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Abstract 

A principal aim of population biologists is to understand the role of intraspe
cific competition at the metapopulation level (populations of populations). 
We study the dynamics of a two-patch age-structured metapopulation model 
where the local (patch) intraspecific competition regimes are of the same 
type (scramble or contest) or mixed (scramble and contest) types. Metapop
ulations behave as single patch systems under the same competition regime 
whenever dispersal is symmetric and all local populations find themselves un
der contest competition regimes. However, multiple attractors are possible 
whenever a local patch is under scramble competition regime. The results of 
this research demonstrate that dispersal between patches, and age-structure 
provide an evolutionary advantage. 
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1 Introduction 

The importance of spatial structure and the physiological traits of individual 
species, both in controlling the total population sizes and the local variations 
in densities, in real-world populations are well known [11-13]. Chronologi
cal age of individual species is an example of such physiological traits. The 
model for this study is a juvenile-adult two-age class discrete-time metapop
ulation model where local populations are connected by dispersal. Previous 
studies on the impact of intraspecific competition at the meta population level 
(populations of populations) were initially presented in genetics by Wright [7], 
ecology by Levins [8,9] and epidemiology by Ross [10]. Our model relates to 
species that thrive at very low densities with no interference - such species 
are called pioneer species. For example, pine trees, fish population, and birds. 

Similar studies on metapopulation dynamics were carried out by C. Castilla
Chavez and A. Yakubu [16]. However, their studies did not take in account 
age structure. Hence, in this paper, we extend their work to include a spe
cific simple age-dependent population structure. Specifically, we divide each 
patch population into non-reproductive juveniles and reproductive adults. 
Thereafter, our patch system is regulated by discrete-time Ricker's and Ver
hulst equations. 

Scramble and contest competition are two extreme forms of intraspecific com
petition for resources. A population that is governed by scramble competi
tion support all individuals-even the non-reproductive ones. That is, the 
resources are distributed equally among individuals. Therefore, beyond a 
threshold density, none can get enough of a share of the resource to survive 
or reproduce. This system is modeled by the Ricker's equation where new 
recruits face scramble competition [4-6]. In contrast, in contest competition 
the resources are distributed unequally. Some individuals get enough of a 
share of the resource to survive and reproduce at the expense of the rest. 
The Verhulst model is an example where new recruits face contest competi
tion [4-6]. 

The simulations considered for each patch system demonstrates that in single 
contest intraspecific competition regime the population is either surviving or 
dying as we vary the growth rate with respect to the growth speed ratio. In 
contrast, the local dynamics for the single scramble competition regime show 
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multiple attractors, Haft bifurcation, and coexisting chaotic attractors. In 
two-patch systems with dispersal, contest-contest intraspecific competition 
the dynamics are the same as in single contest with symmetric and asym
metric dispersal, also rescue effect from patch one to patch two occurs. 

2 Single Patch System 

In this section, we study the single patch model 

J(n+l) Ang(An) (1) 

Acn+I) = sln 

where ln and An represent the juvenile and adult population at generation 
n, and where the per capita growth rate g : [0, oo) --t [0, oo) is a strictly 
decreasing continuous function and s is the constant proportion of juveniles 
that survive to adulthood in one generation. 

If we let In = sln, An = An and g = sg, then in the new variables (1) 
becomes 

J(n+l) = AngAn (2) 

A(n+l) Jn. 

Consequently, we study the following system: 

l(n+l) = Ang(An) (3) 

A(n+l) ln. 

After two generations the population of juveniles are governed by 1(n+2) = 
lng(ln) and that of the adults by A(n+l) = Ang(An)· In system (3), the pop
ulation is under scramble competition if the reproduction function f(x) = 

xg(x) has a positive fixed point and same initial conditions overshoot it un
der iteration. For example, iff is the Ricker's model f(x) = xer-x then the 
population is under scramble competition. 

The population is governed by contest competition if f(x) = xg(x) has a 
positive fixed point and no initial condition overshoot it under iteration. For 
example, iff is the Verhulst's model f(x) = rxfx + b then the population is 
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under contest competition. 

Theorem 1: In system (3) if g < 1 then the population goes extinct. For 
example, in Verhulst's model g < 1 if r < b. 

Theorem 2: If g : [0, oo) ---+ [0, oo) is a strictly decreasing function and lim 
g(x) < 1, then there is no population explosion in system (3). For example, 

J(n+1) 

A(n+1) 

A(n+2) 

Ang(An) <An 

Jn 

J(n+2). <An 

The model has a compact attractor (trapping region) that contains the 
omega limit set of every point. Notice that (0, 0) is a fixed point in sys
tem (3). Moreover, if g(O) > 1 then system (3) has a positive fixed point at 
(g-1 (1), g- 1 (1)). For example, if g(x) = er-x the positive fixed point is (r, r) 
and if g(x) = r jx + b, the positive fixed point is (r- b, r- b) when r >b . 

