 47.5 to 100%. Wind speed ranged from 0.45 to 2.64 m s-1 and 

global radiation ranged from 0 to 3.11 MJ m-2. Wind speed fluctuated during the day 

and was generally calm at night. Wind speeds were consistently higher on sunny days 

(9 August and 12 August) in comparison to overcast days with lower solar irradiance 

(10 and 13 August). Sudden increases in solar irradiance were accompanied by 

increased wind speeds, e.g. the afternoon of 8 August, when the maximum wind speed 

for the study was observed.  

Sporangia production. Several periods of high relative humidity were observed 

during the study, and using equation 2, these were used to calculate the spore factor 

(blue bars on the spore factor x-axis of Figure 3.2). The y-axis for the spore factor 

graph indicates the overall favorability of the temperature during the sporulation event 

(calculated using equation 2). High RH events ending on 9 August, 11 August, and 12 

August were favorable for sporulation, with temperatures close to the optimal 

sporulation temperature of 15°C. High RH events ending on 10 August and 13 August 

were less favorable. For example, air temperature overnight on 9/10 August dropped 

to 7.2°C which is unfavorable for sporulation – which is evident from the lower total 

spore crop (source strength) on 10 August, relative to 9 August, despite a slight 

increase in disease severity from the 9 August to 10 August (Figure 3.4 – Disease 

severity and Sporangia).  

Release of sporangia. Release of sporangia is initiated by a drop in relative 

humidity. On days where there was a spore crop available at the end of a sporulation 
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period (Figure 3.2 – spore factor x-axis), substantial release of sporangia occurred 

when relative humidity dropped below 90%, as described by the “release” function. 

However, the magnitude of release was also determined by the rate of change of 

relative humidity. For example, when the release events on 11 and 12 August are 

compared, both days started with comparable spore crops (Figure 3.2 – Source 

strength), relative humidity dropped below 90% on both days, and similar wind speeds 

were recorded during the dispersal events yet there was a substantially higher number 

of sporangia released on 12 August. This can be explained by the rapid drop in relative 

humidity on the morning of 12 August in comparison to 11 August when the relative 

humidity did not decrease to the same extent, or as rapidly.  

Escape of sporangia. Escape of sporangia followed a diurnal pattern, with 99% 

of sporangia being released and escaping between 08 00 h and 20 00 h (Figure 3.3). 

The daily observations appeared to be log-normally distributed. This distribution is 

likely due to the initial release of sporangia increasing as RH decreases and wind 

speed increases, followed by a decline as the numbers of sporangia available for 

release diminishes, and/or the conditions for escape become less favorable. Numbers 

of sporangia sampled during dispersal events ranged from 0 to 595 sporangia per hour 

(Figure 3.2 – Sporangia). As expected, the numbers of sporangia escaping the canopy 

increased with increasing available spore crop and increasing wind speed (Figure 3.2 – 

Wind speed). Wind speed is a major factor contributing to escape and this is accounted 

for in the escape function (Eq. 5). Solar irradiance is known to impact temperature, 

RH, and wind speed, which was evident over the course of the study. High solar 

irradiance was accompanied by increases in air temperature, decreases in RH, and 

increases in wind speed and volatility. On sunny days, 9 and 12 August, there were 

higher numbers of sporangia sampled during release events (Figure 3.2 – Sporangia). 

The highest recorded number of sporangia occurred on 12 August at 30% disease 
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severity, maximum spore crop of 2.9 ൈ 108 sporangia m-2, optimal conditions for 

release of sporangia, elevated wind speeds, and sunny day. Interestingly, on 8 August 

the wind speed increased to the maximum observed for the study (2.64 m s-1) but this 

increase was not accompanied by a major escape event. This could have been due to 

limited release of sporangia from sporangiophores because the RH did not decrease 

substantially on 8 August (Figure 3.2 – RH), or the fact that there was a very limited 

spore crop available (source strength). 

Model. To predict dispersal potential (numbers of airborne sporangia), a linear 

model consisting of various combinations of predictors (mean disease severity 

(Disease), spore factor (SporeFCT), release functions – fr (Release) and change in RH 

(DeltaRH), and escape function (Escape)), and their interactions was developed. The 

transformed response (square root of hourly number of sporangia) was well described 

by the linear model (P <0.0001). See Table 3.1 for effects included in the final model. 

