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ABSTRACT 
 
From the unrelated facts that Mars is subjected to a flux of asteroidal projectiles and that 
it has two very small satellites, an elementary analysis leads to the proposition that the 
planet possesses an orbiting dust belt system, previously unsuspected. Furthermore the 
satellites themselves should have surfaces resembling that of the Moon. Factors bearing 
on the evolution of an orbiting debris system are discussed, leading to some speculations 
concerning the origin and structure of the rings of Saturn. 
 
 
INTRODUCTION 
 
The Martian satellites Phobos and Deimos must be subjected to the same flux of 
projectiles that produced the craters on Mars itself. Most of the debris from hypervelocity 
impact is ejected at velocities high enough to escape the weak gravitational fields of the 
two small moons but not fast enough to escape from orbiting around Mars. In fact very 
little of the debris is ejected at more than half the satellite orbital velocities. As a result, 
most of it is initially distributed in orbits clustered toroidally about that of each satellite 
of origin. 
 
The material in these belts is subject to continuous recapture by and asteroidal ejection 
from the satellites, to steady “leakage” out of the Mars system, and to size-dependent 
orbital degradation by the Poynting-Robertson effect. If the balance of these opposing 
mass transfer rates is ever such that a critical space density of debris builds up, then the 
toroidal distribution will reach an instability. The critical level is attained when the 
frequency of interparticle collisions dominates the behavior of the dust, causing it to 
collapse into a thin ring system. 
 
The apparent absence of such a ring system for Mars allows upper limits to be estimated 
for both the asteroidal impact flux and the mass of any Martian dust belts. This in turn 
allows us to evaluate the observability of and space vehicle hazards presented by the 
orbiting debris. 
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The ejecta from Martian satellites spend some time in orbit rather than making simple 
ballistic trajectories as on the Moon but the end product should be comparable. The 
surfaces of Phobos and Deimos should be covered with an equilibrium layer of debris 
similar to that on the Moon. 
 
Application of the general model to the Saturn ring system suggests that this may be a 
case of toioidal instability. The source of the ring material would be the meteoritic 
erosion of a satellite situated in the Cassini gap. Reasons why this instability might be 
attained for Saturn and not for Mars are discussed. 
 
 
HYPERVELOCITY PROJECTILES IN MARS SPACE 
 
The dominant source of debris impacting Mars is the group of Mars asteroids, i.e., those 
asteroids having a common range of heliocentric distances with that planet (Öpik 1966). 
Since the elimination of an asteroid by Mars is a random statistical process, we can 
express the present number of Mars asteroids as 
 

N = No e – t/T, 
 
where No is the number available t years ago and T is the characteristic survival time. 
Öpik (1963) used a recent list of 34 Mars asteroids to calculate an average T = 6x109 
years which, being comparable to the age of the solar system, suggests that Martian 
cratering has gone on more or less continuously over geological time to the present.* He 
also showed that 78.9% of the Mars asteroids are eliminated by actual impact with the 
Martian surface while most of the remainder are injected into Earth space (the Apollo 
group). 
 
Since the depletion rate is 
 

dN/dt = – N/T, 
 

the number of asteroids eliminated in time Δt by actual impact with Mars is 
 
 
     ΔN = f (N/T) Δt,    (1) 
 
where f = 0.789. It is assumed that Mars asteroids of all sizes follow the same distribution 
of orbits and therefore have the same average T (except for the smaller grains, which are 
affected by radiation pressure and drag). Thus (1) remains valid whether ΔN and N refer 
____________________________________ 

*Twenty years ago, E. J. Öpik (1951) in a classic study first developed the expressions 
for the lifetimes of stray bodies in the solar system against collisions with the planets. On 
this basis he predicted that the surface of Mars must be heavily cratered. 
____________________________________ 
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to the totality of Mars asteroids or to any given size range subset, like the 34 that are 
large enough to be observed. 
 
In order to determine from the sizes of the visible Mars asteroids the number in any size 
range, we employ a power law size distribution. Let the total number of objects with 
radius greater than or equal to R be expressed as 
 
     NS = ζ (Z/R)S,     (2) 
 
where ζ and Z are constants to be fit and S is the population index. The observed 
cumulative numbers for the Mars asteroids are plotted logarithmically as the points in 
Figure 1. Observational selection has evidently depleted the numbers below a radius of a 
few kilometers. Fitting a straight line (assumed to represent the true distribution) is 
impossible, but at least a range of slopes can be “anchored” in the largest asteroids, the 
counts of which are assumed to be complete. There are 5 Mars asteroids of radius ≥ 17 
km, and the corresponding point in Figure 1 is used for normalization of three selected 
power laws. Thus we set ζ = 5 and Z = 17 km in (2). 
 
The population index S = 1.6 is thought by Öpik (1966) to be the most probable for the 
Mars asteroids, with S = 2 as an upper limit. This is based on the statistics of observable 
asteroids in general. Hartmann (1969) has shown that this range is characteristic of singly 
fragmented basalt blocks. Extensive grinding however always raises the value. It is thus 
possible that the smaller asteroids have an even larger population index. Dohnanyi (1969) 
derives a value near S = 2.4 for steady state grinding of asteroidal debris. The number of 
Mars asteroids and therefore the flux of impact projectiles is extremely sensitive to S. 
Figure 1 indicates, for example, that the cumulative number with radius greater than 1 cm 
varies by five orders of magnitude over the range of S values examined. 
 
Substituting NS into (1), the cumulative number of Mars asteroids of radius ≥ R that 
impact the planet in the time interval Δt is 
 

ΔNS = f (NS / T) Δt. 
 
Turning this around and setting ΔNS = 1, the average time interval between two impact 
events of a given size on Mars is 
 
     Δt = T/(f NS ).     (3) 
 
The time interval between equivalent impacts on a small body in Mars space, like a 
satellite, is of course much longer. It increases nearly as the ratio of the surface areas 
 
     k = (RM / r )2,     (4) 
 
where RM and r are the radii of Mars and the smaller target, respectively. 
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Gravitational focusing of debris and partial shielding of the satellites by Mars might at 
first be thought to even further decrease the rate of impacts on the satellites with respect 
to Mars. These effects, however, are negligible. To illustrate focusing, the angular 
deflection γ of an asteroid in passing a planet is given by (Öpik 1963) 
 
    tan (45º + γ /4) = (1 + 2GM/xU2)2,   (5) 
 
where G and M are the gravitational constant and the planet’s mass, x is the distance of 
the asteroid’s closest approach to the planet’s center, and U is their unperturbed relative 
velocity in units of the planet’s orbital velocity. For asteroids crossing Mars, the average 
U is 0.429. Substituting this into (5), the maximum deflection for a surface grazing Mars 
asteroid, with x = RM, is only γmax = 12º. The difference between the projectile flux at the 
Mars surface and at the satellite distances can thus be neglected. 
 
As for shielding, the fractional solid angle subtended by Mars as seen from Phobos is 
only about 3% and it is even less for Deimos. If this is also neglected, the simple ratio of 
surface areas (4) is sufficient to scale equivalent impact intervals from Mars to a satellite. 
 
The size of Phobos is now known from a picture of it obtained by Mariner 7 (Smith 
1970). Although not spherical, its “radius” is about 10 km. Using this in (4), k = 1.15x105 
for Phobos. The size of Deimos remains unobserved but since it is about 4 times less 
bright than Phobos, its k should be about 4 times as large, or 6.4x105, assuming the same 
reflectivities. 
 
The time interval between impacts by asteroids of radius equal to or greater than R 
against a Mars satellite of radius ro is now found. Multiplying (3) by (4) and substituting 
NS from (2), we express it as 
 

             

€ 

t =
T
f ς
(RM

ro
)2 (R

Z
)S .           (6) 

 
Figure 2 displays t(R) logarithmically for Phobos (solid lines) and Deimos (dashed lines) 
for three values of S. Note that the time required between Mars satellite impacts by 
asteroids in the ten to few hundred meter radius range is of the order of the age of the 
solar system. Actually this is not quite accurate because it assumes that the flux rate of 
asteroids has remained constant throughout geological time. In fact the population of 
Mars asteroids has been steadily diminishing with the characteristic survival time T. This 
means that Z is not constant but was somewhat larger in the past. To get around this, we 
try a somewhat different approach. 
 