2.1 Contest competition: Verhulst's model 

If juveniles and adults are governed by Verhulst's model in every two gener
ations, then system (3) becomes 

(4) 

We now analyze the system (4), the fixed points are (0,0) and (r- b,r- b). 

2.1.1 Stability of Fixed Points 

To determine the stability of the fixed points we calculate the Jacobian matrix 

So, 

B(O, 0) = ( ~ & ) 
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we find the traceB = 0 and the det B = -rfb. In accordance to the Jury 
test [1], determining the stability of a fixed point is as follows: !traceB! < 
1 + det B < 2; 0 < 1 + r /b < 2, then the point is stable. Here, the fixed 
point (0,0) is stable only for the case where r < b, resulting global population 
extinction (see Figure 1). 

Linearizing about the fixed point (r- b, r- b) we obtain the Jacobian 

( 0 !?. ) B(r,r) = 1 0 

and we get the traceB = 0 and the det B = -bfr. A 
gain we use the Jury test to determine the interval of stability for this 

fixed point which is 0 < 1 + ~· The condition for stability of the fixed point 
(r - b, r -b) is r > b, as a result the population survives but there is no 
population explosion (see Figure 2) . 

- 1 ... 1.: 

:-~ 
.. 
-· - ~ ...... ., •. 

. .-· ·.· ·:-~ ... :·· . 
. . . -

... .. . 
~~- 0 1 r. ,. ' , 

Figure 1: Trajectory graph where r <b. 
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Figure 2: Trajectory graph where r > b. 

2.2 Scramble competition: Ricker's model 

If juveniles and adults are governed by Ricker's model in every two genera
tions, system (3) reduces to 

(5) 

now we analyze system (5), the fixed points are (0, 0) and (r, r). 

2.2.1 Stability of Fixed Points 

To determine the stability of the fixed points we calculate the Jacobian matrix 

Substituting each fixed point into the Jacobian to determine its stability: 

( 0 er ) B(O, 0) = 1 O . 

By evaluating the Jacobian, one gets the trace equal to 0 and the determinant 
equal to -er. The eigenvalues of B(O, 0) are ..\ = ±R > 1, thus, the fixed 
point (0, 0) is unstable. We evaluate the Jacobian at the fixed point (r, r) 
and obtain 

B(r,r) = ( ~ eo ~reo). 

One gets the trace B = 0 and the det B = r- 1. The eigenvalues are thus 
..\ = ±vr=-r. 
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By the Jury test of stability, if JtraceBJ < 1 + det B < 2, that is, if 0 < 
2- r < 2, the point is stable. Thus if 0 < r < 2 the fixed point (r,r) is stable 
(see Figure 3). If r = 2 B(r, r) has an eigenvalue equals -1, a signature for 
Hopf bifurcation. Figure 2 shows Hopf bifurcation in system ( 5) as we vary 
r. System (5) supports multiple attractors with fractal basin border (refer to 
Figure 4 and 5). 

. - .. 
=" •• -.•• •• -:~ ..... 
... :.-·: •':"•"-

ti."~.:~ ·.··,·): '•' :::-: i i., ·, ~~;~) 

Figure 3: Trajectory graph where 0 < r < 2. 

Figure 4: Hopf bifurcation diagram. 
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Figure 5: Basin of attraction when r = 2.7, with 2 coexisting chaotic attrac
tors. 

3 Two Patch Systems 

3.1 Contest-Contest competition 

Now, we study the impact of dispersal in a two patch model with subpopu
lation under contest-contest competition. 

Let d1 and d2 be the dispersal rate of the first species and d3 and d4 be 
the dispersal rate of the second species characterize by (A1 , J1) and (A2 , J2 ) 

respectively. Where r1 and r2 are the carrying capacity of population for 
the first and second species respectively and b1 and b2 are the growth speed 
ratio's for the first and second species. The equation for the contest-contest 
competition is given by 

J1(n + 1) 

Al(n+1) 

J2(n + 1) 

A2(n + 1) 

(6) 

(7) 

For the single patch system we were able to determine the fixed points and 
find there stability mathematically. A graphically analysis is considered for 
our two-patch system under contest-contest competition. 
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Figure 6: Trajectory graph where r > b, symmetric dispersal. 

r- -

Figure 7: Trajectory graph where r > b, asymmetric dispersal. 