All parameters included in the model were either significant according to F-tests (P ≤ 

0.03), or were retained according to the principle of effects heredity (Table 3.1). The 

model consisted of the linear combination of all terms shown in Table 3.2. Parameter 

estimates are shown in Table 3.2. Plots of residual versus observed values did not 

reveal any systematic pattern in the residuals (data not shown). Residuals were 

normally distributed (Shapiro Wilks W test, P = 0.26). The Lack of fit test was not 

significant (P = 0.13).  
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Table 3.1. Model effects and F-test results. 

Source z  Nparm DF
Sum of 
Squares F Ratio Prob > F

Disease  1 1 78.05297 27.4534 <.0001

SporeFCT  1 1 101.14 35.57 <.0001

Release  1 1 4.48554 1.5777 0.2149

DeltaRH  1 1 16.0139 5.6325 0.0215

Escape  1 1 39.08896 13.7487 0.0005

Disease*Release  1 1 99.78 35.10 <.0001

Disease*DeltaRH  1 1 47.76 16.80 0.0002

Disease*SporeFCT  1 1 157.12 55.26 <.0001

Release*Escape  1 1 25.82 9.08 0.004

Release*DeltaRH  1 1 14.60 5.14 0.0278

Release*SporeFCT  1 1 42.44 14.93 0.0003

Escape*DeltaRH  1 1 57.70 20.30 <.0001

Escape*SporeFCT  1 1 39.37 13.85 0.0005

DeltaRH*SporeFCT  1 1 92.80 32.64 <.0001

Disease*Release*DeltaRH  1 1 98.69 34.71 <.0001

Disease*Release*SporeFCT  1 1 46.54 16.37 0.0002

Disease*DeltaRH*SporeFCT  1 1 153.38 53.95 <.0001

Release*Escape*DeltaRH  1 1 21.39 7.52 0.0084

Release*Escape*SporeFCT  1 1 17.53 6.17 0.0164

Escape*DeltaRH*SporeFCT  1 1 17.85 6.28 0.0155

Disease - mean disease severity assessed visually as the percent of the leaf area infected on each date 
when sporangia were collected 
SporeFCT - sporulation factor calculated based on duration of high relative humidity (> 85%) prior to 
dispersal event and favorability of temperature for sporulation 
Release - proportion of sporangia predicted to be released from sporangiophores, fr (calculated based on 
function described by Skelsey et al 2009) 
DeltaRH - factor calculated to describe the effect of change of relative humidity on release of sporangia 
Escape - proportion of sporangia predicted to escape the potato canopy based on wind speed and leaf 
area index (calculated based on function described by Skelsey et al 2009) 
The sample size (n) for the model was 72 hourly observations of sporangia above a potato crop canopy. 
Observations were made between 08 00 h to 20 00 h on 8 - 13 August  
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Table 3.2. Parameter estimates and standard errors. 

Term z  Estimate Std Error t Ratio Prob>|t|

Intercept  ‐19.22 9.03 ‐2.13 0.0382

Disease  0.64 0.12 5.24 <.0001

Release  9.26 7.37 1.26 0.2149

Escape  ‐128.35 34.61 ‐3.71 0.0005

DeltaRH  ‐22.36 9.42 ‐2.37 0.0215

SporeFCT  44.59 7.48 5.96 <.0001

(Disease‐16.0563)*(Release‐0.60096)  ‐2.30 0.39 ‐5.92 <.0001

(Disease‐16.0563)*(DeltaRH‐0.17777)  0.42 0.10 4.1 0.0002

(Disease‐16.0563)*(SporeFCT‐0.48202)  2.34 0.32 7.43 <.0001

(Release‐0.60096)*(Escape‐0.11206)  315.42 104.67 3.01 0.004

(Release‐0.60096)*(DeltaRH‐0.17777)  62.84 27.73 2.27 0.0278

(Release‐0.60096)*(SporeFCT‐0.48202)  ‐88.50 22.91 ‐3.86 0.0003

(Escape‐0.11206)*(DeltaRH‐0.17777)  ‐425.31 94.41 ‐4.51 <.0001

(Escape‐0.11206)*(SporeFCT‐0.48202)  164.21 44.13 3.72 0.0005

(DeltaRH‐0.17777)*(SporeFCT‐0.48202)  70.54 12.35 5.71 <.0001

(Disease‐16.0563)*(Release‐0.60096)*(DeltaRH‐0.17777)  ‐5.08 0.86 ‐5.89 <.0001

(Disease‐16.0563)*(Release‐0.60096)*(SporeFCT‐0.48202)  ‐3.15 0.78 ‐4.05 0.0002

(Disease‐16.0563)*(DeltaRH‐0.17777)*(SporeFCT‐0.48202)  7.56 1.03 7.35 <.0001

(Release‐0.60096)*(Escape‐0.11206)*(DeltaRH‐0.17777)  691.98 252.30 2.74 0.0084

(Release‐0.60096)*(Escape‐0.11206)*(SporeFCT‐0.48202)  ‐357.76 144.08 ‐2.48 0.0164