Using the characteristic survival times of the different Mars asteroid orbits, Öpik (1965) 
has estimated the “original” number of such bodies. He finds that the ratio of the number 
that have impacted the Martian surface in 4.5x109 years to the currently surviving 
number is θ = 1.32. Using this, we can write a self-evident expression for the cumulative 
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number of asteroids of radius ≥ R that have struck a Mars satellite of radius ro in the age 
of the solar system: 
 
         N = θ NS / k,           (7) 
 
where NS is the currently extant number. To find the size of the largest asteroid ever to 
have struck a Mars satellite, set N = 1 and substitute the expressions for NS(R) and k(ro) 
into (7) to solve for its radius 
 
    

€ 

ˆ R S = Z (θ ζ )1/S (ro / RM) 2/S,            (8) 
 
where we note that θν = 6.6 and recall that Z = 17 km. Some values are listed below. 
 
Table 1: Radius of Largest Asteroid Hitting a Satellite 
 
 S    

€ 

ˆ R S for Phobos  

€ 

ˆ R S for Deimos 
 
1.6  38 m        16 m 
2.0           130 m        65 m 
2.4           290 m      160 m 
 
These values are about 50% larger than those read off Figure 2, as expected, because they 
account for the larger asteroidal flux in the past. 
 
Now the asteroids corresponding the largest radii in the above table are only of order 10-4 
times the mass of Phobos or Deimos. But a hypervelocity projectile would have to 
possess at least 10-4 times the mass of a target rock to completely shatter it (Wetherill 
1967). There is thus no difficulty for objects like Phobos and Deimos surviving 
catastrophic destruction by a single impact in 4.5x109 years. 
 
In order to assess the effect of steady erosion by the many smaller hypervelocity 
asteroidal fragments, we calculate the total mass impacting a satellite in the age of the 
solar system. To obtain the number of asteroids with radii in the range R to R +dR that 
impact a satellite of radius ro in 4.5x109 years, insert the expressions for NS and k into (7) 
and differentiate; thus, 
 

dN = – (θζ / k) S Z S R –S–1 dR. 
 
The collective mass of all projectiles of density ρ in this mass range is 
 

€ 

dM =
4
3
πR3ρ dN , 

 
so the total incident projectile mass is 
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MS =
4
3
πρ

θς
k

S
3 − S

Z S ˆ R S
3−S  . 

 
The integration is from the smallest grains stable in the solar system (the size of which is 
immaterial to the result so long as S < 3) to the largest asteroid to have hit the satellite. 
The radius of the latter, 

€ 

ˆ R S, is seen to scale the total incident mass. Some values of MS 
are listed in Table 2, assuming ρ = 2.8 gm/cm3 (density of crustal rock). This evaluation 
uses Z = 17 km, the 

€ 

ˆ R S previously tabulated, and the current values of k for either 
satellite. Of course with substantial erosion, a satellite’s surface area was greater in the 
past, so that k = (RM / ro ) 

2, properly weighted over time, should be smaller, hence the 
corresponding MS larger. The results of doing without such a correction will show that, to 
our accuracy, it is probably unnecessary. 
 
Table 2: Total Asteroidal Mass Hitting a Mars Satellite 
 
_S_  Phobos MS (gm) Deimos MS (gm) 
 
1.6       7.3x1011      5.5x1010 

2.0       5.1x1013       6.3x1012 
2.4       1.2x1015       2.0x1014 
 
Note that MS is greater for larger S; i.e., the mass is dominated by the smaller particles for 
larger S. 
 
Now let Γ be the ratio of ejected to incident mass in a hypervelocity impact. According to 
Marcus (1969) and others,  
 

Γ = Kvi
2, 

 
where is a constant depending on the nature of the target material and vi is the impact 
velocity in km/sec. It is seen that ejected mass is roughly proportional to impact energy. 
Relevant suggested values of K range from about 5 for solid basalt to more than 500 for 
unconsolidated grains. Recent experimental results by Braslau (1970) for hypervelocity 
impact into dry quartz sand can be interpreted as indicating a K of about 100. 
 
The average relative velocity of an asteroid approaching Mars is roughly 10 km/sec 
(Öpik 1963). Choosing K = 100, this gives Γ = 104, so the cumulative mass ejected in 
4.5x109 years by a Martian satellite with an unconsolidated surface is of order 104 MS. 
The largest values considered here are obtained for S = 2.4. In this case, the cumulative 
mass ejected from Phobos would be about 1019 gm, and from Deimos about 2x1018 gm. 
These values are about 1.0 and 1.4 times the estimated present masses of the respective 
satellites. Thus, steady erosion by the smaller hypervelocity projectiles should not have 
removed more mass from Phobos and Deimos than they currently retain. We conclude 
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that these satellites may well have survived in substantially their present condition in 
Mars orbit since the origin of the solar system. 
 
 
INITIAL EJECTION OF SATELLITE DEBRIS 
 
Most of the debris ejected from Phobos and Deimos by hypervelocity impacts will have 
relatively low velocities. Particles spalled from a satellite with a typical ejection velocity 
vej will have their orbits confined within a limiting range of distances from Mars. For a 
given vej , the minimum attainable pericenter q1 is reached by particles ejected in the 
opposite direction from the satellite’s orbital velocity; the maximum attainable apocenter 
q2 by particles ejected in the prograde direction. These cases are illustrated in Figures 3a 
and 3b, as scaled to the Phobos orbit. Debris ejected in directions other than tangential to 
the satellite orbital velocity will have orbits crossing that of the satellite but with 
pericenter greater than q1 and apocenter less than q2. 
 
It will be useful to find the limiting range of distances (q1, q2) confining the orbits of 
particles with a specified satellite ejection velocity vej. We consider first the inner 
pericenter bound q1. Let v be the initial orbital velocity of a particle ejected opposite the 
satellite’s orbital velocity vo . Then 
 
     v = vo – vej .     (9) 
 
From the orbital energy integral, 
 

v 2 = GM (2/ao – 1/a), 
 

where a is the semimajor axis of the particle’s independent orbit, given by 
 

2a = ao + q1 , 
 

with ao the satellite’s semimajor axis. Combining these three equations and using the fact 
that vo

2 = GM/ ao yields 
 

     

€ 

vej
vo

=1− ( 2 q1
ao + q1

)1/ 2.    (10) 

 
A similar expression relating the outer apocenter bound q2 to the ejection velocity is 
readily found to be  
 

            

€ 

vej
vo

= ( 2q2
ao + q2

)1/ 2 −1 .    (11) 
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To be precise, we should take account of the satellite’s escape velocity vesc . Thus, 
instead of (9), the proper expression should be 
 

v = vo – vp , 
 
where vp is the particle’s post-escape velocity with respect to the satellite, obtained by 
energy conservation from 
 

€ 

vp
2 = vej

2 − vesc
2 . 

 
The final expression replacing (10) and (11) turns out to be 
 

        

€ 

vej
2 = [± ( 2q

ao + q
)1/ 2 −1]2 vo

2 + vesc
2  ,          (12) 

 
where q is a generalized orbital extremum (either q1 or q2, according to circumstances). 
This expression is also more general in that the choice of minus sign allows one to 
represent retrograde particle orbits (for initial vp opposite to and greater than vo). 
However the debris fraction ejected at such high velocities is negligible and will not be 
considered here. Thus, using the plus sign, we note that (12) reduces to (10) and (11) if 
escape velocity is neglected. 
 
It turns out that the exact expression (12) is only really needed in the case of ejection 
velocities less that a few times the escape velocity. For Phobos, Smith (1970) assumes a 
density of 2.8 gm/cm3 to get an escape velocity of about 12 m/sec. Thus for most of the 
ejecta from asteroidal impact, the approximate expressions are adequate. 
 