As shown above in Figure 6 and 7, contest-contest competition is similar to 
single contest competition. The dynamics is locally stable fixed point, when 
r > b with symmetric and asymmetric dispersion, the population survives 
without explosion. Similar to single contest regime for r < b the population 
goes extinct. The coupling of one dying and one living patch result a rescue 
effect, that is population in patch decreases while population in patch two 
increases (look at Figure 8). 
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Figure 8: Rescue Effect 

3.2 Scramble-Scramble competition 

In this section, we study a two-patch population with dispersal that is mod
eled in accordance with the Ricker's equation . 

Let d1 and d2 be the dispersal rate of the first species, d3 and d4 be the 
dispersal rate of the second species characterized by (A1 , J1) and (A2 , J2 ) 

respectively. Where r 1 and r 2 are the reproduction rate for both populations 
respectively. The Ricker's equation for the scramble-scramble competition is 
given by 

J1(n + 1) 
Al(n+1) 
h(n + 1) 
A2(n + 1) 

(1- dl)Al(n)ert-At + d2A2(n)er2-A2(n) 

( 1 - d3) J1 ( n) + d4 J2 ( n) 
(1- d2)A2(n)er2-A2(n) + dlAl(n)ert-At(n) 

(1- d4)J2(n) + d3J1(n). 

3.2.1 Graphical Analysis of Scramble-Scramble competition 

(8) 

(9) 

As shown in section[2], for the single species we were able to calculate fixed 
points and stability mathematically. However, in this section a graphical 
analysis of our system is more efficient. Denoting P1 and P2 the population 
of both species respectively, we produce a graphical analyzation of the effects 
of dispersion. 
First, we consider two local patches under scramble competition regime, 
where both patches are on stable period four cycles (without dispersal). With 

10 



• 

• 

• 

sufficiently large symmetric dispersal between the two patches, the metapop
ulation follows the local dynamics and lives on a period four cycle. 

J 

A 

Figure 9: Period-4 Trajectory for P1 

When the dispersal rate from Patch 2 to Patch 1 is fixed while we increase 
the dispersal rate from Patch 1 to 2, a remarkable bifurcation occurs. The 
metapopulation has a positive fixed point while the local dynamics live on 
period four attractors. 

J 

A 

Figure 10: Trajectory graph for P1 at fixed point. 
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J 

A 

Figure 11: Trajectory graph for P2 at fixed point. 

Local patches governed by Rickers's Model have two coexisting chaotic at
tractors with fractal basin boundaries of attraction whenever r = 2. 7 and 
there is no dispersal. 

Figure 12: Basin of Attraction for a Single Patch at r = 2. 7 

With symmetric dispersal, the metapopulation follows the single patch dy
namics and has two coexisting chaotic attractors with fractal basin bound
aries. However, the metapopulation dynamics is on a fixed point whenever 
the dispersal rate from one patch to another is high. In other words, dis
persion between two initially chaotic patches results in having much simpler 
dynamics. In our case, this occurs at d1 = .7 and d2 = .1 
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Figure 13: Trajectory graph of fixed point for g chaotic attractor as local 
dynamics. 

·:, .. 

A 

Figure 14: Trajectory graph of fixed point for P2 chaotic attractor as local 
dynamics. 

At intermediate values of dispersal rates, the metapopulation changes from 
chaotic dynamics to simple periodic dynamics. For example, at d1=.4, we 
have both patches experiencing four cycle dynamics. 

3.3 Scramble-Contest competition 

Now we study a two patch system that is modeled in accordance with the 
combination of the Verhulst's and Ricker's equations. 

Denoting d1 and d2 as the dispersal rate of the first species, which is gov
erned by the Ricker's equation, and d3 and d4 be the dispersal rate of the 
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second species, which is governed by the Verhulst equation, characterize by 
(A1, 11) and (A2 , h) respectively. Denoting r1 and r2 are the carrying ca
pacity of population for the first and second species, and s1 and s2 are the 
fraction capacity of juveniles becoming adults for the first and second species 
respectively. The parameter b represents the growth speed ratio of the sec
ond species. The equations of motion for the scramble-contest competition 
is given by 

J1(n + 1) 

A1(n + 1) 

J2(n + 1) 

A2 (n + 1) 

(1- d )A (n)erl-Al(n) + d A2(n)r2 
1 1 2 A2(n) + b 

(1- d3)J1(n) + d4h(n) 

(1- d ) A2(n)r2 + d A (n)erl-Al(n) 
2 A2(n) + b 1 1 

(1- d4)J2(n) + d3J1(n). 