(Escape‐0.11206)*(DeltaRH‐0.17777)*(SporeFCT‐0.48202)  253.46 101.15 2.51 0.0155

 z Terms are centered on their mean e.g. mean Disease = 16.0563 
Disease - mean disease severity assessed visually as the percent of the leaf area infected on each date 
when sporangia were collected 
SporeFCT - sporulation factor calculated based on duration of high relative humidity (> 85%) prior to 
dispersal event and favorability of temperature for sporulation 
Release - proportion of sporangia predicted to be released from sporangiophores, fr (calculated based on 
function described by Skelsey et al 2009) 
DeltaRH - factor calculated to describe the effect of change of relative humidity on release of sporangia 
Escape - proportion of sporangia predicted to escape the potato canopy based on wind speed and leaf 
area index (calculated based on function described by Skelsey et al 2009) 
The sample size (n) for the model was 72 hourly observations of sporangia above a potato crop canopy. 
Observations were assessed between 08 00 h to 20 00 h on 8 - 13 August  
The R square for the model was 0.91 and the Root Mean Square Error was 2.86 sporangia per hour 
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A significant proportion of the variability in hourly sporangia numbers was 

explained by the regression equation (R2 = 0.91). Graphical comparison of predicted 

and observed values of the back transformed response showed generally good 

agreement in the pattern and magnitude of the response between the predicted and 

observed values (Figure 3.5). Root mean squared error was used to compare the 

predicted and observed values of the transformed response and a good fit of the model 

was observed (RMSE = 1.69 ඥܽ݅݃݊ܽݎ݋݌ݏ	݄ିଵ ). Cross-validation illustrated that 

there was a reasonable fit of the model (K-fold R2 = 0.68). 

 

Figure 3.5. Comparison between between predicted and observed numbers of 
sporangia above a potato canopy infected with Phytophthora infestans. Predictions 
from the dispersal-risk model are shown in red (after back transforming). The 
observed number of sporangia sampled with a Burkard spore sampler are shown in 
blue. The hourly observations for the statistical analysis were limited to the hours from 
08 00 h to 20 00 h, since 99% of sporangia were sampled during this period. 

Interactions between predictors were expected given the complexity of 

processes involved in production, release, and escape of sporangia. Significant 3rd 

order interactions between predictors were observed (Table 3.1). To gain an 

understanding of the interactions occurring between predictors and their effects on the 
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response, we investigated prediction profile plots at various levels of each predictor, 

while centralizing other predictors at their mean values. 

Disease severity prediction profiles. At increasing disease severity levels we 

observe that there was a strong and increasingly elevating effect of sporulation factor 

(above the mean spore factor level) on the predicted numbers of airborne sporangia 

(Figure 3.6). This indicates that as disease severity level increases the level of 

sporulation becomes an increasingly important factor. There was also a weak but 

increasingly elevating effect of Release at levels of Release below the mean.  

Spore factor prediction profiles. As the level of the spore factor predictor 

increased there was an increasingly strong effect of deltaRH factor. Levels above the 

mean deltaRH factor elevated the predicted numbers of airborne sporangia (Figure 

3.7). At increasing sporulation factor levels we observe that there was a strong and 

increasingly elevating effect of disease severity (above the mean disease severity 

level) on the predicted numbers of airborne sporangia. In other words, there is a strong 

interaction between sporulation and disease severity and under favorable conditions 

for sporulation the level of disease severity at the source (infected tissue that can 

potentially sporulate) becomes increasingly important.  

Release prediction profiles. At low levels of release there was a strong 

elevating effect of sporulation factor on the number of airborne sporangia predicted, 

but this elevating effect diminished as release increased (Figure 3.8). This suggests 

that under highly favorable conditions for sporulation low levels of release are 

important but this sensitivity decreases as the level of release increases. There was 

also a weak reductive effect of escape, which diminished as release increased. 