In Figure 4, the orbital bounds q are plotted as a function of vej for both Phobos (solid 
lines) and Deimos (dashed lines). The upper and lower branches of either curve represent 
q2 and q1 respectively. Thus, for example, debris ejected from Phobos at vej = 100 m/sec 
is confined to excursions within the region between about 2.3 to 3.3 Mars radii (measured 
from the center of the planet), while debris ejected at the same velocity from Deimos is 
allowed to get to limiting distances of about 5.2 to 9.4 Mars radii. (Actually the ranges 
should all be slightly widened to account for the small orbital eccentricities of Phobos 
and Deimos.) The Deimos debris has a wider range, of course, because the Martian 
gravitational field is less confining at its distance. 
 
The smallest pericenter is represented by collision with Mars, or q1 = RM. Figure 4 
indicates that this becomes possible with vej > 548 m/sec for Phobos and vej > 670 m/sec 
for Deimos. The largest apocenter is escape from Mars altogether, or q2 = ∞. From (11), 
this becomes possible for vej > 0.414 vo , which is 888 m/sec for Phobos and 558 m/sec 
for Deimos. Note finally in Figure 4 that for vej < vesc , the particle is confined to the 
satellite. 
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To determine the general envelope for debris orbits initiated by a given ejection velocity, 
we need to know the excursion range out of the satellite orbital plane in addition to the q 
range within it. In Figure 3c, the particle ejection velocity vej and resultant orbital 
velocity v make angles of ε and i, respectively, with the satellite orbital velocity vo 
(neglecting a small escape velocity correction). The plane of Figure 3c is taken to be 
normal to the Mars-satellite radius vector. For given values of vo and vej , a maximum 
inclination i for the resultant orbit is obtained if ε is just slightly larger than 90º, i.e., with 
vej nearly normal to the satellite orbit plane. If, as will be shown, most of the ejected 
particles have vej much lower than vo , then the resulting inclinations i will be very small 
compared to 90º. In this case the approximation |v| ≈ |vo| is valid. This means, in effect, 
that to find the maximum excursion out of the satellite orbit plane made by a particle with 
vej << vo , one may consider circular orbits. 
 
Therefore consider a near circular orbit of semimajor axis ao inclined by i to the plane of 
the satellite orbit (essentially the Martian equatorial plane). A particle in such an orbit at 
longitude 90º from its intersection with the satellite will be at maximum elevation above 
the equator plane, given by b’ = ao sin i. From Figure 3c with vej << vo , sin i ≈ vej/vo so 
that 
     b’ = ao vej / vo.     (13) 
 
Any particle ejected at a given vej must now have a pericenter ≥ q1, an apocenter ≤ q2 , 
and an excursion out of the equatorial plane of  ≤ b’. The envelope of all such orbits will 
be a toroid, the cross-section of which is taken to be an ellipse with semimajor axis a’ = 
½ (q2 – q1) and semiminor axis b’ as given in (13). Figure 5 shows the cross-section of a 
set of such toroids for Phobos and Deimos corresponding to the four values of vej labeled 
in m/sec. The volume of each toroid, being a figure of revolution for an ellipse centered 
at ½ (q2 + q1), is readily found to be 
 

€ 

V =
1
2
π 2 (q2

2 − q1
2)b' . 

 
The choice of an elliptical cross-section, of course, involves an approximation, but one 
adequate to our present needs. 
 
A key point in the discussion is the fact that the bulk of the debris created in hypervelo-
city impact has a relatively low average ejection velocity. Gault et al. (1963) fired 
projectiles at about 6.25 km/sec into solid basalt and plotted the cumulative mass ejected 
faster than a given velocity. (Their plot is reproduced in Arnold 1965.) 
 
They found that less than 1% of the debris had ejection velocities exceeding 1 km/sec. 
Although the total ejecta mass scales as the impact energy, the relative mass ejected 
within a given range of vej (as long as vej ≤ 1 km/sec) is fairly insensitive to the impact 
velocity. 
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Some of the data from Gault et al. are indicated along the upper edge of Figure 4. This 
shows, for example, that less than 1% of the ejecta from Phobos or Deimos has sufficient 
velocity to hit Mars (or to escape altogether). Most of it remains in orbits close to those of 
the satellites. Again, from Figure 4, about 70% of the debris mass from a hypervelocity 
impact into solid basalt has ejection velocities of less than 100 m/sec. If the Phobos and 
Deimos surfaces were solid rock, then more than 70% of the impact debris would initially 
be confined to orbits within the 100 m/sec toroids shown in cross-section in Figure 5. 
 
However, it is unlikely that these satellite surfaces are solid rock. For one thing, a small 
though significant portion of the debris will have ejection velocities even less than the 12 
m/sec escape velocity of Phobos. In addition, as will be shown, much of the escaped 
debris will eventually re-impact the satellite at low enough velocities to allow recapture. 
The satellite surfaces should thus be fragmented, resembling that of the Moon. 
 
No data are as yet published, but Gault (personal communication 1971) indicated that for 
hypervelocity impact into unconsolidated granular rock, ejection velocities are even 
lower than for solid rock targets. Therefore the 150 m/sec contours in Figure 5 perhaps 
contain as much as 90% of all debris initially ejected from Phobos and Deimos. 
 
The Mars asteroids have an average unperturbed relative velocity when approaching the 
planet of about 10 km/sec, as mentioned before. The Martian gravitational field increases 
this slightly when an asteroid is within striking distance of a satellite. Finally the orbital 
velocity of the satellite itself (2.4 km/sec for Phobos and 1.35 km/sec for Deimos) will 
somewhat augment or diminish the final impact velocity to the extent that the collisions 
are “head-on” or “overtaking”, respectively. Thus on average, a satellite’s leading 
hemisphere will be hit both harder and more often than its trailing hemisphere. A greater 
mass of ejecta will accordingly have a component of vej directed forward rather than 
backwards. Consequently there will be more debris having orbits initially larger than that 
of the satellite of origin as opposed to smaller. Finally, from Kepler’s Second Law, an 
orbiting particle spends more time near apocenter than pericenter. The net result of all 
this is that the outer part of each toroid represented in Figure 5 will contain a substantially 
greater debris density than the inner part. At least that will be the case for the debris as 
initially ejected, before radiation drag and collisional interaction take effect. 
 
 
STABILITY OF DUST BELT CONFIGURATION 
 
The average rate of mass injection from a Martian satellite into the orbiting debris 
complex may be represented as 
 
     FS = Γ MS / Ts ,    (14) 
 
where Γ is the ratio of ejecta to projectile mass and MS (previously tabulated as a function 
of the asteroidal population index S ) is the total projectile mass incident on a satellite 
over the age of the solar system. The latter is denoted by Ts. The input rate FS must be 
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balanced against the various process that remove debris in order to determine the steady 
state population and extent of the orbiting debris complex. Removal by satellite recapture 
is a crucial mechanism and the only one considered here which is independent of particle 
size. It is essentially a random statistical process. A particle ejected from a satellite at vej 
is confined within a toroid of volume V. If the particle does not substantially interact with 
other debris before next encountering the satellite, its relative velocity on approaching the 
satellite will be of order vej. We shall interpret the situation by analogy with a “particle in 
a box” of volume V; it is bouncing randomly about with velocity vej; somewhere inside 
the box is a stationary target of cross-section πro

2
 (the satellite). In this case, the 

characteristic time between collisions of the particle with the target is 
 
     τo  = V/ π ro

2vej .    (15) 
 
Wetherill (1967) has shown that the results of such an approximate calculation are in 
reasonable agreement with the exact analytical solution in the case of collisions among 
asteroids. 
 
Below are provided some values of the volume V/VM (where VM = 1.6x1026 cm3 is the 
volume of Mars) and the secondary collision time τo as a function of ejection velocity vej 
for both satellites. 
 