(10) 

(11) 

3.3.1 Graphical Analysis of Scramble-Contest competition 

Denoting the population of first species,the scramble population, as P1 and 
the population of second species, the contest population, as P2 , we graphically 
examine the Scramble-Contest system. 
First, we examine one-dimensional dispersion from P1 to P2 . We have pre
viously found that if our initial value of the reproduction rate for P1 is set 
to certain values our local dynamics becomes a period-4 oscillation. We cou
ple a period-4 scramble population with a contest population where fl,b, i.e. 
a surviving contest population. It is noticed that as dispersal from P1 to 
P2 is increased both populations approach a stable fixed point. This fixed 
point occurs when the dispersal rate is greater than .5. We also couple a 
chaotic attracting scramble population with a surviving contest population. 
The value of the reproduction rate for the scramble population is 2.8. The 
characteristics of this coupling is similar to the previous example. Here, we 
move from a chaotic attractor (Figure 15) to a period-eight oscillation and 
so on until we reach a stable fixed point. Our stable fixed point also occurs 
when the value of the reproduction rate is greater that .5 (Figure 16). Gen
erally, in the couple of scramble population, governed by the Ricker's model, 
and a contest population, governed by the Verhulst's model, with dispersion 
from the scramble population to the contest population, an increase of dis
persion is equivalent to adjusting parameters and analyzing local dynamics 
for the scramble population. In this population the decrease of dispersal 
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has the same effect as increasing the reproduction rate in its local dynamics. 
The contest competition gains the ability to handle multiple attractors where 
as before it could not. Figure 17 shows the system dynamics as dispersion 
varies. 

Figure 15: Basin of attraction for chaotic attractor. 

Figure 16: Stable fixed point at d1 = .51 

15 



• 

• 

• 

Figure 17: Bifurcation about d1 

Here, there is dispersal from the contest competition population P2 into the 
scramble competition population P2 . This dispersal effects the size of P1 

but not the actual periodic oscillations in P1. The competition population 
decreases when dispersal is introduced and dies out soon after. 
Now we look at two-dimensional dispersion. First, we have the case of sym
metric two-dimensional dispersal. Symmetric dispersals behaves the same as 
one way dispersal from P1 to P2 . As dispersals are increased symmetrically 
a stable fixed point is approached. Fixed points also occur for values of the 
dispersal rate greater than .5 (see Figure 15 and 16). 
The introduction of asymmetric two-dimensional dispersion between P1 and 
P2 is similar to the introduction of symmetric dispersion. There is change 
in system dynamics as before, but there is a different range of dispersals in 
which the populations approach a fixed point. As seen in figure 18, which 
is a bifurcation about the dispersion from patch2 d4 , while fixing the value 
of the dispersion from patch1 d1 at .1, the system does not approach a fixed 
point. In figure 19 d1 has been increased to .7. Now we see that the system 
approaches a stable fixed point. 
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Figure 18: Bifurcation about d4 with d1 = .3 

------------- -··----e.::: 

Figure 19: Bifurcation about d4 with d1 = .7 

4 Conclusion 

Using our analysis of the two patch systems we can conclude: 

• In a single patch system: contest intraspecific competition local dy
namics show that the population at any initial condition can either 
die or survive, however in scramble regime under different variation of 
the reproductive rate either the population persists, or global stability, 
Hoft bifurcation, or multiple attractors with basin boundaries. 

• In two-patch systems with dispersal the local dynamics for contest
contest competition are similar to those of a single patch contest regime 
if the reproduction rate (r) is either greater or smaller than the speed 
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ratio (b). However, we coupled one living patch with one dying patch 
and increase dispersal, the results show that population in patch one 
is decreasing and patch two are increasing. This effect is known as the 
"Rescue Effect". 

• The Scramble-Scramble coupled dynamics show that dipersion rate can 
severly affect the dynamics of the system. If we couple two chaotic 
patches, and have an intense net dispersion rate from one path to the 
other, both patches contain a fixed piont. If the dispersion rate de
creases, we can have both patches in period four cycles. Thus, as 
the dispersion rate decreases from one patch to another, both locally 
choatic patches head toward stability. 

• For the coupled Scramble-Contest system the addition of both one
dimensional and two-dimensional dispersal has an effect on the indi
vidual patches. Most importantly, we show that we are able to couple 
a scramble population, with local dynamics of periodic oscillations or 
a chaotic attractor, with a surviving contest population and find fixed 
points of the system for various values of dispersion. In such systems 
there are also cases where the contest population can handle periodic 
oscillations. 
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