DeltaRH factor prediction profiles. As the level of deltaRH factor increased 

there was an increasingly reductive effect of escape (at levels above the mean for 

escape) on the predicted number of airborne sporangia. This was in contrast to an 
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increasingly elevating effect of spore factor (at levels above the mean for spore factor) 

(Figure 3.9). In other words, more sporangia were observed above the canopy when 

high rates of change of RH occurred following an event that was highly favorable for 

sporulation, but this was moderated by the level of escape.  

 

Figure 3.6. Prediction profiles for levels of disease severity. The Y-axis is the 
model response - predicted square root of spores. Four levels of disease severity are 
shown in the four panels and all other predictors are centered at their mean value. The 
value in red above the x-axis is the level of the predictor.  
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Figure 3.7. Prediction profiles for levels of the spore factor predictor 
(SporeFCT). The Y-axis is the model response - predicted square root of spores. Four 
levels of SporeFCT are shown in the four panels and all other predictors are centered 
at their mean value. The value in red above the x-axis label is the level of the 
predictor. 
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Figure 3.8. Prediction profiles for levels of the release predictor. The Y-axis is the 
model response - predicted square root of spores. Four levels of release are shown in 
the four panels and all other predictors are centered at their mean value. The value in 
red above the x-axis label is the level of the predictor. 
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Figure 3.9. Prediction profiles for levels of the deltaRH predictor. The Y-axis is 
the model response - predicted square root of spores. Four levels of deltaRH are 
shown in the four panels and all other predictors are centered at their mean value. The 
value in red above the x-axis label is the level of the predictor. 
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Figure 3.10. Prediction profiles for levels of the escape predictor. The Y-axis is the 
model response - predicted square root of spores. Four levels of escape are shown in 
the four panels and all other predictors are centered at their mean value. The value in 
red above the x-axis label is the level of the predictor. 

Escape prediction profiles. Increases in the level of escape were accompanied 

by interactions with deltaRH factor, release, and spore factor. A strong and variable 

interaction occurred with deltaRH. At a low level of escape there was a strong 

elevating effect of deltaRH factor on the predicted number of airborne sporangia. As 



	

94 

the level of escape increased this changed to an increasingly reductive effect of 

deltaRH for levels above the mean deltaRH factor. A significant but weak reductive 

effect of release, was observed with increasing levels of escape. Additionally, an 

increasingly elevating effect of spore factor occurred with increasing levels of escape 

(Figure 3.10). 

4. DISCUSSION 

Using previously published data (Andrade-Piedra et al. 2005; Aylor et al. 2001; 

Crosier 1934; Mizubuti and Fry 1998), and some unpublished experimental data 

concerning quantitative relationships between source strength and dispersal, we have 

constructed a model to predict dispersal-risk. With field-based estimates of disease 

severity at a known source of late blight, variations in aerial sporangia above the crop 

canopy were well described (P < 0.0001) by the dispersal-risk model (adjusted R2 = 

0.91; RMSE = 2.86 sporangia h-1).   

Knowledge of the availability of sporangia from infected sources is key to 

successful modelling of inoculum dispersal. Estimation of source strength is often 

achieved through daily measurements of the standing spore crop at the study site. 

Despite the importance of this information, it is almost never available on a near-real 

time basis. Additionally, determination of the standing spore crop is labor-intensive 

and time-consuming, and is thus impractical for regional forecasting programs that use 

field surveys to determine the geographic extent and strength of inoculum sources 

(Aylor et al. 2001; Neufeld et al. 2013). To avoid the need to manually estimate 

standing spore crop, the model utilizes common field-based assessment (or estimation) 

of disease severity in combination with readily available meteorological data to 

provide approximations of sporangia availability and ultimately predict the relative 

number of sporangia h-1 that is likely to escape the canopy into the atmosphere above 

an infected field and become available for dispersal. 
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To characterize the relationship between disease severity and availability of 

sporangia, we assessed the standing spore crop prior to dispersal each day for the 

duration of the study. The wide range of total available standing spore crop observed 

in this study was due to the increasing size of the source (new lesions and larger 

lesions) and due to the effects of different environments on sporulation by P. infestans. 