Table 3: Confining Volume and Collision Time in Dust Belts 
 
   Phobos           Deimos 
 
vej (m/sec)    V/VM        τo (yr)  V/VM       τo (yr) 
 
      25     0.05  32    2.2        5600 
      50     0.22  72    8.6      11000 
    100     0.90           150  35      24000 
    150     2.0           230  83      40000 
 
The ejection velocity vej for most of the debris is not more than ~ 150 m/sec, and is 
usually much less. When a particle later collides with a satellite at these speeds, it will 
probably not break unless it is larger than a few cm and hits a solid rock surface. If it hits 
rock, according to Öpik (1969), such a projectile or its fragments will be reflected at 
about half the collision velocity, and if it hits unconsolidated debris, the projectile may be 
reflected at up to 20 or 30% of collision velocity. Or the projectile may simply remain in 
the hole it makes in the debris, as is the case for many meteoroid fragments striking the 
Earth’s surface with comparable terminal velocities (Krinov 1960). Whether reflected or 
buried, the projectile may eject tertiary debris, some of which may even escape the 
satellite. However the relative velocities should be so low that, as will be shown, this 
material will very shortly be swept up again by the satellite. 
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If the particle is not captured in its first collision with the satellite, it will acquire a lower 
relative velocity which confines it to a smaller toroid. The volume of the toroid is 
proportional to its elliptical cross-section πa’b’. For low velocities, Figure 4 shows that 
2a’ = q2 – q1 is nearly linear in vej , and from (13), b’ ∝ vej . Therefore, to good 
approximation, V ∝ vej

2 and, from (15), τo ∝ vej . This means that whenever a particle is 
reflected off a satellite, the time τo until its next collision is shortened on the average in 
proportion to the diminishing of its relative velocity. 
 
The ejection velocity is at least halved on each “bounce” and the time until the next 
collision is shortened accordingly. A particle generated by hypervelocity impact, with an 
initial ejection velocity of even as much as a few hundred meters per second, should in 
most cases be recaptured from orbit by a satellite after only a few bounces. Let us write 
the typical capture time as  
 
        τc= β τo ,     (16) 
 
where β ranges from about unity to perhaps 2 or 3. 
 
Consider a toroidal complex of orbiting debris particles that is not sufficiently dense for 
the particles to interact with each other. This complex contains a satellite with radius  
ro >> rmax, where rmax is the radius of the largest debris particle. The sweeping effect of 
such a satellite revolving in near circular orbit is to diminish the orbital eccentricities and 
inclinations of the particles with the larger relative velocities and to capture those 
particles with lower relative velocities. With no new external generation of debris, the 
toroidal complex would eventually be contracted and accreted by the satellite. The extent 
to which this would occur in time t is governed by exp (– t /τc ). With a steady input of 
debris by asteroidal impacts with the satellite, there would result a nearly steady state 
equilibrium population of orbital debris and satellite surface debris constantly being 
recycled. 
 
Whether or not the debris complex is rarified enough to avoid inter-particle collisions and 
thus be governed by satellite capture with time scale τc depends both on the population 
index of the asteroidal projectiles and on the mechanics of ejection. If the asteroidal flux 
is sufficiently large, then the input rate of ejecta FS is large. And if the equilibrium debris 
density in a toroid is sufficient to permit inter-particle collisions on a time scale less than 
τc , then the debris orbits tend by momentum exchange to become more circular and less 
inclined. This decreases the toroid volume, increasing the inter-particle collision 
frequency. The toroid becomes unstable and relaxes into a thin disc. 
 
The particles in such a disc can no longer be directly recaptured by the satellite since the 
orbits are now concentric. Instead, they must remain in orbit until eliminated by other 
mechanisms, which operate over a time scale large compared to τc . But asteroidal 
impacts will continue to eject debris from the satellite into the initial toroid and this will 
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continue to “feed” the disc population. The mass of the debris in the disc thus becomes 
much larger than in the toroid, which constitutes a kind of “halo” about the disc. 
 
The mass of the ring complex continues to grow until a new equilibrium is achieved with 
the slower elimination mechanisms. These will be considered in a later section. But first 
let us examine the stability of an orbiting toroidal debris distribution to determine the 
conditions beyond which it relaxes into a thin disc. 
 
The average injection rate of debris into orbit, FS as given in (14), is assumed constant 
and independent of the nature of the resulting debris system. If FS is sufficiently low, 
inter-particle collisions are avoided because the satellite itself can accumulate the parti-
cles before they attain a critical space density. If in this case, FS were cut off at time t = 0, 
the debris mass remaining in orbit at time t would be  
 

m(t) = m(0) exp (– t/τc ), 
 
where τc is the characteristic recapture time. The elimination rate would therefore be  
 

dm/dt = – m/τc. 
 
If the input flux were restored, the net rate of change of the debris mass would then be  
 
            dm/dt = FS – m/τc .    (17) 
 
The solution to this equation is 
 

€ 

m = FS τ c [1− exp(−t /τ c )] , 
 
which, for t >> τc , asymptotically approaches the steady state mass 
 

m → FS τc . 
 
Using (14) and (16), the equilibrium toroidal mass of orbiting debris would then become 
 
     mS = (βτo / Ts ) Γ MS ,    (18) 
 
where, we recall, β is the number of  “bounces” and τo the average time interval between 
particle-satellite collisions (as listed in Table 3), Ts is the age of the solar system, Γ  the 
ejecta-to-projectile mass ratio, and MS the total projectile mass incident on a satellite in 
time Ts , depending on the asteroidal population index S. 
 
It is important to keep in mind that (18) is valid only if the resulting mS does not exceed 
the critical mass for toroidal instability. This is determined as follows. We adopt the 
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simplifying assumption that an orbit is randomized if a particle accumulates collisions 
with λ times its own mass in less time than is required to collide with the satellite. By 
“randomized” we mean that the particle undergoes sufficient momentum exchange that 
its orbital inclination and eccentricity are substantially diminished. This is essentially a 
random walk situation, and since most of the impacts are with many smaller articles, the 
factor λ is perhaps not more than, say, 2 or 3. 
 
Let a particle of radius r and mass 

€ 

˜ m  encounter an accumulated mass λ

€ 

˜ m  in traversing a 
volume δV through the toroid in time τλ. The relative velocity between particles will be 
taken as vej , the same as with the satellite. If m /V is the average space density in the 
toroid, then the mass encountered in collisions during such a traverse is 
 

€ 

λ ˜ m = mδV /V = (m /V )π r2 vej τλ  . 
 
Substituting V from (15), 
 

€ 

λ ˜ m = mS (r /ro)2τλ /τ o, 
 

where ro is the radius of the originating satellite. This may be rewritten as 
 

€ 

τλ
τ o

=
4
3
π ρλ

ro
2

mS

r . 

 
The condition for instability in the toroid, as previously defined, is τλ < τo . Let the radius 

r at which τλ = τo be denoted r’. Then the critical particle size for toroidal instability is 
 

€ 

ʹ′ r =
3mS

4π ρλ ro
2  

  
Substituting for mS from (18), we have 
 

            

€ 

rc =
3
4
βτ oΓMS

πTs ρλ ro
2  .    (19) 

 
Those orbiting particles in the toroid having r < r’ will tend to relax into a thin disc 
configuration. Larger particles will initially remain in the toroidal “halo”. 
 
A table of select values for r’ is provided for illustrative purposes (the values of the 
parameters chosen are simply “best guesses”). Using β ≈ 2, λ ≈ 2, Γ ≈ 10 4, ρ = 2.8 
gm/cm3, and choosing typical values for τo (from Table 3) of 100 years for Phobos and 
20,000 years for Deimos, we have, respectively, r’ ≈ 2x10–17MS and r’ ≈ 1.5x10–14MS. 
The MS are derived from Table 2. 
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Table 4: Particle Radius for Toroidal Instability 
 
 S            Phobos_  Deimos 
 
1.6          0.1 µ  8 µ 
2.0          10 µ  1 mm 
2.4        200 µ  3 cm 
 
We now assume (and this will be justified later) that the particle size distribution in the 
satellite ejecta is similar to that of the lunar surface material. About half the volume of 
the Apollo 11 lunar soil sample consists of particles smaller than radius 20 µ (Duke et al. 
1970). If this were used to interpret the preceding table, it would suggest that for S = 2.0, 
more than half of the mass in the Phobos toroid would be stable while more than half in 
the Deimos toroid would relax into a thin disc. For S = 1.6, both toroids would be stable 
and for S = 2.4, both would collapse. 
 
A thin disc around Mars would probably have sufficient optical thickness to be photo-
metrically detectable from the Earth. It therefore appears likely that the toroidal confi-
guration remains stable for Mars, and this would imply a relatively low ejecta input rate, 
hence a relatively low asteroidal impact flux. The values in Table 4 are much too uncer-
tain to draw any firm conclusions, but it may at least be said that the Deimos toroid is 
more likely to approach instability that that associated with Phobos. 
 
It is possible that at an earlier epoch the asteroidal flux was much larger, and the space 
density of the Martian debris complex exceeded the instability level. At such a time Mars 
would have possessed a ring system resembling that of Saturn, and perhaps a remnant of 
it (consisting of the larger particles less affected by the Poynting-Robertson drag) 
survives today. It is also suggested that the Saturn ring system may itself be the result of 
meteoritic erosion of small satellites within it at such a rate that a toroidal configuration is 
unstable. We will return to these suggestions after examining some of the mechanisms 
that remove particles from a complex of orbiting debris. 
 
 
MASS LOSS IN A DEBRIS COMPLEX 
 
A small fraction of the ejecta from a satellite will have velocities sufficient to either 
collide with Mars or escape altogether from orbiting the planet. As previously indicated 
(cf. Figure 4), this fraction is probably much less than 1% of the total. A particle either 
has such an initial ejection velocity, in which case it is lost in its first orbit or it doesn’t, 
in which case it remains to be removed by other means that work over a longer time 
scale. 
 
Recapture by the satellite does not remove debris from the complex. It only detains the 
material until recycled by later impacts. Such impacts of course give the material another 
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chance (still less than 1%) to escape from the Mars system or hit the planet. Thus 
recycling results in a small steady loss of debris. 
 
Other loss mechanisms considered in order of increasing time scale are: radiation 
pressure, Poynting-Robertson drag, and hypervelocity impact of orbiting debris by small 
asteroidal particles. Additional processes undoubtedly exist, such as exospheric drag and 
solar wind erosion, but do not appear to be as important in the present context. 
 
Radiation pressure is the fastest means of removing orbiting debris but it is only effective 
for the fraction of particles in the smallest size range. It produces periodic perturbations 
in step with the apparent motion of the Sun. If the orbital eccentricity becomes too large 
the particle is lost. 
 
Following the analysis of Peale (1966), the orbital eccentricity of a particle of radius r in 
a combined planetary gravitational and solar radiation field is 
 

€ 

e =
9
16

PSo
π b2cρr

[ a
GM

(1− eo
2)]1/ 2α, 

 
where So is the solar constant, P and M are the planet’s orbital period and mass, b is the 
planet’s orbital radius in AU, c is the speed of light, a is the particle’s semi-major axis, G 
is the gravitational constant, eo is an arbitrary initial value of e, and α is a parameterized 
particle orbital eccentricity that oscillates with period P but never exceeds αmax. Peale has 
shown that 1 ≤ αmax ≤ 4. Inserting the upper bound, with eo = 0, we have for a particle 
orbiting Mars with semi-major axis a, the limiting value 
 

€ 

e ≤ 2.3x10
−3

ρ r
( a
RM

)1/ 2 . 

 
For a particle of radius 100 µ and density 2.8 gm/cm3 injected into an initially circular 
orbit in the region of the Martian satellites, solar radiation pressure will induce an 
oscillating eccentricity not exceeding about 0.2. 
 
For particles smaller than about 10 µ, this effect begins to become important. Using the 
lower bound αmax ≥ 1, we find 
 

  

€ 

emax ≥
5.8x10−4

ρ r
[ a
RM

(1− emax
2 )]1/ 2 .  

 
Since to avoid collisions with Mars, an orbiting particle requires that emax < 1 – RM/a, we 
find the smallest particle that can remain in orbit has a radius 
 

€ 

rmin =
5.8x10−4

ρ
(2 − RM /a)

1/ 2

1− RM /a
 . 
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For particles that can cross the orbits of Phobos or Deimos, rmin is about 3 µ. Anything 
smaller than this will collide with the planet or escape from the system in less than one 
Martian year. 
 
The Poynting-Robertson effect, unlike radiation pressure, is not a conservative periodic 
perturbation, but involves a steady energy dissipation. For a particle of radius r in a 
circular orbit of low inclination around a planet, the rate of change of the semimajor axis 
due to the Poynting-Robertson effect is (Peale 1966, Allan 1967) 
 

        

€ 

da /dt =
9
4
1.22So
b2c 2ρ r

a .    (20) 

 
We have chosen here to augment the solar constant So by the factor 1.22 to include the 
pseudo-Poynting-Robertson effect of solar wind protons (Whipple 1967). Note that the 
drag rate diminishes as the orbit contracts, unlike the Poynting-Robertson effect for a 
particle orbiting the Sun, in which case the flux and thus the drag increases with time. 
 
In the case of Mars, the time interval required to reduce a particle’s orbital radius from a2 
to a1, easily found by solving (20), is 
 

t = 1.76x107ρ r ln (a2 /a1) years. 
 
The characteristic time for this effect to diminish the orbital radius by half (a2 = 2a1) is 
thus 
    τPR = 1.22x107ρ r years,    (21) 
 
where r is in cm. The effect is particle size dependent, removing 100 µ particles in as 
little as 3.4x105 years. 
 
Hypervelocity impact by small asteroidal particles will erode the debris complex as well 
as the satellites which gave rise to it. A direct adaptation of (6) provides the time interval 
between collisions with an orbiting particle of radius r by asteroidal grains with radii ≥ 
r/η. We express it as 
 

€ 

tS =
T
f ς
(RM

r
)2 ( r /η

Z
)S , 

 
and evaluate this for three asteroidal distributions: 
 

  

€ 

t1.6 =
1.9x1016

η1.6 r0.4
  

€ 

t2.0 =
6.1x1013

η2
  

€ 

t2.4 =
2.0x1011 r0.4

η2.4
 . 
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In these expressions, r is in cm and t is in years. For S = 1.6, the time between such 
impacts decreases for increasing target size. Note that for S = 2.0, the probability of a 
particle being hit by an asteroidal projectile more than 1/η times its own size is 
independent of that size. And for S = 2.4, the lifetime actually increases with increasing 
target size because, although the cross-section is larger, the size slope is so steep that 
there are fewer projectiles with radius ≥ r/η. 
 
For η ≤ 10, the projectile has more than 10–3 the mass of the debris particle, and this may 
be sufficient to catastrophically explode the latter in a 10 km/sec impact (Wetherill 1967). 
The pulverized residue will however initially remain in orbit, although it will now be 
more vulnerable to the size-dependent Poynting-Robertson drag and to “winnowing” by 
radiation pressure. 
 
Elimination of satellite debris by this mechanism is, in any case, slow. Even for the most 
efficient flux, a 100 µ particle must wait on average at least t2.4 = 108 years to be 
exploded and long before this, it would have been removed by the Poynting-Robertson 
drag. Neither will the gradual erosion by accumulated impacts of projectiles less than 
1/10 the target size be competitive with the Poynting-Robertson effect. The best it can do 
is break off ultrafine particles which may be rapidly eliminated by radiation pressure. 
 
 
OBSERVABILITY AND SPACE VEHICLE HAZARD 
 
The equilibrium mass of a toroidal dust belt for Mars has already been found, in (18), and 
used to examine the problem of instability and relaxation into a disc population. The 
steady state mass of such a disc or ring would be larger than that of a toroidal belt 
because, although the input rate is the same (determined by asteroidal flux), the particles 
in relatively concentric ring orbits would no longer be directly removed by the satellite. 
Instead they would be removed by Poynting-Robertson drag with time scale τPR > τc. 
 