In addition, the height within the canopy was associated with the quantity of available 

sporangia. Numbers of sporangia were consistently higher in the lower canopy than 

the upper canopy. This was largely due to differences in numbers of lesions at the two 

canopy levels. However, the number of sporangia per lesion varies greatly, even in 

apparently uniformly infected plants. Differences result from variation in 

meteorological variation in the environment, from micrometeorological variations in 

the plant canopy, and from size and age of the lesions (Rotem 1988). There is usually 

a relatively short period of several days between the appearance of a lesion, its 

expansion over the whole leaf and death of the leaf. Completely blighted and dead 

leaves produce few, if any, sporangia (Bashi et al. 1982). As a result, sporangia 

production will increase up to a maximum, as disease severity increases, and then 

decrease thereafter as the amount of healthy leaf area decreases. In this study, the 

highest disease severity for which we have an assessment of available sporangia was 

42%. It is likely availability of healthy tissue had not yet become a limiting factor for 

sporangial production. For this reason it should be noted that the model should not be 

used at disease severities above 42% since this will be beyond the x-space of the 

disease severity predictor.   

A key next step in the process of dispersal is the release of sporangia from 

sporangiophores. Numbers of sporangia captured at canopy height (0.75 m) showed a 

strong diurnal pattern with majority of release recorded between 08 00 h and 20 00 h. 

This diurnal pattern of release is in line with those reported for other airborne 
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oomycete pathogens (Aylor and Taylor 1983; Neufeld et al. 2013). Release of P. 

infestans sporangia and of other downy mildew pathogens has been shown to be 

associated with a decrease of RH and evaporation of moisture from leaf surfaces 

(Leach 1975; Neufeld et al. 2013; Pinckard 1942). Release of P. infestans sporangia 

near our inoculum source varied considerably across each of the sampling days. For 

example, there was a substantial difference in the number of sporangia captured on 11 

August and 12 August despite comparable source strength, spore factor, and escape 

potential. A major difference between the two days was the rate of change of RH 

during the dispersal event, since there was a slow decline of RH during the event on 

11 August in comparison to the rapid change in RH on 12 August. This motivated the 

development of the function to describe the effect of change in RH – deltaRH factor. 

The importance of the deltaRH factor was supported by its involvement in the 

significant three-way interaction between disease severity, sporulation factor, and 

deltaRH (P < 0.0001) as well as the three-way interaction between disease severity, 

release, and deltaRH (P < 0.0001).  

Escape of sporangia from the canopy is influenced by several factors including 

wind speed and turbulence, height of spore release, and canopy structure (Aylor 1990). 

Conditions over the course of the study were moderately favorable for escape. The 

higher in the canopy the inoculum source is located and the stronger the wind speed, 

the greater the number of sporangia that can escape the canopy (Aylor et al. 2001). A 

wind speed of 1 to 2 m s-1 is sufficient to remove a sizeable proportion of the available 

sporangia from a potato crop canopy. These same speeds can transport sporangia for 

10 to 20 km in less than 3 h (Aylor et al. 2001). However, the ability of the transported 

sporangia to cause infection will be dependent on their survival in transit. Solar 

irradiance, temperature, and relative humidity are the most important variables that 

influence the survival of P. infestans sporangia with the viability of sporangia exposed 
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for 1 h on a sunny day being reduced by ≈ 95% (Mizubuti et al. 2000). The dispersal 

distance of viable P. infestans sporangia will depend on inoculum source strength, 

escape fraction, and survival of sporangia in transit. 

Our calculations of escape fraction are based on the assumption of neutral 

atmospheric conditions. It is possible that unstable atmospheric conditions could result 

in escape values higher than our escape functions would calculate. We have also 

assumed that the source is present in the top of the canopy, yielding maximum escape. 

Additionally, the LAI for period of data capture was relatively consistent, so we could 

assume a constant LAI for our calculations. In reality, high disease levels will cause 

the LAI to decline. This limits the current model to use in situations with a full crop 

canopy and disease severity between 1.5 and 42 %, as this was the range of disease 

severity over the course of the study.   