The minimum steady state mass of a ring is therefore considerably larger than the 
maximum stable mass of a toroidal belt, by about the ratio Φ = τPR/τc, where τc is the 
characteristic lifetime for capture by a satellite. Now τPR, unlike τc, is size-dependent, but 
inserting an average particle size of, say 30µ (characteristic of lunar soil) into (21) yields 
<τPR> ≈ 3x105 years. Then using β ≈ 2 and typical values of τo (from Table 3) of 100 and 
20,000 years, we get <Φ > ≈ 2000 and 10 for Phobos and Deimos, respectively.  
 
If 

€ 

ˆ m S  is the maximum steady state mass of a toroidal belt, corresponding to the largest 
asteroidal population for which it remains stable, then the next largest stable configura-
tion that can exist around a planet is a ring of mass <Φ>

€ 

ˆ m S . The intermediate mass 
range is not found in equilibrium, although it might occur if a reduction in meteoritic flux 
allows a ring to decay. 
 
In assessing the observability and space vehicle hazard presented by a Mars orbiting 
debris complex, we tentatively assume that the planet does not possess a ring. Even a ring 
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of minimum mass <Φ>

€ 

ˆ m S  would probably have been detected at low inclination. There-
fore the upper limit to the debris mass orbiting Mars is assumed to be 

€ 

ˆ m S , characterizing 
the largest stable toroidal dust belt. Such a belt probably constitutes the most that an 
orbiting space vehicle would have to contend with. 
 
Let us assume that the disc population can be represented by an index s of its own (as 
opposed to S for the impacting asteroids) and a radius rmax for its largest member. Then 
the number of particles of radius ≥ r is 
 
     ns(r) = (rmax / r) s,    (22) 
 
and the number in the size range r  to r + dr is 
 

€ 

dn = −srmax
2 r−2−1dr , 
 

so that the mass in this range is 
 

€ 

dms = −
4
3
πρs rmax

s r2−s dr  . 

 
Integration from some rmin to the rmax gives the total mass: 
 

  s < 3,  

€ 

ms =
4
3
πρ

srmax
s

3 − s
(rmax
3−s − rmin

3−s) 

 
  s = 3,  

€ 

ms = 4πρ rmax
3 ln(rmax /rmin ) 

 

  s > 3,  

€ 

ms =
4
3
π ρ

s rmax
s

s − 3
( 1
rmin
s−3 −

1
rmax
s−3 ) . 

 
We do not know the population index of the dust belt but we will assume it to be 
comparable to that of the lunar surface. The ejected debris, rather than making simple 
ballistic trajectories, spends some time in orbit before returning to the surface of the 
satellite, but the end result should be the same as for the lunar surface. 
 
The population index of lunar surface debris is not yet well known and undoubtedly 
varies somewhat from place to place. The data of Gold et al. (1970) for the fine particles 
would indicate s ≥ 3. Hartmann (1969) notes 2.1 ≤ s ≤ 3.3 and Shoemaker et al. (1970) 
suggest s ≈ 2.4, respectively, for the Surveyor series and Apollo 11 counts of cm range 
particles. Accordingly, we will use sample values s = 2.1, 2.7, and 3.3. Some results for 
ms , assuming r2 >> r1 and ρ = 2.8 gm/cm3 are listed in Table 5. 
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Table 5: Mass of a Debris Population 
 
_s_  ___ms___ 
 
2.1  

€ 

27 rmax
3  

 
2.7  

€ 

106 rmax
3  

 
3.3  

€ 

129 rmax
0.3 /rmin

3.3 ≈1260 rmax
3.3  

 
In the case s = 3.3, we have chosen rmin ≈ 5 µ, consistent with the limit set by radiation 
pressure. If these values of debris population mass (as a funtion of s) are equated to the 
steady state mass (as determined by asteroidal flux) expressed from (18), we have 
 
    ms = mS = β τo Γ MS / Ts ,    (23) 
 
where MS is the total mass of asteroidal projectiles impacting a satellite in Ts, the age of 
the solar system. 
 
We want to use the maximum mass 

€ 

ˆ m S  consistent with the probable absence of a thin 
ring around Mars. According to the discussion of Table 4, a toroidal belt would be stable 
for S ≈ 1.6 for both satellites but would collapse at S ≈ 2.0 for Deimos. Since a ring is not 
observed, we will provisionally assume that the population of Mars asteroids is character-
ized by S ≈ 1.6. This agrees well with Öpik’s (1966) estimate based on statistics of 
observed asteroids. Corresponding values of 

€ 

ˆ m S  from Table 2 and (23) are 160 βτoΓ for 
Phobos and 12 βτoΓ for Deimos. Inserting these values and the ms from Table 5 into (23) 
allows a solution for rmax (in cm, with τo in years) as given below. 
 
Table 6: Maximum Particle Radius in a Martian Dust Belt 
 
_s_  Phobos belt  Deimos belt 
 
2.1  (5.9 Γβτo)1/3  (0.45 Γβτo)1/3 
 
2.7  (1.5 Γβτo)1/3  (0.12 Γβτo)1/3 
 
3.3  (0.13 Γβτo)1/3.3 (0.01 Γβτo)1/3.3 
 
The rmax required to account for a given mass of debris must increase as a decreases (as 
the proportion of fines decreases). These rmax are left in algebraic form for later use, but 
numerical values are typically on the order of a few meters. 
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In order to estimate the optical depth of the dust belt, we need its cumulative geometrical 
cross-section. The differential cross-section of all particles in the size range r to r + dr is 
 

€ 

dσ = π r2dn = −π srmax
2 r1−s dr  , 

 
which for s > 2 integrates to 

€ 

σ =
π s
s − 2

rmax
s

rmin
s−2  . 

 
Again using rmin ≈ 5 µ and applying the rmax from Table 6, the total cross-section σ (in 
cm2) of the most massive stable dust belt as a function of its population index can be 
given. 
 
Table 7: Maximum Cumulative Cross-Section of a Dust Belt 
 
_s_  Phobos belt  Deimos belt 
 
2.1  3700 (Γβτo)0.7  81 (Γβτo)0.7  
  
2.4  16000 (Γβτo)0.9 340 (Γβτo)0.9 
 
3.3  21000 Γβτo  1600 Γβτo  
 
The dust belt should appear brightest when least inclinded to the line of sight (i.e., when 
the Martian equator plane passes across Earth). If we invoke the simplifying assumption 
that the space density of debris is constant within a given toroid, then the line of sight 
with maximum optical depth traverses a distance 
 
     

€ 

l = 2(q2
2 − q1

2)1/ 2    (24) 
 
through the toroid, as shown for the Phobos debris in Figure 6. 
 
Within the bounds of geometrical optics, the optical depth τ  along such a path is 
essentially the fraction of the area of observation subtended by any reflecting surface, 
which may be written as 
 

τ = (σ/V) l . 
 
The quantities needed to evaluate this expression are found in Tables 3 and 7, using (24) 
and Figure 4. For the maximum brightness we insert the σ values corresponding to s = 
3.3 (most heavily weighted toward smaller particles of the distributions considered). The 
resulting values of τ  are of order 10–6 for both satellites. Since the optical depth of the 
inner edge of the faint C ring of Saturn is of order 10-2 (Cook et al. 1971), we conclude 
that a Martian dust belt would not be detectable from Earth. It might, however, be 
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observable from the planet’s surface or from a Mars orbiting vehicle as an equatorial 
enhancement to the background zodiacal light. 
 
To assess the hazard to an orbiting space vehicle from the maximum stable Martian dust 
belt permitted, a provisional list is included of the maximum number of orbiting particles 
of radius ≥ 1 mm and the number ≥ 1 cm, as determined from (22), with rmax values again 
taken from Table 6. 
 
Table 8: Maximum Number of Particles ≥ 1 mm in Martian Belts 
 
_s_  Phobos belt  Deimos belt 
 
2.1  440 (Γβτo)0.7  72 (Γβτo)0.7  
 
2.7  700 (Γβτo)0.9  70 (Γβτo)0.9 
 
3.3  260 Γβτo  20 Γβτo 
 
Table 9: Maximum Number of Particles ≥ 1 cm in Martian Belts 
 
_s_  Phobos belt  Deimos belt 
 
2.1  3.5 (Γβτo)0.7  0.57 (Γβτo)0.7  
 
2.7  1.4 (Γβτo)0.9  0.14 (Γβτo)0.9 
 
3.3  0.13 Γβτo  0.01 Γβτo 
 
These particles are assumed to be confined within a toroid having an area projected on 
the equatorial plane of  
 

€ 

A = π (q2
2 − q1

2), 
 
so the areal density (projected on that plane) of particles with radius ≥ r is 
 

w = ns(r)/A. 
 
For the worst case (with regard to a space vehicle) considered here, using s = 3.3 and 
assuming Γβ ≈ 2x104 in the 100 m/sec toroid, some values of w (in cm-2) are listed. 
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Table 10: Maximum Equatorial Areal Density of Martian Belts 
 
    Phobos  Deimos 
 
w (r ≥ 1 mm)   4x10–10  4x10–10 
 
w (r ≥ 1 cm)   2x10–13  2x10–12 
 
Thus the probability of a 10 m2 space vehicle impacting a particle larger than 1 mm in a 
single normal penetration of the Martian equatorial plane in either satellite dust belt is 
less than about 4x10–5. With two orbits per day through these belts, a space vehicle 
should be able to survive for several years before hitting anything larger than sand grains. 
 
If, however, Γβ is larger by an order of magnitude, the spacecraft lifetime is reduced 
accordingly. It must also be emphasized that this analysis of dust belt density is based on 
poorly known parameters and may be in error by orders of magnitude. This section 
should be regarded more as expository rather than quantitatively reliable. 
 
 
MASS TRANSFER AND SATELLITE SURFACES 
 
Debris orbiting in a Martian dust belt would appear to be governed by three major 
processes: (a) continuous recycling of the overwhelming bulk of the material through 
impact ejection and satellite recapture; (b) steady “leakage” away from the system by the 
highest energy fraction and by the finer particles subject to radiation pressure; and (c) 
mass transfer by the Poynting-Robertson effect. 
 
The last named process may have some unusual consequences. We envision the 
following possible scenario. Debris ejected from Deimos by hypervelocity asteroidal 
impact initially contributes to the dust belt associated with that satellite. Most particles 
are likely to be recaptured by Deimos before being removed from its vicinity by the 
Pointing-Robertson effect. But once recaptured, a particle is given another chance to be 
ejected by fresh asteroidal impacts, hence another chance to be removed by the Poynting-
Robertson effect. The ejection-recapture cycle simply tosses the debris back and forth. 
Eventually it will leak out of the Mars system altogether or, staying within it, spiral in out 
of the vicinity of the satellite. 
 
Once the Poynting-Robertson drag has circularized a particle’s orbit and reduced the 
semimajor axis sufficiently to prevent further recapture by Deimos, the particle must 
continue to spiral inward to the vicinity of Phobos. By the time it approaches Phobos, its 
orbital eccentricity will have been sufficiently reduced by drag that the low relative 
velocity with the satellite assures capture. 
 
Similarly, debris ejected from Phobos by asteroidal impact is mostly recycled through the 
Phobos dust belt and recaptured, but some is drained away by the Poynting-Robertson 
effect which in this case will cause it to spiral in to be lost in the Martian exosphere. 
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However, the confining gravitational field closer to Mars reduces the size of the Phobos 
dust belt (cf. Figure 5) and this makes recapture more likely than in the case of Deimos 
(cf. Table 3). The result may be that Phobos does not loose much mass to Mars but rather 
constitutes a “bottleneck” for the debris spiraling in from Deimos. The fact that Phobos 
appears to be about eight times as massive as Deimos is consistent with this possibility. 
 
Because most of the debris constituting the surface of a Martian satellite should be 
recycled material that has spent some time in orbit, it is probably deficient in the smaller 
sizes that are preferentially removed from orbit. Thus its size frequency distribution is 
expected to depart from a power law with constant population index s for particles 
smaller than about 5 µ due to selective elimination by radiation pressure. 
 
It should be possible to determine observationally whether or not the Martian satellite 
possess the proposed lunarlike surface debris layer. Such a surface would exhibit an 
opposition effect and a negative polarization branch. According to Veverka (personal 
communication 1971), the opposition effect should be photometrically detectable from 
the Earth in the case of Deimos. Since Phobos is so close to Mars, however, any 
opposition effect it displays may be indistinguishable from that due to the bright image of 
the planet. On the other hand, this would present no difficulty for the case of a detector in 
an orbiting space vehicle. 
 
 
SPECULATIONS CONCERNING SATURN’S RINGS 
 
Meteoritic erosion of a small satellite or satellites orbiting within the Saturn ring system 
may in fact be the source of the ring material. The Saturn ring would then be a degenerate 
toroidal distribution that has exceeded the instability mass limit, as previously discussed. 
That such may be the case for Saturn but not for Mars may be due to several factors. 
 
A sufficiently rapid generation of satellite-ejected debris together with a gradual enough 
removal of it would allow the instability to develop. The flux of cometary or meteoritic 
particles may, for all we know, be much larger in the region of Saturn than in the inner 
solar system. Also, Cook and Franklin (1970) estimate that cometary meteoroids 
bombard Saturn’s rings with relative impact velocities averaging about 34 km/sec. This 
high speed is partly due to the rapid orbital revolution of the ring particles. It is about 
three times as fast as the relative impact velocity of Mars asteroids with Phobos and 
Deimos. Furthermore, hypervelocity impact into ice (the most likely constituent of a 
Saturn ring satellite) would probably give a larger ejecta to projectile mass ratio than 
obtains for rock. 
 
But the major difference is that a hypothetical Saturn ring satellite, unlike Phobos or 
Deimos, lies within the Roche limit of its primary. This subject has been widely 
misunderstood. The Roche limit is the distance from a planet at which a body with no 
internal cohesion would be disrupted by tidal forces. A solid body, if smaller than a 
certain critical size, would not be so broken up inside the Roche limit because its material 
strength is more important than self-gravity in holding it together. Jeffreys (1947a) 
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discussed this problem and found that an ice satellite with radius less than 100 km would 
not be broken up at the distance of Saturn’s rings. 
 
However, no satellite within the Roche limit can retain an unconsolidated surface. [Note 
added later: This statement is incorrect.] Therefore a hypothetical ring satellite would not 
be able to sweep up any debris ejected from it. Erosion would simply continue to increase 
the space density of orbiting material. The only process removing it would be the 
Poynting-Robertson effect which, however, is smaller for Saturn than for Mars in 
proportion to the ratio of heliocentric distances squared, a factor of ~ 40. 
 
According to this model, the Saturn ring system would be in equilibrium between input 
from satellite ejecta and outflow mainly by Poynting-Robertson drag. There would be no 
mediation by temporary satellite recapture, the process regulating the dust belts of Mars. 
A particle ejected from a satellite would soon become entrained in the dense ring, its orbit 
would be circularized, and even if it again encountered the satellite, it could not be 
recaptured. 
 
A Saturn ring satellite could also neatly explain the Cassini gap. A number of attempts 
have been made to account for the radial structure of the rings in terms of resonances 
with longitudinal symmetries in the rotating planet (Allan 1967) or with the mean motion 
of the known satellites (most recently by Franklin and Colombo 1970). The latter 
especially may well explain some of the ring features but these models are not entirely 
satisfactory. A small satellite, on the other hand, with an orbital eccentricity of ~ 0.012, 
would be quite sufficient to maintain the Cassini gap clear of ring particles. 
 
It would work as follows. Hypervelocity bombardment of a satellite in the gap ejects 
debris which is soon entrained either in the outer (A) or inner (B) rings of Saturn. The 
damping effect of interpaticle collisions alone tends toward an equilibrium state in which 
the ring is extremely thin and it does this by spreading radially inwards and outwards in 
its own plane (Jeffreys 1947b). Thus particle would be continually edging in to the 
Cassini gap. 
 