A major goal of this study was to use data to develop a dispersal-risk model 

that will eventually form the basis for a dispersal-risk algorithm that can be 

implemented on the BlightPro decision support system (Small et al. 2015b) to improve 

the efficiency of late blight management. The objective of the algorithm is to use 

reports of late blight in combination with weather data to predict conditions that will 

enable P. infestans to sporulate from infected tissue at a known site, to be dispersed 

from that site, to be transported in a viable condition to a second site, and to germinate 

and infect a potato or tomato crop at that second site. Currently, the model developed 

from this study is not connected to a particle dispersion model. Progress is being made 

with respect to our understanding of aerial transport of P. infestans between fields 

(Aylor et al. 2011). In future, the dispersal-risk tool could be integrated with a 

Lagrangian stochastic model (Aylor et al. 2001; Aylor et al. 2011) and other 

atmospheric transport models, such as HYSPLIT (Draxler and Hess 1998) or 

FLEXPART (Stohl et al. 1998), to predict pathways of sporangia transport and 
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deposition across a range of spatial scales. Weather data along the projected pathways 

of sporangia transport can be used to predict the viability of the sporangia and 

suitability of conditions for infection based on RH, temperature, and exposure to solar 

radiation which would enable predictions of risk of disease outbreak. These future 

developments could follow the framework described by Aylor (1986), or Skelsey et al. 

(2009). 

Skelsey et al. developed a spatial component for a decision support system as a 

proof of concept (Skelsey et al. 2009) and we have used some components of this 

model. Although we have used some components, there were three 

limitations/assumptions that motivated us to develop a new algorithm: 1) a constant 

source strength is assumed which is a desirable simplification if no source information 

is available, but this information can be updated if known sources are identified; 2) the 

release function was not empirically validated for P. infestans and required the 

addition of the delta RH factor in the present study to adequately represent observed 

release patterns; and 3) dispersal events were limited to between 06 00 h to 14 00 h. 

The diurnal pattern identified in the present study identifies 08 00 h to 20 00 h as 

being the period when 99% of sporangia were sampled above the potato canopy 

(Figure 3.3). Supporting the importance of sporangia sampled after 14 00 h, Bashi et 

al. (1982) found spores released later in the afternoon can be an important source of 

viable spores.  

Current forecast systems on the BlightPro DSS assume that late blight is 

present in the production area. The ability to predict the potential arrival of pathogen 

inoculum could improve the efficiency of late blight management. Integration of 

knowledge from USAblight on confirmed occurrence information into the dispersal-

risk tool will enable site-specific risk prediction for the user’s location. We expect the 

new forecast to provide highly specific (and therefore much improved) information 
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concerning potential dispersal of inoculum. In places where there is susceptible foliage 

year round (Florida), the pathogen may be available year round, and a “dispersal alert” 

based on the algorithm described in the present study could be very helpful to 

schedule fungicide applications. In other locations, there can be large differences in 

planting dates and the “dispersal alert” would be very helpful for later planted crops.  

We propose that the dispersal-risk algorithm that we have developed be used to 

assist with timing of fungicide applications (in a similar manner to Skelsey et al. 

(2009)), but that it also be used to inform choice of fungicide active ingredient. There 

are diverse active ingredients used against late blight (with varying degrees of 

efficacy) (Mayton et al. 2001), including some fungicides with the ability to be 

transported within the plant and with activity against established infections (Milgroom 

and Fry 1988). We foresee the output from the algorithm being used to modify 

recommendations from existing late blight forecasts, such as Simcast, to provide 

information that would inform users of diverse dispersal events that might require 

diverse fungicides.  

For practical purposes, more data will be required to validate the results 

reported in this study, particularly where the relationship between disease severity and 

aerial concentration of sporangia or sporangia escape is intended for use within a 

predictive framework on the BlightPro DSS. Although the dispersal-risk model that 

we developed described the variations in aerial sporangia above the crop canopy very 

well for the data set on which it was constructed, it is likely that the model is overfit 

because of the limited combinations of disease severity and environmental conditions 

included in the dataset. We used cross-validation (k-fold) to verify that the model was 

not extremely overfitted and the K-fold R2 (0.67) indicated a reasonable model fit. In 

order to validate the current model it will be necessary to train and test it against a 

broader range of combinations of disease severity levels and environmental 



	

100 

conditions. Data such as those generated by Aylor et al (Aylor et al. 2011) would be 

particularly useful in this regard.  

In the context of the BlightPro decision support system, the dispersal-risk 

model is intended as a tool to provide information that will inform decisions relating 

to application of fungicide. Ultimately, the accurate prediction of exact numbers of 

sporangia arriving is not essential as long as the resulting spray decision is 

appropriate. For this reason the model is being evaluated for its utility as a 

classification tool (identifying high-risk dispersal events).  
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