If a particle in nearly circular orbit enters the gap from the inner edge, it will soon be 
overtaken by the ring satellite near the latter’s pericenter. The particle will receive an 
impulse in the forward direction imparting to it a larger orbital velocity than the satellite 
has at that distance. This immediately makes the particle’s orbit more eccentric than the 
satellite’s, but the pericenters are the same, so the particle’s apocenter will lie just past 
the outer edge of the Casini gap. Thus half an orbit period after being hit by the satellite 
near the inner edge of the gap, the particle will find itself entrained at the other side in the 
A ring where its orbit is soon circularized. 
 
Similarly, a particle entering the gas from outside will soon overtake the satellite at the 
latter’s apocenter and bounce off, leaving it with a smaller orbital velocity than the 
satellite at that distance, again imparting a larger eccentricity which in half an orbit takes 
the particle across the gap to the edge of the B ring. The advance of the satellite’s line of 
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apsides due to Saturn’s oblateness assures that these orbital impulses will occur at all 
longitudes. 
 
The ability of the satellite to shuttle ring particles back and forth across the Cassini gap 
depends on the Roche instability in a curious way. For without its effect, the satellite 
would gradually sweep up the orbiting particles and grow by accretion. The Roche limit 
prevents this and preserves a clean ice surface off of which the particles easily rebound. It 
also continues to prevent new satellites from accreting out of the ring – its traditional 
function. 
 
The relative velocity of a particle in circular orbit colliding with the ring satellite at either 
edge of the Cassini gap is ~ 200 m/sec. This is equivalent to about 5 cal/gm, which will 
not melt any ring particles but may break the larger ones. Most of the energy goes into 
the rebound of the particle or its fragments. These collisions may even somewhat enhance 
the erosion of the satellite itself. 
 
Over a long period of time, momentum transfer from the many small collisions at 
apocenter and pericenter will reduce the satellite’s eccentricity and work to “close the 
gap”. In addition since the gap is thought to lie outside the corotating distance with the 
body of Saturn, tidal torque will slowly increase the satellite’s semimajor axis, resulting 
in the whole Cassini gap receding from Saturn. 
 
Underlying the exchange of particles across the Cassini gap is a steady one-way net 
transfer of mass from the outer to the inner ring due to the Poynting-Robertson effect. the 
smaller particles have the fastest orbital evolution but eventually even the moderate-sized 
ones spiral into Saturn. Inside the dominant central B ring is the faint C ring, decreasing 
in brightness toward the planet. The diminution in brightness from the C ring on inward 
may be due to exospheric and increasingly effective semi-corotating atmospheric drag. 
 
The position of the Cassini gap in the Saturn ring system is consistent with the satellite 
erosion hypothesis. The ejection velocity required to get a particle from a satellite in the 
gap to the outer edge of the A ring is ~ 600 m/sec. This is, within a factor of 2 or 3, the 
highest ejection velocity to be experienced by any substantial portion of debris from a 
hypervelocity impact. 
 
Guerin (1970) has produced a remarkable photograph showing a very faint “D ring” 
separated by a gap from the C ring and extending inward to the planet itself. This inner 
ring gap may also be produced by a satellite in slightly eccentric orbit although its 
limiting size would have to be less than that of a satellite in the Cassini gap to avoid tidal 
disruption. 
 
The many smaller gaps or bands in the radial structure of Saturn’s rings (cf. Dollfus 
1961) may be explained, on the basis of the present hypothesis, by the presence of 
additional orbiting ring satellite with smaller size and/or more circular orbits The orbits 
of these satellites including the one in the Cassini gap, may be determined or influenced 
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by resonances with the known satellites. The present hypothesis would then supplement 
those previously proposed to account for the radial structure of the rings of Saturn. 
 
None of these ring satellites, however, could be directly observed from Earth because of 
their limiting size. To avoid tidal disruption, satellites in the ring may be no larger than 
about 100 km in radius. This is comparable to the estimated lower bound on the radius of 
Janus (Dollfus 1970). And Janus is so faint that it could only be discovered when the 
rings were presented edgewise to reduce the glare. 
 
Further study and comparison of Saturn’s rings and the proposed dust belts of Mars may 
contribute to our understanding of process involved in the evolution of the solar system 
as a whole. 
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SYMBOLS 
 
a Semi-major axis of a particle 
ao Semi-major axis of a satellite 
b Planet’s orbital radius in AU 
b’ Maximum elevation above orbital plane 
c Speed of light 
e Orbital eccentricity 
eo Initial value of e 
f Fraction of Mars asteroids eliminated by impact with Mars 
FS Rate of mass flux from a Martian satellite into orbiting complex 
G Gravitational constant 
i Orbital inclination 
k Ratio of surface areas of Mars to a small body 
K Impact ejecta parameter 
l Chord of toroid with maximum optical depth 
m Mass of debris in orbit 

€ 

˜ m  Mass of particle 
mS Equilibrium mass of toroidal debris 

€ 

ˆ m S  Maxium equilibrium mass of toroidal debris 

ms Toroidal mass for size distribution index s 
M Mass of planet 
MS Total incident projectile mass 
n Number of particles 
ns Number of particles for a size distribution index s 
N  Number of Mars asteroids 
No Number of Mars asteroids t years ago 
NS Total number of Mars asteroids of a given size range 
P Orbital period of planet 
q Pericenter or apocenter distance 
q1 Pericenter distance 
q2 Apocenter distance 
r Radius 
ro Radius of Mars satellite 
r’ Critical particle size for toroidal instability 
rmin Radius of the smallest particle in the dust belt  
rmax Radius of the largest particle in the dust belt 
R Radius of a Mars asteroid 
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RM Radius of Mars 

€ 

ˆ R S Radius of largest asteroid to have struck a Mars satellite 
s Disc particle size index 
S Asteroid population size index 
So Solar constant 
t Time 
T Characteristic survival time for Mars asteroids 
Ts Age of solar system 
v Particle orbital velocity 
vo Satellite orbital velocity 

Vej Ejection velocity 
vesc Escape velocity 
vp Particle’s post-escape velocity relative to satellite 
vi Impact velocity 
V Volume of toroid 
VM Volume of Mars 
w Areal density of particles 
Z Radius parameter of population index 
 
α Parameterized particle orbital eccentricity,  
β Number of particle bounces to capture 
Γ Mass of hypervelocity ejecta to impactor 
ζ Number parameter of population index 
θ Ratio of impacting to surviving Mars asteroids 
λ Mass ratio of encountered debris to particle 
ρ Density 
σ Cross-section 
τ Optical depth 
τo Characteristic collision time for particle 
τc Characteristic capture time 
τPR Characteristic Poynting-Robertson lifetime 
τλ Time to encounter mass λ

€ 

˜ m  
Φ Ratio of Poynting-Robertson to capture lifetime 
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Fig. 1. Cumulative number of Mars asteroids with radius ≥ R, extrapolated 
from counts of the larger members for three suggested values of population 
index S. Inset shows the depletion by observational selection for visible 
members. 
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Fig. 2. Average time interval between impacts by a Mars asteroid of radius ≥ 
R into Phobos (solid lines) and Deimos (dashed lines) for three values of S. 



 34 

   
 
Fig. 3. (a) A particle ejected with relatively low velocity vej opposite a 
satellite’s orbital velocity vo attains a prograde orbit with pericenter q1. 
 
(b) For ejection in the same direction, orbit is larger than that of the satellite 
and has apocenter q2. Scale in (a) and (b) is for orbit of Phobos (radius ao).  
 
(c) In the plane normal to the Mars-satellite radius vector, a particle ejected 
at angle ε with equatorial plane attains an orbit of inclination i. 
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Fig. 4. Range of possible pericenter and apocenter distances (in Mars radii) 
for particles ejected at vej from Phobos (solid curves) and Deimos (dashed 
curves). Ejecta fraction data at top are from experimental impacts into solid 
basalt. 
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Fig. 5. Cross-section of toroidal envelopes containing initial orbits of all debris ejected at 
velocity ≤ values labeled in m/sec for Deimos dust belt (at right). Same labels apply to 
smaller Phobos toroids centered at 2.76 RM. 
 
 

          
 
Fig. 6. Maximum orbital path length l through a dust belt in the equatorial plane. 
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